WorldWideScience

Sample records for alloy static high

  1. Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions

    Science.gov (United States)

    Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.

    2015-02-01

    The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.

  2. Static and Vibrational Properties of Lithium Alloys

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2011-01-01

    Full Text Available The computations of the static and vibrational properties of four equiatomic lithium alloys viz. Li0.5Na0.5, Li0.5K0.5, Li0.5Rb0.5 and Li0.5Cs0.5 to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H, Ichimaru-Utsumi (IU and Sarkar et al. (S are used to investigate influence of the screening effects on the aforesaid properties. Results for the lattice constants i.e.С11, С12, С44, С12 – С44, С12/С44 and bulk modulus Å obtained using the Hartree (H local field correction function has higher values in comparison with the results obtained for the same properties using Ichimaru-Utsumi (IU and Sarkar et al. (S local field correction functions. The results for the Shear modulus (С′, deviation from Cauchy’s relation, Poisson’s ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispel-rsion curves and degree of anisotropy A are highly appreciable for the four lithium alloys.

  3. High strain in polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys under overlapped static and oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Montanher, D. Z.; Pereira, J. R. D.; Cótica, L. F.; Santos, I. A. [Department of Physics, State University of Maringá, Av. Colombo 5790, Maringá - PR 87020-900 (Brazil); Gotardo, R. A. M. [Technological Federal University of Paraná, Av. Alberto Carazzai 1640, Cornélio Procópio - PR 86300-000 (Brazil); Viana, D. S. F.; Garcia, D.; Eiras, J. A. [Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, Km 235, São Carlos - SP 13565-905 (Brazil)

    2014-09-21

    Martensitic polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys, with a stacking period of 14 atomic planes at room temperature, were innovatively processed by combining high-energy ball milling and powder metallurgy. Bulk samples were mechanically coupled to a piezoelectric material in a parallel configuration, and the mechanical deformation of the studied system due to the twin's variant motion was investigated under overlapped static and oscillating magnetic fields. A reversible and high mechanical deformation is observed when the frequency of the oscillating magnetic field is tuned with the natural vibration frequency of this system. In this condition, a linear deformation as a function of the static magnetic field amplitude occurs in the ±4 kOe range, and a mechanical deformation of 2% at 10 kOe is observed.

  4. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  5. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  6. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  7. Rapid air film continuous casting of aluminum alloy using static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fu QU; Huixue JIANG; Gaosong WANG; Qingfeng ZHU; Xiangjie WANG; Jianzhong CUI

    2009-01-01

    The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.

  8. Dynamic and quasi-static mechanical properties of iron-nickel alloy honeycomb

    Science.gov (United States)

    Clark, Justin L.

    Several metal honeycombs, termed Linear Cellular Alloys (LCAs), were fabricated via a paste extrusion process and thermal treatment. Two Fe-Ni based alloy compositions were evaluated. Maraging steel and Super Invar were chosen for their compatibility with the process and the wide range of properties they afforded. Cell wall material was characterized and compared to wrought alloy specifications. The bulk alloy was found to compare well with the more conventionally produced wrought product when porosity was taken into account. The presence of extrusion defects and raw material impurities were shown to degrade properties with respect to wrought alloys. The performance of LCAs was investigated for several alloys and cell morphologies. The results showed that out-of-plane properties exceeded model predictions and in-plane properties fell short due to missing cell walls and similar defects. Strength was shown to outperform several existing cellular metals by as much as an order of magnitude in some instances. Energy absorption of these materials was shown to exceed 150 J/cc at strains of 50% for high strength alloys. Finally, the suitability of LCAs as an energetic capsule was investigated. The investigation found that the LCAs added significant static strength and as much as three to five times improvement in the dynamic strength of the system. More importantly, it was shown that the pressures achieved with the LCA capsule were significantly higher than the energetic material could achieve alone. High pressures, approaching 3 GPa, coupled with the fragmentation of the capsule during impact increased the likelihood of initiation and propagation of the energetic reaction. This multi-functional aspect of the LCA makes it a suitable capsule material.

  9. Static Recrystallization Behavior of Hot Deformed Austenite for Micro-Alloyed Steel

    Institute of Scientific and Technical Information of China (English)

    Jie HUANG; Zhou XU; Xin XING

    2003-01-01

    Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austen

  10. High strength ferritic alloy

    International Nuclear Information System (INIS)

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  11. DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy

    OpenAIRE

    Manping Liu; Zhenjie Wu; Rui Yang; Jiangtao Wei; Yingda Yu; Pål C. Skaret; Hans J. Roven

    2015-01-01

    In the present investigation, both static and dynamic precipitations of an Al–Mg–Si–Cu aluminum alloy after solid-solution treatment (SST) were comparatively analyzed using differential scanning calorimetry (DSC). Dynamic aging was performed in the SST alloy through equal channel angular pressing (ECAP) at different temperatures of room temperature, 110, 170, 191 and 300 °C. For comparison, static artificial aging was conducted in the SST alloy at 191 °C with two aging times of 4 and 10 h. Th...

  12. Advanced high temperature static strain sensor development

    Science.gov (United States)

    Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.

    1986-01-01

    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.

  13. High-temperature Titanium Alloys

    OpenAIRE

    A.K. Gogia

    2005-01-01

    The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase eq...

  14. Multicomponent and High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Brian Cantor

    2014-08-01

    Full Text Available This paper describes some underlying principles of multicomponent and high entropy alloys, and gives some examples of these materials. Different types of multicomponent alloy and different methods of accessing multicomponent phase space are discussed. The alloys were manufactured by conventional and high speed solidification techniques, and their macroscopic, microscopic and nanoscale structures were studied by optical, X-ray and electron microscope methods. They exhibit a variety of amorphous, quasicrystalline, dendritic and eutectic structures.

  15. Study of delta phase on static recrystallization behavior of Inconel 718 alloy.

    Science.gov (United States)

    Lee, Hwa-Teng; Hou, Wen-Hsin

    2012-09-01

    The mechanical properties of Inconel 718 alloy depend on its microstructural features. Controlling the grain size during manufacturing is currently achieved through the use of a powerful hot forming process performed at a temperature sufficiently high to induce dynamic recrystallization. The present study proposes an alternative technique to achieve a uniform fine grain structure by using static recrystallization and a proper control of delta precipitation. The results show that a fine structure with an average grain size of ASTM No. 7 can be achieved. And in this study the finest grains yet achievable is ca. 200 nm. As a result, the proposed technique provides a feasible means of controlling the grain size without the need for an energy consumption and technically sophisticated hot forming process.

  16. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  17. High temperature static strain gage development

    Science.gov (United States)

    Hulse, C. O.; Bailey, R. S.; Grant, H. P.; Anderson, W. L.; Przybyszewski, J. S.

    1991-01-01

    Final results are presented from a program to develop a thin film static strain gage for use on the blades and vanes of running, test stand gas turbine engines with goals of an 3 x 3 mm gage area and total errors of less than 10 pct. of + or - 2,000 microstrain after 50 hrs at 1250 K. Pd containing 13 Wt. pct. Cr was previously identified as a new strain sensor alloy that appeared to be potentially usable to 1250 K. Subsequently, it was discovered, in contrast with its behavior in bulk, that Pd-13Cr suffered from oxidation attack when prepared as a 4.5 micron thick thin film. Continuing problems with electrical leakage to the substrate and the inability of sputtered alumina overcoats to prevent oxidation led to the discovery that sputtered alumina contains appreciable amounts of entrapped argon. After the argon has been exsolved by heating to elevated temperatures, the alumina films undergo a linear shrinkage of about 2 pct. resulting in formation of cracks. These problems can be largely overcome by sputtering the alumina with the substrate heated to 870 K. With 2 micron thick hot sputtered alumina insulation and overcoat films, total 50 hr drifts of about 100 microstrain (2 tests) and about 500 microstrain (1 test) were observed at 1000 and 1100 K, respectively. Results of tests on complete strain gage systems on constant moment bend bars with Pd temperature compensation grids revealed that oxidation of the Pd grid was a major problem even when the grid was overcoated with a hot or cold sputtered alumina overcoat.

  18. Static and Vibrational Properties of Equiatomic Cesium-Alkali Binary Alloys

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2012-07-01

    Full Text Available The computations of the static and vibrational properties of four equiatomic Cs-based binary alloys viz. Cs0.5Li0.5, Cs0.5Na0.5, Cs0.5K0.5 and Cs0.5Rb0.5 to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H, Ichimaru-Utsumi (IU and Sarkar et al. (S are used to investigate influence of the screening effects on the aforesaid properties. Results for the lattice constants, i.e. С11, С12, С44, С12 – С44, С12 / С44, and bulk modulus B obtained using the H-local field correction function, have higher values in comparison with the results obtained for the same properties using IU and S local field correction functions. The results for the Shear modulus (C, deviation from Cauchy’s relation, Poisson’s ratio , Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Cs-based binary alloys.

  19. Mechanically Alloyed High Entropy Composite

    Science.gov (United States)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  20. DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy

    Directory of Open Access Journals (Sweden)

    Manping Liu

    2015-04-01

    Full Text Available In the present investigation, both static and dynamic precipitations of an Al–Mg–Si–Cu aluminum alloy after solid-solution treatment (SST were comparatively analyzed using differential scanning calorimetry (DSC. Dynamic aging was performed in the SST alloy through equal channel angular pressing (ECAP at different temperatures of room temperature, 110, 170, 191 and 300 °C. For comparison, static artificial aging was conducted in the SST alloy at 191 °C with two aging times of 4 and 10 h. The DSC analyses reveal that the dynamic precipitation has occurred in the ECAPed samples, while the activation energies associated with the strengthening precipitates in the dynamic samples are considerably higher than the energies in the SST and static aged samples. The higher activation energies are probably attributed to the smaller grains and higher dislocation density developed after ECAP. The results in the present investigation allow the prediction of the type of the dynamic precipitates to influence the strength of the ultrafine grained alloy during ECAP at various temperatures.

  1. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  2. Development of a high temperature static strain gage system

    International Nuclear Information System (INIS)

    The objective of this program is to develop electrical resistance strain gages which will permit the measurement of static strains on nickel and cobalt superalloy parts inside gas turbine engines running on a test stand. The specific goal is to develop a complete system able to make strain measurements up to plus or minus 2000 mu strain with a total error of no more than plus or minus 10 percent over a 50 hour period at 1250 K. The initial part of this work consisted of a strain gage alloy development effort in which a variety of alloys were evaluated after being prepared by drop-casting or splat cooling

  3. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    Science.gov (United States)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  4. Palladium-chromium static strain gage for high temperature propulsion systems

    Science.gov (United States)

    Lei, Jih-Fen

    1991-01-01

    The present electrical strain gage for high temperature static strain measurements is in its fine-wire and thin-film forms designed to be temperature-compensated on any substrate material. The gage element is of Pd-Cr alloy, while the compensator is of Pt. Because the thermally-induced apparent strain of this compensated wire strain gage is sufficiently small, with good reproducibility between thermal cycles to 800 C, output figures can be corrected within a reasonable margin of error.

  5. Effect of Ultrasonic Treatment in the Static and Dynamic Mechanical Behavior of AZ91D Mg Alloy

    Directory of Open Access Journals (Sweden)

    Helder Puga

    2015-11-01

    Full Text Available The present study evaluates the effect of high-intensity ultrasound (US in the static and dynamic mechanical behavior of AZ91D by microstructural modification. The characterization of samples revealed that US treatment promoted the refinement of dendrite cell size, reduced the thickness, and changed the β-Mg17Al12 intermetallic phase to a globular shape, promoted its uniform distribution along the grain boundaries and reduced the level of porosity. In addition to microstructure refinement, US treatment improved the alloy mechanical properties, namely the ultimate tensile strength (40.7% and extension (150% by comparison with values obtained for castings produced without US vibration. Moreover, it is suggested that the internal friction, enhanced by the reduction of grain size, is compensated by the homogenization of the secondary phase and reduction of porosity. It seems that by the use of US treatment, it is possible to enhance static mechanical properties without compromising the damping properties in AZ91D alloys.

  6. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    Science.gov (United States)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  7. Ultra-fine ferrite grain refinement by static re-crystallization of hot rolled vanadium micro-alloyed steels

    International Nuclear Information System (INIS)

    The phenomenon of ultrafine-grain refinement of ferrite during transformational grain refinement (TGR) followed by static re-crystallization of vanadium micro-alloyed steels was studied. A substantial grain refinement (2.8 mu m) was attained during TGR process by rolling at 900 deg. C. Cold rolling with 70% of reduction introduced strain, utilized for re-crystallization during annealing at different temperatures. Electron Backscattered Diffraction (EBSD) technique was employed to quantify the low angle grain boundaries (LAGB) and high angle grain boundaries (HAGB) spacings and results were correlated with hardness drops during annealing process. At higher annealing times and temperatures the vanadium precipitates restricted the process of grain growth probably due to effective dispersion strengthening. The abnormal grain growth during annealing, predicted previously for niobium steels, found absent in the present vanadium microalloyed steels. (author)

  8. Finite element analysis of stiffness and static dent resistance of aluminum alloy double-curved panel in viscous pressure forming

    Institute of Scientific and Technical Information of China (English)

    LI Yi; WANG Zhong-Jin

    2009-01-01

    The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF) was studied by finite element analysis, which mainly considers the forming process conditions. The whole simulation consisting of three stages, i.e., forming, spring-back and static dent resistance, was carried out continuously using the finite element code ANSYS. The influence of blank holder pressure (BHP) and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed. The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel, which is beneficial to the initial stiffness and the static dent resistance. There is an optimum BHP range for the stiffness and the static dent resistance.

  9. High Damping Alloys and Their Application

    Institute of Scientific and Technical Information of China (English)

    Fuxing Yin

    2000-01-01

    Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.

  10. A quasi-static model for NiMnGa magnetic shape memory alloy

    Science.gov (United States)

    Couch, Ronald N.; Chopra, Inderjit

    2007-02-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated in parallel to the Brinson and Tanaka thermal SMA constitutive models. Since the shape memory effect (SME) and pseudoelasticity exist in both NiTi and NiMnGa, constitutive models for SMAs can serve as a basis for MSMA behavioral modeling. The simplified, linear, quasi-static model for NiMnGa was characterized by nine material parameters identified by conducting a series of uniaxial compression tests in a constant field environment. These model parameters include free strain, Young's modulus, fundamental critical stresses, fundamental threshold fields, and stress-influence coefficients. The Young's moduli of the material in both its field and stress preferred configurations were determined to be 450 MPa and 820 MPa respectively, while the free strain was measured to be 5.8%. These test data were used to assemble a critical stress profile that is useful for determining model parameters and for understanding the dependence of critical stresses on magnetic fields. Once implemented, the analytical model shows good correlation with test data for all modes of NiMnGa quasi-static behavior, capturing both the magnetic shape memory effect and pseudoelasticity. Furthermore, the model is also capable of predicting partial pseudoelasticity, minor hysteretic loops and stress-strain behaviors. To correct for the effects of magnetic saturation, a series of stress influence functions were developed from the critical stress profile. Although requiring further refinement, the model's results are encouraging, indicating that the model is a useful analytical tool for predicting NiMnGa actuator behavior.

  11. Quasi-static modeling of NiMnGa magnetic shape memory alloy

    Science.gov (United States)

    Couch, Ronald N.; Chopra, Inderjit

    2005-05-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated in parallel to the Brinson and Tanaka thermal SMA constitutive models. Since the shape memory effect (SME) and pseudoelasticity exist in both NiTi and NiMnGa, constitutive models for SMAs can serve as a basis for MSMA behavioral modeling. The quasi-static model for NiMnGa was characterized by nine material parameters identified by conducting a series of uniaxial compression tests in a constant field environment. These model parameters include free strain, Young"s modulus, fundamental critical stresses, fundamental threshold fields, and stress-influence coefficients. The Young"s moduli of the material in both its field and stress preferred configurations were determined to be 450 MPa and 820 MPa respectively, while the free strain was measured to be 5.8%. These test data were used to assemble a critical stress profile that is useful for determining model parameters and for understanding the dependence of critical stresses on magnetic fields. Once implemented, the analytical model shows good correlation with test data for all modes of NiMnGa quasi-static behavior, capturing both the magnetic shape memory effect and pseudoelasticity. Furthermore, the model is also capable of predicting partial pseudoelasticity, minor hysteretic loops and stress-strain behaviors. To correct for the effects of magnetic saturation, a series of stress influence functions were developed from the critical stress profile. Although requiring further refinement, the model"s results are encouraging, indicating that the model is a useful analytical tool for predicting NiMnGa actuator behavior.

  12. The Effect of Short Duration Electric Current on the Quasi-Static Tensile Behavior of Magnesium AZ31 Alloy

    Directory of Open Access Journals (Sweden)

    Trung Thien Nguyen

    2016-01-01

    Full Text Available The effect of a single pulse of electric current with short duration on the quasi-static tensile behavior of a magnesium AZ31 alloy is experimentally investigated. A single pulse of electric current with duration less than 1 second is applied to the specimen, while the specimen is being deformed in the plastic region under quasi-static tensile loads. After a nearly instant decrease of flow stress at the pulse of electric current, the flow stress shows strain hardening until the failure of the specimen. The experimental result shows that the strain-hardening parameters (the strength coefficient and the strain-hardening exponent of the hardening curve after the electric current strongly depend on the applied electric energy density (electric energy per unit volume. Empirical expressions are suggested to describe the hardening behavior after the pulse as a function of the electric energy density and are compared with the empirical expressions suggested for advanced high-strength steels.

  13. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  14. Machining of high alloy steels and heat resistant alloys

    International Nuclear Information System (INIS)

    The peculiarities of machining high alloy steels and heat resistant alloys on the base of nickel by cutting are described. The factors worsening the machining of heat resistant materials, namely, the low heat conductivity, strong reverting and high wearing capability, are pointed out. The resign and materials of cutting instruments, providing for high quality machining of heat resistant steels and alloys, are considered. The necessity of regulating thermal processes during cutting with cutting fluids and other coolants (e.g. air with a negative temperature) is noted. The recommended modes of cutting are presented. The efficiency of the conveyer-type method for sawing products and forged intermediate articles is demonstrated by the example of 5KhNM steel

  15. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  16. Simulation of the texture evolution of aluminum alloys during primary static recrystallization using a cellular automaton approach

    Energy Technology Data Exchange (ETDEWEB)

    Marx, V.; Gottstein, G. [RWTH Aachen (Germany). Inst. fuer Metallkunde und Metallphysik

    1998-12-31

    A 3D model has been developed to simulate both primary static recrystallization and recovery of cold worked aluminum alloys. The model is based on a modified cellular automaton approach and incorporates the influence of crystallographic texture and microstructure in respect to both mechanisms mentioned above. The model takes into account oriented nucleation using an approach developed by Nes for aluminum alloys. The subsequent growth of the nuclei depends on the local stored energy of the deformed matrix (i.e. the driving pressure) and the misorientation between a growing nucleus and its surrounding matrix (i.e. the grain boundary mobility). This approach allows to model preferred growth of grains that exhibit maximum growth rate orientation relationship, e.g. for aluminum alloys a 40{degree}<111> relationship with the surrounding matrix. The model simulates kinetics, microstructure and texture development during heat treatment, discrete in time and space.

  17. Materials response under static and dynamic high pressures

    International Nuclear Information System (INIS)

    Studies on equation of state and phase transitions at high pressures have significantly contributed to our basic understanding of condensed matter physics. High-pressure data on materials also find important applications in applied sciences. The developments in first principle theories and experimental techniques are listed. The similarities and differences in behaviour of materials under static and dynamic pressures are discussed. The article also describes the current interplay between theoretical and experimental high-pressure research with illustrations from our own studies and emphasis on future scope. (author). 135 refs., 10 figs., 2 tabs

  18. High damping indium-tin alloys

    OpenAIRE

    Dooris, A.; Lakes, Roderick S.; Myers, B.; Stephens, N

    2015-01-01

    This research is directed toward the development of materials of high stiffness and high mechanical damping for the purpose of damping vibrations instructures and machinery. To this end, indium-tin alloys are considered. Cast In-Sn exhibits substantial damping for a metal. Quenching substantially improved the damping of indium-tin alloy but the effect gradually disappeared due to aging. Cold work of 1.3% permanent shear strain had the effect of moderately increasing the damping of indium-tin,...

  19. On Silicides in High Temperature Titanium Alloys

    OpenAIRE

    Ramachandra, C.; Vakil Singh; P. Rama Rao

    1986-01-01

    High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent) to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr)5Si3(S1) and (TiZr)6 Si3 (S2), have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatm...

  20. High-entropy alloy: challenges and prospects

    Directory of Open Access Journals (Sweden)

    Y.F. Ye

    2016-07-01

    Full Text Available High-entropy alloys (HEAs are presently of great research interest in materials science and engineering. Unlike conventional alloys, which contain one and rarely two base elements, HEAs comprise multiple principal elements, with the possible number of HEA compositions extending considerably more than conventional alloys. With the advent of HEAs, fundamental issues that challenge the proposed theories, models, and methods for conventional alloys also emerge. Here, we provide a critical review of the recent studies aiming to address the fundamental issues related to phase formation in HEAs. In addition, novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism, and superconductivity. Due to their considerable structural and functional potential as well as richness of design, HEAs are promising candidates for new applications, which warrants further studies.

  1. Structural and mechanical properties of 7075 alloy strips fabricated by roll-casting in a static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xin Su; Guang-ming Xu; Jiu-wen Jiang

    2014-01-01

    The influences of a 0.2 T static magnetic field on the microstructure of 7075 aluminum alloys sheets produced with a twin-roll continuous caster at 675°C were investigated in this paper. Under a uniform magnetic field, the primary dendrites were refined and tended to be equiaxed. The microstructure consisted of an intermediate case between dendritic and equiaxed grains. Moreover, the use of an external static field in the twin-roll casting process can reduce heat discharge, resulting in a decrease in undercooling, and may also account for the abatement of segregation bands. In addition, the static magnetic field effectively improved the solute mixing capacity, and the added atoms more easily diffused from precipitates to theα-Al matrix, which resulted in an increase in the mechanical properties of the rolled sheets. Specimens prepared both in the presence of a static magnetic field and in the absence of a static magnetic field exhibited brittle-fracture characteristics.

  2. On Silicides in High Temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    C. Ramachandra

    1986-04-01

    Full Text Available High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr5Si3(S1 and (TiZr6 Si3 (S2, have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatment on the distribution of silicides have been pointed out. The effect of silicides on mechanical properties and fracture of the commercial alloy IMI 685 is also indicated.

  3. Palladium-chromium static strain gages for high temperatures

    Science.gov (United States)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can provide accurate static strain measurement to a temperature of 1500 F or above is being developed both in fine wire and thin film forms. The gage is designed to be temperature compensated on any substrate material. It has a dual element: the gage element is a special alloy, palladium-13wt percent chromium (PdCr), and the compensator element is platinum (Pt). Earlier results of a PdCr based wire gage indicated that the apparent strain of this gage can be minimized and the repeatability of the apparent strain can be improved by prestabilizing the gage on the substrate for a long period of time. However, this kind of prestabilization is not practical in many applications and therefore the development of a wire gage which is prestabilized before installation on the substrate is desirable. This paper will present our recent progress in the development of a prestabilized wire gage which can provide meaningful strain data for the first thermal cycle. A weldable PdCr gage is also being developed for field testing where conventional flame-spraying installation can not be applied. This weldable gage is narrower than a previously reported gage, thereby allowing the gage to be more resistant to buckling under compressive loads. Some preliminary results of a prestabilized wire gage flame-sprayed directly on IN100, an engine material, and a weldable gage spot-welded on IN100 and SCS-6/(beta)21-S Titanium Matrix Composite (TMC), a National Aero-Space Plane (NASP) structure material, will be reported. Progress on the development of a weldable thin film gage will also be addressed. The measurement technique and procedures and the lead wire effect will be discussed.

  4. Texture Evaluation of a Bi-Modal Structure During Static Recrystallization of Hot-Deformed Mg-Al-Sn Alloy

    Science.gov (United States)

    Kabir, Abu Syed Humaun; Su, Jing; Yue, Stephen

    2016-02-01

    In this study, Mg-Al-Sn alloy was hot compressed at 523 K (250 °C) and annealed at 623 K (350 °C) for various times. The initial as-deformed microstructure was partially dynamic recrystallized with strain-induced precipitates on the recrystallized grain boundaries. After annealing at 623 K (350 °C), static recrystallization (SRX) of the bimodal microstructure took place where, at this temperature, no static precipitates formed. The goal of this work was to study the effect of dynamic precipitation on the texture evolution during the SRX process. Progressive texture evolution was studied during annealing by electron backscattered diffraction technique through a microstructure-tracking process. It was found that the grain-coarsening mechanism during the early stage of annealing is not totally controlled by the basal-oriented grains. Also, it was found that the dynamic precipitates may have significant influence in the early texture weakening during annealing of a bimodal structure.

  5. Corrosion of Cr bearing low alloy pipeline steel in CO2 environment at static and flowing conditions

    International Nuclear Information System (INIS)

    We study the corrosion performance of Cr bearing low alloy pipeline steel (Cr3MoNi) in CO2 saturated formation water, under both static and flowing conditions. Cross-sectional morphologies of corrosion scales at progressively increased test duration are observed by scanning electron microscopy. The characteristic of the corrosion scales are investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. Our results show that the corrosion rate of Cr3MoNi steel at flowing condition is higher than that of static condition, and the degree of Cr enrichment in the scales at flowing condition is also higher. Flow also makes ions distribute evenly in the solution close to the specimen, leading to a uniform distribution of Cr compound in the amorphous corrosion scales. In this way, flow suppresses the presence of the potential pits and also leads to a more flat scale/substrate interface.

  6. The combined effect of static recrystallization and twinning on texture in magnesium alloys AM30 and AZ31

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Etienne; Jiang, Lan; Jonas, John J. [McGill Univ., Montreal, Quebec (Canada). Dept. of Materials Engineering; Godet, Stephane [Univ. Libre de Bruxelles (Belgium). Service Matieres et Materiaux

    2009-04-15

    The potential for decreasing the texture intensity generated during the bulk deformation of Mg alloys was investigated using a combination of contraction twinning, double (secondary) twinning and static recrystallization. A large number of twins was induced by tensile deformation at room temperature. Their volume fraction and the variants selected during straining were found to be largely responsible for the changes evident in the deformation texture. Recrystallization of the twins generated a fine-grained microstructure, although no growth into the matrix grains was observed. In this way, annealing of the deformed samples did not lead to significant further texture changes. (orig.)

  7. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  8. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanran; Cai Canyuan; Chen Danian [Mechanics and Materials Science Research Center, Ningbo University, Ningbo, Zhejiang 315211 (China); Ma Dongfang [Mechanics and Materials Science Research Center, Ningbo University, Ningbo, Zhejiang 315211 (China); School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000 (China)

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From high speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.

  9. High temperature alloys: their exploitable potential

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Merz, M.; Nihoul, J.; Ward, J. (eds.) (Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center; NET-TEAM, Garching (DE))

    1987-01-01

    This book is the proceedings of a conference dealing with fundamental and technical aspects of the applications of high temperature alloys. It is split into five sections which cover the opening session of the conference and four further sessions covering: the theoretical and practical limits for HT alloys; the potential for development in alloys and processing; engineering considerations; the future outlook. The different sessions each included a number of invited papers followed by a series of posters and were concluded by a presentation of a 'synthesis' by a session rapporteur and general discussion. This structure is retained in the proceedings, including the discussion points in those cases where the authors have provided written answers to the questions raised. This book will be of interest to metallurgists, materials scientists, physicists and research workers in high temperature materials.

  10. Microstructure and texture evolution during static recrystallization of Zr-2Hf alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, K.Y.; Chaubet, D.; Bacroix, B.; Bechade, J.L. [MPMTM-CNRS, Inst. Galilee, Univ. Paris-Nord, Villetaneuse (France); CEA SACLAY, CEREM/DECM/SRMA, Gif-fur-Yvette (France)

    2004-07-01

    The recrystallization of a Zr-2Hf alloy sheet deformed by plane strain compression at room temperature and then heat treated in the temperature range 500-650 C is studied. The microstructure, local and global crystallographic textures are investigated by EBSD and X-ray techniques. The as-deformed condition exhibits a heterogeneous microstructure composed of highly and less deformed zones, the EBSD indexing of the latter ones being more reliable. The as-deformed condition displays a (0001) <10 anti 10> crystallographic texture. The evolution of the microstructure during recrystallization very much depends on the amount of local deformation. Recrystallization begins in highly deformed zones, new grains having two variants of texture components, {l_brace}0001{r_brace} <10 anti 10> and {l_brace}0001{r_brace} <11 anti 20>. Some change of preferred orientations concomitant with grain growth at 600 and 650 C has been observed with a decrease in the {l_brace}0001{r_brace} <10 anti 10> component and an increase in the {l_brace}0001{r_brace} <11 anti 20> component. (orig.)

  11. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    OpenAIRE

    Yiping Lu; Yong Dong; Sheng Guo; Li Jiang; Huijun Kang; Tongmin Wang; Bin Wen; Zhijun Wang; Jinchuan Jie; Zhiqiang Cao; Haihui Ruan; Tingju Li

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this co...

  12. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  13. Aligned Solidification Structure of the MnBi Phase in Semisolidified Bi-Mn Alloy with a Static Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhongming REN; Hui WANG; Kang DENG; Kuangdi XU

    2004-01-01

    The solidification structure of Bi-3 wt pct Mn alloy grown up in the semisolid zone under the influence of a static magnetic field (up to 1.0 T) and the relation of the magnetic property with the solidification structure have been investigated experimentally. It was shown that the primary phase MnBi crystals in the alloy aligned and oriented along the direction of the applied magnetic field. The orientating tendency and the average length of the elongated MnBi crystals increased with the increase of the applied field and the solidification time. Moreover, the remanence of the alloy along the aligned direction of the MnBi phase in the case of solidification with a magnetic field was apparently anisotropic and nearly double of that without the magnetic field. This indicated that the MnBi crystals oriented and aligned along their easy magnetization axis. A model was proposed to explain the alignment and orientation growth of the MnBi crystals in a magnetic field in terms of the magnetic anisotropy of the crystals and the magnetic interaction between them.

  14. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH25Cdegrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe3O4) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author)

  15. High temperature static strain gage development contract, tasks 1 and 2. Interim report

    International Nuclear Information System (INIS)

    Results are presented for the first two tasks to develop resistive strain gage systems for use up to 1250 K on blades and vanes in gas turbine engines under tests. The objective of these two tasks was to further improve and evaluate two static strain gage alloys identified as candidates in a previous program. Improved compositions were not found for either alloy. Further efforts on the Fe-11.9Al-10.6Cr weigth percent alloy were discontinued because of time dependent drift problems at 1250 K in air. When produced as a 6.5 micrometer thick sputtered film, the Pd-13Cr weight percent alloys is not sufficiently stable for this use in air at 1250 K and a protective overcoat system will need to be developed

  16. High temperature static strain gage development contract, tasks 1 and 2

    Science.gov (United States)

    Hulse, C. O.; Bailey, R. S.; Grant, H. P.; Przybyszewski, J. S.

    1987-07-01

    Results are presented for the first two tasks to develop resistive strain gage systems for use up to 1250 K on blades and vanes in gas turbine engines under tests. The objective of these two tasks was to further improve and evaluate two static strain gage alloys identified as candidates in a previous program. Improved compositions were not found for either alloy. Further efforts on the Fe-11.9Al-10.6Cr weigth percent alloy were discontinued because of time dependent drift problems at 1250 K in air. When produced as a 6.5 micrometer thick sputtered film, the Pd-13Cr weight percent alloys is not sufficiently stable for this use in air at 1250 K and a protective overcoat system will need to be developed.

  17. Corrosion behavior of Alloy 690 and Alloy 693 in simulated nuclear high level waste medium

    Energy Technology Data Exchange (ETDEWEB)

    Samantaroy, Pradeep Kumar; Suresh, Girija; Paul, Ranita [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Raj, Baldev [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-11-15

    Highlights: > Alloy 690 and Alloy 693, both possess good corrosion resistance in simulated HLW. > SEM and EDS confirms the presence of Cr rich precipitates for both the alloys. > Passive film stability of Alloy 690 was found to be higher than Alloy 693. > Both alloys possess few micro pits even at a concentration of 100 ppm Cl{sup -} ion. - Abstract: Nickel based alloys are candidate materials for the storage of high level waste (HLW) generated from reprocessing of spent nuclear fuel. In the present investigation Alloy 690 and Alloy 693 are assessed by potentiodynamic anodic polarization technique for their corrosion behavior in 3 M HNO{sub 3}, 3 M HNO{sub 3} containing simulated HLW and in chloride medium. Both the alloys were found to possess good corrosion resistance in both the media at ambient condition. Microstructural examination was carried out by SEM for both the alloys after electrolytic etching. Compositional analysis of the passive film formed on the alloys in 3 M HNO{sub 3} and 3 M HNO{sub 3} with HLW was carried out by XPS. The surface of Alloy 690 and Alloy 693, both consists of a thin layer of oxide of Ni, Cr, and Fe under passivation in both the media. The results of investigation are presented in the paper.

  18. Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xinsheng, E-mail: huang-xs@aist.go.jp [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560 (Japan); Suzuki, Kazutaka; Chino, Yasumasa [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560 (Japan); Mabuchi, Mamoru [Graduate School of Energy Science, Kyoto University, Kyoto 606-8501 (Japan)

    2015-05-25

    Highlights: • High-temperature rolling and annealing results in a well-weakened basal texture. • The texture weakening is more significantly for AM60 alloy compared to AZ61 alloy. • The different recrystallization behavior is due to the effect of solute Zn atoms. • AZ61 and AM60 alloys exhibit the Erichsen values of 7.8 and 8.5 mm, respectively. • The higher Erichsen value for AM60 alloy is due to more weakened basal texture. - Abstract: AZ61 and AM60 magnesium alloys, with higher mechanical strengths than that of the most commonly used AZ31 alloy, were subjected to high-temperature rolling. Although the basal textures of the as-rolled sheets of both alloys were significantly weakened by annealing, the texture weakening was more significant in the latter than in the former. In addition, splitting of the basal pole was not retained after annealing for the AZ61 alloy, but this type of texture was preserved in the case of the AM60 alloy. The formation of statically recrystallized grains with dispersed orientations resulted in the aforementioned change in texture. The difference in the static recrystallization behavior could be attributed to the solute effect of zinc atoms. The annealed AZ61 and AM60 alloy sheets exhibited excellent stretch formability at room temperature, with Erichsen values of 7.8 and 8.5 mm, respectively, comparable to those of aluminum alloys. The higher Erichsen value for the AM60 alloy compared to that of the AZ61 alloy resulted from the more weakened basal texture and the splitting of the basal pole with an inclination angle of ±20° in the rolling direction, which are favorable for basal slip during sheet forming.

  19. Quasi-static Torsional Deformation Behavior of Porous Ti6Al4V alloy.

    Science.gov (United States)

    Balla, Vamsi Krishna; Martinez, Shantel; Rogoza, Ben Tunberg; Livingston, Chase; Venkateswaran, Deepak; Bose, Susmita; Bandyopadhyay, Amit

    2011-07-20

    Laser processed Ti6Al4V alloy samples with total porosities of 0%, 10% and 20% have been subjected to torsional loading to determine mechanical properties and to understand the deformation behavior. The torsional yield strength and modulus of porous Ti alloy samples was found to be in the range of 185-332 MPa and 5.7-11 GPa, respectively. With an increase in the porosity both the strength and the modulus decreased, and at 20% porosity the torsional modulus of Ti6Al4V alloy was found to be very close to that of human cortical bone. Further, the experiments revealed clear strain hardening and ductile deformation in all the samples, which suggests that the inherent brittleness associated solid-state sintered porous materials can be completely eliminated via laser processing for load bearing metal implant applications.

  20. Static and dynamic behaviour of composite structures with shape memory alloy components

    Energy Technology Data Exchange (ETDEWEB)

    Zak, A.J.; Cartmell, M.P. [Glasgow Univ. (United Kingdom). Dept. of Mechanical Engineering; Ostachowicz, W.M. [Polska Akademia Nauk, Gdansk (Poland). Inst. of Fluid Flow Machinery

    2003-07-01

    In this work selected results have been presented for the static and dynamic behaviour of composite beams, plates, and rotors, all fitted with integral SMA wires or strips. Changes in the static deflections, natural frequencies and critical loads, natural modes, amplitudes of forced vibration, and stress distributions, have all been investigated. Applications of the Active Property Tuning (APT) method and the Active Strain Energy Tuning (ASET) method have been proposed, and the finite element method (FEM) has been used to calculate the static and dynamic responses of these structures. Along with the author's bespoke programs, two FEM commercial packages PATRAN and ABAQUS have been applied to obtain the relevant data. The ultimate intention is to use embedded SMAs within a composite structure as an actuator for the control of rotor vibration. (orig.)

  1. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  2. Standard guide for high-temperature static strain measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 to 650°C (800 to 1200°F). This guide reflects some current state-of-the-art techniques in high temperature strain measurement, and will be expanded and updated as new technology develops. 1.2 This practice assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning and instrumentation as discussed in Refs. (1) and (2). The strain measuring systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this practice. It is not the intent of this practice to limit the user to one of the gage types described nor is it the intent to specify the type of system to be used for a specific application. However, in using any strain measuring system including those described, the proposer must be able to demonstrate the capability of the proposed sy...

  3. Welding Distortion Control of Thin A1 Alloy Plate by Static Thermal Tensioning

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanism and effectiveness of welding distortion mitigation by static thermal tensioning were investigated by both finite element analysis and experiments. It shows that preset thermal tensioning can reduce longitudinal plastic compression remained in the weld and its adjacent zone significantly, so decrease the longitudinal residual stress and the susceptibility to welding distortion.

  4. High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films

    Institute of Scientific and Technical Information of China (English)

    HIHARA; Takehiko; SUMIYAMA; Kenji

    2010-01-01

    Magnetically soft Fe-Co-based nanocrystalline alloy films were produced by two preparation methods:One using a new energetic cluster deposition technique and another using a conventional magnetron sputtering technique.Their structural,static magnetic properties and high-frequency magnetic characteristics were investigated.In the energetic cluster deposition method,by applying a high-bias voltage to a substrate,positively charged clusters in a cluster beam were accelerated electrically and deposited onto a negatively biased substrate together with neutral clusters from the same cluster source,to form a high-density Fe-Co alloy cluster-assembled film with good high-frequency magnetic characteristics.In the conventional magnetron sputtering method,only by rotating substrate holder and without applying a static inducing magnetic field on the substrates,we produced Fe-Co-based nanocrystalline alloy films with a remarkable in-plane uniaxial magnetic anisotropy and a good soft magnetic property.The obtained Fe-Co-O,Fe-Co-Ti-N,and Fe-Co-Cr-N films all revealed a high real permeability exceeding 500 at a frequency up to 1.2 GHz.This makes Fe-Co-based nanocrystalline alloy films potential candidates as soft magnetic thin film materials for the high-frequency applications.

  5. High Copper Amalgam Alloys in Dentistry

    OpenAIRE

    Gaurav Solanki

    2012-01-01

    Amalgam Restoration is an example of the material giving its name to the process. Amalgam fillings are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth where it hardens slowly and replaces the missing tooth substance. The high copper have become material of choice as compared to low copper alloys nowadays because of their improved mechanical properties, corrosion resistance, better marginal integrity and improved performance in clinical trial. The ...

  6. High-codimensional static bifurcations of strongly nonlinear oscillator

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi-Chang; Wang Wei; Liu Fu-Hao

    2008-01-01

    The static bifurcation of the parametrically excited strongly nonlinear oscillator is studied.We consider the averaged equations of a system subject to Duffing-van der Pol and quintic strong nonlinearity by introducing the undetermined fundamental frequency into the computation in the complex normal form.To discuss the static bifurcation,the bifurcation problem is described as a 3-codimensional unfolding with Z2 symmetry on the basis of singularity theory.The transition set and bifurcation diagrams for the singularity are presented,while the stability of the zero solution is studied by using the eigenvalues in various parameter regions.

  7. Laser Brazing of High Temperature Braze Alloy

    Science.gov (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  8. Development of high purity vanadium alloys for fusion reactors

    International Nuclear Information System (INIS)

    Vanadium alloys are most attractive candidate materials for liquid Li self-cooled blanket system of fusion reactors. This paper summarizes the program and its activities of the NIFS (National Institute for Fusion Science), Japan for developments of high purity V-4Cr-4Ti alloys. The results from NIFS-Heats show various benefits by reducing the level of oxygen. Significant improvement of the impact properties of the welded joint by reducing oxygen level is one of examples in recent studies. Collaboration is in progress, in which those heats are being characterized by a number of research groups including Japanese universities, and international collaboration partners in the US, Russia and China. The impact tests of irradiated specimens are in progress for further investigation. Significant progress has been made recently on the insulator ceramic coating in static conditions in the Japan-USA Cooperation Program. The understanding on the condition of in-situ CaO coating in liquid Li was enhanced. Based on these achievements, a flowing loop test is being planned to investigate the effects of temperature gradient and Li chemistry. (Y. Tanaka)

  9. Physical Metallurgy of High-Entropy Alloys

    Science.gov (United States)

    Yeh, Jien-Wei

    2015-08-01

    Two definitions of high-entropy alloys (HEAs), based on composition and entropy, are reviewed. Four core effects, i.e., high entropy, sluggish diffusion, severe lattice distortion, and cocktail effects, are mentioned to show the uniqueness of HEAs. The current state of physical metallurgy is discussed. As the compositions of HEAs are entirely different from that of conventional alloys, physical metallurgy principles might need to be modified for HEAs. The thermodynamics, kinetics, structure, and properties of HEAs are briefly discussed relating with the four core effects of HEAs. Among these, a severe lattice distortion effect is particularly emphasized because it exerts direct and indirect influences on many aspects of microstructure and properties. Because a constituent phase in HEAs can be regarded as a whole-solute matrix, every lattice site in the matrix has atomic-scale lattice distortion. In such a distorted lattice, point defects, line defects, and planar defects are different from those in conventional matrices in terms of atomic configuration, defect energy, and dynamic behavior. As a result, mechanical and physical properties are significantly influenced by such a distortion. Suitable mechanisms and theories correlating composition, microstructure, and properties for HEAs are required to be built in the future. Only these understandings make it possible to complete the physical metallurgy of the alloy world.

  10. Static and impact crack properties of a high-strength steel welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Zrilic, M. [Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade (Serbia)]. E-mail: misa@tmf.bg.ac.yu; Grabulov, V. [Military Technical Institute, Ratka Resanovica 1, Belgrade (Serbia); Burzic, Z. [Military Technical Institute, Ratka Resanovica 1, Belgrade (Serbia); Arsic, M. [Institute for Material Testing, Bul. Vojvode Misica 43, Belgrade (Serbia); Sedmak, S. [Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade (Serbia)

    2007-03-15

    In order to gain the benefits of weldable high-strength steels in pressurized equipment applications, satisfactory toughness and crack properties of the welded joint, both in the weld metal and the heat-affected -zone (HAZ), are required. Experimental investigations of toughness and crack resistance parameters through static and impact tests of a high-strength, low-alloy steel (HSLA) with a nominal yield strength of 700 MPa and its welded joint, were performed on Charpy-sized specimens, V-notched and pre-cracked, of the parent metal, weld metal and HAZ. The selected electrode produced slight undermatching and enabled the welded joints to be manufactured without cold cracks. The impact energy and its parts responsible for crack initiation and propagation were determined by toughness evaluation. Crack sensitivity, defined as the ratio of the impact energy for V-notched and for pre-cracked specimens, enabled a comparison of the homogeneous microstructure of the parent metal and the weld metal, and of the heterogeneous microstructure of the heat-affected-zone (HAZ), which indicated a better crack toughness behaviour of the HAZ. The results obtained showed that the toughness and crack resistance of the weld metal were significantly lower than those of the parent metal and the HAZ. The fracture mechanics parameters, J {sub Ic} integral, and plane strain fracture toughness, K {sub Ic}, as well as J resistance curves expressed the degradation less.

  11. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    Science.gov (United States)

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-08-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.

  12. Anisotropic static solutions in modelling highly compact bodies

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-03-01

    Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ∝ -2 for the energy density which arises in many astrophysical applications. In the second class the singularity at the centre of the star is not present in the energy density

  13. Numerical analysis of static performance comparison of friction stir welded versus riveted 2024-T3 aluminum alloy stiffened panels

    Science.gov (United States)

    Shao, Qing; He, Yuting; Zhang, Teng; Wu, Liming

    2014-07-01

    Most researches on the static performance of stiffened panel joined by friction stir welding(FSW) mainly focus on the compression stability rather than shear stability. To evaluate the potential of FSW as a replacement for traditional rivet fastening for stiffened panel assembly in aviation application, finite element method(FEM) is applied to compare compression and shear stability performances of FSW stiffened panels with stability performances of riveted stiffened panels. FEMs of 2024-T3 aluminum alloy FSW and riveted stiffened panels are developed and nonlinear static analysis method is applied to obtain buckling pattern, buckling load and load carrying capability of each panel model. The accuracy of each FEM of FSW stiffened panel is evaluated by stability experiment of FSW stiffened panel specimens with identical geometry and boundary condition and the accuracy of each FEM of riveted stiffened panel is evaluated by semi-empirical calculation formulas. It is found that FEMs without considering weld-induced initial imperfections notably overestimate the static strengths of FSW stiffened panels. FEM results show that, buckling patterns of both FSW and riveted compression stiffened panels represent local buckling of plate between stiffeners. The initial buckling waves of FSW stiffened panel emerge uniformly in each plate between stiffeners while those of riveted panel mainly emerge in the mid-plate. Buckling patterns of both FSW and riveted shear stiffened panels represent local buckling of plate close to the loading corner. FEM results indicate that, shear buckling of FSW stiffened panel is less sensitive to the initial imperfections than compression buckling. Load carrying capability of FSW stiffened panel is less sensitive to the initial imperfections than initial buckling. It can be concluded that buckling loads of FSW panels are a bit lower than those of riveted panels whereas carrying capabilities of FSW panels are almost equivalent to those of riveted

  14. Static and dynamic magnetic properties of epitaxial Co2FeAl Heusler alloy thin films

    Science.gov (United States)

    Ortiz, G.; Gabor, M. S.; Petrisor, T., Jr.; Boust, F.; Issac, F.; Tiusan, C.; Hehn, M.; Bobo, J. F.

    2011-04-01

    Structural and magnetic properties of epitaxial Co2FeAl Heusler alloy thin films were investigated. Films were deposited on single crystal MgO (001XS) substrates at room temperature, followed by an annealing process at 600 °C. MgO and Cr buffer layers were introduced in order to enhance crystalline quality, and improve magnetic properties. Structural analyses indicate that samples have grown in the B2 ordered epitaxial structure. VSM measures show that the MgO buffered sample displays a magnetization saturation of 1010 ± 30 emu/cm3, and Cr buffered sample displays a magnetization saturation of 1032 ± 40 emu/cm3. Damping factor was studied by strip-line ferromagnetic resonance measures. We observed a maximum value for the MgO buffered sample of about 8.5 × 10-3, and a minimum value of 3.8 × 10-3 for the Cr buffered one.

  15. Statistical analysis on static recrystallization texture evolution in cold-rolled AZ31 magnesium alloy sheet.

    Science.gov (United States)

    Park, Jun-Ho; Ahn, Tae-Hong; Choi, Hyun-Sik; Chung, Jung-Man; Kim, Dong-Ik; Oh, Kyu Hwan; Han, Heung Nam

    2013-08-01

    Cast AZ31B-H24 magnesium alloy, comprising Mg with 3.27 wt% Al and 0.96 wt% Zn, was cold rolled and subsequently annealed. Global texture evolutions in the specimens were observed by X-ray diffractometry after the thermomechanical processing. Image-based microstructure and texture for the deformed, recrystallized, and grown grains were observed by electron backscattered diffractometry. Recrystallized grains could be distinguished from deformed ones by analyzing grain orientation spread. Split basal texture of ca. ±10-15° in the rolling direction was observed in the cold-rolled sample. Recrystallized grains had widely spread basal poles at nucleation stage; strong {0001} basal texture developed with grain growth during annealing. PMID:23920167

  16. Statistical analysis on static recrystallization texture evolution in cold-rolled AZ31 magnesium alloy sheet.

    Science.gov (United States)

    Park, Jun-Ho; Ahn, Tae-Hong; Choi, Hyun-Sik; Chung, Jung-Man; Kim, Dong-Ik; Oh, Kyu Hwan; Han, Heung Nam

    2013-08-01

    Cast AZ31B-H24 magnesium alloy, comprising Mg with 3.27 wt% Al and 0.96 wt% Zn, was cold rolled and subsequently annealed. Global texture evolutions in the specimens were observed by X-ray diffractometry after the thermomechanical processing. Image-based microstructure and texture for the deformed, recrystallized, and grown grains were observed by electron backscattered diffractometry. Recrystallized grains could be distinguished from deformed ones by analyzing grain orientation spread. Split basal texture of ca. ±10-15° in the rolling direction was observed in the cold-rolled sample. Recrystallized grains had widely spread basal poles at nucleation stage; strong {0001} basal texture developed with grain growth during annealing.

  17. High strength beta titanium alloys: New design approach

    International Nuclear Information System (INIS)

    A novel approach for development of high strength and ductile beta titanium alloys was proposed and successfully applied. The microstructure of the designed alloys is fully composed of a bcc β-Ti phase exhibiting dendritic morphology. The new Ti68.8Nb13.6Cr5.1Co6Al6.5 (at%) alloy (BETAtough alloy) exhibits a maximum tensile strength of 1290±50 MPa along with 21±3% of fracture strain. The specific energy absorption value upon mechanical deformation of the BETAtough alloy exceeds that of Ti-based metallic glass composites and commercial high strength Ti-based alloys. The deformation behavior of the new alloys was correlated with their microstructure by means of in-situ studies of the microstructure evolution upon tensile loading in a scanning electron microscope

  18. Improved throughput of electrical transmission of super high voltage using reverse static compensators

    Energy Technology Data Exchange (ETDEWEB)

    Acar' yev, D.I.; Belousov, I.V.

    1982-01-01

    Basic technical requirements for static thyristor compensators for power transmission lines of super high voltage are formulated. Specific plans and characteristics of the static thyristor compensators are examined and the effectiveness of using them on voltage transmission lines 500 and 750 kV is indicated.

  19. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  20. High-entropy alloys as high-temperature thermoelectric materials

    Science.gov (United States)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-01

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  1. High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  2. High-strength, low-alloy steels.

    Science.gov (United States)

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties. PMID:17772810

  3. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  4. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Jamaliah Idris; Chukwuekezie Christian; Eyu Gaius

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  5. Quasi-static magnetohydrodynamic turbulence at high Reynolds number

    CERN Document Server

    Favier, B F N; Cambon, C; Delache, A; Bos, W J T

    2011-01-01

    We analyse the anisotropy of homogeneous turbulence in an electrically conducting fluid submitted to a uniform magnetic field, for low magnetic Reynolds number, in the quasi- static approximation. We interpret disagreeing previous predictions between linearized theory and simulations: in the linear limit, the kinetic energy of transverse velocity components, normal to the magnetic field, decays faster than the kinetic energy of the axial component, along the magnetic field (Moffatt (1967)); whereas many numerical studies predict a final state characterised by dominant energy of transverse velocity components. We investigate the corresponding nonlinear phenomenon using Direct Numerical Simulations of freely-decaying turbulence, and a two-point statistical spectral closure based on the Eddy Damped Quasi-Normal Markovian model. The transition from the three-dimensional turbulent flow to a "two-and-a-half-dimensional" flow (Montgomery & Turner (1982)) is a result of the combined effects of short-time linear J...

  6. Testing and modeling of NiMnGa ferromagnetic shape memory alloy for static and dynamic loading conditions

    Science.gov (United States)

    Couch, Ronald N.; Sirohi, Jayant; Chopra, Inderjit

    2006-03-01

    The response of NiMnGa ferromagnetic shape memory alloy to static and dynamic magnetic fields was studied. Tests involving excitation of the samples up to 10 Hz for constant stress and constant strain conditions were conducted. Based on these results, performance parameters were measured and discussed including power density, total power output and electromechanical efficiency. The effects of strain rate and material damping were also measured. It was shown that both power density and total power output were strong functions of applied stress. A maximum volumetric power density of 31 MW/m 3 was measured. Once the NiMnGa behavior was characterized, an analytical model based on four experimentally measured parameters was formulated to predict the induced strain in response to a dynamic magnetic field. Comparison of the analytical model to experimental data showed good correlation for applied stresses below 0.6 MPa and above 1.33 MPa. Although requiring further refinement, the model's results are encouraging, indicating that it could be developed into a useful analytical tool for predicting NiMnGa actuator behavior.

  7. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NARCIS (Netherlands)

    Ocelik, V.; Janssen, Niels; Smith, Stefan; De Hosson, J. Th M.

    2016-01-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with

  8. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  9. Minor alloying behavior in bulk metallic glasses and high-entropy alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of minor alloying on several bulk metallic glasses and high-entropy al-loys was studied. It was found that minor Nb addition can optimize the interface structure between the W fiber and the Zr-based bulk metallic glass in the compos-ites,and improve the mechanical properties. Minor Y addition can destabilize the crystalline phases by inducing lattice distortion as a result to improve the glass-forming ability,and the lattice distortion energy is closely related to the effi-ciency of space filling of the competing crystalline phases. A long-period ordered structure can precipitate in the Mg-based bulk metallic glass by yttrium alloying. For the high-entropy alloys,solid solution can be formed by alloying,and its me-chanical properties can be comparable to most of the bulk metallic glasses.

  10. Irradiation Behavior in High Entropy Alloys

    Institute of Scientific and Technical Information of China (English)

    Song-qin XIA; Zhen WANG; Teng-fei YANG; Yong ZHANG

    2015-01-01

    As an increasing demand of advanced nuclear fission reactors and fusion facilities, the key requirements for the materials used in advanced nuclear systems should encompass superior high temperature property, good behavior in corrosive environment, and high irradiation resistance, etc. Recently, it was found that some selected high entropy alloys (HEAs) possess excellent mechanical properties at high temperature, high corrosion resistance, and no grain coarsening and self-healing abil-ity under irradiation, especially, the exceptional structural stability and lower irradiation-induced volume swelling, compared with other conventional materials. Thus, HEAs have been considered as the potential nuclear materials used for future ifssion or fusion reactors, which are designed to operate at higher temperatures and higher radiation doses up to several hundreds of displacement per atom (dpa). An insight into the irradiation behavior of HEAs was given, including fundamental researches to investigate the irradiation-induced phase crystal structure change and volume swelling in HEAs. In summary, a brief overview of the irradiation behavior in HEAs was made and the irradiation-induced structural change in HEAs may be relatively insensi-tive because of their special structures.

  11. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    Directory of Open Access Journals (Sweden)

    Verleysen P.

    2012-08-01

    Full Text Available It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  12. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  13. High conductivity Be-Cu alloys for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, E.A. [NGK Metals Corp., Reading, PA (United States); Adachi, Takao; Ishibashi, Yoshiki [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  14. Effects of Bracing of High-Rise Buildings upon their Static and Dynamic Behavior

    Directory of Open Access Journals (Sweden)

    Ivánková Oľga

    2014-05-01

    Full Text Available The paper describes effects of bracing of high-rise buildings upon their static and dynamic behaviour. In static and dynamic analyses, values of displacement for 4 different variants of stiffening elements distribution were calculated. The calculations were made for building both fixed into the ground and rested on elastic supports. The building was modelled as a 3D variant using Finite Element Method (FEM in program Scia Engineer.

  15. Development of environmentally friendly cast alloys. High-zinc Al alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-10-01

    Full Text Available Purpose: The main purpose of this paper is presenting the results obtained in years 2007 – 2010 in frame of the project Marie Curie Transfer of Knowledge – CastModel. The project was focused, among others, at elaborating new, environmentally friendly cast alloys based on the Al-Zn system. Particularly, efforts were aimed at improving ductility of the sand cast high-zinc aluminium alloys (HZnAl by using the newly elaborated master alloys, based on the Al-Zn-Ti system.Design/methodology/approach: The presented work is focused on the nucleation of the high-zinc Al-20 wt% Zn (HZnAl AlZn20 alloy, known as the high damping one, aiming at improving plastic properties of the sand castings. The melted alloy was nucleated with AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl refiners as well as with the newly introduced ZnAl-Ti3 one. During the research the following experimental techniques were used: LM, SEM-EBSD, EDS, TA, DSC, Quantitative Metallography, UTS, Elongation and Attenuation coefficient measurements.Findings: During the performed examinations it was found out that significant increasing of the grain population of the inoculated alloy increases plasticity represented by elongation. The attenuation coefficient of the nucleated alloy, measured using an Olympus Epoch XT device, preserves its high value. The results obtained allow to characterize the examined AlZn20 alloy as promissive, having good strength and damping properties as well as the environmentally friendly alloy because of its comparatively low melting temperatures.Practical implications: The grain-refined high-zinc aluminium alloys can be used as the high damping substitutes of the traditional, more energy consumable Fe-based foundry alloys.Originality/value: The newly elaborated ZnAl-Ti based master alloys show high refining potency and quick dissolution in low melting temperatures of about 500°C, and are the promissive alternatives of the traditional AlTi-based ones.

  16. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  17. The use of high-entropy alloys in additive manufacturing

    International Nuclear Information System (INIS)

    An equiatomic FeCoCrNi high-entropy alloy is used as an input material for selective laser melting. The material is characterized using X-ray diffraction, scanning electron microscopy, thermal analysis and mechanical testing to investigate the feasibility of using high-entropy alloys in additive manufacturing and the resulting tensile properties. Results show that not only does the alloy preserve its single-phase solid-solution state, but it also exhibits high strength and ductility that are comparable to engineering materials like stainless steels

  18. High hardness of alloyed ferrite after nitriding

    International Nuclear Information System (INIS)

    Detailed layer-by layer structure and phase analyses of the diffusion layer of nitrided binary alloys of iron with aluminium, chromium, vanadium and titanium have been carried out by means of a complex technique. Transition d-metals (chromium, vanadium and titanium) raise to a greater degree the solubility of nitrogen in the α solid solution, sharply increases the hardness of ferrite and decrease the depth of the layer. Nitrided binary alloys of iron with chromium, vanadium and titanium are strengthened through precipitation from the nitrogen-saturated α-solid solution of nitrides of alloying elements TiN, VN and CrN of a structure B1. A maximum hardness of ferrite alloyed by chromium, vanadium and titanium is observed after nitriding at 550 deg C when the precipitated special nitrides are fully coherent with the α matrix

  19. Oxidation protection for niobium and its alloys at high temperature

    International Nuclear Information System (INIS)

    Problems, related to increasing heat resistance of niobium and niobium-base alloys, are considered. It is mentioned, that when developing coatings to protect niobium and niobium alloy products against oxidation, one should preliminarily create a butter layer, preventing matrix interaction with the coating components, at metallic base - protective coating boundary. Depending on the temperature regime and the product application conditions, the coating can be formed on the basis of molybdenum disilicide or high-melting alloyed silicides. Besides, a composition, containing a low-melting component and high-melting filler, can be used for its creation

  20. Static and dynamic tensile behaviour of aluminium processed by high pressure torsion

    NARCIS (Netherlands)

    Verleysen, P.; Oelbrandt, W.; Naghdy, S.; Kestens, L.

    2015-01-01

    High pressure torsion (HPT) is a severe plastic deformation technique in which a small, disk-like sample is subjected to a torsional deformation under a high hydrostatic pressure. In present study, the static and dynamic tensile behaviour of commercially pure aluminium (99.6 wt%) processed by HPT is

  1. High strength fibre reinforced concrete: static and fatigue behaviour in bending

    NARCIS (Netherlands)

    Lappa, E.S.

    2007-01-01

    Recently, a number of high strength and ultra high strength steel fibre concretes have been developed. Since these materials seem very suitable for structures that might be prone to fatigue failure, such as bridge decks, the understanding of the static and fatigue bending behaviour is vital. In orde

  2. Kinetics of passivation of a nickel-base alloy in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France)]|[Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Galtayries, A.; Zanna, S.; Marcus, P. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Jolivet, P.; Scott, P. [Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Foucault, M.; Combrade, P. [Framatome ANP, Centre Technique, F-71205 Le Creusot (France)

    2004-07-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr{sub 2}O{sub 3}) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr{sub 2}O{sub 3} oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  3. Surface asperity evolution and microstructure analysis of Al 6061T5 alloy in a quasi-static cold uniaxial planar compression (CUPC)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hejie, E-mail: hejiel2003@gmail.com [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Jiang, Zhengyi, E-mail: jiang@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Wei, Dongbin [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); School of Electrical, Mechanical and Mechatronic Systems, University of Technology, Sydney, NSW 2007 (Australia); Gao, Xingjian [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Xu, Jianzhong; Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, Liaoning 110004 (China)

    2015-08-30

    Highlights: • We used AFM and EBSD to analyses the surface asperity flattening process. • Analysis of the influence of deformation rate on the surface asperity flattening. • Investigation of the effect of lubrication on microstructure development. • Deformation rate influence the generation of orientation components obviously. - Abstract: In a quasi-static cold uniaxial planar compression, surface asperity evolution and microstructure analysis of Al 6061T5 alloy are carried out by employing Atomic Force Microscope (AFM) and Electron Backscattered Diffraction (EBSD) methods. Strain rate affects the surface asperity evolution obviously. While lubrication can hinder the surface asperity flattening by constraining the surface localized deformation. Lubrication can accelerate the crystallization in CUPC process. It also impedes the activation of some orientation components by hindering the activation of related slip systems in light metal Al alloy.

  4. Surface asperity evolution and microstructure analysis of Al 6061T5 alloy in a quasi-static cold uniaxial planar compression (CUPC)

    International Nuclear Information System (INIS)

    Highlights: • We used AFM and EBSD to analyses the surface asperity flattening process. • Analysis of the influence of deformation rate on the surface asperity flattening. • Investigation of the effect of lubrication on microstructure development. • Deformation rate influence the generation of orientation components obviously. - Abstract: In a quasi-static cold uniaxial planar compression, surface asperity evolution and microstructure analysis of Al 6061T5 alloy are carried out by employing Atomic Force Microscope (AFM) and Electron Backscattered Diffraction (EBSD) methods. Strain rate affects the surface asperity evolution obviously. While lubrication can hinder the surface asperity flattening by constraining the surface localized deformation. Lubrication can accelerate the crystallization in CUPC process. It also impedes the activation of some orientation components by hindering the activation of related slip systems in light metal Al alloy

  5. Modelling of the Mechanical Behaviour of Ultra-Fine Grained Titanium Alloys at High Strain Rates

    OpenAIRE

    Halle, T.; Herzig, N.; Krüger, L; Meyer, L.W.; Musch, D.; Razorenov, S. V.; Skripnyak, E. G.; Skripnyak, V. A.

    2008-01-01

    Results of numerical simulations of the mechanical behaviour of coarse grained and UFG titanium alloys under quasi-static uniaxial compression and plane shock wave loading are presented in this paper. Constitutive equations predict the strain hardening behaviour, the strain rate sensitivity of the flow stress and the temperature softening of titanium alloys with a range of grain sizes from 20 µm to 100 nm. Characteristics of the mechanical behaviour of UFG a and a+ß titanium alloys in wide ra...

  6. Investigation of surface properties of high temperature nitrided titanium alloys

    OpenAIRE

    Koyuncu, E.; F. Kahraman; Ö. Karadeniz

    2009-01-01

    Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, ...

  7. Direct Generation of Intense Compression Waves in Molten Metals by Using a High Static Magnetic Field and Their Application

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of ma-terials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distri-butions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.

  8. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    International Nuclear Information System (INIS)

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  9. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  10. Corrosion properties of high silicon iron-based alloys in nitric acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of copper and rare-earth elements on corrosion behavior of ~iigh silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments. The anodic polarization curve was also made to discuss the corrosion mechanism. The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%, the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite. When adding 4.57% copper in the iron alloy, its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased. In contrast, the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.

  11. Producing titanium-niobium alloy by high energy beam

    International Nuclear Information System (INIS)

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element

  12. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  13. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    Science.gov (United States)

    Huang, X.; Oram, C.; Sick, M.

    2014-03-01

    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.

  14. On the intergranular fracture behavior of high-temperature plastic deformation of 1420 Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The tensile deformation hot simulation test of as-cast 1420 Al-Li alloy was performed on Gleeble-1500 Thermal Simulator in the deformation temperature range from 350 to 450 ℃, and the strain rate range from 0.01 to 10.0 s-1.The tensile fracture behavior of the 1420 Al-Li alloy at high temperature was studied experimently. The results show that the tensile fracture mode of the 1420 Al-Li alloy at high temperature is changed from typical transgranular ductile fracture to intergranular brittle fracture with the increase of the deformation temperature and the strain rate. It is made out that the precipitation of LiH is the fundamental reason for the intergranular brittle fracture of the 1420 Al-Li alloy at high temperature. The mechanism of hydrogen embrittlement of the 1420 Al-Li alloy at high temperature was discussed, and it was proposed that the hydrogen embrittlement at high temperature is an integrated function of the dynamic and the static force, which enrichs the theories of hydrogen embrittlement.

  15. Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading

    Science.gov (United States)

    Jiao, Z. M.; Ma, S. G.; Chu, M. Y.; Yang, H. J.; Wang, Z. H.; Zhang, Y.; Qiao, J. W.

    2016-02-01

    High-entropy alloys with composition of AlCoCrFeNiTi x ( x: molar ratio; x = 0, 0.2, 0.4) under quasi-static and dynamic compression exhibit excellent mechanical properties. A positive strain-rate sensitivity of yield strength and the strong work-hardening behavior during plastic flows dominate upon dynamic loading in the present alloy system. The constitutive relationships are extracted to model flow behaviors by employing the Johnson-Cook constitutive model. Upon dynamic loading, the ultimate strength and fracture strain of AlCoCrFeNiTi x alloys are superior to most of bulk metallic glasses and in situ metallic glass matrix composites.

  16. Investigation of surface properties of high temperature nitrided titanium alloys

    Directory of Open Access Journals (Sweden)

    E. Koyuncu

    2009-12-01

    Full Text Available Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, X-Ray diffraction and Vickers hardness.Findings: Two layers were determined by optic inspection on the samples that were called the compound and diffusion layers. Compound layer contain TiN and Ti2N nitrides, XRD results support in this formations. Maximum hardness was obtained at 10h treatment time and 1000°C treatment temperature. Micro hardness tests showed that hardness properties of the nitrided samples depend on treatment time and temperature.Practical implications: Titanium and its alloys have very attractive properties for many industries. But using of titanium and its alloys is of very low in mechanical engineering applications because of poor tribological properties.Originality/value: The nitriding of titanium alloy surfaces using plasma processes has already reached the industrial application stage in the biomedical field.

  17. Applicability of copper alloys for DEMO high heat flux components

    Science.gov (United States)

    Zinkle, Steven J.

    2016-02-01

    The current state of knowledge of the mechanical and thermal properties of high-strength, high conductivity Cu alloys relevant for fusion energy high heat flux applications is reviewed, including effects of thermomechanical and joining processes and neutron irradiation on precipitation- or dispersion-strengthened CuCrZr, Cu-Al2O3, CuNiBe, CuNiSiCr and CuCrNb (GRCop-84). The prospects for designing improved versions of wrought copper alloys and for utilizing advanced fabrication processes such as additive manufacturing based on electron beam and laser consolidation methods are discussed. The importance of developing improved structural materials design criteria is also noted.

  18. System for ultra high vacuum made of aluminum alloys

    International Nuclear Information System (INIS)

    We have developed the system for ultra high vacuum made of aluminum alloys for proton and electron synchrotron. This is the first system for ultra high vacuum in which bakable metal seal flange and small diametral bellows of aluminum alloys have been put to practical use. The system consists of the flange protected by a CrN thin film and made of 2219-T87 alloy, the chamber made of 6063-T6 alloy, the aluminum metal gasket of Helico Flex and the bellows made of 5052 alloy. As a result of experiments at the National Laboratory for High Energy Physics (KEK), it had been confirmed that this system shows the special qualities of ultra high vacuum operation, resistance to hard radiation and baking and cooling operations. Up to now, this system has been widely used for the beam lines of the booster synchrotron utilization facility, K1, K2, linac, PI 1 and EP2-B extension of the KEK proton synchrotron. We investigate that this system is applicable to nuclear energy utilization facility and general vacuum apparatus. (author)

  19. Hot ductility and high temperature microstructure of high purity iron alloys

    International Nuclear Information System (INIS)

    The inherent properties of metals are affected by impurity elements, sometimes strongly. There are many brittle phenomena in iron and its alloys due to the harmful effect of trace impurities such as sulphur, phosphorus, hydrogen and so on. On the other hand, a large number of alloying elements also embrittle iron due to the transformation and precipitation of secondary phase. For example, the ductility of Fe-Cr alloy decreases with the increase in chromium content, although the strength and the corrosion resistance increase with chromium content. In Fe-Cr alloy containing high chromium, 475 C embrittlement and σ-phase embrittlement are well known. An Fe-50mass%Cr alloy of conventional purity is extremely brittle due to the formation of σ-phase. However, we found the highly purified alloy is essentially ductile. In the workshop of UHPM-94, the experimental results on the ductility of Fe-50mass%Cr alloy were presented and discussed. In this research, the effect of purification on the hot ductility of high purity Fe-18mass%Cr and Fe-50mass%Cr alloys was investigated by tensile testing at high temperature. It was found that the ductility of Fe-18mass%Cr alloy is remarkably improved by purification, especially by the reduction of interstitial impurities such as carbon and nitrogen. The highly-purified Fe-50mass%Cr alloy has astonishing ductility at the temperature range between room temperature and 1073K. Also in a high purity Fe-50mass%Cr alloy, the formation of the σ-phase was not observed during ageing for 1000h at 973K. These results are also very important for the development of high-performance Fe-Cr alloys and of the manufacturing process. Consequently, purification technology is very useful for progress in metal science. (orig.)

  20. High temperature oxidation of iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  1. High temperature strain of metals and alloys. Physical fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Levitin, V. [National Technical Univ., Zaporozhye (Ukraine)

    2006-07-01

    The author shows how new in-situ X-ray investigations and transmission electron microscope studies lead to novel explanations of high-temperature deformation and creep in pure metals, solid solutions and super alloys. This approach is the first to find unequivocal and quantitative expressions for the macroscopic deformation rate by means of three groups of parameters: substructural characteristics, physical material constants and external conditions. Creep strength of the studied uptodate single crystal super alloys is greatly increased over conventional polycrystalline super alloys. The contents of this book include: macroscopic characteristics of strain at high temperatures; experimental equipment and technique of in situ X-ray investigations; experimental data and structural parameters in deformed metals; sub-boundaries as dislocation sources and obstacles; the physical mechanism of creep and the quantitative structural model; simulation of the parameters evolution; system of differential equations; high-temperature deformation of industrial super alloys; single crystals of super alloys; effect of composition, orientation and temperature on properties; and creep of some refractory metals.

  2. High luminance low etendue white light source using blue laser over static phosphor

    Science.gov (United States)

    Farooq, Tayyab; Qian, KeYuan

    2015-10-01

    A High Luminance White Light source for Etendue limited application has been demonstrated in this research paper by using blue InGaN laser diode beam over static source of phosphor Ce: YAG layer. Phosphor target has kept static because moving phosphor target light output is not constant and uniform. Different color temperatures had been obtained by varying phosphor concentration and thickness of the layer. When laser beam has focused on phosphor target spot, it induced very high temperature at that spot area. Temperature induced in the layer by laser beam depends on the layer thickness. All the layer thickness, surface temperature, output light flux, efficiency, and light color temperature are interrelate with each other. Uniform laser beam distribution, surface temperature, laser spot size, phosphor layer thickness are successfully calculated. Luminous efficiency, light color temperature, flux, wavelength spectrum, and light output power of laser driven white light source had been successfully observed at different laser beam powers.

  3. A NEW HIGH PERFORMANCE SPARSE STATIC SOLVER IN FINITE ELEMENT ANALYSIS WITH LOOP-UNROLLING

    Institute of Scientific and Technical Information of China (English)

    Chen Pu; Sun Shuli

    2005-01-01

    In the previous papers, a high performance sparse static solver with two-level unrolling based on a cell-sparse storage scheme was reported. Although the solver reaches quite a high efficiency for a big percentage of finite element analysis benchmark tests, the MFLOPS (million floating operations per second) of LDLT factorization of benchmark tests vary on a Dell Pentium Ⅳ 850 MHz machine from 100 to 456 depending on the average size of the super-equations, i.e.,on the average depth of unrolling. In this paper, a new sparse static solver with two-level unrolling that employs the concept of master-equations and searches for an appropriate depths of unrolling is proposed. The new solver provides higher MFLOPS for LDLT factorization of benchmark tests,and therefore speeds up the solution process.

  4. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators.

    Science.gov (United States)

    Rodrigues, Ary A; Vieira, Jose M; Hamada, Margarida M

    2010-01-01

    A 1 cm(3) cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a (60)Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  5. Bridging static and dynamic modeling: an application to high energy geothermal reservoir modeling

    OpenAIRE

    Lopez, Simon; Courrioux, Gabriel; Sanchez, Riad; Brenner, Konstantin; Masson, Roland; Guillen, Antonio; Bourgine, Bernard; Loiselet, Christelle; Calcagno, Philippe; ALLANIC, Cécile

    2015-01-01

    When mass and energy transfers are involved, bridging static and dynamic modeling in a seamless way is a milestone to build reliable conceptual models of the subsurface in order to efficiently exploit its resources or use it as a storage space (energy, gas, waste…). Our purpose here is to be able to build interactive conceptual models of high energy geothermal reservoirs. As these reservoirs are always located in complex geological settings (faults and fractures are ubiquitous features) and i...

  6. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  7. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  8. Overheating temperature of 7B04 high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Feng-hua; LI Nian-kui; TIAN Ni; SUN Qiang; LIU Xian-dong; ZHAO Gang

    2008-01-01

    The microstructure and overheating characteristics of the direct chill semicontinuous casting ingot of 7B04 high strength aluminum alloy, and those after industrial homogenization treatment and multi-stage homogenization treatments, were studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX). The results show that the microstructure of direct chill semicontinuous casting ingot of the 7B04 alloy contains a large number of constituents in the form of dendritic networks that consist of nonequilibrium eutectic and Fe-containing phases. The nonequilibrium eutectic contains Al, Zn, Mg and Cu, and the Fe-containing phases include two kinds of phases, one containing Al, Fe, Mn and Cu, and the other having Al, Fe, Mn, Cr, Si and Cu. The melting point of the nonequilibrium eutectic is 478 ℃ for the casting ingot of the 7B04 alloy which is usually considered as its overheating temperature. During industrial homogenization treatment processing at 470 ℃, the nonequilibrium eutectic dissolves into the matrix of this alloy partly, and the remainder transforms into Al2CuMg phase that cannot be dissolved into the matrix at that temperature completely. The melting point of the Al2CuMg phase which can dissolve into the matrix completely by slow heating is about 490 ℃. The overheating temperature of this high strength aluminum alloy can rise to 500-520 ℃. By means of special multi-stage homogenization, the temperature of the homogenization treatment of the ingot of the 7B04 high strength aluminum alloy can reach 500 ℃ without overheating.

  9. Static compression of iron to 300 GPa and Fe(0.8)Ni(0.2) alloy to 260 GPa - Implications for composition of the core

    Science.gov (United States)

    Mao, H. K.; Wu, Y.; Chen, L. C.; Shu, J. F.

    1990-01-01

    Results are reported on a room temperature static compression study of iron and the Fe(0.8)Ni(0.2) alloy to above 260 GPa, which provide direct pressure-volume measurements on geophysically important materials at the conditions close to those at the inner core boundary. The diffraction patterns obtained by XRD indicate that pure iron remains in the hcp structure to 304 GPa and that Fe(0.8)Ni(0.2) is stable to at least 255 GPa. The results of this study, in conjunction with work at higher temperatures, will make it possible to address directly the question of the composition of the inner core with a level of certainty that were previously applicable only to the mantle.

  10. Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications

    Science.gov (United States)

    Paul, S.; Harvey, M. D. F.

    2013-03-01

    This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ≫ alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.

  11. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures

    International Nuclear Information System (INIS)

    Highlights: • Fracture elongation of AZ31B under high strain rate is larger than quasi-static. • Fracture elongation reduce with the increasing of strain rate under high strain rate. • The improvement plasticity may be attributed to adiabatic heating. • Fracture pattern of AZ31B quasi-static tensile at room temperature is quasi-cleavage. • Fracture pattern of AZ31B under high strain rate high temperature is ductile fracture. - Abstract: As the lightest metal material, magnesium alloy is widely used in the automobile and aviation industries. Due to the crashing of the automobile is a process of complicated and highly nonlinear deformation. The material deformation behavior has changed significantly compared with quasi-static, so the deformation characteristic of magnesium alloy material under the high strain rate has great significance in the automobile industry. In this paper, the tensile deformation behavior of AZ31B magnesium alloy is studied over a large range of the strain rates, from 700 s−1 to 3 × 103 s−1 and at different temperatures from 20 to 250 °C through a Split-Hopkinson Tensile Bar (SHTB) with heating equipment. Compared with the quasi-static tension, the tensile strength and fracture elongation under high strain rates is larger at room temperature, but when at the high strain rates, fracture elongation reduces with the increasing of the strain rate at room temperature, the adiabatic temperature rising can enhance the material plasticity. The morphology of fracture surfaces over wide range of strain rates and temperatures are observed by Scanning Electron Microscopy (SEM). The fracture appearance analysis indicates that the fracture pattern of AZ31B in the quasi-static tensile tests at room temperature is mainly quasi-cleavage pattern. However, the fracture morphology of AZ31B under high strain rates and high temperatures is mainly composed of the dimple pattern, which indicates ductile fracture pattern. The fracture mode is a

  12. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  13. Modeling of high entropy alloys of refractory elements

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, (B1650KNA), San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Bozzolo, G. [Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210 (United States); Mosca, H.O. [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, (B1650KNA), San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina)

    2012-08-15

    Reverting the traditional process of developing new alloys based on one or two single elements with minority additions, the study of high entropy alloys (HEA) (equimolar combinations of many elements) has become a relevant and interesting new field of research due to their tendency to form solid solutions with particular properties in the absence of intermetallic phases. Theoretical or modeling studies at the atomic level on specific HEA, describing the formation, structure, and properties of these alloys are limited due to the large number of constituents involved. In this work we focus on HEA with refractory elements showing atomistic modeling results for W-Nb-Mo-Ta and W-Nb-Mo-Ta-V HEA, for which experimental background exists. An atomistic modeling approach is applied for the determination of the role of each element and identification of the interactions and features responsible for the transition to the high entropy regime. Results for equimolar alloys of 4 and 5 refractory elements, for which experimental results exist, are shown. A straightforward algorithm is introduced to interpret the transition to the high entropy regime.

  14. A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yigang; Chen, Yungui; Wu, Chaoling; Tao, Mingda; Liang, Hao [School of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)

    2007-02-10

    A V{sub 30}Ti{sub 32}Cr{sub 32}Fe{sub 6} alloy prepared from a FeV80 master alloy is reported. It has a high hydrogen absorption/desorption capacity, good activation performance and kinetics. Heat-treatment at 1673 K is an effective way to increase the capacity and flatten the plateau due to the homogenization of the compositions in the alloy and the disappearance of Laves phase after heat-treatment. The heat-treated alloy can absorb 3.76 wt.%H at 298 K. It desorbs 2.35 wt.%H at 298 K and 2.56 wt.%H at 373 K. The development of this alloy could be of great significance to the application of V-based BCC hydrogen storage alloys. (author)

  15. Hydrogen storage alloys prepared by high-energy milling

    Directory of Open Access Journals (Sweden)

    M. Staszewski

    2011-02-01

    Full Text Available Purpose: The aim of this work was to investigate an efficiency of high-energy milling, as a method to obtain hydrogen storage alloys with good properties.Design/methodology/approach: Two classes of the alloys were studied: AB2 type with atomic composition of (Ti0.5Zr0.5(V0.68Mn0.68Cr0.34Ni0.7 and AB5 type with atomic composition of (Ce0.63La0.37(Ni3.55Al0.3Mn0.4 Co0.75.The materials were prepared by arc melting and initially pulverized and afterwards subjected to wet milling process in a planetary mill.Findings: Both initially obtained alloys had proper, single phase structure of hexagonal symmetry. However their elemental composition was greatly inhomogeneous. High-energy milling causes both homogenization of the composition and severe fragmentation of the powder particles, which after milling have mean diameter of about 3 µm (AB2 alloy and below 2 µm (AB5 alloy. The morphology of obtained powders reveals that they tend to form agglomerates consisting of large number of crystallites. Mean crystallite sizes after milling are of about 4.5 nm and of 20 nm, respectively. The specific surface of the powders, measured using BET method, equals 8.74 m2/g and 2.70 m2/g, respectively.Research limitations/implications: The results provide the information on the possibility of obtaining hydrogen storage alloys by high-energy milling and on the transformations taking place as a result of this process.Practical implications: The obtained powders can be used to produce the elements of hydrogen-nickel batteries and fuel cells, providing improved properties; especially extreme rise of the specific surface of the hydrogen storage material, in compare to the standard methods.Originality/value: New method for preparation of hydrogen storage alloys by means of high-energy milling technique has been successfully tested.

  16. High-coercivity ferrite magnets prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Nanocrystalline hexaferrite (BaFe12O19 or SrFe12O19) and mixed Fe,Co-ferrite ((FexCo1-x)Fe2O4 with x=0-1) materials have been prepared by mechanical alloying and subsequent annealing. High coercivities were obtained in these nanocrystalline materials, 6-7 kOe for hexaferrite and ∝3 kOe for Co-ferrite. Hexaferrite powders prepared by mechanical alloying have been used as the starting material for high-coercivity bonded magnets. Hot-pressed anisotropic hexaferrite magnets have been produced with high values of coercivity and remanence. High magnetic performance was also achieved in some mixed Fe,Co-ferrites after magnetic annealing. (orig.)

  17. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gorr, B., E-mail: gorr@ifwt.mb.uni-siegen.de [Institut für Werkstofftechnik, Universität Siegen, Paul-Bonatz-Str. 9-11, 57068 Siegen (Germany); Azim, M.; Christ, H.-J. [Institut für Werkstofftechnik, Universität Siegen, Paul-Bonatz-Str. 9-11, 57068 Siegen (Germany); Mueller, T. [Institut für Bau- und Werkstoffchemie, Universität Siegen, Paul-Bonatz-Str. 9-11, 57068 Siegen (Germany); Schliephake, D.; Heilmaier, M. [Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Str. 4, D-76131 Karlsruhe (Germany)

    2015-03-05

    Highlights: • A new candidate for applications at high temperature is proposed. • The calculated melting point of the alloy is 1700 °C. • The alloy possesses a simple microstructure. • The alloy exhibits perspectives in terms of mechanical properties and oxidation resistance. - Abstract: A new refractory high-entropy alloy system Mo–W–Al–Cr–x is proposed as a family of candidate materials for structural applications at high temperatures. Thermodynamic assessment was used to set the chemical composition of the first alloy as 20Mo–20W–20Al–20Cr–20Ti (at.%) with a calculated melting temperature of about 1700 °C. A single disordered BCC phase should be stable at high temperatures between 1077 °C and 1700 °C. Microstructural examination and XRD results clearly show that the alloy in the as-cast condition exhibits a non-homogeneous microstructure with pronounced dendritic and interdendritic regions. Heat treatment processes, however, reveal a strong tendency of the alloy 20Mo–20W–20Al–20Cr–20Ti to homogenize. While possessing a high hardness of around 800HV, the crack-free indents allow the assumption that the alloy studied may be intrinsically ductile at room temperature. Despite the fact that the alloy possesses 40 at.% of refractory elements, high temperature oxidation tests show a surprisingly good oxidation resistance. Strategies to enhance the long-term stability of the disordered BCC phase aiming at achieving the required mechanical properties as well as optimizing the alloy’s chemical composition in terms of high temperature oxidation resistance are discussed.

  18. Effect of sedimentary and metamorphic aggregate on static modulus of elasticity of high-strength concrete

    OpenAIRE

    JUAN LIZARAZO-MARRIAGA; LUCIO GUILLERMO LÓPEZ YÉPEZ

    2012-01-01

    Taking into account the increasing use of high-strength concrete as a structural material in Colombia, this paper shows the results of research carried out to investigate the effect of different types of coarse aggregate on the static elastic modulus, the compressive strength, the concrete density, and the pulse velocity. To do this, concrete mixes were cast using three different water binder ratios (w/c) (0.36, 0.32, and 0.28). Ordinary Portland cement and pulverized silica fume (SF) were us...

  19. Tool Failure Analysis in High Speed Milling of Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiuxu; MEYER Kevin; HE Rui; YU Cindy; NI Jun

    2006-01-01

    In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study, fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined.

  20. High specialty stainless steels and nickel alloys for FGD dampers

    Energy Technology Data Exchange (ETDEWEB)

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K. [Krupp VDM GmbH, Werdohl (Germany); Starke, K. [Mannesmann-Seiffert GmbH, Beckum (Germany)

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  1. Mesoscale Modeling and Validation of Texture Evolution during Asymmetric Rooling and Static Recrystallization of Magnesium Alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL; Stoica, Grigoreta M [ORNL; Muralidharan, Govindarajan [ORNL; Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Specht, Eliot D [ORNL; Kenik, Edward A [ORNL; Muth, Thomas R [ORNL

    2012-01-01

    The focus of the present research is to develop an integrated deformation and recrystallization model for magnesium alloys at the microstructural length scale. It is known that in magnesium alloys nucleation of recrystallized grains occurs at various microstructural inhomogeneities such as twins and localized deformation bands. However, there is a need to develop models that can predict the evolution of the grain structure and texture developed during recrystallization and grain growth, especially when the deformation process follows a complicated deformation path such as in asymmetric rolling. The deformation model is based on a crystal plasticity approach implemented at the length scale of the microstructure that includes deformation mechanisms based on dislocation slip and twinning. The recrystallization simulation is based on a Monte Carlo technique that operates on the output of the deformation simulations. The nucleation criterion during recrystallization is based on the local stored energy and the Monte Carlo technique is used to simulate the growth of the nuclei due to local stored energy differences and curvature. The model predictions are compared with experimental data obtained through electron backscatter analysis and neutron diffraction.

  2. Abatement of segregation with the electro and static magnetic field during twin-roll casting of 7075 alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Su, X. [The Key Laboratory of Electromagnetic Processing of Material, Ministry of Education, 317#, Northeastern University, Shenyang, 110819 Liaoning (China); Xu, G.M., E-mail: Xu_gm@epm.neu.edu.cn [The Key Laboratory of Electromagnetic Processing of Material, Ministry of Education, 317#, Northeastern University, Shenyang, 110819 Liaoning (China); Jiang, D.H. [Donggong Information Science and Technology Co., Ltd., Guangzhou, 510000 Guangdong (China)

    2014-04-01

    This study aims to investigate the influence of electromagnetic field on the distribution and composition of precipitates and on the mechanical properties of 7075 rolled sheets. The non-field and field microstructure and the mechanical properties were studied in detail by optical microscope (OM), electron probe microanalyzer (EPMA), multiple sample tensile as well as hardness tests. The Fine and equiaxed grains were obtained when introducing the alternating oscillating electromagnetic field to the twin-roll casting (TRC) process with 0.13 T static magnetic and 386 A alternating current (AC) intensities. Due to a damping effect on the convection generated by applying the electro- and static magnetic fields, the undercooling of the melt decreases and the continuous net-like precipitates are refined and broken remarkably. Especially under oscillating electromagnetic field conditions, the best uniform microstructure without mottled segregation was obtained. In addition, the fields can effectively enhance solute mixing capacity and reduce heat discharge, resulting in the increase of mechanical properties of 7075 sheets in both the longitudinal and long transverse directions. The optimum process in the present study, in which the higher solid solubility in Al matrix and the stronger hardness as well as tensile strength was gained as compared to other rolled specimens, is considered as alternating oscillating TRC process.

  3. EC static high-temperature leach test. Summary report of an European Community interlaboratory round robin

    International Nuclear Information System (INIS)

    The results of an interlaboratory static high-temperature leach test conducted by the Commission of the European Communities in 1983 over a period of 9 months are compiled and statistically evaluated. A total of 12 laboratories - 10 from Member States of the EC and one from Finland and the USA - provided information concerning the test method and the analytical test results in the frame of a round robin test (RRT). All together these laboratories tested 366 waste from specimens of the borosilicate glass UK 209 containing simulated high-level radioactive waste. Leach tests were performed on the basis of the ''Document on the EC static high-temperature leach test method'' in autoclaves at leaching temperatures of 900C, 1100C, 1500C, and 1900C over time periods of 3,7,14,28 and 56 days using dionized water as leachant. The resulting leachates were analysed for the elemental concentrations of Si,B,Sr,Nd and Cs by all laboratories and for the concentrations of the optional elements Na, Al,Ce,Mo,Cr,Fe,Li,Mg and Zn by some of the participating laboratories. Additionally, the F content of the blank leachates was analysed by all laboratories

  4. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  5. A new high strength and high tolerance-resistance Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Shou-jie; LU Zheng; DAI Sheng-long; HAN Ya-fang; YAN Ming-gao

    2006-01-01

    In order to develop a new high strength and high tolerance-resistance Al-Li alloy which can be used in aerospace industry,the effects of microalloying elements such as Mg, Ag, Mn and Zn on the mechanical properties of Al-Cu-Li alloys were studied. The results show that the strengthening effects of Mg+Ag and Mg+Zn additions are higher than those of the individual Mg, Ag or Zn addition. The element Mn can also bring some extent strengthening effects on the alloys, but it has nothing to do with the other microalloying elements present or not. Finally, a new Al-Li alloy with Mg+Zn+Mn additions was developed, which possesses high strength and high tolerance-resistance promising properties for aerospace applications.

  6. PREPARING Ni–W ALLOY FILMS WITH LOW INTERNAL STRESS AND HIGH HARDNESS BY HEAT TREATING

    OpenAIRE

    RUI LIU; HONG WANG; JIN-YUAN YAO; XUE-PING LI; GUI-FU DING

    2007-01-01

    In this paper, the internal stress and hardness of Ni–W alloy films with W contents in the range of 0–59 wt% were investigated. The amorphous Ni–W alloy films were electrodeposited with 59 wt% W content and the structure of crystalline alloy films was formed after heat treating. The experimental results showed that heat treating could prepare Ni–W alloy films with lower internal stress compared with low W content alloy films, and the heat treated alloy films still have high hardness. The inte...

  7. Iron chromium potential to model high-chromium ferritic alloys

    OpenAIRE

    Bonny, Giovanni; Pasianot, Roberto C; Terentyev, Dmitry; Malerba, Lorenzo

    2011-01-01

    Abstract In this paper we present a Fe-Cr interatomic potential to model high-Cr ferritic steels. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The here developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and exper...

  8. USES OF HIGH COPPER AMALGAM ALLOYS IN DENTISTRY

    OpenAIRE

    Solanki, Gaurav

    2012-01-01

    A filling is the repair of a damaged or decayed tooth, restoring it back to its normal shape, appearance and function. Amalgam Restoration is an example of the material giving its name to the process. Amalgam fillings are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth where it hardens slowly and replaces the missing tooth substance. This article throws light on high copper alloys of amalgam, its advantages, disadvantages and contraindications. A ...

  9. Corrosion considerations of high-nickel alloys and titanium alloys for high-level radioactive waste disposal containers

    International Nuclear Information System (INIS)

    Corrosion resistant materials are being considered for the metallic barrier of the Yucca Mountain Project's high-level radioactive waste disposal containers. High nickel alloys and titanium alloys have good corrosion resistance properties and are considered good candidates for the metallic barrier. The localized corrosion phenomena, pitting and crevice corrosion, are considered as potentially limiting for the barrier lifetime. An understanding of the mechanisms of localized corrosion of how various parameters affect it will be necessary for adequate performance assessments of candidate container materials. Examples of some of the concerns involving candidate container materials. Examples of some of the concerns of involving localized corrosion are discussed. The effects of various parameters, such as temperature and concentration of halide species, on localized corrosion are given. In addition concerns about aging of the protective oxide layer in the expected service temperature range (50 to 250 degrees C) are presented. Also some mechanistic considerations of localized corrosion are given. 31 refs., 1 tab

  10. Development of high repetition-rate pulse generator using static induction thyristor

    International Nuclear Information System (INIS)

    A repetitive pulsed high-voltage modulator using static induction thyristor (SIThy) has been developed for applications to induction synchrotron. It is developed with an aim of replacing the presently used MOSFET modulator which uses a stack of MOSFETs connected in series. Compared with MOSFET, SIThy has higher voltage and current capability and is expected to have wide applications in various high-voltage modulators. The test unit is operated at repetition rate of 1 MHz with pulse width of ∼400 ns (FWHM). The experiments were carried out at operation voltage of 2 kV with a resistive load of 100 Ω. Special care has been taken on the gate circuit. The experimental results have given the characteristics of the modulator and the heat-loading capability of the SIThy. (author)

  11. Engineering molecular mechanics: an efficient static high temperature molecular simulation technique.

    Science.gov (United States)

    Subramaniyan, Arun K; Sun, C T

    2008-07-16

    Inspired by the need for an efficient molecular simulation technique, we have developed engineering molecular mechanics (EMM) as an alternative molecular simulation technique to model high temperature (T>0 K) phenomena. EMM simulations are significantly more computationally efficient than conventional techniques such as molecular dynamics simulations. The advantage of EMM is achieved by converting the dynamic atomistic system at high temperature (T>0 K) into an equivalent static system. Fundamentals of the EMM methodology are derived using thermal expansion to modify the interatomic potential. Temperature dependent interatomic potentials are developed to account for the temperature effect. The efficiency of EMM simulations is demonstrated by simulating the temperature dependence of elastic constants of copper and nickel and the thermal stress developed in a confined copper system.

  12. Ferrous alloys cast under high pressure gas atmosphere

    Directory of Open Access Journals (Sweden)

    Pirowski Z.

    2007-01-01

    Full Text Available The main objective of this paper is describing the essence of the process of introducing nitrogen to the melt of ferrous alloys by application of overpressure above the metal bath. The problem was discussed in terms of both theory (the thermodynamic aspects of the process and practice (the technical and technological aspects, safety of the furnace stand operation, and technique of conducting the melt. The novel technique of melting under high pressure of the gas atmosphere (up to 5 MPa has not been used so far in the domestic industry, mainly because of the lack of proper equipment satisfyng the requirements of safe operation. Owing to cooperation undertaken with a partner from Bulgaria, a more detailed investigation of this technology has become possible and melting of selected ferrous alloys was conducted under the gas atmosphere at a pressure of about 3,5 MPa.

  13. Hydrogen storage alloys prepared by high-energy milling

    OpenAIRE

    M. Staszewski; A. Sierczyńska; M. Kamińska; M. Osadnik; M. Czepelak; Swoboda, P.

    2011-01-01

    Purpose: The aim of this work was to investigate an efficiency of high-energy milling, as a method to obtain hydrogen storage alloys with good properties.Design/methodology/approach: Two classes of the alloys were studied: AB2 type with atomic composition of (Ti0.5Zr0.5)(V0.68Mn0.68Cr0.34Ni0.7) and AB5 type with atomic composition of (Ce0.63La0.37)(Ni3.55Al0.3Mn0.4 Co0.75).The materials were prepared by arc melting and initially pulverized and afterwards subjected to wet milling process in a ...

  14. Pressurized metallurgy for high performance special steels and alloys

    Science.gov (United States)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  15. Corrosion of Titanium Alloys in High Temperature Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pang, J. J.; Blackwood, D. J. [National University of Singapore, Singapore (Singapore)

    2015-08-15

    Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed 120 °C, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of 25 °C to 200 °C. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

  16. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, 'Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR, Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T approximate to 1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature

  17. High-strength low-alloy (HSLA) steels: Visokotrdna malolegirana (HSLA) konstrukcijska jekla:

    OpenAIRE

    Skobir Balantič, Danijela Anica

    2011-01-01

    Micro-alloyed, high-strength, low-alloy (HSLA) steels are important structural materials and contain small amounts of alloying elements, such as niobium, titanium, vanadium, and aluminium, which enhance the strength through the formation of stable carbides, nitrides or carbonitrides and have an effect on the hardenability. Such steels contain less than 0.1 % of the alloying additions, used individually or in combination. Yield strength increments of two or three times that of plain carbon-man...

  18. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  19. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  20. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  1. SYNTHESIS AND CHARECTERIZATION OF AlFeCrNi FOUR COMPONENT HIGH ENTROPY ALLOY BY MECHANICAL ALLOYING

    Directory of Open Access Journals (Sweden)

    P.B.C RAO

    2011-05-01

    Full Text Available The elemental powders of Al,Fe,Ni and Cr are taken with high purity and are mechanically alloyed(MA to produce the High-Entropy Alloy. The samples are taken at regular intervals of 5,10,15,20 hr. These samples are characterized by X-Ray Diffraction (XRD technique. The further analysis of X-Ray Diffraction (XRD patterns for crystallite size and strain is done. The series of transformations were studied by plotting intensity versus 2Ө.The high entropy alloy was synthesized successfully having a single-phase solid solution. The alloy has a Body Centered Cubic (BCC crystal structure and a lattice parameter of 2.8952Ao with a residual strain of 0.772%.

  2. Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Lowe, Tracie M [ORNL; Pint, Bruce A [ORNL

    2009-01-01

    Multi-component metallic alloys have been developed to withstand high-temperature service in corrosive environments. Some of these applications, like exhaust valve seats in internal combustion engines, must also resist sliding, impact, and abrasion. The conjoint effects of temperature, oxidation, and mechanical contact can result in accelerated wear and the formation of complex surface layers whose properties differ from those of the base metal and the oxide scale that forms in the absence of mechanical contact. The authors have investigated the effects of prior surface damage, produced by scratch tests, on the localized reformation of oxide layers. Three high-performance commercial alloys, based on iron, nickel, and cobalt, were used as model materials. Thermogravimetric analysis (TGA) was used to determine their static oxidation rates at elevated temperature (850o C). A micro-abrasion, ball-cratering technique was used to measure oxide layer thickness and to compare it with TGA results. By using taper-sectioning techniques and energy-dispersive elemental mapping, a comparison was made between oxide compositions grown on non-damaged surfaces and oxides that formed on grooves produced by a diamond stylus. Microindentation and scratch hardness data revealed the effects of high temperature exposure on both the substrate hardness and the nature of oxide scale disruption. There were significant differences in elemental distribution between statically-formed oxides and those that formed on scratched regions

  3. High temperature oxidation resistance in titanium–niobium alloys

    International Nuclear Information System (INIS)

    Highlights: • The conventional explanation for oxidation resistance is disproven, an alternative presented. • A generic analytic diffusion model for oxidation resistance is presented. • We develop a class of oxidation resistant niobium–titanium alloys. • Calculation, microscopy, spectroscopy and diffraction analysis of the alloys. • The theory is verified in oxidation tests. - Abstract: Titanium alloys are ideally suited for use as lightweight structural materials, but their use at high temperature is severely restricted by oxidation. Niobium is known to confer oxidation-resistance, and here we disprove the normal explanation, that Nb5+ ions trap oxygen vacancies. Using density functional theory calculation, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) we show that Nb is insoluble in TiO2. In fact, the Ti–Nb surface has three-layer structure: the oxide itself, an additional Nb-depleted zone below the oxide and a deeper sublayer of enhanced Nb. Microfocussed X-ray diffraction also demonstrates recrystallization in the Nb-depleted zone. We interpret this using a dynamical model: slow Nb-diffusion leads to the build up of a Nb-rich sublayer, which in turn blocks oxygen diffusion. Nb effects contrast with vanadium, where faster diffusion prevents the build up of equivalent structures

  4. Study of the high temperature characteristics of hydrogen storage alloys

    CERN Document Server

    Rong, Li; Shaoxiong, Zhou; Yan, Qi; 10.1016/j.jallcom.2004.07.006

    2005-01-01

    In this work, the phase structure of as-cast and melt-spun (MmY)/sub 1/(NiCoMnAl)/sub 5/ alloys (the content of yttrium is 0-2.5wt.%) and their electrochemical properties were studied with regard to discharge capacity at different temperatures (30-80 degrees C) and cycling life at 30 degrees C. It is found that the substitution of yttrium increase the electrochemical capacity of the compounds and decrease the difference in capacity between as-cast and as-quenched compounds at 30 degrees C. When increasing the yttrium concentration from 0 to 2.5wt.%, the cycling life of both the as-cast and the melt- spun compounds deteriorated, although the latter have a slightly longer cycle life than the former. The remarkable feature of the alloys obtained by yttrium substitution is the improvement of the high temperature electrochemical properties. It shows that the stability of the hydrides is increased. Compared with the as-cast alloys, the melt-spun ribbons have higher electrochemical charge /discharge capacity in the ...

  5. High temperature oxidation resistance in titanium–niobium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tegner, B.E. [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Zhu, L. [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Siemers, C. [Technische Universitat Braunschweig, Institut fur Werkstoffe, Langer Kamp 8, 38106 Braunschweig (Germany); Saksl, K. [Slovak Academy of Sciences, Institute of Materials Research, Watsonova 47, 04353 Kosice (Slovakia); Ackland, G.J., E-mail: gjackland@ed.ac.uk [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2015-09-15

    Highlights: • The conventional explanation for oxidation resistance is disproven, an alternative presented. • A generic analytic diffusion model for oxidation resistance is presented. • We develop a class of oxidation resistant niobium–titanium alloys. • Calculation, microscopy, spectroscopy and diffraction analysis of the alloys. • The theory is verified in oxidation tests. - Abstract: Titanium alloys are ideally suited for use as lightweight structural materials, but their use at high temperature is severely restricted by oxidation. Niobium is known to confer oxidation-resistance, and here we disprove the normal explanation, that Nb{sup 5+} ions trap oxygen vacancies. Using density functional theory calculation, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) we show that Nb is insoluble in TiO{sub 2}. In fact, the Ti–Nb surface has three-layer structure: the oxide itself, an additional Nb-depleted zone below the oxide and a deeper sublayer of enhanced Nb. Microfocussed X-ray diffraction also demonstrates recrystallization in the Nb-depleted zone. We interpret this using a dynamical model: slow Nb-diffusion leads to the build up of a Nb-rich sublayer, which in turn blocks oxygen diffusion. Nb effects contrast with vanadium, where faster diffusion prevents the build up of equivalent structures.

  6. Constitutive equations of basalt filament tows under quasi-static and high strain rate tension

    International Nuclear Information System (INIS)

    The tensile properties of basalt filament tows were tested at quasi-static (0.001 s-1) and high strain rates (up to 3000 s-1) with MTS materials tester (MTS 810.23) and split Hopkinson tension bar (SHTB), respectively. Experimental results showed that the mechanical properties of the basalt filament tows were rather sensitive to strain rate. Specifically, the stiffness and failure stress of the basalt filament tows increased distinctly as the strain rate increased, while the failure strain decreased. From scanning electronic microscope (SEM) photographs of the fracture surface, it is indicated that the basalt filament tows failed in a more brittle mode and the fracture surface got more regular as the strain rate increases. The strength distributions of the basalt filament tows have been evaluated by a single Weibull distribution function. The curve predicted from the single Weibull distribution function was in good agreement with the experimental data points.

  7. Noncontact Laser Calorimetry of High Temperature Melts in a Static Magnetic Field

    Science.gov (United States)

    Fukuyama, Hiroyuki; Kobatake, Hidekazu; Tsukada, Takao; Awaji, Satoshi

    Numerical simulations are widely used for high value-added materials processing such as semiconductor crystal growth, casting of super high-temperature alloys for a jet-engine turbine blade, and for welding in automobile manufacturing [1, 2]. Process modeling involving a liquid-to-solid transition requires precise thermophysical properties of materials in the solid and liquid state at temperatures near their melting points. However, high-temperature materials such as liquid silicon are chemically reactive and are easily contaminated by their containers and contact materials. Therefore, it remains extremely difficult to measure the thermophysical properties of high-temperature liquids. Especially, the thermal conductivity of a high-temperature liquid is a difficult property to measure because of the existence of the buoyancy and Marangoni convections in the liquid. Not only from process modeling but also from a scientific perspective, thermal conductivity data of high-temperature metallic or semiconductor liquids are important to investigate whether the Wiedemann—Franz law [3] is applicable to them.

  8. Fatigue behavior of copper and selected copper alloys for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Leedy, K.D.; Stubbins, J.F.; Singh, B.N.; Garner, F.A.

    1996-04-01

    The room temperature fatigue behavior of standard and subsize specimens was examined for five copper alloys: OFHC Cu, two CuNiBe alloys, a CuCrZr alloy, and a Cu-Al{sub 2}O{sub 3} alloy. Fatigue tests were run in strain control to failure. In addition to establishing failure lives, the stress amplitudes were monitored as a function of numbers of accrued cycles. The results indicate that the alloys with high initial yield strengths provide the best fatigue response over the range of failure lives examined in the present study: N{sub f} = 10{sup 3} to 10{sup 6}. In fact, the fatigue performance of the best alloys is dominated by the elastic portion of the strain range, as would be expected from the correlation of performance with yield properties. The alumina strengthened alloy and the two CuNiBe alloys show the best overall performance of the group examined here.

  9. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  10. High-temperature Hydrogen Permeation in Nickel Alloys

    Energy Technology Data Exchange (ETDEWEB)

    P. Calderoni; M. Ebner; R. Pawelko

    2010-10-01

    In gas cooled Very High Temperature Reactor concepts, tritium is produced as a tertiary fission product and by activation of graphite core contaminants, such as lithium; of the helium isotope, He-3, that is naturally present in the He gas coolant; and the boron in the B4C burnable poison. Because of its high mobility at the reactor outlet temperatures, tritium poses a risk of permeating through the walls of the intermediate heat exchanger (IHX) or steam generator (SG) systems, potentially contaminating the environment and in particular the hydrogen product when the reactor heat is utilized in connection with a hydrogen generation plant. An experiment to measure tritium permeation in structural materials at temperatures up to 1000 C has been constructed at the Idaho National Laboratory Safety and Tritium Applied Research (STAR) facility within the Next Generation Nuclear Plant program. The design is based on two counter flowing helium loops to represent heat exchanger conditions and was optimized to allow control of the materials surface condition and the investigation of the effects of thermal fatigue. In the ongoing campaign three nickel alloys are being considered because of their high-temperature creep properties, alloy 617, 800H and 230. This paper introduces the general issues related to tritium in the on-going assessment of gas cooled VHTR systems fission product transport and outlines the planned research activities in this area; outlines the features and capabilities of the experimental facility being operated at INL; presents and discusses the initial results of hydrogen permeability measurements in two of the selected alloys and compares them with the available database from previous studies.

  11. Effects of high magnetic field on modification of Al-Si alloy

    Institute of Scientific and Technical Information of China (English)

    LIAN Feng; QI Feng; LI Ting-ju; HU Guo-bing

    2005-01-01

    Effects of high magnetic field on modification of Al-6 %Si hypoeutectic alloy, Ak-12.6%Si eutectic alloy and Al-18 % Si hypereutectic alloy were studied. For the Al-6 % Si alloy, it is found that the sample modified by Na salt does not lose efficacy after remelting under high magnetic field. For the Al-12.6%Si alloy, if the sample modi fied by Na-salt is kept at the temperature of modification reaction, high magnetic field can postpone the effective time of the modification. For Al-18%Si alloy modified by P-salt, the primary Si in solidified structure concentrates at the edge of the sample and eutectic Si appears in the center of the sample under the condition without high magnetic field, while the primary Si distributes evenly in the sample when the high magnetic field is imposed. It is thought that the high magnetic field restrains the convection of the melt.

  12. Thermodynamic Modeling as a Strategy for Casting High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Peri Reddy V; S Raman Sankaranarayanan

    2009-01-01

    Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic com-positions have been presented.

  13. REVIEW AND PROSPECT OF HIGH STRENGTH LOW ALLOY TRIP STEEL

    Institute of Scientific and Technical Information of China (English)

    L. Li; P. Wollants; Y.L. He; B.C. De Cooman; X.C. Wei; Z.Y. Xu

    2003-01-01

    Research status of high strength low alloy TRIP (transformation induced plasticity)steels for automobile structural parts is briefly described. Composition and microstructure factors especially the morphology, size and volume fraction of retained austenite,which largely influence the strength and ductility of the steel, are reviewed and discussed one after another. Modelling of the inter-critical annealing and martempering processes as well as the designing of the TRIP steel aided by commercial software are introduced. Some special aspects of the dynamic mechanical properties of TRIP steel are firstly reported.

  14. Dephosphorization of stainless steel and high Cr-high Ni-high Mo alloys

    International Nuclear Information System (INIS)

    Investigation was carried out about dephosphorization by both oxidizing and reducing of 10-20%Cr metals using several kinds of flux, such as Na2CO3-NaCl, K2CO3-KCl, CaO-CaF2, BaO-BaCl2, CaC2-CaF2 and CaCN2-CaF2. It was recognized that CaC2-20%CaF2 flux was adequate to dephosphorization of high Cr content molten metal, because higher Cr content was advantageous for dephosphorization and high degree of dephosphorization was obtained. Experiments of dephosphorization was carried out with CaC2-20% CaF2 flux and it was applied to high Cr, high Ni, high Mo commercial alloys. The results are summerrized as follows: 1) S, N and O contents in addition to P of the molten metals reduced after flux addition, and carbon increased. 2) The effects of alloying elements on dephosphorization are that Cr is advantageous, Ni is disadvantageous, and Mo, Si, Mn have little influence. 3) Because of rephosphorization, the slag after dephosphorization should be completely cut off. 4) The stink of the slag after dephosphorization can be extinguished by wasted nitricacid treatment. (author)

  15. Static and dynamic tensile behaviour of aluminium processed by high pressure torsion

    Directory of Open Access Journals (Sweden)

    Verleysen Patricia

    2015-01-01

    Full Text Available High pressure torsion (HPT is a severe plastic deformation technique in which a small, disk-like sample is subjected to a torsional deformation under a high hydrostatic pressure. In present study, the static and dynamic tensile behaviour of commercially pure aluminium (99.6 wt% processed by HPT is studied. The high strain rate tensile behaviour is characterized using a purpose-developed miniature split Hopkinson tensile bar setup by which strain rates up to 5 × 103 s−1 can be reached. During the tests, the deformation of a speckle pattern applied to the samples is recorded, by which local information on the strain is obtained using a digital image correlation technique. Electron back scatter diffraction images are used to investigate the microstructural evolution, more specifically the grain refinement obtained by HPT. The fracture surfaces of the tensile samples are studied by scanning electron microscopy. Results show that the imposed severe plastic deformation significantly increases the tensile strength, however, at the expense of ductility. The strain rate only has a minor influence on the materials tensile behaviour.

  16. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    Science.gov (United States)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  17. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    Science.gov (United States)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-04-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  18. Band anticrossing effects in highly mismatched semiconductor alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junqiao

    2002-09-09

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between

  19. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    Science.gov (United States)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  20. Design of a low-alloy high-strength and high-toughness martensitic steel

    Science.gov (United States)

    Zhao, Yan-jun; Ren, Xue-ping; Yang, Wen-chao; Zang, Yue

    2013-08-01

    To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500°C and 700°C, M7C3 exits below 720°C, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280°C, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.

  1. Solidification mechanism of highly undercooled metal alloys. [tin-lead and nickel-tin alloys

    Science.gov (United States)

    Shiohara, Y.; Chu, M. G.; Macisaac, D. G.; Flemings, M. C.

    1982-01-01

    Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation.

  2. Dense 3D Reconstruction from High Frame-Rate Video Using a Static Grid Pattern.

    Science.gov (United States)

    Sagawa, Ryusuke; Furukawa, Ryo; Kawasaki, Hiroshi

    2014-09-01

    Dense 3D reconstruction of fast moving objects could contribute to various applications such as body structure analysis, accident avoidance, and so on. In this paper, we propose a technique based on a one-shot scanning method, which reconstructs 3D shapes for each frame of a high frame-rate video capturing the scenes projected by a static pattern. To avoid instability of image processing, we restrict the number of colors used in the pattern to less than two. The proposed technique comprises (1) an efficient algorithm to eliminate ambiguity of projected parallel-line patterns by using intersection points, (2) a batch reconstruction algorithm of multiple frames by using spatio-temporal constraints, and (3) an efficient detection method of color-encoded grid pattern based on de Bruijn sequence. In the experiments, the line detection algorithm worked effectively and the dense reconstruction algorithm produces accurate and robust results. We also show the improved results by using temporal constraints. Finally, the dense reconstructions of fast moving objects in a high frame-rate video are presented. PMID:26352228

  3. Mechanical Properties of Refractory High Entropy Alloys Fabricated by Powder Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, Seoung Woo; Kim, Ki Hwan [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Lim, Woo Jin; Kang, Byung Chul; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The effects of high configurational entropy, lattice distortion and sluggish diffusion are attributed to the distinguishable behavior of high entropy alloys. The structural applications of high entropy alloys are also promising in advanced nuclear energy systems for nuclear fission and fusion applications. Because of the randomly occupied lattice points by atoms with different atomic radius, lattice distortions and local atomic level strain were developed. The local lattice distortions influence the mechanical properties of high entropy alloys. The strengthening of high entropy alloys is attributed to the lattice distortions and local atomic level strain that increase the resistance to the dislocation motion. Some high entropy alloys exhibit remarkable irradiation resistance. Nagase et al. reported that the Conference alloy was irradiation resistant up to 40 dpa. Ega mi proposed that the irradiation defects can be self-healed because the recrystallization happens more easily in high entropy alloys. The mechanically alloyed and sintered samples have a much smaller grain size than that in cast high entropy alloys.

  4. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  5. Development of High Strength Low Alloy Steel for Nuclear Reactor Vessel

    International Nuclear Information System (INIS)

    SA508 Gr. 4N Ni-Cr-Mo low alloy steel has an improved strength and fracture toughness, compared to commercial low alloy steels such as SA508 Gr. 3 Mn-Mo-Ni low alloy steel. In this study, the microstructural observation and baseline test were carried out using SA508 Gr. 4N model alloy of 1 ton scale. Thermal embrittlement and neutron irradiation embrittlement behaviors of SA508 Gr. 4N model alloy were also evaluated. The yield strength of 540MPa, Charpy transition temperature, T41J of -132 .deg. C, Reference temperature, T0 of -146 .deg. C, and RTNDT of -105 .deg. C were obtained from large scale SA508 Gr. 3 low alloy steel. Effect of alloy elements on thermal embrittlement was carefully evaluated and embrittlement mechanism was characterized using small scale model alloys with various alloy composition. Neutron irradiation behavior at high fluence level up to 1.5x1020 n/cm2 corresponding over 80 years operation of RPV were investigated using irradiated samples from research reactor 'HANARO'. The irradiation embrittlement behavior of SA508 Gr. 4N model alloy was similar to that of commercial RPV steel. However, after neutron irradiation up to 1.3x1020 n/cm2, SA508 Gr. 4N model alloy shows lower transition temperature(T41J = -63 .deg. C) than unirradiated commercial RPV steel because it has a superior initial toughness

  6. An oxide dispersion strengthened Ni-W-Al alloy with superior high temperature strength

    Science.gov (United States)

    Glasgow, T. K.

    1976-01-01

    An experimental oxide dispersion strengthened (ODS) alloy, WAZ-D, derived from the WAZ-20 composition was produced by the mechanical alloying process. Cast WAZ-20 is strengthened by both a high refractory metal content, and 70 volume percent of gamma prime. The ODS alloy WAZ-D was responsive to variables of alloy content, of attritor processing, of consolidation by extrusion, and of heat treatment. The best material produced had large highly elongated grains. It exhibited tensile strengths generally superior to a comparable cast alloy. The ODS alloy exhibited high temperature stress rupture life considerably superior to any known cast superalloy. Tensile and rupture ductility were low, as was intermediate temperature rupture life. Very low creep rates were noted and some specimens failed with essentially no third stage creep. Also the benefit derived from the oxide dispersion, far out-weighed that from the elongated microstructure alone.

  7. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    International Nuclear Information System (INIS)

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same

  8. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, A.R., E-mail: arandrade@gmail.com [Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP (Brazil); Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Bolfarini, C. [Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP (Brazil); Ferreira, L.A.M.; Vilar, A.A.A. [Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Souza Filho, C.D.; Bonazzi, L.H.C. [Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Department of Materials, Aeronautical and Automotive Engineering, University of São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP (Brazil)

    2015-03-25

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same.

  9. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  10. Constitutive modeling of the mechanical behavior of high strength ferritic steels for static and dynamic applications

    Science.gov (United States)

    Abed, Farid H.

    2010-11-01

    A constitutive relation is presented in this paper to describe the plastic behavior of ferritic steel over a broad range of temperatures and strain rates. The thermo-mechanical behavior of high strength low alloy (HSLA-65) and DH-63 naval structural steels is considered in this study at strains over 40%. The temperatures and strain rates are considered in the range where dynamic strain aging is not effective. The concept of thermal activation analysis as well as the dislocation interaction mechanism is used in developing the flow model for both the isothermal and adiabatic viscoplastic deformation. The flow stresses of the two steels are very sensitive to temperature and strain rate, the yield stresses increase with decreasing temperatures and increasing strain rates. That is, the thermal flow stress is mainly captured by the yield stresses while the hardening stresses are totally pertained to the athermal component of the flow stress. The proposed constitutive model predicts results that compare very well with the measured ones at initial temperature range of 77 K to 1000 K and strain rates between 0.001 s-1 and 8500 s-1 for both steels.

  11. Design and static performance of high speed machining centre with "direct drive"

    Institute of Scientific and Technical Information of China (English)

    Shuhong XIAO; Yulian CHEN; Guangyuan ZHENG

    2009-01-01

    "Direct drive" is an ideal method for speeding machine tools. In the structure of a CNC machining centre with "direct drive", the linear motor's primary and secondary parts are assembled into the worktable and machine bed respectively to directly drive the worktable. The built-in rotary motor is assembled in the spindle to realize the main transmission system of the machine tool "direct drive". All mechanical transmission elements in machine tools are eliminated. High speed, efficiency, and accuracy are easily obtained. However, in this type of "direct drive" machining centre, the magnetic attraction force between the primary and the secondary linear motors and the dynamic impact at acceleration and deceleration are directly imposed on the machine tool, and influence the performance of the machining centre. This paper analyzes the special demands of "direct drive" on the machine centre, and introduces a new structure of the machining tool. The worktable and machine bed are optimized to meet the special demands of "direct drive". Static performance simulation on the machining centre is done to reveal an ideal result.

  12. Thin Static Charged Dust Majumdar-Papapetrou Shells with High Symmetry in D≥4

    Science.gov (United States)

    Čermák, Martin; Zouhar, Martin

    2012-08-01

    We present a systematical study of static D≥4 space-times of high symmetry with the matter source being a thin charged dust hypersurface shell. The shell manifold is assumed to have the following structure {S}_{β}×{R}^{D-2-β}, β∈{0,…, D-2} is dimension of a sphere {S}_{β}. In case of β=0, we assume that there are two parallel hyper-plane shells instead of only one. The space-time has Majumdar-Papapetrou form and it inherits the symmetries of the shell manifold—it is invariant under both rotations of the {S}_{β} and translations along ℝ D-2- β . We find a general solution to the Einstein-Maxwell equations with a given shell. Then, we examine some flat interior solutions with special attention paid to D=4. A connection to D=4 non-relativistic theory is pointed out. We also comment on a straightforward generalisation to the case of Kastor-Traschen space-time, i.e. adding a non-negative cosmological constant to the charged dust matter source.

  13. Microstructural development of high temperature deformed AZ31 magnesium alloys

    International Nuclear Information System (INIS)

    Due to their significant role in automobile industries, high temperature deformation of Mg–Al–Zn alloys (AZ31) at constant stress (i.e. creep) were studied at a wide range of stresses and temperatures to characterize underlying deformation mechanism, dynamic recrystallization (DRX) and dislocation density evolution. Various microstructures (e.g. grain growth & DRX) are noted during steady-state creep mechanisms such as grain boundary sliding (GBS), dislocation glide creep (DGC) and dislocation climb creep (DCC). Although a combination of DRX and grain growth is characteristic of low stacking fault energy materials like Mg alloys at elevated temperatures, observation reveals grain growth at low strain-rates (GBS region) along with dynamic recovery (DRV) mechanism. X-Ray Diffraction (XRD) analysis revealed a decrease in dislocation density during GBS region while it increased under dislocation based creep mechanisms which could be related to the possible DRV and DRX respectively. Scanning Electron Microscopic (SEM) characterization of the fracture surface reveals more inter-granular fracture for large grains (i.e. GBS region with DRV process) and more dimple shape fracture for small grains (i.e. DGC & DCC region with DRX)

  14. Heat Treatment in High Chromium White Cast Iron Ti Alloy

    Directory of Open Access Journals (Sweden)

    Khaled M. Ibrahim

    2014-01-01

    Full Text Available The influence of heat treatment on microstructure and mechanical properties of high chromium white cast iron alloyed with titanium was investigated. The austenitizing temperatures of 980°C and 1150°C for 1 hour each followed by tempering at 260°C for 2 hours have been performed and the effect of these treatments on wear resistance/impact toughness combination is reported. The microstructure of irons austenitized at 1150°C showed a fine precipitate of secondary carbides (M6C23 in a matrix of eutectic austenite and eutectic carbides (M7C3. At 980°C, the structure consisted of spheroidal martensite matrix, small amounts of fine secondary carbides, and eutectic carbides. Titanium carbides (TiC particles with cuboidal morphology were uniformly distributed in both matrices. Irons austenitized at 980°C showed relatively higher tensile strength compared to those austenitized at 1150°C, while the latter showed higher impact toughness. For both cases, optimum tensile strength was reported for the irons alloyed with 1.31% Ti, whereas maximum impact toughness was obtained for the irons without Ti-addition. Higher wear resistance was obtained for the samples austenitized at 980°C compared to the irons treated at 1150°C. For both treatments, optimum wear resistance was obtained with 1.3% Ti.

  15. Microstructural development of high temperature deformed AZ31 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shahbeigi Roodposhti, Peiman, E-mail: pshahbe@ncsu.edu; Sarkar, Apu; Murty, Korukonda Linga

    2015-02-25

    Due to their significant role in automobile industries, high temperature deformation of Mg–Al–Zn alloys (AZ31) at constant stress (i.e. creep) were studied at a wide range of stresses and temperatures to characterize underlying deformation mechanism, dynamic recrystallization (DRX) and dislocation density evolution. Various microstructures (e.g. grain growth & DRX) are noted during steady-state creep mechanisms such as grain boundary sliding (GBS), dislocation glide creep (DGC) and dislocation climb creep (DCC). Although a combination of DRX and grain growth is characteristic of low stacking fault energy materials like Mg alloys at elevated temperatures, observation reveals grain growth at low strain-rates (GBS region) along with dynamic recovery (DRV) mechanism. X-Ray Diffraction (XRD) analysis revealed a decrease in dislocation density during GBS region while it increased under dislocation based creep mechanisms which could be related to the possible DRV and DRX respectively. Scanning Electron Microscopic (SEM) characterization of the fracture surface reveals more inter-granular fracture for large grains (i.e. GBS region with DRV process) and more dimple shape fracture for small grains (i.e. DGC & DCC region with DRX)

  16. Compensation of high-order quasi-static aberrations on SPHERE with the coronagraphic phase diversity (COFFEE)

    CERN Document Server

    Paul, B; Mugnier, L M; Dohlen, K; Petit, C; Fusco, T; Mouillet, D; Beuzit, J -L; Ferrari, M

    2014-01-01

    The second-generation instrument SPHERE, dedicated to high-contrast imaging, will soon be in operation on the European Very Large Telescope. Such an instrument relies on an extreme adaptive optics system coupled with a coronagraph that suppresses most of the diffracted stellar light. However, the coronagraph performance is strongly limited by quasi-static aberrations that create long-lived speckles in the scientific image plane, which can easily be mistaken for planets. The ultimate performance is thus limited by the unavoidable differential aberrations between the wave-front sensor and the scientific camera, which have to be estimated andcompensated for. In this paper, we use the COFFEE approach to measure and compensate for SPHERE's quasi-static aberrations. COFFEE (for COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection), which consists in an extension of phase diversity to coronagraphic imaging, estimates the quasi-static aberrations, including the differential ones, using only two foc...

  17. High cycle fatigue characteristics of 2124-T851 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xue; YIN Zhimin; NIE Bo; ZHONG Li; PAN Qinglin; JIANG Feng

    2007-01-01

    The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, trans-mission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room tempera-ture and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa·m1/2,respectively.At high cycle fatigue condition, the higher the stress amplitude,the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.

  18. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures; Desenvolvimento de um combustivel de alta densidade a base das ligas uranio-molibdenio com alta compatibilidade em altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de

    2008-07-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature

  19. Achieving combined high strength and high conductivity in re-processed Cu-Cr alloy

    Directory of Open Access Journals (Sweden)

    A.O. Olofinjanaa

    2009-07-01

    Full Text Available Purpose: Precipitation hardening by nano-sized precipitates had proven to be the most adequate way to achieve the optimum combination for strength and conductivity in copper based alloys. However, precipitation strengthened Cu- alloys are limited to very dilute concentration thereby limiting the volume proportion hardening precipitates. In this work, we report the investigation of the reprocessing of higher Cr concentration Cu- based alloys via rapid solidification.Design/methodology/approach: The ingot alloys with Cr content up to 10 wt.% were prepared via semi-chilling of small rods before been cast into ribbon using chill block melt spinner. Thermal aging studies followed by conductivity and microhardness tests were performed to follow the HSHC properties.Findings: It is found that the rapid solidification in the as-cast ribbon imposed combined solution extension and ultra-refinement of Cr rich phases. X-ray diffraction evidences suggest that the solid solution extension was up to 6wt%Cr. Lattice parameters determined confirmed the many folds extension of solid solution of Cr in Cu. Thermal aging studies of the cast ribbons indicated that peak aging treatments occurred in about twenty minutes. Peak aged hardness ranged from about 200 to well over 300Hv. The maximum peak aged hardness of 380Hv was obtained for alloy containing 6wt.%Cr but with conductivity of about 50%IACS. The best combined strength/conductivity was obtained for 4wt.%Cr alloy with hardness of 350HV and conductivity of 80% IACS. The high strengths observed are attributed to the increased volume proportion of semi-coherent Cr rich nano-sized precipitates that evolved from the supersaturated solid solution of Cu-Cr that was achieved from the high cooling rates imposed by the ribbon casting processResearch limitations/implications: The rapid overaging of the high Cr concentration Cu-Cr alloy is still a cause for concern in optimising the process for reaching peak HSHC properties

  20. Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys

    International Nuclear Information System (INIS)

    Highlights: ► We develop a new high entropy alloy system. ► The alloys have good plasticity that can do tensile testing at room temperature. ► The maximum tensile strain can reach to 16.9%. -- Abstract: High-entropy FeMnNiCuCoSnx (x denotes the atomic fraction of Sn) alloys with good plasticity have been developed. The systematical investigation demonstrates that the concentration of Sn element plays a significant role in the microstructure and tensile properties. As 0.03 5.6Sn) in the interdendritic regions forms, which degrades the ductility of alloys.

  1. Positron annihilation studies on FeCrCoNi high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S., E-mail: sab@igcar.gov.in; Rajaraman, R.; Kalavathi, S.; Amarendra, G.

    2015-01-25

    Highlights: • Defect annealing in FeCrCoNi high entropy alloy is studied using positron lifetime and Doppler broadening. • Variation of positron lifetime with temperature show the annealing of defects beyond 770 K. • XRD shows that the alloy forms FCC solid solution and the phase remains stable even after annealing at 1373 K. • Recrystallization assisted grain growth occurs beyond 973 K. - Abstract: Defect annealing in FeCrCoNi high entropy alloy is studied using positron lifetime and Doppler broadening spectroscopic techniques. Variation of positron lifetime with temperature show the annealing of defects beyond 770 K. Theoretical positron lifetime and electron momentum distributions were computed for the alloy to understand the nature of defects present in the arc melted alloy. X-ray diffraction measurements show that the arc melted alloy forms FCC solid solution and the phase remains stable even after annealing at 1373 K. Recrystallization assisted grain growth occurs beyond 973 K.

  2. High temperature oxidation behavior of ODS iron-base alloys for nuclear energy application

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhou, Z.; Liao, L.; Chen, W.; Ge, C. [Univ. of Science and Technology Beijing, School of Materials Science and Engineering, Beijing (China)

    2010-07-01

    Oxide dispersion strengthened (ODS) iron based alloys are considered as promising high temperature structural material for advanced nuclear energy systems due to its higher creep strength and radiation damage resistance than conventional commercial steels. In this study, the oxidation behavior of ODS iron based alloys with different Cr content (12-18%) was investigated by exposing samples at high temperature of 700℃ and 1000℃ in atmosphere environment, the exposure time is up to 500 h. Results showed that 14Cr and 18Cr ODS alloys exhibited better oxidation resistance than 12Cr ODS alloys. For the same chromium content, the oxidation resistance of ODS alloys are better than that of non-ODS alloys. (author)

  3. Method of producing superplastic alloys and superplastic alloys produced by the method

    Science.gov (United States)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  4. High rate sputtering of corrosion-resistant alloys

    International Nuclear Information System (INIS)

    High corrosion-resitant films of amorphous Fe sub(80-X)Cr sub(X)P sub(13)C sub(7), Fe45Cr30Mo5P13C7, Cr70C30, Cr75B25 and Ti75B25 were deposited by dc-triode sputtering on water-cooled copper substrate. X-ray diffractometry showed a few diffraction patterns that characterize the amorphous structure for deposited films. High sputtering rate of about 0.1 μm/min was achieved by applying high ion current densities to the sputtering target under 10-2 Torr of Ar gas. The high dense Ar plasma ions were produced using a plasma generator. The microhardness of amorphous Cr70C30, Cr75B25 and Ti75B25 were 1288, 1168 and 1081, respectively. The films, which contain high corrosion resitant alloying elements such as Cr and Ti, show extremely high corrosion resistance, particularly pitting corrosion resistance in IN HCI. The high corrosion resistance of these films is attributable to the enrichment of Cr and Ti in the passive films. (author)

  5. Corrosion of high-density sintered tungsten alloys. Part 1

    International Nuclear Information System (INIS)

    The corrosion behaviour of four tungsten alloys has been evaluated through weight loss measurements after total immersion in both distilled water insight into the mechanism of corrosion was afforded by an examination of the and 5% sodium chloride solutions. Some insight the mechanism of corrosion was afforded by using the Scanning Electron Microscopy and through an analysis of the corrosion products. Pure tungsten and all the alloys studied underwent corrosion during the tests, and in each case the rare of corrosion in sodium chloride solution was markedly less than that in distilled water. A 95% W, 3.5% Ni, 1.5% Fe alloy was found to be the most corrosion resistant of the alloys under the experimental conditions. Examination of the data shows that for each of the tests, copper as an alloying element accelerates corrosion of tungsten alloys. 9 refs., 7 tabs., 12 figs

  6. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  7. A Rare Earth High-iron Aluminum Alloy Cable Company to Settle in Chongqing

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On September 14,the reporter learnt from the Seminar on Application of New Rare Earth High-iron Aluminum Alloy Cable Technologies for Energy Conservation and Environmental Protection held by Chongqing Electric Industry Association that a rare earth high-iron aluminum alloy cable company with

  8. High-strength ultrafine-grained Ti-Fe-Sn alloys with a bimodal structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L C; Lu, H B; Pereloma, E V [Faculty of Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Calin, M; Eckert, J, E-mail: lczhangimr@gmail.co, E-mail: laichang@uow.edu.a [IFW Dresden, Institute for Complex Materials, PO Box 27 01 16, D-01171 Dresden (Germany)

    2010-07-01

    The microstructure-mechanical properties relationship in ultrafine-grained Ti-Fe-Sn alloys with high strength and large plasticity was investigated. The alloys are mainly composed of a hypereutectic microstructure with micrometer-sized primary dendrites embedded in an ultrafine-grained eutectic matrix. The bimodal composites exhibit a fracture strength higher than 2350 MPa and an enhanced plasticity larger than 7%. The excellent mechanical properties are critically related to the microstructure features of the phase constituents in the alloys.

  9. New developments on optimizing properties of high-Zn aluminium cast alloys

    Science.gov (United States)

    Krajewski, W. K.; Buras, J.; Krajewski, P. K.; Greer, A. L.; Schumacher, P.; Haberl, K.

    2016-07-01

    Foundry alloys with Al-based matrices have a wide range of uses in today's global economy and there is a high demand for castings of Al alloys, including Al-Zn alloys. In this paper, investigations on the grain refinement of high-Zn aluminium cast alloys are presented. Aluminium alloys with relatively high zinc content have a tendency to be coarse-grained, especially in the case of castings with low cooling rates such as are found in sand moulds. The coarse-grained structure degrades the plasticity, specifically the elongation. Therefore, for aluminium alloys of high (10-30 wt.%) zinc content, inoculation is attractive, aiming to break up the primary dendrites of the a-phase solid solution of zinc in aluminium. Such dendrites are the principal microstructural component in these alloys. On the other hand, a finer grain structure usually reduces the damping (e.g. as measured by attenuation of ultrasound) in these alloys. In the present investigations, a binary sand-cast Al-20 wt.% Zn alloy was inoculated with different additions of AlTi3C0.15 (TiCAl) and ZnTi-based master alloys. The sand-cast samples were subjected to mechanical-property measurements (tensile strength and elongation), image analysis to determine grain size, and measurements of the attenuation of 1 MHz ultrasound. It is found that both of the master alloys used cause significant refinement of the a-AlZn primary dendrites and change their morphology from linear-branched to semi-globular, increase the elongation by about 40%, and decrease the attenuation coefficient by about 25% in comparison with the initial alloy without inoculation.

  10. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    Science.gov (United States)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  11. ANODIC BEHAVIOR OF ALLOY 22 IN HIGH NITRATE BRINES AT TEMPERATURES HIGHER THAN 100C

    Energy Technology Data Exchange (ETDEWEB)

    G.O. LLEVBARE; J.C. ESTILL; A. YILMAZ; R.A. ETIEN; G.A. HUST M.L. STUART

    2006-04-20

    Alloy 22 (N06022) may be susceptible to crevice corrosion in chloride solutions. Nitrate acts as an inhibitor to crevice corrosion. Several papers have been published regarding the effect of nitrate on the corrosion resistance of Alloy 22 at temperatures 100 C and lower. However, very little is known about the behavior of this alloy in highly concentrated brines at temperatures above 100 C. In the current work, electrochemical tests have been carried out to explore the anodic behavior of Alloy 22 in high chloride high nitrate electrolytes at temperatures as high as 160 C at ambient atmospheres. Even though Alloy 22 may adopt corrosion potentials in the order of +0.5 V (in the saturated silver chloride scale), it does not suffer crevice corrosion if there is high nitrate in the solution. That is, the inhibitive effect of nitrate on crevice corrosion is active for temperatures higher than 100 C.

  12. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications

    International Nuclear Information System (INIS)

    Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLABTM, and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale prototype device based on

  13. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    Science.gov (United States)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-09-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  14. Exploration and Development of High Entropy Alloys for Structural Applications

    Directory of Open Access Journals (Sweden)

    Daniel B. Miracle

    2014-01-01

    Full Text Available We develop a strategy to design and evaluate high-entropy alloys (HEAs for structural use in the transportation and energy industries. We give HEA goal properties for low (≤150 °C, medium (≤450 °C and high (≥1,100 °C use temperatures. A systematic design approach uses palettes of elements chosen to meet target properties of each HEA family and gives methods to build HEAs from these palettes. We show that intermetallic phases are consistent with HEA definitions, and the strategy developed here includes both single-phase, solid solution HEAs and HEAs with intentional addition of a 2nd phase for particulate hardening. A thermodynamic estimate of the effectiveness of configurational entropy to suppress or delay compound formation is given. A 3-stage approach is given to systematically screen and evaluate a vast number of HEAs by integrating high-throughput computations and experiments. CALPHAD methods are used to predict phase equilibria, and high-throughput experiments on materials libraries with controlled composition and microstructure gradients are suggested. Much of this evaluation can be done now, but key components (materials libraries with microstructure gradients and high-throughput tensile testing are currently missing. Suggestions for future HEA efforts are given.

  15. A high-specific-strength and corrosion-resistant magnesium alloy.

    Science.gov (United States)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy. PMID:26480229

  16. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  17. Damping Properties vs. Structure Fineness of the High-zinc Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2012-09-01

    Full Text Available The subject of this study is the presentation of relation between the degree of structure fineness and ultrasonic wave dampingcoefficient for the high-zinc aluminium alloys represented in this study by the sand mould cast alloy Al - 20 wt% Zn (AlZn20. Thestudied alloy was refined with a modifying (Al,Zn-Ti3 ternary master alloy, introducing Ti in the amount of 400 pm into metal. Based on the analysis of the initial and modified alloy macrostructure images and ultrasonic testing, it was found that the addition of (Al,Zn-Ti3 master alloy, alongside a significant fragmentation of grains, does not reduce the coefficient of ultrasonic waves with a frequency of 1 MHz.

  18. Structure and selected properties of high-aluminium Zn alloy with silicon addition

    OpenAIRE

    A. Zyska; Z. Konopka; M. Łągiewka; M. Nadolski

    2011-01-01

    The results of examinations concerning the abrasive wear resistance, hardness, and thermal expansion of high-aluminium zinc alloys are presented. The examinations were carried out for five synthetic ZnAl28 alloys with variable silicon content ranging from 0.5% to 3.5%, and – for the purpose of comparison – for the standardised ZnAl28Cu4 alloy. It was found that silicon efficiently increases the tribological properties and decreases the coefficient of thermal expansion of zinc alloys. The most...

  19. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    Science.gov (United States)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  20. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...

  1. High temperature protective silicide coatings for titanium-niobium alloys

    International Nuclear Information System (INIS)

    The accomplished investigation of heat resistance of silicide coatings on titanium - (30-50)% niobium alloys has revealed that the coatings ensure reliable corrosion protection up to 1100 deg due to formation of heat resistant disilicides and a silicon dioxide layer on alloy surface. Silicide coatings possess particular ductility

  2. Principles of alloying of Ni superalloys resistant to high-temperature corrosion

    International Nuclear Information System (INIS)

    The effect of alloying elements (Cr, Ti, Al, Co, W, Nb) on resistance against high-temperature corrosion of the nickel alloys, applied in the gas turbine building, is studied. The diagram of the alloys heat resistance level dependence on the alloying elements concentration is plotted, wherein three areas are separated: 1) the area of improved heat resistance due to the solid solution and dispersion strengthening; 2) the area of decreasing heat resistance due to formation of the carbide net by the grain boundaries; 3) the area of catastrophic decrease in the heat resistance by separation of the embrittlement topologically close-packed phases. The class of the high-temperature corrosion-resistant nickel alloys with different chromium content (13-30%), the Ti/Al > 1 concentration ratio and balanced content of high-melting and rare earth elements is created

  3. Application of a criterion for cold cracking to casting high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2010-01-01

    Direct chill (DC) casting of high strength 7xxx series aluminium alloys is difficult mainly due to solidification cracking (hot cracks) and solid state cracking (cold cracks). Poor thermal properties along with extreme brittleness in the as-cast condition make DC-casting of such alloys a challenging

  4. Eliminating galling of high-alloy tubular threads by high-energy ion deposition process

    International Nuclear Information System (INIS)

    Galling is a form of adhesive wear that typically occurs in the presence of relatively high stresses. The worst-case result is actual seizure and cold welding of mating parts. This may occur very early in the life of parts, in many cases at original assembly. Threaded components have been the traditional sites for galling failure. With the increased use of high-alloy materials to combat corrosive effects of sour service, the tendency of threads to gall has become severe. A method of high-energy metal implanting has been developed to protect threads of all the various alloys from galling by disrupting the basic mechanism that leads to galling. This method of ion plating has been applied successfully to sliding surfaces in general

  5. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    Directory of Open Access Journals (Sweden)

    Scapin Martina

    2015-01-01

    Full Text Available The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet®  IT180 and pure Molybdenum (sintered by two different producers are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1 were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on the specimen. The temperature range varied between 25 and 1000°C. The experimental data were, finally, used to extract the parameters of the Zerilli-Armstrong model used to reproduce the mechanical behaviour of the investigated materials.

  6. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    CERN Document Server

    Scapin, Martina; Carra, Federico; Peroni, Lorenzo

    2015-01-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on...

  7. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  8. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  9. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  10. Improvement of Creep and High Temperature Tensile Properties by Adding W to Orthorhombic Ti2AlNb-Based Alloys

    Institute of Scientific and Technical Information of China (English)

    Fang Tang; Satoshi Emura; Masuo Hagiwara

    2000-01-01

    The Orthorhombic Ti2AlNb-based alloys (O alloys) are potential high temperature materials for applications in aircraft engines for their high specific strength. In this paper, with the purpose of enhancing the mechanical properties, W is added to O alloys as the quarternary alloying element. The effects of W additive on the high temperature tensile properties and creep resistance are investigated. The effects of boron doping on these properties are also studied.

  11. Nickel aluminide alloy for high temperature structural use

    Science.gov (United States)

    Liu, Chain T.; Sikka, Vinod K.

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  12. Statics with MATLAB

    CERN Document Server

    Marghitu, Dan B; Madsen, Nels H

    2013-01-01

    Engineering mechanics involves the development of mathematical models of the physical world. Statics addresses the forces acting on and in mechanical objects and systems. Statics with MATLAB®  develops an understanding of the mechanical behavior of complex engineering structures and components using MATLAB®  to execute numerical calculations and to facilitate analytical calculations.   MATLAB® is presented and introduced as a highly convenient tool to solve problems for theory and applications in statics. Included are example problems to demonstrate the MATLAB® syntax and to also introduce specific functions dealing with statics. These explanations are reinforced through figures generated with MATLAB® and the extra material available online which includes the special functions described. This detailed introduction and application of MATLAB® to the field of statics makes Statics with MATLAB® a useful tool for instruction as well as self study,  highlighting the use of symbolic MATLAB® for both theo...

  13. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Timothy T.-Y.; Chow, Jong H.; Shaddock, Daniel A.; Littler, Ian C. M.; Gagliardi, Gianluca; Gray, Malcolm B.; McClelland, David E.

    2010-07-20

    We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H{sup 13}C{sup 14}N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

  14. Static and Dynamic Characteristic Simulation of Feed System Driven by Linear Motor in High Speed Computer Numerical Control Lathe

    Directory of Open Access Journals (Sweden)

    Yang Zeqing

    2013-07-01

    Full Text Available In order to design the feed system of high speed Computer Numerical Control (CNC lathe, the static and dynamic characteristics of feed system driven by linear motor in high speed CNC lathe were analyzed. The slide board was taking as the main moving part of the feed system, and the guide rail was the main support component of the linear motor feed system. The mechanical structure static stiffness of feed system is researched through the slide board statics analysis. The simulation results show that the maximum deformation of the slide board occurs in the middle of the slide board where the linear motor is placed. The linear motor feed system control model was established based on analysis of high-speed linear feed system control principle, and the linear motor feed system transfer function was established, and servo dynamic stiffness factors were analyzed. The control parameters of the servo system and actuating mechanism parameters of feed system on the effect of the linear motor servo dynamic stiffness were analyzed using MATLAB software. The simulation results show that the position loop proportional gain, speed loop proportional gain and speed loop integral response time are the biggest influence factors on servo dynamic stiffness. The displacement response is reduced under the cutting interference force step inputting, the servo dynamic stiffness is increased, the number of system oscillation is also reduced, and the system tends to be stable.  

  15. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  16. Forge-Hardened TiZr Null-Matrix Alloy for Neutron Scattering under Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Takuo Okuchi

    2015-12-01

    Full Text Available For neutron scattering research that is performed under extreme conditions, such as high static pressures, high-strength metals that are transparent to the neutron beam are required. The diffraction of the neutron beam by the metal, which follows Bragg’s law, can be completely removed by alloying two metallic elements that have coherent scattering lengths with opposite signs. An alloy of Ti and Zr, which is known as a TiZr null-matrix alloy, is an ideal combination for such purposes. In this study, we increased the hardness of a TiZr null-matrix alloy via extensive mechanical deformation at high temperatures. We successfully used the resulting product in a high-pressure cell designed for high-static-pressure neutron scattering. This hardened TiZr null-matrix alloy may play a complementary role to normal TiZr alloy in future neutron scattering research under extreme conditions.

  17. Corrosion of high purity Fe-Cr-Ni alloys in 13 N boiling nitric acid

    International Nuclear Information System (INIS)

    Corrosion in boiling nitric acid was investigated for high purity Fe-18%Cr-12%Ni alloys and type 304L stainless steels (SS). Owing to very low impurity concentration, the solution treated high purity alloys show almost no intergranular corrosion while the type 304L SS show severe intergranular corrosion. Both in the high purity alloys and type 304L SS, aging treatments ranging from 873 K to 1073 K for 1 h enhance intergranular corrosion. During the aging treatments, impurities should be segregated to the grain boundaries. The corrosion behaviors were discussed from a standpoint of impurity segregation to grain boundaries. This study is of importance for purex reprocessing of spent fuels

  18. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction

    Science.gov (United States)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-09-01

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03600j

  19. Microstructure and the properties of FeCoCuNiSnx high entropy alloys

    International Nuclear Information System (INIS)

    Highlights: ► Based on a new alloying design idea, new FeCoCuNiSnx alloys are prepared. ► The crystal structure of alloys is a single FCC solution when Sn content is small. ► The elongation strain and tensile strength of the alloy reach 19.8% and 633 MPa. - Abstract: FeCoCuNiSnx high-entropy alloys (x denotes the adding the elements amount in atomic percentage) are prepared by an arc furnace. Their microstructure and mechanical properties are investigated. The results show that the alloys have a single FCC solution when Sn content is small, the microstructure of the alloys with increasing Sn content is FCC solution and Cu81Sn22 intermetallic compounds. The alloys possess the high strength and the plasticity. When Sn content is between 0.05 and 0.07, the maximum elongation strain and the maximum tensile strength can reach 19.8% and 633 MPa, respectively. The adding of Sn leads to the increase of tensile strength.

  20. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  1. Dynamic and Static High Temperature Resistant Ceramic Seals for X- 38 re-Entry Vehicle

    Science.gov (United States)

    Handrick, Karin E.; Curry, Donald M.

    2002-01-01

    In a highly successful partnership, NAS A, ESA, DLR (German Space Agency) and European industry are building the X-38, V201 re-entry spacecraft, the prototype of the International Space Station's Crew Return Vehicle (CRV). This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. The development of essential systems and technologies for a reusable re-entry vehicle is a first for Europe, and sharing the development of an advanced re-entry spacecraft with foreign partners is a first for NASA. NASA, in addition to its subsystem responsibilities, is performing overall X-38 vehicle system engineering and integration, will launch V201 on the Space Shuttle, deliver flight data for post-flight analysis and assessment and is responsible for development and manufacture of structural vehicle components and thermal protection (TPS) tiles. The major European objective for cooperation with NASA on X-38 was to establish a clear path through which key technologies needed for future space transportation systems could be developed and validated at affordable cost and with controlled risk. Europe has taken the responsibility to design and manufacture hot control surfaces like metallic rudders and ceramic matrix composites (CMC) body flaps, thermal protection systems such as CMC leading edges, the CMC nose cap and -skirt, insulation, landing gears and elements of the V201 primary structure. Especially hot control surfaces require extremely high temperature resistant seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent overheating of these structures and possible loss of the vehicle. Complex seal interfaces, which have to fulfill various, tight mission- and vehicle-related requirements exist between the moveable ceramic body flaps and the bottom surface of the vehicle, between the rudder and fin structure and the ceramic leading edge panel and TPS tiles. While NASA

  2. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2010-02-15

    Rapid and homogeneous mixing of the solvent and antisolvent is critical to achieve submicron drug particles by antisolvent precipitation technique. This work aims to develop a continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs with spironolactone as a model drug. Continuous antisolvent production of drug nanoparticles was carried out with a SMV DN25 static mixer comprising 6-18 mixing elements. The total flow rate ranged from 1.0 to 3.0 L/min while the flow rate ratio of solvent to antisolvent was maintained at 1:9. It is found that only 6 mixing elements were sufficient to precipitate the particles in the submicron range. Increasing the number of elements would further reduce the precipitated particle size. Increasing flow rate from 1.0 to 3.0 L/min did not further reduce the particle size, while higher drug concentrations led to particle size increase. XRD and SEM results demonstrated that the freshly precipitated drug nanoparticles are in the amorphous state, which would, in presence of the mixture of solvent and antisolvent, change to crystalline form in short time. The lyophilized spironolactone nanoparticles with lactose as lyoprotectant possessed good redispersibility and showed 6.6 and 3.3 times faster dissolution rate than that of lyophilized raw drug formulation in 5 and 10 min, respectively. The developed static mixing process exhibits high potential for continuous and large-scale antisolvent precipitation of submicron drug particles. PMID:19922777

  3. Study of the sensitisation of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), by means of scanning electrochemical microscopy

    OpenAIRE

    Leiva García, Rafael; Akid, R.; Greenfield, D.; Gittens, J.; Muñoz Portero, María José; García Antón, José

    2012-01-01

    The feedback mode of a scanning electrochemical microscope (SECM) was applied to study differences in the reactivity of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), in its unsensitised and sensitised state. Alloy 926 was heated at 825 °C for 1 h in an inert atmosphere in order to produce a sensitised metallurgical condition. Sensitisation was due to chromium carbide formation at the grain boundaries. The oxygen reduction reaction was used as an indicator to monitor the...

  4. Mechanically alloyed high strength Mg5wt.%Al10.3%wt.Ti4.7%wt.B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [National Univ. of Singapore (Singapore). Dept. of Mechanical and Production Engineering; Froyen, L. [Katholieke Univ. Leuven (Belgium). Dept. of Metallurgy and Materials Engineering

    1999-04-23

    Magnesium is one of the lightest metallic materials. Pure magnesium is, however, not valuable in many applications due to the limitation of its low strength, ductility and corrosion resistance. Therefore, several alloying elements such as Al, Zn and Mn are used to improve mechanical and chemical properties of Mg alloys. The present study focuses on the structural evolution and the mechanical properties of in-situ synthesized high strength magnesium composites using mechanical alloying.

  5. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 3600C and flow tests (approx. 20 ft/sec) in reactor process water at 1300C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 3600C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 3600C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 1500C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 500C

  6. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    Science.gov (United States)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  7. Study the Magnetic Properties of Invar Alloys by Using High Pressure Mössbaur Spectroscopy

    Directory of Open Access Journals (Sweden)

    N. A. Khalefa

    2015-12-01

    Full Text Available High pressure 57F MÖssbaur spectroscopy measurement ( up to 42 Gpa at room temperature have been carried out for investigation the magnetic properties of Ɣ(f.c.c Fe78Ni22 alloys using diamond anvil cell (DAC technique. The mÖssbaur spectrum at 0 Gpa shows a six line magnetic pattern with broad outer peaks and an average hyperfine field of ~32T characteristic of a disordered alloys. In the pressure rang (2alloys (25-35 at % Ni. Our data indicate a pressure induced invar effect for Fe78Ni22 alloy at ~7-12 Gpa. Above 20 Gpa the hyperfine field break down and the alloy becomes non-magnetic showing only a single line MÖsbauer spectrum.

  8. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  9. Corrosion of high temperature alloys in solar salt at 400, 500, and 680ÀC.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680ÀC were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680ÀC, due to the relatively thin oxide scale observed at 400ÀC. At 500ÀC, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680ÀC, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  10. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  11. High strain rate behavior of alloy 800H at high temperatures

    Science.gov (United States)

    Shafiei, E.

    2016-05-01

    In this paper, a new model using linear estimation of strain hardening rate vs. stress, has been developed to predict dynamic behavior of alloy 800H at high temperatures. In order to prove the accuracy and competency of the presented model, Johnson-Cook model pertaining modeling of flow stress curves was used. Evaluation of mean error of flow stress at deformation temperatures from 850 °C to 1050 °C and at strain rates of 5 S-1 to 20 S-1 indicates that the predicted results are in a good agreement with experimentally measured ones. This analysis has been done for the stress-strain curves under hot working condition for alloy 800H. However, this model is not dependent on the type of material and can be extended for any similar conditions.

  12. Effect of bending stresses on the high-frequency magnetic properties and their time stability in a cobalt-based amorphous alloy with an extremely low magnetostriction

    Science.gov (United States)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2015-12-01

    An unusual effect of the stresses of bending (toroidal sample diameter D) on the hysteretic magnetic properties ( H c , μ5) of an amorphous Co69Fe3.7Cr3.8Si12B11 alloy with an extremely low magnetostriction (|λ s | ≤ 10-7) is revealed. These properties are measured in a dynamic regime at a magnetic-field frequency f = 0.1-20 kHz. The coercive force of the alloy H c weakly depends on D at low frequencies ( f fact that magnetization reversal via the displacement of rigid domain walls is predominant at low frequencies and during static measurements and magnetization reversal via the displacement of flexible domain walls is predominant at high frequencies.

  13. A very high cycle fatigue thermal dissipation investigation for titanium alloy TC4

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-04-01

    Titanium alloy TC4 is widely used in aeronautics applications where it is subjected to high frequency fatigue loads. Tests are performed to investigate the alloy fatigue behavior sustaining ultrasonic fatigue load in Very High Cycle Fatigue (VHCF) regime. Thermal dissipation for the alloy in 20 kHz frequency is studied and a model is proposed to describe the temperature increment in the framework of thermodynamics by estimation of the anelastic and inelastic thermal dissipation at microscopic active sites in the reference element volume. The failure probability prediction method is used to evaluate the VHCF dispersion based on the two scale model and fatigue thermal dissipation analysis.

  14. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process.

    Science.gov (United States)

    Wang, Hui-Yuan; Yu, Zhao-Peng; Zhang, Lei; Liu, Chun-Guo; Zha, Min; Wang, Cheng; Jiang, Qi-Chuan

    2015-11-25

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  15. High pressure magnetic behaviour of amorphous Ysub(x)Nisub(1-x) alloys

    International Nuclear Information System (INIS)

    High pressure magnetization and Curie temperature measurements have been performed on several amorphous Ysub(x)Nisub(1-x) alloys. The results seem to indicate that ferromagnetism disappears in a rather inhomogeneous way

  16. A Low-Cost Hierarchical Nanostructured Beta-Titanium Alloy with High Strength

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir S.; Duz, Volodymr; Lavender, Curt A.

    2016-04-09

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  17. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  18. Microstructure Refinement of Sn-Sb Peritectic Alloy under High-Intensity Ultrasound Treatment

    Institute of Scientific and Technical Information of China (English)

    戚飞鹏; 张海波; 高守雷; 翟启杰

    2005-01-01

    In this paper the solidification behavior of Sn-Sb peritectic alloy and the mechanism of grain refinement in solidification process under high-intensity ultrasonic field are investigated. Three different powers of high-intensity ultrasound are introduced into molten Sn-Sb peritectic alloy to study the refining effectiveness. The results show that the application of high-intensity ultrasound during solidification process of Sn-Sb peritectic alloy can refine a phase and β phase and eliminate gravity segregation of the alloy. As acoustic intensity is increased from 400 W to 800 W, not only the homogenous fine structure can be obtained, but also the cubic β phase crystals tend to be spherical. Microstructure of the sample treated by 600 W high-intensity ultrasound demonstrates the best refining effect.

  19. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  20. Experimental Study on Wing Crack Behaviours in Dynamic-Static Superimposed Stress Field Using Caustics and High-Speed Photography

    Directory of Open Access Journals (Sweden)

    L.Y. Yang

    2014-07-01

    Full Text Available During the drill-and-blast progress in rock tunnel excavation of great deep mine, rock fracture is evaluated by both blasting load and pre-exiting earth stress (pre-compression. Many pre-existing flaws in the rock mass, like micro-crack, also seriously affect the rock fracture pattern. Under blasting load with pre-compression, micro-cracks initiate, propagate and grow to be wing cracks. With an autonomous design of static-dynamic loading system, dynamic and static loads were applied on some PMMA plate specimen with pre-existing crack, and the behaviour of the wing crack was tested by caustics corroding with a high-speed photography. Four programs with different static loading modes that generate different pre-compression fields were executed, and the length, velocity of the blasting wing crack and dynamic stress intensity factor (SIF at the wing crack tip were analyzed and discussed. It is found that the behaviour of blasting-induced wing crack is affected obviously by blasting and pre-compression. And pre-compression, which is vertical to the direction of the wing crack propagation, hinders the crack propagation. Furthermore, the boundary constraint condition plays an important role on the behaviour of blasting induced crack during the experiment.

  1. Dynamic Lift on an Artificial Static Armor Layer During Highly Unsteady Open Channel Flow

    Directory of Open Access Journals (Sweden)

    Stephan Mark Spiller

    2015-09-01

    Full Text Available The dynamic lift acting on a 100 mm × 100 mm section of a static armor layer during unsteady flow is directly measured in a series of physical experiments. The static armor layer is represented by an artificial streambed mold, made from an actual gravel bed. Data from a total of 190 experiments are presented, undertaken in identical conditions. Results show that during rapid discharge increases, the dynamic lift on the streambed repeatedly exhibits three clear peaks. The magnitude of the observed lift depends on the following hydrograph characteristics: (1 the initial flow depth; (2 the ramping duration and therefore the ramping rate; and (3 the total discharge increase. An adjusted unsteadiness parameter combines those three hydrograph characteristics for rapid discharge increases. Direct correlations between the unsteadiness parameter and the measured dynamic lift during unsteady flow are presented. In addition, the armor layer porosity showed a major impact on the observed effects. It is shown that increasing bed porosity leads to decreasing dynamic lift.

  2. Discovery of a superconducting high-entropy alloy.

    Science.gov (United States)

    Koželj, P; Vrtnik, S; Jelen, A; Jazbec, S; Jagličić, Z; Maiti, S; Feuerbacher, M; Steurer, W; Dolinšek, J

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a=3.36  Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3  K, an upper critical field μ0H_c2≈8.2  T, a lower critical field μ0Hc1≈32  mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ≈2.2  meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable. PMID:25238377

  3. Effect of thermal processing parameters on static globularization kinetics of TC17 alloy%热工艺参数对TC17合金静态球化动力学的影响

    Institute of Scientific and Technical Information of China (English)

    孙新; 曾卫东; 张志金; 贾志强; 徐建伟

    2015-01-01

    对TC17合金在820和860℃下进行等温锻造,随后在相同温度下进行热处理10 min~8 h,利用定量金相法研究变形量、热处理温度等工艺参数对片状α相静态球化的影响规律。结果表明:随着变形量的增加,在随后热处理过程中片状α相更容易发生晶界分离而形成球化组织,球化速率明显提高。温度影响扩散过程,对静态球化有促进作用,且在应变较低时影响更为明显。在球化率随热处理时间增大的同时,球化速率逐渐减小至常值, JMAK方程可以用来描述TC17合金静态球化的规律。%The isothermal compression of TC17 alloy at 820 and 860℃, andsubsequently annealing for 10 min−8 h were conducted, and the effects of deformation degree, annealing temperature and annealing time on static globularization of TC17 titanium alloy were investigated. The results show that the deformation degree greatly influences the boundary splitting, so that the static globularization kinetics ofα phase increases with increasing deformation degrees. As a thermally activated process, the diffusivity of solutes is determined by annealing temperature. Thus, the static globularization can be accelerated by increasing the temperature, especially when the strain is low. Meanwhile, globularization ratio increases while static globularization kinetics decrease to a constant with increasing the annealing time. The JMAK equation can be used to describe the static globularization kinetics.

  4. Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs)

    International Nuclear Information System (INIS)

    Due to their high work output and good mechanical properties, actuators made from shape memory alloys (SMAs) are used in numerous applications. Unfortunately, SMAs such as nickel–titanium (Ni–Ti) can only be employed at temperatures up to about 100 °C. Lately, high-temperature shape memory alloys (HT SMAs) have been introduced to overcome this limitation. Ternary systems based on Ni–Ti have been intensively characterized and alloys are available that can operate at elevated temperatures. However, these alloys either contain substantial amounts of expensive noble elements like platinum and palladium, or the materials are brittle. The titanium–tantalum (Ti–Ta) system has been developed to overcome these issues. Binary Ti–Ta provides relatively high MS temperature combined with excellent workability, but it suffers from fast cyclic degradation. By alloying with third elements this drawback can be overcome: The ternary Ti–Ta–Al alloy shows overall promising properties as will be shown in the present work. In-situ thermo-mechanical cycling experiments were conducted and allowed for evaluation of the factors affecting the functional and structural fatigue of this alloy. Functional fatigue is dominated by ω-phase evolution, while structural fatigue is triggered by an interplay of ω-phase induced embrittlement and deformation constraints imposed by unsuitable texture. In addition, a concept for fatigue life extension proposed very recently for binary Ti–Ta, is demonstrated to be also applicable for the ternary Ti–Ta–Al

  5. Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs)

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, T., E-mail: Thomas.Niendorf@iwt.tu-freiberg.de [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, 09599 Freiberg (Germany); Krooß, P. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, 33098 Paderborn (Germany); Batyrsina, E. [Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823 Garbsen (Germany); Paulsen, A.; Motemani, Y.; Ludwig, A.; Buenconsejo, P.; Frenzel, J.; Eggeler, G. [Institut für Werkstoffe, Ruhr-Universität Bochum, 44801 Bochum (Germany); Maier, H.J. [Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823 Garbsen (Germany)

    2015-01-03

    Due to their high work output and good mechanical properties, actuators made from shape memory alloys (SMAs) are used in numerous applications. Unfortunately, SMAs such as nickel–titanium (Ni–Ti) can only be employed at temperatures up to about 100 °C. Lately, high-temperature shape memory alloys (HT SMAs) have been introduced to overcome this limitation. Ternary systems based on Ni–Ti have been intensively characterized and alloys are available that can operate at elevated temperatures. However, these alloys either contain substantial amounts of expensive noble elements like platinum and palladium, or the materials are brittle. The titanium–tantalum (Ti–Ta) system has been developed to overcome these issues. Binary Ti–Ta provides relatively high M{sub S} temperature combined with excellent workability, but it suffers from fast cyclic degradation. By alloying with third elements this drawback can be overcome: The ternary Ti–Ta–Al alloy shows overall promising properties as will be shown in the present work. In-situ thermo-mechanical cycling experiments were conducted and allowed for evaluation of the factors affecting the functional and structural fatigue of this alloy. Functional fatigue is dominated by ω-phase evolution, while structural fatigue is triggered by an interplay of ω-phase induced embrittlement and deformation constraints imposed by unsuitable texture. In addition, a concept for fatigue life extension proposed very recently for binary Ti–Ta, is demonstrated to be also applicable for the ternary Ti–Ta–Al.

  6. High-temperature shape memory alloys based on the RuNb system

    International Nuclear Information System (INIS)

    Many applications of shape memory alloys (SMAs) require the development of alloys with high martensitic transformation (MT) temperatures. Among the different systems for high temperature SMAs, equiatomic RuNb alloys demonstrate both shape memory effect (SME) and MT temperatures above 800 deg. C. This work investigates Ru50-xNb50+x (at.%) alloys and shows that Nb content significantly affects the MT behavior. Alloys near the equiatomic composition (x = 0, 2, 4) undergo two displacive transformations on cooling: β (B2) → β' (body centered tetragonal) → β'' (monoclinic). The Ru45Nb55 alloy exhibits a single transition from cubic to tetragonal on cooling. This MT gives rise to a highly twinned microstructure with a (0 1 1) compound-twinning mode and is considered to be responsible for the SME in both types of alloys. The reorientation of martensite variants during deformation has been confirmed through scanning electron microscopy of compression specimens. A promising shape memory behavior is obtained through three-point bend tests performed both in the β' and β'' phases

  7. YIELD STRENGTH AND FLOW STRESS MEASUREMENTS OF TUNGSTEN SINTER ALLOYS AT VERY HIGH STRAIN RATES

    OpenAIRE

    Tham, R.; Stilp, A.

    1988-01-01

    Long rods of various tungsten sinter alloys with a tungsten content higher than 90 % were instrumented with strain gauges and struck by a moving anvil at velocities between 100 m/s and 400 m/s. The strain-time history at different locations on the rod's surface was recorded by a 200 MHz transient recorder. The calculated yield stresses ranged at a level up to three times the static value, at a rate of 3000 l/s. In the plastic regime, the shape of the stress-strain curve remained unaffected by...

  8. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    2012-01-01

    and resistance in this oxide scale. Slurry coated ferritic alloy samples were oxidized long term in air containing 1% water at 900˚C to measure the oxidation rate of the coated samples. The ferritic alloys included in the study were Crofer 22APU and Sandvik 1C44Mo20. Some complementary experiments were also.......85Sr0.15)CoO3 + 10% Co3O4, LSC, coatings were found to be relatively successful in decreasing the oxidation rate, the chromium content in the outermost part of ii the dense scale, and the electrical resistance in the growing oxide scales when applied onto Crofer 22APU. But, the positive effects...... on Crofer 22APU alloy samples and their failure on Sandvik 1C44Mo20 samples are believed to depend on the manganese access in the coating/alloy system. It appeared that a certain amount of manganese was acquired to stabilize the oxide growth on the alloy samples coated with cobalt rich coatings...

  9. Application of a criterion for cold cracking to casting high strength aluminum alloys

    OpenAIRE

    Lalpoor, M; Eskin, D G; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2010-01-01

    Direct chill (DC) casting of high strength 7xxx series aluminium alloys is difficult mainly due to solidification cracking (hot cracks) and solid state cracking (cold cracks). Poor thermal properties along with extreme brittleness in the as-cast condition make DC-casting of such alloys a challenging process. Therefore, a criterion that can predict the catastrophic failure and cold cracking of the ingots would be highly beneficial to the aluminium industry. The already established criteria are...

  10. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  11. Niobium and chromium rich coatings tailored by laser alloying: XRD analysis at high temperatures

    OpenAIRE

    Adilson Rodrigues da Costa; Aldo Craievich; Rui Vilar

    2004-01-01

    Laser treatment technologies have been widely used to modify superficial layers of different materials. In this work we prepare Nb and Cr rich coatings according to laser alloying technique using cast iron as substrate material. Nb and Cr are intensive used in order to overcome challenges like good chemical and mechanical performance at high temperatures. Following laser alloying the surface-modified samples were submitted to an "in situ" XRD analysis under controlled high temperature and atm...

  12. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    OpenAIRE

    Chen Xiang; Li Yanxiang

    2013-01-01

    In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (...

  13. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  14. Enhancement of superplastic formability in a high strength aluminum alloy

    Science.gov (United States)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  15. Oxidation behaviors of porous Haynes 214 alloy at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan, E-mail: wangyan@csu.edu.cn [School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Tang, Huiping, E-mail: hptang@c-nin.com [State Key Laboratory of Porous Metals Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Li, Weijie, E-mail: wl347@uowmail.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-09-15

    The oxidation behaviors of porous Haynes 214 alloy at temperatures from 850 to 1000 °C were investigated. The porous alloys before and after the oxidation were examined by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, and X-ray photoelectron spectroscopy (XPS). The oxidation kinetics of the porous alloy approximately follows a parabolic rate law and exhibits two stages controlled by different oxidation courses. Complex oxide scales composed of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are formed on the oxidized porous alloys, and the formation of Cr{sub 2}O{sub 3} on its outer layer is promoted with the oxidation proceeding. The rough surface as well as the micropores in the microstructures of the porous alloy caused by the manufacturing process provides fast diffusion paths for oxygen so as to affect the formation of the oxide layers. Both the maximum pore size and the permeability of the porous alloys decrease with the increase of oxidation temperature and exposure time, which may limit its applications. - Highlights: • Two-stage oxidation kinetics controlled by different oxidation courses is showed. • Oxide scale mainly consists of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3}. • Rough surface and micropores lead to the formation of uneven oxide structure. • Content of Cr{sub 2}O{sub 3} in the outer layer of the scale increases with time at 1000 °C. • Maximum pore size and permeability decrease with increasing temperature and time.

  16. Alloy 31 - a high alloyed Ni-Cr-Mo-steel - properties and applications for the process industry: Alloy 31 - visoko legirano Ni-Cr-Mo jeklo - lastnosti in aplikacije za procesno industrijo:

    OpenAIRE

    Brill, U.; Mast, Ralph; Rommerskirchen, I.; Schambach, L.

    1998-01-01

    Alloy 31 (Nicrofer 3127 hMo) is an austentic nickel-chromium-molybdenum steel comprising about 0.2 wt-% nitrogen to stabilize the austenitic structure. The alloy was developed to fill the gap between the commercial stainless steels and the nickel-base alloys. It is a material for many high-severity applications where conventional stainless steels have proven unadequate. On the other hand, Alloy 31 shows a high resistance to pitting and crevice corrosion in neutral and acid aqueous solutions, ...

  17. Microcrack formation in high-deformed titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Svechnikov, V.L. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1984-10-01

    ..cap alpha..-phase interlayers on the ..cap alpha../..beta.. boundary with orientation different from a matrix alloys can act as cause of titanium alloys hardening with simultaneous decrease of their ductility. Electron microexamination of the structure of ..cap alpha..-phase located both on interfaces and in ..cap alpha..-grain volume provides evidence that deformation twinning on different planes and slip in a matrix ..cap alpha..-phase are the mechanism of the ..cap alpha..-phase formation. Examples of ..cap alpha..-phase participation with orientation different from the matrix one are presented in the process of microcracks formation.

  18. High temperature oxidation behaviors of Ti-Cr alloys with Laves phase TiCr2

    Institute of Scientific and Technical Information of China (English)

    肖平安; 曲选辉; 雷长明; 祝宝军; 秦明礼; 敖晖; 黄培云

    2002-01-01

    The high temperature oxidation behaviors of Ti-Cr alloys containing 18%~35%Cr with Laves phase TiCr2 were investigated at 650~780 ℃ for exposure up to 104 h. The results reveal that chromium content has critical significance to the oxidation resistance of the alloys. The scaling rates of the alloys with less than 21%Cr are higher than those measured for pure titanium, but for the alloys with more than 26%Cr their scaling rate is lowered by 1~2 times, under the same oxidizing conditions. Both an external and an internal oxidation layers were observed. The oxidation resistance enhancement by chromium alloying is contributed to the formation of a continuous and compact chromic oxide interleaf in the scale. Oxidation temperature significantly affects the scaling rates of Ti-Cr alloys, and the mass gain is doubled with a temperature change from 650 ℃ to 700 ℃ or from 700 ℃ to 780 ℃, for the same exposure duration. TiCr2 shows no negative influence on the high temperature oxidation resistance of the alloys.

  19. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    International Nuclear Information System (INIS)

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe86B7C7 alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B–H loop tracer measurements show that the Fe85.5B7C6Si1Cu0.5 nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B–H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe85.5B7C6Si1Cu0.5 nanocrystalline alloy an economical application in industry. - Highlights: • Cu addition inhibits the surface crystallization and improves the GFA. • The competitive formation of Fe3C and α-Fe phase impedes the devitrification. • Fe85.5B7C6Si1Cu0.5 nanocrystalline alloy exhibits excellent magnetic properties. • The alloy system has an economical advantage and convenient productivity

  20. Transformation,Deformation and Microstructure Characteristics of Ru50Ta50 High Temperature Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Zhirong HE; Fang WANG; Jing'en ZHOU

    2006-01-01

    The basic martensitic transformation(MT)properties of Ru50Ta50 alloy, i.e. MT temperature(MTT), temperature hysteresis(△T), and MT heat(△H)were investigated in this paper. The effects of heat treatment and thermal cycling on MT behavior of Ru50Ta50 alloy, the deformation and microstructure characteristics of Ru50Ta50 alloy were also studied for its engineering application as high temperature actuator/sensor materials by means of differential scanning calorimetry, X-ray diffraction, transmission electron microscope, optical microscope, and hardness test. The results showed that a two-stage reversible MT takes place in Ru50Ta50 alloy.The two-stage MT starting temperatures(M1s, M2s)and the temperature hysteresis(△T1, △T2)are 1047,784 and 11, 14℃, respectively. No significant effect of aging treatment and thermal cycling on MTT and △T of Ru50Ta50 alloy were observed, but △H decreases slowly with increasing thermal cycles. The hardness and brittleness of Ru50Ta50 alloy are high. The deformation mode of RuTa alloys is twinning.

  1. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  2. Summary of workshop on alloys for very high-temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In current fossil energy systems, the maximum operating temperatures experienced by critical metal structures do not exceed approximately 732{degrees}C and the major limitation on the use of the alloys typically is corrosion resistance. In systems intended for higher performance and higher efficiency, increasingly higher working fluid temperatures will be employed, which will require materials with higher-temperature capabilities, in particular, higher creep strength and greater environmental resistance. There have been significant developments in alloys in recent years, from modifications of currently-used wrought ferritic and austenitic alloys with the intent of improving their high-temperature capabilities, to oxide dispersion-strengthened alloys targeted at extremely high-temperature applications. The aim of this workshop was to examine the temperature capability of these alloys compared to current alloys, and compared to the needs of advanced fossil fuel combustion or conversion systems, with the goals of identifying where modified/new alloys would be expected to find application, their limitations, and the information/actions required or that are being taken to qualify them for such use.

  3. Deformation and fracture of low alloy steels at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.L.; Stubbins, J.F.; Leckie, F.A.; Muddle, B.

    1988-12-01

    This project formed part of the initiative in the AR TD program to characterize high temperature, time-dependent damage processes in low alloy steels, for use in the construction of coal-gasification plant. This project was broadly aimed at adding to the knowledge base for this bainitic form of 2.25Cr 1Mo steel, as it related to time-dependent performance at elevated temperature. Its original intention was to obtain information in specific grades of 2.25Cr 1Mo steel, in particular those containing reduced residual elements and microalloyed modifications, which were being considered as candidate materials at the time. This objective was subsequently modified, in the course of the contract period, to a more generic study of bainitic steel, using the 2.25Cr 1Mo material as a representative of the class. The main thrust of the project was directed initially at the detrimental effect of cyclic loading on creep resistance and manifesting itself in an apparently severe creep-fatigue interaction. Three subtasks were eventually identified. These are: a study of the evolution of microstructural changes in bainitic materials during steady load creep and under constant amplitude cyclic deformation, investigation of the effect of cyclic softening on the fatigue and creep strength of complex geometries, focusing on circumferentially notched bars, and investigation of the influence of environment as a possible cause of observed fatigue/elevated temperature interaction through its effects on crack initiation and propagation, using EDM notched specimens tested in air and vacuum. Results are discussed. 24 refs., 40 figs., 5 tabs.

  4. Highly alloyed stainless steels for sea water applications

    Energy Technology Data Exchange (ETDEWEB)

    Audouard, J.P.; Verneau, M. [Creusot-Loire Industrie, Le Creusot (France). Research Centre for Materials

    1996-10-01

    Natural sea water is known as a very aggressive environment which generates pitting and crevice corrosion on stainless steels. High chromium grades with sufficient molybdenum and nitrogen additions (PREN > 40) are generally recognized as resistant materials in natural sea water bu the material selection criteria must be improved to take into account the effect of climatic conditions and of biocide treatments which are widely used as anti-fouling agents in sea water circuits. The paper deals with the localized corrosion properties of conventional stainless steels (SS), duplex and superaustenitic alloys. The results of laboratory investigations conducted in more or less oxidizing chloride containing media are discussed. Then, immersion tests carried out in natural sea waters in different climatic conditions are presented and discussed. Finally, the effect of biocide addition on fouling and its consequences on corrosion is investigated. The results are interpreted taking into account the chemical composition of the stainless steels and biofilm criteria. The results showed the Mediterranean Sea to be slightly more aggressive than other European seas but a PREN value higher than 40 is sufficient for stainless steels to withstand localized corrosion in European natural sea waters. A residual chlorine level around 0.3--0.4 ppm was found to be very effective to limit the fouling and to avoid localized corrosion on SS. Nevertheless, due to difficulties in monitoring chlorine addition, PREN values higher than 50 are recommended to withstand localized corrosion in treated sea waters. As an example, the new super-austenitic grade 25Cr-22Ni-5.8Mo-1.5Cu-2W-0.45N with a PRENW value of 54 was found to be perfectly resistant to crevice corrosion with 0.5 ppm free chlorine at ambient temperature.

  5. A new static induction thyristor with high forward blocking voltage and excellent switching performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Caizhen; Wang Yongshun; Liu Chunjuan; Wang Zaixing, E-mail: wangysh@mail.lzjtu.c [School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2010-03-15

    A new static induction thyristor (SITH) with a strip anode region and p{sup -} buffer layer structure (SAP{sup -}B) has been successfully designed and fabricated. This structure is composed of a p{sup -} buffer layer and lightly doped n{sup -} regions embedded in the p{sup +}-emitter. Compared with the conventional structure of a buried-gate with a diffused source region (DSR buried-gate), besides the simple fabrication process, the forward blocking voltage of this SITH has been increased to 1600 V from the previous value of 1000 V, the blocking gain increased from 40 to 70, and the turn-off time decreased from 0.8 to 0.4 {mu}s. (semiconductor integrated circuits)

  6. Static and dynamic modelling of liquid level sensor with high accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Fock, K. [Budapest Univ. of Technology and Economics, Budapest (Hungary). Dept. of Control Engineering and Information Technology; Fock, B. [Dept. of Measurement and Information Systems, Budapest Univ. of Technology and Economics, Budapest (Hungary)

    2001-07-01

    This category of continous level sensors is related to the float type. An angular-position transducer is used to indicate the number of turns of a dram as a plump line wound on the drum, is unwound until a weight (of gramble solids) or a float (for fluids) touch the surface. When this occurs the plump line loses tension, a tension sensor (force transducer) detects the loss in tension and sends signal to a direction-changing device, that controls a drum drive motor. Beyond the question of point or continous level control, operating variable play a major role in determing accuracy and repeatibility requirements. The paper contains the dynamic analysis and the identification of the sensor system to increase the static and dynamic accuracy. (orig.)

  7. Thermal Fatigue Behaviour of Co-Based Alloy Coating Obtained by Laser Surface Melt-Casting on High Temperature Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A thermal fatigue behaviour of C o-based alloy coating obtained by laser surface melt-casting on the high tempe rature alloy GH33 was studied. The results show that after each time of thermal cycling, the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress. Through the first 50 times of thermal cycling, the morphology of coating still inherits the laser casting one, but the dendrites get bigger; After the second 50 times of thermal cycling, corrosion pits emerge from coating, and mostly in the places where coating and substrate meet. The fatigue damage type of coating belongs to stress corrosi on.

  8. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    Science.gov (United States)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  9. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  10. A new approach to alloy compensation in a thickness measurement of high-tensile steel

    International Nuclear Information System (INIS)

    In on-line manufacturing iron-making process, several kinds of element are mixed in iron in order to meet the required quality for a final product. In this paper, the results show that the alloy compensation method is needed to improve accuracy required at thickness gauge, that is, ±0.5% at the target thickness. In addition, the alloy compensation method in measurement will be proposed in the form of correction function of each element weight percentage to be alloyed using the analyzed result of MCNP simulation program. Finally, an automatic thickness compensation method applied to the high-tensile steel product during manufacturing is introduced. (authors)

  11. Study of the laser-induced decomposition of HNO3/ 2-Nitropropane mixture at static high pressures

    Science.gov (United States)

    Bouyer, Viviane; Hébert, Philippe; Doucet, Michel

    2007-06-01

    HNO3 / 2-Nitropropane is a well known energetic material on which Raman spectroscopy measurements at static high pressure in a diamond anvil cell (DAC) have already been conducted at CEA/LE RIPAULT in order to examine the evolution of the mixture as a function of composition and pressure [1]. The purpose of the work presented here was to study the laser-induced decomposition of these energetic materials at static high pressures by measuring the combustion front propagation rate in the DAC. First of all, the feasibility of the experimental device was checked with a well known homogeneous explosive, nitromethane. Our results were consistent with those of Rice and Foltz [2]. Then, we investigated the initiation of NA / 2NP mixture as a function of nitric acid proportion, for a given pressure. We chose the mixture for which both the combustion propagation rate and detonation velocity are maximum and we examined the evolution of the front propagation velocity as a function of pressure and energy deposit. [1] Hebert, P., Regache, I., and Lalanne, P., ``High-Pressure Raman Spectroscopy study of HNO3 / 2-Nitropropane Mixtures. Influence of the Composition.'' Proceedings of the 42nd European High-Pressure Research Group Meeting, Lausanne, Suisse, 2004 [2] Rice, S.F., et al., Combustion and Flame 87 (1991) 109-122.

  12. Quasi-Static and High Strain Rate Compressive Response of Injection-Molded Cenosphere/HDPE Syntactic Foam

    Science.gov (United States)

    Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil

    2016-07-01

    High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.

  13. High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions

    International Nuclear Information System (INIS)

    The corrosion behavior of eight low and high alloy steels was investigated under simulating the conditions at the cathode of a molten carbonate fuel cell at 650 C. Different Li-containing iron oxides (LiFeO2 and LiFe5O8) were formed in contact with the eutectic (Li, K)-carbonate melt depending on the Cr-content of the steel. These oxides show low solubility in the melt and protect the metallic material against further corrosive attack. Fast growing scales of Fe3O4 and LiFe5O8 were observed on the low alloy ferritic steel 10 CrMo 9 10. Higher alloy steels form LiFeO2 in contact with the melt and mixed Fe-Cr-spinels underneath. Steels with Cr-contents over 20 wt.% Cr form a mixed LiCr1-xFexO2 and LiCrO2 layer in contact with the metal. Marker experiments on the commercial steel 1.4404 (X2 CrNiMo 17 13 2) show that the outer LiFeO2 layer grows mainly by outward diffusion of iron ions (Fe3+), whereas the inner (Fe,Ni)Cr2O4 spinel layer grows inward. After 500 hours, LiFe5O8 was formed between the spinel and the LiFeO2 layer, but it had disappeared after several thousand hours of exposure as it was fully transformed to LiFeO2. Co-containing LiFeO2 was found after 500 hours on the high Co-containing steel 1.4971 (X12 CrCoNi 21 20), but is not stable after several thousand hours exposure. Co diffuses outward to form a protective LiCoO2 layer of a few microns in thickness. Protective Cr2O3 layers were not observed on steels with high Co-content (≥25 wt.% Cr) due to peroxide ions in the melt, which cause oxidation Cr2O3 and flux to chromate, which is highly soluble in the melt. Further quantitative investigations on total corrosion considering the chromate formation have shown that high alloy steels with high amounts of Cr form mainly K2CrO4. (orig.)

  14. High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions

    Energy Technology Data Exchange (ETDEWEB)

    Biedenkopf, P.; Spiegel, M.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1997-08-01

    The corrosion behavior of eight low and high alloy steels was investigated under simulating the conditions at the cathode of a molten carbonate fuel cell at 650 C. Different Li-containing iron oxides (LiFeO{sub 2} and LiFe{sub 5}O{sub 8}) were formed in contact with the eutectic (Li, K)-carbonate melt depending on the Cr-content of the steel. These oxides show low solubility in the melt and protect the metallic material against further corrosive attack. Fast growing scales of Fe{sub 3}O{sub 4} and LiFe{sub 5}O{sub 8} were observed on the low alloy ferritic steel 10 CrMo 9 10. Higher alloy steels form LiFeO{sub 2} in contact with the melt and mixed Fe-Cr-spinels underneath. Steels with Cr-contents over 20 wt.% Cr form a mixed LiCr{sub 1-x}Fe{sub x}O{sub 2} and LiCrO{sub 2} layer in contact with the metal. Marker experiments on the commercial steel 1.4404 (X2 CrNiMo 17 13 2) show that the outer LiFeO{sub 2} layer grows mainly by outward diffusion of iron ions (Fe{sup 3+}), whereas the inner (Fe,Ni)Cr{sub 2}O{sub 4} spinel layer grows inward. After 500 hours, LiFe{sub 5}O{sub 8} was formed between the spinel and the LiFeO{sub 2} layer, but it had disappeared after several thousand hours of exposure as it was fully transformed to LiFeO{sub 2}. Co-containing LiFeO{sub 2} was found after 500 hours on the high Co-containing steel 1.4971 (X12 CrCoNi 21 20), but is not stable after several thousand hours exposure. Co diffuses outward to form a protective LiCoO{sub 2} layer of a few microns in thickness. Protective Cr{sub 2}O{sub 3} layers were not observed on steels with high Co-content ({>=}25 wt.% Cr) due to peroxide ions in the melt, which cause oxidation Cr{sub 2}O{sub 3} and flux to chromate, which is highly soluble in the melt. Further quantitative investigations on total corrosion considering the chromate formation have shown that high alloy steels with high amounts of Cr form mainly K{sub 2}CrO{sub 4}. (orig.) 22 refs.

  15. High-temperature nitridation of Ni-Cr alloys

    Science.gov (United States)

    Kodentsov, A. A.; Gülpen, J. H.; Cserháti, C.; Kivilahti, J. K.; van Loo, F. J. J.

    1996-01-01

    The nitriding behavior of nickel-chromium alloys was investigated at 1398 K over the range 1 to 6000 bar of external nitrogen pressure. The morphology of the nitrided zone depends on the concentration of chromium in the initial alloy and the N2 pressure (fugacity) applied upon the system. The transition from CrN to Cr2N precipitation was observed within the reaction zone after nitriding at 100 to 6000 bar of N2 when the chromium content in the initial alloys was 28.0 at. pct or higher. It is shown that the ternary phase π (Cr10Ni7N3) is formed in this system at 1273 K. through a peritectoid reaction between Cr2N and nickel solid solution and becomes unstable above 1373 K. The thermodynamic evaluation of the Ni-Cr-N system was performed and phase equilibria calculated. Evidence for “up hill” diffusion of nitrogen near the reaction front during the internal nitridation of Ni-Cr alloys at 1398 K was found. It was attributed to the relative instability of chromium nitrides and strong Cr-N interaction in the matrix of the Ni-based solid solution within the nitrided zone.

  16. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Robertson, Ian [Kyushu Univ. (Japan); Sehitoglu, Huseyin [Univ. of Illinois, Urbana-Champaign, IL (United States); Sofronis, Petros [Kyushu Univ. (Japan); Gewirth, Andrew [Kyushu Univ. (Japan)

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  17. Transition in Deformation Mechanism of AZ31 Magnesium Alloy during High-Temperature Tensile Deformation

    Directory of Open Access Journals (Sweden)

    Masafumi Noda

    2011-01-01

    Full Text Available Magnesium alloys can be used for reducing the weight of various structural products, because of their high specific strength. They have attracted considerable attention as materials with a reduced environmental load, since they help to save both resources and energy. In order to use Mg alloys for manufacturing vehicles, it is important to investigate the deformation mechanism and transition point for optimizing the material and vehicle design. In this study, we investigated the transition of the deformation mechanism during the high-temperature uniaxial tensile deformation of the AZ31 Mg alloy. At a test temperature of 523 K and an initial strain rate of 3×10−3 s-1, the AZ31 Mg alloy (mean grain size: ~5 μm exhibited stable deformation behavior and the deformation mechanism changed to one dominated by grain boundary sliding.

  18. Effect of Carbon Nanotube on High-Temperature Formability of AZ31 Magnesium Alloy

    Science.gov (United States)

    Hassan, S. Fida; Paramsothy, M.; Gasem, Z. M.; Patel, F.; Gupta, M.

    2014-08-01

    Room-temperature tensile properties of AZ31 alloy have significantly been improved when reinforced with carbon nanotube via ingot metallurgy process. However, high-temperature (up to 250 °C) elongation-to-failure tensile test of the developed nanocomposite revealed a considerable softening in the AZ31 alloy matrix accompanied by an incredible ductility increment (up to 132%). Microstructural characterization of the fractured samples revealed that the dynamic recrystallization process has induced a complete recrystallization in the AZ31 alloy at a lower temperature (150 °C) followed by substantial grain growth at a higher temperature used in this study. Fractography on the fractured surfaces revealed that the room-temperature mixed brittle-ductile modes of fracture behavior of AZ31 alloy have transformed into a complete ductile mode of fracture at high temperature.

  19. Internal state variable models for micro- structure in high temperature deformation of titanium alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    There exists an interaction between microstructural evolution and deformation behavior in high temperature deformation of titanium alloys. And the microstruc- ture of titanium alloys is very sensitive to the process parameters of plastic de- formation process. In this paper, on the basis of plastic deformation mechanism of metals and alloys, a microstructural model including dislocation density rate equa- tion and grain growth rate equation is established with the dislocation density rate being an internal state variable. Applying the model to the high temperature de- formation process of Ti60 titanium alloy, the average relative errors of grain sizes between the experiments and the predictions are 9.47% for sampled data, and 13.01% for non-sampled data.

  20. Internal state variable models for micro-structure in high temperature deformation of titanium alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Jiao; LI MiaoQuan; LI XiaoLi

    2008-01-01

    There exists an interaction between microstructural evolution and deformation behavior in high temperature deformation of titanium alloys. And the microstruc-ture of titanium alloys is very sensitive to the process parameters of plastic de-formation process. In this paper, on the basis of plastic deformation mechanism of metals and alloys, a microstructural model including dislocation density rate equa-tion and grain growth rate equation is established with the dislocation density rate being an internal state variable. Applying the model to the high temperature de-formation process of Ti60 titanium alloy, the average relative errors of grain sizes between the experiments and the predictions are 9.47% for sampled data, and 13.01% for non-sampled data.

  1. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  2. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  3. ACUTE EFFECTS OF STATIC STRETCHING, DYNAMIC EXERCISES, AND HIGH VOLUME UPPER EXTREMITY PLYOMETRIC ACTIVITY ON TENNIS SERVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ertugrul Gelen

    2012-12-01

    Full Text Available The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg performed 4 different warm-up (WU routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice (TRAD; traditional WU and static stretching (TRSS; traditional WU and dynamic exercise (TRDE; and traditional WU and high volume upper extremity plyometric activity (TRPLYP. Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p 0.05. ICCs for ball speed showed strong reliability (0.82 to 0.93 for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players.

  4. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    Science.gov (United States)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  5. Experimental characterization of the mechanical behavior of two solder alloys for high temperature power electronics applications

    OpenAIRE

    Msolli, Sabeur; Alexis, Joël; Dalverny, Olivier; Karama, Moussa

    2015-01-01

    An experimental investigation of two potential candidate materials for the diamond die attachment is presented in this framework. These efforts are motivated by the need of developing a power electronic packaging for the diamond chip. The performance of the designed packaging relies particularly on the specific choice of the solder alloys for the die/substrate junction. To implement a high temperature junction, AuGe and AlSi eutectic alloys were chosen as die attachment and characterized expe...

  6. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  7. Corrosion of V and V-base alloys in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, I.M.; Toben, P.T.; Kassner, T.F. [Argonne National Laboratory, Chicago, IL (United States)

    1996-04-01

    Corrosion of nonalloyed V, V-5Cr-5Ti, and V-15Cr-5Ti were conducted in high-purity deoxygenated water at 230{degrees}C for up to {approx}4500h. The effects of Cr concentration in the alloy and temperature on the corrosion behavior were determined from weight-change measurements and microstructural observations. An expression was obtained for the kinetics of corrosion as a function of Cr content of the alloy and temperature.

  8. High Pressure Die Casting of Aluminium and Magnesium Alloys : Grain Structure and Segregation Characteristics

    OpenAIRE

    Laukli, Hans Ivar

    2004-01-01

    Cold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings.The investigatio...

  9. EBSD characterization of deformation in high strain rate application aluminum alloys

    OpenAIRE

    Kozmel, Thomas; Vural, Murat; Tin, Sammy

    2014-01-01

    Advances in materials characterization tools and techniques are contributing to an improved physics based understanding pertaining to the characteristic behavior of engineering alloys. Aluminum alloys, such as 2139, 2519, 5083, and 7039 are commonly used for lightweight armor applications where resistance to high strain rate deformation is paramount. Failure of these materials is often attributed to the onset of shear band formation. This study was aimed at complimenting the constituent predi...

  10. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E. [Tohoku University, Sendai (Japan); Yoshimi, K.; Hanada, S. [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  11. High temperature alloys for the HTGR gas turbine: Required properties and development needs

    International Nuclear Information System (INIS)

    presented, with a brief overview of associated fabrication processes. Future developments in materials will be associated with new turbine designs. Multi-structure disks, optimised for low cycle fatigue in the bore and creep resistance in the rim, are today under development. Oxide Dispersion Strengthened alloys (ODS) like MA6000 are promising for their high temperature strength and stability. These grades are indeed more suited for static components (vane, combustion chambers) than for rotating parts. The modelling of production processes will need further development, essentially for cost savings. The development of large land-based turbines like in HTGRs also requires progress in material mechanical testing and life modelling. The total lifetime required for the hot components will be greater than in the past: around 100,000 hours instead of 20,000 hours. Low cycle and thermal fatigue will still be life determining failure modes, but high temperature oxidation and creep rupture may become more important. In service degradation of the alloy microstructure will lead to a reduction in the creep rupture strength, and it will be needed to predict accurately the life of 'degraded' components. This will be possible by developing experimental tests to quantify and to evaluate the interaction between creep damage mechanisms and microstructural evolutions

  12. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  13. Corrosion of Candidate High Temperature Alloys in Supercritical Carbon Dioxide

    Science.gov (United States)

    Parks, Curtis J.

    The corrosion resistance of three candidate alloys is tested in supercritical carbon dioxide (S-CO2) at different levels of temperature and pressure for up to 3000 hours. The purpose of the testing is to evaluate the compatibility of different engineering alloys in S-CO2 for use in a S-CO 2 Brayton cycle. The three alloys used are austenitic stainless steel 316, iron-nickel-base superalloy 718, and nickel-base superalloy 738. Each alloy is exposed to four combinations of temperature and pressure, consisting of either 550°C or 700°C at either 15 or 25 MPa for up to 1500 hours. At each temperature, an additional sample set is tested for 3000 hours and experienced an increase in pressure from 15 MPa to 25 MPa after 1500 hours of testing. All three alloys are successful in producing a protective oxide layer at the lower temperature of 550°C based on the logarithmic weight gain trends. At the higher temperature of 700°C, 316SS exhibits unfavourable linear weight gain trends at both pressures of 15 and 25 MPa. In comparison, IN-718 and IN-738 performs similarly in producing a protective oxide layer illustrated through a power weight gain relation. The effect of pressure is most pronounced at the operating temperature of 700°C, where the higher pressure of 25 MPa results in an increased rate of oxide formation. SEM analysis exposes a thin film oxide for both IN-718 and IN-738 but severe intergranular corrosion is exhibited by IN-738. Based on the testing conducted, both alloys show favourable characteristics for use in S-CO 2 conditions up to 700°C, but further testing is required to characterize the effect of the intergranular corrosion on the stability of oxide in IN-738. 316SS provided favourable results for use in temperatures of 550°C, but the protective oxide deteriorated at an operating temperature of 700°C.

  14. Environmental protection of titanium alloys at high temperatures

    Science.gov (United States)

    Wright, I. G.; Wood, R. A.; Seltzer, M. S.

    1974-01-01

    Various concepts were evaluated for protecting titanium alloys from oxygen contamination at 922 K (1200 F) and from hot-salt stress-corrosion at 755 K (900 F). It is indicated that oxygen-contamination resistance can be provided by a number of systems, but for hot-salt stress-corrosion resistance, factors such as coating integrity become very important. Titanium aluminides resist oxygen ingress at 922 K through the formation of alumina (on TiAl3) or modified TiO2 (on Ti3Al, TiAl) scales. TiAl has some resistance to attack by hot salt, but has limited ductility. Ductile Ti-Ni and Ti-Nb-Cr-Al alloys provide limited resistance to oxygen ingress, but are not greatly susceptible to hot-salt stress-corrosion cracking.

  15. Rectifier cabinet static breaker

    Science.gov (United States)

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  16. Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Shu Ying Chen

    2014-02-01

    Full Text Available A series of high entropy alloys (HEAs, AlxNbTiMoV, was produced by a vacuum arc-melting method. Their microstructures and compressive mechanical behavior at room temperature were investigated. It has been found that a single solid-solution phase with a body-centered cubic (BCC crystal structure forms in these alloys. Among these alloys, Al0.5NbTiMoV reaches the highest yield strength (1,625 MPa, which should be attributed to the considerable solid-solution strengthening behavior. Furthermore, serration and crackling noises near the yielding point was observed in the NbTiMoV alloy, which represents the first such reported phenomenon at room temperature in HEAs.

  17. Texture development in Al-high Mg alloys during recrystallization and grain growth

    Energy Technology Data Exchange (ETDEWEB)

    Endou, S.; Inagaki, H. [Shonan Inst. of Tech., Fujisawashi (Japan)

    2001-07-01

    Al-high Mg alloys containing Mg more than 6% were cold rolled 95% and annealed at temperatures between 275 and 450 C. Textures developed in these alloys were investigated with the orientation distribution function analysis. It was found that the heating rate to the annealing temperature strongly influenced the annealing textures of these alloys. Annealing with the slow heating rate resulted in the development of {l_brace}100{r_brace} left angle 001 right angle, whereas annealing with the rapid heating rate enhanced the development of {l_brace}100{r_brace} left angle 013 right angle and {l_brace}103{r_brace} left angle 321 right angle. This is because the orientation distribution established at complete recrystallization had strong influences on the texture development during subsequent grain growth. Annealing textures in the Al-9% Mg alloy were always random, since its rolling textures were random (orig.)

  18. High temperature behavior of candidate VHTR heat exchanger alloys - HTR2008-58200

    International Nuclear Information System (INIS)

    Several nickel based solid solution alloys are under consideration for application in heat exchangers for very high temperature gas cooled reactors. The principal candidates being considered for this application by the Next Generation Nuclear Plant (NGNP) project are Inconel 617 and Haynes 230. While both of these alloys have an attractive combination of creep strength, fabricability, and oxidation resistance a good deal remains to be determined about their environmental resistance in the expected NGNP helium chemistry and their long term response to thermal aging. A series of experiments has been carried out in a He loop with controlled impurity chemistries within the range expected for the NGNP. The influence of oxygen partial pressure and carbon activity on the microstructure and mechanical properties of Alloys 617 and 230 has been characterized. A relatively simple phenomenological model of the environmental interaction for these alloys has been developed. (authors)

  19. Influence of carbon and nitrogen on corrosion resistance of high purity Fe-50mass% Cr alloys

    International Nuclear Information System (INIS)

    High purity Fe-50mass%Cr alloys containing (C+N) in the range of 30 to 500 mass ppm were prepared and their corrosion resistance was investigated. Pitting potential in a 3.5mass%NaCl solution at 343K rose with reducing (C+N) content. Alloys containing (C+N) at less than 100 mass ppm did not sustain pitting corrosion. However, alloys containing 500 mass ppm (C+N) corroded severely in 6%FeCl3+1/20N HCl solutions. Heat treatment at 923K was recognized as influencing corrosion resistance due to precipitation of carbonitrides only in the case of the alloy containing 500 mass ppm (C+N). (orig.)

  20. Effect of Ca and Y additions on oxidation behavior of magnesium alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    FAN Jianfeng; YANG Changlin; XU Bingshe

    2012-01-01

    Oxidation and ignition of magnesium alloys at elevated temperature were successfully retarded by additions of Y and Ca.which could be melted at 1173 K in air without any protection.Thermogravimetric measurements in dry air revealed that the oxidation dynamics curves of Mg-2.5Ca alloy and Mg-3.5Y-0.79Ca alloy at high temperatures followed the parabolic-line law or the ubic-line law.X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis indicated that the oxide film on the surface of Mg-3.5Y-0.79Ca and Mg-2.5Ca alloys exhibited a duplex structure.which agreed with the results of thermodynamic analysis.By comparison,the ignition-proof effect of the combination addition of Y and Ca was better than that of the single addition of Ca.

  1. A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting

    Institute of Scientific and Technical Information of China (English)

    逯圣路; 汤慧萍; 马前; 洪权; 曾立英

    2015-01-01

    A yttrium-containing high-temperature titanium alloy (Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting (SEBM). The resulting microstructure and textures were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscattered diffraction (EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50−250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen (7×10−4, mass fraction) and yttrium (10−3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles.

  2. Recycling high density tungsten alloy powder by oxidization-reduction process

    Institute of Scientific and Technical Information of China (English)

    张兆森; 陈立宝; 贺跃辉; 黄伯云

    2002-01-01

    The processes of directly recycling high density tungsten alloy by oxidation-reduction technique were investigated. The particle size of recycled powder is fine, and the shape of powder particle is regular when the final reduction temperature is 850℃, in which the average size of the tungsten alloy particles reduced is about 1.5μm. The average size of the alloy particles increase to 6μm and 9μm when increasing the reduction temperature to 900℃ and 950℃, respectively. However, if the reduction temperature is higher than 900℃, the surface feature of powder is complicated. Increasing reduction temperature from 900℃ to 950℃, the content of oxygen of recycled powder decreases from 0.2314% to 0.1700%, and powder particles grow slightly. It has been also found that the chemical composition of the recycled alloy powder is the same as the initial powder.

  3. Pu-ZR Alloy high-temperature activation-measurement foil

    Science.gov (United States)

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  4. Pu-Zr alloy for high-temperature foil-type fuel

    Science.gov (United States)

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  5. Mechanical properties of low alloy high phosphorus weathering steel

    OpenAIRE

    Jena B.K.; Gupta N; Singh B; Ahoo G.S.

    2015-01-01

    Mechanical behaviour of two low alloy steels (G11 and G12) was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11) revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed f...

  6. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    International Nuclear Information System (INIS)

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si)3(Zr, Ti), Al3CuNi and Al9NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied

  7. Strengthening-toughening of 7xxx series high strength aluminum alloys by heat treatment

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The effects of stepped solution heat treatments on the dissolution of soluble remnant constituents and mechanical properties of 7055 aluminum alloy were investigated. It was shown that a suitable pretreatment at lower temperature can enable complete dissolution of the constituent particles in 7055 alloy without overheating by subsequent high temperature solution treatment. This in turn increased the tensile strength and fracture toughness of 7055 alloy to 805 MPa and 41.5 MPa*m1/2 respectively, with approximately 9% tensile elongation. The near-solvus pre-precipitation following after high temperature solution treatment was also studied on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transimission electron microscopy observation show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the subsequent ageing. The stress corrosion cracking resistance of aged 7055 alloy can be improved via the pre-precipitation with non-deteriorated strength and plasticity.

  8. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: madel@uqac.ca [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)

    2013-08-10

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  9. Thermodynamic calculations in the development of high-temperature Co–Re-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gorr, Bronislava, E-mail: gorr@ifwt.mb.uni-siegen.de [University of Siegen, Institut für Werkstofftechnik, Siegen (Germany); Christ, Hans-Jürgen [University of Siegen, Institut für Werkstofftechnik, Siegen (Germany); Mukherji, Debashis; Rösler, Joachim [TU Braunschweig, Institut für Werkstoffe, Braunschweig (Germany)

    2014-01-05

    Highlights: • Phase diagram as a starting point for alloy development. • Design of pre-oxidation treatments by means of thermodynamic assessment. • Contribution of thermodynamic calculations to the general understanding of materials chemistry. -- Abstract: The experimental Co–Re-based alloys are being developed for high-temperature applications for service temperatures beyond 1100 °C. One of the main tasks of this research is to find the optimal chemical composition. Thermodynamic calculations are very helpful for composition selection and optimization. In this study, thermodynamic calculations were used to identify potential alloying elements and to determine suitable concentration ranges to improve properties, such as strength and oxidation resistance that are essential for high-temperature structural materials. The calculated ternary phase diagram of the Co–Re–Cr system was used to design the reference model alloy. Corrosion products formed under different atmospheric conditions were reliably predicted for a number of model Co–Re-based alloys. Pre-oxidation treatment, a common method used to improve the oxidation resistance of alloys in aggressive atmosphere, was successfully designed based on thermodynamic considerations.

  10. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  11. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions

    Science.gov (United States)

    Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P.

    2016-09-01

    In addition to its scientific importance, the degradation of azo dyes is of practical significance from the perspective of environmental protection. Although encouraging progress has been made on developing degradation approaches and materials, it is still challenging to fully resolve this long-standing problem. Herein, we report that high entropy alloys, which have been emerging as a new class of metallic materials in the last decade, have excellent performance in degradation of azo dyes. In particular, the newly developed AlCoCrTiZn high-entropy alloy synthesized by mechanical alloying exhibits a prominent efficiency in degradation of the azo dye (Direct Blue 6: DB6), as high as that of the best metallic glass reported so far. The newly developed AlCoCrTiZn HEA powder has low activation energy barrier, i.e., 30 kJ/mol, for the degrading reaction and thus make the occurrence of reaction easier as compared with other materials such as the glassy Fe-based powders. The excellent capability of our high-entropy alloys in degrading azo dye is attributed to their unique atomic structure with severe lattice distortion, chemical composition effect, residual stress and high specific surface area. Our findings have important implications in developing novel high-entropy alloys for functional applications as catalyst materials.

  12. High field magnetic behavior in Boron doped Fe2VAl Heusler alloys

    Science.gov (United States)

    Venkatesh, Ch.; Vasundhara, M.; Srinivas, V.; Rao, V. V.

    2016-11-01

    We have investigated the magnetic behavior of Fe2VAl1-xBx (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the Tc, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (MS) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble MS at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method.

  13. Formation and Disruption of W-Phase in High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Sephira Riva

    2016-05-01

    Full Text Available High-entropy alloys (HEAs are single-phase systems prepared from equimolar or near-equimolar concentrations of at least five principal elements. The combination of high mixing entropy, severe lattice distortion, sluggish diffusion and cocktail effect favours the formation of simple phases—usually a bcc or fcc matrix with minor inclusions of ordered binary intermetallics. HEAs have been proposed for applications in which high temperature stability (including mechanical and chemical stability under high temperature and high mechanical impact is required. On the other hand, the major challenge to overcome for HEAs to become commercially attractive is the achievement of lightweight alloys of extreme hardness and low brittleness. The multicomponent AlCrCuScTi alloy was prepared and characterized using powder X-ray diffraction (PXRD, scanning-electron microscope (SEM and atomic-force microscope equipped with scanning Kelvin probe (AFM/SKP techniques. Results show that the formation of complex multicomponent ternary intermetallic compounds upon heating plays a key role in phase evolution. The formation and degradation of W-phase, Al2Cu3Sc, in the AlCrCuScTi alloy plays a crucial role in its properties and stability. Analysis of as-melted and annealed alloy suggests that the W-phase is favoured kinetically, but thermodynamically unstable. The disruption of the W-phase in the alloy matrix has a positive effect on hardness (890 HV, density (4.83 g·cm−3 and crack propagation. The hardness/density ratio obtained for this alloy shows a record value in comparison with ordinary heavy refractory HEAs.

  14. Tensile and electrical properties of high-strength high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  15. Molybdenum and molybdenum alloys as materials for high temperature furnaces and hot isostatic presses

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbrenner, W.; Palme, R.

    1983-04-01

    Owing to their excellent high-temperature properties molybdenum and the molybdenum alloy TZM are used as materials for high-temperature furnaces and hot isostatic presses. The setup and the function of the high-temperature furnaces and hot isostatic presses and their applications are described.

  16. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  17. Study on Damage of High Temperature Plastic Deformation for Al-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The security of use for Al-Li alloy will be greatly influenced by the damage degree of plastic deformation within it at high temperature . Based on continuum damage mechanics theory, the damage evolution of Al-5.44Mg-2.15Li-0.12Zr alloy during plastic deforming at high temperature is simulated by using the damage evolution model of high temperature plastic deformation. The changing rule of its inner damage with deformation temperature, strain rate and strain is gained in this paper. The equation of damage evolution for high temperature plastic deformation is developed, providing an academic basis for the technology of plastic process of Al-Li alloys.

  18. Thermogravimetric Study of Oxidation-Resistant Alloys for High-Temperature Solar Receivers

    Science.gov (United States)

    Olivares, Rene I.; Stein, Wes; Marvig, Paul

    2013-12-01

    Three special alloys likely to be suitable for high-temperature solar receivers were studied for their resistance to oxidation up to a temperature of 1050°C in dry atmospheres of CO2 and air. The alloys were Haynes HR160, Hastelloy X, and Haynes 230, all nickel-based alloys with greater than 20% chromium content. The oxidation rate of specimens cut from sample master alloys was followed by thermogravimetry by continuously monitoring the weight change with a microbalance for a test duration of 10 h. The corrosion resistance was deduced from the total weight increase of the specimens and the morphology of the oxide scale. The surface oxide layer formed (scale) was characterized by scanning electron microscopy and energy dispersive x-ray spectroscopy and in all cases was found to be chromia. Oxidation was analyzed by means of parabolic rate law, albeit in some instances linear breakaway corrosion was also observed. For the temperature range investigated, all alloys corroded more in CO2 than in air due to the formation of a stronger and more protective oxide scale in the presence of air. At 1000°C, the most resistant alloy to corrosion in CO2 was Haynes 230. Alloy Haynes HR160 was the most oxidized alloy at 1000°C in both CO2 and air. Hastelloy X oxidized to a similar extent in CO2 at both 900°C and 1000°C, but in air, it resisted oxidation better at 1000°C than either at 900°C or 1000°C.

  19. Basic principles of creating a new generation of high- temperature brazing filler alloys

    Science.gov (United States)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  20. Enhancement in mechanical properties of a β-titanium alloy by high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Katarzyna Sharman

    2015-01-01

    Full Text Available Titanium alloys, mainly Ti–6Al–4V, are commonly used in biomedical applications as orthopedic implants. Due to the potential toxic influence of V and Al cations on health, a new alloy composition, Ti–24Nb–4Zr–8Sn, was introduced. However, Ti–24Nb–4Zr–8Sn has a much lower tensile strength by comparison with the Ti–6Al–4V alloy. The aim of this research was to determine whether high-pressure torsion (HPT can be an efficient method for obtaining the desired properties in the case of the Ti–24Nb–4Zr–8Sn β-titanium alloy. This paper presents an analysis of the microstructural and mechanical properties of the Ti–24Nb–4Zr–8Sn alloy processed by HPT with various processing parameters. The obtained microstructures were examined using transmission electron microscopy (TEM. Mechanical properties, such as hardness and tensile strength, were also measured. The study demonstrates that HPT of the Ti–24Nb–4Zr–8Sn alloy leads to a significant reduction of grain size and this grain refinement gives a major improvement in tensile strength and hardness.

  1. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  2. Silver-palladium alloy deposited by DC magnetron sputtering method as lubricant for high temperature application

    Institute of Scientific and Technical Information of China (English)

    Jung-Dae KWON; Sung-Hun LEE; Koo-Hyun LEE; Jong-Joo RHA; Kee-Seok NAM; Sang-Hoon CHOI; Dong-Min LEE; Dong-Il KIM

    2009-01-01

    The silver-palladium(Ag-Pd) alloy coating as a solid lubricant was investigated for its application to the high temperature stud bolts used in nuclear power plants. A hex bolt sample was prepared in the following steps: 1) bolt surface treatment using alumina grit blasting for cleaning and increasing the surface area; 2) nickel(Ni) film coating as a glue layer on the surface of the bolt; and 3) Ag-Pd alloy coating on the Ni film. The films were deposited by using a direct current(DC) magnetron sputtering system. The thickness and composition of the Ag-Pd alloy film have effect on the friction coefficient, which was determined using axial force measurement. A 500 nm-thick Ag-Pd (80-20, molar ratio) alloy film has the lowest friction coefficient of 0.109. A cyclic test was conducted to evaluate the durability of bolts coated with either the Ag-Pd (80-20) alloy film or N-5000 oil. In a cycle, the bolts were inserted into a block using a torque wrench, which was followed by heating and disassembling. After only one cycle, it was not possible to remove the bolts coated with the N-5000 oil from the block. However, the bolts coated with the Ag-Pd (80-20) alloy could be easily removed up until 15 cycles.

  3. Microstructure and properties of Ti–Nb–V–Mo-alloyed high chromium cast iron

    Indian Academy of Sciences (India)

    Youping Ma; Xiulan Li; Yugao Liu; Shuyi Zhou; Xiaoming Dang

    2013-10-01

    The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2).With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50.8HRC) without any alloy addition, the toughness and hardness at 0.60 V–0.60Ti–0.60Nb–0.35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58.9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.

  4. Strain rate sensitivity of tensile properties in high Nb containing TiAl alloys

    Institute of Scientific and Technical Information of China (English)

    Jianfeng Gao; Xiangjun Xu; Junpin Lin; Xiping Song; Yanli Wang; Guoliang Chen

    2005-01-01

    The effect of strain rate on the yield strength of high Nb containing TiA1 alloy was studied. The results show that the strain rate sensitivity varies with the test temperature, and the yield strength is not sensitive to the strain rate at room temperature but significantly sensitive to the strain rate at high temperature. An increase of the strain rate or a decrease of the temperature results in an obvious change of fracture mode. It is found that the strain rate sensitivity of this alloy varying with temperature is due to the dislocation climb generated at high temperature.

  5. High strength microstructural forms developed in titanium alloys by rapid heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M. [Institute of Metal Physics, Kiev (Ukraine)

    2001-09-01

    It is shown that rapid heat treatment of alpha+beta and beta titanium alloys, which includes rapid heating of alloys with initial equiaxed microstructure into single-phase beta field is able to produce microstructural forms in which high strength can be well balanced with other mechanical properties. Main advantage of rapid heating approach comes from the possibility to extend the level of ''useful'' strength. Desirably high strength is provided by intragranular morphology and microchemistry while beta-grain refinement permits a reliability of such high strength conditions. (orig.)

  6. Niobium and chromium rich coatings tailored by laser alloying: XRD analysis at high temperatures

    Directory of Open Access Journals (Sweden)

    Costa Adilson Rodrigues da

    2004-01-01

    Full Text Available Laser treatment technologies have been widely used to modify superficial layers of different materials. In this work we prepare Nb and Cr rich coatings according to laser alloying technique using cast iron as substrate material. Nb and Cr are intensive used in order to overcome challenges like good chemical and mechanical performance at high temperatures. Following laser alloying the surface-modified samples were submitted to an "in situ" XRD analysis under controlled high temperature and atmosphere. The phase transitions registered point to transformations that do not implies formation of fragile phases or cracks induced by high volumes modifications.

  7. Effects of high pressure on the microstructure and hardness of a Cu-Zn alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun; LIU Lin; YANG Jingru; PENG Guirong; LIU Jianhua; ZHANG Ruijun; XING Guangzhong

    2008-01-01

    The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic,scanning electron microscope (SEM),energy dispersive spectrometer (EDS),and X-ray diffraction (XRD),and the hardness of the Cu-Zn alloy was also measured.The results show that the a phase with a smaller grain size,different shapes,and random distribution appears in the Cu-Zn alloy during the solid-state phase transformation generation in the temperature range of 25-750℃ and the pressure range of 0-6 GPa.The amount of residual α phase in the microstructure decreases and then increases with increasing pressure.Under a high pressure of 3 GPa,the least volume fraction of residual α phase was obtained,and under a high pressure of 6 GPa,the changes of the microstructure of the Cu-Zn alloy were not obvious.In addition,high pressure can increase the hardness of the Cu-Zn alloy,but it cannot generate any new phase.

  8. High temperature deformation and ternary alloying of NbCr2 Laves intermetallics

    International Nuclear Information System (INIS)

    A study has been conducted to examine the effect of ternary alloying elements on high temperature deformation of the C15 NbCr2 based intermetallics in Nb-Cr-X (X = V, Mo and W) alloy systems, which have attractive properties as high temperature structural materials. The high temperature deformation of the C15 NbCr2 intermetallics can be improved by two alloying methods. One method is based on geometrical consideration for site occupation and atomic size factor of component elements and additive elements in the single phase C15 lattice; addition of Mo and V can promote dislocation movement without introducing significant hardening. The other method is based on microstructural modification through ternary alloying; moderate addition of these elements results in a variety of duplex microstructure consisting of the C15 phase and bcc solid solution without forming any intermediate phases, and can enhance the high temperature deformability. Particularly, alloys with duplex microstructure equilibrating with Cr-rich bcc solid solution is shown to exhibit superior deformability. Also, lattice property of the additive atoms in the C15 structure and phase relation between the C15 structure and the bcc solid solution are investigated by OM, XRD, TEM and ALCHEMI observations and then discussed in association with observed mechanical behavior

  9. Corrosion and mechanical property at high temperature of nickel based alloy for VHTR

    International Nuclear Information System (INIS)

    Using a very high temperature reactor (VHTR), it is conceptually and practically possible to generate highly efficient electricity and produce massive hydrogen among generation IV nuclear power plants. The structural material for an intermediate heat exchanger (IHX) is exposed to high temperature of up to 950 .deg. C. In this harsh environment, nickel-based alloys such as Alloy 617 and Haynes 230 are considered as promising candidate materials for IHX material owing to their excellent creep resistances at high temperature. However, high-temperature degradation cannot be avoided even for nickel-based alloy. Helium which inevitably includes impurities such as H2, CH4, H2O and CO is used as a coolant in a VHTR. Material degradation is aggravated by corrosion under an impure helium environment, which is one of the main obstacles to overcome for the application and successful long-term operation of a VHTR. A review of the thermodynamics indicates which reactions are available on the surface of the materials among oxidation, carburization and decarburization, but it does not give US the kinetic preference. This kinetic preference can induce localized corrosion, kinetic irreversibility and long-term material instability leading to material degradation. In addition to a long-term corrosion test under a VHTR coolant environment, the development of new alloys superior to commercial nickel-based alloy also give way to the successful establishment of a VHTR. Commercial nickel-based wrought alloy is strengthened by a solid solution and precipitation hardening mechanism in a wide temperature range of 500 to 900 .deg. C. The γ' significantly contributes to the strengthening by locking dislocation motion by an antiphase boundary at an intermediate temperature range of 700 to 800 .deg. C, but is no longer stable above this temperature range. However, the material for an IHX needs to fulfill the mechanical property requirements in a narrow and very high temperature range of 850 to

  10. Determination of the transition to the high entropy regime for alloys of refractory elements

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, Mariela F. del [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499 (B1650KNA), San Martin (Argentina); CONICET, Buenos Aires (Argentina); Grupo de Caracterizacion y Modelizacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRG) Gral. Pacheco (Argentina); Bozzolo, Guillermo, E-mail: guille_bozzolo@yahoo.com [Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210 (United States); Mosca, Hugo O. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499 (B1650KNA), San Martin (Argentina); Grupo de Caracterizacion y Modelizacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRG) Gral. Pacheco (Argentina)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer Atomistic modeling using a quantum approximate method for the energetics. Black-Right-Pointing-Pointer Modeling of the phase structure of high entropy alloys of refractory elements. Black-Right-Pointing-Pointer Comparison of modeled structure with experimental results for five-element alloys. Black-Right-Pointing-Pointer Determination of bulk properties of transitional chains from 4 to 5 element alloys. Black-Right-Pointing-Pointer Introduction of an algorithm to aid in the design of high entropy alloys. - Abstract: The development of high entropy alloys is currently limited to experimental work aimed at the determination of specific compositions that exhibit particular properties. The main feature of these alloys is their particular phase structure, which tends to be a continuous solid solution in spite of the large number of constituents which would otherwise form a large number of intermetallic phases. While it is known that equimolar concentrations and large number of elements are two necessary conditions for achieving high entropy behavior, not much is known regarding the transition to this regime in the presence of specific elements. Such knowledge would be useful when determining alloy compositions, as it would set boundaries for the necessary concentrations of each element in experimental situations. In this work, results of a computational modeling effort are presented, where a recently developed 5-element high entropy alloy of refractory elements is used as the foundation needed to examine such transition and determine the necessary lower bounds for the concentration of each element. Details of the phase structure of the quaternary combinations of W, Nb, Mo, Ta and V as they evolve upon the addition of a fifth element are discussed. The results are compared to the experimental case for the case of V added to W-Nb-Mo-Ta. Using these examples as a reference, the concept of critical concentrations for each element

  11. Microbial corrosion of high alloy steels in natural sea water

    International Nuclear Information System (INIS)

    The paper deals with an investigation into regularities of settlement and potential impact of microbial forms on the corrosion of 12Kh18N10T stainless steel depending on its microstructure. It is shown that inhomogeneity of the morphorological composition and quantitative distribution of microorganisms on the surface of alloyed steels is caused by the selectivity of bacterial cells settlement on the substrate structural elements. The corrosion destruction at microscopic level primarily starts in the zones of microorganism concentration. 19 refs.; 3 figs.; 2 tabs

  12. Enhanced superplasticity in an extruded high strength Mg–Gd–Y–Zr alloy with Ag addition

    Energy Technology Data Exchange (ETDEWEB)

    Movahedi-Rad, A. [School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mahmudi, R., E-mail: mahmudi@ut.ac.ir [School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Wu, G.H.; Jafari Nodooshan, H.R. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-25

    Highlights: • Addition of 2% Ag to the base alloy refined the microstructure and increased m-value. • Volume fractions of both high angle grain boundaries and particles increased after Ag addition. • Ag-containing alloy had an m-value of 0.51, typical of superplastic materials. • Grain boundary sliding accommodated by lattice diffusion was the dominant deformation mechanism. - Abstract: The effect of 2 wt% Ag addition on the superplastic behavior of an extruded Mg–8.5Gd–2.5Y–0.5Zr (wt%) alloy was investigated by impression testing in the temperature range of 523–598 K. The average sizes of the dynamically recrystallized grains of the Ag-free and Ag-containing alloys were about 8 and 3 μm, respectively. Analysis of electron backscattered diffraction (EBSD) data confirmed the higher fractions of high-angle grain boundaries (HAGBs) in the Ag-containing alloy. The deformation response of this alloy in proper temperature range conforms to regions I, II and III, typical of superplastic deformation behavior. The addition of Ag to the base alloys led to enhanced superplasticity in region II by increasing the strain rate sensitivity (SRS) indices (m-values) from 0.25 to 0.51 and 0.36 to 0.46 at 573 and 598 K, respectively. These high m-values together with the activation energy of 181 kJ/mol suggest that the major mechanism involved in superplastic deformation is grain boundary sliding (GBS) accommodated by lattice diffusion at temperatures above 573 K.

  13. Super-High Temperature Alloys and Composites from NbW-Cr Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shailendra Varma

    2008-12-31

    Nickel base superalloys must be replaced if the demand for the materials continues to rise for applications beyond 1000{sup o}C which is the upper limit for such alloys at this time. There are non-metallic materials available for such high temperature applications but they all present processing difficulties because of the lack of ductility. Metallic systems can present a chance to find materials with adequate room temperature ductility. Obviously the system must contain elements with high melting points. Nb has been chosen by many investigators which has a potential of being considered as a candidate if alloyed properly. This research is exploring the Nb-W-Cr system for the possible choice of alloys to be used as a high temperature material.

  14. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  15. Microstructure and mechanical properties of AZ31 Mg alloy processed by high ratio extrusion

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-jun; WANG Qu-dong; LIN Jin-bao; ZHANG Lu-jun; ZHAI Chun-quan

    2006-01-01

    The microstructure and mechanical properties of AZ31 Mg alloy processed by high ratio extrusion (HRE) were investigated. General extrusion with extrusion ratio of 7 and high ratio extrusion with extrusion ratio 100 were contrastively conducted at 250, 300 and 350 ℃. The results show that HRE process may be applied successfully to AZ31 Mg alloy at temperatures of 250, 300 and 350 ℃ and this leads to obvious grain refinement during HRE process. The strength of HRE process is improved obviously compared with that of general extrusion. The grain refining mechanism of HRE process was also discussed. The current results imply that the simple high ratio extrusion method might be a feasible and effective processing means for refining the microstructure and improving the mechanical properties of AZ31 Mg alloy.

  16. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    Directory of Open Access Journals (Sweden)

    Yinghong Li, Liucheng Zhou, Weifeng He, Guangyu He, Xuede Wang, Xiangfan Nie, Bo Wang, Sihai Luo and Yuqin Li

    2013-01-01

    Full Text Available We investigated the strengthening mechanism of laser shock processing (LSP at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.

  17. Fatigue crack growth behaviors of a new burn-resistant highly-stabilized beta titanium alloy

    Institute of Scientific and Technical Information of China (English)

    WU Huan; ZHAO Yongqing; ZENG Weidong; QIAN Li

    2009-01-01

    This article presents the fatigue crack growth (FCG) behaviors of a new burn-resistant highly-stabilized beta Ti40 alloy. The FCG rotes were analyzed. The fracture surfaces and the side surfaces of the test samples were explored. The results show that frequency affects the cracking behaviors of Ti40 alloy. Temperature also plays an important role in Ti40 alloy cracking. At room temperature (25℃), when the frequency increases, the cracking rate changes a little in the range of low stress intensity factor (ΔK), while it changes significantly when ΔK is high. At 500℃, the cracking rate of Ti40 alloy changes significantly during all the course of clacking. The frequency also affects the microstructure patterns of Ti40 alloy. A number of secondary cracks appear in the area more than 200 μm from the main crack at a high ΔK when the fre-quency is 1 Hz, but only a few secondary cracks exist when the frequency is 10 Hz. Facet image is the main image of the fracture surfaces when the frequency is 1 Hz. While, ductile striation occupies most of the area of fracture surfaces when the frequency is 10 Hz.

  18. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  19. Effect of graphite and transition elements (Cu, Ni) on high temperature tensile behaviour of Al-Si Alloys

    International Nuclear Information System (INIS)

    Highlights: → High temperature tensile studies up to 300 deg. C. → Brittle to ductile failure mode transition takes place at a temperature of beyond 200 deg. C for alloy and for composites; mixed mode of fracture is observed beyond 200 deg. C. → Strain hardening exponent value is decreased with increasing temperature. → Ultimate tensile strength of composite is higher than that of alloy for all testing temperatures. - Abstract: The high temperature tensile behaviour of Al-Si alloy and Al-Si alloy reinforced with graphite particulate was investigated. The composite was developed by stir casting method. Tensile behaviour of alloy and composite were studied at different temperatures from room temperature to 300 deg. C. It was found that the tensile strength of alloy and composites were decreasing with increase in temperature. It was further noticed that Al-Si alloy with graphite and transition elements was stronger than alloy. The % elongation of the alloy was more than that of composites. The fractographic observations of fracture surface was analysed by scanning electron microscopy to understand the fracture mechanisms. Fractography revealed that the fracture behaviour of alloy changed from cleavage mode at room temperature to complete ductile mode at high temperature.

  20. Critical assessment of computational thermodynamics in the alloy design of PM high speed steels

    Energy Technology Data Exchange (ETDEWEB)

    Trabadelo, V. [CEIT, Po Manuel Lardizabal 15, 20018 San Sebastian (Spain); Gimenez, S. [K.U. Leuven, Kasteelpark Arenberg 44, B3001 Heverlee (Belgium); Gomez-Acebo, T. [TECNUN, Po Manuel Lardizabal 15, 20018 San Sebastian (Spain); Iturriza, I. [CEIT, Po Manuel Lardizabal 15, 20018 San Sebastian (Spain)]. E-mail: iiturriza@ceit.es

    2005-08-15

    The experimental powder M42HVIG is used to illustrate how the adequate selection of the constituent phases involved in the calculation of multicomponent phase diagrams is a key factor for success in the computer-aided alloy design of highly sinterable high speed steel compositions.

  1. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.D., E-mail: fanxd@seu.edu.cn; Shen, B.L., E-mail: blshen@seu.edu.cn

    2015-07-01

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe{sub 86}B{sub 7}C{sub 7} alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B–H loop tracer measurements show that the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B–H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy an economical application in industry. - Highlights: • Cu addition inhibits the surface crystallization and improves the GFA. • The competitive formation of Fe{sub 3}C and α-Fe phase impedes the devitrification. • Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits excellent magnetic properties. • The alloy system has an economical advantage and convenient productivity.

  2. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis

    International Nuclear Information System (INIS)

    Highly dispersed BaTiO3 nanospheres with uniform sizes have important applications in micro/nanoscale functional devices. To achieve well-dispersed spherical BaTiO3 nanocrystals, we carried out as reported in this paper the systematic investigation on the factors that influence the formation of BaTiO3 nanospheres by the static hydrothermal process, including the NaOH concentrations [NaOH], molar Ba/Ti ratios (RBa/Ti), hydrothermal temperatures, and durations, with an emphasis on understanding the related mechanisms. Barium nitrate and TiO2 sols derived from tetrabutyl titanate were used as the starting materials. The as-synthesized BaTiO3 samples were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, thermogravimetry, differential thermal analysis, and FT-IR spectra. The highly dispersed BaTiO3 nanospheres (76 ± 13 nm) were achieved under the optimum hydrothermal conditions at 200 °C for 10 h: [NaOH] = 2.0 mol L−1 and RBa/Ti = 1.5. Higher NaOH concentrations, higher Ba/Ti ratios, higher hydrothermal temperatures, and longer hydrothermal durations are favorable in forming BaTiO3 nanospheres with larger fractions of tetragonal phase and higher yields; but too long hydrothermal durations resulted in abnormal growth and reduced the uniformity in particle sizes. The possible formation mechanisms for BaTiO3 nanocrystals under the static hydrothermal conditions were investigated

  3. High Temperature Oxidation and Electrochemical Investigations on Ni-base Alloys

    OpenAIRE

    Obigodi-Ndjeng, Marthe Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy’s corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 °C in air for different time periods. The superalloy showed...

  4. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  5. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  6. Reaction mechanism in high Nb containing TiAl alloy by elemental powder metallurgy

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hang; LIN Jun-pin; HE Yue-hui; WANG Yan-li; LIN Zhi; CHEN Guo-liang

    2006-01-01

    High Nb containing TiAl alloy was fabricated in argon atmosphere by reactive hot pressing process. Reaction mechanism was investigated by means of microstructural analyses and thermodynamic calculations. The results show that it is feasible to prepare high Nb containing TiAl alloy with fine lamellar colonies by reactive hot pressing process. The reaction between Ti and Al powders is dominant in Ti-Al-Nb system. Nb powders dissolve into the Ti-Al matrix by diffusion. Pore nests are formed in situ after Nb powders diffusion. The hot pressing atmosphere is optimized by thermodynamic calculations. Vacuum or argon protective atmosphere should be adopted.

  7. Static Electricity as Part of Electromagnetic Environment on High-Voltage Electrical Substation

    Directory of Open Access Journals (Sweden)

    M. Fursanov

    2012-01-01

    Full Text Available Causes of occurrences electrostatic discharges (ESD on high-voltage electric substation were investigated and dependences values ESD’s on parameters interaction structures, humidity of air were found. Experimental research values ESD’s on high-voltage electric substation and in man-made conditions was fulfilled. Uncertainty measurement’s was taken into consideration by research results analyze. Matching with research of other authors was made. Danger ESD’s for electric devises was established.

  8. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al12Mg17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al3Mg2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  9. Effect of grain size reduction on high temperature oxidation ofbinary two-phase alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of grain size reduction on the high temperature oxidation of binary two-phase alloys was discussed based on the recent research progress. The results show that for those two-phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano-sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects.

  10. Effects of High Magnetic Field on Solidification and Corrosion Behaviors of Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCl by measuring electrochemical polarization. The results show that the high magnetic field can refine microstructure and benefit aluminum transfer.The crystal of α-Mg is induced to orient with their c-axis parallel to the magnetic field. The corrosion studies indicate that different crystal plane of magnesium has different corrosion property. The passivating films on the a- and b-planes have higher corrosion resistance than that on the c-plane. Aligned structure affects the corrosion property of AZ61 magnesium alloy.

  11. Microstructures and evolution mechanism of highly undercooled Ni-Pb hypermonotectic alloy

    Institute of Scientific and Technical Information of China (English)

    谢辉; 杨根仓; 郝维新; 樊建锋; 朱耀产; 许丽君

    2004-01-01

    The microstructures and evolution mechanism of the undercooled Ni-20% Pb(molar fraction) alloy were investigated systematically by high undercooling solidification technique. The experiment results indicate that the morphology of α-Ni phase and the distribution of Pb element in undercooled Ni-20%Pb alloys change with the increase of undercooling. The main evolution mechanisms of α-Ni are dendrite remelting and recrystallization. Pb phase in the microstructure of Ni-20%Pb hypermonotectic alloy originates from L2 phase separated from the parent melt during the cooling process through immiscible gap and L′2 phase formed at the temperature of monotectic transformation. The solubility of Pb element in α-Ni phase under high undercooling condition is up to 5.83 % which is obviously higher than that under equilibrium solidification condition. The real reason that causes the solubility difference is distinct solute trapping.

  12. Microstructural evolution in a Ti-Ta high-temperature shape memory alloy during creep

    Energy Technology Data Exchange (ETDEWEB)

    Rynko, Ramona; Marquardt, Axel; Pauksen, Alexander; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther [Bochum Univ. (Germany). Inst. for Materials

    2015-04-15

    Alloys based on the titanium-tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti{sub 70}Ta{sub 30} (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol{sup -1} and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.

  13. Influence of joint line remnant on crack paths under static and fatigue loadings in friction stir welded Al-Mg-Sc alloy

    Directory of Open Access Journals (Sweden)

    Y. Besel

    2016-01-01

    Full Text Available The influence of the joint line remnant (JLR on tensile and fatigue fracture behaviour has been investigated in a friction stir welded Al-Mg-Sc alloy. JLR is one of the microstructural features formed in friction stir welds depending on welding conditions and alloy systems. It is attributed to initial oxide layer on butting surfaces to be welded. In this study, two different tool travel speeds were used. JLR was formed in both welds but its spatial distribution was different depending on the tool travel speeds. Under the tensile test, the weld with the higher heat input fractured partially along JLR, since strong microstructural inhomogeneity existed in the vicinity of JLR in this weld and JLR had weak bonding. Resultantly, the mechanical properties of this weld were deteriorated compared with the other weld. Fatigue crack initiation was not affected by the existence of JLR in all welds. But the crack propagated preferentially along JLR in the weld of the higher heat input, when it initiated on the retreating side. Consequently, such crack propagation behaviour along JLR could bring about shorter fatigue lives in larger components in which crack growth phase is dominant.

  14. Creep behaviour of the alloys NiCr22Co12Mo and 10CrMo9 10 under static and cyclic load conditions

    International Nuclear Information System (INIS)

    The creep behaviour of NiCr20Co12Mo is investigated under static strain and at 800deg C, with stresses applied ranging from 105 MPa to 370 MPa. The ferritic steel 10CrMo 9 10 is tested for its creep behaviour under static strain and at the temperatures of 600deg C and 550deg C, with stresses applied between 154 MPa and 326 MPa (at 600deg C), or between 250 MPa and 458 MPa (at 550deg C). The experiments are made to determine the effects of changes in strain on the materials' deformation behaviour, placing emphasis on transient creep and elastic or anelastic response. The mean internal stress is determined from changes in strain. Cyclic creep is analysed as a behaviour directly responding to the pattern of change in strain. Effects of certain strain changes not clarified so far are analysed. The cyclic strain experiments are analysed according to the velocity factor concept. The usual models of creep deformation (theta projection concept) are compared with the model of effective strain, which is based on the fundamental equation of plastic deformation by dislocation motion (Orowan equation). (MM)

  15. Synthesis of the Mg{sub 2}Ni alloy prepared by mechanical alloying using a high energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J. L.; Lopez M, B. E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia N, M. R., E-mail: joseluis.iturbe@inin.gob.m [UNAM, Facultad de Estudios Superiores Zaragoza, Batalla 5 de Mayo s/n, Esq. Fuerte de Loreto, Col. Ejercito de Oriente, 09230 Mexico D. F. (Mexico)

    2010-07-01

    Mg{sub 2}Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlled conditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a thermogravimetric analysis system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition. (Author)

  16. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  17. A new high shear degassing technology and mechanism for 7032 alloy

    Directory of Open Access Journals (Sweden)

    Yu-bo Zuo

    2015-07-01

    Full Text Available Degassing is very important for aluminum alloys especially for 7xxx series alloys. In the present study, a high shear technology was used to degas 7032 aluminum alloy in order to study its degassing efficiency. The experimental results showed that the high shear technology can significantly degas 7032 aluminum alloy. By applying intensive melt shearing and an Ar injection of 60 seconds, the density index, Di, was reduced from 13.25% to 0.28% and the hydrogen concentration was significantly reduced from 0.31 to 0.10 mL/100g Al. Compared with the conventional rotary degassing, high shear technology showed a much higher degassing efficiency, achieving a lower concentration of hydrogen in a shorter time. The water simulation experiment was used to study the mechanism of the high degassing efficiency. The small bubble size and the uniform distribution of Ar bubbles with the application of high shear technology are believed to be the main cause for the high degassing efficiency.

  18. Photoelectrochemical study of nickel base alloys oxide films formed at high temperature and high pressure water

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, L. [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Perrin, S., E-mail: steph.perrin@cea.f [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Wouters, Y. [SIMaP, CNRS/INP-Grenoble/UJF F-38402, Saint Martin d' Heres Cedex (France); Martin, F. [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Pijolat, M. [LPMG-UMR CNRS 5148, Centre SPIN, Ecole Nationale Superieure des Mines, 158 Cours Fauriel, F-42023 Saint-Etienne (France)

    2010-07-30

    The oxide film formed on nickel base alloys at high temperature and high pressure water exhibits semi-conducting properties evidenced by photocurrent generation when exposed to monochromatic light. The use of macro- and micro-photoelectrochemical techniques (PEC and MPEC) aims to identify the different semiconductor phases and their distribution in the oxide film. Three different nickel base alloys were corroded in recirculation loop at 325 {sup o}C in pressurised water reactor primary coolant conditions for different exposition durations. PEC experiments on these materials enable to obtain macroscopic energy spectra showing three contributions. The first one, with a band gap around 2.2 eV, was attributed to the presence of nickel hydroxide and/or nickel ferrite. The second one, with a band gap around 3.5 eV, was attributed to Cr{sub 2}O{sub 3}. The last contribution, with a band gap in the range of 4.1-4.5 eV, was attributed to the spinel phase Ni{sub 1-x}Fe{sub x}Cr{sub 2}O{sub 4}. In addition, macroscopic potential spectra recorded at different energies highlight n-type semi-conduction behaviours for both oxides, Cr{sub 2}O{sub 3} and Ni{sub 1-x}Fe{sub x}Cr{sub 2}O{sub 4}. Moreover, MPEC images recorded at different energies exhibit contrasted regions in photocurrent, describing the distribution of nickel hydroxide and/or nickel ferrite and Cr{sub 2}O{sub 3} in the oxide film at a micron scale. It is concluded that PEC techniques represent a sensitive and powerful way to locally analyse the various semiconductor phases in the oxide scale.

  19. High temperature creep behaviour of Al-rich Ti-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, D; Heilmaier, M; Saage, H [Otto von Guericke University Magdeburg, Institute for Materials and Joining Technology, PO Box 4120, D-39016 Magdeburg (Germany); Aguilar, J; Schmitz, G J; Drevermann, A [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany); Palm, M; Stein, F; Engberding, N [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany); Kelm, K; Irsen, S, E-mail: daniel.sturm@ovgu.d [Stiftung caesar, Electron Microscopy, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany)

    2010-07-01

    Compared to Ti-rich {gamma}-TiAl-based alloys Al-rich Ti-Al alloys offer an additional reduction of in density and a better oxidation resistance which are both due to the increased Al content. Polycrystalline material was manufactured by centrifugal casting. Microstructural characterization was carried out employing light-optical, scanning and transmission electron microscopy and XRD analyses. The high temperature creep of two binary alloys, namely Al{sub 60}Ti{sub 40} and Al{sub 62}Ti{sub 38} was comparatively assessed with compression tests at constant true stress in a temperature range between 1173 and 1323 K in air. The alloys were tested in the cast condition (containing various amounts of the metastable phases Al{sub 5}Ti{sub 3} and h-Al{sub 2}Ti) and after annealing at 1223 K for 200 h which produced (thermodynamically stable) lamellar {gamma}-TiAl + r-Al{sub 2}Ti microstructures. In general, already the as-cast alloys exhibit a reasonable creep resistance at 1173 K. Compared with Al{sub 60}Ti{sub 40}, both, the as-cast and the annealed Al{sub 62}Ti{sub 38} alloy exhibit better creep resistance up to 1323 K which can be rationalized by the reduced lamella spacing. The assessment of creep tests conducted at identical stress levels and varying temperatures yielded apparent activation energies for creep of Q = 430 kJ/mol for the annealed Al{sub 60}Ti{sub 40} alloy and of Q = 383 kJ/mol for the annealed Al{sub 62}Ti{sub 38} material. The latter coincides well with that of Al diffusion in {gamma}-TiAl, whereas the former can be rationalized by the instability of the microstructure containing metastable phases.

  20. Microstructure Evolution and Hardness of an Ultra-High Strength Cu-Ni-Si Alloy During Thermo-mechanical Processing

    Science.gov (United States)

    Lei, Q.; Li, Z.; Hu, W. P.; Liu, Y.; Meng, C. L.; Derby, B.; Zhang, W.

    2016-07-01

    Microstructure evolution and hardness changes of an ultra-high strength Cu-Ni-Si alloy during thermo-mechanical processing have been investigated. For hot-compressive deformation specimens, dynamic recrystallization preferentially appeared on deformation bands. As deformation temperature increased from 750 to 900 °C, elongated grains with the Cubic texture {001} were substituted by recrystallized grains with Copper texture {112} . For the samples having undergone cold rolling followed by annealing, static recrystallization preferentially occurred in the deformation bands, and then complete recrystallization occurred. Goss, Cubic, and Brass textures remained after annealing at 600 and 700 °C for 1 h; R texture {111} and recrystallization texture {001} were formed in samples annealed at 800 and 900 °C for 1 h, respectively. For samples processed under multi-directional forging at cryogenic temperature, the hardness was increased as a result of work hardening and grain refinement strengthening. These were attributed to the formation of equiaxed sub-grain structures and a high dislocation density.

  1. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  2. Statically Adsorbed Coatings for High Separation Efficiency and Resolution in CE-MS Peptide Analysis: Strategies and Implementation.

    Science.gov (United States)

    Pattky, Martin; Barkovits, Katalin; Marcus, Katrin; Weiergräber, Oliver H; Huhn, Carolin

    2016-01-01

    Coatings are necessary to prevent protein and peptide adsorption to the capillary surface and obtain high intermediate precision. In this protocol, we first present our basic strategy to address peptide separation using three different coatings: one neutral and two cationic coatings, the latter largely differing in their induced electroosmotic mobility. In detail, we will describe how we apply the statically adsorbed coatings to obtain very high plate numbers and high repeatability.With some model examples, we clearly describe the scope of the method for the analysis of peptide samples: tryptic digests are addressed as well as small glycoproteins and glycopeptides largely differing in their effective electrophoretic mobility. We also show that the method is suitable for a fast screening of peptide samples despite a high matrix load comprising of up to 500 mmol/L sodium chloride. We demonstrate that this basic CE-MS method is rather independent of the polarity of the analytes with a very fast near-baseline separation of very hydrophobic Aβ peptides related to the onset of Alzheimer's disease. These examples will give an impression, which coating is most suitable for a specific analytical application.Special attention is paid to difficult aspects of the coating procedure and the CE-MS method, e.g., the potential of cross-contamination when changing the coatings. PMID:27645731

  3. Linear static structural and vibration analysis on high-performance computers

    Science.gov (United States)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  4. Apparent viscosity of human blood in a high static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Haik, Yousef E-mail: haik@eng.fsu.edu; Pai, Vinay; Chen Chingjen

    2001-07-01

    This study investigates the apparent additive viscosity due to magnetic effects on the human blood. Experimental results show that blood flow rate under gravity decreases by 30% when subjected to a high magnetic field of 10 T. The decrease in the flow rate is due to an increase in the apparent viscosity of the blood due to the magnetic field. A correlation describing the viscosity of blood under these conditions is introduced which depends on the Langevin function and parameters.

  5. Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Eriksen, Winnie L.; Duchstein, Linus Daniel Leonhard;

    2014-01-01

    to impregnation, the coprecipitation and deposition-coprecipitation methods are more efficient for preparation of small and homogeneous Cu-Ni alloy nanoparticles. In order to examine the stability of Cu-Ni alloys in high pressure synthesis gas conversion, they have been tested for high pressure CO hydrogenation...

  6. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Science.gov (United States)

    2010-10-01

    ... (incorporated by reference; see 46 CFR 54.01-1) for service temperatures below −425 °F., UHA-51(b)(1) through (5... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-high alloy steels (modifies....25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a)...

  7. High-temperature alloys and thermal spray coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Al-Taie, I.; Brigham, R.J.; Lafreniere, Y. [CANMET, Ottawa, Ontario (Canada). Metals Technology Lab.

    1995-12-31

    Materials continue to be of primary concern as the potential limiting factor for the implementation of coal gasification technology in Canada. Superalloys and thermal spray coatings for syngas coolers represent one class of materials where a knowledge of general trends in oxidation/sulphidation and erosion resistance for a range of chemical compositions is thought to be essential for reliable operation of such technology. Alloy 800H, 304, 310, T91, Monit and Sanicro 28 along with four types of coatings (Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, Al{sub 2}O{sub 3}/Ni3Al and CoCrAlYNi) applied on each one of the above alloys have been subjected to a series of exposures (6 {times} 250h cycles) in two different gas mixtures containing CO, H{sub 2}, H{sub 2}S, H{sub 2}O at 600 C. The kinetics and mechanisms of corrosion and erosion of these alloys have been investigated using Scanning Electron Microscopy and surface analytical techniques. Thermal spray coatings of ceramic and composite materials were found to be problematic on austenitic alloys because of spallation. Ceramic, composite and metallic coatings adhered well to the ferritic alloy. Nickel aluminide in combination with aluminum oxide as a composite did not display the expected high degree of corrosion resistance. High temperature erosion rates were found to be low on the bare superalloys and to be decreased by highly alloyed metallic coatings such as CoCrAlYNi, FeCrAlYMo and NiCrAlYCo. Ceramic and composite coatings were ineffective in reducing erosion rates because of spallation and reactivity in the simulated gasification environment.

  8. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  9. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    OpenAIRE

    2015-01-01

    Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microh...

  10. Internal friction peak and damping mechanism in high damping aluminium alloy laminate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new aluminium alloy laminate characterized by high damping, corrosion resistance and weldablity was developed. The laminate designed for required aforesaid functions was actually a composite material, which was made of two anti-corrosive layers (Al), two damping layers (ZnAl alloy) and one reinforcing layer (AlMg alloy) by hot rolling. The damping characteristics were studied and it was found that there was an internal friction peak at about 50  ℃ on internal fraction vs temperature curve for the laminate. For this reason, the activation energy of the peak was calculated. The origin and damping mechanism for this peak was researched by means of SEM, TEM, X-ray and DSC. It is considered that the peak is caused by the interaction between dislocations and point defects in damping layers (AlZn alloy). i.e. by the movement of dislocations dragging point defects under the action of thermal-activation. The laminate is remained at room temperature for a long time, it will weaken or even disappear with the restoration of the crystal microstructure and the reduction of the dislocation density in the ZnAl alloy layers. The mechanism of the peak is in conformity with that of the dislocation-induced damping.

  11. Mechanical and Electrochemical Behavior of a High Strength Low Alloy Steel of Different Grain Sizes

    Science.gov (United States)

    Ghosh, K. S.; Mondal, D. K.

    2013-08-01

    Various heat treatments applied to a fine-grained high strength low alloy (HSLA) steel resulted in producing different grain sizes. Optical and scanning electron microstructures of the different alloy states exhibited varying ferrite grains which have increased with the increase of annealing time and decrease of cooling rates. TEM structures of the as-received HSLA steel displayed characteristics microstructural features, distribution, and morphology of microalloy precipitates. Hardness and tensile strength values have decreased with the increase of grain sizes. Potentiodynamic electrochemical polarization of the different alloy states in 3.5 wt pct NaCl solution showed typical active metal/alloy behavior. Tensile specimens of the as-received and heat-treated alloy cathodically charged with hydrogen, followed by tensile testing, did not indicate any noticeable loss of ductility. FESEM fractographs of hydrogen-charged samples showed a few chain of voids in the presence of cup and cone ductile fracture features in tensile-tested samples without hydrogen charging as well.

  12. High-Performance MnBi Alloy Prepared Using Profiled Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van V.; Poudyal, Narayan; Liu, Xubo; Liu, J. Ping; Sun, Kewei; Kramer, Matthew J.; Cui, Jun

    2014-12-01

    The profiled heat treatment (PHT) method has been used to synthesize MnBi alloys with high-purity low-temperature phase (LTP). In the PHT method, the arc-melted MnBi alloy was remelted then slowly cooled by a pseudo-equilibrium solidification process to promote the formation of LTP phase. The PHT-treated MnBi alloys had an LTP phase up to 94 wt.% and a magnetization of 73 emu/g under a field of 9 T. Scanning electron microscopy showed that there exist some micrometer-sized Mn-rich inclusions in the LTP matrix of the PHT MnBi alloy. The PHT MnBi alloys were crushed into powders with an average size of ~3 μm by low-energy ball milling. These MnBi powders were aligned in an 18 kOe field and warm compacted into a bulk magnet at 300 °C for 30 min. The magnet had a density of 8.2 g/cm3 and magnetic properties of Ms = 6.7 kG, Mr = 5.3 kGs, i Hc = 5 kOe, and (BH)max = 6.1 MGOe

  13. Nickel Alloy Catalysts for the Anode of a High Temperature PEM Direct Propane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Shadi Vafaeyan

    2014-01-01

    Full Text Available High temperature polymer electrode membrane fuel cells that use hydrocarbon as the fuel have many theoretical advantages over those that use hydrogen. For example, nonprecious metal catalysts can replace platinum. In this work, two of the four propane fuel cell reactions, propane dehydrogenation and water dissociation, were examined using nickel alloy catalysts. The adsorption energies of both propane and water decreased as the Fe content of Ni/Fe alloys increased. In contrast, they both increased as the Cu content of Ni/Cu alloys increased. The activation energy for the dehydrogenation of propane (a nonpolar molecule changed very little, even though the adsorption energy changed substantially as a function of alloy composition. In contrast, the activation energy for dissociation of water (a molecule that can be polarized decreased markedly as the energy of adsorption decreased. The different relationship between activation energy and adsorption energy for propane dehydrogenation and water dissociation alloys was attributed to propane being a nonpolar molecule and water being a molecule that can be polarized.

  14. High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys

    Science.gov (United States)

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Fang, Q. F.; Wang, X. P.; Liu, C. S.; Lian, Y. Y.; Liu, X.; Luo, G. N.

    2016-02-01

    The thermal shock (single shot) resistance and mechanical properties of the W-0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m2 for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m2 for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ˜2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 107 J/m3, about 10 times higher than that of the swaged WZC (2.9 × 106 J/m3). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity.

  15. High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Rodrigo H. [Departamento de Ingenieria Mecanica, Universidad de Chile, Beauchef 850, 4 deg. Piso, Santiago 6511261 (Chile)]. E-mail: rhpalma@ing.uchile.ct; Sepulveda, Aquiles [Departamento de Ingenieria Mecanica, Universidad de Chile, Beauchef 850, 4 deg. Piso, Santiago 6511261 (Chile); Espinoza, Rodrigo [Departamento de Ingenieria Mecanica, Universidad de Chile, Beauchef 850, 4 deg. Piso, Santiago 6511261 (Chile); Dianez, M. Jesus [Instituto de Ciencia de Materiales de Sevilla, Americo Vespucio s/n, Isla de La Cartuja, Sevilla (Spain); Criado, Jose M. [Instituto de Ciencia de Materiales de Sevilla, Americo Vespucio s/n, Isla de La Cartuja, Sevilla (Spain); Sayagues, M. Jesus [Instituto de Ciencia de Materiales de Sevilla, Americo Vespucio s/n, Isla de La Cartuja, Sevilla (Spain)

    2005-01-25

    The hot mechanical behaviour and microstructure of Cu-5 vol.% TiC, Cu-5 vol.% ZrO{sub 2} and Cu-2.5 vol.% TiC-2.5 vol.% ZrO{sub 2} alloys prepared by reaction milling were studied. After a test of 1 h annealing at 1173 K, the Cu-5 vol.% ZrO{sub 2} alloy presented the lower softening resistance to annealing, while the other two ones kept their initial room-temperature hardness (about 2 GPa). Hot-compression tests at 773 and 1123 K, at initial true strain rates of 0.85 x 10{sup -3} and 0.85 x 10{sup -4} s{sup -1} were performed. The Cu-2.5 vol.% TiC-2.5 vol.% ZrO{sub 2} and the Cu-5 vol.% ZrO{sub 2} alloys were the strongest and softest materials, respectively. Moreover, by electron microscopy, nanometric TiC and micrometric particles were detected in the Cu-5 vol.% TiC and Cu-5 vol.% ZrO{sub 2} alloys, respectively. A possible explanation for the observed behaviour of these materials is proposed. In the compression tests, it was also found that strain rate has a low effect on flow stress, as it has been previously observed by various authors in dispersion-strengthened alloys deformed at high temperatures.

  16. Corrosion Properties of Light-weight and High-strength 2195 Al-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    XU Yue; WANG Xiaojing; YAN Zhaotong; LI Jiaxue

    2011-01-01

    The intergranular corrosion and exfoliation corrosion of 2195 Al-Li alloy treated by multi-step heating-rate controlled aging (MSRC)are studied.The corrosion features of 2195 Al-Li alloys which are respectively treated by high-temperature nucleation MSRC(H-M)and low-temperature nucleation MSRC(L-M)are contrasted.And the corrosion mechanism of 2195 Al-Li alloy is also discussed from the viewpoint of microstructure(types,distribution,etc.)of the strengthening phase.The results show that 2195 Al-Li alloy after H-M is more susceptible to intergranular corrosion and exfoliation corrosion than that of alloy after L-M.The degree of intergranular corrosion increases with the increase of predeformation amount and the surface parallel to the rolling direction is more prone to exfoliation corrosion.The main reason of intergranular corrosion and exfoliation corrosion is the formation of corrosion galvanic couples among T1 phase,θ' phase and grain boundary precipitate-free zones(PFZ).

  17. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    Science.gov (United States)

    Nicholson, D. E.; Padula, S. A., II; Noebe, R. D.; Benafan, O.; Vaidyanathan, R.

    2014-12-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance.

  18. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    Science.gov (United States)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  19. Void swelling of an oxide dispersion strengthened ferritic alloy in a high voltage electron microscope

    Science.gov (United States)

    Snykers, M.

    1980-03-01

    An oxide dispersion strengthened ferritic alloy with nominal composition Fe-13Cr-3.5Ti-1.5Mo-2TiO 2 and a cast alloy with a composition close to that of the matrix of the oxide dispersion strengthened alloy are irradiated in a high voltage electron microscope in the temperature range 380-550°C. The alloys are doped with 0-30 ppm helium. For alloys containing 10 ppm He a peak swelling temperature at 450°C is found. A maximum swelling of 1.1% is found at an irradiation dose of 20 dpa. In the absence of He no swelling is found in the temperature range 430-470°C. The swelling rate is highest at the onset of swelling. The results obtained here are quite similar to those for some ferritic steels such as FV607, EM 12 and HT9, except for the influence of He and for the dose dependence.

  20. High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy

    International Nuclear Information System (INIS)

    Transmission electron microscopy was used to investigate the microstructural evolution of a hexagonal close-packed Zr alloy subjected to high-pressure torsion at 3.8 GPa. Results show that an inhomogeneous grain size distribution was obtained at the early stages of deformation, which is unique to hexagonal structures. {1-bar 011} deformation twins, which have never been reported in Zr alloys, were observed in coarse grains but not in refined grains. The grain refinement mechanism is discussed based on the experimental observation.

  1. A Very High-Cycle Fatigue Test and Fatigue Properties of TC17 Titanium Alloy

    Science.gov (United States)

    Jiao, Shengbo; Gao, Chao; Cheng, Li; Li, Xiaowei; Feng, Yu

    2016-03-01

    The present work studied the very high-cycle fatigue (VHCF) test and fatigue properties of TC17 titanium alloy. The specimens for bending vibration were designed using the finite element method and the VHCF tests were conducted by using the ultrasonic fatigue testing system. The results indicated that there is no the fatigue limit for TC17 titanium alloy, and the S-N curve shows a continuously descending trend. The fatigue crack initiates at the specimen surface within the range of VHCF and the VHCF lives follow the log-normal distribution more closely.

  2. Influence of neodymium on high cycle fatigue behavior of die cast AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    杨友; 李雪松

    2010-01-01

    High cycle fatigue behavior of die cast AZ91D magnesium alloy with different Nd contents was investigated.Axial mechanical fatigue tests were conducted at the stress ratio R=0.1 and the fatigue strength was evaluated using up-to-down load method on specimens of AZ91D with different Nd contents.The results showed that the grain of AZ91D alloy was refined,the size and amount of β-Mg17Al12 phase decreased and distributed uniformly with increasing Nd content.At the number of cycles to failure,Nf=107,the fatigue...

  3. Ferromagnetic Fe-based Amorphous Alloy with High Glass-forming Ability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with highglass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of α-Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Febased amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.

  4. New high strength technologically ecological and expedient economically advantageous alloys on Fe-C base

    International Nuclear Information System (INIS)

    The paper presents framework a part of by now obtained results of the authors studies in the period 1967(68) - 2002 about possibilities for obtaining new high-strength and wear resistant cast alloys on, Fe-C base (complex alloyed steels and cast irons of different systems with different structure, reflected in over 125 articles, 15 inventions (patents) and other scientific studies. The paper includes summarized results and discussion. Key words: new austenite steels and cast irons, mechanical characteristics, wear resistance. (Original)

  5. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  6. Microstructures and constituents of super-high strength aluminum alloy ingots made through LFEC process

    Directory of Open Access Journals (Sweden)

    WANG Shuang

    2007-11-01

    Full Text Available Ingots of a new super-high strength Al-Zn-Mg-Cu-Zr alloy were produced respectively by low frequency electromagnetic casting (LFEC and by conventional direct chill (DC casting process. Microstructure and constituents of the ingots were studied. The results indicated that the LFEC process significantly refines microstructure and constituents of the alloy, and to some extent, decreases the area (or volume fraction of constituents and eutectic structure precipitated at grain boundaries. But, no difference in the type of constituents was observed between LFEC and DC ingots. The results also showed LFEC process can improve the as-cast mechanical properties.

  7. A Linear Algebra Framework for Static High Performance Fortran Code Distribution

    Directory of Open Access Journals (Sweden)

    Corinne Ancourt

    1997-01-01

    Full Text Available High Performance Fortran (HPF was developed to support data parallel programming for single-instruction multiple-data (SIMD and multiple-instruction multiple-data (MIMD machines with distributed memory. The programmer is provided a familiar uniform logical address space and specifies the data distribution by directives. The compiler then exploits these directives to allocate arrays in the local memories, to assign computations to elementary processors, and to migrate data between processors when required. We show here that linear algebra is a powerful framework to encode HPF directives and to synthesize distributed code with space-efficient array allocation, tight loop bounds, and vectorized communications for INDEPENDENT loops. The generated code includes traditional optimizations such as guard elimination, message vectorization and aggregation, and overlap analysis. The systematic use of an affine framework makes it possible to prove the compilation scheme correct.

  8. Prediction of lifetime in static fatigue at high temperatures for ceramic matrix composites

    International Nuclear Information System (INIS)

    Previous works have shown that ceramic matrix composites are sensitive to delayed failure during fatigue in oxidizing environments. The phenomenon of slow crack growth has been deeply investigated on single fibers and multi-filament tows in previous papers. The present paper proposes a multiscale model of failure driven by slow crack growth in fibers, for 2D woven composites under a constant load. The model is based on the delayed failure of longitudinal tows. Additional phenomena involved in the failure of tows have been identified using fractographic examination of 2D woven SiC/SiC composite test specimens after fatigue tests at high temperatures. Stochastic features including random load sharing, fiber overloading, fiber characteristics and fiber arrangement within the tows have been introduced using appropriate density functions. Rupture time predictions are compared to experimental data. (authors)

  9. Microstructural evolution of Ti-6Al-7Nb alloy during high pressure torsion

    Directory of Open Access Journals (Sweden)

    Tiago Santos Pinheiro

    2012-10-01

    Full Text Available Ti-6Al-7Nb alloys are being evaluated for biomedical applications, in substitution of the more conventional Ti-6Al-7V. Both types of alloys present a microstructure containing the α and the β phases, which result in good compromise for mechanical applications. In the present work Ti-6Al-7Nb alloys were processed by High Pressure Torsion (HPT, varying the number of revolutions and thus the total imposed strain. X-Ray Diffraction (XRD results revealed the formation of different crystallographic textures in samples subjected to HPT. Microhardness distribution, across the diameters of the disks, is rather homogeneous for all samples, with higher values for those subjected to 03 and 05 turns. Transmission electron microscopy (TEM micrographs have showed that an ultra-fine grained microstructure was obtained in all the samples.

  10. Development of high performance single-phase solid solution magnesium alloy at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Qiuming [MagIC-Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht, Geesthacht (Germany); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao (China); Huang, Yuanding; Kainer, Karl Ulrich; Hort, Norbert [MagIC-Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht, Geesthacht (Germany)

    2012-03-15

    Magnesium (Mg) alloys are well known as potential candidates for engineering structural materials due to their low density and high specific strength. However, compared with traditional steel or aluminum materials, Mg alloys have not been widely used. Up to now, these present commercial products are mainly fabricated by cast. In contrast to cast products, wrought Mg alloys only have a market share of less than 5%. Most of the barriers preventing wrought produces from widespread applications arising from low ductility/toughness and poor corrosion. Therefore, to improve the formability and corrosion resistance becomes an urgent problem to extend the applications of deformed Mg materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    International Nuclear Information System (INIS)

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 23000C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt → Zr9Pt11 + 9/2 N2. Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 19850C/ = 2.4 x 10-4 in Zr9Pt11 ΔG/sub f 19850C/0 Zr9Pt11 less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys

  12. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    2011-12-01

    Full Text Available The effect of Dy addition on the glass-forming ability (GFA, magnetostriction as well as soft-magnetic properties and fracture strength in FeDyBSiNb glassy alloys was investigated. In addition to the increase of supercooled liquid region from 55 to 100 K, the addition of Dy is effective in approaching alloy to an eutectic point and increasing the saturation magnetostrction (λs. Accordingly, bulk glassy alloy (BGA rods with diameters up to 4 mm were produced, which exhibit a large λs as high as 65×10-6. Besides, the BGA system exhibits superhigh fracture strength of 4000 MPa, combined with good soft-magnetic properties.

  13. Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys

    Science.gov (United States)

    Tao, Lei; Song, Shizhe; Zhang, Xiaoyun; Zhang, Zheng; Lu, Feng

    2008-08-01

    The corrosion morphology image acquisition system which can be used in the field was established. In Beijing atmospheric corrosion exposure station, the image acquisition system was used to capture the early stage corrosion morphology of five types of high strength aluminium alloy specimens. After the denoise treatment, wavelet-based image analysis method was applied to decompose the improved images and energies of sub-images were extracted as character information. Based on the variation of image energy values, the corrosion degree of aluminium alloy specimens was qualitatively and quantitatively analyzed. The conclusion was basically identical with the result based on the corrosion weight loss. This method is supposed to be effective to analysis and quantify the corrosion damage from image of field exposure aluminium alloy specimens.

  14. A low-cost hierarchical nanostructured beta-titanium alloy with high strength.

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. PMID:27034109

  15. In-Situ Analysis of Coarsening during Directional Solidification Experiments in High-Solute Aluminum Alloys

    NARCIS (Netherlands)

    Ruvalcaba, D.; Mathiesen, R.H.; Eskin, D.G.; Arnberg, L.; Katgerman, L.

    2009-01-01

    Coarsening within the mushy zone during continuous directional solidification experiments was studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy allowed images to be taken in-situ during solidification. Transient conditions were present during directional solidif

  16. Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW

    Science.gov (United States)

    Dobbelstein, Henrik; Thiele, Magnus; Gurevich, Evgeny L.; George, Easo P.; Ostendorf, Andreas

    Alloying of refractory high entropy alloys (HEAs) such as MoNbTaW is usually done by vacuum arc melting (VAM) or powder metallurgy (PM) due to the high melting points of the elements. Machining to produce the final shape of parts is often needed after the PM process. Casting processes, which are often used for aerospace components (turbine blades, vanes), are not possible. Direct metal deposition (DMD) is an additive manufacturing technique used for the refurbishment of superalloy components, but generating these components from the bottom up is also of current research interest. MoNbTaW possesses high yield strength at high temperatures and could be an alternative to state-of-the-art materials. In this study, DMD of an equimolar mixture of elemental powders was performed with a pulsed Nd:YAG laser. Single wall structures were built, deposition strategies developed and the microstructure of MoNbTaW was analyzed by back scattered electrons (BSE) and energy dispersive X-ray (EDX) spectroscopy in a scanning electron microscope. DMD enables the generation of composition gradients by using dynamic powder mixing instead of pre-alloyed powders. However, the simultaneous handling of several elemental or pre-alloyed powders brings new challenges to the deposition process. The influence of thermal properties, melting point and vapor pressure on the deposition process and chemical composition will be discussed.

  17. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti–1Al–8V–5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. PMID:27034109

  18. High cycle fatigue property of Ti-600 alloy at ambient temperature

    International Nuclear Information System (INIS)

    Research highlights: Ti-600, developed by Northwest Institute for Nonferrous Metal Research (NIN) in China, is a near alpha titanium alloy designed for components used in turbine engines up to 600 deg. C. Mechanical behavior of the alloy at ambient temperature and its service temperature has widely been studied, the fatigue property for the alloy has never been systematically discussed. Smooth axial fatigue tests were taken for solutioned plus aged alloy, and the fractographies were observed. In order to get the damage mechanism, OM and TEM microstructures were also investigated. - Abstract: Smooth axial fatigue tests were carried out at ambient temperature on one kind of near alpha titanium alloy named after Ti-600 at a frequency of 120-130 Hz and with two kinds of load ratios. The high cycle fatigue (HCF) strength for the solutioned and aged alloy is found to be 475 MPa fatigued with a load ratio R of 0.1, and which is 315 MPa with a load ratio R of -1. The observed high HCF strength for the samples fatigued with a load ratio R of 0.1 is attributed to its overlapping fine and thin plate like α + β phase microstructure. During the crack propagation region, at the same stress of 600 MPa, the sample with a fatigue life of 1.78 x 106 cycles has a better fatigue resistance than that of the sample with a fatigue life of 8.61 x 105 cycles, because of its smaller striation distance, its well-developed secondary cracks, more wider and coarsened α lathes precipitated at grain boundaries, and the heavily arranged interlacing transformed β microsructures. The average grain size of rare earth phases varies from several micrometers to 0.2 μm, no cracks corresponding to rare earth particles can be initiated.

  19. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  20. Integrating EarthScope Data Into Interactive Visualizations, Movies and High-Resolution Static Images

    Science.gov (United States)

    Kilb, D.

    2008-12-01

    What is EarthScope? The answer to this question can best be addressed through images, movies and interactive visualizations. Using these types of visual tools the temporal evolution and spatial scales of the various EarthScope data (e.g., earthquakes, sediment thickness, aquifers, focal mechanisms, topography, moho depth, mines, geology, magnetics, faults and gravity) can be more easily understood. Working with EarthScope researchers we have developed visualizations to assist with data quality (i.e., from SAFOD, USArray and PBO), hypothesis testing and the presentation of final results. Through this process we have identified 6 key areas of interest: (1) Depicting temporal evolution of data; (2) The ability to toggle on/off and color-code data sub-sets for complex high-density data; (3) Developing end-products that can be used as on-line supplements to journal articles; (4) Creating multi-use end-products that benefit researchers, emergency response personnel and education programs; (5) Quality assessing and geo-referencing newly collected data; and (6) Making difficult subjects more understandable. The visualizations we create can be accessed from our website (we get ~4,000 unique visitors to our pages each month) through the visual objects library at the Scripps Institution of Oceanography's Visualization Center (http://siovizcenter.ucsd.edu/library.php). These include 3D interactive visualizations, Quicktime movies and online tools and can be explored using freeware that runs on multiple platforms (e.g., Windows, Mac OS X, Linux, SGI Irix).

  1. Mechanical properties of low alloy high phosphorus weathering steel

    Directory of Open Access Journals (Sweden)

    Jena B.K.

    2015-01-01

    Full Text Available Mechanical behaviour of two low alloy steels (G11 and G12 was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11 revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed from equiaxed shape to pan-cake shape and grain size also increased. The Charpy V notch (CVN impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimple while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20°C toughness requirement is 27 J as per CSN EN10025-2:2004 specification.

  2. Strength of copper alloys in high temperature environment

    Science.gov (United States)

    Nomura, Y.; Suzuki, R.; Saito, M.

    2002-12-01

    The first wall of ITER is expected to be hot isostatic pressing (HIP) bonded structure of copper-alloy/SS316. Firstly, fracture toughness and crack propagation tests were performed on DS-Cu and DS-Cu/SS316 HIP joints at ambient temperature and 573 K T. Yamada, M. Uno, M. Saito, Fall Meeting of the Atomic Energy Society of Japan, vol. I, 1998, p. 187 (in Japanese). JIC values of DS-Cu and DS-Cu/SS316 decreased significantly at 573 K. In crack propagation test, DS-Cu lost its ductility at 573 K. Secondly, we performed fracture toughness tests on CuCrZr and CuCrZr/CuCrZr, CuCrZr/SS316 HIP joints at ambient and 573 K. CuCrZr base metal had higher JIC values than DS-Cu. Concerning CuCrZr/CuCrZr and CuCrZr/SS316 HIP joint, its JIC value decreased to less than that of CuCrZr base metal.

  3. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-06-01

    Iron aluminides containing greater than about 20-25 @ % Al have oxidation/sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. In addition to alloying modifications for improved creep resistance of wrought material, this strength limitation is being addressed by development of oxide-dispersion- strengthened (ODS) iron aluminides and by evaluation of Fe{sub 3}Al alloy compositions as coatings or claddings on higher-strength, less corrosion-resistant materials. As part of these efforts, the high-temperature corrosion behavior of iron-aluminide weld overlays and ODS alloys is being characterized and compared to previous results for ingot-processed material.

  4. Dynamic Analysis of a High-Static-Low-Dynamic-Stiffness Vibration Isolator with Time-Delayed Feedback Control

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-01-01

    Full Text Available This paper proposes the time-delayed cubic velocity feedback control strategy to improve the isolation performance of High-Static-Low-Dynamic-Stiffness (HSLDS vibration isolator. Firstly, the primary resonance of the controlled HSLDS vibration isolator is obtained by using multiple scales method. The equivalent damping ratio and equivalent resonance frequency are defined to study the effects of feedback gain and time delay on the primary resonance. The jump phenomenon analysis of the controlled system without and with time delay is investigated by using Sylvester resultant method and optimization method, respectively. The stability analysis of the controlled system is also considered. Then, the 1/3 subharmonic resonance of the controlled system is studied by using multiple scales method. The effects of feedback gain and time delay on the 1/3 subharmonic resonance are also presented. Finally, force transmissibility is proposed to evaluate the performance of the controlled system and compared with an equivalent linear passive vibration isolator. The results show that the vibration amplitude of the controlled system around the resonance frequency region decreases and the isolation frequency band is larger compared to the equivalent one. A better isolation performance in the high frequency band can be achieved compared to the passive HSLDS vibration isolator.

  5. Study of the Laser-Induced Decomposition of HNO3/2-NITROPROPANE Mixture at Static High Pressure

    Science.gov (United States)

    Bouyer, V.; Hébert, P.; Doucet, M.

    2007-12-01

    The objective of the work presented here is to study the laser-induced decomposition of a condensed HNO3/2-nitropropane mixture containing 58% nitric acid. On the macroscopic scale, this energetic material detonates. Under static high pressure, the formation of an H-bonded complex with that particular composition was demonstrated in a previous study. The high pressure behavior of the complex showed the presence of a solid-solid phase transition around 18 GPa. The combustion front propagation velocity was recorded between 6 and 31 GPa. The analysis of the optical properties of the reaction products as well as the recording of their Raman spectra showed two different combustion regimes. Below 18 GPa, total combustion takes place in the sample and a black residue only composed of soot remains in the cell. Above 18 GPa, the combustion leads to a clear residue with little carbon present. However, the Raman spectra of the remaining sample show new features indicating the presence of species which are not yet clearly identified. The pressure limit between these two behaviors corresponds to the phase transition pressure measured for the complex.

  6. High-precision Thickness Setting Models for Titanium Alloy Plate Cold Rolling without Tension

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaochen; YANG Quan; HE Fei; SUN Youzhao; XIAO Huifang

    2015-01-01

    Due to its highly favorable physical and chemical properties, titanium and titanium alloy are widely used in a variety of industries. Because of the low output of a single batch, plate cold rolling without tension is the most common rolling production method for titanium alloy. This method is lack of on-line thickness closed-loop control, with carefully thickness setting models for precision. A set of high-precision thickness setting models are proposed to suit the production method. Because of frequent variations in rolling specification, a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method. The deformation resistance and friction factor, the primary factors which affect model precision, are considered as the objectives of statistical modeling. Firstly, the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted. Additionally, a support vector machine(SVM) is applied to the modeling of the deformation resistance and friction factor. The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling, and then thickness precision is found consistently to be within 3%, exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data. Excellent application performance is obtained. The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.

  7. High-precision thickness setting models for titanium alloy plate cold rolling without tension

    Science.gov (United States)

    Wang, Xiaochen; Yang, Quan; He, Fei; Sun, Youzhao; Xiao, Huifang

    2015-03-01

    Due to its highly favorable physical and chemical properties, titanium and titanium alloy are widely used in a variety of industries. Because of the low output of a single batch, plate cold rolling without tension is the most common rolling production method for titanium alloy. This method is lack of on-line thickness closed-loop control, with carefully thickness setting models for precision. A set of high-precision thickness setting models are proposed to suit the production method. Because of frequent variations in rolling specification, a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method. The deformation resistance and friction factor, the primary factors which affect model precision, are considered as the objectives of statistical modeling. Firstly, the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted. Additionally, a support vector machine(SVM) is applied to the modeling of the deformation resistance and friction factor. The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling, and then thickness precision is found consistently to be within 3%, exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data. Excellent application performance is obtained. The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.

  8. [Static metatarsalgia].

    Science.gov (United States)

    Eulry, F

    1997-01-01

    Static metatarsalgia involves pain of non-inflammatory origin in the region of the metatarsal heads. It is caused by a functional disorder or anatomic derangement of the architecture over the ball of the foot, whether congenital or acquired, evident or not. Clinical examination, including of the shoe and of the plantar orthosis, distinguishes five types of anomalies: 1. horizontal malalignment of the metatarsal heads with insufficiency at the first metatarsal-phalangeal joint, dominated by hallux valgus, and involvement of the second metatarsal bone, sometimes favouring Freiberg's disease; 2. vertical malalignment, with a hollow anterior foot, sometimes complicated by Morton's neuroma; 3. a combination of these two anomalies, easily diagnosed but less easily treated; 4. possible enlargement of the first metatarsal-phalangeal joint (hallux rigidus, sesamoid pathology); 5. no patent architectural anomalies, but stress fractures or bone insufficiency fractures of the metatarsals. Only clinical examination can orient complementary strategy and examinations. PMID:9035541

  9. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, haynes 230 and model alloys - HTR2008-58147

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHX) of (V)-HTR reactors. The behaviour under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer Then, the alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow [1]. To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T∼1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617 and model alloys 1178, 1181, 1201. This coupling makes it possible thermodynamic equilibrium to be obtained between the vapour phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (/) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared to that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behaviour in these alloys. These activity results call into question those previously measured by Hilpert [2], largely used in the literature. (authors)

  10. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)

    International Nuclear Information System (INIS)

    Low alloyed zirconium sheets (Zr702) have been cold-rolled up to 80% thickness reduction and submitted to various isothermal treatments. The aim was to identify the mechanisms which produce microstructure and texture changes during recrystallization and grain growth. XRD and texture analysis, FEG-SEM with EBSD as well as TEM were used to analyze the various specimens. Three types of substructures were observed in the initial deformed material. Accordingly, the nucleation starts in the most deformed areas and continues in the somewhat less deformed areas, which corresponds to a non oriented nucleation and results in a set of new grains, the size of which is very rapidly stabilized. In the last stage of recrystallization, the grains which have resisted the recrystallization disappear progressively by several mechanisms including in situ recrystallization. Therefore, the texture at the end of the recrystallization resembles the one of the deformed state. Normal grain growth leads to a moderate grain size increase due to the precipitates which slow down the grain boundary motion. This is also the stage where the texture changes due to the size advantage, after recrystallization, of grains in some specific orientations. (orig.)

  11. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)

    Energy Technology Data Exchange (ETDEWEB)

    Dewobroto, N. [LETAM (Lab. d' Etude des Textures et Application aux Materiaux), Univ. Paul Verlaine, Metz (France); Dept. of Microstructure Physics and Metal Forming, Max Planck Inst. for Iron Research, Duesseldorf (Germany); Bozzolo, N.; Wagner, F. [LETAM (Lab. d' Etude des Textures et Application aux Materiaux), Univ. Paul Verlaine, Metz (France); Barberis, P. [Cezus Research Centre, Ugine (France)

    2006-06-15

    Low alloyed zirconium sheets (Zr702) have been cold-rolled up to 80% thickness reduction and submitted to various isothermal treatments. The aim was to identify the mechanisms which produce microstructure and texture changes during recrystallization and grain growth. XRD and texture analysis, FEG-SEM with EBSD as well as TEM were used to analyze the various specimens. Three types of substructures were observed in the initial deformed material. Accordingly, the nucleation starts in the most deformed areas and continues in the somewhat less deformed areas, which corresponds to a non oriented nucleation and results in a set of new grains, the size of which is very rapidly stabilized. In the last stage of recrystallization, the grains which have resisted the recrystallization disappear progressively by several mechanisms including in situ recrystallization. Therefore, the texture at the end of the recrystallization resembles the one of the deformed state. Normal grain growth leads to a moderate grain size increase due to the precipitates which slow down the grain boundary motion. This is also the stage where the texture changes due to the size advantage, after recrystallization, of grains in some specific orientations. (orig.)

  12. Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA Slit Damper Devices Simulated by Quasi-Static Finite Element (FE Analyses

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2014-02-01

    Full Text Available In this paper, the superelastic shape memory alloy (SMA slit damper system as an alternative design approach for steel structures is intended to be evaluated with respect to inelastic behavior simulated by refined finite element (FE analyses. Although the steel slit dampers conventionally used for aseismic design are able to dissipate a considerable amount of energy generated by the plastic yielding of the base materials, large permanent deformation may occur in the entire structure. After strong seismic events, extra damage repair costs are required to restore the original configuration and to replace defective devices with new ones. Innovative slit dampers fabricated by superelastic SMAs that automatically recover their initial conditions only by the removal of stresses without heat treatment are introduced with a view toward mitigating the problem of permanent deformation. The cyclically tested FE models are calibrated to experimental results for the purpose of predicting accurate behavior. This study also focuses on the material constitutive model that is able to reproduce the inherent behavior of superelastic SMA materials by taking phase transformation between austenite and martensite into consideration. The responses of SMA slit dampers are compared to those of steel slit dampers. Axial stress and strain components are also investigated on the FE models under cyclic loading in an effort to validate the adequacy of FE modeling and then to compare between two slit damper systems. It can be shown that SMA slit dampers exhibit many structural advantages in terms of ultimate strength, moderate energy dissipation and recentering capability.

  13. Quasi-static and dynamic compressive deformation of a bulk nanolayered Ag–Cu eutectic alloy: Macroscopic response and dominant deformation mechanisms

    International Nuclear Information System (INIS)

    Nanostructured multilayered material systems offer an attractive method of increasing material strength. This work examines the response of a bulk eutectic silver–copper material (Ag60Cu40, subscripts indicating atomic percent) which has a hierarchical structure of alternating Ag and Cu layers with thicknesses down to 50 nm. The hierarchical structure consists of two primary arrangements of layers, eutectic colonies of parallel layers, most commonly found at the material interior, and “grains” consisting of alternating Ag and Cu layers which emanate from a central region in a radial pattern, most commonly found at the material exterior surface. We show that the hierarchical structure causes a significant increase in the measured strength response when comparing the Ag60Cu40 response to that of the constituent materials in their bulk nanograined or micrograined form. The deformation mechanisms of this material are studied under compressive loading over the quasi-static and dynamic regime (10−3–103 s−1) with strain between 5% and 50%

  14. Quasi-static and dynamic compressive deformation of a bulk nanolayered Ag–Cu eutectic alloy: Macroscopic response and dominant deformation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kingstedt, O.T., E-mail: kingste1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street, Urbana, IL 61801 (United States); Eftink, B. [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 West Green Street, Urbana, IL 61801 (United States); Lambros, J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street, Urbana, IL 61801 (United States); Robertson, I.M. [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 West Green Street, Urbana, IL 61801 (United States)

    2014-02-10

    Nanostructured multilayered material systems offer an attractive method of increasing material strength. This work examines the response of a bulk eutectic silver–copper material (Ag{sub 60}Cu{sub 40}, subscripts indicating atomic percent) which has a hierarchical structure of alternating Ag and Cu layers with thicknesses down to 50 nm. The hierarchical structure consists of two primary arrangements of layers, eutectic colonies of parallel layers, most commonly found at the material interior, and “grains” consisting of alternating Ag and Cu layers which emanate from a central region in a radial pattern, most commonly found at the material exterior surface. We show that the hierarchical structure causes a significant increase in the measured strength response when comparing the Ag{sub 60}Cu{sub 40} response to that of the constituent materials in their bulk nanograined or micrograined form. The deformation mechanisms of this material are studied under compressive loading over the quasi-static and dynamic regime (10{sup −3}–10{sup 3} s{sup −1}) with strain between 5% and 50%.

  15. Atomistic modeling of high temperature uranium-zirconium alloy structure and thermodynamics

    Science.gov (United States)

    Moore, A. P.; Beeler, B.; Deo, C.; Baskes, M. I.; Okuniewski, M. A.

    2015-12-01

    A semi-empirical Modified Embedded Atom Method (MEAM) potential is developed for application to the high temperature body-centered-cubic uranium-zirconium alloy (γ-U-Zr) phase and employed with molecular dynamics (MD) simulations to investigate the high temperature thermo-physical properties of U-Zr alloys. Uranium-rich U-Zr alloys (e.g. U-10Zr) have been tested and qualified for use as metallic nuclear fuel in U.S. fast reactors such as the Integral Fast Reactor and the Experimental Breeder Reactors, and are a common sub-system of ternary metallic alloys like U-Pu-Zr and U-Zr-Nb. The potential was constructed to ensure that basic properties (e.g., elastic constants, bulk modulus, and formation energies) were in agreement with first principles calculations and experimental results. After which, slight adjustments were made to the potential to fit the known thermal properties and thermodynamics of the system. The potentials successfully reproduce the experimental melting point, enthalpy of fusion, volume change upon melting, thermal expansion, and the heat capacity of pure U and Zr. Simulations of the U-Zr system are found to be in good agreement with experimental thermal expansion values, Vegard's law for the lattice constants, and the experimental enthalpy of mixing. This is the first simulation to reproduce the experimental thermodynamics of the high temperature γ-U-Zr metallic alloy system. The MEAM potential is then used to explore thermodynamics properties of the high temperature U-Zr system including the constant volume heat capacity, isothermal compressibility, adiabatic index, and the Grüneisen parameters.

  16. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  17. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe–Ni–Cr alloy (alloy 800H)

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Di, Hongshuang, E-mail: dhshuang@mail.neu.edu.cn; Zhang, Jiecen; Yang, Yaohua

    2015-01-15

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson–Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of “bulge” at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  18. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: chenjian@xatu.edu.cn [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Niu, Pengyun; Wei, Ting [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Hao, Liang [College of Architecture and Civil Engineering, Xi' an University of Science and Technology, Xi' an 710054 (China); Liu, Yunzi [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Wang, Xianhui, E-mail: xhwang693@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Peng, Yuli [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China)

    2015-11-15

    The AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying and the AlCoNiCrFe high-entropy alloy reinforced Cu matrix composites were subsequently fabricated by powder metallurgy. The phase constituents and morphology of the alloying powders were characterized by X-ray diffractometer and scanning electron microscope, the microstructures of the Cu base composites were characterized by scanning electron microscope and transmission electron microscope, and the compression tests were made as well. The results show that the AlCoNiCrFe high-entropy alloy can form after milling for 24 h. During sintering process, no grain growth occurs and no intermetallic phases present in the AlCoNiCrFe high-entropy alloy in the Cu base composite. Compression tests show that the AlCoNiCrFe high-entropy alloy has a better strengthening effect than metallic glasses and the yield strength of the Cu matrix composite reinforced with the AlCoNiCrFe high-entropy alloy is close to the value predicted by the Voigt model based on the equal strain assumption. - Graphical abstract: AlCoNiCrFe HEA has a better strengthening effect than metallic glasses for particulate reinforced metal matrix composites. The yield strength of the Cu base composite reinforced with the AlCoNiCrFe HEA is close to the upper bound calculated by Voigt model. - Highlights: • AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying. • A novel Cu base composite reinforced with AlCoNiCrFe was fabricated. • No grain growth and no intermetallic phase present in AlCoNiCrFe during sintering. • AlCoNiCrFe has a better strengthening effect than metallic glassy in composites.

  19. Grain Refinement and High-Performance of Equal-Channel Angular Pressed Cu-Mg Alloy for Electrical Contact Wire

    Directory of Open Access Journals (Sweden)

    Aibin Ma

    2014-12-01

    Full Text Available Multi-pass equal-channel angular pressing (EACP was applied to produce ultrafine-grained (UFG Cu-0.2wt%Mg alloy contact wire with high mechanical/electric performance, aim to overcome the catenary barrier of high-speed trains by maximizing the tension and improving the power delivery. Microstructure evolution and overall properties of the Cu-Mg alloy after different severe-plastic-deformation (SPD routes were investigated by microscopic observation, tensile and electric tests. The results show that the Cu-Mg alloy after multi-pass ECAP at 473 K obtains ultrafine grains, higher strength and desired conductivity. More passes of ECAP leads to finer grains and higher strength, but increasing ECAP temperature significantly lower the strength increment of the UFG alloy. Grain refinement via continuous SPD processing can endow the Cu-Mg alloy superior strength and good conductivity characteristics, which are advantageous to high-speed electrification railway systems.

  20. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: beih@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-25

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  1. Microstructural evolutions and mechanical behaviour of the nickel based alloys 617 and 230 at high temperature

    International Nuclear Information System (INIS)

    High Temperature Reactors (HTR), is one of the innovative nuclear reactor designed to be inherently safer than previous generation and to produce minimal waste. The most critical metallic component in that type of reactor is the Intermediate Heat exchanger (IHX). The constraints imposed by the conception and the severe operational conditions (high temperature of 850 C to 950 C, lifetime of 20,000 h) have guided the IHX material selection toward two solid solution nickel base alloys, the Inconel 617 and the Haynes 230. Inconel 617 is the primary candidate alloy thanks to its good high temperature mechanical and corrosion properties and the large data base developed in previous programs. However, its high cobalt content has to be considered as an issue (nuclear activation). The more recent alloy Haynes 230, in which most of the cobalt has been replaced by tungsten, present characteristics similar to the 617 alloy. The objective of this thesis is to study the high temperature mechanical behaviour of both alloys in relation with their microstructural evolutions. The as received microstructural observations have revealed primary carbides (M6C). Most of this precipitates are evenly distributed in the materials. Few M23C6 secondary carbides are observed in both alloys in the as received state. Thermal ageing treatments at 850 C lead to an important M23C6 precipitation on slip lines and at grain boundaries. The size of this carbides increases and their number decreases with increasing ageing duration. The intragranular precipitation of secondary carbides at 950 C is more limited and the intergranular evolution more important than at 850 C. The microstructural observations and the hardness evolution of both alloys show that the main microstructural evolutions occur before 1,000 h at both studied temperatures. The mechanical properties of the Inconel 617 and the Haynes 230 have been studied using tensile, creep, fatigue and relaxation-fatigue tests. Particularly, the

  2. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  3. Peculiarities of structure transformations of heat resistant nickel alloy during high temperature heating

    International Nuclear Information System (INIS)

    By means of direct experiments (using microroentgenospectral analysis, electron microscopy, high-temperature metallography) it is shown that large formations of the exceeding phase in complexly alloyed nickel alloys present eutectic colonies (γ'+γ). Carbide of the N3W3C type is crystallized from the liquid in interaxial spaces close to the eutectics (γ'+γ) as a result of the substitution of the elements forming γ'-phase: Ti, Nb and Hf for tungsten. Using the method of electric resistance temperature range of dissolving of highly disperse γ'-phase of the given alloy in the Ni-Cr-Co-W-Al-Ti-Nb-Hf system is established. A polythermal cross section of a part of pseudodouble diagram (γ-γ') of the alloy studied is plotted on the basis of microroentgenospectral, phase and resistometric analyses. It is shown that solubility curve on the diagram has a point of bending near solidus temperature. At that, the temperature of complete dissolving of the disperse γ'-phase in γ-solid solution is 30 deg lower than Tsub(s)

  4. High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics

    Institute of Scientific and Technical Information of China (English)

    MA Yong-qing; GAO Hong-tao; QI Yu-hong; ZHANG Zhan-ping; DAI Yu-mei; LIU Yan-xia

    2004-01-01

    Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7C3, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength,flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.

  5. High temperature stability of Cr-carbides in an experimental Co-Re-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, Debashis; Klauke, Michael; Roesler, Joachim [Technische Universitaet Braunschweig (Germany). Institut fuer Werkstoffe; Strunz, Pavel [Nuclear Physics Institute and Research Center Rez (Czech Republic); Zizak, Ivo [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung, Berlin (Germany); Schumacher, Gerhard; Wiedenmann, Albrecht [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany)

    2010-03-15

    The stability of the microstructure at high temperatures was studied in an experimental Co-Re-based alloy. The experimental alloy is mainly strengthened by Cr-carbides, particularly by those in the form of thin lamellar plates. Electron microscopic investigation on samples exposed for up to 1000 h to temperatures of 1000 and 1200 C showed that Cr{sub 23}C{sub 6} type carbides present in the alloy in different morphologies are unstable at these temperatures. It was also observed that the alloy hardness dropped after exposing the samples to elevated temperatures and much of this loss occurred within the first 100 h. In-situ diffraction measurements with synchrotron radiation showed that carbide dissolution started as early as 3 h of holding at 1000 C. Moreover, in-situ small angle neutron scattering results indicated that the carbides at the grain boundaries and the blocky carbides dissolve first and then the thin lamellar carbides. Further, the enrichment of Cr in the Co-matrix phase, which took place due to the dissolution of Cr-carbides, stabilized a Cr-Re-rich {sigma} phase. Although the dissolution of lamellar carbides results in a significant loss of strength, the formation of {sigma} phase with extremely high hardness partly compensated the for loss. The {sigma} phase is stable even at 1200 C. (orig.)

  6. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  7. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  8. Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Fuliang; GAN Weiping; CHEN Zhaoke

    2007-01-01

    Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space- flight industry. Al-30Si and Al-40Si are fabricated with air- atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expan- sion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high- silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductiv- ity varies between 104-140W/(m.K); with the extrusion temperature, thermal expansion coefficient also increases but within 13 × 10-6 (at 100℃) and hermeticity of the material is high to 10-9 order of magnitude.

  9. Comparison of static and high strain dynamic tests on driven steel piles at several industrial sites in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Tweedie, R.; Clementino, R.; Law, D. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Many of the foundations at industrial plants in northern Alberta are supported by driven steel piles that are often installed through thick glacial clay and sand deposits. This paper presented 3 case histories where static load tests (SLT) and high strain dynamic tests (HSDT) were conducted on the driven steel piles. The soil conditions and typical pile sizes used at the 3 sites were described. The first site was an oilsand processing facility where steam assisted gravity drainage (SAGD) was used for bitumen production from oilsand. The second site was a petrochemical plant and the third site was a power plant. The case histories revealed the importance of combining SLT and HSDT to optimize pile designs. The paper emphasized the benefits of undertaking the pile load tests during the design phase, when the potential benefits of obtaining higher capacities can be effectively applied to the pile designs. It was concluded that pile design based on Limit States Design (LSD) in accordance with NBC 2005 must satisfy the Ultimate Limit States (ULS) to prevent plunging failure and also Serviceability Limit States (SLS) to maintain tolerable settlement. 10 refs., 5 tabs., 7 figs.

  10. Development of a high-power solid-state switch using static induction thyristors for a klystron modulator

    Energy Technology Data Exchange (ETDEWEB)

    Tokuchi, Akira, E-mail: tokuchi@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Suita (Japan); Pulsed Power Japan Laboratory Ltd., Kusatsu (Japan); Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka (Japan); Kamitsukasa, Fumiyoshi, E-mail: kamitsukasa@ess.sci.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Suita (Japan); Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro [Institute of Scientific and Industrial Research, Osaka University, Suita (Japan)

    2015-01-01

    We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch’s robustness and long-term reliability.

  11. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-08-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  12. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-06-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  13. High hardness in a nanocrystalline Mg{sub 97}Y{sub 2}Zn{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, K.M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 7907 (United States); Wang, Y.B.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Mathaudhu, S.N.; Kecskes, L.J. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Zhu, Y.T. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 7907 (United States); Koch, C.C., E-mail: khaled_youssef@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 7907 (United States)

    2011-09-25

    Highlights: {yields} Synthesis of nc (21 nm) Mg{sub 97}Y{sub 2}Zn{sub 1} alloy using a modified mechanical alloying. {yields} Annealing at 573 K increases the grain size to 28 nm with a hardness of 2.4 GPa. {yields} This is the highest value for hardness yet reported for a Mg-base (>95% Mg) alloy. {yields} The excellent strength of this alloy is discussed throughout the article. - Abstract: A nanocrystalline Mg{sub 97}Y{sub 2}Zn{sub 1} alloy was prepared with an average grain size of 21 nm by mechanical alloying of elemental powders. The structure of the alloy was characterized by X-ray diffraction and transmission electron microscopy. The hardness of the alloy as-milled for 8 h at room temperature was 2.1 GPa. After compaction and annealing at 573 K, the average grain size slightly increases to 28 nm with an increase in hardness to 2.4 GPa. These are the highest values for hardness yet reported for a crystalline Mg-based (>95% Mg) alloy. Possible factors leading to this high strength are discussed.

  14. Influence of Sc on high temperature strengthening behavior of Ti-6Al-4V alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Vacuum arc melting technique was used to prepare Ti-6Al-4V alloy containing Sc (0.3% and 0.5%, mass fraction). The ingots were melted twice by vacuum self-consumable electrode arc furnace. Forging of ingots was started in β-phase region and finished in high (α+β)-phase region. Annealing after forging was performed in low (α+β)-phase region for 30 min. Isothermal high temperature compression tests were conducted using thermal simulation machine under Ar atmosphere at 850 ℃ and 1 000 ℃, and the strain rate were 0.001, 0.01, 0.1 and 1.0 s-1. Optical microscope(OM), scanning electron microscopy(SEM), energy dispersive spectrum(EDS) and transmission electron microscope(TEM) were used to study the microstructure evolution during high temperature deformation. The results show that, the peak stress value of alloys increases with increasing Sc content after deformation at 850 ℃,however, there is no obvious strengthening of Sc when the alloys are deformed at 1 000 ℃. Sc exists as Sc2O3 forms by internal oxidation during forging procedure, only minor Sc solutes in matrix. At 850 ℃, the interaction between dislocation and participated particles and twinning mechanism controls the deformation procedure accompanied recrystallization. At 1 000 ℃, the deformation of alloys containing Sc is mainly controlled by twinning, while the deformation of alloy without Sc is not only controlled by twinning,but also the interaction between dislocation and precipitated particles inside the twinning lamellar.

  15. Development of microstructure in high-alloy steel K390 using semi-solid forming

    Science.gov (United States)

    Opatova, K.; Aisman, D.; Rubesova, K.; Ibrahim, K.; Jenicek, S.

    2016-03-01

    Semi-solid processing of light alloys, namely aluminium and magnesium alloys, is a widely known and well-established process. By contrast, processing of powder steels which have high levels of alloying elements is a rather new subject of research. Thixoforming of high-alloy steels entails a number of technical difficulties. If these are overcome, the method can offer a variety of benefits. First of all, the final product shape and the desired mechanical properties can be obtained using a single forming operation. Semi-solid forming can produce unusual powder steel microstructures unattainable by any other route. Generally, the microstructures, which are normally found in thixoformed steels, consist of large fractions of globular or polygonal particles of metastable austenite embedded in a carbide network. An example is the X210Cr12 steel which is often used for semi-solid processing experiments. A disadvantage of the normal microstructure configuration is the brittleness of the carbide network, in which cracks initiate and propagate, causing low energy fractures. However, there is a newly-developed mini-thixoforming route which produces microstructures with an inverted configuration. Here, the material chosen for this purpose was K390 steel, in which the content of alloying elements is up to 24%. Its microstructure which was obtained by mini- thixoforming did not contain polyhedral austenite grains but hard carbides embedded in a ductile austenitic matrix. This provided the material with improved toughness. The spaces between the austenite grains were filled with a eutectic in which chromium, molybdenum and cobalt were distributed uniformly. After the processing parameters were optimized, complexshaped demonstration products were manufactured by this route. These products showed an extraordinary compressive strength and high wear resistance, thanks to the hardness of their microstructure constituents, predominantly the carbides.

  16. Welding nickel alloys for highly corrosive media and/or high temperature

    International Nuclear Information System (INIS)

    The paper reviews the main nickel alloys used in chemical and nuclear industry, corrosion resistance, welding problems, welding process and precautions during welding operation for corrosion resistance of welded joints. 2 figs., 3 tabl., 6 refs

  17. Effects of a high-gradient magnetic field on the migratory behavior of primary crystal silicon in hypereutectic Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jin Fangwei; Ren Zhongming; Ren Weili; Deng Kang; Zhong Yunbo; Yu Jianbo [Department of Materials Science and Engineering, Shanghai University, Box 275, 149, Yan-Chang Road, Shanghai 200072 (China)], E-mail: zmren@mail.shu.edu.cn

    2008-04-01

    The migration of primary Si grains during the solidification of Al-18 wt%Si alloy under a high-gradient magnetic field has been investigated experimentally. It was found that under a gradient magnetic field, the primary Si grains migrated toward one end of the specimen, forming a Si-rich layer, and the thickness of the Si-rich layer increased with increasing magnetic flux density. No movement of Si grains was apparent under a magnetic field below 2.3 T. For magnetic fields above 6.6 T, however, the thickness of the Si-rich layer was almost constant. It was shown that the static field also played a role in impeding the movement of the grains. The primary Si grains were refined in the Si layer, even though the primary silicon grains were very dense. The effect of the magnetic flux density on the migratory behavior is discussed.

  18. Effects of a high-gradient magnetic field on the migratory behavior of primary crystal silicon in hypereutectic Al–Si alloy

    Directory of Open Access Journals (Sweden)

    Fangwei Jin, Zhongming Ren, Weili Ren, Kang Deng, Yunbo Zhong and Jianbo Yu

    2008-01-01

    Full Text Available The migration of primary Si grains during the solidification of Al–18 wt%Si alloy under a high-gradient magnetic field has been investigated experimentally. It was found that under a gradient magnetic field, the primary Si grains migrated toward one end of the specimen, forming a Si-rich layer, and the thickness of the Si-rich layer increased with increasing magnetic flux density. No movement of Si grains was apparent under a magnetic field below 2.3 T. For magnetic fields above 6.6 T, however, the thickness of the Si-rich layer was almost constant. It was shown that the static field also played a role in impeding the movement of the grains. The primary Si grains were refined in the Si layer, even though the primary silicon grains were very dense. The effect of the magnetic flux density on the migratory behavior is discussed.

  19. Optimizing microstructures of hypereutectic Al-Si alloys with high Fe content via spray forming technique

    Energy Technology Data Exchange (ETDEWEB)

    Hou, L.G. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Cui, C. [Foundation Institute for Materials Science, Badgasteiner Str. 3, Bremen 28359 (Germany); Zhang, J.S., E-mail: zhangjs@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-09-15

    By using spray forming technique Fe-contained hypereutectic Al-Si alloys were prepared with different Mn/Cr additions for the study of their effects on the microstructures. The results show that adding 2 wt.% Mn/Cr separately can strikingly refine the Fe-bearing phase in spray-formed Al-25Si-5Fe-3Cu (wt.%) alloy into quantities of fine, uniformly distributed granular {alpha}-Al(Fe,Mn/Cr)Si phase, and Cr is more effective. But some short-plate Fe-bearing phases still exist in the spray-formed Al-Si alloys. Then, combined addition of Mn and Cr transforms these short-plate Fe-bearing phases into fine, granular {alpha}-Al(Fe,Mn,Cr)Si phase, promoting the appearance of almost single {alpha}-Al(Fe,Mn,Cr)Si phase in the spray-formed Al-Si alloys. Two mechanisms are proposed to elucidate the formation of {alpha}-Al(Fe,TM)Si phase (TM = Mn/Cr/(Mn + Cr)) during the solidification process: (1) transformed from metastable {delta}-Al(Fe,TM)Si phase in Mn/(Mn + Cr)-added alloys or (2) precipitated from liquids directly in Cr-containing alloys. Because the strong interactions and isomorphic substitution among different TM elements, the metastable {delta}-Al(Fe,TM)Si phase (clusters) can be precipitated from the liquids and transformed into stable {alpha}-Al(Fe,Mn,Cr)Si phase in Mn- or (Mn + Cr)-added alloys. The stable {alpha}-Al(Fe,Cr)Si phase can precipitate directly from the liquids because no metastable ternary intermetallics exist in Al-Cr-Si system and can be transformed into stable {alpha}-AlCrSi phase. Also the high segregation temperature of Cr in liquid Al melts promotes the microsegregation of Cr and formation of (AlCrSi) clusters/intermetallics in Cr-added alloys. As a result, both metastable {delta}-Al(Fe,TM)Si phase (clusters) and stable {alpha}-Al(Fe,TM)Si phase (clusters) can be present in (Mn + Cr)-added alloys. With further solidification, these clusters become the nucleation sites and grow up unceasingly. The coexistence of the nucleus of {delta

  20. Passive and Localised Corrosion Behaviour of a High Magnesium Alloy (Magnox Al80)

    OpenAIRE

    Burrows, Robert

    2013-01-01

    The high magnesium alloy Magnox Al80 is used as a clad for nuclear fuel employed in the UK gas-cooled, graphite moderated power station reactors of the same name. Following irradiation, spent fuel elements are stored in aqueous environments. Historical corrosion studies and plant experience have identified suitable chemistry regimes to ensure passivity of the material, by maintaining high pH and very low concentrations of aggressive anions, notably chloride. Despite this large body of work, c...

  1. High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles

    Energy Technology Data Exchange (ETDEWEB)

    Onoro, J. [Dept. Ingenieria y Ciencia de los Materiales, ETSI Industriales, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: javier.onoro@upm.es; Salvador, M.D. [Dept. Ingenieria Mecanica y de Materiales, ETSI Industriales, Universidad Politecnica de Valencia, Camino de Vera s/n, 46071 Valencia (Spain); Cambronero, L.E.G. [Dept. Ingenieria de Materiales, ETSI Minas, Universidad Politecnica de Madrid, c/Rios Rosas 21, 28003 Madrid (Spain)

    2009-01-15

    The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Boron carbide particles were used as reinforcement. All composites were produced by hot extrusion. The tensile properties and fracture analysis of these materials were investigated at room temperature and at high temperature to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy.

  2. Microstructural evolution and corrosion behavior of directionally solidified FeCoNiCrAl high entropy alloy

    Directory of Open Access Journals (Sweden)

    Cui Hongbao

    2011-08-01

    Full Text Available The FeCoNiCrAl alloys have many potential applications in the fields of structural materials, but few attempts were made to characterize the directional solidification of high entropy alloys. In the present research, the microstructure and corrosion behavior of FeCoNiCrAl high entropy alloy have been investigated under directional solidification. The results show that with increasing solidification rate, the interface morphology of the alloy evolves from planar to cellular and dendritic. The electrochemical experiment results demonstrate that the corrosion products of both non-directionally and directionally solidified FeCoNiCrAl alloys appear as rectangular blocks in phases which Cr and Fe are enriched, while Al and Ni are depleted, suggesting that Al and Ni are dissolved into the NaCl solution. Comparison of the potentiodynamic polarization behaviors between the two differently solidified FeCoNiCrAl high entropy alloys in a 3.5%NaCl solution shows that the corrosion resistance of directionally solidified FeCoNiCrAl alloy is superior to that of the non-directionally solidified FeCoNiCrAl alloy.

  3. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  4. High temperature oxidation and electrochemical investigations on nickel-base alloys

    International Nuclear Information System (INIS)

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy's corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 C in air for different time periods. The superalloy showed the best oxidation behavior at both temperatures, which might be due to the fact that the oxidation growth function is subparabolic for the model alloys and parabolic for the superalloy at 800 C. At higher temperatures, changes in the kinetics are induced, as the oxides grow faster, thus only PWA 1483 growth follows the parabolic law. Different scales in a typical sandwich form were detected, with the inner layer comprised of mostly Cr2O3, the middle layer was mixture of different oxides and spinels, depending on the alloying elements, and the oxide at the interface oxygen/oxide was found to be NiO. The influence of sample preparation could also be shown, as rougher surfaces change the oxidation kinetics from parabolic and subparabolic for polished samples to linear. The influence of moisture on the oxidation behavior of the 2nd generation single crystal Ni-base superalloys (PWA 1484, PWA 1487, CMSX 4, Rene N5 and Rene N5+) was studied at 1000 C after 100 h oxidation period. It was found that the moisture increased the oxidation rate and mostly the transient oxides growth rate. The water vapor content in air also influenced the behavior of these alloys, as they showed a higher mass gain in air + 30% water vapor than in air + 10% water vapor. The alloys PWA 1484 and CMSX 4 showed respectively the worst and best behavior in all the studied atmospheres. The addition of reactive elements, such as Yttrium, Hafnium and Lanthanum is likely to enhance the oxidation behavior of PWA 1487

  5. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel [Ecole Nationale Superieure des Mines de Saint-Etienne (France); Kittel, Jean; Grosjean, Francois; Ropital, Francois [IFP Energies nouvelles, BP3 rond-point de l' echangeur de Solaize (France)

    2014-11-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C{sub 4}H{sub 10} + H{sub 2} + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  6. High-spin and low-spin states in Invar and related alloys

    Science.gov (United States)

    Moruzzi, V. L.

    1990-04-01

    Total-energy band calculations that show the coexistence of a high-spin and low-spin state in fcc transition metals and alloys are presented. The energy difference between the two states is shown to be a function of the electron concentration and to vanish at 8.6. At larger electron concentrations the low-temperature state is the high-spin state, and the thermal expansion is shown to pause at a system-dependent characteristic temperature. At lower electron concentrations the low-temperature state is the low-spin state, and enhanced thermal expansion is expected. An analysis that leads to a qualitative understanding of the thermal properties of Invar and that implies a connection with martensitic transformations and spin glasses in related alloys is presented. For Invar a magnetic collapse from the high-spin to the low-spin state at a pressure of 55 kbar is predicted.

  7. Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hardouin Duparc, A.; Moingeon, C.; Smetniansky-de-Grande, N.; Barbu, A. E-mail: alain.barbu@poly.polytechnique.fr

    2002-04-01

    The point-defect clustering is an important component of the hardening of low copper content pressure vessel steels. This study reports the first steps of a project devoted to the modelling of the nucleation and growth of point-defect clusters in ferritic alloys under irradiation at large fluence. A cluster-dynamics modelling based on rate equations giving the evolution of the population of interstitial loops up to some 0.1 {mu}m and of vacancy clusters is developed. It is applied to two alloys FeCu (0.13 wt%) and FeMn(1.5 wt%)Ni(0.8 wt%)Cu(0.13 wt%)P(0.01 wt%) the composition of which is close to the one of pressure vessel steels and to non-alloyed Fe for comparison. The model was calibrated by carrying out 1 MeV irradiations in a high voltage microscope on these three materials and by using the results of experiments and atomic simulations reported in the literature. It is shown that the presence of copper in iron stabilises the interstitial clusters and more important that the parameters relative to the interstitials in the complex alloys are totally different from those for iron: the migration energy must be increased from 0.3 to 1 eV and the binding energy of di-interstitials must be decrease from 0.9 to 0.2 eV.

  8. Phase selection of ternary intermetallic compounds during solidification of high zinc magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    GUAN Shao-kang; ZHANG Chun-xiang; WANG Li-guo; WU Li-hong; CHEN Pei-lei; TANG Ya-li

    2008-01-01

    The phase selection of ternary intermetallic compound τ phase (Mg32 (Al,Zn)49) and φ phase (A12Mg5Zn2) in high zinc magnesium alloys was studied by using scanning electron microscope,X-ray diffractometer and differential scanning calorimeter,etc.The results indicate that,when adding element Si in Mg-8Zn-4Al-0.3Mn (ZA84) alloy,φ phase is promoted,whereas τ phase is inhibited.The Chinese script-type Mg2Si and matrix microstructure are greatly refined,the formation of τ phase is facilitated and φ phase is restrained when modifier Al-AlP master alloy is added in ZA84 alloy containing Si.The kinetics study of phase selection indicates that there is a critical degree of undercooling of the melt.If the undcrcooling exceeds the critical value,τ phase preferentially forms while φ phase is restrained; otherwise,φ phase preferentially forms while τ phase is restrained.

  9. High-temperature dilatometry of Ti-46Al-8Nb refractory alloy

    Science.gov (United States)

    Kartavykh, A. V.; Tcherdyntcev, V. V.; Stepashkin, A. A.; Gorshenkov, M. V.

    2013-07-01

    The temperature dependence of the linear thermal expansion coefficient K L of the intermetallic Ti-46Al-8Nb (at %) alloy is experimentally determined for the first time within the temperature range from 373 to 1773 K (solidus point). The determined boundaries of phase fields are compared with the results of differential thermal analysis and the calculated phase diagram of the alloy. The high-temperature limit (1384 K) of the alloy structure thermostability is detected from signs of the α2 + γ ⇆ α + γ phase transition in dilatometric curves. The restructuring mechanism in the α + γ field is studied by scanning electron microscopy. It is shown that the α2 + γ → α + γ phase transition is accompanied by selective structural degradation of single-crystalline α2 lamellae and the related destruction of a fine lamellar α2-Ti3Al(Nb) + γ-TiAl(Nb) texture. The average values of K L of the alloy are calculated within 100-K ranges in the low-temperature α2 + γ phase field, which is of interest from a practical viewpoint, according to the State Standard GOST 8.018-2007.

  10. The effect of neutron irradiation on the electrical resistivity of high-strength copper alloys

    International Nuclear Information System (INIS)

    The effects of neutron irradiation on the electrical resistivity of precipitation hardened (PH) and dispersion strengthened (DS) copper alloys are discussed. The analysis is based on the experimental study of radiation damage of PH and DS copper alloys, irradiated in the fast neutron reactor BOR-60 with doses of 8-16 x 1025 n/m2 and in the mixed spectrum neutron reactor SM-2 with doses of 3.7-5.5 x 1025 n/m2. The experimental data on the change Δρ in electrical resistivity of DS-type copper alloys irradiated in the BOR-60 reactor show that irradiation to 7-10 dpa at T=340-450 C causes a drop in electrical conductivity by not more than 20%. The obtained results show that in mixed-spectrum reactors the rate of Δρ normalized to the dpa is about 20 times as high as in fast neutron reactors. The conclusion is made that the calculations performed for ITER must take into account the presence of appreciable fluxes of thermal neutrons in certain components of the reactor. The latter will play a decisive role in the drop in thermal conductivity of copper alloys in these components. (orig.)

  11. Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet

    Institute of Scientific and Technical Information of China (English)

    SONG Hui; WANG Zhong-jin; GAO Tie-jun

    2007-01-01

    An annealed TC4 titanium alloy sheet was treated by high density electropulsing (Jmax=(5.09-5.26)×103A/mm2, tp=110 μs) under ambient conditions. The effect of electropulsing treatment(EPT) on the plastic deformation behavior of TC4 titanium alloy sheet was studied using uniaxial tension tests. The experimental results indicate that electropulsing treatment significantly changes the mechanical properties of sheet metal: the uniform elongation is increased by 35%, the yield stress is decreased by 19.8% and the yield to tensile ratio is decreased by 17.6%. It is of significant meaning to improve the formability of TC4 titanium alloy sheet. The optical microscope and scanning electron microscope(SEM) were used to examine the changes of the microstructure and the fracture morphology before and after the electropulsing treatment. It is found that recrystallization occurs in the sheet metal and dimples in fracture surface are large and deep after the electropulsing treatment. The research results show that the electropulsing treatment is an effective method to improve the formability of titanium alloy sheets.

  12. High Temperature Heat Capacity of Alloy D9 Using Drop Calorimetry Based Enthalpy Increment Measurements

    Science.gov (United States)

    Banerjee, Aritra; Raju, S.; Divakar, R.; Mohandas, E.

    2007-02-01

    Alloy D9 is a void-swelling resistant nuclear grade austenitic stainless steel (SS) based on AISI type 316-SS in which titanium constitutes an added predetermined alloying composition. In the present study, the high-temperature enthalpy values of alloy D9 with three different titanium-to-carbon mass percent ratios, namely Ti/C = 4, 6, and 8, have been measured using inverse drop calorimetry in the temperature range from 295 to 1323 K. It is found that within the level of experimental uncertainty, the enthalpy values are independent of the Ti-C mass ratio. The temperature dependence of the isobaric specific heat C P is obtained by a linear regression of the measured enthalpy data. The measured C P data for alloy D9 may be represented by the following best-fit expression: C_P(J \\cdot kg^{-1}\\cdot K^{-1})= 431 + 17.7 × 10^{-2}T + 8.72 × 10^{-5}/T^2. It is found that the measured enthalpy and specific heat values exhibit good agreement with reported data on 316 and other related austenitic stainless steels.

  13. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    Science.gov (United States)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen

  14. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    Science.gov (United States)

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (ferritic matrix useful for grain boundary pinning and creep resistance.

  15. Elimination of casting heterogeneities by high temperature heat treatment on a titanium stabilized austenitic alloy. Effect on the microstructure

    International Nuclear Information System (INIS)

    Microstructural observation on a longitudinal section of stainless steels often reveals the presence of a ''veined'' structure showing a segregation remainder due to the setting of the ingot. This casting heterogeneity can be eliminated by high temperature treatments. This study shows the change in the structure and the state of solubilization produced by these high temperature treatments and the effect of a stabilizing element such as titanium on Z6CNDT17.13 and Z10CNDT15.15B alloys compared with the Z6CND17.13 alloy. It is also shown that a high temperature treatment applied to these stabilized alloys deeply modifies the recrystallization kinetics

  16. Study of the Tensile Damage of High-Strength Aluminum Alloy by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Chang Sun

    2015-11-01

    Full Text Available The key material of high-speed train gearbox shells is high-strength aluminum alloy. Material damage is inevitable in the process of servicing. It is of great importance to study material damage for in-service gearboxes of high-speed train. Structural health monitoring methods have been widely used to study material damage in recent years. This study focuses on the application of an acoustic emission (AE method to quantify tensile damage evolution of high-strength aluminum alloy. First, a characteristic parameter was developed to connect AE signals with tensile damage. Second, a tensile damage quantification model was presented based on the relationship between AE counts and tensile behavior to study elastic deformation of tensile damage. Then tensile tests with AE monitoring were employed to collect AE signals and tensile damage data of nine samples. The experimental data were used to quantify tensile damage of high-strength aluminum alloy A356 to demonstrate the effectiveness of the proposed method.

  17. Evolving Density and Static Mechanical Properties in Plutonium from Self-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B W; Thompson, S R; Lema, K E; Hiromoto, D S; Ebbinghaus, B B

    2008-07-31

    Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 weight % of highly specific activity isotope {sup 238}Pu into the {sup 239}Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on {sup 238}Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by {approx}0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.

  18. Evolving density and static mechanical properties in plutonium from self-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)], E-mail: chung7@llnl.gov; Thompson, S.R.; Lema, K.E.; Hiromoto, D.S.; Ebbinghaus, B.B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2009-03-15

    Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 wt% of highly specific activity isotope {sup 238}Pu into the {sup 239}Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on {sup 238}Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by {approx}0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.

  19. Quasi-static-dynamic formability of AA5052-O sheet under uniaxial and plane-strain tension

    Institute of Scientific and Technical Information of China (English)

    LIU Da-hai; YU Hai-ping; LI Chun-feng

    2009-01-01

    An experimental study on the quasi-static-dynamic formability specified in electromagnetically assisted sheet metal stamping (EMAS) was presented. A series of uniaxial and plane-strain tensile experiments were carried out on AA5052-O sheet by using a combined quasi-static stretching and pulsed electromagnetic forming (EMF) method. Failure strains representing formability beyond conventional quasi-static forming limits are observed under both uniaxial tensile and plane-strain states. The total forming limits of the as-received aluminum alloy undergoing both low and high quasi-static pre-straining are almost similar in quasi-static-dynamic deformation. Ultimate total formability seems to depend largely on the high-velocity loading conditions. Thus, it appears that for quasi-static-dynamic deformation, the quasi-static pre-straining of material is not of primary importance to the additionally useful formability. These observations will enable to develop forming operations that take advantage of this improvement in formability, and will also enable the use of a quasi-static preform fairly close to the quasi-static forming limits without weakening its total formability for design of an EMAS process in shaping large aluminum shell parts like auto body panels.

  20. Surface modification of Al-Pb alloy by high current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    LU You; LI Shi-long; AN Jian; LIU Yong-bing

    2006-01-01

    Al-Pb alloy was modified by high current pulsed electron beam and the microstructure, hardness and tribological characteristics were characterized by scanning electron microscopy, electronic microanalysis probe microanalysis, Knoop hardness indentation and pin-on-disc type wear testing machine. The results show that the microstructure and hardness can be greatly improved, and the modification layer consists of a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone and a transition zone followed by the substrate. The tribological properties of high current pulsed electron beam irradiated Al-Pb alloy are correspondingly improved largely. Optical observation and scanning electron microscopy analysis reveal that the low wear rate and lowest level in coefficient of friction at high load level for irradiated Al-Pb alloy are due to the formation of a lubricious tribolayer covering the worn surface, which is a mixture of Al2O3, Pb3O4 and silicate. The wear mode varies from oxidative wear at low load to film spalling at high load and, finally, adhesive wear.

  1. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  2. A High-Fe Aluminum Matrix Welding Filler Metal for Hardfacing Aluminum-Silicon Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A high-Fe containing aluminum matrix filler metal for hardfacing aluminum-silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as-cast and as-welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al-Si-Fe-Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al-Si-Mg-Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper-eutectic aluminum-silicon alloy with 27% Si and 1% Ni.

  3. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  4. Effect of high pressure on microstructure of crystallizing amorphous Nd9Fe85B6 alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wei; LI Hui; XIE Yanwu; ZHANG Xiangyi

    2008-01-01

    The effect of high pressure on the microstructure of annealed amorphous NdgFegsB6 alloy was studied. It was found that applica- tion of high pressure made the microstructure of the crystallized alloy much more homogeneous. The average grain size of the Nd2Fe14B phase decreased with the increase of pressure, whereas, the size of the α-Fe first increased when a pressure of 1 Gpa was applied and then decreased with further increase of pressure. Pressure-induced (410) texture of the Nd2Fe14B phase was also observed. The present study sug-gested an effective route for controlling the microstructure in a nanoscale solid.

  5. PHASE TRANSFORMATION BEHAVIOR AND MICROSTRUCTURE OBSERVATION OF Nb-Ru HIGH TEMPERATURE SHAPE MEMORY ALLOY

    Institute of Scientific and Technical Information of China (English)

    X. Gao; Y.F. Zheng; W. Cai; L.C. Zhao

    2003-01-01

    The phase transformation behavior and microstructure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Two-step phase transformation of CsCl (β)→face-centered tetragonal (β')→monoclinic (β") occurs during cooling from high temperature to room temperature. The lattice parameters of martensites of Nb-Ru alloys were found to increase with the increase of Nb content. The martensite variants exhibit triangular self-accommodating morphology, with alternating regular bands inside. The twinning relationship between the substructural bands was found to be (101) type I mode, and this kind of twinning interface was straight, well-defined and coherent.

  6. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  7. High-temperature steam oxidation kinetics of the E110G cladding alloy

    Science.gov (United States)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-07-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800-1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created.

  8. Structure and mechanical properties of high-temperature titanium alloys after rapid heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M. (Inst. for Metal Physics, Kiev (Ukraine)); Luetjering, G. (Technical Univ. Hamburg-Harburg, Hamburg (Germany))

    1993-08-30

    In this study a new approach to optimizing the mechanical properties of high-temperature titanium alloys was developed. It is based on using rapid heating of equiaxed structures into the [beta]-field to achieve a fine [beta] grain size (less than or equal to 100 [mu]m), transforming on subsequent cooling into a fully lamellar structure. This fine [beta] grain size is an order of magnitude smaller than the grain sizes achieved by conventional furnace [beta]-treatment. Structures and mechanical properties (tensile, fatigue and creep) of high temperature alloys after rapid and conventional furnace heat treatments were compared. The results are discussed in terms of structure-property relationships. (orig.)

  9. Design of a high aperture compression ratio, dual-band static Fourier transform imaging spectrometer for remote sensing

    Science.gov (United States)

    Zou, Chun-bo; Hu, Bing-Liang; Li, Li-bo; Bai, Qing-Lan; Sun, Xin; Li, Ran; Yang, Jian-Feng

    2014-11-01

    A novel dual-band static Fourier transform imaging spectrometer was designed, which was the spatio-temporally modulated imaging Fourier transform spectrometer based on Sagnac interferometer. The approach represented a simplification and mass reduction over the traditional approach. It could obtain two-dimensional spatial images and one dimensional spectral image in two bands simultaneously. The two bands was separated through a dichroic prism and imaging in two detectors. one band was the visible and near infrared band, with the spectral range 400nm-1000nm and spectral resolution 187.5 wave numbers; the other was the short wave infrared band, with the spectral range 1000nm- 2500nm and spectral resolution 150 wave numbers. To reduce the size of the Interferometer, a high aperture compression ratio telescope system was designed before. The optical aperture was compressed to 1/10, and the volume of interferometer was reduced to 1/1000. For the convenience of engineering implementation, the telescope was composed of two no-aberration object lens: fore-lens and Collimating lens. The two band imaging spectrometers shared the primary lens and the second lens of the fore-lens and use their own collimating lens, interferometers and Fourier transform lens. The collimating lens and the Fourier transform lens of each spectrometer could be designed to the same structural style and parameters. The both spectrometers had a focal length of 1000mm, F number of 5, FOV(field of view) of 1°. Moreover, both image qualities were close to the diffraction limit, the distortion was less than 2%. The advantage of the instrument was that dual band spectral image could be acquired at the same time and the interferometer was miniaturized extremely in the case of unchanged technical indicators.

  10. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: ikunce@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)

    2015-11-05

    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  11. Mechanical Properties of DS NiAl/Cr(Mo) Alloys with Low Addition of Hf for High-temperature Applications

    Institute of Scientific and Technical Information of China (English)

    Xinghao DU; Jianting GUO

    2005-01-01

    A multiphase NiAl-28Cr-5.85Mo-0.15Hf alloy, which was directionally solidified (DS) in an Al2O3-SiO2 mold by standard Bridgman method and then underwent prolonged solution and aging treatment was prepared. The microstructure, tensile properties as well as tensile creep of the heat-treated alloy at different temperatures were studied. The alloy was composed of NiAl, Cr(Mo) and Hf-rich phase and small amount of fine Heusler phase (Ni2AlHf). Although the present alloy exhibited high tensile strength at Iow temperature, it was weaker than that of system with high content Hf but still stronger than that of many NiAl-based alloys at high temperatures. The fracture toughness is lower than that of DS NiAl-28Cr-6Mo alloy. Nevertheless, advantageous effects on the mechanical properties, i.e.the decrease in brittle-to-ductile transition temperature (BDTT) were obtained for the Iow content of Hf. The obtained creep curves exhibit conventional shape: a short primary creep and long accelerated creep stages. The rupture properties of the heat-treated alloy follow the Monkman-Grant relationship, which exhibits similar creep behavior to that of NiAl/Cr(Mo) system with high Hf content.

  12. Study on microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content

    International Nuclear Information System (INIS)

    Highlights: ► We examine the precipitates by HRTEM in the high manganese Al–Mg–Si–Cu alloy. ► Manganese content determines amount of secondary phases after homogenization. ► Increasing magnesium content promotes to precipitate S phase. ► Yield strength of the new alloy is 52–65% higher than that of commercial 6061 alloy. ► Uniform distribution of Mn dispersoids encourages to enhance mechanical properties. -- Abstract: The microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content were studied in the present work to develop a new alloy. The microstructure features were quantificationally determined by a combination of scanning electron microscope and high resolution transmission electron microscopy. The dominant strengthening precipitates comprising the needle-shaped pre-β″(or β″) and lath-shaped Q′ phases were identified in the T6 temper. With the increase of magnesium content, S phase was promoted to precipitate to give an enhancement in strength. The yield strength of the examined alloys with high manganese content was found to be about 52–65% higher than that of commercial 6061 alloy. It was considered that, in addition to the strengthening precipitates, Mn dispersoids generating the dispersion hardening effect and the homogeneous deformation contributed a lot to the favorable mechanical properties.

  13. Mechanical properties and microstructure of an α+β titanium alloy with high strength and fracture toughness

    Institute of Scientific and Technical Information of China (English)

    YU Yang; HUI Songxiao; YE Wenjun; XIONG Baiqing

    2009-01-01

    The Ti-Al-Sn-Zr-Cr-Mo-V-Si (Ti-62A) alloy, an alpha-beta alloy with high strength and fracture toughness, is currently used as an advanced structural material in aerospace and non-aerospace applications. Thermo-mechanical processes can be used to optimize the relationship be-twcen its strength and fracture toughness. A Ti-62A alloy bar can be machined through a transus β-forged plus α+β solution treated and aged specimen with a lamellar alpha microstructure. The effects of heat treatment on the mechanical properties were discussed. Heat treatment provided a practical balance of strength, fracture toughness, and fatigue crack growth resistance. A comparison of the Ti-62A alloy with the Ti-62222S alloy under the same thermo-mechanical processing conditions showed that their properties are at the same level.

  14. Effect of nanostructured composite powders on the structure and strength properties of the high-temperature inconel 718 alloy

    Science.gov (United States)

    Cherepanov, A. N.; Ovcharenko, V. E.

    2015-12-01

    The experimental results of the effect of powder nanomodifiers of refractory compounds on the strength properties, the macro- and microstructure of the high-temperature Inconel 718 alloy have been presented. It has been shown that the introduction of powder modifiers into the melt leads to a decrease in the average grain size by a factor of 1.5-2 in the alloy. The long-term tensile strength of the alloy at 650°C increases 1.5-2 times, and the number of cycles at 482°C before fracture grows by more than three times. The effect of nanoparticles on the grain structure and strength properties of the alloy is due to an increase in the number of generated crystallization centers and the formation of nanoparticle clusters of refractory compounds at boundaries and junctions in the formed grain structure, which hinder the development of recrystallization processes in the alloy.

  15. Weldability of high-toughness iron - 12 percent-nickel alloys with reactive metal additions of titanium, aluminum, or niobium

    Science.gov (United States)

    Delvetian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high toughness Fe-12Ni alloys designed for cryogenic service were welded by using the gas tungsten arc welding process. Evaluation of their weldability included equivalent energy fracture toughness tests, transverse weld tensile tests at -196 and 25 C, and weld crack sensitivity tests. The Fe-12Ni-0.25Ti alloy proved extremely weldable for cryogenic applications, having weld and heat affected zone properties comparable to those of the wrought base alloy. The Fe-12Ni-0.5Al alloy had good weld properties only after the weld joint was heat treated. The Fe-12Ni-0.25Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  16. Lubrication properties of silver-palladium alloy prepared by ion plating method for high temperature stud bolt

    Institute of Scientific and Technical Information of China (English)

    Jung-Dae KWON; Sunghun LEE; Koo-Hyun LEE; Jong-Joo RHA; Kee-Seok NAN; Se-Hun KWON

    2011-01-01

    As a solid lubricant, silver-palladium (Ag-Pd) alloy coating was investigated for the application to high temperature studbolt. A glue layer nickel (Ni) film was deposited on the surface of the hex bolt sample and then Ag-Pd alloy coating was performed on it using ion plating method. The friction coefficient of Ag-Pd alloy film coated bolt was lower than that of N-5000 oil coated bolt by the result of axial force measurement. The cyclic test of heat treatment was conducted to evaluate the durability of Ag-Pd alloy film coated bolt. In a cycle, sample was assembled into the block using torque wrench, followed by heating and disassembling. It was not successful to disassemble the N-5000 oil coated bolt from the block after only one cycle. However, the Ag-Pd alloy film coated bolt was able to be disassembled softly till 12 cycles.

  17. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  18. Phase Stability, Kinetic Diagrams and Diffusion Path in High Temperature Oxidation of Binary Solid-Solution Alloys

    Institute of Scientific and Technical Information of China (English)

    Yan NIU; F. Gesmundo

    2003-01-01

    The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams,which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.

  19. Effect of hydrogenation content on high temperature deformation behavior of Ti-6Al-4V alloy in isothermal compression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Miaoquan; Zhang, Weifu [School of Materials Science and Engineering, Northwestern Polytechnical University, Xian 710072 (China)

    2008-06-15

    Isothermal compression of hydrogenated Ti-6Al-4V alloy was carried out on a Thermecmaster-Z simulator at deformation temperatures between 760 and 920 C, constant strain rate between 0.01 and 10.0s{sup -1}, and a maximum height reduction of 60%. The high temperature deformation behavior of hydrogenated Ti-6Al-4V alloy was characterized based on an analysis of the stress-strain behavior, kinetics, and processing map. The smallest activation energy for deformation obtained in isothermal compression of hydrogenated Ti-6Al-4V alloy is 208.3 kJ/mol in the two-phase region of Ti-6Al-4V alloy with hydrogen contents of 0.2 wt%. Three unstable deformation regions were obtained by constructing the processing map of hydrogenated Ti-6Al-4V alloy with hydrogen contents of 0.2 wt%. (author)

  20. Local environmental effects in magnetic alloys and multilayers

    International Nuclear Information System (INIS)

    The authors have developed an ab-initio method for calculating the static response functions in substitutional alloys. For magnetic alloys, in addition to the nuclear diffuse scattering, a contribution to the alloy diffuse scattering intensities results from the response of the local moments to changes in the local chemical environment (i.e. jμi/jcj) The authors present results of first-principles calculations of these local response functions in magnetic alloys. These response functions, which may be directly compared to neutron-scattering and Moeβbauer experiments, are derived via a mean-field statistical mechanical description of compositional fluctuations in alloys. The statistical averages are performed via the Korringa-Kohn- Rostoker coherent potential approximation, which incorporates the electronic structure of the high-temperature, chemically disordered state