WorldWideScience

Sample records for alloy films prepared

  1. Platinum-Iridium Alloy Films Prepared by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; CHEN Li; CAI Hongzhong; ZHENG Xu; YANG Xiya; HU Changyi

    2012-01-01

    Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors.Effects of deposition conditions on composition,microstructure and mechanical properties were determined.In these experimental conditions,the purities of films are high and more than 99.0%.The films are homogeneous and monophase solid solution of Pt and Ir.Weight percentage of platinum are much higher than iridium in the alloy.Lattice constant of the alloy changes with the platinum composition.Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~550℃.The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.

  2. PREPARING Ni–W ALLOY FILMS WITH LOW INTERNAL STRESS AND HIGH HARDNESS BY HEAT TREATING

    OpenAIRE

    RUI LIU; HONG WANG; JIN-YUAN YAO; XUE-PING LI; GUI-FU DING

    2007-01-01

    In this paper, the internal stress and hardness of Ni–W alloy films with W contents in the range of 0–59 wt% were investigated. The amorphous Ni–W alloy films were electrodeposited with 59 wt% W content and the structure of crystalline alloy films was formed after heat treating. The experimental results showed that heat treating could prepare Ni–W alloy films with lower internal stress compared with low W content alloy films, and the heat treated alloy films still have high hardness. The inte...

  3. Electrochemical preparation of La-Co-Fe alloy films in dimethylsulfoxide (DMSO)

    Institute of Scientific and Technical Information of China (English)

    袁定胜; 黄开胜; 刘冠昆; 童叶翔; 沙励嫦

    2001-01-01

    Potentiostatic and pulse electrolysis techniques were used to prepare La-Co-Fe alloy films using ethylenediamine (EN) as complexant. Surfaces of alloy films obtained by these two techniques are smooth, adhesive, compact and metallic luster. The contents of La in alloy films obtained by potentiostatic electrolysis technique are in the range of 13.23%~47.67%. The contents of La in alloy films deposited by pulse electrolysis technique are in the range of 10.67%~16.29%.

  4. Preparation and Corrosion Resistance of Rare Earth Ceramic Film on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Guo Yuandong; Li Yingjie

    2004-01-01

    With the purpose of improving corrosion resistance and solving environmental pollution caused by traditional protective technique, rare earth ceramic film on AZ91 magnesium alloy was prepared by dip coating process, and technical parameters of preparation were defmed. Microstructure and composition of the film were studied and corrosion resistance was evaluated as well. The results show that rare earth ceramic film is uniform,dense, with strong cohesion and intact coverage. The film is mainly made up of CeO2 and MgCeO3. The results of corrosion experiments approve that the film acts as a barrier to isolate the contact of the substrate with corrosion media and decreas corrosion rate. Polarization curve of the coated sample shiftes to positive potential obvito 2.7 × 104 Ω. These facts indicate that rare earth ceramic film could effectively improve corrosion resistance of AZ91 magnesium alloy.

  5. AlCu alloy films prepared by the thermal diffusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico); Corona, J.E.; Sosa, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico)

    2010-07-15

    100-nm thick films of Al{sub 1-x}Cu{sub x} alloys were prepared on glass substrates by thermal diffusion technique. The Cu atomic concentration was varied from 10% to 90%. Alloys were prepared at different temperatures into a vacuum oven with Argon atmosphere. Two thermal processes were used: i) heating the film at 400 deg. C in a single step, and ii) heating the films in sequential steps at 100, 200, 300 and 400 deg. C. Morphology, electrical resistivity, and crystalline orientation of the alloys were studied. The electrical resistivity and surface roughness of the alloys were found to depend strongly on the atomic composition and the diffusion temperature. However, we did not find differences between samples prepared under the two thermal processes. Alloys prepared with x = 0.6 and x = 0.1-0.3 as Cu at concentration exhibited values on electrical resistivity and surface roughness lower than pure Al. Different phases of the Al{sub 1} {sub -} {sub x}Cu{sub x} films were observed as a function of Cu concentration showing a good agreement with the AlCu phase diagram.

  6. Preparation of Dy-Bi alloy films by electrodeposition in organic bath

    Institute of Scientific and Technical Information of China (English)

    LI Gaoren; TONG Yexiang; LIU Guankun

    2004-01-01

    The cyclic voltammetry and potentiostatic electrolysis were used to investigate the preparing of Dy-Bi alloy films in LiCl-DMSO (dimethylsulfoxide) system. The effects of several factors including the potential of deposition, concentrations of main salts, and the concentration ratio of DyCl3 to Bi(NO3)3 were studied. Dy-Bi alloy films containing 4.82%-80.62% (mass fraction) dysprosium were prepared in DyCl3-Bi(NO3)3-LiCl-DMSO system by controlling the system composition and deposition conditions. The films are gray, uniform, metallic luster and adhere firmly to the copper substrates analyzed by SEM (scanning electron microscope), EDS (X-ray energy dispersive analysis), and XRD (X-ray diffraction). After heat treatment at 718 K for l h, the alloy phase of Dy-Bi was found in XRD patterns.

  7. Preparation and Performance of Rare Earths Chemical Conversion Film on Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.

  8. Electrochemical Preparation of La-Fe Alloy Films in Dimethylsulfoxide (DMSO)

    Institute of Scientific and Technical Information of China (English)

    袁定胜; 刘冠昆; 童叶翔

    2002-01-01

    The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe2+ and La3+ in FeCl2-LiCl-DMSO and LaCl3-LiCl-DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe2+ to Fe is irreversible in one step,while the electroreduction of La3+ to La is quasi-reversible. The diffusion coefficient of La3+ in LaCl3-LiCl-DMSO system at 298 K was 3.1×10-6 cm2s-1. The diffusion coefficient and transfer coefficient of Fe2+ in FeCl2-LiCl-DMSO system at 298 K were 2.54×10-6 cm2*s-1 and 0.24, respectively. La-Fe alloy films containing La from 22.7% to 37.1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1.750 to -2.450 V (vs SCE). The fine La-Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA*cm-2. The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.

  9. Preparation of Sm–Ru bimetallic alloy films on Ru(0001) surface by vapour-deposition and annealing

    Indian Academy of Sciences (India)

    G Ranga Rao; H Nozoye

    2001-12-01

    Sm–Ru intermetallic surface alloy films were prepared by vacuum deposition and annealing of rare earth Sm on single crystal Ru(0001) surface. The Ru 3 and Sm 3 core level spectra clearly show the formation of surface alloy layers. XPS measurements on surface alloy film revealed an induced peak in the Ru3 region at lower binding energy by 1 eV compared to the bulk Ru (elemental) suggesting an electronic effect of alloying and Sm–Ru bond formation. The Sm 35/2 photoemission peak of Sm film consists of strong features characteristic of Sm(II) with electron configuration 46 (5\\ 6)2 and Sm(III) with electron configuration 46 (5\\ 6)3. It is observed that the Sm(II) feature decreases in intensity upon alloy formation with surface Ru atoms. Oxidation of these films with carbon monoxide indicates alloy breakdown due to the oxidation of Sm atoms selectively. Alloy oxidation also shows a clear shift of Sm 35/2 feature.

  10. X-Ray Magnetic Circular Dichroism Measurement of Fe-Co Alloy Films Prepared by Electrodeposition

    Institute of Scientific and Technical Information of China (English)

    LI Zong-Mu; XU Fa-Qiang; WANG Li-Wu; WANG Jie; ZHU Jun-Fa; ZHANG Wen-Hua

    2007-01-01

    The macro- and micro-magnetic properties of Fe-Co alloy films eletrodeposited on GaAs(100) are studied by synchrotron radiation x-ray magnetic circular dichroism (XMCD) in combination with the magneto-optical Kerr effect (MOKE) measurements and magnetic force microscopy (MFM). The orbital and spin magnetic moments of each element in the Fe-Co alloy are determined by the sum rules of XMCD. Element-specific hysteresis loops (ESHL) are obtained by recording the La MCD signals as a function of applied magnetic field. MOKE results reveal that the amorphous films are magnetically isotropic in the surface plane. The MFM image shows that the dimension of the magnetic domains is about 1-2 μm, which is much larger than that of the grains, indicating that there are intergranular correlations among these grains. Both ESHL and MOKE hysteresis loops indicate the strong ferromagnetic coupling of Fe and Co in the alloy films.

  11. Preparation of Er-Fe Alloy Films in Dimethylsulfoxide by Electrodeposition Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO4-DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate that the reductions of Fe(Ⅱ) to Fe(0) and Er(Ⅲ) to Er(0) were irreversible at Pt and Cu electrodes. The diffusion coefficient and the electron transfer coefficient of Fe(Ⅱ) in a 0.01 mol/L FeCl2-0.1 mol/L LiClO4-DMSO system at 303 K were 1.70×10-10 m2/s and 0.08 respectively, the diffusion coefficient and the electron transfer coefficient of Er(Ⅲ) in a 0.01 mol/L ErCl3-0.1mol/L LiClO4-DMSO system at 303 K were 1.47×10-10 m2/s and 0.108 respectively. The homogeneous, strong adhesive Er-Fe alloy films containing Er of 31.39%-42.12% in mass fraction with metallic lustre were prepared by potentiostatic electrolysis on a Cu electrode in a ErCl3-FeCl2-LiClO4-DMSO system at -1.75--2.50 V(vs. SCE).

  12. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  13. A Study of Thin Film Resistors Prepared Using Ni-Cr-Si-Al-Ta High Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Ruei-Cheng Lin

    2015-01-01

    Full Text Available Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3 substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2 casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and Auger electron spectroscopy (AES. When the annealing temperature was set to 300°C, the Ni-Cr-Si-Al-Ta films with an amorphous structure were observed. When the annealing temperature was at 500°C, the Ni-Cr-Si-Al-Ta films crystallized into Al0.9Ni4.22, Cr2Ta, and Ta5Si3 phases. The Ni-Cr-Si-Al-Ta films deposited at 100 W and annealed at 300°C which exhibited the higher resistivity 2215 μΩ-cm with −10 ppm/°C of temperature coefficient of resistance (TCR.

  14. Preparation and Characterization of Coevaporated Cd1−xZnxS Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Wei Li

    2011-01-01

    Full Text Available Cd1-xZnxS thin films have been prepared by the vacuum coevaporation method. The structural, compositional, and optical properties of Cd1-xZnxS thin films have been investigated using X-ray diffraction, X-ray fluorescence, and optical transmittance spectra. As-deposited Cd1-xZnxS thin films are polycrystalline and show the cubic structure for x=1 and hexagonal one for x<1 with the highly preferential orientation. The composition of Cd1-xZnxS thin films determined from Vegard's law and quartz thickness monitors agrees with that determined from the X-ray fluorescence spectra. Optical absorption edge of optical transmittance for Cd1-xZnxS thin films shows a blue shift with the increase of the zinc content. The band gap for Cd1-xZnxS thin films can be tuned nonlinearly with x from about 2.38 eV for CdS to 3.74 eV for ZnS. A novel structure for CuInS2-based solar cells with a Cd0.4Zn0.6S layer is proposed in this paper.

  15. Preparation,structure and properties of porous polyimide films via PAA/PU alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Jiugui; JIANG Lizhong; ZHAN Jiayu; WU Dezhen; JIN Riguang

    2007-01-01

    A new route to porous polyimide(PI)films with pore sizes in the nanometer regime was developed.A polyamic acid(PAA)/polyurethane(PU)blend with PU as the disperse phase was first prepared via in situ polymerization of pyromellitic dianhydride and 4,4-oxydianiline in PU solutions.Porous PI films were obtained from PAAJPU films by thermolysis of PU at 360℃ and imidization of PAA at 300℃,respectively.Fourier transform infrared spectroscopy and thermal gravimetric analysis were used to detect the imidization and thermolysis processes of PAA/PU blends under thermal treatment.The microporous structure of the PI films was observed by transmission electron microscopy.It was found that the size and content of pores increased with an increase in the PU mass fraction in the PAA/PU blend up to 20%.Because of the existence of nanopores,the dielectric constant of PI films decreased by a wide margin and was less than 2.0 at a PU mass fraction of 20%.It implies that this is an effective means to reduce the dielectric constant of PI,but it also causes the decrease of tensile strength and the rise of water absorption.

  16. Nanocomposite TiC/a-C:H film prepared on titanium aluminium alloy substrates by PSII assistant MW-ECRCVD

    Institute of Scientific and Technical Information of China (English)

    Ma Guo-Jia; Liu Xi-Liang; Zhang Hua-Fang; Wu Hong-Chen; Peng Li-Ping

    2007-01-01

    Thin films of titanium carbide and amorphous hydrogenated carbon have been synthesized on titanium aluminium alloy substrates by PSII assisted MW-ECRCVD with a mirror field. The microstructure, chemical composition and nanometre grains (namely, the so-called nanocomposite structure). The size of TiC grains of nanocomposite TiC/DLC film is about 5 nm. The nanocomposite structure has obvious improvement in the mechanical properties of DLC film.the coherent strength is also obviously enhanced at the critical load of about 35N.

  17. Electrodeposition of Sr-Ti alloy films from DMSO bath

    International Nuclear Information System (INIS)

    Electrodeposition of Sr-Ti alloy films from non aqueous dimethyl sulphoxide (DMSO) bath has been carried out onto stainless steel and fluorine doped tin oxide (FTO) coated glass substrate. The preparative parameters were studied and optimised. Alloy films with thickness 2 to 3 microns were obtained for 30 minutes of deposition. The films were uniform, dense and adhesive to the substrate. The electrodeposited Sr-Ti alloy films were oxidised at higher temperature in order to obtain SrTiO3 films. Electrical and microstructural properties were carried out. (author). 6 refs., 6 figs

  18. Sweep potential deposition of Tm-Ni-Co alloy films in dimethylsulfoxide

    Institute of Scientific and Technical Information of China (English)

    YUAN Dingsheng; LIU Yingliang; ZHANG Jingxian; LIU Guankun; TONG Yexiang

    2004-01-01

    The Tm-Ni-Co alloy films have been prepared by the sweep potential deposition technique. The surface appearance of Tm-Ni-Co alloy films was silver, smooth and adhesive. The surfaces of Tm-Ni-Co alloy films observed by scanning electron microscope (SEM) were uniform, adhesive and compact. The sizes of metallic grains were about 80-100 nm, 100-200 amorphous as proven by the X-ray diffraction (XRD).

  19. Preparation of hydrogenated amorphous silicon tin alloys

    OpenAIRE

    Vergnat, M.; Marchal, G.; Piecuch, M.

    1987-01-01

    This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples.

  20. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation

  1. Electro-assisted preparation of dodecyltrimethoxysilane/TiO{sub 2} composite films for corrosion protection of AA2024-T3 (aluminum alloy)

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei; Yang Yaqin; Liu Liang [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Hu Jiming, E-mail: kejmhu@zju.edu.c [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Zhang Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China)

    2010-03-01

    Thin films of organosilanes have been successfully used as the alternative to toxic chromate coatings for surface pretreatment of metals and alloys. To further improve their corrosion performance, in the present work nano-scaled TiO{sub 2} particles were added to the dodecyltrimethoxysilane (DTMS) films coated onto AA2024-T3 substrates, by using either the dip-coating or the cathodically electro-assisted deposition process. The obtained composite films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle measurements, Fourier transform reflection-absorption IR (FTRA-IR) and electrochemical impedance spectroscopy (EIS). The results show that these two techniques (nanoparticles incorporation and the electro-assisted deposition) both facilitate the deposition process of silane films, giving thicker deposit and higher coverage surface along with higher roughness and hydrophobicity, and thereby improve their corrosion resistance. Moreover, the corrosion performance of silane films is further improved by the combined use of nanoparticles modification and electro-assisted deposition.

  2. Preparation of Mg-Yb alloy film by electrolysis in the molten LiCl-KCl-YbCl_3 system at low temperature

    Institute of Scientific and Technical Information of China (English)

    陈野; 叶克; 张密林

    2010-01-01

    The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...

  3. Preparation of electrodeposited Zn-Ni-B alloy coatings

    Science.gov (United States)

    Sakai, Taro; Kamimoto, Yuki; Ichino, Ryoichi

    2016-01-01

    We prepared Zn-Ni-B alloys with high Zn content and high corrosion resistance. The composition of the alloys was controlled by potentiostatic electrolysis. In the electroplating bath, dimethylamineborane was used as the B source. The characterization of the alloys and corrosion resistance evaluation were carried out by X-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), Tafel plots, and cyclic corrosion tests. All films were categorized into three groups on the basis of the results of XRD analysis, and it was found by TEM analysis that the Ni-B-type showed an amorphous structure. The Ni-B-type could contain up to 50.6 mol % Zn and showed similar or better anticorrosion properties than the amorphous Ni-B films. In the Ni-B-type, the higher the Zn content, the higher the corrosion resistance. The Zn-Ni-B alloys had almost the same electrochemical corrosion resistance and Zn content as the Zn-Ni-P alloys.

  4. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  5. NUCLEATION RATE OF DIAMOND FILMS ON WC-Co ALLOYS

    OpenAIRE

    SHA LIU

    2005-01-01

    Diamond-coated hard alloys are prospective tool materials for extreme cutting conditions. Nucleation rate is one of important factors that affect the qualities of diamond thin films on WC-Co alloys. However, theoretical reports on nucleation rate of diamond films on WC-Co alloys are scarce. Combining the unique diamond strong orientation with substrate surface properties, an improved theoretical formula on nucleation rate of diamond films on the WC-Co alloys is deduced in this paper. First, t...

  6. Evolution of Hydrogen Storage Alloys Prepared by Special Methods

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Zhang Ximin; Jing Hai; Li Chengdong; Xu Jun

    2004-01-01

    Microstructure characteristics and electrochemical properties of hydrogen storage alloys prepared by gas atomization, melt spinning and strip casting respectively were outlined.The advantages, disadvantages and research development of the above methods for preparing hydrogen storage alloys were explained.The strip casting is a new special means for preparing AB5 rare earth hydrogen storage alloys of high performance and low cost, and the study of the strip casting for preparing hydrogen storage alloys is presented specially.

  7. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengxia; Liang, Jun, E-mail: jliang@licp.cas.cn; Peng, Zhenjun; Liu, Baixing

    2014-09-15

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion.

  8. Preparation of Ce Film on Aluminum Alloy by Brush Plating and Its Corrosion Resistance%铝合金表面电刷镀制备稀土铈转化膜及其耐蚀性

    Institute of Scientific and Technical Information of China (English)

    付大海; 韩忠智; 唐鋆磊; 唐聿明; 左禹

    2011-01-01

    A rare earth Ce film was prepared on LY12 aluminum alloy by brush plating. The obtained Ce film showed layered structure, adhered well on the substrate and showed obviously increased corrosion resistance in NaCl solution. The influences of plating voltage and Ce concentration on the film properties were studied and the best corrosion resistance was obtained under the condition of 7 V and 20 g/L Ce salt concentration. After 480 h of salt fog testing, corrosion resistance of the brush plated surface was estimated to be above 8 grade. The corrosion current density decreased by one order of magnitude and the impedance at low frequency increased by about 30 times in contrast to the original LY12 alloy. Particularly, the strong oxidants are not included in the plating bath, hence the bath is more stable and may be easily recycled. The method may be used to increase corrosion resistance for aluminum alloy equipments with large areas at industrial cases.%利用电刷镀技术在铝合金表面制备了稀土铈转化膜,得到的稀土膜层厚度均匀,呈层状结构,与基体结合良好,在NaCl溶液中具有良好的耐蚀性.研究了刷镀电压和铈盐浓度对膜层耐蚀性的影响,得到在7 V电压和20 g/L铈盐浓度下制备的膜层具有良好耐蚀性能,经过480 h盐雾试验后,其表面耐蚀性评价达到8级以上,镀膜试样与原始LY12铝合金试样相比,腐蚀电流密度降低一个数量级,低频阻抗值则增大约30倍.该铝合金表面稀土转化膜电刷沉积溶液中不合强氧化剂,因此溶液长时间稳定且便于循环利用,可以对铝合金表面进行现场大面积常温刷镀,提高耐蚀性.

  9. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  10. Spray pyrolysis process for preparing superconductive films

    International Nuclear Information System (INIS)

    This paper describes a spray pyrolysis method for preparing thin superconductive film. It comprises: preparing a spray pyrolysis solution comprising Bi,Sr,Ca and Cu metals in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature of about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate to a third temperature of about 870 degrees-890 degrees C to melt the film; once the film and substrate reach the third temperature, further heat treating the film and substrate; cooling the film and substrate to ambient temperature. This patent also describes a spray pyrolysis method for preparing thin superconductive films. It comprises: preparing a spray pyrolysis solution comprising Bi, Ca and Cu metals and fluxing agent in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate at a third temperature about 840 degrees-860 degrees C; and cooling the film and substrate to ambient temperature

  11. Magnetic properties and high frequency characteristics of FeCoAlON alloy films

    International Nuclear Information System (INIS)

    In this work, we report the magnetic properties, domain structures and high frequency properties of FeCoAlON alloy films prepared by reactive magnetron sputtering. With increasing N addition content, the films transfer from in-plane anisotropic properties to isotropic behavior. The obvious stripe domain structure is observed in the films with high N content, and the domain parameters depend on the thickness of the films. The XRD analysis indicates that the stripe domain may origin from the stress-induced perpendicular anisotropy by Al, O and N addition. Meanwhile, a double-peak resonance behavior is observed in the permeability spectra of the films with stripe domain structure

  12. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  13. Microstructure and magnetic properties of electrodeposited Gd-Co alloy films

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-aeetamide-NaBr-KBr melt at 353 K.The electroreduction of Co2+ and Gd3+ was investigated by cyclic voltammetry.The reduction of Co2+ is an irreversible process.Gd3+ cannot be reduced alone,but it can be inductively co-deposited with Co2+.Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential.The content of Gd was analyzed using an inductively coupled plasma emission spectrometer(ICPES),and the microstructure was observed by scanning electron mierograph (SEM).The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere,and then were investigated by XRD.The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM).The experimental results reveal that the deposited Gd-Co alloy films are amorphous,while the annealing causes the samples to change from amorphous to polycrystalline,thus enhancing their magnetoerystalline anisotropy and coercivity.Moreover,the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.

  14. Enhancement of ferromagnetic resonance in Al2O3-doped Co2FeAl Heusler alloy film prepared by oblique sputtering

    Science.gov (United States)

    Li, Shan-Dong; Cai, Zhi-Yi; Xu, Jie; Cao, Xiao-Qin; Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Xie, Shi-Ming

    2014-10-01

    Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeAl)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post annealing. The in-plane uniaxial magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe = 79.5775 Am-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.

  15. Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications

    Science.gov (United States)

    Zhang, F.; Weidmann, A.; Nebe, B. J.; Burkel, E.

    2009-01-01

    TiMn alloy was prepared by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS) technique for exploration of biomedical applications. The microstructures, mechanical properties and cytotoxicity of the TiMn alloys were investigated in comparison with the pure Ti and Mn metals. Ti8Mn and Ti12Mn alloys with high relative density (99%) were prepared by mechanical alloying for 60 h and SPS at 700 °C for 5 min. The doping of Mn in Ti has decreased the transformation temperature from α to β phase, increased the relative density and enhanced the hardness of the Ti metal significantly. The Ti8Mn alloys showed 86% cell viability which was comparable to that of the pure Ti (93%). The Mn can be used as a good alloying element for biomedical Ti metal, and the Ti8Mn alloy could have a potential use as bone substitutes and dental implants.

  16. Study on hydrogen evolution performance of the carbon supported PtRu alloy film electrodes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.

  17. High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films

    Institute of Scientific and Technical Information of China (English)

    HIHARA; Takehiko; SUMIYAMA; Kenji

    2010-01-01

    Magnetically soft Fe-Co-based nanocrystalline alloy films were produced by two preparation methods:One using a new energetic cluster deposition technique and another using a conventional magnetron sputtering technique.Their structural,static magnetic properties and high-frequency magnetic characteristics were investigated.In the energetic cluster deposition method,by applying a high-bias voltage to a substrate,positively charged clusters in a cluster beam were accelerated electrically and deposited onto a negatively biased substrate together with neutral clusters from the same cluster source,to form a high-density Fe-Co alloy cluster-assembled film with good high-frequency magnetic characteristics.In the conventional magnetron sputtering method,only by rotating substrate holder and without applying a static inducing magnetic field on the substrates,we produced Fe-Co-based nanocrystalline alloy films with a remarkable in-plane uniaxial magnetic anisotropy and a good soft magnetic property.The obtained Fe-Co-O,Fe-Co-Ti-N,and Fe-Co-Cr-N films all revealed a high real permeability exceeding 500 at a frequency up to 1.2 GHz.This makes Fe-Co-based nanocrystalline alloy films potential candidates as soft magnetic thin film materials for the high-frequency applications.

  18. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    Directory of Open Access Journals (Sweden)

    Bao Lin

    2014-10-01

    Full Text Available Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30 and white gold (Au50Ag50 foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM. Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested.

  19. Polylactide microcapsules and films: preparation and properties

    OpenAIRE

    Sawalha, H.I.M.

    2009-01-01

    This thesis aims at preparation of hollow polylactide (PLA) microcapsules for use as ultrasound contrast agents with controlled size, structure and mechanical and thermal properties. The microcapsules were prepared with multistage premix membrane emulsification. The mechanical and thermal properties of the microcapsules, and of films that were prepared under similar conditions, were highly dependent on the non-solvent and the liquid used as a template for the hollow core of the microcapsule. ...

  20. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  1. Preparation and characterization of Pd-Ag alloy composite membrane with magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    赵宏宾[1; 熊国兴[2; N.Stroh[3; H.Brunner[4

    1999-01-01

    A Pd-Ag (24 wt%) alloy composite membrane was prepared by the magnetron sputtering. A γ-Al2O3 membrane was synthesized by the sol-gel method and used as substrate of the Pd-Ag alloy film. The process parameters of the magnetron sputtering were optimized as a function of the compactness of the Pd-Ag alloy film. The best membrane with a thickness of 1 μm was produced with a sputtering pressure of 2.7 Pa and a substrate temperature of 400℃. The membrane had an H2/N2 permselectivity of 51.5--1000 and an H2 permeation rate of 0.036--1.17×10-5cm3/cm2·s· Pa, depending on operating conditions.

  2. Unusual magnetic phases in MnCo ultrathin alloy films

    International Nuclear Information System (INIS)

    For over a quarter century the Mn : Co magnetic phase diagram has been controversial. We find that for Mn : Co ultrathin alloys with dilute Mn concentration, the Mn and Co moments are coupled parallel for dilute Mn concentrations using X-ray magnetic circular dichroism (XMCD), in contradistinction to the latest accepted bulk results using neutron scattering. To determine if the parallel coupling was the result of epitaxial strain, surface or interface effects, we also performed measurements on very thick films of the same compositions. XMCD shows that thick film Mn : Co alloys have identical magnetic coupling as ultrathin films. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Nanocrystalline CdS{sub 1−x}Se{sub x} alloys as thin films prepared by chemical bath deposition: Effect of x on the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ramirez, E.A. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Hernandez-Perez, M.A., E-mail: mhernandezp0606@ipn.mx [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Rangel-Salinas, E. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico)

    2014-12-05

    Highlights: • CdS1−xSe{sub x} films with tunable structural and optical properties were grown by CBD. • Thin films are composed by a solid solution of the CdS{sub 1−x}Se{sub x} ternary alloy. • Crystal size, band gap and photoluminescence signal, decrease with the composition. • Ternary alloys show hexagonal phase with preferential orientation on (0 0 2) plane. • Films with x ⩾ 0.5 show semi-spherical grains composed by nanoworms structures. - Abstract: CdS{sub 1−x}Se{sub x} thin films were deposited on Corning glass substrates at 75 °C by chemical bath deposition (CBD) varying the composition “x” from 0 to 1 at a constant deposition time of 120 min. The composition of the films was adjusted by modifying the concentration as well as the ratio of the precursors. The morphological, compositional, structural and optical properties of the films were analyzed using several techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), UV–Vis Spectroscopy (UV–Vis) and Photoluminescence (PL). The films grow as layers following the ion by ion mechanism, the density of the films decreases with x. Films are constituted by clusters (100–600 nm in diameter) of semispherical particles with sizes fluctuating from 10 to 20 nm. For x ⩾ 0.5 the particles are well-arranged in a “worm-like” structure. All the films are polycrystalline, to x = 0 (CdS) the cubic phase is present, the increase of composition promotes the formation of hexagonal phase or a mixture of both cubic and hexagonal phases. Preferential orientation in the (1 0 0) or (0 0 2) plane is observed. The crystal size decreases from 20 to 6 nm when x is increased. The optical properties can be easily tuned by adjusting the composition. Optical absorption analysis shows that the band gap (E{sub g}) value shifts to red in function of x (from 2.47 to 1.99 eV). Photoluminescence signal changes as “x” varies showing a regular behavior

  4. Effect of swift heavy ion irradiation on the physical properties of CuIn(S 0.4Se 0.6) 2 alloy thin films prepared by solution growth technique

    Science.gov (United States)

    Chavhan, S. D.; Deshpande, N. G.; Gudage, Y. G.; Ghosh, A.; Ahire, R. R.; Borse, S. V.; Khairnar, R. S.; Jadhav, K. M.; Singh, F.; Sharma, Ramphal

    2008-06-01

    Alloy thin films of CuIn(S 0.4Se 0.6) 2 material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 °C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5×10 12 ions/cm 2 on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S 0.4Se 0.6) 2 thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.

  5. Effect of swift heavy ion irradiation on the physical properties of CuIn(S{sub 0.4}Se{sub 0.6}){sub 2} alloy thin films prepared by solution growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, S.D.; Deshpande, N.G.; Gudage, Y.G.; Ghosh, A.; Ahire, R.R.; Borse, S.V. [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (M.S.) (India); Khairnar, R.S. [Department of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (M.S.) (India); Jadhav, K.M. [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (M.S.) (India); Singh, F. [Inter University Accelerator Centre (IUAC)/(NSC), New Delhi 110 067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (M.S.) (India)], E-mail: ramphalsharma@yahoo.com

    2008-06-15

    Alloy thin films of CuIn(S{sub 0.4}Se{sub 0.6}){sub 2} material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 deg. C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5x10{sup 12} ions/cm{sup 2} on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S{sub 0.4}Se{sub 0.6}){sub 2} thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.

  6. Preparation and Properties of Polyaniline Composite Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-hua

    2002-01-01

    Polyaniline (PAn) was synthesized by chemical oxidation polymerization. The conductive polymer doped by camphor sulfonic acid (CSA) and a matrix polymer,polyamide- 66, polyamide - 1010 or polyamide- 11, were dissolved in m-cresol and the blend solution was cast in a glass and dried for preparing polyaniline composite films.Conductivity was from 10 -6 to 10 0Ω-1·cm-1 with different weight fraction of PAn-CSA. The crystallizttion of the films was studied by means of differential scanning calorimeter (DSC). The treatment of the composite films in different pH value solution would result in decrease of conductivity, especially in an alkaline solution.

  7. Enhanced optical and electrical transitions of LaMg{sub 2}Ni alloy film upon hydrogen loading/unloading

    Energy Technology Data Exchange (ETDEWEB)

    Fang Fang; Zhang Jing; Zheng Shiyou; Chen Guorong [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu Yonggang [Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092 (China); Sun Dalin [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China)], E-mail: dlsun@fudan.edu.cn

    2008-01-15

    An LaMg{sub 2}Ni alloy film was prepared by electron beam evaporation plus annealing. Upon hydrogen loading/unloading, the film shows the reversible conversion from a metallic, reflecting state to a semiconducting, color-neutral transparent one. The contrast ratio of the resistivity between two states is over four orders of magnitude. The lower reflection in the dehydrogenated film is attributed to the rough surface originated from the previous hydrogenation.

  8. Effect of surface preparation on corrosion properties and nickel release of a NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    MIAO Weidong; MI Xujun; XU Guodong; LI Huachu

    2006-01-01

    Surface preparation is potentially important to the corrosion and biomedical properties of NiTi shape memory alloys.The effect of surface preparation on corrosion properties and nickel release of a Ti-56 wt.%Ni alloy has been studied.Surface of the NiTi coupons were prepared by four methods, namely, chemical etching, electropolishing, mechanical polishing and oxidizing, and then examined by corrosion test system.Furthermore, the Ni ion releases from NiTi samples with different surface preparations dipped in 1% HCl solution were analysed.Compared with the surface after chemical treatment, mechanical polishing and thermal oxidation, electropolished surface has better corrosion resistance and less nickel release for not only its lower surface roughness, but also the composition and property of its surface film.

  9. Influence of annealing temperature on properties of Cu(In,Ga)(Se,S)2 thin films prepared by co-sputtering from quaternary alloy and In2S3 targets

    International Nuclear Information System (INIS)

    Pentanary Cu(In,Ga)(Se,S)2 (CIGSS) thin films were deposited on soda-lime glass substrate by co-sputtering quaternary alloy, and In2S3 targets. In this study, we investigated the influence of post-annealing temperature on structural, compositional, electrical, and optical properties of CIGSS films. Our experimental results show that the CIGS quaternary target had chalcopyrite characteristics. All CIGSS films annealed above 733 K exhibited a polycrystalline tetragonal chalcopyrite structure, with (1 1 2) preferred orientation. The carrier concentration and resistivity of the resultant CIGSS layer annealed above 763 K was 4.86x1016 cm-3 and 32 Ω cm, respectively, and the optical band-gap of the CIGSS absorber layer was 1.18 eV. Raman spectral analysis demonstrated the existence of many different phases, including CuInSe2, CuGaSe2, and CuInS2. This may be because the vibration frequencies of In-Se, In-S bonds are similar to the Ga-Se and Ga-S bonds, causing their absorption bands overlap. -- Research Highlights: → We report a chalcopyrite Cu(In,Ga)(Se,S)2 (CIGSS) thin films on soda lime glass substrate by co-sputtering quaternary single-phase chalcopyrite CIGS alloy, and In2S3 targets. → By incorporating sulfur into partly selenized CIGS films, researchers fabricated a chalcopyrite CIGSS layer with double-graded band-gap structure. → The CIGS quaternary target and Raman spectra were analyzed for investigating the CIGSS structure and quality.

  10. Preparation of composite electroheat carbon film

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  11. PtxGd alloy formation on Pt(111): Preparation and structural characterization

    Science.gov (United States)

    Ulrikkeholm, Elisabeth T.; Pedersen, Anders F.; Vej-Hansen, Ulrik G.; Escudero-Escribano, Maria; Stephens, Ifan E. L.; Friebel, Daniel; Mehta, Apurva; Schiøtz, Jakob; Feidenhansl', Robert K.; Nilsson, Anders; Chorkendorff, Ib

    2016-10-01

    PtxGd single crystals have been prepared in ultra high vacuum (UHV). This alloy shows promising catalytic properties for the oxygen reduction reaction. The samples were prepared by using vacuum deposition of a thick layer of Gd on a sputter cleaned Pt(111) single crystal, resulting in a ∼63 nm thick alloy layer. Subsequently the surfaces were characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD) of CO. A Pt terminated alloy was observed upon annealing the sample to 600 ∘C. The LEED and synchrotron XRD experiments have shown that a slightly compressed (2 × 2) alloy appear. The alloy film followed the orientation of the Pt(111) substrate half the time, otherwise it was rotated by 30∘. The TPD spectra show a well-defined peak shifted down 200 ∘C in temperature. The crystal structure of the alloy was investigated using ex-situ X-ray diffraction experiments, which revealed an in-plane compression and a complicated stacking sequence. The crystallites in the crystal are very small, and a high degree of twinning by merohedry was observed.

  12. Preparation and corrosion resistance studies of nanometric sol-gel-based CeO{sub 2} film with a chromium-free pretreatment on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shiyan [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingswu@yeah.ne [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China)

    2010-01-01

    Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO{sub 2} thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO{sub 2} sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO{sub 2}. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.

  13. Nanocrystalline Pd alloy films coated by electroless deposition.

    Science.gov (United States)

    Strukov, G V; Strukova, G K; Batov, I E; Sakharov, M K; Kudrenko, E A; Mazilkin, A A

    2011-10-01

    The structures of palladium and palladium alloys thin films deposited from organic electrolytes onto metallic substrates by electroless plating method have been investigated. The coatings are dense, pore-free 0.005-1 microm thick films with high adhesive strength to the substrate surface. EDX, XRD, SEM and TEM methods were used to determine the composition and structure of alloy coatings of the following binary systems: Pd-Au, Pd-Ag, Pd-Ni, Pd-Pb, and ternary system Pd-Au-Ni. The coatings of Pd-Au, Pd-Ag and Pd-Ni have a solid solution structure, whereas Pd-Pb is intermetallic compound. It has been found that the deposited films consist of nanocrystalline grains with sizes in the range of 11-35 nm. Scanning and transmission electron microscopy investigations reveal the existence of clusters formed by nanocrystalline grains. The origin for the formation of nanocrystalline structures of coating films is discussed. PMID:22400291

  14. Surface and Electrical Properties of NiCr Thin Films Prepared by DC Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jicheng; TIAN Li; YAN Jianwu

    2008-01-01

    Several batches of NiCr alloy thin films with different thickness were prepared in a multi-targets magnetron sputtering apparatus by changing sputtering time while keeping sputtering target power of Ni and Cr fixed. Then the as-deposited films were characterized by energy-dispersive X-Ray spectrometer (EDX),Atomic Force Microscope (AFM) and four-point probe (FPP) to measure surface grain size, roughness and sheet resistance. The film thickness was measured by Alpha-Step IQ Profilers. The thickness dependence of surface roughness, lateral grain size and resistivity was also studied. The experimental results show that the grain size increases with film thickness and the surface roughness reaches the order of nanometer at all film thickness. The as-deposited film resistivity decreases with film thickness.

  15. Liquid phase separating mechanism and preparation techniques of immiscible alloys

    Institute of Scientific and Technical Information of China (English)

    刘源; 李言祥; 郭景杰; 贾均; 苏彦庆; 丁宏升

    2002-01-01

    Immiscible alloys have attracted growing interest for their valuable physical and mechanical properties. However, their production is difficult because of metallurgical problems in which there is a serious tendency for gravity separation in the region of the miscibility gap. So far the study on the liquid separation mechanism is still one of the important projects in the spatial materials science and the spatial fluid science. The studied results about the liquid phase separating mechanism of immiscible alloys are presented, at the same time the preparation techniques of homogeneous immiscible alloys are summarized, and the existing problems and the related researching areas in the future are also pointed out.

  16. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  17. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  18. Role of Stress in Thin Film Alloy Thermodynamics: Competition between Alloying and Dislocation Formation

    International Nuclear Information System (INIS)

    Using scanning tunneling microscopy (STM) and first-principles local-spin-density-approximation calculations to study submonolayer films of Co1-cAg c/Ru( 0001) alloys, we have discovered a novel phase-separation mechanism. When the Ag concentration c exceeds 0.4, the surface phase separates between a dislocated, pure Ag phase and a pseudomorphically strained Co0.6Ag 0.4 surface alloy. We attribute the phase separation to the competition between two stress relief mechanisms: surface alloying and dislocation formation. The agreement between STM measurements and our calculated phase diagram supports this interpretation

  19. Preparation and Characterization of Higher-Copper Restorative Dental Alloys

    International Nuclear Information System (INIS)

    A series of restorative dental alloys related to the ternary system Ag-Sn-Cu were prepared using high purity 99.99% elemental constituents. The effect of increasing the copper concentration on the micro-structural and mechanical properties of conventional dental amalgam alloy was investigated. Copper content was varied in the range of 10-30wt% and that of silver in the range of 40-60wt%, while tin percentage was kept constant between 28-30wt%. Selected desired compositions were weighed, melted, and homogenized for 1h in fused-alumina crucible using wire-resistance tube furnace at 1100-o-C under an inert atmosphere of argon gas. Two types of alloys were prepared, the first one was by quenching in water the alloy melt from a peak temperature of 725-o-C, while the second type was by slow furnace-cooling of the melt down to the room temperature. Annealing of the alloys at 350- 400-o-C for 24 hrs was also conducted to enhance the growth of the γ phase. The resultant alloys were then cooled to room temperature (R.T) and milled mechanically to obtain a powder having particles sizes in the range between 30-80μm. The resultant powdered alloys was then stress-relieved at 100-o-C for 1h. XRD analysis, optical microscopy, micro hardness, and compression strength tests were all used for the characterization and properties determination at different Cu-concentrations for the as-prepared and amalgamated alloys in addition to the powders.. The obtained relative values for the above-mentioned properties were closely related to those listed in the literatures and lies between those of mechanically-milled and those of spherical particles. Also the γ2 phase was disappeared at high copper content of > 20wt% (author).

  20. Electrodeposition of Er-Ni Alloy Film in Dimethylsulfoxide

    Institute of Scientific and Technical Information of China (English)

    李高仁; 童叶翔; 刘冠昆

    2002-01-01

    The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO4-DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol*L-1 ErCl3 -0.1 mol*L-1 LiClO4-DMSO system at 303K were 1.47×10-10 m2*s-1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol*L-1 NiCl2-0.1 mol*L-1 LiClO4-DMSO system at 303K were 3.38×10-10 m2*s-1 and 0.160 respectively. The homogeneous, strong adhesive Er-Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl3-NiCl2-LiClO4-DMSO system at -1.90~-2.55 V (vs SCE).

  1. Grain refinement of hypoeutectic Al-Si alloy prepared with ELTA by Al-4B master alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-xing; MENG Xiang-yong; LIU Zhi-yong; LIU Zhong-xia; WENG Yong-gang; SONG Tian-fu; YANG Sheng

    2006-01-01

    Electrolytic low-titanium aluminum (ELTA) was produced by adding TiO2 powder to an industrial aluminum electrolyzer.The grain refining effect of Al-4B master alloy in the hypoeutectic Al-Si alloy prepared by using ELTA was investigated, and compared with those of Al-5Ti, Al-5Ti-1B and Al-4B master alloys in the similar alloy prepared by using pure Al. The results indicate that when Al-4B is added to the melt of the alloy prepared by using ELTA in terms of the Ti/B mass ratio of 5:1, the grain refining effect is better than those of Al-5Ti, Al-5Ti-1B and Al-4B master alloys. Thus, using Al-4B to refine the grain of Al-Si alloys prepared by using ELTA will possibly become a feasible way of obtaining Al-Si alloy with homogeneous and fine microstructure.

  2. STUDY ON Ni-Cr SYSTEM SOLAR SELECTIVE THIN FILMS PREPARED BY MAGNETRON REACTIVE SPUTTERING PROCESS

    Institute of Scientific and Technical Information of China (English)

    B.W. Wang; H. Shen

    2002-01-01

    Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactivesputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as targetmaterial and copper sheets as substrate. Using SEM, Spectrophotometer and Talystepto analyze the relations between the selective characteristic and the structure, theformation and the thickness of the thin films. The aim is to obtain good solar selectivethin films with high absorptance and low emittance, which is applied to flat plate solarheat collectors.

  3. Electrochemical preparation and abnormal infrared effects of nanostructured Ni thin film

    Institute of Scientific and Technical Information of China (English)

    WANG Hanchun; ZHOU Zhiyou; TANG Wei; YAN Jiawei; SUN Shigang

    2004-01-01

    Nanometer-scale thin film of Ni supported on glassy carbon (nm-Ni/GC) was prepared by electrochemical deposition through cyclic voltammetry (CV). The properties of nm-Ni/GC were studied by electrochemical in situ FTIR reflection spectroscopy using CO adsorption as probe reaction. It has revealed that the nm-Ni/GC exhibits abnormal infrared effects (AIREs). The study has extended the investigation of the AIREs that we have discovered initially on nanostruetured film materials of platinum group metals and alloys to nanostructured film materials of iron group metals.

  4. Preparation of Indium Tin Oxide films deposited by reactive evaporation at different substrate-temperature and the properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Indium Tin Oxide films have been prepared at different substrate-temperature on glass substrates by reactive evaporation of In-Sn alloy with an oxygen pressure of 1.3 × 10-1 Pa and a deposition rate of 10-2 nm/s. The best ITO films obtained cm2v-1s-1. The influence of the substrate-temperature on the structural, optical and electrical properties of the obtained films has been investigated.

  5. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    International Nuclear Information System (INIS)

    Highlights: ► We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. ► The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. ► The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO2 were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH3(CH2)11Si(OCH3)3). The CeO2 films fabricated with 20-min immersion yield a water contact angle of 137.5 ± 2°, while 20-min DTS treatment on top of CeO2 can further enhance the water contact angle to 146.7 ± 2°. Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  6. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan, E-mail: liuyan2000@jlu.edu.cn [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Lu Guolong; Liu Jindan; Han Zhiwu; Liu Zhenning [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. Black-Right-Pointing-Pointer The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. Black-Right-Pointing-Pointer The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO{sub 2} were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The CeO{sub 2} films fabricated with 20-min immersion yield a water contact angle of 137.5 {+-} 2 Degree-Sign , while 20-min DTS treatment on top of CeO{sub 2} can further enhance the water contact angle to 146.7 {+-} 2 Degree-Sign . Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  7. Preparation and properties of biomedical porous titanium alloys by gelcasting.

    Science.gov (United States)

    Yang, Donghua; Shao, Huiping; Guo, Zhimeng; Lin, Tao; Fan, Lianpeng

    2011-08-01

    Porous titanium alloys have been prepared by gelcasting in this study. The elastic solid green body was first polymerized and then vacuum sintered to porous titanium alloys with low contamination by controlling sintering conditions. The microstructure and the total porosity of the vacuum sintered porous Ti-Co and Ti-Mo alloys were analyzed by using scanning electron microscopy and x-ray diffraction. Moreover, compression and bending tests were conducted to investigate their mechanical properties. The results show that open and closed three-dimensional pore morphologies and total porosity ranging from 38.34% to 58.32% can be achieved. In contrast to porous Ti by gelcasting, the compression and bending strengths of porous titanium alloys were significantly increased by adding Mo and Co with Young's modulus ranging between 7-25 GPa, which is close to that of human cortical bone, therefore being suited for potential application in load-bearing implants.

  8. In situ oxidation studies on /001/ copper-nickel alloy thin films

    Science.gov (United States)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1977-01-01

    High-resolution transmission electron microscopy studies are reported of (001)-oriented single crystalline thin films of Cu-3%Ni, Cu-4.6%Ni, and Cu-50%Ni alloy which were prepared by vapor deposition onto (001) NaCl substrates and subsequently annealed at around 1100 K and oxidized at 725 K at low oxygen partial pressure. At all alloy concentrations, Cu2O and NiO nucleated and grew independently without the formation of mixed oxides. The shape and growth rates of Cu2O nuclei were similar to rates found earlier. For low-nickel alloy concentrations, the NiO nuclei were larger and the number density of NiO was less than that of Cu-50%Ni films for which the shape and growth rates of NiO were identical to those for pure nickel films. Phenomena involving a reduced induction period, surface precipitation, and through-thickness growth are also described. The results are consistent with previously established oxidation mechanisms for pure copper and pure nickel films.

  9. Annealing effects on the electrical resistivity of AuAl thin films alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, R.D., E-mail: rubdoming@live.com.mx [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico); Oliva, A.I.; Corona, J.E. [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico)

    2009-08-15

    Au/Al bilayer (50-250-nm thickness) thin films were deposited by thermal evaporation on p-type silicon (1 0 0) substrates. The formed Au/Al/Si systems were annealed from room temperature (RT) to 400 deg. C to form AuAl/Si alloys. Two groups of AuAl alloys were analyzed. The first group was prepared as a function of the atomic concentration and the second group was prepared as a function of thickness. The morphology and crystalline structure of the alloys were analyzed by AFM and X-ray diffraction techniques, respectively. The electrical resistivities of the AuAl alloys were measured by the four-probe technique. The first group of thin AuAl alloys presented segregations as a consequence of the annealing treatment and the atomic concentration; meanwhile, the electrical resistivity showed abrupt changes as a consequence of changing the atomic concentration. In the second group a monotonically increment in the grain size was found meanwhile for thickness below 100 nm the electrical resistivity presented important differences as compared with the before annealing process.

  10. Microstructure of electroplated Cu(Ag) alloy thin films

    International Nuclear Information System (INIS)

    Electroplated Cu(Ag) alloy thin films are potential candidates for future electronic devices in terms of lifetime and reliability compared to copper as the state of the art interconnect material. In the present paper we focus on the microstructure of Cu(Ag) alloy films considering the grain evolution as well as silver incorporation and segregation. We show that Ag alloying addition prevents room temperature recrystallization. Thermally induced grain growth occurs mainly between 180 oC and 330 oC. Silver can be incorporated as solid solution into the Cu matrix by up to 0.8 at.% after annealing and even in higher concentrations in the as-deposited state, which is significantly above the equilibrium solubility limit. Precipitations are formed by the continuous mode and can be mainly found at the film surface but also inside the Cu(Ag) grains as ball-shaped particles. Based on our results a reliability improvement is expected by mechanical strengthening due to alloying effects while maintaining a low electrical resistivity and a {111} fiber texture.

  11. Characterization of thermally stable Ir-Ta alloy thin films deposited by sputtering

    OpenAIRE

    Watanabe, E; Abe, Y.; Sasaki, K; Iura, S.; 阿部, 良夫; 佐々木, 克孝

    2004-01-01

    Ir-Ta alloy thin films were deposited on Si0_2/Si substrates by a magnetron sputtering system using pure Ar as sputtering gas. The lr/Ta composition ratio of the alloy films was varied by changing the number of Ta chips on an lr target. The crystal structure of the alloy films changed from fcc-Ir to lr_3Ta, α-(Ir,Ta), Ta_3Ir, and bcc-Ta with increasing Ta content. Post-deposition annealing of the alloy films was carried out in oxygen at temperatures from 300℃ to 800℃ for 1 hour. The alloy fil...

  12. Characterization of high-temperature oxide films on dysprosium-doped Fe-20Cr alloys by electrochemical techniques

    Institute of Scientific and Technical Information of China (English)

    GUO Pingyi; ZENG Chaoliu; SHAO Yong; QIN Zeshang

    2012-01-01

    The oxidation propegies of Fe-20Cr,Fe-20Cr-0.2Dy and Fe-20Cr-1Dy alloys were studied using gravimetric and electrochemical techniques.The high-temperature oxide films of Dy-doped Fe-20Cr alloys were prepared in air at 900 ℃ for 24,48 and 100 h,respectively.The electrochemical experiment was performed by a three-electrode electrochemical cell and in 0.1 mol/L Na2SO4 aqueous solution.Proper models were built for describing electrochemical impedance spectroscopy of the different oxide layers and the spectra were interpreted in terms of a two-layer model of the films.The results revealed that the oxide films of Dy-doped Fe-20Cr alloys became compacter than that of undoped alloys and retained their good protective ability for a relatively long time.With increasing content of Dy,the protection of the oxide films slightly decreased.Mott-Schottky curves indicated that all the oxides were n-type semi-conductors,and the Nd value of oxide film on Fe-20Cr was much larger than that of Dy-doped Fe-20Cr alloys.The results of kinetic curves and SEM were in agreement with electrochemical impedance spectroscopy and Mott-Schottky data.

  13. Effects of electrolytic concentration on properties of micro-arc film on Ti6A14V alloy

    Institute of Scientific and Technical Information of China (English)

    SHI Xing-ling; WANG Qing-liang; WANG Fu-shun; GE Shi-rong

    2009-01-01

    To study the effect of electrolytic concentration, bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation (MAO) in aqueous solutions of different concentrations. Composition, mi-cro-morphology, wettability of the films and their corrosion behavior in a Hank's SBF were studied. Our experimental results show that the film is mainly composed of anatase, ruffle and amorphous phases. With an increase in electrolytic concentration, the ratio of ruffle in films enlarge and small amounts of calcium phosphate (Ca3(PO4)2) and hydroxyapatite (HA) appear. The number of mi-cropores in films increases but their dimensions decrease and their porosities increase slightly. As the surface roughness of MAO film increases with concentration, the wettablility of the oxide film improves continually, while micro-hardness increases at first and then decreases. MAO treatment clearly improves the corrosion resistance of substrates in a Hank's SBF.

  14. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Zhuang-zi; ZHANG Zhao-zhu; LIU Wei-min; TIAN Jun

    2005-01-01

    A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.

  15. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  16. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    Indian Academy of Sciences (India)

    S S Nayak; B S Murty; S K Pabi

    2008-06-01

    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  17. Preparation and Analysis of Complex Barrier Layer of Heterocyclic and Long-Chain Organosilane on Copper Alloy Surface

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2016-07-01

    Full Text Available A single electrodeposited film of 6-(3-triethoxysilylpropylamino-1,3,5-triazine-2,4-dithiol monosodium (TES on a copper alloy surface was prepared by the galvanostatic method, then octyl-triethoxysilane (OTES or hexadecyl-trimethoxysilane (HDTMS was used to modify the electrodeposited film by the self-assembled technique to fabricate the complex film. The electrodeposition process was inferred by cyclic voltammetry. The single and complex films were characterized by means of contact angle, cyclic voltammetry, Fourier transform infrared spectroscopy (FT-IR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and scanning electron microscope (SEM. The results showed that the contact angle of the complex film covering the copper alloy surface was up to 118.1° compared with 89.4° of the bare copper alloy. The cyclic voltammogram, polarization curves and EIS indicated that the anti-corrosion performance of complex film was better than that of single electrodeposited TES film, and the protection efficiency was up to 90.2%.

  18. Structure and optical properties of ternary alloy BeZnO and quaternary alloy BeMgZnO films growth by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Longxing, E-mail: sulx@mail2.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Zhu, Yuan, E-mail: zhuy9@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhang, Quanlin; Chen, Mingming; Wu, Tianzhun; Gui, Xuchun [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Pan, Bicai [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xiang, Rong [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Tang, Zikang, E-mail: phzktang@ust.hk [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2013-06-01

    Ternary alloy BeZnO and quaternary alloy BeMgZnO films were prepared on sapphire (0 0 1) substrate by radio-frequency plasma-assisted molecular beam epitaxy (RF-PAMBE). Based on X-ray diffraction (XRD) analysis, no phase segregation is observed for all the alloys. However, Be{sub x}Zn{sub 1−x}O alloys exhibit a constantly worse crystal quality than Be{sub x}Mg{sub y}Zn{sub 1−x−y}O alloys at the similar incorporation contents (i.e. x in BeZnO approximately equals to x + y in BeMgZnO). Optical transmittance spectra were recorded to determine the energy band gap of the films. BeMgZnO was revealed more effective in widening the band gap. Finally, BeZnO and BeMgZnO based MSM structure UV detectors were fabricated. BeMgZnO alloys with better crystal quality showed a favorable optical response and the cutoff wavelength shifted continuously to deep ultraviolet range, while BeZnO based detectors were found no response. This is the first report on BeMgZnO based UV detector, which is a meaningful step forward to the real application.

  19. Electron microscopic studies of anodic oxide films on the AZ91HP alloy

    Directory of Open Access Journals (Sweden)

    D. Peixoto Barbosa

    2003-01-01

    Full Text Available A Mg-9wt.Al-1wt.%Zn-alloy was anodized up to 90 V with constant current/constant voltage in an electrolyte which contained the compounds of the HAE-process (KOH, Al(OH3, KF, Na3PO4 and KMnO4. Electron microscopic examinations revealed a highly porous and irregular film structure. The distribution of the elements in the film was measured with energy dispersive spectrometry on specimens prepared in cross section for the transmission electron microscope. The main characteristic found was a fluoride-enriched zone of about 100 nm thickness at the metal / film interface. Practically no manganese from the permanganate was detected in this fluoride-enriched zone.

  20. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Science.gov (United States)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  1. Preparation and Thermal Characterization of Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    BAI Su-Yuan; TANG Zhen-An; HUANG Zheng-Xing; Yu Jun; WANG Jing; LIU Gui-Chang

    2009-01-01

    Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.

  2. Metamorphosis quality preparing of alloy Ti64 in laboratory conditions

    Directory of Open Access Journals (Sweden)

    M. Žitňanský

    2007-01-01

    Full Text Available Purpose: The aim of our research was the developing of the method for preparing titanium alloy (Ti64 ELI byremold in laboratory conditions on our research workplace. As a reason for writing the paper is to inform thetechnical society.Design/methodology/approach: The objectives were achieved by using differently sources heating of remoldedtitanium alloy Ti64 ELI, by using of differently conditions by vacuum melting and pouring in to ceramics orcopper moulds. As main method used for our research was remolding, purification, casting in the vacuumand than special heat treating by HIP processes. The quality of microstructure was investigated by electronmicroscopy and tested by Charpy impact test. The mean aim was to get microcastings of very intricate shapesand with very high quality of casting material. Through application four differently conditions of remolding wehave found that in our workplace we have good ability to prepare the microcastings with very good quality,which is the main conclusion.Findings: For expectation it is possible by using such a process for production special microcastings from Ti64ELI alloy. The mean idea of this paper will have practical implications.Research limitations/implications: In this time as a limitation is a little small capacity of plasma burner.Practical implications: The result of this paper should be made some changes in practice e.g. as savings ofturning and lastly the using of Rapid Prototyping method.Originality/value: The original value of our paper is the testimony above quality of alloy Ti64 ELI as cast. Thequality of alloy Ti64 ELI as cast is comparable with certified Ti64 ELI from abroad. The reach a destination ofoutcome in our laboratory conditions is a perspective method for production of microcastings from alloy Ti64.

  3. Preparation and Evaluation of Stomatitis Film Using Xyloglucan Containing Loperamide.

    Science.gov (United States)

    Kawano, Yayoi; Sasatsu, Masanaho; Mizutani, Ayako; Hirose, Kaoru; Hanawa, Takehisa; Onishi, Hiraku

    2016-06-01

    Stomatitis induced by radiation therapy or cancer chemotherapy is a factor in sleep disorders and/or eating disorders, markedly decreasing patient quality of life. In recent years, disintegrating oral films that are easy to handle have been developed; therefore, we focused on the formulation of these films. We prepared an adhesive film for the oral cavity using xyloglucan (Xylo), which is a water-soluble macromolecule. We used loperamide, which has been reported to relieve pain caused by stomatitis effectively, as a model drug in this study. Films were prepared from Xylo solutions (3% (w/w)) and hypromellose (HPMC) solutions (1% (w/w)). Xylo and HPMC solutions were mixed at ratios of 1 : 1, 2 : 1, or 3 : 1 for each film, and films 2×2 cm weighing 3 g were prepared and dried at 37°C for 24 h. Physicochemical properties such as strength, adhesiveness, disintegration behavior, and dissolution of loperamide from films were evaluated. Films prepared from Xylo solution alone had sufficient strength and mucosal adhesion. On the other hand, films prepared from a mixture of Xylo and HPMC were inferior to those made from Xylo, but showed sufficient strength and mucosal adhesion and were flexible and easy to handle. The films prepared in this study are useful as adhesion films in the oral cavity. PMID:26960400

  4. Electrochemical investigation on the formations of Dy-Ni alloy films in dimethyl formamide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electrochemical properties of Dy(III), Ni(II) and Dy(III)+ Ni(II) in dimethylformamide were studied by cyclic voltammetry on Pt or Cu electrode . Black, metallic lustered, compact and well adhesive Dy-Ni alloy films can be co-deposited on Cu electrode by sweeping-potential-deposition method within some potentials. SEM, EDAX and XRD were used to analyze the alloy films. The Dy content in the Dy-Ni alloy film is up to 56.91%(mass fraction) and the Dy-Ni alloy films are amorphous.

  5. Hydrogen absorption by Zr-1Nb alloy with TiN[x] film deposited by filtered cathodic vacuum arc

    OpenAIRE

    Kashkarov, Egor Borisovich; Nikitenkov, Nikolai Nikolaevich; Syrtanov, Maksim Sergeevich; Babihina, M. N.

    2016-01-01

    This paper describes the opportunity of titanium nitride (TiNx) films application as protective coating for Zr-2.5Nb alloy from hydrogenation. Dense TiN[x] films were prepared by filtered cathodic vacuum arc (CVA). Hydrogen absorption rate was calculated from the kinetic curves of hydrogen sorption at elevated temperature of the sample (T=673 K) and pressure (P=2 atm). Results revealed that TiN[x] films significantly reduced hydrogen absorption rate of Zr-2.5Nb.

  6. A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys

    International Nuclear Information System (INIS)

    We report a novel strategy for the fabrication of nanoporous gold (NPG) films. The fabrication process involves the electrodeposition of a gold–tin alloy, followed by subsequent chemical dealloying of tin. Scanning electron microscopy (SEM) images show a bicontinuous nanoporous structure formed on the substrates after chemical dealloying. Energy dispersive x-ray (EDX) analysis indicates that there are no impurities in the Au–Sn alloy film with an average composition of 58 at. % Au and 42 at. % Sn. After dealloying, only gold remains in the NPG film indicating the effectiveness of this technique. X-ray diffraction (XRD) results reveal that the as-prepared Au–Sn alloy film is composed of two phases (Au5Sn and AuSn), while the NPG film is composed of a single phase (Au). We demonstrate that this approach enables the fabrication of NPG films, either freestanding or supported on various conductive substrates such as copper foil, stainless steel sheet and nickel foam. The resulting NPG electrode exhibits enhanced electrocatalytic activity toward both H2O2 reduction and methanol oxidation compared to the polished Au disc electrode. Our strategy provides a general method to fabricate high quality NPG films on conductive substrates, which will broaden the application potential of NPG or NPG-based materials in various fields such as catalysis, optics and sensor technology. (paper)

  7. High-coercivity ferrite magnets prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Nanocrystalline hexaferrite (BaFe12O19 or SrFe12O19) and mixed Fe,Co-ferrite ((FexCo1-x)Fe2O4 with x=0-1) materials have been prepared by mechanical alloying and subsequent annealing. High coercivities were obtained in these nanocrystalline materials, 6-7 kOe for hexaferrite and ∝3 kOe for Co-ferrite. Hexaferrite powders prepared by mechanical alloying have been used as the starting material for high-coercivity bonded magnets. Hot-pressed anisotropic hexaferrite magnets have been produced with high values of coercivity and remanence. High magnetic performance was also achieved in some mixed Fe,Co-ferrites after magnetic annealing. (orig.)

  8. 镍钛合金表面溶胶-凝胶TiO2薄膜的低温制备与固定牛血清白蛋白分子%Low - temperature Preparation of Sol - gel TiO2 Film on NiTi Alloy and Immobilization of Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    董兵辉; 吴锋; 纪元; 付涛

    2012-01-01

    Crack - free sol - gel titania film was prepared on the H2O2 pretreated NiTi alloy by a steam treatment. X - ray diffraction showed that the titania film was composed of nanocrystalline anatase. X - ray photoelectron spectroscopy result indicated that the Ni content at the sample surface was markedly reduced. The potentiodynamic polarization and contact angle tests showed that the TiO2 coating improved corrosion resistance and hydrophilicity of the NiTi alloy. Bovine serum albumin (BSA) molecules are immobilized on the titania film via the grafting of 3 - aminopropyl - triethoxy - silane ( APTES) as a coupling agent.%采用溶胶-凝胶法和蒸汽处理,在经过双氧水粗化预处理的镍钛合金表面制备了无裂纹的TiO2薄膜.X射线衍射表明该薄膜由纳米晶粒的锐钛矿TiO2组成,X射线光电子能谱分析表明试样表面的镍含量大大降低.动电位极化和亲水性测试表明,TiO2薄膜改善了镍钛合金的耐蚀性和亲水性.通过结合3-氨丙基三乙氧基硅烷(APTES)的偶联作用,在TiO2涂层的镍钛合金表面固定了牛血清白蛋白(BSA)分子.

  9. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei, E-mail: kwgao@yahoo.com

    2015-05-15

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  10. Two-dimensional Pb–Sn alloy monolayer films on Ag(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Yuhara, J., E-mail: j-yuhara@nagoya-u.jp; Ako, T.

    2015-10-01

    Highlights: • Both Pb and Sn films form a hexagonal close-packed structure on Ag(1 1 1). • The 2D binary films of Pb and Sn exhibit an incommensurate structure close to (√13 × √13). • The binary 2D film is considered to follow the Hume-Rothery rule. - Abstract: Single and binary two-dimensional (2D) films of Pb and Sn on Ag(1 1 1) prepared at room temperature have been investigated using low-energy electron diffraction (LEED) and scanning tunneling microscopy. (√28 × √28)-Pb is observed in addition to (√3 × √3)-Pb at coverages higher than 0.35 ML. The nominal coverages for the (√28 × √28)-Pb and (√3 × √3)-Pb structures are determined to be 0.68 and 1/3 ML, respectively. The (1 × 1)-Sn structure is formed at coverages less than 1 ML. Both Pb and Sn films form a hexagonal close-packed structure on Ag(1 1 1). When the Sn coverage increases to more than 1 ML, excess Sn atoms form a (√3 × √3) structure on the (1 × 1)-Sn surface. The 2D binary films exhibit an incommensurate structure close to (√13 × √13) at Pb and Sn coverages of 0.5 and 0.25 ML, respectively. Atomic-resolution STM images exhibit a hexagonal close-packed structure. From the DFT total energy calculations, it is concluded that the Pb and Sn atoms of the (“√13 × √13″) structure do not form an ordered alloy but, rather, form a solid solution alloy. From these results, it is concluded that the binary 2D films also follow the Hume-Rothery rule.

  11. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications

    International Nuclear Information System (INIS)

    In this study, hydroxyapatite precipitation on nanotubular film-formed Ti-6Al-4V alloy for biomedical applications has been investigated using a variety of techniques. To prepare the substrate samples for hydroxyapatite (HA) deposition, the starting Ti-6Al-4V alloy was polished and heat-treated for 12 h at 1050 °C in an Ar atmosphere, followed by water-quenching at 0 °C. Nanotube formation on the titanium alloy was performed using anodization with a DC power supply at 30 V for 1 h in 1 M H3PO4 + 0.8 wt.% NaF at 25 °C. Subsequent HA precipitation treatment was carried out by cyclic voltammetry over a potential range of −1.5 V to 0 V using a scanning rate of 100 mV/s in 0.03 M Ca(NO3)2 ∙ 4 H2O + 0.018 M NH4H2PO4 at 80° ± 1 °C. Four different numbers of cycles were employed: 10, 20, 30, and 50. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The heat-treated Ti–6Al–4V alloy has a needle-like duplex microstructure containing the martensitic α′ phase and β phase. Plate-like precipitates were formed on bulk Ti–6Al–4V alloy, and the size of these precipitates increased with the number of deposition cycles. The HA precipitates on the nanotube surface showed a mixture of plate-like and flower-like particles with more deposition cycles. The deposited HA phase in the coated layer had an amorphous structure, with particle composition in good agreement with Ca10(PO4)6(OH)2. - Highlights: • Hydroxyapatite (HA) precipitation on nanotubular films formed on Ti–6Al–4V alloy was investigated using a variety of experimental methods. • HA precipitation treatment was carried out using a cyclic voltammetry method after nanotube formation on Ti–6Al–4V alloy. • Plate-like precipitates were formed on the bulk (not anodized) alloy, and the size of precipitates increased with the number of deposition cycles.

  12. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Chae-Ik; Jeong, Yong-Hoon [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States)

    2013-12-31

    In this study, hydroxyapatite precipitation on nanotubular film-formed Ti-6Al-4V alloy for biomedical applications has been investigated using a variety of techniques. To prepare the substrate samples for hydroxyapatite (HA) deposition, the starting Ti-6Al-4V alloy was polished and heat-treated for 12 h at 1050 °C in an Ar atmosphere, followed by water-quenching at 0 °C. Nanotube formation on the titanium alloy was performed using anodization with a DC power supply at 30 V for 1 h in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF at 25 °C. Subsequent HA precipitation treatment was carried out by cyclic voltammetry over a potential range of −1.5 V to 0 V using a scanning rate of 100 mV/s in 0.03 M Ca(NO{sub 3}){sub 2} ∙ 4 H{sub 2}O + 0.018 M NH{sub 4}H{sub 2}PO{sub 4} at 80° ± 1 °C. Four different numbers of cycles were employed: 10, 20, 30, and 50. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The heat-treated Ti–6Al–4V alloy has a needle-like duplex microstructure containing the martensitic α′ phase and β phase. Plate-like precipitates were formed on bulk Ti–6Al–4V alloy, and the size of these precipitates increased with the number of deposition cycles. The HA precipitates on the nanotube surface showed a mixture of plate-like and flower-like particles with more deposition cycles. The deposited HA phase in the coated layer had an amorphous structure, with particle composition in good agreement with Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}. - Highlights: • Hydroxyapatite (HA) precipitation on nanotubular films formed on Ti–6Al–4V alloy was investigated using a variety of experimental methods. • HA precipitation treatment was carried out using a cyclic voltammetry method after nanotube formation on Ti–6Al–4V alloy. • Plate-like precipitates were formed on the bulk (not anodized) alloy, and the

  13. 锂离子电池锡合金负极薄膜材料制备及性能%Preparation and performance of tin alloy film anode materials for lithium-ion battery

    Institute of Scientific and Technical Information of China (English)

    王连邦; 褚君尉; 张品杰; 姚金翰; 马淳安

    2012-01-01

    Tin thin-film electrodes were prepared by electroless plating on copper foil as anode of lithium-ion battery. There were three samples with different thickness and structure obtained depend on different deposited conditions. Their structure and properties were characterized and studied by X-ray diffration, scanning electron microscopy, charging/discharging test, cyclic voltammetry. The tin-thin film deposited for 10 minutes exhibited a structure of tetragonal crystal. The tin-thin film was composed of tin particles with the size of around 4 μm,and the tin particle was full of similar holes, which enhanced the specific furface area of electrode. The tin-thin film electrode showed high charge-discharge capacity. At potential of 0. 01 - 1. 00 V, The first discharge capacity of the tin-thin film electrode was 885. 7 mAh/g, its discharge capacity remained over 460 mAh/g after 100 cycles.%采用化学沉积的方法在铜箔上制备锡薄膜,通过改变沉积条件,制得三种不同厚度和结构的锡合金负极材料.运用XRD、SEM、充放电和循环伏安等多种方法对电极结构和性能进行表征和研究.研究表明:沉积时间为10 min的锡薄膜负极材料具有四方晶系结构,其表面由尺寸在4μm左右的合金颗粒构成,颗粒有大小均匀的孔洞结构,增加了电极的比表面积.该锡薄膜电极具有较高的容量,在0.01~1.00 V电压区间内,电极的首次放电容量为885.7 mAh/g,循环100周后放电容量仍保持在460 mAh/g以上.

  14. PECULARITIES OF COMPOSITE POWDERS PLASMA SPRAYING PREPARED BY MECHANICAL ALLOYING

    OpenAIRE

    Kudinov, V.; Pekshev, P.; Tcherniakov, S.; Kondratenko, L.

    1990-01-01

    In the present paper the main advantages of mechanical alloying compared to the other methods of composite powders preparing are discussed from the point of view both of powder quality and structure and properties of sprayed coatings. As an example on the base of NiCr-ZrO2-, NiCr-Cr2C3-, W-Cu- compositions it is shown, that prepared powders are characterized by high particles composition homogeneity, fine disperse components distribution in particles volume, high values of bound strength and ...

  15. Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity

    Indian Academy of Sciences (India)

    Shipra Tripathi; G K Mehrotra; P K Dutta

    2011-02-01

    The chitosan–silver oxide encapsulated nanocomposite film was prepared by solution casting method. The prepared film was characterized by FTIR, scanning electron microscopy (SEM), thermal studies, and UV-Vis spectroscopy. The elemental composition of the film was studied by energy dispersive X-ray analysis (EDAX). The antibacterial activity of the composite film against pathogenic bacteria viz. Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa was measured by agar diffusion method. Our observations suggest that chitosan as biomaterial based nanocomposite film containing silver oxide has an excellent antibacterial ability for food packaging applications.

  16. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    Directory of Open Access Journals (Sweden)

    Hui Che

    2012-01-01

    Full Text Available ZnO is emerging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on MgxZn1−xO and ZnS1−xOx nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg0.3Zn0.7O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg0.3Zn0.7O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS0.76O0.24 and ZnS0.16O0.84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS0.16O0.84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.

  17. Oxidation Resistance of Fe-13Cr Alloy with Micro-Laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) Films

    Institute of Scientific and Technical Information of China (English)

    Yao Mingming; He Yedong; Wang Deren; Gao Wei

    2005-01-01

    The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrO2-Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.

  18. Hydrogen storage alloys prepared by high-energy milling

    Directory of Open Access Journals (Sweden)

    M. Staszewski

    2011-02-01

    Full Text Available Purpose: The aim of this work was to investigate an efficiency of high-energy milling, as a method to obtain hydrogen storage alloys with good properties.Design/methodology/approach: Two classes of the alloys were studied: AB2 type with atomic composition of (Ti0.5Zr0.5(V0.68Mn0.68Cr0.34Ni0.7 and AB5 type with atomic composition of (Ce0.63La0.37(Ni3.55Al0.3Mn0.4 Co0.75.The materials were prepared by arc melting and initially pulverized and afterwards subjected to wet milling process in a planetary mill.Findings: Both initially obtained alloys had proper, single phase structure of hexagonal symmetry. However their elemental composition was greatly inhomogeneous. High-energy milling causes both homogenization of the composition and severe fragmentation of the powder particles, which after milling have mean diameter of about 3 µm (AB2 alloy and below 2 µm (AB5 alloy. The morphology of obtained powders reveals that they tend to form agglomerates consisting of large number of crystallites. Mean crystallite sizes after milling are of about 4.5 nm and of 20 nm, respectively. The specific surface of the powders, measured using BET method, equals 8.74 m2/g and 2.70 m2/g, respectively.Research limitations/implications: The results provide the information on the possibility of obtaining hydrogen storage alloys by high-energy milling and on the transformations taking place as a result of this process.Practical implications: The obtained powders can be used to produce the elements of hydrogen-nickel batteries and fuel cells, providing improved properties; especially extreme rise of the specific surface of the hydrogen storage material, in compare to the standard methods.Originality/value: New method for preparation of hydrogen storage alloys by means of high-energy milling technique has been successfully tested.

  19. Preparation and characterization of RF sputtered ITO thin films

    International Nuclear Information System (INIS)

    Thin films of tin doped indium oxide have been prepared on glass substrates using RF sputtering technique. Prepared films have been characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive analysis by X-rays (EDAX). Optical absorption is analysis (UV) showed that the deposited film possessed a direct band gap value of 3.5 eV. (author)

  20. Super-hydrophobic film prepared on zinc as corrosion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wang Peng [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Zhang Dun, E-mail: Zhangdun@qdio.ac.c [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Qiu Ri [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Graduate School of the Chinese Academy of Sciences, 19 (Jia) Yuquan Road, Beijing 100039 (China); Hou Baorong [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China)

    2011-06-15

    Research highlights: {yields} Super-hydrophobic film was prepared on zinc surface. {yields} The air trapped in film can dramatically improve the anti-corrosion property. {yields} The air trapped behaves as dielectric for a pure parallel plate capacitor. {yields} The air enhances the contribution of film to the anti-corrosion property. {yields} Without the help of air, the film itself can only present feeble inhibition effect. - Abstract: Potentiostatic electrolysis was carried out to prepare super-hydrophobic film on the surface of metallic zinc. The resultant film was examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, electrochemical measurements, and contact angle test. The super-hydrophobic property of the film results from the air trapped among the sheets of zinc tetradecanoate. This air behaves as a dielectric for a pure parallel plate capacitor, thereby inhibiting electron transfer between the electrolyte and the substrate. The air can also enhance the contribution of the film itself to protection performance.

  1. Preparation and properties of PSA for protective film of fluorine carbon aluminum-alloy profile%氟碳铝型材保护膜用压敏胶的制备与性能

    Institute of Scientific and Technical Information of China (English)

    何伟; 高明华; 姜云刚; 武鹏

    2013-01-01

    以丙烯酸丁酯(BA)和丙烯酸异辛酯(2-EHA)为软单体、甲基丙烯酸甲酯(MMA)为硬单体、丙烯酸(AA)和丙烯酸羟丙酯(HPA)为功能单体,采用降低PSA(压敏胶)的Tg(玻璃化转变温度)和预乳化半连续乳液聚合法合成了丙烯酸酯PSA乳液.研究结果表明:当m(软单体)∶m(硬单体)∶m(功能单体)=90∶5∶5、m(BA)∶m(2-EHA)=1∶2、w(AA)=1.0%、w(HPA)=5%、w(缓冲剂)=0.25%、w(引发剂)=w(复合乳化剂)=0.6%且m(阴离子型乳化剂)∶m(非离子型乳化剂)=1∶1时,PSA乳液的综合性能相对最好,用该PSA制成的保护膜对氟碳铝型材具有良好的附着力,并且其耐湿热老化性能和耐热老化性能俱佳.%With butyl acrylate(BA) and 2-ethylhexyl acrylate(2-EHA) as soft monomers,methyl melhacrylate (MMA) as hard monomer,acrylic acid(AA) and hydroxypropyl acrylate(HPA) as functional monomers,an acrylate PSA(pressure sensitive adhesive) emulsion was synthesized by reducing Tg(glass transition temperature) of PSA and pre-emulsifying semi-continuous emulsion polymerization. The research results showed that the PSA emulsion had the relatively best combination property because the adhesion between the protective film made by PSA and the fluorine carbon aluminum-alloy profiles was good,and the protective film had good wet-heat aging-resistance and heat aging-resistance when mass ratios of m(soft monomers):m(hard monomer):m(functional monomers) and m(BA):m(2-EHA) were 90:5:5 and 1:2 respectively,mass fractions of AA,HPA, buffering agent,initiator and composite emulsifier were 1.0%,5%,0.25%,0.6% and 0.6% respectively,and mass ratio of m(anionic emulsifier):m(non-ionic emulsifier) was 1:1.

  2. Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature

    Institute of Scientific and Technical Information of China (English)

    Mi Lin Zhang; Yong De Yan; Zhi Yao Hou; Lu An Fan; Zeng Chen; Ding Xiang Tang

    2007-01-01

    A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten were investigated, and optimal electrolysis parameters were obtained. Mg-Li alloys with low lithium content (about 25%) were prepared by the unique method of a higher post-thermal treatment temperature after electrolysis at low temperature. The results showed that the electrolysis can be carried out at low temperature, which resulted in reducing preparation cost due to energy saving.The new technology for the preparation of Mg-Li alloy by electrolysis in molten salt was proved to be feasible.

  3. M(o)ssbauer study of the field induced uniaxial anisotropy in electro-deposited FeCo alloy films

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-Wei; Yang Xu; Wang Hai-Bo; Liu Xin; Li Fa-Shen

    2009-01-01

    Thin ferromagnetic films with in-plane magnetic anisotropy are promising materials for obtaining high microwave permeability. The paper reports a M(o)ssbauer study of the field induced in-plane uniaxial anisotropy in electro-deposited FeCo alloy films. The FeCo alloy films were prepared by the electro-deposition method with and without an external magnetic field applied parallel to the film plane during deposition, Vibrating sample magnetometry and M(o)ssbauer spectroscopy measurements at room temperature indicate that the film deposited in external field shows an in-plane uniaxial anisotropy with an easy direction coinciding with the external field direction and a hard direction perpendicular to the field direction, whereas the film deposited without external field does not show any in-plane anisotropy. M(o)ssbauer spectra taken in three geometric arrangements show that the magnetic moments are almost constrained in the film plane for the film deposited with applied magnetic field. Also, the magnetic moments tend to align in the direction of the applied external magnetic field during deposition, indicating that the observed anisotropy should be attributed to directional ordering of atomic pairs.

  4. Properties of thin anodic oxide films on zirconium alloys

    International Nuclear Information System (INIS)

    Thin (0.1-0.2 μm) anodic oxide films were formed on zirconium, Zircaloy-2 and Zr-2.5 wt% Nb alloy specimens and examined by AC impedance spectroscopy (using both metal and aqueous electrolyte contacts), UV/VIS interferometry, and scanning electron microscopy (SEM). The SEM studies showed that the extent of oxide cracking was a function of the particular alloy and the electrolyte in which the oxide was formed. AC impedance spectroscopy showed that with metallic contacts a Young impedance behaviour was observed as a result of local conduction paths in the oxide film, probably resulting from second phase particles. The extent of cracking in the oxide was identified best from SEM and AC impedance measurements in aqueous electrolytes, and did not appear to contribute to the results obtained with metallic contacts. Large discrepancies between the apparent oxide thicknesses measured from AC impedance data obtained from measurements with aqueous electrolyte and liquid metal contacts, respectively, were shown to result from surface roughness and inadequate wetting by the liquid metals. These discrepancies could be eliminated by using evaporated platinum contacts, which also showed evidence for local conduction in the oxides. UV/VIS interferometry results for the oxide refractive indices and oxide thicknesses gave much scatter because of the small number of fringes available for the analysis and the difficulties in establishing the positions of interference minima with the same accuracy as was possible for interference maxima. The use of this combination of techniques still appears to be the best method for investigating the presence of conducting paths in thick porous oxide films on these alloys. Preference should be given to using evaporated rather than liquid metal contacts when studying such oxides. The advantages of easy removal for the liquid metal contacts often, however, outweigh the errors introduced by surface roughness when using them for repetitive measurements

  5. Hydrogen storage alloys prepared by high-energy milling

    OpenAIRE

    M. Staszewski; A. Sierczyńska; M. Kamińska; M. Osadnik; M. Czepelak; Swoboda, P.

    2011-01-01

    Purpose: The aim of this work was to investigate an efficiency of high-energy milling, as a method to obtain hydrogen storage alloys with good properties.Design/methodology/approach: Two classes of the alloys were studied: AB2 type with atomic composition of (Ti0.5Zr0.5)(V0.68Mn0.68Cr0.34Ni0.7) and AB5 type with atomic composition of (Ce0.63La0.37)(Ni3.55Al0.3Mn0.4 Co0.75).The materials were prepared by arc melting and initially pulverized and afterwards subjected to wet milling process in a ...

  6. Thin film reactions on alloy semiconductor substrates

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.A.

    1990-11-01

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  7. Superelasticity of NiTi Shape Memory Alloy Thin Films

    Institute of Scientific and Technical Information of China (English)

    Zhenyu YUAN; Dong XU; Zhican YE; Bingchu CAI

    2005-01-01

    The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.

  8. Microstructure and properties of hydrophobic films derived from Fe-W amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    Song Wang; Yun-han Ling; Jun Zhang; Jian-jun Wang; Gui-ying Xu

    2014-01-01

    Amorphous metals are totally different from crystalline metals in regard to atom arrangement. Amorphous metals do not have grain boundaries and weak spots that crystalline materials contain, making them more resistant to wear and corrosion. In this study, amorphous Fe-W alloy films were first prepared by an electroplating method and were then made hydrophobic by modification with a water repellent (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. Hierarchical micro-nano structures can be obtained by slightly oxidizing the as-deposited alloy, accompanied by phase transformation from amorphous to crystalline during heat treatment. The mi-cro-nano structures can trap air to form an extremely thin cushion of air between the water and the film, which is critical to producing hydrophobicity in the film. Results show that the average values of capacitance, roughness factor, and impedance for specific surface areas of a 600°C heat-treated sample are greater than those of a sample treated at 500°C. Importantly, the coating can be fabricated on various metal substrates to act as a corrosion retardant.

  9. Note: Durability analysis of optical fiber hydrogen sensor based on Pd-Y alloy film.

    Science.gov (United States)

    Huang, Peng-cheng; Chen, You-ping; Zhang, Gang; Song, Han; Liu, Yi

    2016-02-01

    The Pd-Y alloy sensing film has an excellent property for hydrogen detection, but just for one month, the sensing film's property decreases seriously. To study the failure of the sensing film, the XPS spectra analysis was used to explore the chemical content of the Pd-Y alloy film, and analysis results demonstrate that the yttrium was oxidized. The paper presented that such an oxidized process was the potential reason of the failure of the sensing film. By understanding the reason of the failure of the sensing film better, we could improve the manufacturing process to enhance the property of hydrogen sensor. PMID:26931903

  10. Properties of Cu film and Ti/Cu film on polyimide prepared by ion beam techniques

    International Nuclear Information System (INIS)

    Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.

  11. Stability of oxide film formed at different temperatures on Alloy 600 in lithiated environment

    International Nuclear Information System (INIS)

    The nickel base alloys are susceptible to localized corrosion attack and the major contributing factor in these corrosion mechanisms is the oxide film formed on the alloy. The chromium content in the oxide film determines its stability against localized attack that act as precursors for the initiation of stress corrosion cracking (SCC) in the material. The present study aimed at optimizing the hot conditioning parameter by varying the temperature of oxide formation for minimum ion release rate during reactor operation. The surface and in-depth compositional characterization of oxide film formed on Alloy 600 was carried out using micro-laser Raman spectroscopy (MLRS) and glow discharge quadrapole mass spectroscopy (GDQMS) respectively. The relative defect density of oxide films were studied using electrochemical impedance spectroscopy (EIS). The oxide film stability of Alloy 600 in chloride containing environment was correlated to chromium concentration in the film as well as relative defect density

  12. Solid state amorphisation in binary systems prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G., E-mail: gemagonz@ivic.v [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Sagarzazu, A. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Bonyuet, D. [Instituto de Investigacion en Biomedicina y Ciencias Aplicadas, Universidad de Oriente, Cumana (Venezuela, Bolivarian Republic of); D' Angelo, L. [UNEXPO, Universidad Experimental Politecnica Luis Caballero Mejias, Dpto. Ing. Mecanica (Venezuela, Bolivarian Republic of); Villalba, R. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of)

    2009-08-26

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  13. Study on deposition technique and properties of Pd/Ag alloy film sensor supported on ceramic substrate

    Science.gov (United States)

    Geng, Z. T.; He, Q.; Jin, C. G.

    2016-07-01

    Developing high-quality hydrogen sensitive material is the core part of hydrogen sensor, whose performance is determined by the sensitive response, reproducibility and recovery of hydrogen material etc. In order to overcome the defects of hydrogen embrittlement in previous hydrogen sensor which were based on the pure palladium, sliver as the second component added to the palladium was studied. Using photochemical etching technology to produce a bent metal mask, the mask is put on the ceramic substrate. Firstly, the thin film of Ta2O5 as a transition layer grew on the ceramic substrate. Then, a series of Pd/Ag alloy film sensors were prepared, and each performance characterization of Pd/Ag alloy film was studied. Testing results indicated that the thin film had a good linear output performance at 0∼⃒30% hydrogen concentration range, and demonstrates a high responsiveness and good repeatability. With temperature increasing, the strength of the responsive signal of the Pd/Ag alloy film decreases and its responsive time was also shortened.

  14. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  15. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.S., E-mail: yshzou75@gmail.com [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Wu, Y.F.; Yang, H.; Cang, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Song, G.H. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning, 110178 (China); Li, Z.X.; Zhou, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China)

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp{sup 3} carbon content and mechanical properties of the deposited DLC films. A maximum sp{sup 3} content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  16. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    International Nuclear Information System (INIS)

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  17. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Science.gov (United States)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  18. Electrodeposition of Pr-Fe alloy films in urea-dimethylsulfoxide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hao; KE Qinfang; HUANG Kaisheng; LIU Guankun; YUAN Dingsheng

    2005-01-01

    Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Pr3+ ions electrochemical parameters were measured. Potentiostatic depositions between -1.6 and -2.4 V were applied to deposit Pr-Fe films in urea-DMSO mixed solution. The Pr content in the alloy films was in the range of 34.89 wt.% to 37.15 wt.%.The Pr-Fe alloy films are proven to be amorphous by XRD (X-ray diffraction).

  19. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  20. Novel tribological systems using shape memory alloys and thin films

    Science.gov (United States)

    Zhang, Yijun

    Shape memory alloys and thin films are shown to have robust indentation-induced shape memory and superelastic effects. Loading conditions that are similar to indentations are very common in tribological systems. Therefore novel tribological systems that have better wear resistance and stronger coating to substrate adhesion can be engineered using indentation-induced shape memory and superelastic effects. By incorporating superelastic NiTi thin films as interlayers between chromium nitride (CrN) and diamond-like carbon (DLC) hard coatings and aluminum substrates, it is shown that the superelasticity can improve tribological performance and increase interfacial adhesion. The NiTi interlayers were sputter deposited onto 6061 T6 aluminum and M2 steel substrates. CrN and DLC coatings were deposited by unbalanced magnetron sputter deposition. Temperature scanning X-ray diffraction and nanoindentation were used to characterize NiTi interlayers. Temperature scanning wear and scratch tests showed that superelastic NiTi interlayers improved tribological performance on aluminum substrates significantly. The two-way shape memory effect under contact loading conditions is demonstrated for the first time, which could be used to make novel tribological systems. Spherical indents in NiTi shape memory alloys and thin films had reversible depth changes that were driven by temperature cycling, after thermomechanical cycling, or one-cycle slip-plasticity deformation training. Reversible surface topography was realized after the indents were planarized. Micro- and nano- scale circular surface protrusions arose from planarized spherical indents in bulk and thin film NiTi alloy; line surface protrusions appeared from planarized scratch tracks. Functional surfaces with reversible surface topography can potentially result in novel tribological systems with reversible friction coefficient. A three dimensional constitutive model was developed to describe shape memory effects with slip

  1. Preparation of pyrite films by plasma-assisted sulfurization of thin iron films

    OpenAIRE

    Bausch, S.; Sailer, B.; Keppner, Herbert; Willeke, G.; Bucher, E.; Frommeyer, G.

    2008-01-01

    Pyrite films were prepared using the pure elements as source materials: thin iron films were evaporated on quartz substrates and exposed to a sulfur plasma. The process was controlled by a transmission measurement. X-ray spectroscopy was used to characterize the films and preliminary optical and electrical measurements were carried out.

  2. Preparation of Modified Films with Protein from Grouper Fish.

    Science.gov (United States)

    Valdivia-López, M A; Tecante, A; Granados-Navarrete, S; Martínez-García, C

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  3. Preparation of Modified Films with Protein from Grouper Fish

    Science.gov (United States)

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  4. Electronic structures of the L-cysteine film on dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: e7141@cc.saga-u.ac.jp [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Tsujibayashi, T. [Department of Physics, Osaka Dental University, Osaka 573-1121 (Japan); Takahashi, K.; Azuma, J. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Kakimoto, K. [Department of Geriatric Dentistry, Osaka Dental University, Osaka 573-1121 (Japan); Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan)

    2011-04-15

    Research highlights: {yields} The electronic structures of dental alloys and L-cysteine film were studied by PES. {yields} The density of states in the dental alloy originates from Au and Cu as constituents. {yields} The Cu-3d states contribute dominantly to the occupied states near the Fermi level. {yields} The electronic structure of L-cysteine thin film is different from the thick film. {yields} The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  5. Electronic structures of the L-cysteine film on dental alloys

    International Nuclear Information System (INIS)

    Research highlights: → The electronic structures of dental alloys and L-cysteine film were studied by PES. → The density of states in the dental alloy originates from Au and Cu as constituents. → The Cu-3d states contribute dominantly to the occupied states near the Fermi level. → The electronic structure of L-cysteine thin film is different from the thick film. → The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  6. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    Science.gov (United States)

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  7. Preparation of YBCO superconducting films by spray pyrolysis method

    International Nuclear Information System (INIS)

    The methodology for the preparation of YBCO superconducting films on Zr2O(Y) substrates by spray pyrolysis method is reported. The transition temperature of these films is superior than the boiling temperature of liquid 2N. Other critical parameters are similar to those reported by other authors using the same technique

  8. Preparation and characterization of polyimide/silica/silver composite films

    Institute of Scientific and Technical Information of China (English)

    Ning LUO; Zhanpeng WU; Nanxiang MOU; Lizhong JIANG; Dezhen WU

    2008-01-01

    Polyimide/silica/silver hybrid films were pre-pared by the sol-gel method combined with in situ single-stage self-metallization technique.The structure of polyi-mide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated.The hybrid films were characterized by transmission elec-tron microscopy,dynamic mechanical thermal analysis,Fourier transform infrared spectroscopy,ultraviolet visible spectroscopy and mechanical measurements.The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles.Silica acted as the nucleus for the silver particles.With increasing silica content,more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

  9. Hydrothermal Preparation of Antibacterial Ag-containing TiO2 Film on a Low-modulus Titanium Alloy%低模量钛合金表面水热法制备含银二氧化钛抗菌薄膜

    Institute of Scientific and Technical Information of China (English)

    李红伟; 李雯; 付涛; 杨水云

    2015-01-01

    Objective To improve the antimicrobial properties of nearβ-type biomedical titanium alloy TLM (Ti-25Nb-3Zr-2Sn-3Mo) with low modulus. Methods TLM alloy was hydrothermally treated in silver nitrate solution at 200℃ with AgNO3 solution for 12 h and 24 h respectively to prepare antibacterial Ag-containing TiO2 film on its surface. The microstructure and status of the film were characterized by SEM, XRD and XPS. Using the TLM alloy hydrothermally treated in deionized water as the control, the hy-drophilicity of the film was compared, and the antimicrobial properties were studied using the inhibition zone method. Results SEM, XRD and XPS analyses showed that the film consisting of TiO2 nanocrystals was formed on the surface of TLM alloy after the hydrothermal treatment. X-ray photoelectron spectroscopy analysis illustrated that Ti and Nb on sample surface existed as TiO2 and Nb2 O5 respectively, and Ag was in the metallic form. Contact angle measurement indicated that the treated sample had good photo-induced hydrophilicity, and the contact angle decreased from 108. to below 10. after 30 min of UV irradiation. In the antibacterial test, obvious inhibition zones against E. coli and S. aureus were observed for the treated sample after 24 h culture, and the inhibi-tion zone was wider against S. aureus. Conclusion Through hydrothermal treatment at 200 ℃ with 10 mmol/L of AgNO3 solution, Ag-containing TiO2 film with antimicrobial properties could be synthesized. The hydrothermal method to prepare Ag-containing TiO2 film in medical titanium alloy has the merits of easy operation, low processing temperature, evident antibacterial effect, etc.%目的:提高医用低模量近β型TLM(Ti-25Nb-3Zr-2Sn-3Mo)钛合金的抗菌性能。方法在200℃条件下,在硝酸银溶液中对TLM合金分别进行12,24 h水热处理,在其表面制备含银TiO2抗菌薄膜。通过SEM,XRD,XPS等表征薄膜的微观结构及状态。以去离子水水热处理TLM合金作为参照,比

  10. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    Science.gov (United States)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  11. Novel transparent and flexible nanocomposite film prepared from chrysotile nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun, E-mail: kliu@csu.edu.cn [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Zhu, Binnan; Feng, Qiming [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Duan, Tao [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621010 (China)

    2013-10-01

    In the present study, chrysotile nanofibres, obtained from physicochemical dispersion of natural chrysotile, were used to prepare nanofibre sheets by vacuum filtration. As-prepared sheets were then impregnated by UV-curable resin and cured by ultraviolet light to fabricate the flexible and transparent nanocomposite films. Observed from SEM, the transparent films showed a smooth surface and a typical sandwich structure in cross section, viz. nanofibre sheet filled with resin was sandwiched by two layers of resin. XRD patterns indicated the amorphous nature of cured resin and characteristic crystallographic structure of chrysotile in nanocomposite films. Though the nanofibre sheets were white in colour, and nanofibre contents in nanocomposites were as much as 43.4 wt%, the nanocomposite films displayed an excellent optical transparency with about 85% light transmittance in the visible light range. Tensile tests showed that the addition of nanofibres resulted in a great improvement in mechanical strength of the nanocomposite films; with the increase of nanofibre contents, the modulus and tensile strength of nanocomposite films increased gradually. - Graphical abstract: Photos show the experimental phenomenon. The white nanofibre sheets can be written or printed like paper, and it's very interested that the handwriting is clearly visible from the front and back of the transparent films prepared from nanofibre sheets by vacuum impregnation and UV curing. This phenomenon can be attributed to the increase of transparency of film, which results from the replacement of air interstices in nanofibre sheet by resin with higher refractive index. Visible light can pass easily through the transparent film without obvious loss, but can be apparently adsorbed and scattered by ink particles that adhered to nanofibres and embedded in resin. - Highlights: • A flexible and transparent film is prepared from chrysotile nanofibres. • The nanofibre sheet is sandwiched by two

  12. A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yigang; Chen, Yungui; Wu, Chaoling; Tao, Mingda; Liang, Hao [School of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)

    2007-02-10

    A V{sub 30}Ti{sub 32}Cr{sub 32}Fe{sub 6} alloy prepared from a FeV80 master alloy is reported. It has a high hydrogen absorption/desorption capacity, good activation performance and kinetics. Heat-treatment at 1673 K is an effective way to increase the capacity and flatten the plateau due to the homogenization of the compositions in the alloy and the disappearance of Laves phase after heat-treatment. The heat-treated alloy can absorb 3.76 wt.%H at 298 K. It desorbs 2.35 wt.%H at 298 K and 2.56 wt.%H at 373 K. The development of this alloy could be of great significance to the application of V-based BCC hydrogen storage alloys. (author)

  13. Polylactide microcapsules and films: preparation and properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.

    2009-01-01

    This thesis aims at preparation of hollow polylactide (PLA) microcapsules for use as ultrasound contrast agents with controlled size, structure and mechanical and thermal properties. The microcapsules were prepared with multistage premix membrane emulsification. The mechanical and thermal properties

  14. Thermodynamic calculation on metallic thermoreduction during preparation of aluminum-rare master alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A thermodynamic calculation method on metallic thermoreduction during preparation of aluminum-rare metal alloys was presented. Taking preparation of aluminum-scandium master alloys using aluminum and magnesium thermoreduction of scandiumchloride as an example, this method was applied and the results were testified by experiment.

  15. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  16. Preparation of Si sub 1 sub - sub x sub - sub y Ge sub x C sub y semiconductor films on Si by ion implantation and solid phase epitaxy

    CERN Document Server

    Liu Xue Qin; Zhen Cong Mian; Zhang Jing; Yang Yi; Guo Yong

    2002-01-01

    Si sub 1 sub - sub x sub - sub y Ge sub x C sub y ternary alloy semiconductor films were prepared on Si(100) substrates by C ion implanting SiGe films and subsequent solid phase epitaxy (SPE). Two-step annealing technique was employed in the SPE processing. The properties of the alloy films were determined using Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and High-resolution x-ray diffraction (HRXRD) measurements. It is shown that C atoms are located at substitutional sites and the incorporation of C relieves the compressive strain in the SiGe layer

  17. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  18. The preparation and refractive index of BST thin films

    International Nuclear Information System (INIS)

    Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 deg. C and subsequently annealed at 700 deg. C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films' microstructure and texture

  19. Preparation of textured Ni-Mn-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Poetschke, Martin; Gaitzsch, Uwe; Huerrich, Claudia; Thoss, Franziska; Roth, Stefan; Rellinghaus, Bernd; Schultz, Ludwig [IFW Dresden, Helmholzstr. 20, 01069 Dresden (Germany)

    2009-07-01

    NiMnGa alloys have gained large research interest because of their possible application as magnetic shape memory materials. This effect is caused by the motion of twin boundaries in a magnetic field. Up to now most of the research was concentrated on single crystals. However, the preparation of single crystals is a time consuming and cost intensive process and compositional changes along the growth axis as well as segregations may occur. This is why for technical applications there is a great interest in polycrystals. To extend this effect to polycrystals, directional solidification was applied in order to prepare coarse grained, textured samples. Stationary casting in a pre-heated ceramic mold mounted on a copper plate was employed to generate a heat flow towards the bottom of the sample and thereby a directional solidification in the opposite direction. The martensitic transformation temperature which strongly depends on the composition was monitored by DSC, and it is shown that the chemical homogeneity along the sample axis is improved in likewise treated samples. The preferred solidification-induced growth direction was determined by EBSD. Investigations on the influence of MnS - precipitates in the samples, originating from the used rare Manganese, are discussed. The results are compared to samples, which were prepared by a Bridgeman method with draw rates in the range of several 100 mm/h to obtain a texture.

  20. A combinatorial approach of developing alloy thin films using co-sputtering technique for displays

    Institute of Scientific and Technical Information of China (English)

    Jaydeep; SARKAR; Tien-Heng; HUANG; Lih-Ping; WANG; Peter; H.; McDONALD; Chi-Fung; LO; Paul; S.; GILMAN

    2009-01-01

    In this study we have used a combinatorial approach for producing binary and ternary alloy thin film libraries using a lab-scale RF co-sputtering system. Initially we used two elemental sputtering targets, i.e. aluminum (Al) target and neodymium (Nd) target, to produce a film library of varying composition and successfully identified a suitable composition range (1.95―2.38 at% Nd) in which resistance to hillock formation and resistivity of the film spots were found to be satisfactory in annealed state (350℃, 30 min). In another case, in order to form ternary alloy composition library we have used two sputtering targets, i.e. an Al-0.5 at% Nd alloy target and an elemental Ni target. Though, co-sputtered Al-0.6 at% Nd-0.9 at% Ni alloy films showed satisfactory resistance to hillock formation and low resistivity after annealing, film deposited from a ternary alloy target with the same composition failed to show satis- factory resistance to hillock formation during annealing. In case of Al-0.6 at% Nd-0.9 at% Ni alloy target, 250 nm thick film showed poor resistance to hillock formation than the 500 nm thick film. This clearly showed thickness-dependent hillock performance of Al-0.6 at% Nd-0.9 at% Ni alloy. In this study it was found that, in addition to the process variables, metallurgical microstructure of the alloy sputtering targets had significant effect on the film properties which was not obvious from the results of films deposited using co-sputtering of the individual elemental targets.

  1. A combinatorial approach of developing alloy thin films using co-sputtering technique for displays

    Institute of Scientific and Technical Information of China (English)

    Jaydeep SARKAR; Tien-Heng HUANG; Lih-Ping WANG; Peter H.McDONALD; Chi-Fung LO; Paul S.GILMAN

    2009-01-01

    In this study we have used a combinatorial approach for producing binary and ternary alloy thin film libraries using a lab-scale RF co-sputtering system. Initially we used two elemental sputtering targets, i.e. aluminum (Al) target and neodymium (Nd) target, to produce a film library of varying composition and successfully identified a suitable composition range (1.95-2.38 at% Nd) in which resistance to hillock formation and resistivity of the film spots were found to be satisfactory in annealed state (350℃, 30 min). In another case, in order to form ternary alloy composition library we have used two sputtering targets, i.e. an Al-0.5 at% Nd alloy target and an elemental Ni target. Though, co-sputtered Al-0.6 at% Nd-0.9 at% Ni alloy films showed satisfactory resistance to hillock formation and low resistivity after annealing, film deposited from a ternary alloy target with the same composition failed to show satis-factory resistance to hillock formation during annealing. In case of Al-0.6 at% Nd-0.9 at% Ni alloy target, 250 nm thick film showed poor resistance to hillock formation than the 500 nm thick film. This clearly showed thickness-dependent hillock performance of AI-0.6 at% Nd-0.9 at% Ni alloy. In this study it was found that, in addition to the process variables, metallurgical microstructure of the alloy sputtering targets had significant effect on the film properties which was not obvious from the results of films deposited using co-sputtering of the individual elemental targets.

  2. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH25Cdegrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe3O4) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author)

  3. The Optical Property of CPD Prepared CdS Films

    Institute of Scientific and Technical Information of China (English)

    Deokjoon Cha; HUANG Ning-kang; Sunmi Kim

    2004-01-01

    CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before and after annealing was investigated at different measuring temperature from 10K to 300K. Optical absorption spectra show that the absorption edge is towards the shorter wavelengths, and the energy band gaps deduced from the plots of (α·hν)2 vs. hν are increased when the measuring temperature is decreased. The optical behaviors of the CdS films annealed at a certain temperature seem to have the similar tendency at different measuring temperature. Based on dEex/dT curve dependent on annealing temperature, some phenomena related microstructure in CdS films could be found.

  4. ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tsoutsouva, M.G. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Papadimitriou, D. [National Technical University of Athens, Department of Physics, GR-15780 Athens (Greece); Fasaki, I.; Kompitsas, M. [Theor. and Phys./Chem. Institute, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens (Greece)

    2011-04-15

    Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 deg. C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.

  5. Rh-V alloy formation in Rh-VOx thin films after high-temperature reduction studied by electron microscopy.

    Science.gov (United States)

    Penner, S; Jenewein, B; Wang, D; Schlögl, R; Hayek, K

    2006-03-14

    Rh nanoparticles (mean size 10 and 15 nm), prepared by epitaxial growth on NaCl surfaces, were covered with layers of crystalline vanadium oxide (mean thickness 1.5 and 25 nm) by reactive deposition in 10(-2) mbar O2. The 1.5 nm film was further stabilized with a coating layer of 25 nm amorphous alumina. The so-obtained Rh/vanadia films, containing vanadium in the V3+ and V2+ state, were treated in 1 bar O2 at 673 K for 1 h and thereafter reduced in 1 bar H2 at increased temperatures, particularly between 723 and 873 K. The structural and morphological changes were followed by (high-resolution) transmission electron microscopy and selected area diffraction. Oxidation at 673 K transforms the purely vanadia-supported samples into Rh/V2O5, while in the alumina-supported films containing only small amounts of VOx, the formation of topotactic V2O3 is observed. The formation of Rh-V alloys during the subsequent reduction is strongly determined by the intimate contact and the structural and orientational relationship between Rh particles and the surrounding VOx phase. Reduction above 473 K transforms the support into substoichiometric vanadium oxides of composition VO and V2O. Analysis of high-resolution images and diffraction patterns reveals the presence of different alloy phases after reduction with increasing T (from 573 up to 823 K). In the alumina-supported film (low V/Rh ratio) the epitaxial alignment between the Rh particles and the surrounding V2O3 phase apparently favours the primary formation of defined alloys of type V3Rh and VRh3, followed by VRh at higher temperature. On the contrary, mainly V3Rh5 is formed in the purely VOx-supported Rh/films, due to different epitaxial relations in the initial state. Possible pathways of alloy formation are discussed. PMID:16633603

  6. Influence of additive element on surface oxide film of A356 alloy

    Institute of Scientific and Technical Information of China (English)

    OUYANG Zhi-ying; LIANG Hong-yu; MAO Xie-min; HONG Mei

    2006-01-01

    The influences of RE-modification and Sr-modification on the hydrogen content and surface oxide film of A356 aluminum alloy melt were investigated. The hydrogen content of the melt was measured by reduce pressure test. The phases in the surface oxide film were analyzed by X-ray diffractometry (XRD), and the morphology of the surface oxide film was observed by scanning electronic microscopy (SEM). The results show that RE-modification reduces the hydrogen content of A356 aluminum alloy greatly.Contrarily, Sr-modification increases the hydrogen content remarkably. After being treated with RE, a large number of LaAl11O18 consisting of Al2O3 and La2O3, are generated in the surface oxide film of A356 alloy. The surface oxide film of Sr-modification is almost composed of Al2SrO4. According to the results of SEM, the surface oxide film of Sr-modification is very easy to crack,destroy the continuity and compactness of surface oxide film, accelerate the vapor diffusing into the melt, consequently, increase the hydrogen content of A356 alloy melt significantly. But RE-modification makes the surface oxide film compact, and restrains the aluminum exposed to water, so reduces the hydrogen content of A356 alloy melt.

  7. Actuation Behavior of Polylactic Acid Fiber Films Prepared by Electrospinning.

    Science.gov (United States)

    Nobeshima, Taiki; Ishii, Yuya; Sakai, Heisuke; Uemura, Sei; Yoshida, Manabu

    2016-04-01

    A poly-DL-lactide (PLA) fiber film was prepared using the electrospinning method. This film consisted of randomly oriented PLA nanofibers. Consequently, it had sponge-like structure and was quite soft compared to PLA films prepared by spin coating. The average diameter of the fibers and the density of the film were 730 nm and 20%, respectively. By applying a voltage, the PLA film was subjected to electric-field-induced strain: expansion and compression in the thickness direction. When a voltage of -200 V was applied to the film, its thickness shrank from 13.5 µm to 10.0 µm (a 26% reduction). Electric-field-induced strain can occur via two different mechanisms: The first is electrostrictive behavior. That. is, in a highly electric field region, a change of film thickness occurs (compression only) from the electrostatic force between electrodes. The second mechanism is piezoelectric-like behavior that occurs in racemic PLA, wherein a PLA nanofiber is expanded and compressed by applying positive and negative voltage. Such piezoelectric-like behavior was not observed in spin-coated PLA films.

  8. Mossbauer investigations of corrosion environment influence on Fe valence states in oxide films of zirconium alloys

    NARCIS (Netherlands)

    Filippov, V. P.; Petrov, V. I.; Shikanova, Yu. A.

    2006-01-01

    Mossbauer investigations about iron atom redistribution in oxide films of zirconium alloys subjected to corrosion at 500 degrees C in pure oxygen and water pair have been analysed. The alloys were also subjected to autoclave conditions at a pressure of 10.0 MPa and autoclave conditions at 350 degree

  9. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  10. Electrochemical preparation of polypyrrole conducting films

    OpenAIRE

    Mária Filkusová*; Renáta Oriňáková

    2010-01-01

    Cyclic voltammetry has been used to investigate the electrochemical polymerization of pyrrole on the surface of a paraffin impregnated graphite electrode (PIGE). Effect of pH and concentration of the electrolyte solution on the electrochemical deposition of polypyrrole (PPy) was studied. The structure of the deposited layers was studied using scanning electron microscope (SEM). Well–adhering black PPy films were obtained.

  11. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  12. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  13. Preparation of lotus-like superhydrophobic fluoropolymer films

    International Nuclear Information System (INIS)

    Styrene and 2,2,3,4,4,4-hexafluorobutyl methacrylate copolymers were synthesized by bulk polymerization, and the superhydrophobic copolymer films were prepared subsequently using phase separation technique. The copolymer was dissolved in tetrahydrofuran, and then added ethanol into the solution thereafter, to induce phase separation. The microstructures of the polymer films were controlled by the degree of phase separation, which was enhanced properly by the concentration of ethanol. The surface morphology of the films, observed by environmental scanning electron microscope, is similar to that of the lotus leaf. The contact angle and sliding angle were measured as 154.3 deg. and 5.8 deg., respectively. The excellent superhydrophobic property demonstrated that the phase separation technique is useful for preparing lotus-like fluoropolymer films.

  14. Effects of heat treatment process on thin film alloy resistance and its stability

    Institute of Scientific and Technical Information of China (English)

    周继承; 彭银桥

    2003-01-01

    Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process.

  15. Preparation of anodic films of stabilized zirconium at ambient temperature

    International Nuclear Information System (INIS)

    It was prepared zirconium oxide films through the anodic oxidation of the zirconium at constant current density in phosphoric acid solution.The film growth is characterized, at the cronopotenciograms curves, by linear increase of the potential and region of film breakdown, with potential oscillations. The films were analysed by x-rays and SEM. It was observed the formation of zirconia films in the monoclinic phase in H3 P O4 solution. When H3 P O4 was use with Na2 [Ca(EDTA)] complex were detected the formation of zirconium oxide partiality stabilized in the tetragonal cubic form. It was also observed that varying the concentration of the complex and the applied current density it was possible to obtain different quantity of the stabilized phase. (author)

  16. Preparation of CulnSe2 thin films by paste coating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precursor pastes were obtained by milling Cu-In alloys and Se powders.CuInSe2 thin films were successfully prepared by precursor layers,which were coated using these pastes,and were annealed in a H2 atmosphere.The pastes were tested by laser particle diameter analyzer,simultaneous thermogravimetric and differential thermal analysis instruments (TG-DTA),and X-ray diffractometry (XRD).Selenized films were characterized by XRD,scanning electron microscopy (SEM),and energy dispersive spectroscopy (EDS).The results indicate that chalcopyrite CuInSe2 is formed at 180℃ and the crystallinity of this phase is improved as the temperature rises.All the CuInSe2 thin films,which were annealed at various temperatures,exhibit the preferred orientation along the (112) plane.The compression of precursor layers before selenization step is one oftbe most essential factors for the preparation of perfect CulnSe2 thin films.

  17. Preparation and superconductivity of iron selenide thin films

    OpenAIRE

    Han, Y.; Li, W. Y.; Cao, L. X.; S. Zhang; Xu, B; Zhao, B. R.

    2009-01-01

    FeSex (x = 0.80, 0.84, 0.88, 0.92) thin films were prepared on SrTiO3(001) (STO), (La,Sr)(Al,Ta)O3(001) (LSAT), and LaAlO3(001) (LAO) substrates by pulsed laser deposition method. All thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe0.88 thin films show Tc, onset of 11.8 K and Tc, 0 of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T.

  18. Preparation and characterization of Zn Se thin films

    CERN Document Server

    Ganchev, M; Stratieva, N; Gremenok, V; Zaretskaya, E; Goncharova, O

    2003-01-01

    Chemical bath deposition technique for preparation of ZnSe thin films is presented. The influence of bath temperature and duration of deposition on film growth and quality has been studied. The effect of post-deposition annealing in different ambient is also discussed. It has been determined that heat treatment removes the oxygen-containing phase from the as-deposited films and improves crystallinity. The optical and electric properties of the deposits show their potential for an alternative buffer layer in chalcopyrite-based solar cells.

  19. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  20. Ceramic Films Containing Ca,P and Al Formed on Surface of TC4 Alloy by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    FU Lian-chun; JIANG Zhao-hua; YAO Zhong-ping; SUN Xue-tong

    2004-01-01

    Ceramic films containing Ca, P and Al were prepared on surface of TC4 alloy by micro-arc oxidation using direct current supply to enhance its seawater and plankton corrosion resistance. XRD, EDS, SEM and EPMA were employed to characterize the microstructure and the phase composition. The results showed that 15 μm-ceramic films which was uniform and compact were formed on TC4 . The mass proportion of Ca, P and Al is about 2 : 3 : 4. There was AlPO4 crystal but Ca was not crystal. Cyclic Volt-Ampere test showed that the corrosion resistance of theceramic films was much better than that of the TC4 substrate.

  1. Microstructure and mechanical properties of sputter deposited NiMnGa magnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mahnke, Guido J.; Mayr, S.G. [1. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2008-07-01

    While bulk magnetic shape memory alloys (MSMA) are well established - and even commercially available, miniaturization as thin functional films still remains an open issue. The relation of microstructure and mechanical properties is one of the key ingredients to understand the martensitic transformation behaviour as well as twin boundary movement in MSMA thin films. To achieve this, highly textured and epitaxial NiMnGa MSMA thin films were prepared on different substrates at variable temperature by ion beam sputtering from a multicomponent target, and characterized with respect to phase, microstructure and growth stresses. While growth usually occurred in the austenitic phase, a twinned martensitic state usually could be obtained during cooling down, accompanied by changes in the stress state. The relation of mechanical properties and microstructure is discussed.

  2. The Effect of Silane on the Microstructure, Corrosion, and Abrasion Resistances of the Anodic Films on Ti Alloy

    Science.gov (United States)

    Wang, Jinwei; Chen, Jiali

    2016-04-01

    Anodic oxide films on Ti-6Al-4V alloy are prepared using sodium hydroxide as the base electrolyte containing aminopropyl trimethoxysilane (APS) as an additive. Some APS undergo hydrolysis, adsorption, and chemical reaction with the TiO x to form Ti-O-Si bond as confirmed by ATR-FTIR and XPS spectra, and in turn their surface appearance and roughness are greatly changed with the addition of APS as observed by their SEM images. These amino anodic films possess much higher corrosive resistances since the formation of Ti-O-Si complex enhances the compactness of the anodic films and the existence of aminopropyl groups inside the pores provides additional blocking effects. Besides, their improvement in anti-abrasive capability is attributed to the toughening effect of the chemically bonded silanes and the lubrication functions from both the chemically bonded and physically absorbed silanes between the touched interfaces.

  3. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  4. New Au–Cu–Al thin film shape memory alloys with tunable functional properties and high thermal stability

    International Nuclear Information System (INIS)

    An Au–Cu–Al thin film materials library prepared by combinatorial sputter-deposition was characterized by high-throughput experimentation in order to identify and assess new shape memory alloys (SMAs) in this alloy system. Automated resistance measurements during thermal cycling between −20 and 250 °C revealed a wide composition range that undergoes reversible phase transformations with martensite transformation start temperatures, reverse transformation finish temperatures and transformation hysteresis ranging from −15 to 149 °C, 5 to 185 °C and 8 to 60 K, respectively. High-throughput X-ray diffraction analysis of the materials library confirmed that the phase-transforming compositions can be attributed to the existence of the β-AuCuAl parent phase and its martensite product. The formation of large amount of phases based on face-centered cubic (Au–Cu), Al–Cu and Al–Au is responsible for limiting the range of phase-transforming compositions. Selected alloys in this system show excellent thermal cyclic stability of the phase transformation. The functional properties of these alloys, combined with the inherent properties of Au-based alloys, i.e. aesthetic value, oxidation and corrosion resistance, makes them attractive as smart materials for a wide range of applications, including applications as SMAs for elevated temperatures in harsh environment

  5. Preparation and Characterization of Chitosan—Agarose Composite Films

    Directory of Open Access Journals (Sweden)

    Zhang Hu

    2016-09-01

    Full Text Available Nowadays, there is a growing interest to develop biodegradable functional composite materials for food packaging and biomedicine applications from renewable sources. Some composite films were prepared by the casting method using chitosan (CS and agarose (AG in different mass ratios. The composite films were analyzed for physical-chemical-mechanical properties including tensile strength (TS, elongation-at-break (EB, water vapor transmission rate (WVTR, swelling ratio, Fourier-transform infrared spectroscopy, and morphology observations. The antibacterial properties of the composite films were also evaluated. The obtained results reveal that an addition of AG in varied proportions to a CS solution leads to an enhancement of the composite film’s tensile strength, elongation-at-break, and water vapor transmission rate. The composite film with an agarose mass concentration of 60% was of the highest water uptake capacity. These improvements can be explained by the chemical structures of the new composite films, which contain hydrogen bonding interactions between the chitosan and agarose as shown by Fourier-transform infrared spectroscopy (FTIR analysis and the micro-pore structures as observed with optical microscopes and scanning electron microscopy (SEM. The antibacterial results demonstrated that the films with agarose mass concentrations ranging from 0% to 60% possessed antibacterial properties. These results indicate that these composite films, especially the composite film with an agarose mass concentration of 60%, exhibit excellent potential to be used in food packaging and biomedical materials.

  6. Preparation and magnetic properties of Co-P thin films

    Institute of Scientific and Technical Information of China (English)

    Haicheng Wang; Zhongmei Du; Lijin Wang; Guanghua Yu; Fengwu Zhu

    2008-01-01

    Magnetic Co-P thin films were prepared by eleetroless deposition. The experiment results show that the film thickness has a significant influence on the coercivity. While the film thickness varied from 300 nm to 5 μm, the coercivity dropped sharply from 45.36 to 22.28 kA/m. As the film thickness increased further, the coercivity varied slowly. When the thickness of the film was 300 nm, the deposited film could realize the coercivity as high as 45.36 kA/m, and the remanent magnetization as high as 800 kA/m .The Co-P films were deposited on the surface of magnetic drums of encoders, whose diameter was 40 mm, and then 512 magnetic poles were recorded, meaning that the magnetizing pitch was 0.245 mm. The testing results indicate that the output signals are perfect, the output waveforms are steady and the pulses account is integral. Compared with the γ-Fe2O3 coating, the Co-P thin film is suitable to be the magnetic recording media for the high resolution magnetic rotary encoder.

  7. Growth and characterization of uranium–zirconium alloy thin films for nuclear industry applications

    International Nuclear Information System (INIS)

    Polycrystalline and epitaxial U–Zr thin films have been grown on glass and single-crystal sapphire substrates using ultra-high vacuum magnetron sputtering at high temperatures (T = 800 °C). Mixed α- and γ-U phases were detected for polycrystalline U–Zr alloy thin films with the prevailing crystal structure controlled by composition. Epitaxial U–Zr thin film samples were determined to form bi-layered structures of single-crystal γ-U and α-U phases or γ-U, δ UZr2 and α-U phases depending on the concentration of the alloying element. (paper)

  8. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhibin, E-mail: huangzhibin83@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Zhou Wancheng; Tang Xiufeng [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-01-15

    Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 deg. C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 {mu}m was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 deg. C.

  9. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy

    International Nuclear Information System (INIS)

    Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 deg. C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 μm was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 deg. C.

  10. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-06-01

    The corrosion behaviors of NiTi shape memory alloy in NaCl solution, H2SO4 solution and borate buffer solution were investigated. It was found that TiO2 in passive film improved the corrosion resistance of NiTi shape memory. However, low corrosion resistance of passive film was observed in low pH value acidic solution due to TiO2 dissolution. Moreover, the corrosion resistance of NiTi shape memory alloy decreased with the increasing of passivated potential in the three solutions. The donor density in passive film increased with the increasing of passivated potential. Different solutions affect the semiconductor characteristics of the passive film. The reducing in the corrosion resistance was attributed to the more donor concentrations in passive film and thinner thickness of the passive film. PMID:27040211

  11. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  12. Thermal Oxidation Preparation of Doped Hematite Thin Films for Photoelectrochemical Water Splitting

    OpenAIRE

    Song Li; Jiajia Cai; Yudong Mei; Yuping Ren; Gaowu Qin

    2014-01-01

    Sn- or Ge-doped hematite thin films were fabricated by annealing alloyed films for the purpose of photoelectrochemical (PEC) water splitting. The alloyed films were deposited on FTO glass by magnetron sputtering and their compositions were controlled by the target. The morphology, crystalline structure, optical properties, and photocatalytic activities have been investigated. The SEM observation showed that uniform, large area arrays of nanoflakes formed after thermal oxidation. The incorpora...

  13. Preparation of thin carbon films (1963)

    International Nuclear Information System (INIS)

    Carbon deposits have been prepared on silica glass supports in order to determine more accurately than by weighing the losses liable to occur during oxidation, for example under irradiation in the presence of CO2. Several processes have been studied with a view to obtaining deposits for which the variation in optical density as a function of carbon departure shall be reproducible for each sample. Among the methods used, the most satisfactory is that in which the pyrolytic carbon deposited on a carbon filament is evaporated; however only the samples prepared simultaneously exhibit the required identical behaviour. The carbonaceous deposits have been studied by micro-electronic diffraction. An examination of the photographs shows the presence of graphite monocrystals of about (30 μ)2. (author)

  14. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  15. Preparation and Characterization of PZT films Fabricated on Si Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Ying

    2006-01-01

    Lead zirconium titanate (PZT) films (Zr/Ti=45:55)with a high dielectric constant are prepared successfully on the low-resistance Si substrate in sol-gel dip-coating process with PT film used as the buffer layer.The dielectric and ferroelectric properties of the films as well as the relationship between crystallization and preparing condition are studied.It is shown that the PZT ferroelectric thin films with a (110) preferred orientation and a well-crystallized perovskite structure could be obtained after annealing at 800℃ for 15 min.The particle size of the sample is about 14-25 nm.The P-E hysteresis loops are measured by means of the Sawyer-Tower test system with a compensation resistor at room temperature.The remanent polarization (Pr) and coercive electric field (Ec) of the measured PZT thin films are 47.7 μC/cm2 and 18 kV/cm,respectively.The relative dielectric constant εr and the dissipation factor tgδ of the PZT thin films were measured with an LCR meter and were found to be 158 and 0.04-0.005,respectively.

  16. Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films

    Directory of Open Access Journals (Sweden)

    Z. Q. Chen

    2013-01-01

    Full Text Available Annealing induced amorphization in sputtered glass-forming thin films was generally observed in the supercooled liquid region. Based on X-ray diffraction and transmission electron microscope (TEM analysis, however, here, we demonstrate that nearly full amorphization could occur in nanocrystalline (NC sputtered NiW alloy films annealed at relatively low temperature. Whilst the supersaturation of W content caused by the formation of Ni4W phase played a crucial role in the amorphization process of NiW alloy films annealed at 473 K for 30 min, nearly full amorphization occurred upon further annealing of the film for 60 min. The redistribution of free volume from amorphous regions into crystalline regions was proposed as the possible mechanism underlying the nearly full amorphization observed in NiW alloys.

  17. Preparation of DNA films for studies under vacuum conditions

    DEFF Research Database (Denmark)

    Smialek, M. A.; Balog, Richard; Jones, N. C.;

    2010-01-01

    to the evacuation process when films were formed from DNA samples in ultra high purity water only. A variety of bases were tested for their possible protective capabilities and sodium hydroxide solution was found to be the most effective in maintaining the supercoiled structure of plasmid DNA during the preparation...

  18. Preparation and magnetization reversal of exchange bias structured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine; McCord, Jeffrey; Moench, Ingolf; Kaltofen, Rainer; Gemming, Thomas; Schaefer, Rudolf; Schultz, Ludwig [Leibniz Institute for Solid State and Materials Research, Dresden (Germany)

    2008-07-01

    Magnetically patterned thin films of NiFe/IrMn/Ta-NiFe/IrMnO{sub x} with laterally modulated unidirectional anisotropy were prepared by local oxidation of the antiferromagnetic IrMn layer. Varying the lateral dimensions and orientation with respect to the anisotropy modulation, the films exhibit different magnetization reversal behaviors. While stripes aligned parallel to the unidirectional anisotropy direction display a spin valve-like two step hysteresis loop, perpendicular orientation lead to a single step shifted hysteresis loop. Magnetic domain observation reveals separate switching of the stripes for the parallel alignment and simultaneous reversal for the perpendicular orientation. By decreasing the lateral dimensions, quasi-domain states have been observed. The presented magnetic data of the exchange biased-patterned films show that we did succeed in creating an alternative method for the preparation of materials with new hybrid properties.

  19. Preparation and characterization of polymer-clay nanocomposite films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition,the adhesion strength,flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.

  20. Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys

    OpenAIRE

    Fengxia Wu; Jun Liang; Weixue Li

    2015-01-01

    Mg(OH)2/graphene oxide (GO) composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH)2/GO composite film were investigated by scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH)2 film, the Mg(OH)2/GO composite film exhibited more uniform and compac...

  1. ON DEVELOPMENT OF OPTIMAL METALLURGICAL PROCESS FOR PREPARATION OF A NEW GENERATION OF INTERMETALLIC ALLOYS

    Directory of Open Access Journals (Sweden)

    Viliam Hrnčiar

    2009-06-01

    Full Text Available Intermetallic TiAl based alloys are used in extreme conditions, e.g. high temperature, aggressive atmosphere and combined high temperature mechanical loading. The contribution deals with development and optimization of plasma melting metallurgical process in new developed crystallizer with rotational and axial movement of melt, for preparation of new intermetallic alloys based on Ti-(45-48Al-(1-10Ta (at.%. The melting process parameters and their influence to final microstructure and properties of alloys are discussed. The aim of this work is to produce alloys with lower number of technological steps necessary to achieve chemical composition, homogeneity and purity as well.

  2. Preparation and Characterization of Novel Porous Fe-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    WANG Jiefeng; HE Yuehui; JIANG Yao; GAO Hanyan; YANG Junsheng; GAO Lin

    2016-01-01

    Porous Fe-Si alloys with different nominal compositions ranging from Fe-10wt% Si to Fe-50wt% Si were fabricated through a reactive synthesis of Fe and Si elemental powder mixtures. The effects of Si contents on the pore structure of porous Fe-Si alloy were investigated in detail. The results showed that the open porosity, gas permeability and maximum pore size of the porous Fe-Si alloys increased with increasing Si contents, indicating that the porosity and pore size can be tailored by changing the Si contents. The pore structure parameter including the open porosity, gas permeability, maximum pore size obeyed the Hagen-Poiseuille formula with the constant G=0.035 m-1Pa-1s-1 for the reactively synthesized porous Fe-Si alloys. The mechanical property of the porous Fe-Si alloys showed applicability in the ifltration industries.

  3. Preparation of Photocatalytic N-doped TiO2 Films by Combined Technology of Plasma Surface Alloying/Thermal Oxidation%等离子合金化/热氧化复合技术制备光催化N掺杂TiO2薄膜

    Institute of Scientific and Technical Information of China (English)

    靳晓敏; 高利珍; 王鹤峰

    2016-01-01

    Objective To improve the photocatalytic and hydrophilic properties of 316L stainless steel surface. Methods N doped TiO2 thin films were obtained by thermal oxidation of titanium nitride films, which were prepared by plasma surface alloying on stainless steel substrate. The resultant thin films were characterized by X-ray diffraction ( XRD) , X-ray photoelectron spectros-copy ( XPS) , scanning electron microscopy ( SEM) , and ultra violet-visible absorption spectroscopy ( UV-Vis) methods. The pho-tocatalytic properties and hydrophilicity of N doped TiO2 thin films were studied through photocatalysis and hydrophilicity tests. Results XRD patterns showed that anatase type TiO2 existed in the thin films after thermal oxidation at 450 ℃ in air for 2 h. Ac-cording to XPS, residual N atoms partially occupied O atom sites in the TiO2 lattice. The band-gaps of TiO2 and N-doped TiO2 were 3. 25 eV and 3. 08 eV, respectively. A uniform and dense surface containing three-dimensional homogenous protuberances growth of grains was observed in SEM images of thin films after thermal oxidation. The experimental results of degradation of Methylene blue solution under visible light indicated that photocatalysis efficiency of N doped TiO2 film was better than that of the undoped film. The ultimate degradation rate of N doped TiO2 was 20% in visible irradiation for 150 min. The N doped TiO2 films showed a higher hydrophilicity and the contact angle was lowered to 8. 5° by Vis-irradiation within 30 min. Conclusion The N doped TiO2 film could effectively improve the photocatalytic and hydrophilic properties of stainless steel surface.%目的 提高316 L不锈钢表面的光催化和亲水性能.方法 通过等离子表面合金化技术在316 L不锈钢表面制备结合良好的TiN薄膜,然后对TiN薄膜进行热氧化,得到N掺杂TiO2薄膜.利用X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜及紫外-可见分光光度仪对制备的N掺杂TiO2

  4. Preparation and Characterization of K-Carrageenan/Nanosilica Biocomposite Film

    Directory of Open Access Journals (Sweden)

    Lokesh R. Rane

    2014-01-01

    Full Text Available The purpose of this study is to improve the performance properties of K-carrageenan (K-CRG by utilizing nanosilica (NSI as the reinforcing agent. The composite films were prepared by solution casting method. NSI was added up to 1.5% in the K-CRG matrix. The prepared films were characterized for mechanical (tensile strength, tensile modulus, and elongation at break, thermal (differential scanning calorimetry, thermogravimetric analysis, barrier (water vapour transmission rate, morphological (scanning electron microscopy, contact angle, and crystallinity properties. Tensile strength, tensile modulus, and crystallinity were found to have increased by 13.8, 15, and 48% whereas water vapour transmission rate was found to have decreased by 48% for 0.5% NSI loaded K-CRG composite films. NSI was found to have formed aggregates for concentrations above 0.5% as confirmed by scanning electron microscopy. Melting temperature, enthalpy of melting, and degradation temperature of K-CRG increased with increase in concentration of NSI in K-CRG. Contact angle also increased with increase in concentration of NSI in K-CRG, indicating the decrease in hydrophilicity of the films improving its water resistance properties. This knowledge of the composite film could make beneficial contributions to the food and pharmaceutical packaging applications.

  5. Chemical deposition and characterization of thorium-alloyed lead sulfide thin films

    International Nuclear Information System (INIS)

    We present a chemical bath deposition process for alloying PbS thin films with 232Th, a stable isotope of thorium, to provide a model system for radiation damage studies. Variation of deposition parameters such as temperature, reagent concentrations and time allows controlling the properties of the resulting films. Small amounts of incorporated thorium (0.5%) strongly affected the surface topography and the orientation of the films and slowed down the growth rate. The Th appears to be incorporated as substitutional ions in the PbS lattice. - Highlights: • Chemical bath deposition has been used for alloying lead sulfide films with 232Th. • The effect of Th on the structural and optical properties of the films was studied. • Incorporation of Th affected surface topography, orientation, Eg and growth rate

  6. Preparation of semi-solid billet of magnesium alloy and its thixoforming

    Institute of Scientific and Technical Information of China (English)

    JIANG Ju-fu; LUO Shou-jing

    2007-01-01

    Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angular extrusion to magnesium alloy. The results show that mechanical properties of AZ91D alloy at room temperature, such as yield strength(YS), ultimate tensile strength(UTS) and elongation, are enhanced greatly by four-pass equal channel angular extrusion(ECAE) at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20 μm. Through using ECAE as strain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment, semi-solid billet with fine spheroidal grains of 25 μm can be prepared successfully. Compared with common SIMA, thixoformed satellite angle frame components using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and high temperature of 373 K.

  7. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  8. Microstructure and Properties of W-15Cu Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering Process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiaoxin; SHI Xiaoliang; YANG Hua; DUAN Xinglong

    2008-01-01

    W-15Cu composite powders prepared by mechanical alloying (MA) of raw powders were consolidated by spark plasma sintering (SPS) process at temperature ranged 1230-1300℃ for 10min and under a pressure of 30MPa. By using high energy milling, particles containing very fine tungsten grains embedded in copper, called composite particles, could be produced. The W grains were homogeneously dispersed in copper phase, which was very important to obtain W-Cu alloy with high mechanical properties, fine and homogeneous microstructure. The microstructure and properties of W-15Cu alloys prepared by SPS processes at different temperature were researched. The results show that W-15Cu alloys consolidated by SPS can reach 99.6% relative density, and transverse rupture strength (TRS) is 1400.9MPa, Rockwell C hardness (HRC) is 45.2, the thermal conductivity is 196W/m·K at room temperature, the average grain size is less than 2μm, and W-15Cu alloy with excellent properties, homogeneous and fine microstructure is obtained.

  9. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, F.O.; Willis, R.F. [Pennsylvania State Univ., University Park, PA (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  10. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Shin-ichi, E-mail: yamaura@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Nakajima, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Satoh, Takenobu; Ebata, Takashi [Tohoku Steel, Co., Ltd., 23 Nishigaoka, Murata, Murata-machi, Shibata 989-1393 (Japan); Furuya, Yasubumi [North Japan Research Institute for Sustainable Energy, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan)

    2015-03-15

    Highlights: • The as-forged Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe{sub 1−x}Co{sub x} (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe{sub 25}Co{sub 75} alloy was 108 ppm and that of the as-cold rolled Fe{sub 25}Co{sub 75} alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe{sub 25}Co{sub 75} alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe{sub 25}Co{sub 75} and Fe{sub 20}Co{sub 80} alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction.

  11. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ndione, Paul F.; Li, Zhen; Zhu, Kai

    2016-09-07

    Complex refractive index and dielectric function spectra of organic-inorganic lead halide perovskite alloy thin films are presented, together with the critical-point parameter analysis (energy and broadening) of the respective composition. Thin films of methylammonium lead halide alloys (MAPbI3, MAPbBr3, MAPbBr2I, and MAPbBrI2), formamidinium lead halide alloys (FAPbI3, FAPbBr3, and FAPbBr2I), and formamidinium cesium lead halide alloys [FA0.85Cs0.15PbI3, FA0.85Cs0.15PbBrI2, and FA0.85Cs0.15Pb(Br0.4I0.6)3] were studied. The complex refractive index and dielectric functions were determined by spectroscopic ellipsometry (SE) in the photon energy range of 0.7-6.5 eV. Critical point energies and optical transitions were obtained by lineshape fitting to the second-derivative of the complex dielectric function data of these thin films as a function of alloy composition. Absorption onset in the vicinity of the bandgap, as well as critical point energies and optical band transition shift toward higher energies as the concentration of Br in the films increases. Cation alloying (Cs+) has less effect on the optical properties of the thin films compared to halide mixed alloys. The reported optical properties can help to understand the fundamental properties of the perovskite materials and also be used for optimizing or designing new devices.

  12. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  13. Preparation and superconductivity of iron selenide thin films.

    Science.gov (United States)

    Han, Y; Li, W Y; Cao, L X; Zhang, S; Xu, B; Zhao, B R

    2009-06-10

    FeSe(x) (x = 0.80,0.84,0.88,0.92) thin films were prepared on SrTiO(3)(001)(STO), (La,Sr)(Al,Ta)O(3)(001) (LSAT), and LaAlO(3)(001) (LAO) substrates by a pulsed laser deposition method. All of the thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe(0.88) thin films show a T(c,onset) of 11.8 K and a T(c,0) of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T. PMID:21825594

  14. Preparation and superconductivity of iron selenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y; Li, W Y; Cao, L X; Zhang, S; Xu, B; Zhao, B R [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: lxcao@aphy.iphy.ac.cn

    2009-06-10

    FeSe{sub x} (x = 0.80,0.84,0.88,0.92) thin films were prepared on SrTiO{sub 3}(001)(STO), (La,Sr)(Al,Ta)O{sub 3}(001) (LSAT), and LaAlO{sub 3}(001) (LAO) substrates by a pulsed laser deposition method. All of the thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe{sub 0.88} thin films show a T{sub c,onset} of 11.8 K and a T{sub c,0} of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T.

  15. Anisotropic Magnetoresistance of Cobalt Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Yuttanun PANSONG

    2005-01-01

    Full Text Available Cobalt films on silicon substrates were prepared by thermal evaporation. By evaporating 0.05 g of cobalt for 80-240 s, a thickness from 21.1 to 67.7 nm was obtained with a deposition rate about 0.26-0.32 nm per second. The 29 nm-thick cobalt film exhibited magnetoresistance (MR ranging from -0.0793% (field perpendicular to the current to +0.0134% (field parallel to the current with saturation in a 220 mT magnetic field. This MR was attributed to anisotropic magnetoresistance (AMR since changing the angle between the field and the current (θ gave rise to a change in the electrical resistance (Rθ. The results agreed with the theory since the plot between Rθ and cos2θ could be linearly fitted. AMR was not observed in non-ferromagnetic gold films whose resistance was insensitive to the angle between the current and magnetic field.

  16. Electrochemical deposition of Mg(OH2/GO composite films for corrosion protection of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Fengxia Wu

    2015-09-01

    Full Text Available Mg(OH2/graphene oxide (GO composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH2/GO composite film were investigated by scanning electron microscope (SEM, energy-dispersive X-ray spectrometry (EDS, X-ray diffractometer (XRD and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH2 film, the Mg(OH2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH2/GO composite film could significantly improve the corrosion resistance of Mg(OH2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.

  17. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  18. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  19. MgB{sub 2} thin films grown on graphene/Ni–Mo alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Linghu, Kehuan, E-mail: linghukehuan@126.com [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Song, Qingjun [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Zhang, Huai [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Yang, QianQian [College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Zhang, Jibo; Wu, Qianhong; Nie, Ruijuan [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Dai, Lun [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Feng, Qingrong; Wang, Furen [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2015-09-15

    Highlights: • Depositing MgB{sub 2} thin films on graphene/Ni–Mo alloy substrate by HPCVD is a completely new method. • The growth of MgB{sub 2} thin films in this system lays a good foundation of depositing MgB{sub 2} thick films. • We directly deposite MgB{sub 2} films on graphene(without transferring) which keeps graphene’s original morphology and properties. - Abstract: 200 nm Ni film is coated on 25 μm thick Mo foil, and graphene is grown on the Ni–Mo system by CVD method. After the annealing process of CVD, the Ni/Mo bilayer transforms into Ni–Mo alloy, then we have successfully fabricated MgB{sub 2} films on graphene/Ni–Mo alloy system via the hybrid physical–chemical vapor deposition (HPCVD) technique. The transition temperature T{sub c} onset is 38.25 K with a corresponding transition width of 0.75 K. The average thickness of MgB{sub 2} films is 200 nm (25% concentration B{sub 2}H{sub 6}). The critical current density derives from the magnetization measurement at 5 K is, j{sub c} (5 K, 0 T) = 9.6 × 10{sup 6} A/cm{sup 2}. We can easily deposite MgB{sub 2} on graphene/Ni–Mo alloy system with a lower B{sub 2}H{sub 6} concentration and less gas flow, which lays a good foundation for depositing MgB{sub 2} thick films. The graphene in this system is multilayer and with defects, it may act like an intermediary film for the growth of MgB{sub 2}, or a carbon-doping source.

  20. Fabrication and biocompatibility in vitro of potassium titanate biological thin film/titanium alloy biological composite

    Institute of Scientific and Technical Information of China (English)

    QI Yumin; HE Yun; CUI Chunxiang; LIU Shuangjin; WANG Huifen

    2007-01-01

    A potassium titanate biological thin film/titanium alloy biological composite was fabricated by way of bionic chemistry.The biocompatibility fn vitro of Ti-15Mo-3Nb and the potassium titanate biological thin film/titanium alloy was studied using simulated body fluid cultivation,kinetic clotting of blood and osteoblast cell cultivation experiments in vitro.By comparing the biological properties of both materials,the following conclusions can be obtained:(1)The deposition of a calcium phosphate layer was not found on the surface of Ti-15Mo-3Nb,so it was bioinert.Because the network of potassium titanate biological thin film could induce the deposition of a calcium phosphate layer,this showed that it had excellent bioactivity.(2)According to the values of kinetic clotting,the blood coagulation time of the potassium titanate biological thin film was more than that of Ti-15Mo-3Nb.It was obvious that the potassium titanate biological thin film possessed good hemocompatibility.(3)The cell compatibility of both materials was very good.However,the growth trend and multiplication of osteoblast cells on the surface of potassium titanate biological thin film was better,which made for the concrescence of wounds during the earlier period.As a result,the potassium titanate biological thin film/titanium alloy showed better biocompatibility and bioactivity.

  1. Electrochemical studies on La-Co alloy film in acetamide-urea-NaBr melt system

    Institute of Scientific and Technical Information of China (English)

    GUO Cheng-yu; WANG Jian-chao; CHEN Bi-qing; WANG Jing-gui

    2005-01-01

    The kinetics of La-Co alloy film in acetamide-urea-NaBr molten salt electrolyte at 353 K was investigated. It is shown that the reduction of Co( Ⅱ ) to Co is irreversible reaction with the transfer coefficient of 0.28 and the diffusion coefficient of 7.46 × 10-5cm2/s. While La( Ⅲ ) cannot be reduced to La directly; but can be codeposited with cobalt. The content of La in the uncrystallized La-Co alloy film increases with increasing cathodic overpotential, molar ratio of La3+ to Co2+ and electrolysis time as well, and reaches the maximum of 66.32%.

  2. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films

    Science.gov (United States)

    Akiyama, Morito; Morofuji, Yukari; Kamohara, Toshihiro; Nishikubo, Keiko; Tsubai, Masayoshi; Fukuda, Osamu; Ueno, Naohiro

    2006-12-01

    We have investigated the high sensitive piezoelectric response of c-axis oriented aluminum nitride (AlN) thin films prepared on polyethylene terephthalate (PET) films. The AlN films were deposited using a radio frequency magnetron sputtering method at temperatures close to room temperature. The c axes of the AlN films were perpendicularly oriented to the PET film surfaces. The sensor consisting of the AlN and PET films is flexible like PET films and the electrical charge is linearly proportional to the stress within a wide range from 0to8.5MPa. The sensor can respond to the frequencies from 0.3 to over 100Hz and measures a clear human pulse wave form by holding the sensor between thumb and middle finger. The resolution of the pulse wave form is comparable to a sphygmomanometer at stress levels of 10kPa. We think that the origin of the high performance of the sensor is the deflection effect, the thin thickness and high elastic modulus of the AlN layer, and the thin thickness and low elastic modulus of the PET film.

  3. Colloidal CZTS nanoparticles and films: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Gong, Yanmei; Xu, Jian, E-mail: xujian@nbu.edu.cn; Fang, Gang; Xu, Qingbo; Dong, Jianfeng

    2013-10-15

    Highlights: •CZTS nanoparticles (NPs) with size ∼8–16 nm were synthesized by wet-chemical process. •Crystal phase of CZTS NPs was affected by the reaction temperature in synthesis. •Densified films were prepared from colloids, with drying and sintering in vacuum. •CZTS films (∼5 μm in thickness) have the band-gap of ∼1.5–2.0 eV. •CZTS conductivity change due to illumination was measured by AC impedance method. -- Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) compound semiconductor has the advantage of good matching with solar radiation in optical band-gap, large absorption coefficient, non-toxic and especially large abundance ratios of elements, so that CZTS has been considered as a good absorber layer used for the thin-film solar cells with most industrialization promising and environment friendly. In the present work, colloidal CZTS nanocrystals (average size ∼8–16 nm) with the band gap of ∼1.5 eV were synthesized via wet-chemical processing, using oleylamine (OLA) as solvent and capping molecules. The colloids were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–Vis–NIR spectroscopy. The structure and morphology of nanocrystals were influenced with the reaction temperature. The resulting nanocrystals were kesterite-phase CZTS when the reaction temperature was lower, but were wurtzite-phase CZTS when the reaction temperature above 275 °C. The CZTS films on glass substrates were prepared by drop-casting, from the colloidal 10 wt% CZTS–toluene solution where the CZTS colloids were synthesized at 260 °C with three different recipes. The resulting films with different heat-treatments were investigated by XRD, SEM and energy dispersive spectroscopy (EDS). Densified CZTS films (∼5 μm in thickness) could be obtained by drying and sintering in vacuum. The CZTS films have the band-gap around 1.6–2.0 eV, due to Zn rich and S poor in the films

  4. Preparation and Properties of Cereal-Metal Complex Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Various kinds of biodegradable polymer materials have been researched[1]. In our previous papers,cereals such as wheat,buckwheat,glutinous rice and nonglutinous rice were polycondenced with citric acid and polysilicic acid to prepare copolymer films respectively[2,3].These copolymer fims have relatively good mechanical properties but the water proofness is not so good.Recently,some cereals such as wheat,glutinous rice,nonglutinous rice,kaoliang,millet and maize were reacted with copper chlorid...

  5. Porous anodic film formation on an Al-3.5wt% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Paez, M. A.; Skeldon, P.; Thompson, G. E.; Saez, M.; Bustos, O.; Monsalve, A.

    2003-07-01

    The morphological development of porous anodic films in the initial stages is examined during anodizing an Al-3,5 wt% Cu alloy in phosphoric acid. Using transmission electron microscopy a sequence of ultramicrotomed anodic sections reveals the dynamic evolution of numerous features in the thickening film in the initial stages of anodizing. The morphological changes in the anodic oxides in the initial stages of its formation appears related to the formation of bubbles during film growth. From Rutherford backscattering spectroscopy (RBS) analysis of the film, the formation of the bubbles is associated with the enrichment of copper in the alloy due to growth of the anodic oxide. On the other hand, during constant current anodizing of Al-Cu in phosphoric acid, the current efficiency is considerably less than that for anodizing super pure aluminium under similar conditions. >From the contrasting results between the charge consumed calculated from RBS and the real charge consumed during anodizing, oxygen gas bubbles generation and copper oxidation seem to be of less importance on the low efficiency for film formation. It is apparent that the main cause of losing efficiency for film growth on Al-Cu is associated with generation of oxygen ar residual second phase, with the development of stresses in the film and, the consequence of these effects on film cracking during film growth. (Author) 10 refs.

  6. Effect of Perovskite Film Preparation on Performance of Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxian Pei

    2016-01-01

    Full Text Available For the perovskite solar cells (PSCs, the performance of the PSCs has become the focus of the research by improving the crystallization and morphology of the perovskite absorption layer. In this thesis, based on the structure of mesoporous perovskite solar cells (MPSCs, we designed the experiments to improve the photovoltaic performance of the PSCs by improved processing technique, which mainly includes the following two aspects. Before spin-coating PbI2 solution, we control the substrate temperature to modify the crystal quality and morphology of perovskite films. On the other hand, before annealing, we keep PbI2 films for the different drying time at room temperature to optimize films morphology. In our trials, it was found that the substrate temperature is more important in determining the photovoltaic performance than drying time. These results indicate that the crystallization and morphology of perovskite films affect the absorption intensity and obviously influence the short circuit current density of MPSCs. Utilizing films prepared by mentioning two methods, MPSCs with maximum power conversion efficiency of over 4% were fabricated for the active area of 0.5 × 0.5 cm2.

  7. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  8. Preparation and characterization of polyimide/silica hybrid films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-yan; ZENG Shu-jin; DONG Tie-quan; ZHOU Sheng; FAN Yong; ZHANG Xiao-hong; LEI Qing-quan

    2006-01-01

    A kind of hybrid polyimide films was prepared by synthesizing poly( amic acid ) /Silica matrix resin through sol-gel technique and then followed by positing it on a silex glass plate and drying at high temperature.The effect of silica content on the corona-resistant property of the films was studied. The miscibility between the organic and inorganic phases and its effect on the corona-resistant property were investigated with aminopropyltriethoxysilane, which served as a coupling agent, added into the polyimide composite system. The chemical structure and the surface morphology of the films were characterized by FTIR and AFM respectively. The corona-resistant property of the films was tested by a rod-plate electrode. It proved that the corona-resistant property was enhanced with silica content. It also turned ont that the improvement of the miscibility between the two phases due to the presence of covalent force as a result of the addition of the coupling agent had, to some extent,effect on the corona-resistant property of the films. Furthermore, a theory on the corona-resistant property was put forward preliminarily.

  9. Rain Erosion Behavior of Silicon Dioxide Films Prepared on Sapphire

    Institute of Scientific and Technical Information of China (English)

    Liping FENG; Zhengtang LIU; Wenting LIU

    2005-01-01

    Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to in crease both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD),respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared(FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.

  10. Lubrication properties of silver-palladium alloy prepared by ion plating method for high temperature stud bolt

    Institute of Scientific and Technical Information of China (English)

    Jung-Dae KWON; Sunghun LEE; Koo-Hyun LEE; Jong-Joo RHA; Kee-Seok NAN; Se-Hun KWON

    2011-01-01

    As a solid lubricant, silver-palladium (Ag-Pd) alloy coating was investigated for the application to high temperature studbolt. A glue layer nickel (Ni) film was deposited on the surface of the hex bolt sample and then Ag-Pd alloy coating was performed on it using ion plating method. The friction coefficient of Ag-Pd alloy film coated bolt was lower than that of N-5000 oil coated bolt by the result of axial force measurement. The cyclic test of heat treatment was conducted to evaluate the durability of Ag-Pd alloy film coated bolt. In a cycle, sample was assembled into the block using torque wrench, followed by heating and disassembling. It was not successful to disassemble the N-5000 oil coated bolt from the block after only one cycle. However, the Ag-Pd alloy film coated bolt was able to be disassembled softly till 12 cycles.

  11. An application of Au thin-film emissivity barrier on Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhibin [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechincial University, Xi' an 710072 (China)], E-mail: huangzhibin83@163.com; Zhu Dongmei; Lou Fa; Zhou Wancheng [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechincial University, Xi' an 710072 (China)

    2008-12-30

    1000 nm-thick Au film was sputter-deposited on two groups of nickel alloy substrates, in which one group (Group A) was oxidated at 800 deg. C for 20 h to form a oxide film before coating gold while another group (Group B) was unoxidated. The gold thin-film is applied to serve as a low emissivity coating to reflect thermal radiation. The gold-coated samples were heated in air at 600 deg. C for 150 h to explore the effect of high-temperature environment on the emissivity of coated Au film. After heat-treatment, the average thermal emissivity at the wavelength of 3-14 {mu}m of Group B greatly increased from 0.18 to 0.82 while that of Group A only increased a little. The diffusion between Au and other nickel alloy elements at 600 deg. C also had been discussed in this paper.

  12. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Science.gov (United States)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-02-01

    Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  13. The preparation of well-dispersed Ni-B amorphous alloy nanoparticles at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ming [Department of Chemistry, Tongji University, Shanghai 200092 (China)], E-mail: m_wen@mail.tongji.edu.cn; Li Lujiang; Liu Qiuyan; Qi Haiquan [Department of Chemistry, Tongji University, Shanghai 200092 (China); Zhang Tao [Department of Materials Science and Engineering, Beijing University of Aeronaut and Astronaut, Beijing 100083 (China)

    2008-05-08

    The air-stable well-dispersed Ni-B amorphous alloy nanoparticles in the similar size of 5 nm with narrow deviation were prepared by a chemical solution alloying process at room temperature in a positive microemulsion system. The proposed interface reaction mechanism, element analysis and thermal stability as well as the magnetic behavior of Ni-B amorphous alloy nanoparticles were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), infrared spectroscopy (IR), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). All the results showed that as synthesized Ni-B amorphous alloy nanoparticles are air-stable in room temperature and coated by macromolecular compound oleic acid. The magnetic property of the as synthesized Ni-B amorphous alloy was discussed based on the obtained results.

  14. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    Science.gov (United States)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  15. Preparation of porous U-10%Mo alloy by powder metallurgy and its microstructure characterization

    International Nuclear Information System (INIS)

    U-Mo alloy is one of candidates of metallic fuel for advanced nuclear reactor due to its good irradiation behavior. Reasonably analysis suggests that the irradiation swell of U-Mo alloy can be decreased by introducing homogeneously distributed voids, because they can accommodate gaseous fission products. The process of preparing low density U-Mo alloy by powder metallurgy was described, including preparing low density bulk materials by pressing and vacuum sintering. A serial of U-10%Mo alloys with different densities were obtained and the microstructure was analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). It is proved that the density of sample increases with sinister time under 1100℃. The void ratio can be controlled by adjusting sinister process conveniently. (authors)

  16. Preparation of CuCr alloys by thermit-reduction electromagnetic stirring

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influences of the additive CaF2, different molds, mold pre-heating temperature, electromagnetic stirring, and alloying elements on CuCr have been investigated respectively during the preparation of CuCr alloys by thermit-reduction electromagnetic cation point of slags to improve the metal separating efficiency from slags; the crystal particles become thinner because of the high cooling velocity in the metal mold; while casting in the graphite mold, the casting properties of CuCr improve with the increase of pre-heating temperature; the compact alloys are prepared at 500℃; electromagnetic stirring can prevent the growth of dendrite crystal into refine crystal particles, as well as homogenize Cu and Cr to improve the CuCr properties; the optimal stirring time is 7 min;when the alloying elements Ni and Co are added to the reactants, elements Cu and Cr can distribute evenly but the crystal particles become thick.

  17. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    OpenAIRE

    Shuangshuang Sun; Xiance Jiang

    2014-01-01

    The mechanical model of the shape memory alloy (SMA) composite film with silicon (Si) substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation perfo...

  18. Preparation and characterization of hydrophilic TiO sub 2 film

    CERN Document Server

    Park, J K

    2002-01-01

    A novel titania sol for the preparation of hydrophilic TiO sub 2 films was synthesized from TiCl sub 4. TiO sub 2 films were prepared by spraying the sol on glass substrates and the hydrophilic properties of the films were investigated with illumination of UV light. The contact angle of a water drop on the films decreased to less than 7 .deg. , which indicates the excellent hydrophilicity of the TiO sub 2 films.

  19. Research on Semisolid Microstructural Evolution of 2024 Aluminum Alloy Prepared by Powder Thixoforming

    OpenAIRE

    Pubo Li; Tijun Chen; Suqing Zhang; Renguo Guan

    2015-01-01

    A novel method, powder thixoforming, for net-shape forming of the particle-reinforced Aluminum matrix composites in semi-solid state has been proposed based on powder metallurgy combining with thixoforming technology. The microstructural evolution and phase transformations have been investigated during partial remelting of the 2024 bulk alloy, prepared by cold pressing of atomized alloy powders to clarify the mechanisms of how the consolidated powders evolve into small and spheroidal primary...

  20. Preparation of biomimetic hydrophobic coatings on AZ91D magnesium alloy surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydrophobic coating has been a promising technology for improving surface performance. The surface performance of magnesium alloy has been limited in application. Furthermore, the hydrophobic of magnesium alloy is rarely investigated because magnesium alloy is an active metal alloy. In this paper, inspired by microstructure character of typical plant leaf surface such as lotus, the biomimetic hydrophobic coatings on AZ91D magnesium alloy surface were prepared by means of wet-chemical combining electroless. The samples were immersed into AgNO3 solution in wet-chemical method firstly. Then, biomimetic hydrophobic coatings were prepared by electroless after wet-method pretreatment. The microstructure was observed by SEM and the contact angles were measured by contact angle tester. The results indicated that the biomimetic hydrophobic coatings with uniform crystalline and dense structure could be obtained on AZ91D magnesium alloy surface. The results of contact angle revealed that the biomimetic nano-composite coatings were hydrophobic. The wet-chemical method treatment on the AZ91D magnesium alloy substrate provided a rough microstructure, thus improving adhesion of the coating and the substrate.

  1. In situ surface magneto-optical Kerr effect (s-MOKE) study of ultrathin soft magnetic FeCuNbSiB alloy films

    International Nuclear Information System (INIS)

    Herein we report on an in situ surface magneto-optical Kerr effect (s-MOKE) study of ion-beam-sputtered ultra-thin films of an amorphous Fe73.9Cu0.9Nb3.1Si13.2B8.9 (FINEMET) alloy with film growth that ranges from a fraction of a nm to a few tens of nms. Extrapolating the linear variation of the Kerr signal with film thickness suggests the absence of a magnetic dead layer at the substrate/FINEMET film interface, and hence the absence of any intermixing. The presence of a thin SiO2 film at the surface of the Si substrate may be responsible for preventing possible intermixing of Fe with Si to form nonmagnetic silicide. Close to the onset of ferromagnetic ordering, a steep increase in the coercive field with film thickness can be explained in terms of the Volmer–Weber growth of the film. Furthermore, the temperature dependence of the hysteresis loops of a 41 nm-thick FINEMET film has been studied. The Curie temperature of the amorphous film is found to be lower than that of a ribbon of the same composition. The origin of a uniaxial magnetic anisotropy in the as-prepared stage is attributed to the generation of some long-range stresses in the film, which are relieved close to the onset temperature for nanocrystallization. (paper)

  2. Non-alloyed Ni3Al based alloyspreparation and evaluation of mechanical properties

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2013-07-01

    Full Text Available The paper reports on the fabrication and mechanical properties of Ni3Al based alloy, which represents the most frequently used basic composition of nickel based intermetallic alloys for high temperature applications. The structure of the alloy was controlled through directional solidification. The samples had a multi-phase microstructure. The directionally solidified specimens were subjected to tensile tests with concurrent measurement of acoustic emission (AE. The specimens exhibited considerable room temperature ductility before fracture. During tensile testing an intensive AE was observed.

  3. Preparation of organic thin-film field effect transistor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic thin-film field effect transistor was prepared through vacuum deposition by using teflon as di-electric material. Indium-tin-oxide acted as the source and drain electrodes. Copper phthalocyanine and teflon were used as the semiconductor layer and dielectric layer, respectively. The gate electrode was made of Ag. The channel length between the source and drain was 50 μm. After preparing the source and drain electrodes by lithography, the copper phthalocyanine layer, teflon layer and Ag layerwere prepared by vacuum deposition sequentially. The field effect electron mobility of the device reached 1.1×10ˉ6 cm2/(V@s), and the on/off current ratio reached 500.

  4. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content

    Directory of Open Access Journals (Sweden)

    Angeliki Lekatou

    2016-02-01

    Full Text Available Hypereutectic Al-Co alloys of various Co contents (7–20 weight % (wt.% Co were prepared by vacuum arc melting, aiming at investigating the influence of the cobalt content on the microstructure and corrosion behavior. Quite uniform and directional microstructures were attained. The obtained microstructures depended on the Co content, ranging from fully eutectic growth (7 wt.% and 10 wt.% Co to coarse primary Al9Co2 predominance (20 wt.% Co. Co dissolution in Al far exceeded the negligible equilibrium solubility of Co in Al; however, it was hardly uniform. By increasing the cobalt content, the fraction and coarseness of Al9Co2, the content of Co dissolved in the Al matrix, and the hardness and porosity of the alloy increased. All alloys exhibited similar corrosion behavior in 3.5 wt.% NaCl with high resistance to localized corrosion. Al-7 wt.% Co showed slightly superior corrosion resistance than the other compositions in terms of relatively low corrosion rate, relatively low passivation current density and scarcity of stress corrosion cracking indications. All Al-Co compositions demonstrated substantially higher resistance to localized corrosion than commercially pure Al produced by casting, cold rolling and arc melting. A corrosion mechanism was formulated. Surface films were identified.

  5. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction

    International Nuclear Information System (INIS)

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H2SO4 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H2O2. All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic electrolyte PtCoNi 70-8-22% by

  6. Electronic Properties of Passive Films Formed on G3 and G30 Nickel-based Alloys in Bicarbonate/Carbonate Buffer Solution

    Institute of Scientific and Technical Information of China (English)

    LI Dang-guo; WANG Jia-dao; CHEN Da-rong

    2011-01-01

    The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.

  7. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  8. Fabrication of Sn-Ni alloy film anode for Li-ion batteries by electrochemical deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-wei; YANG Chen-ge; DAI Jun; WEN Jian-wu; WANG Long; CHEN Chun-hua

    2009-01-01

    Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also investigated.By galvanostatic cell cycling the film anodes can deliver a steady specific capacity.The morphological changes cause the differences in capacity retention.After farther heat treatment,the film anodes present a better cycle performance,with a specific capacity of 314 mA-h/g after 100 cycles.This high capacity retention can be due to its smooth,compact surface formed in the heat treatment process.

  9. MARTENSITE AND REVERSE TRANSFORMATION IN PRESTRAINED TiNi SHAPE MEMORY ALLOY THIN FILM

    Institute of Scientific and Technical Information of China (English)

    X.P. Liu; M.Z. Cao; R. Yang

    2003-01-01

    The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un deformed TiNi film, the reverse transformation of pre-strained specimens was elevated to a higher temperature on the first heating, but martensite and reverse transforma tion on subsequent thermal cycles occurred at a lower temperature. The evolution of transformation behavior in pre-strained TiNi film was related to the change of elastic strain energy, irreversible energy and internal stress field.

  10. Film formation on the surface of magnesium-beryllium PMB-2 alloy in a diphenyl mixture under reactor irradiation

    International Nuclear Information System (INIS)

    A film growth on the surfaces of PMB-2 magnesium-beryllium alloy specimens in a diphenyl mixture under reactor irradiation was studies. It is shown that film thickness increases linearly with absorbed dose up to 3500 Mrad. The possibility of film washing off the specimen surfaces by boiling in the diphenyl mixture is investigated

  11. Nanocrystalline silicon films prepared by laser-induced crystallization

    Institute of Scientific and Technical Information of China (English)

    傅广生; 于威; 李社强; 侯海虹; 彭英才; 韩理

    2003-01-01

    The excimer laser-induced crystallization technique has been used to investigate the preparation of nanocrystalline silicon (nc-Si) from amorphous silicon (α-Si) thin films on silicon or glass substrates. The α-Si films without hydrogen grown by pulsed-laser deposition are chosen as precursor to avoid the problem of hydrogen effluence during annealing.Analyses have been performed by scanning electron microscopy, atomic force microscopy, Raman scattering spectroscopy and high-resolution transmission-electron microscopy. Experimental results show that silicon nanocrystals can be formed through laser annealing. The growth characters of nc-Si are strongly dependent on the laser energy density. It is shown that the volume of the molten silicon predominates essentially the grain size of nc-Si, and the surface tension of the crystallized silicon is responsible for the mechanism of nc-Si growth.

  12. Thin nanocrystalline zirconia films prepared by pulsed laser deposition

    Science.gov (United States)

    Dikovska, A. Og; Atanasova, G. B.; Avdeev, G. V.; Strijkova, V. Y.

    2016-03-01

    In the present work, thin zirconia films were prepared by pulsed laser deposition at different substrate temperatures and oxygen partial pressures. The substrate temperature was varied from 400 °C to 600 °C, and the oxygen pressure, from 0.01 to 0.05 mbar. The effect was investigated of the substrate temperature and oxygen pressure on the formation of m-zirconia and t-zirconia phases.The formation of a cubic phase of ZrO2 by using targets doped with 3 and 8 mol % content Y2O3 was also investigated. The variation in the optical properties was studied and discussed in relation with the zirconia films' microstructure.

  13. Surface Composition and Corrosion Property of TiNi Alloys Coated with Tantalum Films

    Institute of Scientific and Technical Information of China (English)

    Yan CHENG; Wei CAI; Liancheng ZHAO

    2004-01-01

    Multi-arc ion plating method was employed to coat TiNi alloys with Ta in order to improve radiopacity and corrosion resistance property. The surface composition, corrosion resistance property and Ni ions release amount of TiNi alloys coated with Ta films compared with TiNi alloys, are investigated by means of X-ray photoelectron spectrometry (XPS), electrochemical measurements and atomic absorption spectrophotometry (AAS), respectively. The results show that the coated surface composition is composed of Ta and O and the corrosion resistance is improved, whereas the Ni ions release amount of the coated sample is lower than that of the uncoated samples in the whole immersion period, indicating that Ta coating can improve the biocompatibility of TiNi alloys.

  14. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  15. Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor

    International Nuclear Information System (INIS)

    Cerium oxide (CeO2) buffer layers play an important role for the development of YBa2Cu3O7-x (YBCO) based superconducting tapes using the rolling assisted biaxially textured substrates (RABiTS) approach. The chemical solution deposition (CSD) approach has been used to grow epitaxial CeO2 films on textured Ni-3 at.% W alloy substrates with various starting precursors of ceria. Precursors such as cerium acetate, cerium acetylacetonate, cerium 2-ethylhexanoate, cerium nitrate, and cerium trifluoroacetate were prepared in suitable solvents. The optimum growth conditions for these cerium precursors were Ar-4% H2 gas processing atmosphere, solution concentration levels of 0.2-0.5 M, a dwell time of 15 min, and a process temperature range of 1050-1150 deg. C. X-ray diffraction, AFM, SEM, and optical microscopy were used to characterize the CeO2 films. Highly textured CeO2 layers were obtained on Ni-W substrates with both cerium acetate and cerium acetylacetonate as starting precursors. YBCO films with a J c of 1.5 MA/cm2 were obtained on cerium acetylacetonate-based CeO2 films with sputtered YSZ and CeO2 cap layers

  16. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    Science.gov (United States)

    Wen, F. S.; Xiang, J. Y.; Hao, C. X.; Zhang, F.; Lv, Y. F.; Wang, W. H.; Hu, W. T.; Liu, Z. Y.

    2013-12-01

    The ultrathin films of Co2FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films.

  17. Nanostructure Study of TiO2 Films Prepared by Dip Coating Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM).The films were prepared by dip coating process. The optical properties of the films were explained on the basis ofthe microstructure of the films.

  18. The Effect of Diffusion Barrier and Bombardment on Adhesive Strength of CuCr Alloy Films

    Institute of Scientific and Technical Information of China (English)

    WANGJian-feng; SONGZhong-xiao; XUKe-wei; WANGYuan

    2004-01-01

    A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different bombardment energies were used to improve the comprehensive properties of Cu alloy film. The results indicated that the effects of diffusion barriers and bombardment energy on adhesive strength could be evaluated by a rolling contact fatigue adhesion test. Diffusion barrier can enhance the adhesive strength, and the adhesion of CuCr/CrN was higher than that of CuCr/TiN. When bombarding energy was higher, the adhesive strength of CuCr/TiN films was higher due to the broader transition zone.

  19. Corrosion protection of AZ31 magnesium alloy treated with La3+ modified 3-methacryloxypropyltrimethoxysilane conversion film

    Institute of Scientific and Technical Information of China (English)

    乔英杰; 李文鹏; 王桂香; 张晓红

    2015-01-01

    This study demonstrated the influence of addition concentration of La3+ on the anti-corrosion behavior of a 3-methacry-loxypropyltrimethoxysilane (MPS) film formed on AZ31 magnesium alloy. The morphology and surface chemistry of the samples were evaluated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The corrosion resistance of the pre-treated AZ31 magnesium alloy was studied during immersion in 0.1 mol/L NaCl solution, using poten-tiodynamic polarization curves and electrochemical impedance spectra (EIS). In comparison to MPS film, the low concentration of La3+ ion modified silane layer exhibited a better anti-corrosion performance, nevertheless, the high concentration of La3+ ion modified was worse. Results showed that the preferable addition concentration of La3+ ion in the silane film was 5×10–4 mol/L in this experi-ment.

  20. Giant magnetoresistance of electrodeposited Cu–Co–Ni alloy films

    Indian Academy of Sciences (India)

    İ H Karahan; Ö F Bakkaloğlu; M Bedir

    2007-01-01

    Electrodeposition of CuCoNi alloys was performed in an acid–citrate medium. Nickel density parameter was varied in order to analyse its influence on the magnetoresistance. The structure and giant magneto- resistance (GMR) effect of CuCoNi alloys have been investigated. The maximum value for GMR ratio, at room temperature is 1% at a field of 12 kOe, and at 20 K is 2.1% at a field of 8.5 kOe for 3.1 Ni. The MR ratio of Cu100−−CoNi alloys first increases and then decreases monotonically with increasing Ni content. The GMR and its dependence on magnetic field and temperature were discussed.

  1. Preparation of ZnO:CeO2-x thin films by AP-MOCVD: Structural and optical properties

    International Nuclear Information System (INIS)

    The growth of columnar CeO2, ZnO and ZnO:CeO2-x films on quartz and AA6066 aluminum alloy substrates by economic atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) is reported. A novel and efficient combination of metal acetylacetonate precursors as well as mild operating conditions were used in the deposition process. The correlation among crystallinity, surface morphology and optical properties of the as-prepared films was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The synthesized films showed different crystallographic orientations depending on the ZnO and CeO2 lattice mismatch, cerium content and growth rate. The CeO2 films synthesized in this work showed plate-like compact structures as a result of the growth process typical of CVD. Both pure and ZnO:CeO2-x films were obtained with a hexagonal structure and highly preferred orientation with the c-axis perpendicular to both substrates under the optimal deposition conditions. The microstructure was modified from dense, short round columns to round structures with cavities ('rose-flower-like' structures) and the typical ZnO morphology by controlling the cerium doping the film and substrate nature. High optical transmittance (>87%) was observed in the pure ZnO films. As for the ZnO:CeO2-x films, the optical transmission was decreased and the UV absorption increased, which subsequently was affected by an increase in cerium content. This paper assesses the feasibility of using ZnO:CeO2-x thin films as UV-absorbers in industrial applications. - Graphical abstract: TEM micrographs and their corresponding SAED pattern obtained for the as-deposited ZnO-CeO2-x thin films for a Zn/Ce metallic ratio 16:9.

  2. Effect of Cu concentration on the formation of Cu1−x Znx shape memory alloy thin films

    International Nuclear Information System (INIS)

    Highlights: • 3 different composition of Cu–Zn deposits successfully deposited from the non-cyanide sulphate electrolyte. • The homogeneous metal films and Cu–Zn alloys were electrodeposited on Al substrate. • The effect of Cu content was strongly effected structural and the electrical resistivity of Cu–Zn alloys. • The average crystallite size of the samples varied from 66 to 100 nm and decreased when Cu content in the electrolyte. • Microstrain has been decreased with increasing crystallite size. • Cyclic voltammetry of the electrolyte explained the characters of the baths. - Abstract: The CuxZn1−x (x = 0.06, 0.08, 0.1) deposits were fabricated by a electrodeposition method. The structural and electrical properties of the films were investigated by cyclic voltammetry (CV), X-ray diffraction (XRD), Scanning electron micrograph (SEM), and DC resistivity measurements. Phase identification of the samples was studied by the XRD patterns. XRD patterns shows the characteristics XRD peaks corresponding to the, β, and γ phases. The grain sizes of the samples were decreased whereas microstrain increased with the increase in Cu2+ substitution. The SEM study reveals the fine particle nature of the samples with increasing Cu content. DC resistivity indicates the metallic nature of the prepared samples. It has been found that the Cu ions have a critical influence on the resultant structure and resistivity properties of the Cu–Zn samples

  3. Preparation of Lead-free Thick-film Resistor Pastes

    Institute of Scientific and Technical Information of China (English)

    LUO Hui; LI Shihong; LIU Jisong; CHEN Liqiao; YING Xingang; WANG Ke

    2012-01-01

    The preparation of lead-free thick-film resistors are reported:using RuO2 and ruthenates as conductive particles,glass powders composed of B2O3,SiO2,CaO and Al2O3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al2O3 substrates,and then sintering in a belt furnace.X-ray diffraction (XRD) and electron scanning microscopy (SEM) have been used to characterize the conductive particles.The resistors exhibit good retiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80 Ω/□ to 600 Ω/□.The resistors prepared are qualified for common use.

  4. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  5. Ion beam sputter deposition of TiNi shape memory alloy thin films

    Science.gov (United States)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  6. Investigation of Formation and Inhibition Mechanism of Cerium Conversion Films on Al 2024 Alloy

    Institute of Scientific and Technical Information of China (English)

    邵敏华; 黄若双; 付燕; 林昌健

    2002-01-01

    To study the mechanism of formation and inhibition of Ce conversion films on Al 2024-T3 alloy, scanning microreference electrode technique (SMRE) is used to probe the potential map on Al 2024-T3 in CeCl3 solution, the localized corrosion of Al alloy decreases with immersion time and disappears finally, which results from the competition of Cl- aggression and Ce3+ inhibition on alloy surface. The results of X-ray photoelectron spectroscopy (XPS) indicate that the Ce conversion films consist of Al2O3, CeO2 and Ce2O3(Ce(OH)3), and CeO2/Ce2O3 ratio decreases with the immersion time. When a critical pH for Ce(OH)3 formation was reached, Ce(OH)3 will precipitate on the micro cathodic area on alloy surface. Consequently, H2O2, the product of the catholic reaction will oxidize a part of Ce(OH)3 to CeO2, which appears a better corrosion resistance for Al alloys.

  7. Microstructure and properties of AZ80 magnesium alloy prepared by hot extrusion from recycled machined chips

    Institute of Scientific and Technical Information of China (English)

    刘英; 李元元; 张大童; 倪东惠; 陈维平

    2002-01-01

    AZ80 magnesium alloy was prepared by hot extrusion of recycled machined chips and its microstructure and mechanical properties were investigated. Hot pressing was employed to prepare extrusion billets of AZ80 chips, then the billets were hot extruded at 623K with an extrusion ratio of 25∶ 1. The extruded rods show a high ultimate tensile strength of 285MPa and a high elongation of 6%. Due to grain refinement by extrusion, mechanical properties of the extruded rods are much higher than those of as-cast AZ80 alloy. Process technique and chips densification mechanism were also studied. Results show that hot extrusion is an efficient method for AZ80 alloy chips recycling.

  8. Study on the early surface films formed on Mg-Y molten alloy in different atmospheres

    Directory of Open Access Journals (Sweden)

    A.R. Mirak

    2015-09-01

    Full Text Available In the present study, the non-isothermal early stages of surface oxidation of liquid Mg-1%Y alloy during casting were studied under UPH argon, dry air, and air mixed with protective fluorine-bearing gases. The chemistry and morphology of the surface films were characterized by SEM and EDX analyses. The results indicate a layer of smooth and tightly coherent oxidation film composed of MgO and Y2O3 formed on the molten Mg-Y alloy surface with 40–60 nm thickness under dry air. A dendritic/cellular microstructure is clearly visible with Y-rich second phases gathered in surface of the melt and precipitated along the grain/cell boundaries under all gas conditions. Under fluorine-bearing gas mixtures, the surface film was a mixed oxide and fluoride and more even; a flat and folded morphology can be seen under SF6 with oxide as dominated phase and under 1, 1, 1, 2-tetra-fluoroethane, a smooth and compact surface film uniformly covering the inner surface of the bubble with equal oxide and fluoride thickness, which results in a film without any major defects. MgF2 phase appears to be the key characteristic of a good protective film.

  9. Properties of CdS{sub x}Te{sub 1{minus}x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.; Deng, X.; Grecu, D.; Makhratchev, K.; Ma, X.; Wendt, R.; Zuo, D.; Compaan, A.D.; Bohn, R.G. [Univ. of Toledo, OH (United States). Dept. of Physics and Astronomy

    1997-12-31

    The authors have performed a comprehensive study of the electrical, optical, structural and vibrational properties of thin films of the ternary alloy CdS{sub x}Te{sub 1{minus}x}. The films were grown using pulsed laser deposition (PLD) from pressed targets of the binary alloys. Hall and conductivity measurements have been performed on these films yielding resistivities from 0.5 {Omega}-cm for CdS-rich films to 1000 M{Omega}-cm for CdTe-rich films. X-ray diffraction indicates the films are zincblende below x {approximately} 0.48 and wurtzite above. Raman scattering shows that the phonon dynamics have two-mode behavior. The x-dependence of the Raman data is described well by a modified random element iso-displacement model. Photoluminescence (PL) is particularly useful in the regions of low and high x-values. These data provide an improved basis for characterizing the interdiffusion between CdS and CdTe which is critical to high performance in the CdS/CdTe solar cell. Examples of PL from interdiffused layers are given to illustrate applications.

  10. Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, S.M.A.; Khawaja, E.E. [Laser Research Section, Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Box 1831, 31261 Dhahran (Saudi Arabia); Salim, M.A.; Al-Kuhaili, M.F.; Al-Shukri, A.M. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia)

    2002-02-15

    Thin films of tungsten oxide have been prepared by thermal evaporation. The effect of preparation conditions (heating of substrates and oxygen environment) on the optical constants (n and k) of the films has been studied. Satisfactory derivation of n and k from the measured normal incidence transmittance of the films was achieved. It was found that (a) both n and k have larger values for films deposited on heated substrates than for those deposited on unheated substrates, and at a given substrate temperature, (b) both n and k have smaller values for films deposited in the oxygen atmosphere than those deposited without an introduction of oxygen in the chamber.Thermochromic colouration of the films was carried out by annealing the films in vacuum. The annealing of the films produced significant loss in the oxygen content (measured by X-ray photoelectron spectroscopy) and modulation of the transmittance for the films deposited on unheated substrates with or without the oxygen environment and films deposited on heated substrates with the oxygen. The loss in the oxygen content and the modulation of transmittance, however, were very small for films deposited on heated substrates without the oxygen. For annealed films, satisfactory derivation of n and k was achieved for films deposited on unheated substrates, while for films deposited on heated substrates this was not possible. This study revealed that upon annealing the optical properties of the films prepared in the oxygen environment were mainly absorptance-modulated, and those of the films without the oxygen were reflectance-modulated.

  11. Thermal stability of magnesium alloy AZ91 prepared by severe plastic deformation

    OpenAIRE

    Roman Štěpánek; Libor Pantělejev; Ondřej Man

    2013-01-01

    This paper deals with the thermal stability of ultrafine-grained alloy AZ91 prepared by means of ECAP (Equal Channel Angular Pressing) method. Annealing experiments were conducted isochronally for 30 minutes in the temperature range of 220 to 400 °C in argon atmosphere. EBSD (Electron Backscatter Diffraction) method was used to image the changes in microstructure due to increased temperature.

  12. Injection Molding of W-Ni-Fe Nanocomposite Powder Prepared by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline 90W-7Ni-3Fe (wt pct) composite powder was prepared by mechanical alloying and mixed with binder to form a feedstock. Its rheological and sintering behaviors were compared with those of the feedstock from the original powder. It is found that milling can increase the maximum powder loading of feedstock and enhance the sintering densification process.

  13. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer

    Institute of Scientific and Technical Information of China (English)

    JIANG Lai-Xin; WU Yi-Qun; WANG Yang; WEI Jing-Song; GAN Fu-Xi

    2009-01-01

    Sb-Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb-Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 38Onm are read out by a dynamic setup, the laser wavelength is 78Onto and the numerical aperture of pickup lens is 0.45. The effects of the Sb-Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb-Bi mask layer is about 0.5roW, and the corresponding carrier-to-noise ratio is about 20dB at the film thickness of 5Ohm. The super-resolution mechanism of the Sb-Bi alloy mask layer is discussed based on its temperature dependence of reflection.

  14. Structural and magnetic properties of Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films prepared by a novel nanocomposite technology

    International Nuclear Information System (INIS)

    Highlights: • A new method was developed to prepare dualistic soft magnetic nanocomposite thin films. • The structure and magnetic properties of nanocomposite thin films were investigated. • The soft magnetic properties of Ni0.5Zn0.5Fe2O4 thin films have been greatly improved. - Abstract: Fe65Co35 alloy nanoclusters prepared by using a plasma-gas-condensation method were encapsulated into Ni0.5Zn0.5Fe2O4 thin film to form new-type films in a nanocluster beam composite film deposition system. An average size of the Fe65Co35 alloy nanoclusters was about 5.5 nm with a narrow size distribution. Compared with that of Ni0.5Zn0.5Fe2O4 thin film, saturation magnetization of the Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films which contained 6 wt.% Fe65Co35 alloy nanoclusters was increased by about 64%, while the coercivity was reduced by almost 44.7%. Meanwhile, resistivity still maintained at a high value (1.67 × 1010 μΩ cm). The influence of annealing temperature on structure and magnetic properties of the Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films was also investigated. As the annealing temperature was increased, saturation magnetization rose gradually while coercivity revealed a complicated change tendency

  15. Preparation of films of a highly aligned lipid cubic phase.

    Science.gov (United States)

    Squires, Adam M; Hallett, James E; Beddoes, Charlotte M; Plivelic, Tomás S; Seddon, Annela M

    2013-02-12

    We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (Q(II)(D)) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L(3) phase) in the presence of butanediol, we can obtain a film of the Q(II)(D) phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that found in the oriented bulk material that we have reported previously; therefore, we can now reproducibly form Q(II)(D) samples oriented with either the [110] or the [100] axis aligned in the flow direction depending on the method of preparation. The deposition of MO as a film, via a moving fluid-air interface that leaves a coating of MO in the L(3) phase on the capillary wall, leads to a sample in the [110] orientation. This contrasts with the bulk material that we have previously demonstrated to be oriented in the [100] direction, arising from flow producing an oriented bulk slug of material within the capillary tube. The bulk sample contains significant amounts of residual butanediol, which can be estimated from the lattice parameter of the Q(II)(D) phase obtained. The sample orientation and lattice parameters are determined from synchrotron small-angle X-ray scattering patterns and confirmed by simulations. This has potential applications in the production of template materials and the growth of protein crystals for crystallography as well as deepening our understanding of the mechanisms underlying the behavior of lyotropic liquid-crystal phases. PMID:23347289

  16. The microstructure and coefficient transmission of think films Bi2Te3-xSex, alloyed by terbium

    International Nuclear Information System (INIS)

    The defects of films microstructures of the thermoelectric materials n- and p-type Bi2Te3-xSex, alloyed by Tb and Cl, with think, obtained by thermic evaporation in vacuum have been investigated by microscopic methods

  17. Uniaxial in-plane magnetic anisotropy in silicon-iron films prepared using vacuum coating plant (VCP)

    Science.gov (United States)

    Kockar, H.; Meydan, T.

    2005-06-01

    The novel VCP system is a mobile physical deposition method to deposit metallic/magnetic films using various source materials including powder, lump, pre-alloyed ingots and wires. The VCP system consists of a large deposition area of 960 cm2 and has been used for the first time to prepare magnetic thin films of Si{3}Fe{97}. The source material evaporated by a resistively heated furnace, which was position right under the substrate within the VCP system, contains small pieces of conventional 3% silicon-iron steel as source materials. The magnetic analysis of the films was achieved by using a vibrating sample magnetometer (VSM). Observations indicate that the magnetic anisotropy and coercivity are dependent on the type of substrate and the deposition conditions. Results of all films deposited on flexible kapton^TM are anisotropic in the film plane whereas the films deposited on glass substrate indicate the less-well defined anisotropy in the film plane while the substrate holder of the VCP system was run at the speed of 100 rpm. In the case of stationary magnetic materials production, the films deposited on kapton and glass substrates show isotropic magnetic behaviour. All films showed planar magnetic anisotropy irrespective of type of substrate and the production conditions used. The findings are discussed in terms of scaling up the technique for the possible production of various shapes of circular, square or strip components with the compositions equivalent to that of conventional electrical steels in order to investigate a possible future to produce large scale of silicon-iron as the core materials for rotating machines and power transformers.

  18. Tantalum-cadmium film coatings: Preparation, phase composition, and structure

    Science.gov (United States)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Zhakanbaev, E. A.

    2015-01-01

    Ion-plasma sputtering and codeposition of ultrafine Ta and Cd particles were used for the first time to prepare solid solutions, namely, alloys with up to 66.2 at % Cd in the form of coatings; the fact of such a production confirms the thermal-fluctuation melting and coalescence of small particles. When the coatings are formed by tantalum and cadmium nanolayers, the mutual dissolution of the components takes place, which is accompanied by the formation of solid solutions of one metal in the other. When the cadmium concentration is above 44 at %, the β-Ta tetragonal lattice transforms into the α-Ta body-centered cubic lattice. Beginning from 74.4 at % Cd, a hexagonal structure typical of cadmium is formed, and tantalum is present in the coatings in the form of amorphous phase. The formation of β-Ta- and Cd-based interstitial and α-Ta-based substitute solid solutions is stated. At 700°C, cadmium evaporates from Ta-based solid solutions, and porous tantalum is formed. The evaporation of cadmium from coatings, which consist of the mixture of tantalum solid solution in cadmium and amorphous tantalum, leads to the formation of tantalum characterized by a highly developed surface. The prepared Ta-based materials assume the technological application of the results of the investigation.

  19. Preparation and characterization of thick BSCCO 2223 films

    International Nuclear Information System (INIS)

    Among the most widespread applications for critical high-temperature ceramic superconductors are for silver veined tapes, with the superconductor in the middle. These tapes are prepared by the powder- in - tube method. To attain high densities of critical current, the ceramic material must have a certain texture, with the grains oriented with the c axis perpendicular to the direction in which the current circulates. In the system that was studied, the degree of orientation increases as the distance to the vein decreases, with the maximum being in the silver-ceramic inter-phase. Superconductor tapes become inconvenient when defining the ceramic, especially because of the orientation of their plates as a function of the distance to the silver. Although the silver can be dissolved by a chemical attack in order to uncover the ceramic, greater precaution is needed while manipulating the superconductor and obtaining representative data. The behavior of thick films of the compound BSCCO 2223, deposited on silver sheets, forming silver-ceramic composites, was studied. These sheets simulate the silver-ceramic inter-phase and the distribution of the grains towards the center in a thick tape. After the samples were prepared, the phases that were present were characterized by x-ray diffraction and the resulting microstructure was analyzed with a SEM (Scanning Electron Microscope). Its mechanical properties were evaluated, following the formation and propagation of cracks in real time using four point flexion microassays inside the SEM chamber, as well as generating tension-deformation curves. The method of preparation of the thick films is discussed and its influence on the results obtained with the different characterizations (cw)

  20. Growth and magnetic properties of NiMnGa thin films prepared by pulsed laser ablation

    Science.gov (United States)

    Zhu, T. J.; Lu, L.; Lai, M. O.; Ding, J.

    2005-10-01

    Ni-Mn-Ga alloys have attracted increasing attention due to their large magnetic-field-induced stresses and the potential applications in sensors and actuators. In the present work, NiMnGa half-Heusler alloy films have been deposited on Si(100) substrates by the pulsed laser deposition technique at temperatures ranging from 450 to 650 °C. X-ray diffraction and atomic force microscopy observation show the phase structure and surface morphology of these films are different, and energy dispersive spectroscopy analysis shows compositions of the films remain nearly unchanged, independent of the deposition temperature. Vibrating sample magnetometer measurement indicates that good magnetic properties are obtained. All the films exhibit the same coercive field, about 250 Oe. The thermomagnetic curve shows that the Curie temperature of NiMnGa films is higher than room temperature, which is crucial for the room-temperature application.

  1. Microstructure and mechanical properties of hypereutectic Al-Fe alloys prepared by semi-solid formation

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2011-11-01

    Full Text Available The effects of alloying elements, electromagnetic stirring, reheating and semi-solid formation on the microstructure and mechanical properties of Al-Fe alloys prepared by semi-solid formation were studied. It was found that alloying elements and electromagnetic stirring can alter the morphology and growth mode of the iron-rich phase in Al-Fe alloys; and effectively refine the primary Al3Fe phase. In contrast to the microstructure obtained in conventional casting, the Al3Fe phase becomes thin short rod-like instead of thick needle-like; and the dendritic grain structure almost disappears in the semi-solid formation. The Al3Fe phase can be further refined through being dissolved or fused during subsequent reheating. It was also found that the larger extrusion ratio of semi-solid formation causes a greater crushing effect and therefore the Al3Fe phase is more refined and has more uniform distribution. Moreover, Al-Fe alloys prepared by semi-solid formation exhibit excellent mechanical properties at both room and high temperatures.

  2. Preparation of Al-Si-Ti Master Alloys by Electrolysis of Silica and Titania in Cryolite-Alumina Melts

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aluminum-silicon-titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite-alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed after about 90 min of electrolysis at 950℃. The current efficiency for the preparation of the Al-Si-Ti alloys varied with time, temperature and cathodic current density. It is concluded that this electrolytic method may be an interesting alternative to the direct metal mixing process for formation of Al-Si-Ti master alloys.

  3. Investigation of magnetic properties in thick CoFeB alloy films for controllable anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Huang, Ya; Chen, Ruofei; Xu, Zhan [Huaqiao University, College of Information Science and Engineering, Xiamen City (China)

    2016-02-15

    CoFeB alloy material has attracted interest for its wide uses in magnetic memory devices and sensors. We investigate magnetic properties of thick Co{sub 40}Fe{sub 40}B{sub 20} films in the thickness range from 10 to 100 nm sandwiched by MgO and Ta layers. Strong in-plane uniaxial magnetic anisotropy is revealed in the as-deposited amorphous films by angular dependent magnetic measurements, and the growth-induced anisotropy is found to strongly depend on the film thickness. A fourfold cubic magnetic anisotropy develops with annealing, as a result of improved crystalline structure in films confirmed by X-ray diffraction measurements. The observed magnetic properties can be explained by the superposition of the uniaxial and additional cubic magnetic anisotropy, tuned by annealing temperature. (orig.)

  4. Deposition of cerium contained conversion films on LC4 alloy with square wave pulse method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; LI Jiuqing; WU Yinshun; ZHANG Pei; HE Jianping

    2004-01-01

    Cerium contained conversion films were deposited on LC4 aluminum alloy using square wave pulse (SWP) in a CeC13 solution with KMnO4 as the oxidant. Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) were adopted to study the composition and the morphology of the film. It is found that the film is composed of Al, Zn, Cu,and small amount of cerium. The polarization curves of the specimens treated with SWP technique measured in 3.5% (mass fraction) NaCl solution reveal that the film thus formed inhibits both the anodic and cathodic process of the corrosion of the specimen. The immersion tests of treated specimens in 3.5% NaCl solution indicate that the corrosion resistance of the SWP treated specimen is better than that of the untreated and is equivalent to or even better than that of the traditionally electrochemically treated specimens.

  5. Ti-Ni-Cu shape-memory alloy thin film formed on polyimide substrate

    International Nuclear Information System (INIS)

    Ti-Ni-Cu shape-memory alloy (SMA) thin films were sputter-deposited on heated polyimide substrates. Ti-Ni-Cu films deposited at substrate temperatures of 543 and 583 K were found to be crystalline. Especially, a Ti48Ni29Cu23 film deposited at 583 K exhibited a high martensitic transformation temperature above room temperature and a narrow transformation temperature range, which enable the film to be used at room temperature. Double-beam cantilevers made of 8 μm thick Ti48Ni29Cu23 films deposited on 12.5 and 25 μm thick polyimide substrates displayed a repeatable shape-memory effect by a battery of 1.5 V and it was verified that the composite film consisting of an 8 μm thick Ti48Ni29Cu23 film and a 25 μm thick polyimide film is capable of moving 0.18 g wings of a dragonfly toy up and down. These results offer the prospect for using an SMA/polyimide actuator as a convenient small actuator, which will find wide-ranging applications

  6. Controllable preparation of nanosized TiO2 thin film and relationship between structure of film and its photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    WEI; Gang; (魏刚); ZHANG; Yuanjing; (张元晶); XIONG; Rongchun; (熊蓉春)

    2003-01-01

    TiO2 nano-crystalline film and fixed bed photocatalytic reactor were prepared by the sol-gel process using tetrabutylorthotitanate as a precursor and glass tube as the substrate. XRD, AFM, SEM and thickness analysis results indicate that the preparation of nano-crystalline film can be controlled by optimizing experiment process. Under the optimized process, the phase of TiO2 in film is anatase, and the grain size is 3-4 nm. The size of particles, which is about 20-80 nm, can be controlled. The thickness of monolayer film is in nanometer grade. The thickness and particles size in films growing on nanometer film can also be controlled in nanometer grade. As a result, the crack of film can be effectively avoided. Rhodamine B degradation results using UV-Vis spectrophotometer show that the activity of nano-crystalline film in the photocatalytic reactor has a good relation with the diameter of TiO2 particles, that is, the film shows high activity when the size is 20-30 nm and greatly reduced when the size is above 60 nm. The activity of film does not decrease with the increase of film thickness, and this result indicates that nano-crystalline film has no ill influence on the transmissivity of ultraviolet light.

  7. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Shin Jinhong [Texas Materials Institute, University of Texas at Austin, Austin, TX 78750 (United States); Waheed, Abdul [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Winkenwerder, Wyatt A. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Kim, Hyun-Woo [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Agapiou, Kyriacos [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Jones, Richard A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: ekerdt@che.utexas.edu

    2007-05-07

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO{sub 2} containing {approx} 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH{sub 2}(PMe{sub 3}){sub 4} (Me = CH{sub 3}) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase.

  8. Effect of Sn content on the properties of passive film on PbSn alloy in sulfuric acid solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of Sn content on properties of anodic film formed on PbSn alloys in sulfuric acid solution was investigated using linear sweeping voltage (LSV), cyclic voltammetry (CV), and a.c. voltammetry (ACV), based on the Mott-Schottky analysis. The results revealed that the addition of Sn into lead alloys can promote the corrosion resistance property and could decrease the impedance of anodic film; these results were more remarkable with enhancing the Sn content. The over potential of oxygen evolution on lead alloys enhanced with the increase of Sn content. The Mott-Schottky analysis indicated that the passive film appeared an n-type semiconductor, and the donor density of passive film increased with increasing Sn content. The increased vacancies in the passive film with Sn content increasing could illustrate this trend.

  9. Preparation of U–Zr–Mn, a Surrogate Alloy for Recycling Fast Reactor Fuel

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2015-01-01

    Full Text Available Metallic fuel slugs of U–10Zr–5Mn (wt%, a surrogate alloy for the U–TRU–Zr (TRU: a transuranic element alloys proposed for sodium-cooled fast reactors, were prepared by injection casting in a laboratory-scale furnace, and their characteristics were evaluated. As-cast U–Zr–Mn fuel rods were generally sound, without cracks or thin sections. Approximately 68% of the original Mn content was lost under dynamic vacuum and the resulting slug was denser than those prepared under Ar pressure. The concentration of volatile Mn was as per the target composition along the entire length of the rods prepared under 400 and 600 Torr. Impurities, namely, oxygen, carbon, silicon, and nitrogen, totaled less than 2,000 ppm, satisfying fuel criteria.

  10. Composition and corrosion resistance of cerium conversion films on 2195Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    SONG Dong; FENG Xingguo; SUN Mingren; MA Xinxin; TANG Guangze

    2012-01-01

    The Ce conversion films on 2195Al-Li alloy without and with post-treatment were studied and the corrosion resistance was evaluated as well.The surface morphology was observed by scanning electron microscopy (SEN),and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS).The corrosion behaviors of 2195Al-Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves.The experimental results indicated that after post-treatment the surface quality was improved significantly.According to XPS,the conversion coating after post-treatment was mainly composed of CeO2,Ce2O3,Ce-OH and a little MoO3 and MoO2.The results of potentiodynamic polarization curves revealed that the conversion coating with post-treatment possessed better corrosion resistance than bare alloy and Ce conversion coating without post-treatment.

  11. Rapidly solidified hypereutectic Al-Si alloys prepared by powder hot extrusion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Rapidly solidified hypereutectic Al-Si alloys were prepared by powder hot extrusion. By eliminating vacuum degassing procedure, the fabrication routine was simplified. The tensile fracture mechanisms at room temperature and elevated temperature were investigated by SEM fractography. Compared with KS282 casting material, the tensile strength of rapidly solidified Al-Si alloy is greatly improved due to silicon particles refining while its density and coefficient of thermal expansion are lower than those of KS282. The wear resistance of RS AlSi is better than that of KS282.

  12. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  13. Preparation of nanometer FeCuP alloy and its application in decomposition of PH3

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new ternary Fe-based alloy catalyst FeCuP applied to decompose PH3 was prepared with low-cost material by chemical reduction deposition method. The properties of it were characterized by XRD, ICP and SEM. Its catalytic activity on the decomposition of PH3 and the decomposition conditions were studied. FeCuP alloy exhibits high thermal stabilities and high catalytic activity. Using it as catalyst, the decomposition temperature of phosphine decreases from over 800 ℃ to 400-500 ℃. The decomposition rate of phosphine achieved 100%.

  14. Preparation of Li-B Alloy and Study of Its Microstructure and Discharge characteristics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Li-B alloy has been prepared using a pretreated amorphous B powder and pure Li ingot as starting materials by continually slow addition of B powder and intensified stirring in the process of melting. The microstructure and the discharge characteristic of the materials have been investigated. Results show that the problem of temperature control in synthesis would be modified by means of continual addition of B powder, the Li7B6 would be more finely distributed in the metal Li by means of intensified stirring. The discharge characteristic of the Li-B alloy using amorphous B as starting materials is almost the same with that of using crystalline B.

  15. A study on electrodeposited NiFe1− alloy films

    Indian Academy of Sciences (India)

    M Bedir; Ö F Bakkaloğlu; İ H Karahan; M Öztaş

    2006-06-01

    NiFe1− (0.22 ≤ ≤ 0.62) alloy films were grown by electrodeposition technique. A shift in diffraction peaks of NiFe and Ni3Fe was detected with increasing Ni content. The highest positive magnetoresistance ratio was detected as 5% in Ni0.51Fe0.49. Positive and negative anisotropic magnetoresistance were observed in longitudinal and transverse geometries respectively. The highest anisotropic magnetoresistance ratio of 9.8% was also detected in Ni0.51Fe0.49. The angular variation of magnetoresistance was studied. Magnetisation loop curves show that NiFe alloy films have a linear decreasing anisotropy constant with increasing Ni deposit content and show a decreasing behavior of coercivity which indicates soft magnetic property with increasing Ni deposit content.

  16. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  17. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  18. A Study on the Electrodeposited Cu-Zn Alloy Thin Films

    Science.gov (United States)

    Özdemir, Rasim; Karahan, İsmail Hakkı; Karabulut, Orhan

    2016-11-01

    In this article, electrochemical deposition of the nanocrystalline Cu1- x Zn x alloys on to aluminum substrates from a non-cyanide citrate electrolyte at 52.5, 105, 157.5, and 210 A m-2 current densities were described. The bath solution of the Cu1- x Zn x alloys consisted of 0.08 mol L-1 CuSO4·5H2O, 0.2 mol L-1 ZnSO4·7H2O, and 0.5 mol L-1 Na3C6H5O7. The effect of the current density on the microstrain, grainsize, phase structure, and DC electrical resistivity behavior was investigated. The electrolyte was investigated electrochemically by cyclic voltammetry (CV) studies. A scanning electron microscope (SEM) was used to study the morphologies of the deposits. Deposited alloys were investigated by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and four-point probe electrical resistivity techniques. With an increase in applied current density values from 52.5 to 210 A m-2, the amount of deposited copper in the alloy was decreased significantly from 65.5 to 16.6 pct and zinc increased from 34.4 to 83.4 pct. An increase in the current density was accompanied by an increase in grain size values from 65 to 95 nm. SEM observations indicated that the morphology of the film surface was modified to bigger grained nanostructures by increasing the current density. The XRD analysis showed alloys have a body-centered cubic (bcc) crystal structure with preferential planes of (110) and (211). Furthermore, four-point measurements of the films revealed that the resistivity of the deposited films was tailored by varying current densities in the electrolyte.

  19. Characterization of steam generated anti-corrosive oxide films on Aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Aluminium and its alloys are widely used in structural and transportation industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further...... of hexavalent chromium is strictly regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms...

  20. Nickel-niobium alloy formation process of electroless nickel composite plating film using niobium nano-power

    International Nuclear Information System (INIS)

    Composite plating improves functionalities of wear resistance, corrosion resistance, lubricity, etc. through co-deposition with suitable particles. For this study, reactive metallic particles were introduced intentionally as a dispersant. Heat treatment was used to form an alloy with a plated matrix. Composite plating films were formed using electroless Ni-P plating with Nb powder of two types as dispersants: nanopowder (ca. 300 nm diameter) and micropowder (ca. 50 μm diameter). The composite plating film was alloyed using heat treatment at 800degC for 1 hour under vacuum conditions. X-ray diffraction (XRD) analysis confirmed that the proportion of alloy to reactive composite film with nanopowder was much larger than that with micropowder. Results of X-ray photoelectron spectroscopy (XPS) analyses suggest that a selective Nb oxide was formed on the composite film surface when using Nb nanopowder. On the other hand, almost no Nb micropowder was changed to alloy or oxide in the composite films. Using nanopowder, much of the composite plating film formed reactive composite plating film alloy during heat treatment. (author)

  1. Microstructure and mechanical properties of multiphase layer formed during depositing Ti film followed by plasma nitriding on 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.Y., E-mail: zfy19861010@163.com; Yan, M.F., E-mail: yanmufu@hit.edu.cn

    2014-05-01

    Highlights: • A novel duplex surface treatment on 2024 Al alloy was proposed. • A multiphase layer composed of TiN{sub 0.3}, Al{sub 3}Ti and Al{sub 18}Ti{sub 2}Mg{sub 3} was prepared on the surface of 2024 Al alloy. • The microstructures of TiN{sub 0.3}, Al{sub 3}Ti and Al{sub 18}Ti{sub 2}Mg{sub 3} were characterized by SEM and TEM. • The surface hardness of the multiphase layer reached to 590 HV{sub 0.01}, five times harder than 2024 Al alloy. • The wear resistance of 2024 Al alloy was improved significantly. - Abstract: In this study, a novel method was develop to fabricate an in situ multiphase layer on 2024 Al alloy to improve its surface mechanical properties. The method was divided into two steps, namely depositing pure Ti film on 2024 Al substrate by using magnetron sputtering, and plasma nitriding of Ti coated 2024 Al in a gas mixture comprising of 40% N{sub 2}–60% H{sub 2}. The microstructure and mechanical properties of the multiphase layer prepared at different nitriding time were investigated by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), microhardness tester and pin-on-disc tribometer. Results showed that multiphase layer with three sub-layers (i.e. the outmost TiN{sub 0.3} layer, the intermediate Al{sub 3}Ti layer and the inside Al{sub 18}Ti{sub 2}Mg{sub 3} layer) can be obtained. The thickness of the Al{sub 18}Ti{sub 2}Mg{sub 3} layer increased faster than TiN{sub 0.3} and Al{sub 3}Ti layer with increasing nitriding time. The hardness of the layer has reached about 593 HV, which is much higher than that of 2024 Al substrate. The wear rate of the coated samples decreased 53% for 4 h nitriding and 86% for 12 h nitriding, respectively, compared with that of the uncoated one. The analysis of worn surface indicated that the coated 2024 Al exhibited predominant abrasive wear, whereas the uncoated one showed severe adhesive wear.

  2. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.F.; Liu, B.; Wu, B.J.; Liu, J.; Sun, H.; Leng, Y.X., E-mail: yxleng@263.net; Huang, N.

    2014-07-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  3. Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys

    OpenAIRE

    Lucia V. Mercaldo; Iurie Usatii; Paola Delli Veneri

    2016-01-01

    The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied wi...

  4. CoPt alloy films on SiO{sub 2} nanoparticle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Denys; Schatz, Guenter [University of Konstanz (Germany). Department of Physics; Bermudez, Esteban; Schmidt, Oliver G. [IFW, Dresden (Germany); Brombacher, Christoph; Albrecht, Manfred [Chemnitz University of Technology (Germany). Institute of Physics; Liscio, Fabiola; Maret, Mireille [ENSEEG, Saint Martin d' Heres (France)

    2008-07-01

    Combining self-assembled SiO{sub 2} nanoparticle arrays with magnetic film deposited onto the particles, enables an elegant possibility to create magnetic nanostructure arrays with defined magnetic properties. In this regard, materials such as CoPt alloy are of particular interest due to their large magnetic anisotropy required for thermal stability in the high density magnetic recording applications. In order to induce high perpendicular magnetic anisotropy in CoPt alloys, the L1{sub 0} phase with (001) texturing is required. For this purpose, a 10 nm thick MgO(001) seed layer was introduced. Results on planar amorphous SiO{sub 2} substrates reveal an uniaxial out-of-plane magnetic anisotropy and saturation magnetization for the CoPt alloy grown at 450 C of about 5x10{sup 5} J/m{sup 3} and 800 kA/m. These properties were transfered to CoPt alloy deposited onto arrays of SiO{sub 2} particles with diameters down to 50 nm. The formed CoPt nanocaps are in a magnetic single domain state with a large out-of-plane coercivity, which increases with decreasing particle size. In this presentation, the structural and magnetic properties are discussed and compared to the planar film.

  5. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering.

    Science.gov (United States)

    Surmeneva, M A; Tyurin, A I; Mukhametkaliyev, T M; Pirozhkova, T S; Shuvarin, I A; Syrtanov, M S; Surmenev, R A

    2015-06-01

    The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias applied during the deposition of the HA coating resulted in a decrease in the grain and crystallite size of the film having a crucial role in enhancing the mechanical properties of the fabricated biocomposites. A maximum hardness of 9.04 GPa was found for the HA coating, which was prepared using a bias of -50 V. The hardness of the HA film deposited on the grounded substrate (GS) was found to be 4.9 GPa. The elastic strain to failure (H/E) and the plastic deformation resistance (H(3)/E(2)) for an indentation depth of 50 nm for the HA coating fabricated at a bias of -50 V was found to increase by ~30% and ~74%, respectively, compared with the coating deposited at the GS holder. The nanoindentation tests demonstrated that all of the HA coatings increased the surface hardness on both the microscale and the nanoscale. Therefore, the results revealed that the films deposited on the surface of the AZ31 magnesium alloy at a negative substrate bias can significantly enhance the wear resistance of this resorbable alloy.

  6. Accelerated growth of oxide film on aluminium alloys under steam: Part I: Effects of alloy chemistry and steam vapour pressure on microstructure

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara C.; Jellesen, Morten S.;

    2015-01-01

    at the top. The kinetics of formation of film understeamwas rapid; approx. 350nm thick layers were generated within 5 s of steam treatment, however increase in thickness of the oxide retarded further growth. The enrichment or depletion of different alloying elements at the surface of aluminium as a result...... of alkaline etching pre-treatment influenced the thickness and growth of theoxide. Moreover the steam treatment resulted in the partial oxidation of second phase intermetallic particles present in the aluminium alloy microstructure....

  7. Preparation and Characterization of InAs/Si Composite Film

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; LI Guang-Hai; ZHENG Mao-Jun; ZHANG Li-De

    2000-01-01

    Composite thin films consisting of nanosized InAs particles embedded in amorphous Si matrices were prepared by radio frequency co-sputtering of InAs and Si. X-ray diffraction spectra show that the particle size of InAs increases with the increasing annealing temperature, while the particle sizes of In and As reach their maximum values at the temperature of 200℃, and decrease with the further increase of the annealing temperature. In and As can not exist in the 500℃ sample due to the sublimation of In and As and the reaction In+As→InAs. The composition of the film in different levels was analyzed. We found that only in the deep level, the mole contents of As and In conform to the stoichiometric ratio and the oxidation occurs only a few nanometers from the surface. We believe that the scarcity of In and As near the surface is due to the sublimation of In and the oxide of As.

  8. Preparation of photo-catalysis TiO2 films by combined plasma surface treatment

    International Nuclear Information System (INIS)

    TiO2 films with excellent bonding strength were fabricated on stainless steel substrate by plasma surface alloying and thermal oxidation duplex processing. Controllable elemental distribution and structure of the films could be achieved at 400-600 degree C. The films were characterized by metallography, glow discharge spectrometer (GDOES) and X-ray diffraction. The results show that the TiO2 films are of dense and uniform anatase. The Ti and O contents of the films are in gradient distribution. Phenol-containing wastewater was used to test photo-catalytic performance of the films. The TiO2 films have a degradation rate of phenol of about 73.5% in 3 h, much higher than commercial products of TiO2 powders. (authors)

  9. Structure and Magnetic Properties of Fe-N Films Prepared by Dual Ion Beam Sputtering

    Institute of Scientific and Technical Information of China (English)

    诸葛兰剑; 吴雪梅; 汤乃云; 叶春兰; 姚伟国

    2001-01-01

    Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).``

  10. Local structure and magnetism of L10-type FeNi alloy films with perpendicular magnetic anisotropy studied through 57Fe nuclear probes

    International Nuclear Information System (INIS)

    The local structure and magnetism of FeNi alloy films prepared by alternate deposition of Fe and Ni monatomic layers, where perpendicular magnetic anisotropy has been observed, were investigated through 57Fe nuclear probes using Mössbauer spectroscopy. It was confirmed that the films are composed of L10-type ordered FeNi phase and A1-type disordered FeNi phase. For the films grown at 40–70 °C, which have no perpendicular anisotropy, the A1-disordered phase is dominant, whereas for the films grown at 100–190 °C, which have a stronger perpendicular anisotropy, the relative amount of the L10-ordered phase reaches 40% or more. It was clearly shown that the magnetic anisotropy of these films is strongly correlated with the local environments of Fe in the films. The results imply that if a further increase in the ratio of the L10-ordered phase is successfully achieved, one would obtain films with a stronger magnetic anisotropy applicable to perpendicular magnetic recording. (paper)

  11. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Highlights: ► We prepare a perfect dense and smooth amorphous nitride high entropy film. ► The formation mechanism has been discussed based on thermodynamic theory. ► The hardness and Young’s modulus of the film can reach to 12 and 166 GPa. ► We discuss the effects of N2 flow ratios. - Abstract: The multicomponent amorphous nitride films of FeCoNiCuVZrAl high-entropy alloy were deposited by direct current magnetron sputtering in the mixture atmosphere of Ar and N2. The systematical investigations demonstrate that the chemical composition, microstructure, and mechanical properties of the amorphous films intimately rely on the concentration of N2 in the atmosphere mixture. When N2 flow ratio increases from 0% to 50%, the thickness of the films decreases, whereas the roughness firstly decreases and then increases. At the N2 flow ratio of 30%, a perfect dense and smooth amorphous nitride film could be achieved. While the hardness and Young’s modulus of the film reach the maximum values of 12 and 166 GPa, respectively

  12. Structure analysis of CoPt alloy film with metastable ordered phases of L11 and Bh formed on Ru(0001 underlayer

    Directory of Open Access Journals (Sweden)

    Ohtake Mitsuru

    2014-07-01

    Full Text Available CoPt alloy films of 40 nm thickness are prepared on MgO(111 substrates with and without Ru(0001 underlayer at 300 °C by radio-frequency magnetron sputtering. CoPt films with the close-packed plane parallel to the substrate surface grow epitaxially on the Ru underlayer as well as on the MgO substrate. Flat surfaces with the arithmetical mean roughness value of 0.2 nm are realized for both films. The crystal structure is determined by considering the atomic stacking sequence of close-packed plane and the order degree. The film formed on MgO substrate consists of an fcc-based L11 ordered crystal, whereas the film grown on Ru underlayer involves an hcp-based Bh ordered crystal in addition to the L11 ordered crystal. The order degrees of films formed on MgO substrate and Ru underlayer are 0.30 and 0.34, respectively. The L11 crystal consists of two variants whose stacking sequences of close-packed plane are ABCABC… and ACBACB…, while the Bh crystal is a single-crystal with the stacking sequence of ABAB… Formation of Bh crystal is promoted on the Ru underlayer. The film formed on Ru underlayer shows a strong perpendicular magnetic anisotropy reflecting the magnetocrystalline anisotropies of L11 and Bh crystals.

  13. Characterisation of fresh surface films formed on molten Mg-Nd alloy protected by different atmospheres

    Science.gov (United States)

    Mirak, A. R.; Davidson, C. J.; Taylor, J. A.

    2014-05-01

    This study examines the early stages of surface oxidation of liquid Mg-3 wt%Nd under UPH argon, dry air, and air mixed with protective fluorine-bearing gases. Each of the gases were introduced as bubbles into solidifying castings. The chemistry and structure of the protective film inside the trapped bubbles were characterized by SEM and EDX analyses. Results show that due to Nd added to Mg alloy under dry air, a dense and wrinkled surface film that contains MgO and Nd2O3 are formed. Under fluorine-bearing gas mixtures, a dense and coherent surface film was found to be a mixed fluoride and oxide. For SF6, the film thickness was 50-100 nm thick while for HFC-R134a it was 35-45 nm. Needle shaped phases distributed in the Mg matrix and flake-like phases segregated on the inner bubble surface in proximity to the interdendritic regions of the alloy were both identified as Nd rich compounds. These were present under all gas conditions. The results obtained lead to a conclusion that HFC-R134a is capable of providing the most effective melt protection. The integrity and protective capability of the early surface film formation on the liquid Mg-Nd alloy was found to be significantly improved compared to pure Mg under identical gas conditions due to formation of a dense and compact MgO/Nd2O3 layer, regardless of whether fluorine species were also present.

  14. Microstructural studies of nanocomposite thin films of Ni/CrN prepared by reactive magnetron sputtering.

    Science.gov (United States)

    Kuppusami, P; Thirumurugesan, R; Divakar, R; Kataria, S; Ramaseshan, R; Mohandas, E

    2009-09-01

    Synthesis and characterization of nanocomposites of Ni/CrN thin films prepared by DC magnetron sputtering from a target of 50 wt.%Ni-50 wt.%Cr is investigated. The films prepared as a function of nitrogen flow rate and substrate temperature showed that the films contained Ni and CrN phases with crystallite sizes in the nanometer range. Measurement of nanomechanical properties of the composite films exhibited a significant decrease in the values of hardness and Young's modulus than those of pure CrN films. PMID:19928270

  15. Preparation of hard magnetic materials in thin film form

    Energy Technology Data Exchange (ETDEWEB)

    Pigazo, F.; Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid-CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Cebollada, F. [EUITT-UPM, Carretera de Valencia km 7, 28031 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)], E-mail: jesus.m.gonzalez@icmm.csic.es

    2008-07-15

    We report on the preparation, by means of pulsed laser ablation deposition, of trilayers of nominal composition Cr/SmCo{sub 5}/Cr//Si with thicknesses in the order of 250/240/125 nm, respectively. According to the results of the structural, chemical and magnetic characterizations performed in our as-deposited samples, the Sm-Co layer was structurally amorphous, exhibited abrupt compositional interfaces with the capping and buffering layers, and coercivities of a few hundreds of Oe. Magnetic hardness was developed upon submitting the samples to current anneals under vacuum at temperatures in the range of 540-670 deg. C. The hardening process was followed in detail by correlating the phase distribution, the nature of the interlayer atomic diffusion processes, the occurrence of textures and the temperature dependence of the coercive force. From our results we conclude about (i) the occurrence of a large degree of Co diffusion/segregation, which results in the detection, from the diffraction and magnetometric results, of the presence of CoCr alloys in the treated samples, and (ii) the close correlation, evidenced from the fits of the temperature dependence of the coercive force to the micromagnetic model, between the coercivity optimization and the crystallinity enhancement of the SmCo{sub 5} grains.

  16. Preparation and characterization of Cu-In-S thin films by electrodeposition

    International Nuclear Information System (INIS)

    In this paper, we report the preparation and characterization of Cu-In-S thin films on stainless steel prepared by electrodeposition technique. The electrolytic bath used for preparation of the thin films consists of metal salts dissolved in a buffer solution. This buffer solution can control the formation and composition of thin films. In order to get adequate crystalline of CuInS2 thin films, the as deposited films were annealed in N2-atmosphere. Samples were characterized using X-ray diffraction (XRD), electron probe micro-analysis (EPMA), and scanning electron microscopy (SEM). The band-gap value of the material was estimated using optical transmittance and reflectance data on thin films deposited on commercial glass/indium tin oxide (ITO) substrates. It was found that the band-gap of the films is close to 1.5 eV

  17. Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film.

    Science.gov (United States)

    Xu, Qing Chi; Wellia, Diana V; Amal, Rose; Liao, Dai Wei; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2010-07-01

    A novel and environmental friendly method was developed to prepare transparent, uniform, crack-free and visible light activated nitrogen doped (N-doped) titania thin films without the use of organic Ti precursors and organic solvents. The N-doped titania films were prepared from heating aqueous peroxotitanate thin films deposited uniformly on superhydrophilic uncoated glass substrates. The pure glass substrates were superhydrophilic after being heated at 500 degrees C for 1 h. Nitrogen concentrations in the titania films were adjusted by changing the amount of ammonia solution. The optimal photocatalytic activity of the N-doped titania films was about 14 times higher than that of a commercial self-cleaning glass under the same visible light illumination. The current reported preparative technique is generally applicable for the preparation of other thin films.

  18. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    Energy Technology Data Exchange (ETDEWEB)

    García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Koch, F.; Brinkmann, J. [Max-Planck-Institut für Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany)

    2014-10-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO{sub 3} in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr{sub 2}O{sub 3} layer is found at the outer surface, below which a Cr{sub 2}WO{sub 6} scale and Ti{sub 2}CrO{sub 5} layers alternating with WO{sub 3} are formed. The Cr{sub 2}O{sub 3}, Cr{sub 2}WO{sub 6} and Ti{sub 2}CrO{sub 5} scales act as protective barriers against fast inward O{sup 2−} diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W.

  19. Thermal Oxidation Preparation of Doped Hematite Thin Films for Photoelectrochemical Water Splitting

    Directory of Open Access Journals (Sweden)

    Song Li

    2014-01-01

    Full Text Available Sn- or Ge-doped hematite thin films were fabricated by annealing alloyed films for the purpose of photoelectrochemical (PEC water splitting. The alloyed films were deposited on FTO glass by magnetron sputtering and their compositions were controlled by the target. The morphology, crystalline structure, optical properties, and photocatalytic activities have been investigated. The SEM observation showed that uniform, large area arrays of nanoflakes formed after thermal oxidation. The incorporation of doping elements into the hematite structure was confirmed by XRD. The photocurrent density-voltage characterization illustrated that the nanoflake films of Sn-doped hematite exhibited high PEC performance and the Sn concentration was optimized about 5%. The doped Ge4+ ions were proposed to occupy the empty octahedral holes and their effect on PEC performance of hematite is smaller than that of tin ions.

  20. Room temperature ferromagnetism down to 10 nanometer Ni–Fe–Mo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Mitali, E-mail: akm@bose.res.in [Department of Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Majumdar, A.K. [Department of Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Ramakrishna Mission Vivekananda University, PO Belur Math, Howrah 711202 (India); Rai, S.; Tiwari, Pragya; Lodha, G.S. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Banerjee, A. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Nair, K.G.M [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Sarkar, Jayanta [Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO (Finland); Choudhary, R.J.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India)

    2013-10-31

    Magnetic behavior of a few pulsed laser deposited soft ferromagnetic thin films of Ni–Fe–Mo alloys of different thickness on sapphire single crystals is interpreted on the basis of their structural characteristics. Highly textured thin films have high void density due to island-like growth. X-ray reflectivity (XRR) of the thin films indicate that instead of a uniform density there are effectively three layers with density gradient across the thickness, which is further supported by atomic force microscopy and cross-sectional scanning electron microscopy. Rutherford backscattering spectroscopy and energy dispersive spectrum measurements reveal that the composition in the films is not too far from that of the bulk target with a trend of enhanced Fe yield in the films. The structural disorder strongly affected the magnetic property of the films resulting in much higher values of the Curie temperature T{sub C} and coercive field H{sub C} than those of the bulk targets. Bifurcations of low-field zero-field-cooled and field-cooled magnetization reflect the disorder-induced anisotropy in the thin films. The spin wave stiffness constants D are higher than their bulk counterparts which are supportive of the enhanced Fe yield in the films. The saturation magnetization, M calculated from measurements in field transverse to the films strongly supports the thickness found from XRR. Finally, even the 10 nm thin films have sizable M and H{sub C} and T{sub C} > 300 K, making them good candidates for magnetic applications. Overall, the magnetic behavior and the structural characteristics have reasonably complemented each other. - Highlights: • Correlated structural and magnetic properties of pulsed laser grown Ni–Fe–Mo filmsFilm thickness from scanning microscopy agrees with X-ray reflectivity analysis. • Experiments reveal that targets and the films have somewhat similar compositions. • Low-field M(T) shows spin-glass-like features in all films in contrast to

  1. Preparation Of Transparent Conducting Zinc Oxide Films By RF Reactive Sputtering

    Science.gov (United States)

    Vasanelli, L.; Valentini, A.; Losacco, A.

    1986-09-01

    Transparent conducting zinc oxide films have been prepared by reactive sputtering in an Ar/H2 mixture. The optical and electrical properties of the films are presented and discussed. The effects of some post-deposition thermal treatment have been also investigated. ZnO/CdTe heterojunctions have .been prepared by sputtering ZnO films on CdTe single crystals. The photovoltaic conversion efficiencies of the obtained solar cells was 6.8%.

  2. Influence of copper content on the property of Cu–W alloy prepared by microwave vacuum infiltration sintering

    International Nuclear Information System (INIS)

    Highlights: • Cu–W alloy was prepared under vacuum conditions through microwave infiltration sintering. • The phase of alloy with Cu content of 5% and 8% is mainly Cu0.4W0.6. • With the increasing of copper content, porosity of Cu–W alloy decreased obviously. • The copper components coated better on the tungsten particles utilization of microwave infiltration sintering. - Abstract: Cu–W alloy was prepared by utilizing microwave vacuum infiltration sintering furnace to assess the influence of different proportions of copper on the structure of Cu–W alloy. The microstructures of alloy and infiltration characteristics of Cu–W alloy were characterized using metallographic microscopy and scanning electron microscopy, while XRD was utilized to identify the structure changes. The pore distribution was also assessed. Experimental results showed that Cu–W alloy could be quickly prepared under vacuum conditions through microwave infiltration sintering with the main phase of alloy being Cu0.4W0.6 (PDF:50-1451) indicating stronger combination of tungsten and copper

  3. Effect of humidity on microstructure and properties of YBCO films prepared by Electron Beam Coevaporation

    Institute of Scientific and Technical Information of China (English)

    WANG LianHong; SHU YongHua; FAN Jing

    2012-01-01

    YBCO superconducting films were prepared by Electron Beam Coevaporation method.All the YBCO films were annealed at 760℃ in humidity range of 2.3%-9.5%.Microstructure of the YBCO thin films was analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM).Superconducting properties of the YBCO films were measured by electromagnetic induction method.XRD results showed that c-axis-oriented grains existed in the YBCO films.Morphologies of the YBCO films showed that all the films had a smooth and crack-free surface.YBCO films prepared at 7.3% humidity condition showed Jc value of 4.6 MA cm-2 at 77 K in self-field.

  4. Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys

    Directory of Open Access Journals (Sweden)

    Lucia V. Mercaldo

    2016-03-01

    Full Text Available The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied within thin-film Si solar cells for these purposes. Intrinsic a-SiOx:H films have been fabricated and characterized as a promising wide gap absorber for application in triple-junction solar cells. Single-junction test devices with open circuit voltage up to 950 mV and ~1 V have been demonstrated, in case of rough and flat front electrodes, respectively. Doped silicon oxide alloys with mixed-phase structure have been developed, characterized by considerably lower absorption and refractive index with respect to standard Si-based films, accompanied by electrical conductivity above 10−5 S/cm. These layers have been successfully applied both into single-junction and micromorph tandem solar cells as superior doped layers with additional functionalities.

  5. New Cu(TiBN x ) copper alloy films for industrial applications

    Science.gov (United States)

    Lin, Chon-Hsin

    2016-06-01

    In this study, I explore a new type of copper alloy, Cu(TiBN x ), films by cosputtering Cu and TiB within an Ar/N2 gas atmosphere on Si substrates. The films are then annealed for 1 h in a vacuum environment at temperatures up to 700 °C. The annealed films exhibit not only excellent thermal stability and low resistivity but also little leakage current and strong adhesion to the substrates while no Cu/Si interfacial interactions are apparent. Within a Sn/Cu(TiBN x )/Si structure at 200 °C, the new alloy exhibits a minute dissolution rate, which is lower than that of pure Cu by at least one order of magnitude. Furthermore, the new alloy’s consumption rate is comparable to that of Ni commonly used in solder joints. The new films appear suitable for some industrial applications, such as barrierless Si metallization and new wetting and diffusion barrier layers required in flip-chip solder joints.

  6. Structural and magnetic study of thin films based on anisotropic ternary alloys FeNiPt{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Montsouka, R.V.P. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Arabski, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Derory, A. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Faerber, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Schmerber, G. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Pierron-Bohnes, V. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France)]. E-mail: vero@ipcms.u-strasbg.fr

    2006-01-25

    L1 ordered (Fe-Ni){sub 5}Pt{sub 5} alloy films with perpendicular magnetic anisotropy were successfully prepared by interdiffusing FePt(0 0 1) and NiPt(0 0 1) layers co-deposited on MgO(0 0 1) substrates by MBE. The [0 0 1] growth direction corresponds to the epitaxy of the alloy on the substrate and is the interesting growth orientation to get a perpendicular magnetization. The X-ray diffraction shows a high L1 chemical order (S = 0.7 {+-} 0.1). The easy magnetization direction is perpendicular for all samples. The MFM images display highly interconnected stripes corresponding to up and down orientations of the magnetization. Large uniaxial magnetic anisotropy (K {sub u} 9.10{sup 5} J/m{sup 3}) and suitable magnetic transition temperature (T {sub C} = 400 K) are obtained. The addition of Ni changes the spin-orbit interaction in the FePt compound system, hence causes a decrease of anisotropy, saturation magnetization and coercivity.

  7. Microstructure of epitaxial thin films of the ferromagnetic shape memory alloy Ni{sub 2}MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Tobias

    2011-12-09

    This work is concerned with the preparation and detailed characterization of epitaxial thin films of the Heusler compound Ni{sub 2}MnGa. This multiferroic compound is of both technological and scientific interest due to the outstanding magnetic shape memory (MSM) behavior. Huge magnetic-field-induced strains up to 10 % have been observed for single crystals close to a Ni{sub 2}MnGa composition. The effect is based on a redistribution of crystallographic twin variants of tetragonal or orthorhombic symmetry. Under the driving force of the external magnetic field twin boundaries can move through the crystal, which largely affects the macroscopic shape. The unique combination of large reversible strain, high switching frequency and high work output makes the alloy a promising actuator material. Since the MSM effect results from an intrinsic mechanism, MSM devices possess great potential for implementation in microsystems, e.g. microfluidics. So far significant strains, in response to an external magnetic field, have been observed for bulk single crystals and foams solely. In order to take advantage of the effect in applications concepts for miniaturization are needed. The rather direct approach, based on epitaxial thin films, is explored in the course of this work. This involves sample preparation under optimized deposition parameters and fabrication of freestanding single-crystalline films. Different methods to achieve freestanding microstructures such as bridges and cantilevers are presented. The complex crystal structure is extensively studied by means of X-ray diffraction. Thus, the different crystallographic twin variants that are of great importance for the MSM effect are identified. In combination with microscopy the twinning architecture for films of different crystallographic orientation is clarified. Intrinsic blocking effects in samples of (100) orientation are explained on basis of the variant configuration. In contrast, a promising twinning microstructure

  8. Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Eriksen, Winnie L.; Duchstein, Linus Daniel Leonhard;

    2014-01-01

    to impregnation, the coprecipitation and deposition-coprecipitation methods are more efficient for preparation of small and homogeneous Cu-Ni alloy nanoparticles. In order to examine the stability of Cu-Ni alloys in high pressure synthesis gas conversion, they have been tested for high pressure CO hydrogenation...

  9. Preparation of Scandium-Bearing Master Alloys by Aluminum-Magnesium Thermoreduction

    Institute of Scientific and Technical Information of China (English)

    姜锋; 白兰; 尹志民

    2002-01-01

    The new preparation method of scandium-bearing master alloys, in which scandium oxide was fluorinated by reaction with NH4HF2 and then reduced by aluminum-magnesium in fused salt containing alkali and alkaline fluoride under atmosphere, was studied. The effect of sorts of metallic reductive and technique conditions such as reducing temperature and time on the recovery of Sc was discussed. When the liquid aluminum-magnesium was used as the reductive agent, the all-recovery exceeds 80% and the concentration of Sc in master alloy prepared exceeds 1.9%. The best reducing reaction temperature and time are 1100 K and 40 min respectively. The newly produced Sc from reduction combines with Al to produce the stable compound Al3Sc, so the reduction progress is sustained and the recovery of Sc is increased.

  10. Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Valeanu, M., E-mail: valeanu@infim.ro [National Institute of Materials Physics, 077125 Bucharest (Romania); Lucaci, M. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Crisan, A.D.; Sofronie, M. [National Institute of Materials Physics, 077125 Bucharest (Romania); Leonat, L. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Kuncser, V. [National Institute of Materials Physics, 077125 Bucharest (Romania)

    2011-03-31

    Research highlights: > Martensitic transformation sequence in Ti50Ni30Cu20 prepared high - energy milling. > Two transformations (B2-B19, B2-B19') are evidenced after 10 hours of milling. > B2-B19 transformation is not more observed after 20 hours of milling. > A longer milling process promotes the formation of the secondary Ti{sub 2}(NiCu) phase. - Abstract: Phase transformation behavior of Ti50Ni30Cu20 shape memory alloys prepared by powder metallurgy is analyzed with respect to the duration of mechanical alloying. The processed blends were studied by differential scanning calorimetry and room temperature X-ray diffraction. The martensitic transformations evidenced by thermal scans are discussed in correlation with the relative phase content obtained from the refinement of the X-ray diffraction patterns.

  11. Preparation and Properties of Non-Crosslinked and Ionically Crosslinked Chitosan/Agar Blended Hydrogel Films

    OpenAIRE

    Mahmoud Nasef, Mohamed; Esam A. El-hefian; Saalah, Sariah; Yahaya, Adul Hamid

    2011-01-01

    Hydrogel films of chitosan (Cs) and agar blends of various proportions were prepared using physical solution blending. Some of the obtained films were ionically cross-linked by treatment with calcium chloride solution. The obtained films were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry analysis (TGA), differential scanning calorimetery (DSC) and universal mechanical tester. The non-crosslinked Cs/agar blended films showed lower water swelling, melting tem...

  12. Study of preparation of BG/HA gradient coating on titanium alloy by electrophoretic deposition method

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ming; HAN Qing-rong; LI Shi-pu; XU Chuan-bo

    2001-01-01

    In this paper, a gradient bioactive coating made from modified bioglass (BG) and hydroxyapatite (HA) was prepared by electrophoretic deposition method(EPD)on the surface of titanium alloy. Strong bonding between the matrix and BG/HA gradient coating was got by sintering. Crystal composition of the coating was analyzed by XRD. The characteristics of surface and cross section of the coating were observed by SEM. Adhesive strength of the coating was tested by pull method. The optimizing technological parameters were determined.

  13. Thermal stability of magnesium alloy AZ91 prepared by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Roman Štěpánek

    2013-12-01

    Full Text Available This paper deals with the thermal stability of ultrafine-grained alloy AZ91 prepared by means of ECAP (Equal Channel Angular Pressing method. Annealing experiments were conducted isochronally for 30 minutes in the temperature range of 220 to 400 °C in argon atmosphere. EBSD (Electron Backscatter Diffraction method was used to image the changes in microstructure due to increased temperature.

  14. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  15. Thermal stability of titania films prepared on titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jin Fanya [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: paul.chu@cityu.edu.hk; Wang Ke [Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); Zhao Jun [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); Huang Anping [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Department of Physics, Beihang University, Beijing 100083 (China); Tong Honghui [Southwestern Institute of Physics, Chengdu 610041, Sichuan (China)

    2008-03-15

    Micro-arc oxidation (MAO) is an effective technique to improve the properties of titanium and its alloy by forming a ceramic film on the materials surface. In high-temperature industrial applications, the thermal stability of the films plays a critical role. In order to evaluate the high-temperature stability of titania films synthesized on titanium substrates by MAO, we performed annealing at different temperatures. The composition, structure, and surface morphology of the annealed MAO films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and surface texture tests. Vickers indentation and pin-on-disc testing were also employed to investigate the micro-hardness and wear resistance of the films, respectively. The thermal stability of the MAO titania coatings remain very good up to 800 deg. C. The effects of post-annealing on the properties of the MAO TiO{sub 2} films and the underlying mechanism are discussed.

  16. Electrocatalytic activity and electrochemical hydrogen storage of Ni-La alloy prepared by electrodeposition from aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    陈卫祥; 成旦红; 刘淑兰; 郭鹤桐

    2002-01-01

    Ni-La alloy coating was prepared by electrodeposition.The effect of cathodic current density on the La content of the alloy coatings was discussed.It is found that the content of La in the alloy increases with increasing the cathodic current density.The microstructures and codeposition mechanism of Ni-La alloy coatings were investigated by means of X-ray diffraction (XRD) and cyclic voltammetry (CV).The results demonstrate that the Ni-La alloy is FCC and codeposited by the induced mechanism.The hydrogen evolution reaction (HER) on the electrodeposited Ni-La alloy electrodes in alkaline solution was evaluated by Tafel polarization curves.It is found that La-Ni alloy coating exhibites much higher exchange current density for HER than pure Ni electrode,and that the exchange current density increases with increasing the La content of alloys.The good electrocatalytic activity for HER of this Ni-La alloy is attributed to the synergism of the electronic structure of La and Ni.The electrodeposited La-Ni alloys have a certain electrochemical hydrogen storage capacity of 34~143 mAh/g,which increases with increasing the La content of alloys.

  17. Magnetic anisotropy of [Co{sub 2}MnSi/Pd]{sub n} superlattice films prepared on MgO(001), (110), and (111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Naoki; Takamura, Yota; Fujino, Yorinobu; Nakagawa, Shigeki, E-mail: nakagawa@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Sonobe, Yoshiaki [Samsung R and D Institute Japan-Yokohama, 2-7, Sugasawa-cho, Tsurumi-ku, Yokohama-shi, Kanagawa-ken 230-0027 (Japan)

    2015-02-09

    Superlattice films with full-Heusler Co{sub 2}MnSi (CMS) alloy and Pd layers prepared on Pd-buffered MgO(001), (110), and (111) substrates were investigated. Crystal orientation and epitaxial relationship of Pd and CMS layers were analyzed from x-ray diffraction, pole figure measurements, and transmission electron microscope observation. Formation of the L2{sub 1}-ordered structure in the CMS layers was confirmed by observation of CMS(111) diffraction. Perpendicular magnetic anisotropy (PMA) was obtained in the [CMS (0.6 nm)/Pd (2 nm)]{sub 6} superlattice film formed using MgO(111) substrates although other superlattice films prepared using MgO(001) and (110) substrates showed in-plane and isotropic magnetic anisotropy, respectively. The perpendicular magnetic anisotropy energy constant K for the superlattice films prepared using MgO(111) substrate was estimated to be 2.3 Mergs/cm{sup 3}, and an interfacial anisotropy constant K{sub i} per one CMS-Pd interface in the superlattice films was estimated to be 0.16 ergs/cm{sup 2}. K{sub i} in superlattice films with various crystal orientations showed positive values, indicating that Pd/CMS interfaces had an ability to induce PMA regardless of their crystal orientation.

  18. Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, A.D., E-mail: acharyaphysics2011@gmail.com [School of Studies in Physics, Vikram University, Ujjain, 456010, MP (India); Moghe, Shweta [School of Studies in Physics, Vikram University, Ujjain, 456010, MP (India); Panda, Richa [Acropolis Institute of Technology and Research Bhopal, MP (India); Shrivastava, S.B. [School of Studies in Physics, Vikram University, Ujjain, 456010, MP (India); Gangrade, Mohan; Shripathi, T.; Phase, D.M.; Ganesan, V. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, MP 452001 (India)

    2012-12-15

    Cd doped ZnO (Cd:ZnO) thin films on the glass substrate prepared by chemical spray pyrolysis technique have been characterized for their optical and electrical properties. The X-ray diffraction and atomic force microscopy results indicate that the crystalline quality degrade due to higher Cd doping in ZnO. The activation energy was found to be decreased when Cd concentration increased. The absorption edge of Cd:ZnO film was found to be red shifted. The direct modulation of band gap caused by Zn/Cd substitution is responsible for the red shift effect in absorption edge of ZnO. The low temperature conduction has been explained by variable range hoping mechanism, which fits very well in the temperature range from 108 K to 301 K. The interaction between Cd and defects in ZnCdO alloy to understand the important roles of Cd in the formation of native defects has also been tentatively discussed. - Highlights: Black-Right-Pointing-Pointer Good adherent films of Cd:ZnO prepared by spray pyrolysis technique Black-Right-Pointing-Pointer Modulation of band gap caused by Zn/Cd substitution responsible for red shift effect Black-Right-Pointing-Pointer Low temperature conduction explained by variable range hoping (VRH) mechanism Black-Right-Pointing-Pointer VRH suggests that the density of states decreases with the increase in Cd. Black-Right-Pointing-Pointer Important role of Cd in the formation of native defects is tentatively discussed.

  19. Exploration of CIGAS Alloy System for Thin-Film Photovoltaics on Novel Lightweight and Flexible Substrates

    Science.gov (United States)

    Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine

    2007-01-01

    Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.

  20. PREPARATION AND ACTIVATION OF RAPIDLY SOLIDIFIED Ni-Zr-Al AMORPHOUS ALLOY FOR CATALYTIC PURPOSE%快速凝固Ni-Zr-Al非晶态催化合金的制备与活化处理

    Institute of Scientific and Technical Information of China (English)

    张国胜; 张海峰; 沈宁福

    1999-01-01

    @@ As new catalytic materials, amorphous alloys have attracted much attention since 1980s. Rapid solidification is one of the main techniques to prepare amorphous alloys.However, as-cast rapidly solidified alloys usually can not be directly used as the catalyst for their poor surface area, oxide film on their surface, etc. Therefore, activation pretreatment must be carried out. Recently, leaching aluminum has been attempted to activate rapidly solidified amorphous catalytic alloys containing aluminum. In order to carry out such an activation pretreatment, the Al-rich amorphous precursor alloys must be obtained first, in which the content of active component must be sufficiently high so that the catalytic activity of the activated catalyst can be attained. On the other hand, the chemical composition of the precursor must approach eutectic point or contribute to the range of low liquidus temperature so that the glass transition can be easily achieved according to the solidification theory[1]. So far Al-based alloys which meet the dual confinement have not been found yet. For Ni-Al and Cu-Al systems,only the microcrystalline alloys can be obtained through rapid solidification[2,3].In the present study, glass formation was achieved by introducing promotion elements in Ni-Al system precursor alloys.

  1. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 200C and 900C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 900C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  2. Preparation and Characterization of Keratin Blended Films using Biopolymers for Drug Controlled Release Application

    Directory of Open Access Journals (Sweden)

    Ansaya Thonpho

    2016-08-01

    Full Text Available Keratin solution was separately blended with collagen, gelatin, sericin and starch for films preparation. All the blended films had smooth surfaces without phase separation, except the keratin/starch blend film. The native keratin film showed small particles embedded in all the film surfaces that resulted in them being rough. The structure of the native keratin film changed from beta-sheet to random coil at high blend ratio of other substances. This result increased the dissolution of the films especially the keratin/starch blend. The results relate directly to the decreased thermal stability of this film. However, the changes in structure did not affect the chlorhexidine release pattern. It is possible that the interaction between the drug and blending substances, and the substances to water molecules are the main factor influencing the drug release pattern from the films.

  3. Optical Response in Amorphous GaAs Thin Films Prepared by Pulsed Laser Deposition

    Science.gov (United States)

    Kiwa, Toshihiko; Kawashima, Ichiro; Nashima, Shigeki; Hangyo, Masanori; Tonouchi, Masayoshi

    2000-11-01

    Femtosecond optical response in GaAs thin films has been studied. We prepared GaAs thin films on MgO substrates and on YBa2Cu3O7-δ (YBCO) thin films using pulsed laser deposition (PLD) at temperatures below 250^\\circC@. A photocarrier lifetime of less than 1 ps is measured for the prepared GaAs thin films using femtosecond time-domain reflectivity change measurements. Pulsed electromagnetic wave [terahertz (THz) radiaiton] containing a frequency component of up to 1 THz is emitted from fabricated photoconductive switches using the prepared thin films. We also evaluated the THz radiation properties emitted from the photoswitches on the YBCO thin films.

  4. Study of hard-soft magnetic ferrite films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Soft magnetic Mg0.1Ni0.3Zn0.6Fe2O4 and hard magnetic BaFe12O19 bulk nanocrystalline ferrites were synthesized using the sol-gel auto-combustion method, and were used as targets to deposit soft-hard thin films by the pulsed laser deposition (PLD) method. Various soft-hard thin films with different preparation conditions were deposited on Si (100) substrate, which can be effectively utilized to get better magnetic properties. The prepared films were characterized by the X-ray diffraction (XRD), atomic force microscopy (AFM) and magnetic measurements. XRD confirms the presence of soft and hard phases in the thin films. Coercivity of the prepared films ranges from 1.67 to 2.66 kA/m. AFM images show clustering of grains at the film surface with a characteristic columnar growth.

  5. A sol–gel dip/spin coating method to prepare titanium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong; Shi, Fang; Gao, Xiaoxia [Key Laboratory of Coal Science and Technology of the Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Huang, Wei, E-mail: huangwei@tyut.edu.cn [Key Laboratory of Coal Science and Technology of the Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, Xianshe [Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2013-12-02

    A dip/spin coating method for the preparation of titanium oxide films was proposed. Instead of placing an oxide sol on top of a substrate surface, the dip/spin coating was accomplished on the lower surface of the substrate where gravitational force exerted on the colloidal particles during spreading under a centrifugal force. The resulting TiO{sub 2} films were compared to those prepared using the conventional spin-coating and dip-coating methods. All the films were found to be composed primarily of anatase with a small amount of brookite. Compared to the films prepared using the conventional spin-coating and dip-coating methods, the TiO{sub 2} films fabricated using the dip/spin method had small and uniform grains with a unique structure, resulting in an increased photocatalytic activity when tested for degradation of methyl orange under UV irradiation. - Highlights: • A dip/spin coating method to prepare titanium oxide films was proposed. • The films were prepared by the lower side of the support contacting the sol. • The crystal grains in the films were tiny and uniform with a unique structure. • The films demonstrated excellent photocatalytic activity.

  6. Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiali; Wang, Jinwei, E-mail: wangjw@ustb.edu.cn; Yuan, Hongye

    2013-11-01

    Oxide films on Ti6Al4V alloy are prepared using sodium hydroxide–sodium silicate as the base electrolyte with addition of aminopropyl trimethoxysilane (APS) as additive by potentiostatic anodizing under 10 V. APS is incorporated into the films during anodizing and the surface morphology of the oxide films is changed from particle stacked to honeycomb-like porous surfaces as shown by scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDX). The surface roughness and aminopropyl existence on the oxide films result in their differences in wettability as tested by the surface profile topography and contact angle measurements. The anti-abrasive ability of the anodic films is improved with the addition of APS due to its toughening effects and serving as lubricants in the ceramic oxide films as measured by ball-on-disk friction test. Also, potentiodynamic corrosion test proves that their anticorrosive ability in 3.5 wt.% NaCl is greatly improved as reflected by their much lower corrosion current (I{sub corr}) and higher corrosion potential (E{sub corr}) than those of the substrate.

  7. Preparation of pure chitosan film using ternary solvents and its super absorbency.

    Science.gov (United States)

    Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun

    2016-11-20

    Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. PMID:27561494

  8. Gas Sensitivity of Poly (3, 4-ethylene dioxythiophene) Prepared by a Modified LB Film Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huajing; JIANG Yadong; XU Jianhua; YANG Yajie

    2011-01-01

    An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl molecule and LB film. The gas sensitivity mechanism of poly (3,4-ethylene dioxythiophene) (PEDOT) muitilayer film can be explained by the charge transfer between p system of PEDOT and oxidization HCl system. The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested. The results showed that film thickness, treating temperature,deposition speed had different influence on film gas sensitivity. The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration (20-60 ppm) and linear response behavior at higher gas concentration was observed. The time of the compound LB film of the AA/PEDOT responding to the 30 ppm HCl gas is about 20 seconds, which is far quicker than the time of the film to the PEDOT- PRESS film(about 80 seconds). It is not higher film press to better film. When the film press attains 45 mNs/m, the sensitivity of the AA/PEDOT film on the contrary descends.

  9. Structural and Optoelectrical Properties of ZnTe Thin Films Prepared by E-Beam Evaporation

    Science.gov (United States)

    Zia, Rehana; Saleemi, Farhat; Riaz, Madeeha; Nassem, Shahzad

    2016-10-01

    ZnTe thin films have been prepared by an electron-beam evaporation technique on glass substrates, changing the accelerating voltage and the substrate temperature at accelerating voltage of 2 kV. Structural analysis showed that all the films had cubic structure with preferential orientation along (111) direction, though (220) and (311) orientations were also present. The (111) peak intensity increased with increasing film thickness. The crystallite size increased with increasing film thickness. Conductivity measurements showed that the films were p-type. Films prepared at accelerating voltage of 2 kV exhibited minimum resistivity. Optical characterization indicated that both absorbing and transparent thin films can be achieved by using different deposition conditions. The optical bandgap value was found to vary with substrate temperature.

  10. Nano crystal SnO2:F films prepared by spray pyrolysis method

    International Nuclear Information System (INIS)

    Nano crystal thin films of fluorine doped tin oxide were prepared on glass substrates by the spray pyrolysis method. From X-ray diffraction patterns of the films, the structure and grain size of 9 nm and 14 nm were determined at temperatures of 390 oC and 420 oC, respectively. The transmission of the films has an average value of about 85% in the range of visible light, and the film thickness of 650 nm was estimated from the interference fingers. The optical band gap for direct allowed transitions is in the range from 4.0 eV to 4.17 eV, depending on the temperature of the substrates during films deposition. As prepared films show the sheet resistance of 15 Ω/cm2. The surface morphologies of the films were studied with SEM. (Author)

  11. Solidification microstructures of Al-Zn-Mg-Cu alloys prepared by spray deposition and conventional casting methods

    Institute of Scientific and Technical Information of China (English)

    HE Xiaoqing; XIONG Baiqing; SUN Zeming; ZHANG Yongan; WANG Feng; ZHU Baohong

    2008-01-01

    High strength Al-Zn-Mg-Cu alloys were prepared by spray deposition and casting techniques.The microstructures of the Al-Zn-Mg-Cu alloys were studied using scanning electron microscopy,transmission electron microscopy,and X-ray diffraction.Secondary phases in the microstructures of the alloys prepared by spray deposition and conventional cast were examined.The results indicate that under the conventional casting condition,the microstructure of the alloy revealed the presence of coarse Al/Mg(ZnCu)2 eutectic phases,and the spray deposited process causes an obvious modification in size,morphology,and distribution of secondary phases in the microstructure as well as reduction of segregation.The superior microstructure of the spray-deposited Al-Zn-Mg-Cu alloy was attributed to the high cooling rate,and associated with the rapid solidification process.

  12. Low refractive index SiOF thin films prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garcia, F.J.; Gil-Rostra, J.; Terriza, A.; González, J.C.; Cotrino, J. [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain); Frutos, F. [Departamento de Física Aplicada, E.T.S. Ingeniería Informática, University of Seville, Avd. Reina Mercedes s/n, E-41012 Seville (Spain); Ferrer, F.J. [Centro Nacional de Aceleradores, CSIC, Univ. Sevilla, Junta Andalucia, Thomas A. Edison 7, E-41092 Sevilla (Spain); González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain); Yubero, F., E-mail: yubero@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain)

    2013-09-02

    We have studied low refractive index fluorine doped silica thin films prepared by reactive magnetron sputtering. Two experimental parameters were varied to increase the porosity of the films, the geometry of the deposition process (i.e., the use of glancing angle deposition) and the presence of chemical etching agents (fluorine species) at the plasma discharge during film growth. The microstructure, chemistry, optical properties, and porosity of the films have been characterized by scanning electron and atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis, and spectroscopic ellipsometry. It is found that either the deposition at glancing angles or the incorporation of CF{sub x} species in the plasma discharge during film growth produces a decrease in the refractive index of the deposited films. The combined effect of the two experimental approaches further enhances the porosity of the films. Finally, the films prepared in a glancing geometry exhibit negative uniaxial birefringence. - Highlights: • SiOF thin films with controlled porosity prepared by reactive magnetron sputtering • Incorporation of CF{sub x} precursors in the plasma discharge enhances film porosity. • Deposition at glancing geometries further increases void fraction within the films.

  13. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  14. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si (100) alloy thin films

    Science.gov (United States)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ∼200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ∼1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ∼75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  15. Preparation of Al-Mg Alloy Electrodes by Using Powder Metallurgy and Their Application for Hydrogen Production

    OpenAIRE

    Wen-Nong Hsu; Teng-Shih Shih; Ming-Yuan Lin

    2014-01-01

    The choice of an electrode is the most critical parameter for water electrolysis. In this study, powder metallurgy is used to prepare aluminum-magnesium (Al-Mg) alloy electrodes. In addition to pure Mg and Al electrodes, five Al-Mg alloy electrodes composed of Al-Mg (10 wt%), Al-Mg (25 wt%), Al-Mg (50 wt%), and Al-Mg (75 wt%) were prepared. In water electrolysis experiments, the pure Al electrode exhibited optimal electrolytic efficiency. However, the Al-Mg (25 wt%) alloy was the most efficie...

  16. Origin of thickness dependent spin reorientation transition of B2 type FeCo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongyoo [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden); Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-12-07

    We have investigated the origin of thickness dependent spin reorientation transition (SRT) of B2 type FeCo alloy using the full potential linearized augmented plane wave method. It has been reported that FeCo alloy films on various substrates show a SRT from perpendicular to in-plane magnetization at an approximate thickness of 15 monolayers (MLs). The enhanced perpendicular magnetic anisotropy in bulk FeCo is attributed to a tetragonal distortion. However, we have found that the tetragonal distortion tends to suppress the magnetocrystalline anisotropy (MCA) energy at increasing film thickness in two-dimensional structure. In contrast, the magnitude of the shape anisotropy energy increases at increasing FeCo film thickness. Interestingly, the shape anisotropy overcomes the MCA and the SRT, from perpendicular anisotropy to in-plane magnetization, which occurs at a thickness of 15 ML. Consequently, we are able to clearly understand the physical mechanism of the thickness dependent SRT in terms of the competing reactions of these two counteracting contributions.

  17. Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Jellesen, Morten Stendahl;

    2015-01-01

    The steam treatment of aluminium alloys with varying vapour pressure of steamresulted in the growth of aluminium oxyhydroxide films of thickness range between 450 - 825nm. The surface composition, corrosion resistance, and adhesion of the produced films was characterised by XPS, potentiodynamic...... polarization, acetic acid salt spray, filiform corrosion test, and tape test. The oxide films formed by steam treatment showed good corrosion resistance in NaCl solution by significantly reducing anodic and cathodic activities. The pitting potential of the surface treated with steam was a function...

  18. Photocatalytic activity of porous TiO2 films prepared by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; WANG Tao; WANG Ling

    2007-01-01

    Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate.The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.

  19. Preparation, microstructure and degradation performance of biomedical magnesium alloy fine wires

    Institute of Scientific and Technical Information of China (English)

    Jing Bai; Zhejun Tang; Lingling Yin; Ye Lu; Yiwei Gan; Feng Xue; Chenglin Chu; Jingli Yan; Kai Yan; Xiaofeng Wan

    2014-01-01

    With the development of new biodegradable Mg alloy implant devices, the potential applications of biomedical Mg alloy fine wires are realized and explored gradually. In this study, we prepared three kinds of Mg alloy fine wires containing 4 wt%RE(Gd/Y/Nd) and 0.4 wt%Zn with the diameter less than 0.4μm through casting, hot extruding and multi-pass cold drawing combined with intermediated annealing process. Their microstructures, mechanical and degradation properties were investigated. In comparison with the corresponding as-extruded alloy, the final fine wire has significantly refined grain with an average size of 3–4μm, and meanwhile shows higher yield strength but lower ductility at room temperature. The degradation tests results and surface morphologies observations indicate that Mg–4Gd–0.4Zn and Mg–4Nd–0.4Zn fine wires have similar good corrosion resistance and the uniform corrosion behavior in SBF solution. By contrast, Mg–4Y–0.4Zn fine wire shows a poor corrosion resistance and the pitting corrosion behavior.

  20. Preparation, microstructure and degradation performance of biomedical magnesium alloy fine wires

    Directory of Open Access Journals (Sweden)

    Jing Bai

    2014-10-01

    Full Text Available With the development of new biodegradable Mg alloy implant devices, the potential applications of biomedical Mg alloy fine wires are realized and explored gradually. In this study, we prepared three kinds of Mg alloy fine wires containing 4 wt% RE(Gd/Y/Nd and 0.4 wt% Zn with the diameter less than 0.4 μm through casting, hot extruding and multi-pass cold drawing combined with intermediated annealing process. Their microstructures, mechanical and degradation properties were investigated. In comparison with the corresponding as-extruded alloy, the final fine wire has significantly refined grain with an average size of 3–4 μm, and meanwhile shows higher yield strength but lower ductility at room temperature. The degradation tests results and surface morphologies observations indicate that Mg–4Gd–0.4Zn and Mg–4Nd–0.4Zn fine wires have similar good corrosion resistance and the uniform corrosion behavior in SBF solution. By contrast, Mg–4Y–0.4Zn fine wire shows a poor corrosion resistance and the pitting corrosion behavior.

  1. Preparation of silica thin films by novel wet process and study of their optical properties.

    Science.gov (United States)

    Im, Sang-Hyeok; Kim, Nam-Jin; Kim, Dong-Hwan; Hwang, Cha-Won; Yoon, Duck-Ki; Ryu, Bong-Ki

    2012-02-01

    Silicon dioxide (SiO2) thin films have gained considerable attention because of their various industrial applications. For example, SiO2 thin films are used in superhydrophilic self-cleaning surface glass, UV protection films, anti-reflection coatings, and insulating materials. Recently, many processes such as vacuum evaporation, sputtering, chemical vapor deposition, and spin coating have been widely applied to prepare thin films of functionally graded materials. However, these processes suffer from several engineering problems. For example, a special apparatus is required for the deposition of films, and conventional wet processes are not suitable for coating the surfaces of substrates with a large surface area and complex morphology. In this study, we investigated the film morphology and optical properties of SiO2 films prepared by a novel technique, namely, liquid phase deposition (LPD). Images of the SiO2 films were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in order to study the surface morphology of these films: these images indicate that films deposited with different reaction times were uniform and dense and were composed of pure silica. Optical properties such as refractive index and transmittance were estimated by UV-vis spectroscopy and ellipsometry. SiO2 films with porous structures at the nanometer scale (100-250 nm) were successfully produced by LPD. The deposited film had excellent transmittance in the visible wavelength region.

  2. Preparation and optical properties of sol-gel-deposited electrochromic iron oxide films

    Science.gov (United States)

    Ozer, Nilgun; Tepehan, Fatma; Tepehan, Galip

    1997-10-01

    The preparation and optical properties of sol-gel deposited iron oxide films are investigated in this study. The films are deposited on glass by spin-coating from polymeric sol-gel solutions. The coating solutions were prepared from Fe(OCH3H7)3 and isopropanol. Fe2O3 films were obtained at a firing temperature 180 degrees Celsius. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and UV-Vis spectroscopy. The electrochemical properties of the films were studied in 0.5 M LiClO4/propylene carbonate (PC) solution. The CV results showed reversibility of the Li+/e- insertion/extraction process in the Fe2O3 films up to 200 cycles. Reduction and oxidation of the amorphous films in 0.5 M LiClO4-PC solution caused noticeable changes in optical absorption. XRD of the films showed that they had an amorphous structure. Fourier transform infrared spectroscopy (FTIR) measurements showed that the composition of the film is Fe2O3. In-situ spectrophotometric measurements indicated that these films show weak electrochromism in the spectral range of 350 - 800 nm. The optical band gap is estimated to be 1.92 eV for the amorphous film. The spectroelectrochemical properties clearly indicated that cyclic stability of the iron oxide films deteriorated above 200 cycles.

  3. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8570 (Japan)

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO){sub 20}(PO){sub 70}(EO){sub 20}) or F127 ((EO){sub 106}(PO){sub 70}(EO){sub 106}), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films.

  4. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  5. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  6. Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    高明伟; 叶超; 王响英; 何一松; 郭佳敏; 杨培芳

    2016-01-01

    Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency (VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It is found that the thin a-C films prepared by the 60 MHz sputtering have a lower growth rate, a smooth surface, and more sp3 contents. These features are related to the higher ion energy and the lower ions flux onto the substrate. Therefore, the 60 MHz VHF sputtering is more suitable for the preparation of thin a-C film with more sp3 contents.

  7. Study on AlxNiy Alloys as Diffusion Barriers in Flexible Thin Film Solar Cells%Study on AlxNiy Alloys as Diffusion Barriers in Flexible Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    岳红云; 吴爱民; 秦福文; 李廷举

    2011-01-01

    Co-sputtered AlxNiy thin films were used as diffusion barriers between aluminum and hydrogenated microcrystalline silicon (μc-Si:H) for flexible thin film solar cells. The stoichiometric ratio of AlxNiy showed a significant effect on the structures of the films. The obtained Al3Ni2 film was amorphous, while polycrystalline films were obtained when the ratio of aluminum to nickel was 1:1 and 2:3. An auger electron spectroscope and four-point probe system were applied to test the resistance to the interdiffusion between aluminum and silicon, as well as the conductivities of the AlxNiy barriers. The data of auger depth profile showed that the content of silicon was the minimum in the aluminum layer after sputtering for 4 min using AlNi thin film as the barrier layer. Compared to other AlxNiy alloys, the AlNi thin film possessed the lowest sheet resistance.

  8. Microstructure and mechanical properties of magnesium alloy prepared by lost foam casting

    Institute of Scientific and Technical Information of China (English)

    TIAN Xue-feng; FAN Zi-tian; HUANG Nai-yu; WU He-bao; DONG Xuan-pu

    2005-01-01

    The microstructure and mechanical properties of AZ91 alloy prepared by lost foam casting(LFC) and various heat treatments have been investigated.The microstructure of the AZ91 alloy via LFC consists of dominant α-Mg and β-Mg17Al12 as well as a new phase Al32 Mn25 with size of about 5-50 μm,which has not been detected in AZ91 alloy prepared by other casting processes.The tests demonstrate that the as-cast mechanical properties are higher than those of sand gravity casting because of chilling and cushioning effect of foam pattern during the mould filling.The solution kinetics and the aging processes at different temperatures were also investigated by hardness and electrical resistivity measurements.The kinetics of aging are faster at the high temperature due to enhanced diffusion of atoms in the matrix,so the hardness peak at 380 ℃ occurs after 10 h;while at the lower aging temperature(150 ℃),the peak is not reached in the time(24 h) considered.

  9. Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

    Directory of Open Access Journals (Sweden)

    H. Somashekarappa

    2013-01-01

    Full Text Available The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC and Polyvinylpyrrolidone (PVP blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.

  10. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Li Qizheng; Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-04-15

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO{sub 3}){sub 2} solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  11. Electroplated Fe-Pt thick films prepared in plating baths with various pH values

    OpenAIRE

    Yanai, T; Furutani, K.; Masaki, T; T. Ohgai; Nakano, M; Fukunaga, H

    2016-01-01

    Fe-Pt thick-films were electroplated on a Ta substrate using a direct current, and the effect of the pH value of the plating bath on the magnetic properties of the films was evaluated. For the films prepared from the baths with the same bath composition, the Fe composition and the thickness increased with increasing the pH value. In order to remove the effect of the change in the film composition on the magnetic properties, we controlled the film composition at approximately Fe50Pt50 or Fe60P...

  12. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    Science.gov (United States)

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials. PMID:25967812

  13. Preparation and Photocatalytic Property of Porous TiO2 Film with Net-like Framework

    Institute of Scientific and Technical Information of China (English)

    XU Rong-guo; YAO Jian-xi; LAI Xiao-yong; MAO Dan; XING Chao-jian; WANG Dan

    2009-01-01

    By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characte-rization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.

  14. Perpendicular Magnetic Anisotropy Induced by Tetragonal Distortion of FeCo Alloy Films Grown on Pd(001)

    Science.gov (United States)

    Winkelmann, Aimo; Przybylski, Marek; Luo, Feng; Shi, Yisheng; Barthel, Jochen

    2006-06-01

    We grew tetragonally distorted FexCo1-x alloy films on Pd(001). Theoretical first-principles calculations for such films predicted a high saturation magnetization and a high uniaxial magnetic anisotropy energy for specific values of the lattice distortion c/a and the alloy composition x. The magnetic anisotropy was investigated using the magneto-optical Kerr effect. An out-of-plane easy axis of magnetization was observed for Fe0.5Co0.5 films in the thickness range of 4 to 14 monolayers. The magnetic anisotropy energy induced by the tetragonal distortion is estimated to be almost 2 orders of magnitude larger than the value for bulk FeCo alloys. Using LEED Kikuchi patterns, a change of the easy axis of magnetization can be related to a decrease of the tetragonal distortion with thickness.

  15. Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy

    Science.gov (United States)

    Wang, De-Lai; Cui, Ming-Qi; Yang, Dong-Liang; Dong, Jun-Cai; Xu, Wei

    2016-10-01

    In this work, the magnetocrystalline anisotropy energy (MAE) on the surface of Fe33Co67 alloy film is extracted from x-ray magnetic linear dichroism (XMLD) experiments. The result indicates that the surface MAE value is negatively correlated with thickness. Through spectrum calculations and analysis, we find that besides the thickness effect, another principal possible cause may be the shape anisotropy resulting from the presence of interface roughness. These two factors lead to different electron structures on the fermi surface with different exchange fields, which produces different spin-orbit interaction anisotropies. Project supported by the National Natural Science Foundation of China (Grant Nos. 11075176 and 11375131).

  16. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  17. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Dagang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Jiang, Shouxiang, E-mail: kinor.j@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Zhao, Hongmei [Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao (China); Shang, Songmin; Chen, Zhuoming [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-12-15

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films.

  18. Effect of humidity on microstructure and properties of YBCO film prepared by TFA-MOD method

    Institute of Scientific and Technical Information of China (English)

    WANG Lianhong; LI Tao; GU Hongwei

    2009-01-01

    Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3. (001) substrate by metal organic deposition method. All YBCO films were fired at 820 ℃ in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was ana-lyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed Jc value of 3.3 MA/cm2 at 77 K in self-field.

  19. Chemical vapor deposition of ruthenium–phosphorus alloy thin films: Using phosphine as the phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Bost, Daniel E.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu

    2014-05-02

    The use of PH{sub 3} as the P source in the growth of amorphous ruthenium–phosphorus (Ru(P)) alloy films by dual-source chemical vapor deposition (CVD) with Ru{sub 3}(CO){sub 12} to produce thin (∼ 3 nm) Cu diffusion barriers is examined. Comparisons are made to films grown using P(CH{sub 3}){sub 3}. Carbon contamination of 10 at.% carbon or less was observed in PH{sub 3}-produced Ru(P) films, compared to greater than 30 atomic % carbon in films using P(CH{sub 3}){sub 3}, and lower resistivity was also observed. PH{sub 3} was found to be much more reactive than previously-used P precursors, requiring the use of very low PH{sub 3} partial pressures (∼ 0.13 mPa) and a sequenced addition process that allowed accumulated P to diffuse into the Ru(P) film during growth. X-ray reflectivity and atomic force microscopy indicate that films of good continuity and smoothness can be grown by CVD in the 3 nm thickness range. X-ray diffraction shows the amorphous phase to be stable for annealing at 400 °C for 3 h. Electric field stress tests to failure for Cu/Ru(P)/SiO{sub 2}/Si stacks indicate that low-carbon Ru(P) barrier films function at least as well as their higher-carbon counterparts as Cu barriers and better than Ta/TaN stacks of similar thickness grown for comparison purposes. - Highlights: • Reports the CVD growth of 3 to 5 nm amorphous Ru(P) thin films PH{sub 3} as the P source • PH{sub 3}-grown Ru(P) films have ∼ 10% C content the same as films with zero % P. • Fast PH{sub 3} decomposition at 250 °C can lead to P accumulation on the growth surface. • Amorphous, continuous 3 nm Ru(P) films realized for P content > 20 atom % • Electrical field stress tests indicate 3 nm Ru(P) function as a Cu diffusion barrier.

  20. Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Highlights: • Novel Ni-Cu-P amorphous alloy with nanoporous structure was fabricated by LSV etching. • Lower onset oxidation potential of methanol at NP-NiCuP than both S-NiCuP and NP-NiCu. • Superior activity and stability for methanol oxidation at the NP-NiCuP electrode. • Long lifetime of the NP-NiCuP electrode. - Abstract: Nanoporous Ni-Cu-P amorphous alloy (NP-NiCuP) and nanoporous Ni-Cu crystalline alloy (NP-NiCu) are prepared by the linear sweep voltammetry (LSV) etching of copper from the electroless Ni-Cu-P and Ni-Cu alloy coatings, respectively. The results of X-ray diffraction (XRD) analysis show that the nanoporous Ni-Cu-P alloy is amorphous structure. The scanning electron microscopy (SEM) analysis demonstrates the NP-NiCuP shows a 3-D bi-continuous porous structure with the pore size of 150–200 nm and the ligament size of around 100 nm. Electrochemical performances are measured by cyclic voltammetry (CV) and chronoamperometry (CA). The results prove that the NP-NiCuP electrode exhibits higher the proton diffusion coefficient (D0) of Ni(OH)2 and surface coverage (Γ*) of the redox species than those on smooth electroless Ni-Cu-P amorphous alloy (S-NiCuP) and NP-NiCu electrodes in alkaline solution obviously. Moreover, electro-oxidation of methanol suggests that the NP-NiCuP electrode holds higher anodic current density and lower onset potential than the S-NiCuP and NP-NiCu electrodes. Finally, the NP-NiCuP electrode has stable redox behavior and superior catalytic stability for methanol oxidation

  1. Preparation of ferromagnetic binary alloy fine fibers byorganic gel-thermal reduction process

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiang-qian; CAO Kai; ZHOU Jian-xin

    2006-01-01

    Ferromagnetic metal fibers with a high aspect ratio (length/diameter) are attractive for use as high performance electromagnetic interference shielding materials. Ferromagnetic binary alloy fine fibers of iron-nickel, iron-cobalt and cobalt-nickel were prepared by the organic gel-thermal reduction process from the raw materials of critic acid and metal salts. These alloy fibers synthesized were featured with a diameter of about 1 μm and a length as long as 1 m. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of the gel precursors were characterized by FTIR, XRD, TG/DSC and SEM. The gel spinnability largely depends on the molecular structure of metal- carboxylates formed during the gel formation. The gel consisting of linear-type structural molecules shows good spinnability.

  2. Influencing Factors of Preparation of Al-Mg-Sc Master Alloy

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun; Zhang Zonghua; Zhang Guifang

    2007-01-01

    Through the experiment, the reduced temperature, the containing scandium quantity of the fused salt, the agitated intensity and the restoring time that influence the rate of receives of scandium, and determined the technological conditions which uses the method of hot Al-Mg restoring anhydrous the chloride of scandium to prepare the Al-Mg-Sc master alloy. The best experimental technological conditions are that the master alloy can contains 8.0% of scandium while the restoring temperature is at 900℃, the restoring time is 20min and the agitated time is a half minute. When the method of the fused salt covered with bell, agitated and pressed the argon is used in the expansion tests, the agitated number is 4 times and the average receives rate of Sc is 90.0%.

  3. CuZn dendritic alloys: their template-free electrochemical preparation and morphology-dependent wettability.

    Science.gov (United States)

    Qiao, Ru; Yin, Qiaoqiao; Qiu, Ri; Zhu, Lanlan; Fu, Jianong; Zhang, Xiao Li

    2013-06-01

    In this paper, we report a preparation of CuZn dendritic microstructures through a tunable template-free electrochemical approach. By simply tunning the applied depositing current, the morphology of the product can be well controlled. The growth mechanism of CuZn dendritic alloys was also verified. The experimental results suggest that the growth of the grass-like structures obtained at 5 mA is driven by diffusion limited aggregation, while the driving force of the formation of CuZn dendrites obtained at 10 mA and 15 mA is gas bubbling worked as the dynamic template. The contact angle test shows the modified CuZn dendritic products possess superhydrophobic property. Additionally, through annealing of CuZn alloys in argon as the protective gas, derivative Cu/ZnO composite materials can be produced. PMID:23862481

  4. Preparation, Characterization and Mechanical Properties of Cu-Sn Alloy/Graphite Composites

    Science.gov (United States)

    Dong, Ruifeng; Cui, Zhenduo; Zhu, Shengli; Xu, Xu; Yang, Xianjin

    2014-10-01

    Ni-B coating was prepared on the surface of graphite particles using the electroless plating method. The Ni-B coating was composed of spherical grains with average diameter of 80 nm. The phases of Ni-B coating were indexed as nanosized crystal Ni phase and amorphous Ni-B phase. Cu-Sn alloy/graphite composites with 0.5, 1.0, 1.5, and 2.0 wt pct graphite contents were synthesized by the powder metallurgy method. Ni-B coating improved the wettability and bonding strength between the Cu-Sn alloy and graphite. The composite with Ni-B coated graphite exhibited higher density, hardness, and compression strength compared with the composites with bare graphite. The crack propagation mechanism of the composites was also analyzed.

  5. High perpendicular magnetic anisotropy in D022-Mn3+xGe tetragonal Heusler alloy films

    Science.gov (United States)

    Sugihara, A.; Mizukami, S.; Yamada, Y.; Koike, K.; Miyazaki, T.

    2014-03-01

    We prepared D022-Mn3+xGe (-0.67 ≤ x ≤ 0.35) epitaxial thin films on MgO(001) substrates with Cr(001) buffer layers and systematically investigated the dependence of their perpendicular magnetic anisotropy constant, saturation magnetization, coercivity, and tetragonal axial ratio (c/a) on their composition and substrate temperature. Single-phase D022 crystal structures were formed in films with compositions of 0 ≤ x ≤ 0.35, prepared at 400 °C. The D022-Mn3Ge films exhibited perpendicular magnetization with a magnetic squareness close to unity. Performing magnetic torque measurements at an applied field of 140 kOe, we estimated a perpendicular magnetic anisotropy constant of 11.8 ± 0.5 Merg/cm3, the highest and the most reliable value yet reported.

  6. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative and Prosthetic Dentistry, College of Dentistry, Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative and Prosthetic Dentistry, College of Dentistry, Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H{sub 3}PO{sub 4} electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely {beta} phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  7. Effects of preparation conditions on the optical properties of thin films of tellurium oxide

    International Nuclear Information System (INIS)

    Thin films of tellurium oxide were prepared by thermal evaporation. The effects of preparation conditions and post-deposition vacuum annealing on the optical constants of the thin films were studied. Substantial changes in the optical constants, density, structure and stoichiometry were observed following changes in the preparation conditions and annealing. The majority of the films were found to be deficient in oxygen. The presence of metallic Te was detected in films deposited on heated substrates and in all the films that were annealed. All the samples showed some degree of absorption at photon energies below the band gap. One explanation for this absorption could be oxygen deficiency and the presence of metallic Te. (author)

  8. Effects of preparation conditions on the optical properties of thin films of tellurium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kuhaili, M.F. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Durrani, S.M.A.; Khawaja, E.E [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Shirokoff, J. [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NF (Canada)

    2002-05-07

    Thin films of tellurium oxide were prepared by thermal evaporation. The effects of preparation conditions and post-deposition vacuum annealing on the optical constants of the thin films were studied. Substantial changes in the optical constants, density, structure and stoichiometry were observed following changes in the preparation conditions and annealing. The majority of the films were found to be deficient in oxygen. The presence of metallic Te was detected in films deposited on heated substrates and in all the films that were annealed. All the samples showed some degree of absorption at photon energies below the band gap. One explanation for this absorption could be oxygen deficiency and the presence of metallic Te. (author)

  9. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-01

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications. PMID:26784865

  10. Recent progress in perpendicularly magnetized Mn-based binary alloy films

    Science.gov (United States)

    Zhu, Li-Jun; Nie, Shuai-Hua; Zhao, Jian-Hua

    2013-11-01

    In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxAl thin films with perpendicular magnetic anisotropy. First, we present a brief introduction to the demands for perpendicularly magnetized materials in spintronics, magnetic recording, and permanent magnets applications, and the most promising candidates of tetragonal MnxGa and MnxAl with strong perpendicular magnetic anisotropy. Then, we focus on the recent progress of perpendicularly magnetized MnxGa and MnxAl respectively, including their lattice structures, bulk synthesis, epitaxial growth, structural characterizations, magnetic and other spin-dependent properties, and spintronic devices like magnetic tunneling junctions, spin valves, and spin injectors into semiconductors. Finally, we give a summary and a perspective of these perpendicularly magnetized Mn-based binary alloy films for future applications.

  11. Static and dynamic magnetic properties of epitaxial Co2FeAl Heusler alloy thin films

    Science.gov (United States)

    Ortiz, G.; Gabor, M. S.; Petrisor, T., Jr.; Boust, F.; Issac, F.; Tiusan, C.; Hehn, M.; Bobo, J. F.

    2011-04-01

    Structural and magnetic properties of epitaxial Co2FeAl Heusler alloy thin films were investigated. Films were deposited on single crystal MgO (001XS) substrates at room temperature, followed by an annealing process at 600 °C. MgO and Cr buffer layers were introduced in order to enhance crystalline quality, and improve magnetic properties. Structural analyses indicate that samples have grown in the B2 ordered epitaxial structure. VSM measures show that the MgO buffered sample displays a magnetization saturation of 1010 ± 30 emu/cm3, and Cr buffered sample displays a magnetization saturation of 1032 ± 40 emu/cm3. Damping factor was studied by strip-line ferromagnetic resonance measures. We observed a maximum value for the MgO buffered sample of about 8.5 × 10-3, and a minimum value of 3.8 × 10-3 for the Cr buffered one.

  12. Structure of amorphous silicon alloy films: Annual subcontract report, January 15, 1988--January 14, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, R.E.; Fedders, P.A.

    1989-06-01

    The principal objective of this research program has been to improve the understanding at the microscopic level of amorphous silicon-germanium-alloy films deposited under various conditions to assist researchers to produce higher quality films. The method has been a joint theoretical and experimental approach to the correlation of NMR, ESR, and other characterizations, especially relating to rearrangements of hydrogen. Deuteron magnetic resonance reveals the presence of (and changes in) tightly bonded hydrogen (deuterium), weakly bonded hydrogen, molecular hydrogen, and rotating silyl groups. Microvoids are investigated via observation of para D/sub 2/ for which /Delta/M/sub J/ transitions are frozen out. Solid echoes reveal HD and ortho D/sub 2/ trapped as singles in the semiconductor matrix. Theoretical calculations show dangling bonds to be more likely than floating bonds. 23 refs., 11 figs.

  13. Hall current sensor IC with integrated Co-based alloy thin film magnetic concentrator

    Science.gov (United States)

    Palumbo, V.; Marchesi, M.; Chiesi, V.; Paci, D.; Iuliano, P.; Toia, F.; Casoli, F.; Ranzieri, P.; Albertini, F.; Morelli, M.

    2013-01-01

    This work deals with a cobalt-based alloy thin film magnetic concentrator (MC) which is fully integrated on a Hall sensor integrated circuit (IC) developed in the 0.35 µm Bipolar CMOS DMOS (BCD) technology on 8" silicon wafer. An amorphous magnetic film with a thickness of 1µm, coercitive field Hc<10A/m and saturation magnetization (µ0MS) of 0.45T has been obtained with a sputtering process. The Hall sensor IC has shown sensitivity to magnetic field at room temperature of 240V/AT without concentrator and 2550V/AT with concentrator, gaining a factor of 10.5. A current sensor demonstrator has been realized showing linear response in the range -50 to 50A.

  14. Hall current sensor IC with integrated Co-based alloy thin film magnetic concentrator

    Directory of Open Access Journals (Sweden)

    Albertini F.

    2013-01-01

    Full Text Available This work deals with a cobalt-based alloy thin film magnetic concentrator (MC which is fully integrated on a Hall sensor integrated circuit (IC developed in the 0.35 µm Bipolar CMOS DMOS (BCD technology on 8” silicon wafer. An amorphous magnetic film with a thickness of 1µm, coercitive field Hc<10A/m and saturation magnetization (µ0MS of 0.45T has been obtained with a sputtering process. The Hall sensor IC has shown sensitivity to magnetic field at room temperature of 240V/AT without concentrator and 2550V/AT with concentrator, gaining a factor of 10.5. A current sensor demonstrator has been realized showing linear response in the range -50 to 50A.

  15. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  16. Preparation and characterization of silk fibroin/HPMC blend film

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, G. Rajesha [Department of Physics, Govt. First Grade College Hiriadka, Udupi - 576113 (India); Kumar, R. Madhu; Rao, B. Lakshmeesha; Asha, S.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India)

    2015-06-24

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  17. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn2+ solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm2 of 0.5 mol% Cu-doped ZnO thin film are 15.92 μM h-1 and 0.049 μM-1, respectively.

  18. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jongnavakit, P. [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Amornpitoksuk, P., E-mail: ampongsa@yahoo.com [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); NANOTEC Center of Excellence at Prince of Songkla University (CENE), Hat Yai, Songkhla 90112 (Thailand); Suwanboon, S. [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); NANOTEC Center of Excellence at Prince of Songkla University (CENE), Hat Yai, Songkhla 90112 (Thailand); Ndiege, N. [Nanoscience and Nanotechnology Institute, W181 Chemistry Building, University of Iowa, Iowa City 52242, IA (United States)

    2012-08-01

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn{sup 2+} solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm{sup 2} of 0.5 mol% Cu-doped ZnO thin film are 15.92 {mu}M h{sup -1} and 0.049 {mu}M{sup -1}, respectively.

  19. Multifold Seebeck increase in RuO{sub 2} films by quantum-guided lanthanide dilute alloying

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Basse, Felix H.-U.; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Han, Liang; Borca-Tasciuc, Theo [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180 (United States); Devender [Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180 (United States); Gengler, Jamie J. [Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433 (United States); Spectral Energies, LLC, Dayton, Ohio 45431 (United States); Voevodin, Andrey A. [Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433 (United States); Ramanath, Ganpati [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180 (United States)

    2014-02-03

    Ab initio predictions indicating that alloying RuO{sub 2} with La, Eu, or Lu can increase the Seebeck coefficient α manifold due to quantum confinement effects are validated in sputter-deposited La-alloyed RuO{sub 2} films showing fourfold α increase. Combinatorial screening reveals that α enhancement correlates with La-induced lattice distortion, which also decreases the thermal conductivity twentyfold, conducive for high thermoelectric figures of merit. These insights should facilitate the rational design of high efficiency oxide-based thermoelectrics through quantum-guided alloying.

  20. Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media

    International Nuclear Information System (INIS)

    High coercivity (Hc) Co-rich type Co–Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. Hc was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane Hc of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in Hc. Microstructure and phase structure studies revealed columnar Co–Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co–Pt alloy thin films were investigated by TEM. - Highlights: • Deposited Co–Pt alloy thin films on glass substrate at room temperature. • High out-of-plane coercivity of Co-rich type Co–Pt thin film at thinner thickness. • Columnar structure contributed out-of-plane coercivity

  1. Nanocrystalline CdS thin films prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Thambidurai, M.; Muthukumarasamy, N.; Agilan, S.; Vasantha, S. [Coimbatore Institute of Technology (India). Dept. of Physics; Velauthapillai, Dhayalan [Univ. College of Bergen (Norway). Dept. of Engineering; Murugan, N. [Coimbatore Institute of Technology (India). Dept. of Mechanical Engineering; Balasundaraprabhu, R. [PSG College of Technology, Coimbatore (India). Dept. of Physics

    2011-05-15

    Nanocrystalline CdS thin films have been prepared using cadmium nitrate and thiourea as precursors using the solgel spin coating method. The structural studies carried out on the prepared films using X-ray diffraction and high resolution transmission electron microscopy revealed that the CdS films exhibit hexagonal structure and the grain size was observed to be 10 and 14 nm for the films annealed at 250 C and 450 C. The surface topography of the films was studied using atomic force microscopy and the roughness was found to be 32 nm. The optical absorbance studies showed a strong blue shift due to the quantum confinement effect present in the CdS films. The grain size calculated using the band gap energy and quantum confinement effect was found to be in agreement with the results obtained from structural studies. (orig.)

  2. Ultraflat indium tin oxide films prepared by ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Han Younggun; Kim, Donghwan; Cho, Jun-Sik; Koh, Seok-Keun

    2005-02-14

    Indium tin oxide (ITO) films with a smooth surface (root-mean-square roughness; R{sub rms}=0.40 nm) were made using a combination of the deposition conditions in the ion beam-sputtering method. Sheet resistance was 13.8 {omega}/sq for a 150-nm-thick film grown at 150 deg. C. Oxygen was fed into the growth chamber during film growth up to 15 nm, after which, the oxygen was turned off throughout the rest of the deposition. The surface of the films became smooth with the addition of ambient oxygen but electrical resistance increased. In films grown at 150 deg. C with no oxygen present, a rough surface (R{sub rms}=2.1 nm) and low sheet resistance (14.4 {omega}/sq) were observed. A flat surface (R{sub rms}=0.5 nm) with high sheet resistance (41 {omega}/sq) was obtained in the films grown with ambient oxygen throughout the film growth. Surface morphology and microstructure of the films were determined by the deposition conditions at the beginning of the growth. Therefore, fabrication of ITO films with a smooth surface and high electrical conductivity was possible by combining experimental conditions.

  3. In-situ XRD study of alloyed Cu{sub 2}ZnSnSe{sub 4}-CuInSe{sub 2} thin films for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hartnauer, Stefan; Wägele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland, E-mail: roland.scheer@physik.uni-halle.de

    2015-05-01

    We investigate the growth of Cu{sub 2}ZnSnSe{sub 4}-CuInSe{sub 2} (CZTISe) thin films using a 2-stage (Cu-rich/Cu-free) co-evaporation process under simultaneous application of in-situ angle dispersive X-ray diffraction (XRD). In-situ XRD allows monitoring the phase formation during preparation. A variation of the content of indium in CZTISe leads to a change in the lattice constant. Single phase CZTISe is formed in a wide range, while at high In contents a phase separation is detected. Because of different thermal expansion coefficients, the X-ray diffraction peaks of ZnSe and CZTISe can be distinguished at elevated substrate temperatures. The formation of ZnSe appears to be inhibited even for low indium content. In-situ XRD shows no detectable sign for the formation of ZnSe. First solar cells of CZTISe have been prepared and show comparable performance to CZTSe. - Highlights: • In-situ XRD study of two-stage co-evaporated Cu{sub 2}ZnSnSe{sub 4}-CuInSe{sub 2} alloyed thin films. • No detection of ZnSe with in-situ XRD due to Indium incorporation • Comparable efficiency of alloyed solar cells.

  4. Synthesis and Structure of PEDOT Prepared through a Modified LB Film Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hua-Jing; JIANG Ya-Dong; XU Jian-Hua; YANG Ya-Jie

    2011-01-01

    Adopting LB film method, an arachidic acid (AA)/PEDOT multilayer LB film and polymerized EDOT monomers in hydrophilic group of LB were chosen to prepare the arachidic acid (AA)/PEDOT multilayer LB film. UV-Vis, FT-IR and XPS analyses implied that EDOT was effectively polymerized in film, and thus PEDOT conducting polymer was produced. Analyses of XRR and SIMS indicated that the film had a well-arranged lamella structure, and further research showed that polymerization of EDOT in AA film destroyed the orderliness of the original LB film. This phenomenon could be related to the destructive effect of polymerization on the layered structure. We used four-point probe and semiconductor instrument to study the conductivity property of the film, and observed that the conductivity of AA/PEDOT film had sudden changes with the changes of processing time in an effective conduction network, which was caused by "permeability" in conducting channel of multilayer film. The test results also indicated that the conductivity of AA/PEDOT film was obviously better than that of spin-coating PEDOT/PSS or ODA-SA/PEDOT-PSS film due to the higher π structure of PEDOT structure and ordered film structure.

  5. Adhesive B-doped DLC films on biomedical alloys used for bone fixation

    Indian Academy of Sciences (India)

    A A Ahmad; A M Alsaad

    2007-08-01

    The long-term failure of the total hip and knee prostheses is attributed to the production of wear particles at the articulating interface between the metals, ceramics and polymers used for surgical implants and bone-fixtures. Therefore, finding an adhesive and inert coating material that has low frictional coefficient should dramatically reduce the production of wear particles and hence, prolong the life time of the surgical implants. The novel properties of the non-toxic diamond-like carbon (DLC) coatings have proven to be excellent candidates for biomedical applications. However, they have poor adhesion strength to the alloys and biomaterials. The addition of a thin interfacial layer such as Si, Ti, TiN, Mo and Cu/Cr and/or adding additives such as Si, F, N, O, W, V, Co, Mo, Ti or their combinations to the DLC films has been found to increase the adhesion strength substantially. In our study, grade 316L stainless steel and grade 5 titanium alloy (Ti–6Al–4V) were used as biomaterial substrates. They were coated with DLC films containing boron additives at various levels using various Si interfacial layer thicknesses. The best film adhesion was achieved at 8% and 20% on DLC coated Ti–6Al–4V and grade 316L substrates, respectively. It has been demonstrated that doping the DLC with boron increases their adhesion strength to both substrates even without silicon interfacial layer and increases it substantially with optimum silicon layer thickness. The adhesion strength is also correlated with the hydrogen contents in the B-DLC films. It is found to reach its maximum value of 700 kg/cm2 and 390 kg/cm2 at 2/7 and 3/6 for CH4/Ar partial pressures (in mTorr ratio) for Ti–6Al–4V and 316L substrates, respectively.

  6. Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells

    International Nuclear Information System (INIS)

    The semiconductor tungsten disulfide (WS2) exhibits van der Waals bonding, crystallizes in a layer-type structure and is of interest as an absorber layer for thin-film solar cells. In this review article different preparation routes for WS2 thin films, based on magnetron sputtering, are reviewed. Films prepared by direct magnetron sputtering, though exhibiting quite a good structural quality, are not or only poorly photoactive. This can be attributed to the generation of recombination centers, especially sulfur vacancies, during the ion bombardment of the films, due to the low defect-formation energy of tungsten disulfide, an intrinsic property of transition metal dichalcogenides. A promising preparation route, which leads to photoactive WS2 films, is a two-step process, where, in a first step, a sulfur-rich, X-ray amorphous tungsten sulfide is deposited at low substrate temperatures onto a thin metal film (Ni, Co). This film sandwich is after wards annealed in an ampoule in a sulfur atmosphere or in flowing gas with a sufficient H2S partial pressure. From in-situ transmission electron microscopy and energy-dispersive X-ray diffraction, it was found that the WS2 film crystallization with a pronounced (001) texture is closely related to the formation of the liquid (eutectic) metal-sulfur phase. Based on these in-situ investigations the growth of the 2-dimensional WS2 nanosheets from an amorphous WS3+x precursor can be described as an amorphous solid-liquid-crystalline solid process (SLS), somewhat similar to the well-known vapor-liquid-solid (VLS) process for the growth of whiskers or nanorods and nanotubes. Research opportunities, to overcome current limitations for a broad use of WS2 (and MoS2) as thin-film solar cell absorbers are given. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Esparza, C.D.; Baldenebro-López, F.J.; Santillán-Rodríguez, C.R.; Estrada-Guel, I.; Matutes-Aquino, J.A.; Herrera-Ramírez, J.M., E-mail: martin.herrera@cimav.edu.mx; Martínez-Sánchez, R.

    2014-12-05

    Highlights: • Equiatomic NiCoAlFe powder alloys were synthesized by mechanical alloying. • The nanocrystalline alloys were characterized after milled and annealed conditions. • In alloyed and annealed powders, only BCC and FCC structure phases were observed. • Magnetic properties are strongly affected by the phases formed after annealing. - Abstract: Equiatomic NiCoAlFe powder alloys were synthesized by mechanical alloying. The microstructural evolution of the mechanically alloyed powders at different times was followed with X-ray diffraction and scanning electron microscopy. The as-mechanically alloyed powders were subjected to a rapid annealing treatment at 1273 K and 1473 K during 3 min in vacuum. X-ray diffraction studies show the structure of both, the as-mechanically alloyed and annealed powders, consisted in a mixture of nanocrystalline simple phases (FCC + BCC). Crystallite size, after annealing, still remained in nanoscale. Coercivity increased due to the decrease in crystallite size and because of the defects caused by mechanical alloying in the as-mechanically alloyed samples; then coercivity decreased due to the phenomenon of random magnetic anisotropy and tended to stabilize with longer alloying times. A similar behavior was observed in annealed samples at 1273 K. However, random magnetic anisotropy was not observed after annealing at 1473 K because crystals with larger sizes were produced, and a steady increase in coercivity was observed.

  8. Preparation and characterization of ZnS thin films by the chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashita, Taisuke [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Ando, Shizutoshi, E-mail: ando_shi@rs.kagu.tus.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Research Institute for Science and Technology, Advanced Device Laboratories (ADL), Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan); Research Institute for Science and Technology, Photovoltaic Science and Technology Research Division, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2012-10-01

    ZnS thin films prepared on quartz substrates by the chemical bath deposition (CBD) method with three type temperature profile processes have been investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray analysis and light transmission. One is a 1-step growth process, and the other is 2-steps growth and self-catalyst growth processes. The surface morphology of CBD-ZnS thin films prepared by the CBD method with the self-catalyst growth process is flat and smooth compared with that prepared by the 1-step and 2-steps growth processes. The self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement in crystallinity of ZnS thin films prepared by CBD. ZnS thin films prepared by CBD method with self-catalyst growth process can be expected for improvement in the conversion efficiency of Cu(InGa)Se{sub 2}-based thin film solar cells by using it for the buffer layer. - Highlights: Black-Right-Pointing-Pointer ZnS thin films were prepared by chemical bath deposition (CBD) method. Black-Right-Pointing-Pointer The crystallization of CBD-ZnS films was further improved. Black-Right-Pointing-Pointer The crystallinity of CBD-ZnS thin films is dependent on the zinc source material. Black-Right-Pointing-Pointer Self-catalyst growth process is useful for the growth of thin films by CBD method. Black-Right-Pointing-Pointer It is expected to improve the conversion efficiency of CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells.

  9. Precisely Controlled Synthesis of High Quality Kesterite Cu2ZnSnS4 Thin Film via Co-Electrodeposited CuZnSn Alloy Film.

    Science.gov (United States)

    Hreid, Tubshin; Tiong, Vincent Tiing; Cai, Molang; Wang, Hongxia; Will, Geoffrey

    2016-06-01

    In this work, a facile co-electrodeposition method was used to fabricate CuZnSn alloy films where the content of copper, zinc and tin could be precisely controlled through manipulating the mass transfer process in the electrochemical deposition. By finely tuning the concentration of the cations of Cu2+, Zn2+ and Sn2+ in the electrochemical bath solution, uniform CuZnSn film with desired composition of copper poor and zinc rich was made. Sulphurisation of the CuZnSn alloy film led to the formation of compact and large grains Cu2ZnSnS4 thin film absorber with an optimum composition of Cu/(Zn+Sn) ≈ 0.8, Zn/Sn ≈ 1.2. Both SEM morphology and EDS mapping results confirmed the uniformity of the CuZnSn and Cu2ZnSnS4 films and the homogeneous distribution of Cu, Zn, Sn and S elements in the bulk films. The XRD and Raman measurements indicated that the synthesized Cu2ZnSnS4 film was kesterite phase without impurities detected. Photoelectrochemical tests were carried out to evaluate the CZTS film's photocurrent response under illumination of green light. PMID:27427618

  10. Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties

    OpenAIRE

    Elhefian, Esam. A.; Mohamed Mahmoud NASEF; Yahaya, Abdul Hamid

    2012-01-01

    Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component) in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA). It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan...

  11. Preparation and Characterization of Chitosan/Agar Blended Films: Part 1. Chemical Structure and Morphology

    OpenAIRE

    Esam A. El-Hefian; Mohamed Mahmoud NASEF; Yahaya, Abdul Hamid

    2012-01-01

    Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the main component) in solution forms. The chemical structure and the morphology of the obtained blended films were investigated using Fourier transform infrared (FTIR) and field emission scanning electron microscope (FESEM). It was revealed that chitosan and agar form a highly compatible blend and their films displayed homogenous and smooth surface properties compared to ...

  12. Preparation of high quality superconducting thin MgB2 films for electronics

    International Nuclear Information System (INIS)

    In this work we report the growth of high-Tc MgB2 smooth films which are prepared in a two-step process: 1) deposition of the precursor films and 2) their annealing in Mg vapor with a specially designed, reusable reactor. Our method opens perspectives for the use of MgB2 films in microelectronics, especially for high-frequency applications. (authors)

  13. Charge injection properties of iridium oxide films produced on Ti-6Al-4V alloy substrates by ion-beam mixing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M. (Oak Ridge National Lab., TN (United States)); Lee, I-S.; Buchanan, R.A. (Tennessee Univ., Knoxville, TN (United States))

    1991-10-01

    The charge injection capabilities of iridium oxide films, as produced on Ti6Al-4V alloy substrates by ion beam mixing techniques, have been investigated. Iridium oxide is a valence change oxide, and therefore has high values of charge injection density upon voltage cycling in electrolytes. Because of this property, iridium oxide films are useful as working elements in neural prostheses. Iridium films of three thicknesses, produced by sputter deposition followed by ion beam mixing, were tested in cyclic voltammetry out to 1000 cycles or more. Two surface preparations, mechanical polishing and an acid passivation treatment, were also used as controls. Surface analysis was primarily by Rutherford backscattering spectrometry. Both the ion- beam mixing and the acid pretreatment increased the lifetimes of films, in comparison with the mechanically polished standards. Reductions in charge injection capability, when they occurred, were attributed to loss of Ir from the films, and there was a close correlation between the charge injection density and the Ir inventory. 13 refs., 5 figs.

  14. Ferroelectric thin film bismuth titanate prepared from acetate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxia; Hoelzer, D.T.; Schulze, W.A. [Alfred Univ., NY (United States); Tuttle, B.A.; Potter, B.G. [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01

    Bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) thin films were fabricated by spin coat deposition followed by rapid thermal processing (RTP). Acetate derived solutions for deposition were synthesized by blending bismuth acetate in aqueous acetic acid and then adding titanium acetate. A series of electrically insulating, semiconducting and conducting substrates were evaluated for Bi{sub 4}Ti{sub 3}O{sub 12} film deposition. While X-ray diffraction and TEM analyses indicated that the initial perovskite crystallization temperature was 500{degrees}C or less for these Bi{sub 4}Ti{sub 3}O{sub 12} films, a 700{degrees}C crystallization treatment was used to obtain single phase perovskite films. Bi{sub 4}Ti{sub 3}O{sub 12} film crystallographic orientation was shown to depend on three factors: substrate surface morphology, the number of coating layers and thermal processing. While preferred c-direction orientation was observed for Bi{sub 4}Ti{sub 3}O{sub 12} films deposited on silver foil substrates, preferred a-direction orientation was obtained for films deposited on both Si and Pt coated Si wafers. The films were dense, smooth, crack free, and had grain sizes ranging from 20 nm to 100 nm. Film thickness and refractive index were determined using a combination of ellipsometry, waveguide refractometry and TEM measurements. Both low field dielectric and ferroelectric properties were measured for an 800 nm thick film deposited on a Pt coated MgO substrate. A remanent polarization of 38 {mu}C/cm{sup 2} and a coercive field of 98 kV/cm were measured for this film that was crystallized at 700{degrees}C.

  15. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films.

    Science.gov (United States)

    Wang, Ranran; Sun, Jing; Gao, Lian; Xu, Chaohe; Zhang, Jing; Liu, Yangqiao

    2011-03-01

    SWCNT-reduced graphite oxide hybrid films were prepared by a filtration method. An efficient post-treatment procedure was designed to reduce GO and remove dispersants simultaneously. The sheet resistance decreased significantly after treatment, by a factor of 4-13 times. Films with excellent performance (95.6%, 655 Ω per square) were obtained and had great potential applications. PMID:21132173

  16. Wettability of oxide thin films prepared by pulsed laser deposition: New insights

    Science.gov (United States)

    Prakash, Saurav

    The objective of the thesis is to investigate the wettability of good quality oxide thin films prepared by pulsed laser deposition (PLD). In this work, many shortfalls in the water contact angle measurement of thin films of oxides, responsible for the wide scatter in the values reported in literature, have been addressed. (Abstract shortened by UMI.).

  17. Preparation and properties of thin films used in activity determinations with a 4 π counter

    International Nuclear Information System (INIS)

    Comparative study of various methods of preparing thin films, for use as source holders in the 4 π counter, and of measuring their thickness. Comparative study of various properties: mechanical resistance; heat resistance; ageing; resistance of rhodopas, polystyrene, formvar and cellulose acetate films to the action of various chemical agents. (author)

  18. Preparation and Haemocompatibility of Regular Array Microporous PLGA Films on Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Regular array microporous films from poly ( L-lactic-co-glycolic acid) ( PLGA ) were prepared on stainless steel substrates utilizing the condensation of water droplets on polymer solutions. The size of the pores and regularity can be controlled by atmospheric humidity and concentration of polymer solution. The microporons films have strong hydrophobicity and good haemocompatibility.

  19. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization.

    Science.gov (United States)

    Qi, Guijin; Huang, Liyan; Wang, Huiliang

    2012-08-25

    Highly conductive free standing polypyrrole (PPy) films were prepared by a novel freezing interfacial polymerization method. The films exhibit metallic luster and electrical conductivity up to 2000 S cm(-1). By characterizing with SEM, FTIR, Raman and XRD, the high conductivity is attributed to the smooth surface, higher conjugation length and more ordered molecular structure of PPy.

  20. Preparation of Photoelectric Material--Pyrite(FeS2) Thin Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The preparation methods of simultaneous electro-deposition for pyrite (FeS2) thin film are introduced from aqueous solution of FeSO4 and Na2S2O3. Electrical process is studied in detail in the paper. From the experiment result, the best way of drying the sample is to dry it in vacuum. Electro-deposition method for the preparation of pyrite thin film is a safe, simple and low-cost method.

  1. Rapid Growth of Nanostructured Diamond Film on Silicon and Ti–6Al–4V Alloy Substrates

    Directory of Open Access Journals (Sweden)

    Gopi K. Samudrala

    2014-01-01

    Full Text Available Nanostructured diamond (NSD films were grown on silicon and Ti–6Al–4V alloy substrates by microwave plasma chemical vapor deposition (MPCVD. NSD Growth rates of 5 µm/h on silicon, and 4 µm/h on Ti–6Al–4V were achieved. In a chemistry of H2/CH4/N2, varying ratios of CH4/H2 and N2/CH4 were employed in this research and their effect on the resulting diamond films were studied by X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. As a result of modifying the stock cooling stage of CVD system, we were able to utilize plasma with high power densities in our NSD growth experiments, enabling us to achieve high growth rates. Substrate temperature and N2/CH4 ratio have been found to be key factors in determining the diamond film quality. NSD films grown as part of this study were shown to contain 85% to 90% sp3 bonded carbon.

  2. Study on the Rare Earth Sealing Procedure of the Porous Film of Anodized 2024 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The rare earth sealing procedure of the porous film of anodized aluminum alloy 2024 was studied with the fieldemission scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). The results show thatRE solution can form cerium oxide/hydroxides precipitation in the pores of the anodized coating at the beginning ofsealing. At the same time, the spherical deposits formed on the surface of the anodized coating created a barrierto the precipitation of RE solution in the pores. When the pore-structured anodizing film is covered all with thespherical deposits, RE conversion coating will form on the surface of the anodized coating. The reaction of thecoating formation was investigated by employing cyclic voltammetry. The results indicate that accelerator H2O2 actsas the source of O2 by carrying chemical reaction in course of coating formation. In the mean time, it maybe carrieselectrochemical reaction to generate alkaline condition to accelerate the coating formation. The porous structure ofthe film is beneficial to the precipitation of the cerium hydroxides film.

  3. Preparation and characterization of bionanocomposite films reinforced with nano kaolin.

    Science.gov (United States)

    Jafarzadeh, Shima; Alias, Abd Karim; Ariffin, Fazilah; Mahmud, Shahrom; Najafi, Ali

    2016-02-01

    Effects of nano-kaolin incorporation into semolina films on the physical, mechanical, thermal, barrier and antimicrobial properties of the resulting bio-nanocomposite films were investigated. The properties included crystal structure (by X-ray diffraction), mechanical resistance, color, Fourier transform infrared spectra, decomposition temperature, water-vapor permeability (WVP), oxygen permeability (OP), and antimicrobial activity against Staphylococcus aureus and Escherichia coli. Kaolin was incorporated into biofilms at various amounts (1, 2, 3, 4, and 5 %, w/w total solid). All films were plasticized with 50 % (w/w total solid) combination of sorbitol/glycerol at 3:1 ratio. The incorporation of nanokaolin into semolina films decreased OP and WVP. The moisture content and water solubility of the films were found to decrease by nanokaolin reinforcement, and mechanical properties of films were improved by increasing nanokaolin concentration. Tensile strength and Young's modulus increased from 3.41 to 5.44 MPa and from 63.12 to 136.18, respectively, and elongation-at-break decreased. The films did not exhibit UV absorption. In conclusion, nanokaolin incorporation enhanced the barrier and mechanical properties of semolina films, indicating the potential application of these bio-nanocomposites in food-product packaging. PMID:27162391

  4. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

    Indian Academy of Sciences (India)

    K S Shamala; L C S Murthy; K Narasimha Rao

    2004-06-01

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2.65 × 10-2 -cm to 3.57 × 10-3 -cm in the temperature range 150–200°C. For undoped spray pyrolyzed films, the resistivity was observed to be in the range 1.2 × 10-1 to 1.69 × 10-2 -cm in the temperature range 250–370°C. Hall effect measurements indicated that the mobility as well as carrier concentration of evaporated films were greater than that of spray deposited films. The lowest resistivity for antimony doped tin oxide film was found to be 7.74 × 10-4 -cm, which was deposited at 350°C with 0.26 g of SbCl3 and 4 g of SnCl4 (SbCl3/SnCl4 = 0.065). Evaporated films were found to be amorphous in the temperature range up to 200°C, whereas spray pyrolyzed films prepared at substrate temperature of 300–370°C were polycrystalline. The morphology of tin oxide films was studied using SEM.

  5. Effect of additional element and heat treating temperature on micro-structure and mechanical behavior of Ag alloy thin film

    Institute of Scientific and Technical Information of China (English)

    JU Dong-ying; ISHIGURO S; ARIZONO T; HASEGAWA K

    2006-01-01

    For Ag alloy film used for the storage media,it is required to have heat-resistance,anti-constant temperature and anti-constant humidity characteristics,corrosion resistance,while high reflectivity over Al is maintained. An Ag alloy thin film (additive element Pd,Cu,P) was created on glass substrates,and various heat treatment was conducted. Then,fine structure was observed on this thin film using AFM,and fine structure evaluation of the inside was carried out by the in-plane diffractometry and X-ray diffractometry,and in addition,residual stress analysis was carried out. These results were compared and were examined,and fine structure and physical property in a metallic thin film were evaluated,and usefulness of evaluation method was verified.

  6. A study on the electrodeposition of NiFe alloy thin films using chronocoulometry and electrochemical quartz crystal microgravimetry

    CERN Document Server

    Myung, N S

    2001-01-01

    Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

  7. Semiconducting ZnSn_xGe_(1−x)N_2 alloys prepared by reactive radio-frequency sputtering

    OpenAIRE

    Shing, Amanda M.; Coronel, Naomi C.; Lewis, Nathan S.; Atwater, Harry A.

    2015-01-01

    We report on the fabrication and structural and optoelectronic characterization of II-IV-nitride ZnSn_x Ge(1−x)N_2 thin-films. Three-target reactive radio-frequency sputtering was used to synthesize non-degenerately doped semiconducting alloys having

  8. Semiconducting ZnSnxGe1−xN2 alloys prepared by reactive radio-frequency sputtering

    OpenAIRE

    Shing, Amanda M.; Coronel, Naomi C.; Lewis, Nathan S.; Atwater, Harry A.

    2015-01-01

    We report on the fabrication and structural and optoelectronic characterization of II-IV-nitride ZnSnxGe1−xN2 thin-films. Three-target reactive radio-frequency sputtering was used to synthesize non-degenerately doped semiconducting alloys having

  9. Optical properties of rubrene thin film prepared by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    陈亮; 邓金祥; 孔乐; 崔敏; 陈仁刚; 张紫佳

    2015-01-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo-ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm–1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.

  10. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films

    International Nuclear Information System (INIS)

    Nanocrystalline nickel–tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni–12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni–12.7 at.%W was in the range of 1.49–5.14 MPa √m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: ► Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. ► Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. ► Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. ► Fracture toughness values lower than that of nanocrystalline nickel.

  11. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  12. Nanocrystalline diamond thin films on titanium-6 aluminum-4 vanadium alloy temporomandibular joint prosthesis simulants by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Fries, Marc Douglas

    A course of research has been performed to assess the suitability of nanocrystal-line diamond (NCD) films on Ti-6Al-4V alloy as wear-resistant coatings in biomedical implant use. A series of temporomandibular (TMJ) joint condyle simulants were polished and acid-passivated as per ASTM F86 standard for surface preparation of implants. A 3-mum-thick coating of NCD film was deposited by microwave plasma chemical vapor deposition (MPCVD) over the hemispherical articulation surfaces of the simulants. Plasma chemistry conditions were measured and monitored by optical emission spectroscopy (OES), using hydrogen as a relative standard. The films consist of diamond grains around 20 nm in diameter embedded in an amorphous carbon matrix, free of any detectable film stress gradient. Hardness averages 65 GPa and modulus measures 600 GPa at a depth of 250 nm into the film surface. A diffuse film/substrate boundary produces a minimal film adhesion toughness (GammaC) of 158 J/m2. The mean RMS roughness is 14.6 +/- 4.2 nm, with an average peak roughness of 82.6 +/- 65.9 nm. Examination of the surface morphology reveals a porous, dendritic surface. Wear testing resulted in two failed condylar coatings out of three tests. No macroscopic delamination was found on any sample, but micron-scale film pieces broke away, exposing the substrate. Electrochemical corrosion testing shows a seven-fold reduction in corrosion rate with the application of an NCD coating as opposed to polished, passivated Ti-6Al-4V, producing a corrosion rate comparable to wrought Co-Cr-Mo. In vivo biocompatibility testing indicates that implanted NCD films did not elicit an immune response in the rabbit model, and osteointegration was apparent for both compact and trabecular bone on both NCD film and bare Ti-6Al-4V. Overall, NCD thin film material is reasonably smooth, biocompatible, and very well adhered. Wear testing indicates that this material is unacceptable for use in demanding TMJ applications without

  13. Differences of transformation behavior between Ni-rich TiNi shape memory films and alloys

    Institute of Scientific and Technical Information of China (English)

    贺志荣; 周敬恩

    2002-01-01

    The differences of transformation behavior between Ni-rich TiNi shape memory film (SMF) and shape memory alloy (SMA) age-treated at 773K after solution-treatment at 973K have been investigated, using Ti-51.5Ni thin film and Ti-51.5Ni bulk alloy as examples, by differential scanning calorimetry (DSC), SEM and EDX. It is found that the age-treated Ni-rich TiNi SMF and SMA are of the same types of transformation, i.e., A→R→M (during cooling), and M→A (during heating) (A: parent phase; R: R-phase; M: martensite); the transformation temperature of the TiNi SMF is lower than that of the SMA, but the SMFs hysteresis is larger. The transformation heat of the TiNi SMF and SMA is nearly the same. The reason that TiNi SMFs strain is sensitive to temperature is not hysteresis, but its thickness is thinner, and the temperature is easy to distribute homogeneously.

  14. Low-temperature, vapor-liquid-solid, laterally grown silicon films using alloyed catalysts

    Science.gov (United States)

    LeBoeuf, Jerome L.; Brodusch, Nicolas; Gauvin, Raynald; Quitoriano, Nathaniel J.

    2014-12-01

    Using amorphous oxide templates known as micro-crucibles which confine a vapor-liquid-solid catalyst to a specific geometry, two-dimensional silicon thin-films of a single orientation have been grown laterally over an amorphous substrate and defects within crystals have been necked out. The vapor-liquid-solid catalysts consisted nominally of 99% gold with 1% titanium, chromium, or aluminum, and each alloy affected the processing of micro-crucibles and growth within them significantly. It was found that chromium additions inhibited the catalytic effect of the gold catalysts, titanium changed the morphology of the catalyst during processing and aluminum stabilized a potential third phase in the gold-silicon system upon cooling. Two mechanisms for growing undesired nanowires were identified both of which hindered the VLS film growth, fast silane cracking rates and poor gold etching, which left gold nanoparticles near the gold-vapor interface. To reduce the silane cracking rates, growth was done at a lower temperature while an engineered heat and deposition profile helped to reduce NWs caused by the second mechanism. Through experimenting with catalyst compositions, the fundamental mechanisms which produce concentration gradients across the gold-silicon alloy within a given micro-crucible have been proposed. Using the postulated mechanisms, micro-crucibles were designed which promote high-quality, single crystal growth of semiconductors.

  15. Characterization of oxide films formed on magnesium alloys using bipolar pulse microarc oxidation in phosphate solutions

    Institute of Scientific and Technical Information of China (English)

    WANG Li-shi; CAI Qi-zhou; WEI Bo-kang; LIU Quan-xin

    2005-01-01

    The surface morphology and chemical composition of the oxide films formed on pure magnesium and AZ91D alloy in aqueous electrolytes which contained sodium hexafluorinealuminate(Na3 AlF6), potassium hydroxide (KOH), sodium hexametahposphate ((NaPO3)6), and triethanolamine were investigated by X-ray diffraction (XRD), scanning electron microscope(SEM) and energy dispersive spectroscopy(EDX). The results show that the input of the negative pulse has great influences on the quantity and the appearance of the microdischarges. Three types of pores can be distinguished on the surface of the oxide film and their size ranges are 0.5 - 1 μm, 1 -2μm and 4- 7 μm, respectively. A few microcracks are seen around the large pores. There exists a remarkable fluorideenriched zone of about 4 -6 μm for pure magnesium and 3 -5 μm for AZ91D alloy at the coating/substrate interface.

  16. Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhaohua; ZENG Xiaobin; YAO Zhongping

    2006-01-01

    In the NaAlO2-Na2SiO3 compound system, the ceramic coatings were prepared on magnesium alloy by micro-arc oxidation. The morphology, phase composition, and thermal shock resistance of the ceramic coatings were studied by scanning electron microscope, X-ray diffraction and thermal shock tests, respectively. The results showed that the ceramic coating contains MgO, MgAl2O4, as well as a little amount of Mg2SiO4. The thickness of the ceramic coatings induced ceramic coating is the best. The hardness of the ceramic coating is up to 10 GPa or so.

  17. Preparation, microstructure and properties of Al-Zn-Mg-Sc alloy tubes

    Institute of Scientific and Technical Information of China (English)

    何振波; 尹志民; 林森; 邓英; 商宝川; 周向

    2010-01-01

    The Al-6.0Zn-2.0Mg-0.2Sc-0.10Zr hollow tube ingots, prepared by semi-continuous casting technology, were subjected to ho- mogenization treatment, hot extrusion, intermediate annealing, tension, solution and aging treatment. The microstructures and properties of as-cast Al-Zn-Mg-Sc alloy at different homogenization treatment conditions were studied using hardness measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The results showed th...

  18. Preparation and optical properties of GA(x)IN(1-x)P alloys

    Science.gov (United States)

    Rodot, H.; Horak, J.; Rouy, G.; Bourneix, J.

    1986-01-01

    The solution crystallization method was used to obtain Ga(z)In(1-x)P alloys for all values of x desired between zero and 1. The method of preparation makes it possible to crystallize the solid at a constant temperature. The points obtained by cathodoluminescence are nearly in straight lines. The optical absorption thresholds are confirmed in the results and make it possible to define the nature of the transitions except when x is in the neighborhood of 0.65. These determinations agree with those of Hilsum and Porteus (1968), but are not in agreement with those obtained by Lorenz et al, (1968).

  19. Furnace bottom rise mechanism in preparation of Al-Si alloys by electrothermal process

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experiments of preparation of Al-Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied.It was found that the bottom rise can be divided into three types, including the low bottom temperature, abnormal reducing reaction and carbide deposition. The furnace bottom rise is related to the carbon ratio of the briquet, the heating speed of the briquet and the parameters and operation of furnace.

  20. Preparation and Characterization of Self-Assembled Manganese Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2011-01-01

    Full Text Available Thin films of manganese dioxide (MnO2 were prepared by self-assembly of MnO2 nanoparticles directly unto nickel-coated poly(ethylene terephthalate flexible films using the newly developed horizontal submersion process. The thickness of deposited thin films was controllable by the deposition duration. This horizontal submersion deposition process for thin-film deposition is relatively easy, simple, and cost effective. Effects of deposition duration and calcination temperatures on the microstructure and electrochemical properties of self-assembled MnO2 thin films were investigated. Optimized MnO2 thin films exhibited high charge capacity, good cycling reversibility, and stability in a mild aqueous electrolyte and are thus promising electrode materials for the fabrication of thin-film electrochemical capacitors.

  1. Facile approach to prepare drug-loading film from hemicelluloses and chitosan.

    Science.gov (United States)

    Guan, Ying; Qi, Xian-Ming; Chen, Ge-Gu; Peng, Feng; Sun, Run-Cang

    2016-11-20

    This study introduces a facile and green route to fabricate film from bio-based polymers. The film has been prepared by the cross-linking reaction of quaternized hemicelluloses (QH) and chitosan (CHO) with epichlorohydrin (ECH) as crosslinker. It exhibits an excellently mechanical performance as a result of its high tensile strength (up to 37MPa). Importantly, the roughness of film was 2-5nm in the area of 400nm, and smooth surface with pores were presented on the film based on the results of scanning electron microscope (SEM) and atomic force microscope (AFM). Ciprofloxacin was utilized as a mode compound to investigate the loading behavior of the film, and the highest loading concentration was about 18%. The drug release was about 20% in film1 in comparison to only 15% in film3 within 48h. Furthermore, the results of a 293T cell viability assay indicated its good biocompatibility and non-toxicity. PMID:27561527

  2. Preparation of Biodegradable Silk Fibroin/Alginate Blend Films for Controlled Release of Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2013-01-01

    Full Text Available Silk fibroin (SF/alginate blend films have been prepared for controlled release of tetracycline hydrochloride, an antimicrobial model drug. The blend films were analysed by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and UV-vis spectroscopy. The functional groups of the SF/alginate blends were monitored from their FTIR spectra. The homogeneity of the blend films was observed from SEM images. The dissolution and film transparency of the blend films depended on the SF/alginate blend ratio. The in vitro drug release profile of the blend films was determined by plotting the cumulative drug release versus time. It was found that the drug release significantly decreased as the SF/alginate blend ratio increased. The results demonstrated that the SF/alginate blend films should be a useful controlled-release delivery system for water-soluble drugs.

  3. Properties of TiO2 Thin Films Prepared by Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition processes and deposition rate on the structures and properties of TiO2 thin films. Anatase, rutile or amorphous TiO2 films with various crystalline structures and different photocatalytic, optical and electrical properties can be produced by varying sputtering gases, substrate temperature, annealing process, deposition rate and the characteristics of magnetron sputtering. This may in turn affect the functions of TiO2 films in many applications. Furthermore, TiO2-based composites films can overcome many limitations and improve the properties of TiO2 films.

  4. Facile approach to prepare drug-loading film from hemicelluloses and chitosan.

    Science.gov (United States)

    Guan, Ying; Qi, Xian-Ming; Chen, Ge-Gu; Peng, Feng; Sun, Run-Cang

    2016-11-20

    This study introduces a facile and green route to fabricate film from bio-based polymers. The film has been prepared by the cross-linking reaction of quaternized hemicelluloses (QH) and chitosan (CHO) with epichlorohydrin (ECH) as crosslinker. It exhibits an excellently mechanical performance as a result of its high tensile strength (up to 37MPa). Importantly, the roughness of film was 2-5nm in the area of 400nm, and smooth surface with pores were presented on the film based on the results of scanning electron microscope (SEM) and atomic force microscope (AFM). Ciprofloxacin was utilized as a mode compound to investigate the loading behavior of the film, and the highest loading concentration was about 18%. The drug release was about 20% in film1 in comparison to only 15% in film3 within 48h. Furthermore, the results of a 293T cell viability assay indicated its good biocompatibility and non-toxicity.

  5. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires.

    Science.gov (United States)

    Shahzadi, Kiran; Wu, Lin; Ge, Xuesong; Zhao, Fuhua; Li, Hui; Pang, Shuping; Jiang, Yijun; Guan, Jing; Mu, Xindong

    2016-02-10

    A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application.

  6. Preparation of PANI/PSF conductive composite films and their characteristic

    Institute of Scientific and Technical Information of China (English)

    Yang Yuying; Shang Xiuli; Kong Chao; Zhao Hongxiao; Hu Zhong'ai

    2006-01-01

    Polyaniline (PANI)/polysulfone (PSF) composite films are successfully prepared by phase separation and one-step in-situ polymerization.It is found that the head-on face (in contact with solution) of the films is green while the back face is white.The chemical component and the surface morphology of both surfaces of the films are characterized by FT-IR spectra and SEM,respectively.The effect of the polymerization temperature,time and concentration of the reactants on the electrical properties of the films are discussed in details.The thermo-oxidative degradation of the films is studied by thermogravimetric analysis (TGA).The results indicate that the thermal stability of the PANI/PSF films is higher than that of the pure PSF film.

  7. Corrosion and ion release behavior of Cu/Ti film prepared via physical vapor deposition in vitro as potential biomaterials for cardiovascular devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hengquan [Center of Research and Development, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057 (China); Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Zhang Deyuan, E-mail: zhangdeyuan@lifetechmed.com [Center of Research and Development, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057 (China); Shen Feng [Center of Research and Development, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057 (China); Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Zhang Gui [Center of Research and Development, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057 (China); Song Shenhua [Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China)

    2012-07-15

    Cu/Ti films of various Cu/Ti ratios were prepared on a TiNi alloy via vacuum arc plasma deposition. The phase composition, structure, and concentration of elements were investigated via X-ray diffraction and X-photoelectron energy spectrum. The hemolysis ratio and platelet adhesion of the different films were characterized to evaluate blood compatibility. The corrosion and ion release behavior were investigated via a typical immersion test and electrochemical method. The growth of endothelial cells (ECs) was investigated, and methylthiazolyte-trazolium method was employed to evaluate the effect of Cu{sup 2+}. The sophisticated films showed good compatibility. However, with increasing quality ratio of Cu/Ti, the hemolysis ratio increased, and some platelets started to break slightly. The Cu{sup 2+} release was gradually stabilized. The open circuit potential of the Cu/Ti film-modified samples was lower than that of the TiNi substrate. The polarization test result indicates that the passivation stability performance of Cu/Ti film samples is less than the TiNi substrate, and is favorable to Cu{sup 2+} release. The adhesion and proliferation of ECs would be inhibited with 10 wt.% Cu concentration of the film, and ECs would undergo apoptosis at >50 wt.% concentration. A Cu/Ti film with good compatibility and anti-endothelialization has potential applications for special cardiovascular devices.

  8. The effect of mechanical alloying on microstructure and mechanical properties of MoSi2 prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Highlights: • Powders of Mo and Si according to MoSi2 stoichiometry were mechanically alloyed. • The as milled powder mixture was sintered using spark plasma sintering. • We investigated the microstructure and mechanical properties of samples. - Abstract: In this research the effect of mechanical alloying on the in situ synthesis–sintering behavior and mechanical properties of MoSi2 has been investigated. The Mo and Si powders according to MoSi2 stoichiometric composition were mechanically alloyed at different times. Then, the powders were subjected to spark plasma sintering process for preparing monolithic MoSi2. X-ray diffraction pattern of the sintered samples showed that by increasing the mechanical alloying time, Mo5Si3 has been formed. It seems that the formation of Mo5Si3 is due to the effect of mechanical alloying on microstructure and thermodynamic condition of the reaction

  9. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  10. New approach to fabricate nanoporous gold film

    Institute of Scientific and Technical Information of China (English)

    Hui Zhou; Lan Jin; Wei Xu

    2007-01-01

    A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SERS). It was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.

  11. Preparation of transparent TiO2 nanocrystalline film for UV sensor

    Institute of Scientific and Technical Information of China (English)

    FU Yao; GAO Wanghe

    2006-01-01

    The nanocrystalline TiO2 film electrodes were prepared by sol-gel method at different calcining temperatures, which had characteristics of different film thickness, uniform transparency, as well as high photoelectric and mechanical stability. Photoelectric measurements show that calcining temperature and film thickness could remarkably influence the photoelectric properties of the electrodes. The film calcined at 450℃ is anatase phase with high crystallinity and strong photoelectric activity, and shows the largest photocurrent. When the temperature is lower than 450℃, the film has weaker crystallinity because of a large number of defects in the film,and this is not favorable for the transport of the photogenerated carriers. And at a temperature higher than 450℃, the photocurrent of the electrode is decreased due to anatase-rutile phase transition in the film. The increase in film thickness is favorable to the enhancement of ultraviolet light (UV) absorption amount, which would improve the photoelectric activity of the film. But, excessive thickness will increase the recombination rate of the electron-hole pairs, and result in a reduction in electrode's photoelectric activity. In addition, the response sensitivity and stability of the photocurrent produced in the electrode are related to bias potential. At a potential of 0.4 V, the electrode shows a saturated photocurrent of 30.8 μA and a response time of ~1 s, suggesting that the prepared TiO2 film electrode can be used for making UV sensors.

  12. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  13. Half-metallic Ni{sub 2}MnSn Heusler alloy prepared by rapid quenching

    Energy Technology Data Exchange (ETDEWEB)

    Nazmunnahar, M. [Departamento de Física de Materiales, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián (Spain); Ryba, T. [Faculty of Science, UPJS, Park Angelinum 9, 04154 Košice (Slovakia); Val, J.J. del; Ipatov, M.; González, J. [Departamento de Física de Materiales, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián (Spain); Hašková, V.; Szabó, P.; Samuely, P. [Centre of Low Temperature Physics, Institute of Experimental Physics, Slovak Academy of Sciences & P.J.Šafárik University, Watsonova 47, SK-04001 Košice (Slovakia); Kravcak, J. [Department of Physics, FEEI, Technical University of Kosice, Kosice (Slovakia); Vargova, Z. [Faculty of Science, UPJS, Park Angelinum 9, 04154 Košice (Slovakia); Varga, R., E-mail: rvarga@upjs.sk [Faculty of Science, UPJS, Park Angelinum 9, 04154 Košice (Slovakia)

    2015-07-15

    We have employed melt-spinning method to produce Ni{sub 2}MnSn-based half-metallic Heusler alloy. It allows fast and simple production of large amount of materials in a single production step avoiding high temperature post-production annealing. Microstructural, magnetic and spin polarization study of Ni{sub 2}MnSn ribbon is used for characterization. SEM analysis reveals the polycrystalline structure with the columnar crystals grown perpendicularly to the ribbon plane. A single-phase austenite with L2{sub 1} structure was confirmed by X-ray. Magnetic measurements shows the ordinary ferromagnetic behavior with Curie temperature 344 K and magnetic moment 4.08 µ{sub B}/f.u. Particular crystal structure leads to the well defined anisotropy having an easy plane in the ribbon's plane. Finally, the spin polarization parameter P{sub 0} estimated by Point-Contact Andreev-reflection Spectroscopy is varying in the range 40–70% for Ni{sub 2}MnSn which is comparable with other values reported earlier for other Heusler alloys. - Highlights: • Rapid quenching method was employed to produce half-metallic Ni{sub 2}MnSn Heusler alloy. • Single crystalline L2{sub 1} phase with well-defined anisotropy direction was obtained. • Ni{sub 2}MnSn prepared by rapid quenching method exhibit high spin polarization up to 70%.

  14. The formation and crystallization for amorphous AlFeZr{sub 4} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hongmei, E-mail: chenhm@gxu.edu.c [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Ouyang Yifang [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Guo Debo [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Liao Shuzhi [Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081 (China); Zhong Xiaping [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Du Yong; Liu Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2010-04-15

    Amorphous AlFeZr{sub 4} alloy has been prepared from elemental mixture powders by mechanical alloying. The microstructure, thermal stability and morphology of as-milled mixture powders were analyzed by XRD and DTA respectively. Two sequential exothermal peaks exist during the procedure of crystallization. The effective activation energies for crystallization were evaluated according to Kissinger's plot. The crystallization products of as-milled powders annealed at temperature over the crystallization temperature were studied, and the structural characteristic analysis of annealed sample was performed in an X-ray diffractometer. The crystallized phases are composed of FeZr{sub 2}, AlZr{sub 2} and AlFeZr intermetallic compounds. The formation enthalpies for FeZr{sub 2}, AlZr{sub 2} and AlFeZr are calculated from first-principles and Miedema's theory. Based on the calculated formation enthalpies, the products of crystallization for amorphous AlFeZr{sub 4} alloy are explained from thermodynamic point of view.

  15. Raman spectroscopy of chalcogenide thin films prepared by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Erazu, M.; Rocca, J. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Fontana, M., E-mail: merazu@fi.uba.a [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Urena, A.; Arcondo, B. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Pradel, A. [ICG, UMR 5253 CNRS UM 2 ENSCM UM1 equipe PMDP CC3, Universite Montpellier 2, 34095 Montpellier Cedex 5 (France)

    2010-04-16

    Chalcogenide glasses have many technological applications as a result of their particular optical and electrical properties. Ge-Se and Ag-Ge-Se systems were recently studied and tested as new materials for building non-volatile memories. Following these ideas, thin films of Ge-Se and Ag-Ge-Se were deposited using pulsed laser deposition (PLD). Ag was sputtered over binary films (for a composition between 0.05 and 0.25 Ag atomic fraction) and photo-diffused afterwards. Thus, three kinds of samples were analyzed by means of Raman spectroscopy, in order to provide information on the short- and medium-range order: PLD binary films before Ag doping, after Ag doping and PLD ternary films. Before Ag doping, binary films exhibited Ge-Se corner-sharing tetrahedra modes at 190 cm{sup -1}, low scattering from edge-sharing tetrahedra at 210 cm{sup -1}, and Se chains at 260 cm{sup -1} (stretching mode). However, after the diffusion process was complete, we observed an intensity reduction of bands centered at 210 cm{sup -1} and 260 cm{sup -1}. The spectra of the photo-diffused films were similar to those of films deposited using a ternary target. Relaxation effects in binary glasses were also analyzed. Results were compared with those of other authors.

  16. Preparation of iron cobaltite thin films by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Le Trong, H. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); Ho Chi Minh City University of Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Q 5, 750000 Ho Chi Minh City (Viet Nam); Bui, T.M.A. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Presmanes, L., E-mail: presmane@chimie.ups-tlse.fr [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); Barnabé, A.; Pasquet, I.; Bonningue, C.; Tailhades, Ph. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France)

    2015-08-31

    Iron cobaltite thin films with spinel structure have been elaborated by radio-frequency (RF) magnetron sputtering from a Co{sub 1.75}Fe{sub 1.25}O{sub 4} target. Influence of argon pressure on structure, microstructure and physical properties of films has been examined. Iron–cobalt oxide thin films essentially consist of one spinel phase when deposited at low pressure (0.5 and 1.0 Pa). At high pressure (2.0 Pa), the global stoichiometry of the film is changed which results in the precipitation of a mixed monoxide of cobalt and iron beside the spinel phase. This in-situ reduction due to an oxygen loss occurring mainly at high deposition pressure has been revealed by X-ray diffraction and Raman spectroscopy. Microstructural evolution of thin film with argon pressure has been shown by microscopic observations (AFM and SEM). The evolution of magnetic and electrical properties, versus argon pressure, has been also studied by SQUID and 4 point probe measurements. - Highlights: • Co{sub 1.75}Fe{sub 1.25}O{sub 4} phase is obtained at room temperature without any annealing. • This phase is a ferrimagnetic semiconductor with a coercive field of 32 kOe at 5 K. • Oxygen content of the thin film is related to the argon pressure during sputtering. • Monoxide phase grows into the film at high argon pressure. • Magnetic coupling effect reveals nanoscale impurities at low argon pressure.

  17. Preparation of highly textured surface ZnO thin films

    International Nuclear Information System (INIS)

    In order to investigate the influence of the deposition technique upon the surface morphology of ZnO thin films we have employed two methods, which are the spray pyrolysis and magnetron sputtering. The surface morphology of ZnO thin films is a crucial parameter for controlling the reflection losses reduction when the coating is used as a transparent front layer in solar cells. The morphology of the surface was characterized by optical microscopy and profilometry. The results indicate that spray technique enables the elaboration of films with a highly rough surface, however sputtering technique yields to smoother films. This difference originates from the different deposition processes involved in both techniques. A vertical r.m.s. (root mean square) roughness in the order of 200 nm was measured in sprayed film; however only 40 nm r.m.s. vertical roughness is reported in sputtered one. The surface morphology in sprayed films causes the incident light diffraction; consequently the reflection is reduced up to zero. Therefore we show that ZnO thin films deposited with spray method is a potential candidate for use as a front transparent layer in solar cells

  18. Preparation and characterization of sponge film made from feathers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yuan; Wu, Xiaoqian [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Cao, Zhangjun [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhao, Xiaoxiang; Zhou, Meihua [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Gao, Pin, E-mail: gaopin@mail.dhu.edu.cn [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2013-12-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM{sub 10} was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology.

  19. Preparation of films of a highly aligned lipid cubic phase

    OpenAIRE

    Squires, Adam; Hallett, J.E.; Beddoes, C. M.; Plivelic, T. S.; Seddon, A. M.

    2013-01-01

    We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (QII D) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L3 phase) in the presence of butanediol, we can obtain a film of the QII D phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that foun...

  20. Influence of yttrium on microstructure and properties of Ni–Al alloy coatings prepared by laser cladding

    OpenAIRE

    Cun-shan Wang

    2014-01-01

    Ni–Al alloy coatings with different Y additions are prepared on 45# medium steel by laser cladding. The influence of Y contents on the microstructure and properties of Ni–Al alloy coatings is investigated using X-ray diffraction, scanning electron microscopy, electron probe microanalyzer, Vickers hardness tester, friction wear testing machine, and thermal analyzer. The results show that the cladding layers are mainly composed of NiAl dendrites, and the dendrites are gradually refined with the...

  1. Studies of preparing method of nano grain metal-insulator film Cu:CaF2

    International Nuclear Information System (INIS)

    A machine to prepare nano grain metal-insulator films, for example Cu:CaF2 film, by means of magnetron sputtering generating clusters and at the same time evaporating insulator medium, is introduced. This machine is suitable for almost all solid metal and semiconductor clusters. And with it, many kinds of function film series can be prepared. The size of cluster embedded in insulator is from 10 to 70 nm. The Cu cluster and medium CaF2 are both polycrystalline structure

  2. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.

  3. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    LI JianMei; XUE MinZhao; ZHANG YongMing; LIU YanGang

    2007-01-01

    Preparation and characterization of perfluoroaulfonic resin/titaniaorganic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanata and perfluorosulfonic resin with the help of acetylacetone. The charactarization was carried out by SEM, XRD, FT-IR, UV-Vis and TGA. The results showed that the perfiuorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter decreased with increasing weight ratio of titania to perfluorosulfonic resin.

  4. Thickness distribution of thin amorphous chalcogenide films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pavlista, Martin; Hrdlicka, Martin; Prikryl, Jan [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); Nemec, Petr; Frumar, Miloslav [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); University of Pardubice, Department of General and Inorganic Chemistry, Faculty of Chemical Technology, Pardubice (Czech Republic)

    2008-11-15

    Amorphous chalcogenide thin films were prepared from As{sub 2}Se{sub 3}, As{sub 3}Se{sub 2} and InSe bulk glasses by pulsed laser deposition using a KrF excimer laser. Thickness profiles of the films were determined using variable angle spectroscopic ellipsometry. The influence of the laser beam scanning process during the deposition on the thickness distribution of the prepared thin films was evaluated and the corresponding equations suggested. The results were compared with experimental data. (orig.)

  5. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  6. Comparison of physicomechanical properties of films prepared from organic solutions and aqueous dispersion of Eudragit RL

    Directory of Open Access Journals (Sweden)

    H Afrasiabi Garekani

    2011-05-01

    Full Text Available Background and the purpose of the study: Mechanical properties of films prepared from aqueous dispersion and organic solutions of Eudragit RL were assessed and the effects of plasticizer type, concentration and curing were examined. Methods: Films were prepared from aqueous dispersion and solutions of Eudragit RL (isopropyl alcohol-water 9:1 containing 0, 10 or 20% (based on polymer weight of PEG 400 or Triethyl Citrate (TEC as plasticizer using casting method. Samples of films were stored in oven at 60ºC for 24 hrs (Cured. The stress-strain curve was obtained for each film using material testing machine and tensile strength, elastic modulus, %elongation and work of failure were calculated. Results and major conclusion: The films with no plasticizer showed different mechanical properties depending on the vehicle used. Addition of 10% or 20% of plasticizer decreased the tensile strength and elastic modulus and increased %elongation and work of failure for all films. The effect of PEG400 on mechanical properties of Eudragit RL films was more pronounced. The differences in mechanical properties of the films due to vehicle decreased by addition of plasticizer and increase in its concentration. Curing process weakened the mechanical properties of the films with no plasticizer and for films with 10% plasticizer no considerable difference in mechanical properties was observed before and after curing. For those with 20% plasticizer only films prepared from aqueous dispersion showed remarkable difference in mechanical properties before and after curing. Results of this study suggest that the mechanical properties of the Eudragit RL films were affected by the vehicle, type of plasticizer and its concentration in the coating liquid.

  7. Fabrication and characterization of anodic oxide films on a Ti-10V-2Fe-3Al titanium alloy

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Liu; Jun-lan Yi; Song-mei Li; Mei Yu; Yong-zhen Xu

    2009-01-01

    Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated.The morphology,components,and microstructure of the films were characterized by scanning electron mi-croscopy (SEM),X-ray photoelectron spectroscopy (XPS),X-ray diffraction (XRD),and Raman spectroscopy.The results showed that the films were thick,uniform,and nontransparent.Such films exhibited sedimentary morphology,with a thickness of about 3 μm,and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm.The films were mainly titanium dioxide.Some coke-like deposits,which may contain or be changed by OH,NH,C-C,C-O,and C=O groups,were doped in the firms.The films were mainly amorphous with a small amount of anatase and rutile phase.

  8. Preparation of TiFe based alloys melted by CaO crucible and its hydrogen storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong-he, E-mail: chli@staff.shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); He, Jin; Zhang, Zhao; Yang, Bo; Leng, Hai-yan [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang, E-mail: luxg@staff.shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Li, Zhi-lin; Wu, Zhu [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Hong-bin [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2015-01-05

    Highlights: • The home-made CaO crucible was used to prepare the TiFe based alloys. • The compositions as well as the content of oxygen can be effectively controlled. • The microstructure of the alloy melted by CaO crucible is dendrite. • The samples performed a good hydrogen storage performance. • The CaO crucible may be the promising candidate for melting the TiFe based alloys. - Abstract: The carbon contamination of alloys prepared by the electro graphite crucible is impossible to avoid due to the inherit reaction between the melt and the crucible. In this study, the TiFe-based alloy is prepared by VIM process using CaO crucible as well as the electro graphite crucible. The samples are examined by means of Optical Microscopy (OM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Energy Dispersive Spectrometer (EDS), and the PCT curves are also measured. It is resulted that, the oxygen content of alloys melted by CaO crucible is almost equal to the one melted by graphite crucible and without the carbon contamination, meanwhile the carbon content of alloys obtained by the electro graphite crucible is 1860 ppm, which exceeds the tolerance of the commercial alloy (1000 ppm). The microstructure of the alloy melted by CaO crucible is dendrite, while it is composed of the equiaxed crystal with the lamellar structure and the spherical TiC particles distributed along grain boundaries or within the grain when melted by the graphite crucible; the interfacial reaction of the electro graphite crucible with TiFe alloy melt is serious and the interaction layer is formed up to 200 μm in thickness, the carbon in TiFe-based alloys forms TiC. The hydrogen desorption plateau pressure of alloys melted by CaO crucible is (0.11–0.4) × 10{sup 5} Pa, and that by the graphite crucible is (0.6–1) × 10{sup 5} Pa. This may imply that the CaO crucible may be the promising candidate for melting the high performance TiFe based hydrogen storage alloys.

  9. Preparation and performance of fluorescent sensing coating for monitoring corrosion of Al alloy 2024

    Institute of Scientific and Technical Information of China (English)

    LI Song-mei; ZHANG Hong-rui; LIU Jian-hua

    2006-01-01

    A kind of fluorescent sensing coating was prepared for monitoring corrosion of aluminum alloys by incorporating phenylfluorone(PF) into acrylic paint as sensing material. The fluorescent dye PF reacts with aluminum ions on corroded aluminum substrate to occur fluorescence quenching observed in UV light. This paint system is sensitive to underlying corrosion processes through reacting with the Al3+ produced by anodic reaction accompanying corrosion. After a certain time,when the samples of Al alloy 2024 coated with PF-acrylic paint were immersed in 1 mol/L NaCl solution,fluorescence quenching spots can be seen with unaided eyes. With the development of corrosion process,the size of fluorescence quenching spots increases. Active corrosion areas on the sample surface were found under the fluorescence quenching spots by optical microscope. The corrosion areas can be observed more clearly by SEM,and many pits are found. This suggests that the fluorescence quenching spots are the sites of produced Al3+ by the anodic reaction of the local attack of the coated Al alloy substrate in the chloride solution and the corrosion process of the coated Al alloy can be monitored on-line by the sensing coating. The sensitivity of this coating system for detection of anodic reaction associated with corrosion was determined by applying constant charge current and measuring the charge,at which fluorescence quenching is detected in the coating with unaided eyes. Visual observation of coated samples can detect fluorescence change resulting from a charge corresponding to an equivalent hemispherical pit with approximate depth of 50 μm.

  10. Surface enrichment of Pt in Ga2O3 films grown on liquid Pt/Ga alloys

    Science.gov (United States)

    Grabau, Mathias; Krick Calderón, Sandra; Rietzler, Florian; Niedermaier, Inga; Taccardi, Nicola; Wasserscheid, Peter; Maier, Florian; Steinrück, Hans-Peter; Papp, Christian

    2016-09-01

    The formation of surface Ga2O3 films on liquid samples of Ga, and Pt-Ga alloys with 0.7 and 1.8 at.% Pt was examined using near-ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS). Thickness, composition and growth of the oxide films were deduced as a function of temperature and Pt content of the alloys, in ultra-high vacuum and at oxygen pressures of 3 × 10- 7, 3 × 10- 3 and 1 mbar. We examined oxide layers up to a thickness of 37 Å. Different growth modes were found for oxidation at low and high pressures. The formed Ga2O3 oxide films showed an increased Pt content, while the pristine GaPt alloy showed a surface depletion of Pt at the examined temperatures. Upon growth of Ga2O3 on Pt/Ga alloys a linear increase of Pt content was observed, due to the incorporation of 3.6 at.% Pt in the Ga2O3. The Pt content in Ga2O3, at the examined temperatures and bulk Pt concentrations is found to be independent of pressure, temperature and the nominal Pt content of the metallic alloy.

  11. Photoelectrochemical study of nickel base alloys oxide films formed at high temperature and high pressure water

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, L. [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Perrin, S., E-mail: steph.perrin@cea.f [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Wouters, Y. [SIMaP, CNRS/INP-Grenoble/UJF F-38402, Saint Martin d' Heres Cedex (France); Martin, F. [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Pijolat, M. [LPMG-UMR CNRS 5148, Centre SPIN, Ecole Nationale Superieure des Mines, 158 Cours Fauriel, F-42023 Saint-Etienne (France)

    2010-07-30

    The oxide film formed on nickel base alloys at high temperature and high pressure water exhibits semi-conducting properties evidenced by photocurrent generation when exposed to monochromatic light. The use of macro- and micro-photoelectrochemical techniques (PEC and MPEC) aims to identify the different semiconductor phases and their distribution in the oxide film. Three different nickel base alloys were corroded in recirculation loop at 325 {sup o}C in pressurised water reactor primary coolant conditions for different exposition durations. PEC experiments on these materials enable to obtain macroscopic energy spectra showing three contributions. The first one, with a band gap around 2.2 eV, was attributed to the presence of nickel hydroxide and/or nickel ferrite. The second one, with a band gap around 3.5 eV, was attributed to Cr{sub 2}O{sub 3}. The last contribution, with a band gap in the range of 4.1-4.5 eV, was attributed to the spinel phase Ni{sub 1-x}Fe{sub x}Cr{sub 2}O{sub 4}. In addition, macroscopic potential spectra recorded at different energies highlight n-type semi-conduction behaviours for both oxides, Cr{sub 2}O{sub 3} and Ni{sub 1-x}Fe{sub x}Cr{sub 2}O{sub 4}. Moreover, MPEC images recorded at different energies exhibit contrasted regions in photocurrent, describing the distribution of nickel hydroxide and/or nickel ferrite and Cr{sub 2}O{sub 3} in the oxide film at a micron scale. It is concluded that PEC techniques represent a sensitive and powerful way to locally analyse the various semiconductor phases in the oxide scale.

  12. Tungsten trioxide thin films prepared by electrostatic spray deposition technique

    International Nuclear Information System (INIS)

    Tungsten trioxide (WO3) thin films deposited on a Pt-coated alumina substrate using the electrostatic spray deposition (ESD) technique is reported in this paper. As precursor solution, tungsten (VI) ethoxide in ethanol was used. The morphology and the microstructure of the films were studied using scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Dense to porous morphologies were obtained by tuning the deposition temperature. Impedance spectroscopy and current-voltage measurements were used to study the electrical behaviour of the films in air, in temperature range 300-500 deg. C. The activation energy was estimated from Arrhenius plots. Considering the obtained results, the ESD technique proved to be an effective technique for the fabrication of porous tungsten trioxide thin films

  13. Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu 1-y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications.

    Science.gov (United States)

    Mazur, M; Kalisz, M; Wojcieszak, D; Grobelny, M; Mazur, P; Kaczmarek, D; Domaradzki, J

    2015-02-01

    In this paper comparative studies on the structural, mechanical and corrosion properties of Nb2O5/Ti and (NbyCu1-y)Ox/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb2O5 film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb0.75Cu0.25)Ox thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. PMID:25492191

  14. Preparing and internal friction of VOx/TiOx/Ti multilayer thin films

    Science.gov (United States)

    Li, H. Q.; He, X. X.; Fang, G. Z.; Shao, L. F.

    2009-11-01

    VOx/TiOx/Ti multilayer thin films were deposited on glass and molybdenum substrates by magnetron reactive sputtering. The structure and properties of thin films were measured with X-ray diffraction (XRD), QJ31 Wheatstone Bridge and the internal friction instrument. Preparing process and internal friction of VOx/TiOx/Ti multilayer thin films were studied respectively. On the basis of measurement analysis from crystal structure, the curves of resistance vs temperature, and Young's modulus vs temperature, the phase transformation of VOx multilayer thin film occurs at 66°C and its temperature coefficient of resistance is - 4.35%/°C.

  15. Preparation of self-sustained film by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    曹冰; 朱从善

    1999-01-01

    Large size self-sustained film with considerable thickness ranging from 30 to 500 μm was prepared with sol-gel method by using dimethyldiethoxysilane/tetraethoxysilane composite alkoxide as precursor. The film exhibits good plasticity as well. Various factors that may influence the film properties were investigated. IR and AFM techniques were adopted to study the film structure and surface morphology. Gas chromatogram/mass spectrum technique was also adopted to characterize the network structure of the material through identification of different polymers formed during hydrolysis and condensation course.

  16. Preparation of Nanoporous Polymer Films for Real-Time Viability Monitoring of Cells

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2011-01-01

    Full Text Available We have demonstrated an alternative way to monitor the viability of cells adhered on a nanoporous polymer film in real time. The nanoporous polymer films were prepared by laser interference pattering. During exposure of holographic patterning, the dissolved solvents were phase separated with photocured polymer and the nanopores were created as the solvents evaporated. The diffracted spectra from the nanoporous polymer film responded to each activity of the cell cycle, from initial cell seeding, through growth, and eventual cell death. This cell-based biosensor uses a nanoporous polymer film to noninvasively monitor cell viability and may prove useful for biotechnological applications.

  17. Screen printed barium titanate thick films prepared from mechanically activated powders

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, B.D. [Universidad Estadual Paulista, Sao Paulo (Brazil). Inst. de Quimica; Belgrade Univ. (Yugoslavia). Center for Multidisciplinary Studies; Foschini, C.R.; Varela, J.A. [Universidad Estadual Paulista, Sao Paulo (Brazil). Inst. de Quimica; Pejovic, V.Z. [IRITEL, Belgrade (Yugoslavia); Pavlovic, V.B. [Faculty for Agriculture, Dept. of Physics, UB (Yugoslavia); Pavlovic, V.P. [Faculty for Mechanical Engineering, Dept. of Physics, UB (Yugoslavia)

    2002-07-01

    Barium titanate thick films were prepared from mechanically activated powders based on BaCO{sub 3} and TiO{sub 2}. The thick films were screen-printed on alumina substrates electroded with Ag/Pd. The BT films were sintered at 850 C for 1 hour. The thickness was 30-75 {mu}m depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate was investigated by SEM. The dielectric properties were measured and the results were reported. (orig.)

  18. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition

    Indian Academy of Sciences (India)

    Benny Joseph; P K Manoj; V K Vaidyan

    2005-08-01

    The preparation of indium doped zinc oxide films is discussed. Variation of structural, electrical and optical properties of the films with zinc acetate concentration and indium concentration in the solution are investigated. XRD studies have shown a change in preferential orientation from (002) to (101) crystal plane with increase in indium dopant concentration. Films deposited at optimum conditions have a low resistivity of 1.33 × 10-4 m with 94% transmittance at 550 nm. SEM studies have shown smooth polycrystalline morphology of the films. Figure of merit is evaluated from electrical resistivity and transmittance data.

  19. Preparation of semi-solid slurry containing fine and globular particles for wrought aluminum alloy 2024

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The semi-solid slurry of wrought aluminum alloy 2024 was prepared by a well developed rheocasting process, low superheat pouring with shearing field(LSPSF). The appreciate combination of pouring temperature and rotation speed of barrel, can give rise to a transition of the growth morphology of primary α(Al) from coarse-dendritic to coarse-particle-like and further to fine-globular. The combined effects of both localized rapid cooling and vigorous mixing during the initial stage of solidification can enhance wall nucleation and nuclei survival, which leads to the formation of fine-globular primary α(Al). By using semi-solid slurry prepared by LSPSF, direct squeeze cast cup-shaped component with improved mechanical properties such as yield strength of 198MPa, ultimate tensile strength of 306 MPa and elongation of 10.4%, can be obtained.

  20. Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Rao, Yu-Cyuan [Department of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2013-11-01

    This paper presents the preparation of epoxy/inorganic-nanoparticle hybrid materials synthesized from diglycidyl ether of bisphenol A and colloidal titania (TiO{sub 2}) with coupling agent, 3-isocyanatopropyltriethoxysilane, and curing agent, hexahydro-4-methylphthalic anhydride, by using a thermal polymerization. The precursor was spin-coated and thermal-cured to form hybrid films. The experimental results showed that the refractive index of hybrid films can be tuned by adding various solid contents of TiO{sub 2} to hybrid films. The refractive index at 633 nm increased from 1.450 to 1.639 as the TiO{sub 2} content increased from 0 to 50 wt.%. UV–vis analysis showed that the transparency of hybrid films was over 90%. L.a.b. color analysis indicated that the luminance of films was above 95%, and no yellowing was observed. In addition, the hybrid materials exhibited a low hydroscopic property under a high-humidity environment. - Highlights: • Epoxy/titania films were prepared from colloidal titania. • Refractive index of films could be tuned by titania content. • All the prepared films had the transparency over 90%. • Luminance was above 95% and no yellowing was found. • Hydroscopic property is low at high-humidity environment.

  1. XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge

    International Nuclear Information System (INIS)

    Highlights: ► We prepare three TiNxOy films by vacuum arc discharge technique with different temperatures. ► Increasing the temperature will improve titanium nitride components. ► Temperature plays a major role in the thickness of films. ► Crystalline and texture developments of the films depend on the temperature. - Abstract: Three titanium oxynitride films have been prepared by vacuum arc discharge technique at different chamber temperatures (50 °C, 150 °C and 300 °C). X-ray photoelectron spectroscopy was used to reveal the elemental and chemical compositions by analyzing high resolution spectra of Ti 2p3/2, N 1s and O 1s. Higher temperatures were found to promote the nitride components and to produce nitrogen-rich films. Homogeneity and thickness of the films have been estimated by means of Rutherford Back Scattering technique, which showed that the film thickness increased with the increasing of temperature. A significant improvement in the crystalline quality and texture when increasing the temperature was found by X-ray diffraction technique. Electrical resistivity of the films was measured at room temperature and was found to decrease from 46.6 μΩ cm down to 26.3 μΩ cm for the samples prepared at 50 °C and 300 °C, respectively.

  2. On the preparation of TiAl alloy by direct reduction of the oxide mixtures in calcium chloride melt

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat K. Tripathy; Derek J. Fray

    2011-11-01

    In recent years, TiAl-based intermetallic alloys are being increasingly considered for application in areas such as (i) automobile/transport sector (passenger cars, trucks and ships) (ii) aerospace industry (jet engines and High Speed Civil Transport propulsion system) and (iii) industrial gas turbines. These materials offer excellent (i) high temperature properties (at higher than 6000C) (ii) mechanical strength and (iii) resistance to corrosion and as a result have raised renewed interest. The combination of these properties make them possible replacement materials for traditional nickel-based super-alloys, which are nearly as twice as dense (than TiAl based alloys). Since the microstructures of these intermetallic alloys affect, to a significant extent, their ultimate performance, further improvements (by way of alteration/modification of these microstructures), have been the subject matter of intense research investigations. It has now been established that the presence of alloy additives, such as niobium, tantalum, manganese, boron, chromium, silicon, nickel and yttrium etc, in specific quantities, impart marked improvement to the properties, viz. fatigue strength, fracture toughness, oxidation resistance and room temperature ductility, of these alloys. From a number of possible alloy compositions, {gamma}-TiAl and Ti-Al-Nb-Cr have, of late, emerged as two promising engineering alloys/materials. . The conventional fabrication process of these alloys include steps such as melting, forging and heat treatment/annealing of the alloy compositions. However, an electrochemical process offers an attractive proposition to prepare these alloys, directly from the mixture of the respective oxides, in just one step. The experimental approach, in this new process, was, therefore, to try to electrochemically reduce the (mixed) oxide pellet to an alloy phase. The removal of oxygen, from the (mixed) oxide pellet, was effected by polarizing the oxide pellet against a graphite

  3. Preparation of BiFeO3 thin films by pulsed laser deposition method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guan-jun; CHENG Jin-rong; CHEN Rui; YU Sheng-wen; MENG Zhong-yan

    2006-01-01

    BiFeO3 (BFO) thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the pulsed-laser deposition (PLD) technique at a low temperature of 450℃. The XRD results indicate that the BFO thin films are of perovskite structure with the presence of small amount of second phases. The oxygen pressures have great effect on the crystalline structures and dielectric properties of BFO thin films. The dielectric constant of the BFO thin films decreases with increasing oxygen pressures,achieving 186,171 and 160 at the frequency of 104 Hz for the oxygen pressures of 0.666,1.333 and 13.332 Pa,respectively. The BFO thin films prepared at the oxygen pressure of 0.666 Pa reveal a saturated hysteresis loop with the remanent polarization of 7.5 μC/cm2 and the coercive field of 176 kV/cm.

  4. Research on successive preparation of nano-FeNi alloy and its ethanol sol by pulsed laser ablation

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Wengong; JIN; Zhaoguo

    2004-01-01

    Nano-FeNi alloy/ethanol sol and its nano-FeNi alloy have been successively prepared by pulsed laser ablation at the interface of flowing ethanol and rotative FeNi alloy target.The energy spectrum analysis shows that the weight ratio of constituents of the Fe and Ni in the nano-FeNi alloy particles is about 66: 34. The TEM shows that the nano-FeNi alloy particles'original sizes are about 1-5 nm, and the particle sizes gradually become 10-50 nm due to self-congregation during 1-3 d. The XRD analysis indicates that the nano-FeNi alloy particles are almost in non-crystalline. It is found that there are one strong excitation peak at 311.00 nm and two weak excitation peaks at 273.00 and 347.00 nm, and there is one strong emission peak at 418.00 nm when it is excitated by 311.00 nm at room temperature from the fluorescence spectrum of nano-FeNi alloy/ethanol sol. The UV-Vis spectrum of nano-FeNi alloy/ethanol sol indicates that there exist one strong absorption peak which is splitted into 9 distinguished small peaks at about 230.00 nm and one weak exciton absorption peak at 275.00 nm. The FT-IR spectrum of nano-FeNi alloy/ethanol sol exhibits that the stretching vibration absorption peak of associating hydroxyl (VO-H) in the sol has the distinct blue shift, and confirms that the surface of nano-FeNi alloy particles has been modified by carbon-hydrogen organic group from ethanol decomposition in the producing process of the nano-FeNi alloy/ethanol sol.

  5. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chaoyong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Zhao, Shuang; Pan, Hucheng; Song, Kai [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Tang, Aitao [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-09-01

    In this study, biodegradable Mg–Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg–1Sn alloy was almost equiaxed grain, while the Mg–Sn alloys with higher Sn content (Sn ≥ 3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg–Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg{sub 2}Sn phase, and the amount of Mg{sub 2}Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg–Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg–1Sn and Mg–3Sn alloys were promising to be used as biodegradable implants. - Highlights: • Biodegradable Mg–Sn implant alloys were prepared by sub-rapid solidification. • Secondary dendrite arm spacing of alloys decreased with increasing Sn content. • Corrosion rates of alloys increased significantly with increasing Sn content. • Mg–1Sn and Mg–3Sn alloys were harmless to MG63 cells.

  6. A New Method for Preparing Superconducting MgB2 Films from Diborane

    Institute of Scientific and Technical Information of China (English)

    王殿生; 傅兴华; 张正平; 杨健

    2002-01-01

    We report on a new preparation method for magnesium diboride (MgB2) films by chemical vapour deposition(CVD) from diborane (B2H6). It is a two-step ex situ approach, with the precursor boron films grown by CVD from B2H6 at 460°C, followed by a post-annealing process in magnesium (Mg) vapour at 830°C. The prepared MgB2 thin films on Al2O3 polycrystalline substrates have an onset transition temperature of 35K and a zeroresistance temperature of about 24K. Well-crystallized MgB2 grains have clearly been observed in the SEM images and confirmed by x-ray diffraction analysis. The advantages of the proposed method are the feasibility to prepare large-area superconducting films and the compatibility with semiconductor technology.

  7. Methods for preparing colloidal nanocrystal-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  8. Preparation and Magnetostriction of Tb0.22Dy0.48HO0.35Fe2 Alloys

    Institute of Scientific and Technical Information of China (English)

    Jiang Minhong

    2007-01-01

    Tb0.22Dy0.48Ho0.35Fe2 quaternary alloys are prepared by melting-top casting-annealing process. X-ray diffraction reveals that the alloy is single phase polycrystalline alloy with MgCu2 type cubic Laves phase structure, and (511) preferred orientation occurs in its. The magnetostriction measurements are carried out at room temperature using standard strain gauge technique in magnetic fields up to 400kA·m-1. The results show that when the magnetic field, H, is 90kA·m-1, the magnetostriction, λ ,of Tb0.22Dy0.48Ho0.35Fe2 quaternary alloys is 260×10-6, and when the H is 210kA·m-1, the λ is 438×10-6. When the H is 400kA·m-1, the λ is up to the saturation value, 538×10-6. As compared with TbDyFe ternary alloys, the λ of the quaternary alloy is significantly higher when the H is less than or equal to 210kA·m-1. When the H is 120kA·m-1,the λ of the alloy is 333×10-6,70×10-6 more than the ternary alloy. Research results and mechanism are discussed.

  9. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 μm thickness formed within the

  10. Magnetostrictive properties of sputtered binary Tb-Fe and pseudo-binary (Tb-Dy)-Fe alloy films

    International Nuclear Information System (INIS)

    Magnetostriction (λ=λ parallel -λ perpendicularto) and other magnetic properties have been investigated for sputtered TbxFe100-x (5≤x≤60) and (Tb1-yDyy)42Fe58 (0≤y≤1) alloy systems. These films exhibited an amorphous structure except for x-6 at x=33, corresponding to the composition of TbFe2 Laves phase, while that at 1 kOe exhibited a maximum of about 220 x 10-6 at x=42. In the pseudo-binary alloy system, the dependence of λ on the substitution of Dy was very similar to that of bulk data, implying a similarity of atomic short-range ordering between amorphous and crystalline (Tb-Dy)-Fe samples. The substrate temperature during the sputtering much influences upon the λ measured below 7 kOe. The maximum magnetostriction for both Tb33Fe67 and (Tb0.3Dy0.7)33Fe67 films were obtained at the substrate temperatures of about 400 and 300 C, respectively. A remarkable aging effect was found for the pseudo-binary alloy films and not for the binary alloy films. (orig.)

  11. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan;

    2015-01-01

    . This is particularly challenging for alloys containing Au due to a high propensity of Au to segregate to the surface. We also show that once Au is on the surface it will diffuse to defect sites, explaining why small amounts of Au retard dissolution of Pt nanoparticles. For the PtPd thin films there is no pronounced...

  12. Preparation and thermochromic properties of Ce-doped VO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Song, Linwei [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Zhang, Yubo [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Sichuan Engineering Technical College, Deyang 618000 (China); Huang, Wanxia, E-mail: huangwanxiascu@yahoo.com.cn [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Shi, Qiwu; Li, Danxia; Zhang, Yang; Xu, Yuanjie [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)

    2013-06-01

    Graphical abstract: This effect of doping concentration on the phase transition temperature of VO{sub 2} films demonstrates that the phase transition temperature is decreasing along with the increase of the Ce dopant concentrations. After doping Ce, the transition temperature of VO{sub 2} film changes appreciably. Highlights: ► Ce-doped VO{sub 2} films were prepared on muscovite substrate by inorganic sol–gel method for the first time. ► The cerium existing in the VO{sub 2} films in the form of Ce{sup 4+} and Ce{sup 3+} was substituted for part of V atoms in the lattice. ► Ce doping could remarkably reduce the particle size of the Ce-doped films compared with undoped films. ► The phase transition temperature of Ce-doped VO{sub 2} films decreased appreciably with maintaining high-quality phase transition. - Abstract: Mixture of cerium (III) nitrate hexahydrate and vanadium pentaoxide powder were used as precursor to prepare Ce-doped VO{sub 2} films on the muscovite substrate by inorganic sol–gel method. SEM, XRD and XPS were used to investigate the morphologies and structures of VO{sub 2} films. The results show that the VO{sub 2} films grow on the muscovite substrate with preferred orientated (0 1 1) plane and the Ce exists in the form of Ce{sup 4+} and Ce{sup 3+} replacing part of V atoms in the lattice. The infrared transmittance change was measured from room temperature to the temperature above the metal–insulator transition. The films have excellent thermochromic performance. The metal–insulator transition temperature of VO{sub 2} films changes appreciably with Ce doped, which decreases by 4.5 °C per 1 at.% doping. Furthermore, Ce doping could remarkably reduce the particle size of VO{sub 2} films.

  13. Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating

    Science.gov (United States)

    Zhang, Min; Xu, Bajin; Ling, Guoping

    2015-03-01

    In this paper, α-Al2O3 film was prepared by low temperature thermal oxidation of Al8Cr5 coating. The Al8Cr5 alloy coating was prepared on SUS430 stainless steel through a two-step approach including electrodepositing Cr/Al composite coating and subsequent heat treatment at 740 °C for 16 h. After mechanical polishing removal of voids on the surface, the Al8Cr5 coating was thermal oxidized at 720 °C in argon for 100 h. The samples were characterized by SEM, EDX, XRD, XPS and TEM. XPS detection on the surface of oxidized Al8Cr5 coating showed that the oxide film mainly consisted of Al2O3. TEM characterization of the oxide film showed that it was α-Al2O3 films ca. 110 nm. The formation of α-Al2O3 films at low temperature can be attributed to the formation of Cr2O3 nuclei at the initial stage of oxidation which lowers the nucleation energy barrier of α-Al2O3.

  14. Preparation and characterisation of fluconazole vaginal films for the treatment of vaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    L Kumar

    2013-01-01

    Full Text Available Objective of the present study was to develop and evaluate vaginal films with essential in vitro studies. Films were developed using hydroxypropyl methylcellulose as a polymer and formulations were coded. The developed films were evaluated with Fourier transform infrared spectroscopy, drug content, viscosity, surface pH, thickness, mechanical characterisation and in vitro drug release study. Fourier transform infrared spectroscopy results confirmed that there is no chemical interaction between drug and stabilisers/excipients. The batch variation was not more than 5% for average thickness and weight of the films. The drug content for the prepared formulation was in the range of 72.32±0.18% to 94.48±0.54%. Viscosity of the formulations increased with the increase in concentration of polymer. Mechanical characterisation revealed that tensile strength and percentage elongation of the films improved as there is increase in degree of substitution of the polymer, but the values of modulus decreased which confirmed that all the prepared films are soft in nature. The in vitro study indicated that 1 and 2% concentrations of polymer are the least concentrations to control the release of drug whereas the 4% concentration of polymer is a good and more effective concentration to control the release. Only one prepared formulation released the drug by following anomalous transport whereas other film formulations released the fluconazole by following Fickian diffusion mechanism. Prepared vaginal films may be an important alternative for the treatment of vaginal candidiasis, because these prepared films suggest the benefits of controlled release of fluconazole at the site of absorption.

  15. Preparation of surface-silvered graphene-CNTs/polyimide hybrid films: Processing, morphology and properties

    International Nuclear Information System (INIS)

    Silver nanoparticles modified graphene-carbon nanotubes/polyimide (Gr-CNTs/PI) films have been prepared by electrochemical reduction of silver nitrate on potassium hydroxide hydroxylated of Gr-CNTs/PI films surface. The as-prepared nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction analyzer and semiconductor characterization system. The lower content of Gr-CNTs (≤10 wt. %) doping in PI matrix can improve the conductivity of PI films more clearly than pure CNTs. The conductivity can be regulated by controlling Gr-CNTs content in PI matrix. These silver nanoparticles into Gr-CNTs/PI films presented here can act as deposition seeds which can initiate subsequent electroless silver or copper or electrodeposition other metal. - Graphical abstract: The sandwich lamination structure of Gr-CNTs nanocomposite was prepared in situ synthesize process, and Gr-CNTs were used as fillers to synthesize high conductivity Gr-CNTs/polyimide hybrid films. Afterward, the high conductivity surface-silvered Gr-CNTs/PI hybrid film was prepared by direct ion exchange and traditional electrochemical reduction process. Highlights: ► Graphene-carbon nanotubes (Gr-CNTs) nanocomposite has been in situ synthesized. ► The Gr-CNTs nanocomposite was used as a filler to synthesize Gr-CNTs/polyimide (PI) hybrid films. ► The conductivity of Gr-CNTs/PI can be regulated by regulating the content of Gr-CNTs in PI matrix. ► Surface-silvered Gr-CNT/PI was prepared by ion exchange and electrochemical reduction process. ► The surface-silvered Gr-CNT/PI hybrid film can improve the conductivity of this hybrid films

  16. Y-Ba-Cu-O thick film preparation using multistep KrF excimer laser deposition

    International Nuclear Information System (INIS)

    Thick films of high-temperature superconductors (HTSC) have attracted much attention to a number of current-carrying applications such as current leads, interconnects, current limiters and cryotron-type switches. As the film thickness of HTSC films is increased using the conventional method of pulsed laser deposition, the surface morphology is degraded during the film deposition. This structural transition results in decreasing the critical current density with the film thickness. Here, a multistep deposition technique in the KrF excimer laser ablation is used to prepare Y-Ba-Cu-O thick films. The high-quality Y-Ba-Cu-O superconducting films of thickness of a few mm were formed by optimizing the processing conditions from the bottom to the surface of the film. The initial ultrathin layer of a few nm was prepared at the low repetition rate of 1 Hz at laser fluence 3 J cm-2. Then, various repetition rates at the fluence 2 J cm-2 were chosen for deposition of the intermediate layer and the surface layer, both with thicknesses of about 1 μm. It is shown that surface morphology and vertical growth are significantly dominated by the initial layer structure and the following deposition conditions. The thick films with high Tc(zero) 89 K were obtained when the surface layer was prepared at a lower repetition rate under lower process temperature. The three step procedure prepared the superconducting thick films with the critical current density of 1.2 x 106 A cm-2 (at 5 K). (orig.)

  17. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  18. Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-M. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)]. E-mail: smchen78@ms15.hinet.net; Liao, C.-J. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)

    2004-11-15

    Osmium hexacyanoferrate films have been prepared using repeated cyclic voltammetry, and the deposition process and the films' electrocatalytic properties in electrolytes containing various cations have been investigated. The cyclic voltammograms recorded the deposition of osmium hexacyanoferrate films directly from the mixing of Os{sup 3+} and Fe(CN){sub 6}{sup 3-} ions from solutions containing various cations. An electrochemical quartz crystal microbalance, cyclic voltammetry, and UV-visible spectroscopy were used to study the growth mechanism of the osmium hexacyanoferrate films. The osmium hexacyanoferrate films showed a single redox couple, and the redox reactions included 'electron transfer' and 'proton transfer' with a formal potential that demonstrates a proton effect in acidic solutions up to a 12 M aqueous HCl solution. The electrochemical and electrochemical quartz crystal microbalance results indicate that the redox process was confined to the immobilized osmium hexacyanoferrate film. The electrocatalytic reduction of dopamine, epinephrine, norepinephrine, S{sub 2}O{sub 3}{sup 2-}, and SO{sub 5}{sup 2-} by the osmium hexacyanoferrate films was performed. The preparation and electrochemical properties of co-deposited osmium(III) hexacyanoferrate and copper(II) hexacyanoferrate films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect and an alkaline cation effect, respectively. Electrocatalytic reactions on the hybrid films were also investigated.

  19. Controllable preparation of fluorine-containing fullerene-like carbon film

    Science.gov (United States)

    Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan

    2016-05-01

    Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.

  20. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Simurda, M. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Nemec, P. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)]. E-mail: nemec@karlov.mff.cuni.cz; Formanek, P. [Institut fuer Strukturphysik, Technische Universitaet Dresden, Zellescher Weg 16, D-01062 Dresden (Germany); Nemec, I. [Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Nemcova, Y. [Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Maly, P. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

    2006-07-26

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film.

  1. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    International Nuclear Information System (INIS)

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film

  2. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  3. Modelling of liquid metal flow and oxide film defects in filling of aluminium alloy castings

    Science.gov (United States)

    Dai, X.; Jolly, M.; Yang, X.; Campbell, J.

    2012-07-01

    The liquid metal flow behaviours in different runner system designs have important effects on the mechanical strength of aluminium alloy castings. In this paper, a new model has been developed which is a two-dimensional program using a finite difference technique and the Marker and Cell (MAC) method to simulate the flow of liquid metal during filling a mould. In the program the Eulerian method has been used for the liquid metal flow, while the Oxide Film Entrainment Tracking Algorithm (OFET) method (a Lagrangian method) has been used to simulate the movement of the oxide film on the liquid metal surface or in the liquid metal flow. Several examples have been simulated and tested and the relevant results were obtained. These results were compared with measured bending strengths. It was found that the completed program was capable of simulating effectively the filling processes of different runner systems. The simulation results are consistent with the experiment. In addition, the program is capable of providing clearer images for predicting the distribution of the oxide film defects generated during filling a mould.

  4. Influence of structural disorder on the optical and transport properties of Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy films

    CERN Document Server

    Kim, K W; Rhee, J Y; Kudryavtsev, Y V; Ri, H C

    2000-01-01

    Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy films with a total thickness of about 100 nm were prepared by flash evaporation of the crushed alloy powders onto heated (730 K for the ordered state) and LN sub 2 -cooled (150 K for the disordered state) substrates. Structural analysis of the films was performed by suing transmission electron microscopy. The optical conductivity (OC) of the samples was measured at room temperature in a spectral range of 265 -2500 nm (4.7 - 0.5 eV). The resistivity measurements were carried out by using the four-probe technique in a temperature range of 4.2 - 300 K. The experimental OC spectra for the Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloys show the most significant change in the infrared region upon the order-disorder transformation. The structural disorder in the Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy film leads to a change in the sign of the temperature coefficient of the resistivity from positive to negative. The observed...

  5. In vitro biocompatibility of titanium-nickel alloy with titanium oxide film by H2O2 oxidation

    Institute of Scientific and Technical Information of China (English)

    HU Tao; CHU Cheng-lin; YIN Li-hong; PU Yao-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; CHUNG Jonathan-CY; CHU Paul-K

    2007-01-01

    Titanium oxide film with a graded interface to NiTi matrix was synthesized in situ on NiTi shape memory alloy(SMA) by oxidation in H2O2 solution. In vitro studies including contact angle measurement, hemolysis, MTT cytotoxicity and cell morphology tests were employed to investigate the biocompatibility of the H2O2-oxidized NiTi SMAs with this titanium oxide film. The results reveal that wettability, blood compatibility and fibroblasts compatibility of NiTi SMA are improved by the coating of titanium oxide film through H2O2 oxidation treatment.

  6. Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy

    Science.gov (United States)

    Abdal-hay, Abdalla; Amna, Touseef; Lim, Jae Kyoo

    2013-04-01

    The present study was aimed at designing a novel porous hydroxyapatite/poly(ɛ-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (˜34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.

  7. Preparation and characterization of nanostructured CuO thin films for photoelectrochemical splitting of water

    Indian Academy of Sciences (India)

    Diwakar Chauhan; V R Satsangi; Sahab Dass; Rohit Shrivastav

    2006-12-01

    Nanostructured copper oxide thin films (CuO) were prepared on conducting glass support (SnO2: F overlayer) via sol–gel starting from colloidal solution of copper (II) acetate in ethanol. Films were obtained by dip coating under room conditions (temperature, 25–32°C) and were subsequently sintered in air at different temperatures (400–650°C). The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Average particle size, resistivity and band gap energy were also determined. Photoelectrochemical properties of thin films and their suitability for splitting of water were investigated. Study suggests that thin films of CuO sintered at lower temperatures (≈ 400°C) are better for photoconversion than thick films or the films sintered at much higher temperatures. Plausible explanations have been provided.

  8. Preparation and Characterization of Polyvinylidene Fluoride/Graphene Superhydrophobic Fibrous Films

    Directory of Open Access Journals (Sweden)

    Rasoul Moradi

    2015-08-01

    Full Text Available A new strategy to induce superhydrophobicity via introducing hierarchical structure into the polyvinylidene fluoride (PVDF film was explored in this study. For this purpose nanofibrous composite films were prepared by electrospinning of PVDF and PVDF/graphene blend solution as the main precursors to produce a net-like structure. Various spectroscopy and microscopy methods in combination with crystallographic and wettability tests were used to evaluate the characteristics of the synthesized films. Mechanical properties have been studied using a universal stress-strain test. The results show that the properties of the PVDF nanofibrous film are improved by compositing with graphene. The incorporation of graphene flakes into the fibrous polymer matrix changes the morphology, enhances the surface roughness, and improves the hydrophobicity by inducing a morphological hierarchy. Superhydrophobicity with the water contact angle of about 160° can be achieved for the PVDF/graphene electrospun nanocomposite film in comparison to PVDF pristine film.

  9. Preparation of TiO2 Thin Film and Its Antibacterial Activity

    Institute of Scientific and Technical Information of China (English)

    XU Wei-guo; CHEN An-min; ZHANG Qiang

    2004-01-01

    TiO2 nanometer thin films with photocatalytic antibacterial activity were prepared by the sol-gelmethod on fused quartz and soda lime glass precoated with a SiO2 layer. The thin films were characterized by X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM), and X- ray diffraction ( XRD ). Theresults show that sodium and calcium diffusion into nascent TiO2 film is effectively retarded by the SiO2 layer pre-coated on the soda lime glass. The antibacterial activity of the films was determined. The crystalline of TiO2 nano-meter thin film has important effects on the antibacterial activity of the film.

  10. Preparation and characterization of biodegradable active PLA film for food packaging

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Avallone, E.; Galdi, M. R.; Incarnato, L.

    2014-05-01

    In this work we report on the preparation and characterization of a biodegradable active PLA film (aPLA), intended for food packaging applications. The film was obtained by cast extrusion blending a commercial PLA matrix with an active system, developed in our laboratory and based on PLA microparticles containing a-tocopherol (aTCP) as natural antioxidant agent. In order to optimize the film composition and processing, the active microparticles were preliminarily characterized with the aim to evaluate their morphology (size and shape), thermal resistance and a-tocopherol content. The aPLA film, produced with a 5wt% of aTCP, was characterized in terms of performance and activity. The experimental results demonstrated that the aPLA film has mechanical, thermal, barrier and optical properties adequate for packaging applications and shows oxygen scavenging activity and prolonged exhaustion lag time, compared to pure PLA films.

  11. Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, L.D.; Patil, P.S. [Thin film physics laboratory, Department of Physics, Shivaji University, - 416 004 Kolhapur (India)

    2001-11-01

    Electrochromic nickel oxide thin films were prepared by using a simple and inexpensive spray pyrolysis technique (SPT) onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel chloride solution. Transparent NiO-thin films were obtained at a substrate temperature 350C. The films were cubic NiO with preferred orientation in the (111) direction. Infrared spectroscopy results show presence of free hydroxyl ion and water in nickel oxide thin films. The electrochromic properties of the thin films were studied in an aqueous alkaline electrolyte (0.1M KOH) using cyclic voltammetry (CV), chronoamperometry (CA) and spectrophotometry. The films exhibit anodic electrochromism, changing colour from transparent to black. The colouration efficiency at 630nm was calculated to be 37cm{sup 2}/C.

  12. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  13. Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes

    Science.gov (United States)

    Bavarsad, Neda; Kouchak, Maryam; Mohamadipour, Pardis; Sadeghi-Nejad, Batool

    2016-01-01

    Griseofulvin is an antifungal drug and is available as oral dosage forms. Development of topical treatment could be advantageous for superficial fungal infections of the skin. In this study, films prepared from the incorporation of griseofulvin-loaded liposomes in chitosan film for topical drug delivery in superficial fungal infections. The properties of the films were characterized regarding mechanical properties, swelling, ability to transmit vapor, drug release, thermal behavior, and antifungal efficacy against Microsporum gypseum and Epidermophyton floccosum. The presence of liposomes led to decreased mechanical properties but lower swelling ratio. Higher amount of drug permeation and rate of flux were obtained by liposomes incorporated in films compared to liposomal formulations. Antifungal efficacy of formulations was confirmed against two species of dermatophytes in vitro. Therefore, two concepts of using vesicular carrier systems and biopolymeric films have been combined and this topical novel composite film has the potential for griseofulvin delivery to superficial fungal infections. PMID:27429928

  14. Optical properties of rubrene thin film prepared by thermal evaporation

    Science.gov (United States)

    Chen, Liang; Deng, Jin-Xiang; Kong, Le; Cui, Min; Chen, Ren-Gang; Zhang, Zi-Jia

    2015-04-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evaporation technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence. Project supported by the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology, China (Grant No. KZ201410005008), the Natural Science Foundation of Beijing City, China (Grant No. 4102014), and the Graduate Science Fund of the Beijing University of Technology, China (Grant No. ykj-2013-9835).

  15. Si film electrodes prepared on discontinuous current collector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyu-bong; Im, Yeon-min; Lee, Won-rak; Lee, Sang-hun; Ji, Seong- yong [School of Materials Science and Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Gazwadong 900, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Guk-tae [Institute of Physical Chemistry, MEET Battery Research Center, Corrensstr 46, 48149 Münster (Germany); Nam, Tae-hyun [School of Materials Science and Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Gazwadong 900, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Ki-won, E-mail: kiwonkim@gnu.ac.kr [School of Materials Science and Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Gazwadong 900, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-01

    Discontinuous Si film electrodes with 400, 800, and 1700 μm discontinuous lines (break lines) were fabricated by a simple masking and etching process. The structural and electrochemical properties of continuous and discontinuous Si film electrodes were investigated by means of optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and charge–discharge tests. Although all electrodes showed similar first-charge capacities in the range of 210–230 μAh/g, the discontinuous electrode exhibited improved coulombic efficiency and cyclability when compared to the continuous electrode. Up to 100 cycles, the discontinuous electrode with the shortest line distance of 400 μm demonstrated the highest efficiency (95.2%) and capacity retention (89%). Observation of the cycled Si film electrodes revealed that discontinuity enhanced the structural stability of the electrode during the charge–discharge process. - Highlights: • Si film electrodes with various distances between discontinuous lines were fabricated. • The discontinuous electrode improved coulombic efficiency and cycleability. • The discontinuous line in the Si film electrode enhanced the structural stability.

  16. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  17. Comparison of Ti-Zr-V nonevaporable getter films deposited using alloy or twisted wire sputter-targets

    International Nuclear Information System (INIS)

    A comparison of the performance of nonevaporable getter (NEG) films deposited using two different types of targets has been made to find the one that has the best pumping properties. For the first time, the NEG coating was deposited using a preformed Ti-Zr-V alloy target. The NEG film characterization and pumping properties have been studied in comparison with a film deposited using the commonly used three-wire twisted target. It was demonstrated that the alloy target produces a NEG coating with uniform composition both laterally and in depth. The composition of the film was found to be the same as the target. Film topography and microstructure with 5 nm grain sizes were found to be the same for both targets. The main result is that the activation temperature of the NEG coating deposited using the Ti-Zr-V alloy target is 160 deg. C, which is 20 deg. C lower than for NEG coatings deposited using three twisted wires.

  18. Preparation and investigation of bulk and thin film samples of strontium ferrite

    Directory of Open Access Journals (Sweden)

    A Poorbafrani

    2008-07-01

    Full Text Available   In this article, bulk and thin film samples of strontium ferrite have been studied. Due to the high electrical resistivity in strontium ferrite, energy loss due to eddy currents reduces and because of this, it can be used in high frequency magnetic circuits. On the other hand, strontium ferrite has attracted much attention as a permanent magnet. At first, we study the preparation process of bulk samples of strontium ferrite by a solid state reaction technique. In preparation of samples, to optimize the magnetic properties, we have used the stoichiometry factor (n = Fe2O3 / SrO of 5.25. In addition, we have used additives such as CaO and SiO2 to control grain growth. The samples have been prepared in two series: Isotropic and Anisotropic. For preparation of anisotropic samples, the magnetic field of 1T has been used for orientation of the grains during the press. Then, X-ray diffraction, Scanning Electron Microscopy (SEM, EDAX analysis and Magnetometer, was used for analyzing and comparing of structural and magnetic properties of isotropic and anisotropic samples. The results indicate that, due to the applied magnetic field, the structural and Magnetic properties of anisotropic samples improved efficiently because of the orientation of the grains during the press. In the next stage, we used bulk samples to prepare strontium ferrite thin films by Pulsed Laser Deposition technique (PLD. The Si (111 substrate has been used to prepare the thin films. Then we have studied the microstructure of thin films by X-ray diffraction, SEM and EDAX analysis. These studies on different samples show that for the preparation of crystalline phase of strontium ferrite thin films, the substrate temperature must be higher than 800˚C. The optimum conditions for preparation of strontium, ferrite thin films have been achieved on the substrate temperature of 840˚C and oxygen pressure of 75 mtorr.

  19. Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes

    International Nuclear Information System (INIS)

    Langmuir-Blodgett (LB) films of copper (II) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, nCuPc(OBu)8, (non-peripheral substitution) and copper (II) 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine, pCuPc(OBu)8, (peripheral substitution), were fabricated and characterized by optical spectroscopy and scanning probe microscopy. The LB films were transferred onto hydrophilic substrates by vertical dipping. Although they posses relatively short polar substituents both compounds form smooth, uniform, dense, and highly stable LB monolayers composed of linear arrays of cofacial oligomers. The long range discotic assemblies of LB and spun cast films of pCuPc(OBu)8 and nCuPc(OBu)8 posses physical and chemical properties favorable for molecular electronic device application

  20. Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes.

    Science.gov (United States)

    Stevenson, Kelly; Miyashita, Naoko; Smieja, Joanne; Mazur, Ursula

    2003-01-01

    Langmuir-Blodgett (LB) films of copper (II) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, nCuPc(OBu)(8), (non-peripheral substitution) and copper (II) 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine, pCuPc(OBu)(8), (peripheral substitution), were fabricated and characterized by optical spectroscopy and scanning probe microscopy. The LB films were transferred onto hydrophilic substrates by vertical dipping. Although they posses relatively short polar substituents both compounds form smooth, uniform, dense, and highly stable LB monolayers composed of linear arrays of cofacial oligomers. The long range discotic assemblies of LB and spun cast films of pCuPc(OBu)(8) and nCuPc(OBu)(8) posses physical and chemical properties favorable for molecular electronic device application. PMID:12801680