WorldWideScience

Sample records for alloy films prepared

  1. Platinum-Iridium Alloy Films Prepared by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; CHEN Li; CAI Hongzhong; ZHENG Xu; YANG Xiya; HU Changyi

    2012-01-01

    Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors.Effects of deposition conditions on composition,microstructure and mechanical properties were determined.In these experimental conditions,the purities of films are high and more than 99.0%.The films are homogeneous and monophase solid solution of Pt and Ir.Weight percentage of platinum are much higher than iridium in the alloy.Lattice constant of the alloy changes with the platinum composition.Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~550℃.The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.

  2. Electrochemical preparation La-Co magnetic alloy films from dimethylsulfoxide

    International Nuclear Information System (INIS)

    The electrochemical behavior of La3+ ion is investigated on a Pt electrode in the 2.5 x 10-3 mol L-1 La(ClO4)3-7.5 x 10-2 mol L-1 LiClO4-dimethylsulfoxide (DMSO) system. The experimental results indicate that the reduction of La3+ ion is irreversible. Some electrochemical parameters are measured. The pulse deposition technique is used to prepare La-Co alloy films. The surfaces of La-Co alloy films are uniform, compact and showed a metallic luster. The grain sizes of La-Co alloy observed by scanning electron microscope (SEM) are about 100 nm. La-Co alloy film is amorphous as proven by the X-ray diffraction (XRD). The magnetic properties of the amorphous La-Co alloy film are measured

  3. PREPARING Ni–W ALLOY FILMS WITH LOW INTERNAL STRESS AND HIGH HARDNESS BY HEAT TREATING

    OpenAIRE

    RUI LIU; HONG WANG; JIN-YUAN YAO; XUE-PING LI; GUI-FU DING

    2007-01-01

    In this paper, the internal stress and hardness of Ni–W alloy films with W contents in the range of 0–59 wt% were investigated. The amorphous Ni–W alloy films were electrodeposited with 59 wt% W content and the structure of crystalline alloy films was formed after heat treating. The experimental results showed that heat treating could prepare Ni–W alloy films with lower internal stress compared with low W content alloy films, and the heat treated alloy films still have high hardness. The inte...

  4. Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy

    International Nuclear Information System (INIS)

    Thick ceramic films over 140 μm were prepared on Al-7% Si alloy by ac microarc oxidation in a silicate electrolyte. The film growth kinetics was determined by an eddy current technique and film growth features in different stages were discussed. The microstructure and composition profiles for different thick films were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Their phase components were determined by X-ray diffraction. The electrochemical corrosion behaviors of bare and coated alloys were evaluated using potentiodynamic polarization curves, and their corrosion morphologies were observed. In the initial stage of oxidation, the growth rate is slow with 0.48 μm/min due to the effect of Si element though the current density is rather high up to 33 A/dm2. After the current density has decreased to a stable value of 11 A/dm2, the film mainly grows towards the interior of alloy. The film with a three-layer structure consists of mullite, γ-Al2O3, α-Al2O3 and amorphous phases. By microarc discharge treatment, the corrosion current of the Al-Si alloy in NaCl solution was significantly reduced. However, a thicker film has to be fabricated in order to obtain high corrosion-resistant film of the Al-Si alloy. Microarc oxidation is an effective method to form an anti-corrosion protective film on Si-containing aluminum alloys

  5. Preparation and Corrosion Resistance of Rare Earth Ceramic Film on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Guo Yuandong; Li Yingjie

    2004-01-01

    With the purpose of improving corrosion resistance and solving environmental pollution caused by traditional protective technique, rare earth ceramic film on AZ91 magnesium alloy was prepared by dip coating process, and technical parameters of preparation were defmed. Microstructure and composition of the film were studied and corrosion resistance was evaluated as well. The results show that rare earth ceramic film is uniform,dense, with strong cohesion and intact coverage. The film is mainly made up of CeO2 and MgCeO3. The results of corrosion experiments approve that the film acts as a barrier to isolate the contact of the substrate with corrosion media and decreas corrosion rate. Polarization curve of the coated sample shiftes to positive potential obvito 2.7 × 104 Ω. These facts indicate that rare earth ceramic film could effectively improve corrosion resistance of AZ91 magnesium alloy.

  6. AlCu alloy films prepared by the thermal diffusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico); Corona, J.E.; Sosa, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico)

    2010-07-15

    100-nm thick films of Al{sub 1-x}Cu{sub x} alloys were prepared on glass substrates by thermal diffusion technique. The Cu atomic concentration was varied from 10% to 90%. Alloys were prepared at different temperatures into a vacuum oven with Argon atmosphere. Two thermal processes were used: i) heating the film at 400 deg. C in a single step, and ii) heating the films in sequential steps at 100, 200, 300 and 400 deg. C. Morphology, electrical resistivity, and crystalline orientation of the alloys were studied. The electrical resistivity and surface roughness of the alloys were found to depend strongly on the atomic composition and the diffusion temperature. However, we did not find differences between samples prepared under the two thermal processes. Alloys prepared with x = 0.6 and x = 0.1-0.3 as Cu at concentration exhibited values on electrical resistivity and surface roughness lower than pure Al. Different phases of the Al{sub 1} {sub -} {sub x}Cu{sub x} films were observed as a function of Cu concentration showing a good agreement with the AlCu phase diagram.

  7. Preparation and Performance of Rare Earths Chemical Conversion Film on Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.

  8. Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn; Shi Xiuling [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Hua Ming [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Li Yongliang [Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China)

    2007-05-15

    Thick ceramic films over 140 {mu}m were prepared on Al-7% Si alloy by ac microarc oxidation in a silicate electrolyte. The film growth kinetics was determined by an eddy current technique and film growth features in different stages were discussed. The microstructure and composition profiles for different thick films were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Their phase components were determined by X-ray diffraction. The electrochemical corrosion behaviors of bare and coated alloys were evaluated using potentiodynamic polarization curves, and their corrosion morphologies were observed. In the initial stage of oxidation, the growth rate is slow with 0.48 {mu}m/min due to the effect of Si element though the current density is rather high up to 33 A/dm{sup 2}. After the current density has decreased to a stable value of 11 A/dm{sup 2}, the film mainly grows towards the interior of alloy. The film with a three-layer structure consists of mullite, {gamma}-Al{sub 2}O{sub 3}, {alpha}-Al{sub 2}O{sub 3} and amorphous phases. By microarc discharge treatment, the corrosion current of the Al-Si alloy in NaCl solution was significantly reduced. However, a thicker film has to be fabricated in order to obtain high corrosion-resistant film of the Al-Si alloy. Microarc oxidation is an effective method to form an anti-corrosion protective film on Si-containing aluminum alloys.

  9. Thin film preparation of hydrogen storage alloys and their characteristics as metal hydride electrodes

    International Nuclear Information System (INIS)

    This paper reports on thin films of hydrogen storage alloys (LaNi5, LaNi25 Co25) prepared by RF sputtering under argon and hydrogen atmospheres. Crystallinity (amorphous or crystalline) and electrical capacity of the thin films depended on the types of targets and the kinds of substrates and the conditions for RF sputtering such as RF power, temperature, and atmosphere. Both crystalline-oriented and amorphous films were obtained. In the former film, the c-axis was parallel to the substrate plane. Hydrogen was absorbed as a solid solution, causing no new phase. Electrode properties such as discharge capacity, charge-discharge cycle life, discharge capability, temperature dependence, and self-discharge rate were examined and discussed in comparison with those for the bulk materials. These alloy films had no pressure plateau on electrochemical pressure-composition isotherms. The maximum capacities were 160 mAh/g for LaNi5 crystalline film, 80 mAh/g for LaNi5-H film prepared under Ar-H2 atmosphere, and 80 mAh/g for the LaNi25 Co25 amorphous film. The capacity of LaNi5 films was reduced to half after 100 cycles, while the LaNi5-H and LaNi25Co25 films showed only small capacity decay even after 500 cycles (about 10-25%). The LaNi25Co25 film had better discharge capability at low temperatures than the LaNi5 film. Self-discharge rates of these electrodes were so high that the storage capacities were completely lost within one week

  10. Electrochemical Preparation of La-Fe Alloy Films in Dimethylsulfoxide (DMSO)

    Institute of Scientific and Technical Information of China (English)

    袁定胜; 刘冠昆; 童叶翔

    2002-01-01

    The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe2+ and La3+ in FeCl2-LiCl-DMSO and LaCl3-LiCl-DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe2+ to Fe is irreversible in one step,while the electroreduction of La3+ to La is quasi-reversible. The diffusion coefficient of La3+ in LaCl3-LiCl-DMSO system at 298 K was 3.1×10-6 cm2s-1. The diffusion coefficient and transfer coefficient of Fe2+ in FeCl2-LiCl-DMSO system at 298 K were 2.54×10-6 cm2*s-1 and 0.24, respectively. La-Fe alloy films containing La from 22.7% to 37.1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1.750 to -2.450 V (vs SCE). The fine La-Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA*cm-2. The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.

  11. Preparation of Sm–Ru bimetallic alloy films on Ru(0001) surface by vapour-deposition and annealing

    Indian Academy of Sciences (India)

    G Ranga Rao; H Nozoye

    2001-12-01

    Sm–Ru intermetallic surface alloy films were prepared by vacuum deposition and annealing of rare earth Sm on single crystal Ru(0001) surface. The Ru 3 and Sm 3 core level spectra clearly show the formation of surface alloy layers. XPS measurements on surface alloy film revealed an induced peak in the Ru3 region at lower binding energy by 1 eV compared to the bulk Ru (elemental) suggesting an electronic effect of alloying and Sm–Ru bond formation. The Sm 35/2 photoemission peak of Sm film consists of strong features characteristic of Sm(II) with electron configuration 46 (5\\ 6)2 and Sm(III) with electron configuration 46 (5\\ 6)3. It is observed that the Sm(II) feature decreases in intensity upon alloy formation with surface Ru atoms. Oxidation of these films with carbon monoxide indicates alloy breakdown due to the oxidation of Sm atoms selectively. Alloy oxidation also shows a clear shift of Sm 35/2 feature.

  12. Preparation of Er-Fe Alloy Films in Dimethylsulfoxide by Electrodeposition Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO4-DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate that the reductions of Fe(Ⅱ) to Fe(0) and Er(Ⅲ) to Er(0) were irreversible at Pt and Cu electrodes. The diffusion coefficient and the electron transfer coefficient of Fe(Ⅱ) in a 0.01 mol/L FeCl2-0.1 mol/L LiClO4-DMSO system at 303 K were 1.70×10-10 m2/s and 0.08 respectively, the diffusion coefficient and the electron transfer coefficient of Er(Ⅲ) in a 0.01 mol/L ErCl3-0.1mol/L LiClO4-DMSO system at 303 K were 1.47×10-10 m2/s and 0.108 respectively. The homogeneous, strong adhesive Er-Fe alloy films containing Er of 31.39%-42.12% in mass fraction with metallic lustre were prepared by potentiostatic electrolysis on a Cu electrode in a ErCl3-FeCl2-LiClO4-DMSO system at -1.75--2.50 V(vs. SCE).

  13. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Finger, F., E-mail: f.finger@fz-juelich.d [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany); Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A. [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany); Houben, L. [IFF, Mikrostruktur, Forschungszentrum Juelich, 52425 Juelich (Germany); Huang, Y.; Klein, S. [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany); Luysberg, M. [IFF, Mikrostruktur, Forschungszentrum Juelich, 52425 Juelich (Germany); Wang, H.; Xiao, L. [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-04-30

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form ({mu}c-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the {mu}c-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  14. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  15. A Study of Thin Film Resistors Prepared Using Ni-Cr-Si-Al-Ta High Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Ruei-Cheng Lin

    2015-01-01

    Full Text Available Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3 substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2 casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and Auger electron spectroscopy (AES. When the annealing temperature was set to 300°C, the Ni-Cr-Si-Al-Ta films with an amorphous structure were observed. When the annealing temperature was at 500°C, the Ni-Cr-Si-Al-Ta films crystallized into Al0.9Ni4.22, Cr2Ta, and Ta5Si3 phases. The Ni-Cr-Si-Al-Ta films deposited at 100 W and annealed at 300°C which exhibited the higher resistivity 2215 μΩ-cm with −10 ppm/°C of temperature coefficient of resistance (TCR.

  16. Preparation and Characterization of Coevaporated Cd1−xZnxS Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Wei Li

    2011-01-01

    Full Text Available Cd1-xZnxS thin films have been prepared by the vacuum coevaporation method. The structural, compositional, and optical properties of Cd1-xZnxS thin films have been investigated using X-ray diffraction, X-ray fluorescence, and optical transmittance spectra. As-deposited Cd1-xZnxS thin films are polycrystalline and show the cubic structure for x=1 and hexagonal one for x<1 with the highly preferential orientation. The composition of Cd1-xZnxS thin films determined from Vegard's law and quartz thickness monitors agrees with that determined from the X-ray fluorescence spectra. Optical absorption edge of optical transmittance for Cd1-xZnxS thin films shows a blue shift with the increase of the zinc content. The band gap for Cd1-xZnxS thin films can be tuned nonlinearly with x from about 2.38 eV for CdS to 3.74 eV for ZnS. A novel structure for CuInS2-based solar cells with a Cd0.4Zn0.6S layer is proposed in this paper.

  17. Magnetoresistance Measurements on Electrodeposited Cox Cu1-x Alloy Films

    OpenAIRE

    BAKKALOŽLU, Ömer F.

    2001-01-01

    Cox Cu1-x alloy films were prepared by using electrodeposition technique. The variations of Co and Cu contents of the films were investigated as functions of bath pH and Co content. The compositions of the alloy films were determined using an atomic absorption spectrophotometer. The crystal structures of the alloy films were analyzed using a Cu (K a )-X-ray diffractometer. The diffraction lines observed were only those of copper component in the alloy films. All three films showed...

  18. Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Oxide films have been produced on AM60B magnesium alloy using plasma electrolytic oxidation process in an alkaline phosphate electrolyte with and without addition of titania sol. The microstructure and composition of the oxide films were analyzed by Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscope (XPS) and X-ray Diffraction (XRD). The corrosion resistances of the oxide films were evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solution. It is found that the oxide film containing crystalline rutile and anatase TiO2 compounds are produced in an alkaline phosphate electrolyte with addition of titania sol. The oxide film formed in electrolyte with addition of titania sol has more uniform morphology with less structural imperfections than that formed in electrolyte without addition of titania sol. The results of potentiodynamic polarization analysis show that the oxide film formed in the present modified electrolyte is successful in providing superior corrosion resistance for magnesium alloy

  19. Investigation of the HA film deposited on the porous Ti6Al4V alloy prepared via additive manufacturing

    Science.gov (United States)

    Surmeneva, M.; Chudinova, E.; Syrtanov, M.; Koptioug, A.; Surmenev, R.

    2015-11-01

    This study is focused on the use of radio frequency magnetron sputtering to modify the surface of porous Ti6Al4V alloy fabricated via additive manufacturing technology. The hydroxyapatite (HA) coated porous Ti6Al4V alloy was studied in respect with its chemical and phase composition, surface morphology, water contact angle and hysteresis, and surface free energy. Thin nanocrystalline HA film was deposited while its structure with diamond-shaped cells remained unchanged. Hysteresis and water contact angle measurements revealed an effect of the deposited HA films, namely an increased water contact angle and contact angle hysteresis. The increase of the contact angle of the coating-substrate system compared to the uncoated substrate was attributed to the multiscale structure of the resulted surfaces.

  20. Electrodeposition of Sr-Ti alloy films from DMSO bath

    International Nuclear Information System (INIS)

    Electrodeposition of Sr-Ti alloy films from non aqueous dimethyl sulphoxide (DMSO) bath has been carried out onto stainless steel and fluorine doped tin oxide (FTO) coated glass substrate. The preparative parameters were studied and optimised. Alloy films with thickness 2 to 3 microns were obtained for 30 minutes of deposition. The films were uniform, dense and adhesive to the substrate. The electrodeposited Sr-Ti alloy films were oxidised at higher temperature in order to obtain SrTiO3 films. Electrical and microstructural properties were carried out. (author). 6 refs., 6 figs

  1. Au-Pt alloy nanocrystals incorporated in silica films

    OpenAIRE

    Goutam De; Rao, CNR

    2005-01-01

    Au, Pt and Au-Pt alloy nanocrystals have been prepared in thin SiO2 film matrices by sol-gel spin-coating, followed by heating at 450 uC in 10% $H_{2}$-90% Ar. X-Ray diffraction patterns reveal that the Au and Au-Pt nanocrystals have a preferential (111) orientation. Upon increasing the Pt concentration, part of the Pt does not alloy with Au, but instead forms a shell around the Au-Pt alloy core. The alloy composition itself goes up to Au(50) : Pt(50), and the Pt shells are formed around the ...

  2. Preparation and characterization of Ni-Mn-Ga high temperature shape memory alloy thin films using rf magnetron sputtering method

    International Nuclear Information System (INIS)

    Ni53.97Mn25.67Ga20.36 high temperature shape memory thin film was deposited onto silicon substrates using radio-frequency magnetron sputtering. Crystallographic structure, surface morphology, compositions and martensitic transformation of Ni-Mn-Ga thin films were investigated by means of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, and differential scanning calorimetry. The results show that Ni53.97Mn25.67Ga20.36 thin film with excellent surface quality is 7M structure at room temperature. The martensite transformation temperature M s can be increased to 100 deg. C through selecting a suitable composition of the Ni-Mn-Ga target and appropriate sputtering parameters

  3. Preparation of hydrogenated amorphous silicon tin alloys

    OpenAIRE

    Vergnat, M.; Marchal, G.; Piecuch, M.

    1987-01-01

    This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples.

  4. Sweep potential deposition of Tm-Ni-Co alloy films in dimethylsulfoxide

    Institute of Scientific and Technical Information of China (English)

    YUAN Dingsheng; LIU Yingliang; ZHANG Jingxian; LIU Guankun; TONG Yexiang

    2004-01-01

    The Tm-Ni-Co alloy films have been prepared by the sweep potential deposition technique. The surface appearance of Tm-Ni-Co alloy films was silver, smooth and adhesive. The surfaces of Tm-Ni-Co alloy films observed by scanning electron microscope (SEM) were uniform, adhesive and compact. The sizes of metallic grains were about 80-100 nm, 100-200 amorphous as proven by the X-ray diffraction (XRD).

  5. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation

  6. Electro-assisted preparation of dodecyltrimethoxysilane/TiO{sub 2} composite films for corrosion protection of AA2024-T3 (aluminum alloy)

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei; Yang Yaqin; Liu Liang [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Hu Jiming, E-mail: kejmhu@zju.edu.c [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Zhang Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China)

    2010-03-01

    Thin films of organosilanes have been successfully used as the alternative to toxic chromate coatings for surface pretreatment of metals and alloys. To further improve their corrosion performance, in the present work nano-scaled TiO{sub 2} particles were added to the dodecyltrimethoxysilane (DTMS) films coated onto AA2024-T3 substrates, by using either the dip-coating or the cathodically electro-assisted deposition process. The obtained composite films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle measurements, Fourier transform reflection-absorption IR (FTRA-IR) and electrochemical impedance spectroscopy (EIS). The results show that these two techniques (nanoparticles incorporation and the electro-assisted deposition) both facilitate the deposition process of silane films, giving thicker deposit and higher coverage surface along with higher roughness and hydrophobicity, and thereby improve their corrosion resistance. Moreover, the corrosion performance of silane films is further improved by the combined use of nanoparticles modification and electro-assisted deposition.

  7. Electro-assisted preparation of dodecyltrimethoxysilane/TiO2 composite films for corrosion protection of AA2024-T3 (aluminum alloy)

    International Nuclear Information System (INIS)

    Thin films of organosilanes have been successfully used as the alternative to toxic chromate coatings for surface pretreatment of metals and alloys. To further improve their corrosion performance, in the present work nano-scaled TiO2 particles were added to the dodecyltrimethoxysilane (DTMS) films coated onto AA2024-T3 substrates, by using either the dip-coating or the cathodically electro-assisted deposition process. The obtained composite films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle measurements, Fourier transform reflection-absorption IR (FTRA-IR) and electrochemical impedance spectroscopy (EIS). The results show that these two techniques (nanoparticles incorporation and the electro-assisted deposition) both facilitate the deposition process of silane films, giving thicker deposit and higher coverage surface along with higher roughness and hydrophobicity, and thereby improve their corrosion resistance. Moreover, the corrosion performance of silane films is further improved by the combined use of nanoparticles modification and electro-assisted deposition.

  8. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    International Nuclear Information System (INIS)

    Phosphorous-alloyed Bi2Te3 thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi2Te3 thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 μV/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Preparation of electrodeposited Zn-Ni-B alloy coatings

    Science.gov (United States)

    Sakai, Taro; Kamimoto, Yuki; Ichino, Ryoichi

    2016-01-01

    We prepared Zn-Ni-B alloys with high Zn content and high corrosion resistance. The composition of the alloys was controlled by potentiostatic electrolysis. In the electroplating bath, dimethylamineborane was used as the B source. The characterization of the alloys and corrosion resistance evaluation were carried out by X-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), Tafel plots, and cyclic corrosion tests. All films were categorized into three groups on the basis of the results of XRD analysis, and it was found by TEM analysis that the Ni-B-type showed an amorphous structure. The Ni-B-type could contain up to 50.6 mol % Zn and showed similar or better anticorrosion properties than the amorphous Ni-B films. In the Ni-B-type, the higher the Zn content, the higher the corrosion resistance. The Zn-Ni-B alloys had almost the same electrochemical corrosion resistance and Zn content as the Zn-Ni-P alloys.

  10. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    Science.gov (United States)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle. PMID:26023135

  11. Evolution of Hydrogen Storage Alloys Prepared by Special Methods

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Zhang Ximin; Jing Hai; Li Chengdong; Xu Jun

    2004-01-01

    Microstructure characteristics and electrochemical properties of hydrogen storage alloys prepared by gas atomization, melt spinning and strip casting respectively were outlined.The advantages, disadvantages and research development of the above methods for preparing hydrogen storage alloys were explained.The strip casting is a new special means for preparing AB5 rare earth hydrogen storage alloys of high performance and low cost, and the study of the strip casting for preparing hydrogen storage alloys is presented specially.

  12. Thermal stability of Al–Mo thin film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivkov, J., E-mail: ivkov@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Salamon, K. [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Radić, N. [Rudjer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb (Croatia); Sorić, M. [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia)

    2015-10-15

    Thin Al{sub x}Mo{sub 100−x} films (40 ≤ x ≤ 90 with x in steps of 5 at % Al) were prepared by magnetron co-deposition onto alumina, glass, and sapphire substrates at room temperature. The film thickness was about 400 nm, and they were amorphous for 45 ≤ x ≤ 85. The films' structural changes upon heating were investigated by measurement of the electrical resistivity variation with temperature, ρ(T), during the isochronal heating. Thus obtained results were complemented, and conclusions confirmed, by GIXRD analysis for selected heating temperatures. The dynamical temperatures of crystallization, T{sub x}, were determined from the sharp increase of the derivative of ρ with respect to temperature. No systematic dependence of T{sub x} on film substrate has been observed. Except for the Al{sub 85}Mo{sub 15} film, the ρ of the amorphous films increase on the crystallization. The temperature of crystallization exhibits maximum around 530 °C for alloy compositions with x = 55 and 60. Electrical resistivity of both amorphous and crystallized films show a strong dependence on alloy composition, with a maximum for Al{sub 75}Mo{sub 25} alloy. The resistivity of Al{sub 75}Mo{sub 25} film is very large and amounts to 1000 μΩ cm and 3000 μΩ cm in amorphous and crystallized film, respectively, with the large negative temperature coefficient of −10 × 10{sup −4} K{sup −1} and −14 × 10{sup −4} K{sup −1}, respectively. Although the crystallization temperature observed for the examined amorphous Al–Mo alloys is not very high, it might allow to exploit excellent corrosion properties of such films at some elevated temperatures. - Highlights: • Al{sub x}Mo{sub 100-x} thin films (40 < x < 90) were grown by magnetron co-deposition. • Electrical resistivity was measured during annealing of the films. • Crystallization temperature and room temperature resistivity were determined. • The phase composition was determined with grazing incidence X

  13. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    International Nuclear Information System (INIS)

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly

  14. NUCLEATION RATE OF DIAMOND FILMS ON WC-Co ALLOYS

    OpenAIRE

    SHA LIU

    2005-01-01

    Diamond-coated hard alloys are prospective tool materials for extreme cutting conditions. Nucleation rate is one of important factors that affect the qualities of diamond thin films on WC-Co alloys. However, theoretical reports on nucleation rate of diamond films on WC-Co alloys are scarce. Combining the unique diamond strong orientation with substrate surface properties, an improved theoretical formula on nucleation rate of diamond films on the WC-Co alloys is deduced in this paper. First, t...

  15. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengxia; Liang, Jun, E-mail: jliang@licp.cas.cn; Peng, Zhenjun; Liu, Baixing

    2014-09-15

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion.

  16. Hydrogen-induced superabundant vacancies in electrodeposited Fe–C alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fukumuro, Naoki; Kojima, Saeka; Fujino, Moeko; Mizuta, Yasunori; Maruo, Toshiaki; Yae, Shinji [Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo (Japan); Fukai, Yuh [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo (Japan)

    2015-10-05

    Highlights: • The hydrogen behavior in electrodeposited Fe–C films was investigated. • The H content in Fe–C films increased with increasing of C content. • The changes in lattice parameters of Fe–C films were observed. • Both the contraction and expansion of lattice were reduced by heat treatments. • The limiting composition of VacCH{sub 5} clusters was estimated from the results. - Abstract: Fe–C alloy films containing supersaturated C and H were prepared by electrodeposition, and investigated for the hydrogen behavior in annealing processes utilizing X-ray diffraction and thermal desorption spectroscopy. The H content x{sub H} (x{sub H} = H/Fe) in the films increased from about 0.031 in pure Fe to about 0.36 in Fe–C alloy (x{sub C} = C/Fe = 0.073) in proportion to the C content. The lattice contraction of about 0.2% was observed in pure Fe films, whereas the lattice expansion increasing with C content was observed in Fe–C alloy films. Both the lattice contraction of the Fe films and the lattice expansion of the Fe–C alloy films were decreased as H was desorbed during heat treatments. The atomistic structure of vacancy–hydrogen and vacancy–carbon–hydrogen clusters in Fe–C alloy films is discussed, based on these experimental results.

  17. Spray pyrolysis process for preparing superconductive films

    International Nuclear Information System (INIS)

    This paper describes a spray pyrolysis method for preparing thin superconductive film. It comprises: preparing a spray pyrolysis solution comprising Bi,Sr,Ca and Cu metals in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature of about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate to a third temperature of about 870 degrees-890 degrees C to melt the film; once the film and substrate reach the third temperature, further heat treating the film and substrate; cooling the film and substrate to ambient temperature. This patent also describes a spray pyrolysis method for preparing thin superconductive films. It comprises: preparing a spray pyrolysis solution comprising Bi, Ca and Cu metals and fluxing agent in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate at a third temperature about 840 degrees-860 degrees C; and cooling the film and substrate to ambient temperature

  18. Influence of alloying elements and microstructure on the formation of hydrotalcite film on Mg alloys

    International Nuclear Information System (INIS)

    Highlights: • A hydrotalcite film has been formed on Al-free Mg alloys by in situ growth method. • The influence of alloying elements on the composition of the films is discussed. • The role of microstructure in the formation of hydrotalcite film is illustrated. - Abstract: The influence of alloying elements and microstructure of Mg substrates on the formation of hydrotalcite film has been investigated. It is found that the two-step process is also available for the pure Mg and other alloys after modification. A small amount of Zn does not impact the composition of the hydrotalcite film much; whereas the highly active rare earth (RE) affects the constituents of the precursor film as well as the final film on WE54 alloy significantly. The microstructure impacts the initial nucleation and the film morphology depending on the size and chemical activity of the intermetallic particles

  19. The Passive Film on Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C A

    2005-09-09

    This report describes oxide (passive film) formation on Alloy 22 surfaces when aged in air (25-750 C) and in solutions (90-110 C) over times ranging from days to 5 years. Most zero-valent metals (and their alloys) are thermodynamically unstable on the earth's surface and in its upper crust. Most will therefore convert to oxides when exposed to a surficial or underground environment. Despite the presence of thermodynamic driving forces, metals and their alloys may persist over lengthy timescales, even under normal atmospheric oxidizing conditions. One reason for this is that as metal is converted to metal oxide, the oxide forms a film on the surface that limits diffusion of chemical components between the environment and the metal. The formation of surface oxide is integral to understanding corrosion rates and processes for many of the more ''resistant'' metals and alloys. This report describes the correlation between oxide composition and oxide stability for Alloy 22 under a range of relevant repository environments. In the case in which the oxide itself is thermodynamically stable, the growth of the oxide film is a self-limiting process (i.e., as the film thickens, the diffusion across it slows, and the metal oxidizes at an ever-diminishing rate). In the case where the oxide is not thermodynamically stable, it dissolves at the oxide--solution interface as the metal oxidizes at the metal--oxide interface. The system achieves a steady state with a particular oxide thickness when the oxide dissolution and the metal oxidation rates are balanced. Once sufficient metal has transferred to solution, the solution may become saturated with respect to the oxide, which is then thermodynamically stable. The driving force for dissolution at the oxide--solution interface then ceases, and the first case is obtained. In the case of a complex alloy such as Alloy 22 (Haynes International 1997), the development and behavior of the oxide layer is complicated

  20. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  1. Magnetic properties and high frequency characteristics of FeCoAlON alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kuohai; Yang, Shengsheng [Science and Technology on Vacuum & Cryogenics Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zheng, Fu; Luo, Feilong; Bai, Jianmin; Cao, Jiangwei [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Research Institute of Magnetic Materials, Lanzhou University, Lanzhou 730000 (China); Wei, Fulin, E-mail: weifl@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Research Institute of Magnetic Materials, Lanzhou University, Lanzhou 730000 (China)

    2015-06-15

    In this work, we report the magnetic properties, domain structures and high frequency properties of FeCoAlON alloy films prepared by reactive magnetron sputtering. With increasing N addition content, the films transfer from in-plane anisotropic properties to isotropic behavior. The obvious stripe domain structure is observed in the films with high N content, and the domain parameters depend on the thickness of the films. The XRD analysis indicates that the stripe domain may origin from the stress-induced perpendicular anisotropy by Al, O and N addition. Meanwhile, a double-peak resonance behavior is observed in the permeability spectra of the films with stripe domain structure.

  2. Magnetic properties and high frequency characteristics of FeCoAlON alloy films

    International Nuclear Information System (INIS)

    In this work, we report the magnetic properties, domain structures and high frequency properties of FeCoAlON alloy films prepared by reactive magnetron sputtering. With increasing N addition content, the films transfer from in-plane anisotropic properties to isotropic behavior. The obvious stripe domain structure is observed in the films with high N content, and the domain parameters depend on the thickness of the films. The XRD analysis indicates that the stripe domain may origin from the stress-induced perpendicular anisotropy by Al, O and N addition. Meanwhile, a double-peak resonance behavior is observed in the permeability spectra of the films with stripe domain structure

  3. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian; Li, Shanghua; Toprak, Muhammet S.; Muhammed, Mamoun [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Soliman, Hesham M.A. [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, New Borg El-Arab, 21934 Alexandria (Egypt); Platzek, Dieter; Mueller, Eckhard [Institute of Materials Research, German Aerospace Center (DLR), 51170 Koeln (Germany)

    2008-07-01

    Phosphorous-alloyed Bi{sub 2}Te{sub 3} thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi{sub 2}Te{sub 3} thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 {mu}V/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Enhancement of ferromagnetic resonance in Al2O3-doped Co2FeAl Heusler alloy film prepared by oblique sputtering

    Science.gov (United States)

    Li, Shan-Dong; Cai, Zhi-Yi; Xu, Jie; Cao, Xiao-Qin; Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Xie, Shi-Ming

    2014-10-01

    Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeAl)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post annealing. The in-plane uniaxial magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe = 79.5775 Am-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.

  5. Enhancement of ferromagnetic resonance in Al2O3-doped Co2FeAl Heusler alloy film prepared by oblique sputtering

    International Nuclear Information System (INIS)

    Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeAl)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post annealing. The in-plane uniaxial magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe = 79.5775 Am−1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz. (condensed matter: structural, mechanical, and thermal properties)

  6. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    OpenAIRE

    Takashi Harumoto; Yohei Tamura; Takashi Ishiguro

    2015-01-01

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabri...

  7. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  8. Structure and properties of fluorine and boron co-alloyed diamond-like carbon films

    International Nuclear Information System (INIS)

    Fluorine (F) and boron (B) co-alloyed diamond-like carbon (FB-DLC) films were prepared on polymethyl methacrylate (PMMA), polycarbonate, glass, silicon and Mo sheets by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C2H2), diborane (B2H6), and hexafluoroethane (C2F6) gas. The composition of FB-DLC films was measured by using the ion beam analysis techniques, and the bonding structure was characterized by IR and Raman spectroscopies. The co-alloying of F and B into DLC films resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations affected the composition, chemical bonding and properties as was evident from the changes observed in hydrogen concentration, optical gap energy, hardness, friction coefficient, and contact angle of water on films. Compared to B-alloyed or F-alloyed DLC films, the F and B co-alloyed DLC films exhibited a reduced hydrogen concentration, high hardness and optical gap energy, and improved hydrophobic and tribological properties

  9. Microstructure and magnetic properties of electrodeposited Gd-Co alloy films

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-aeetamide-NaBr-KBr melt at 353 K.The electroreduction of Co2+ and Gd3+ was investigated by cyclic voltammetry.The reduction of Co2+ is an irreversible process.Gd3+ cannot be reduced alone,but it can be inductively co-deposited with Co2+.Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential.The content of Gd was analyzed using an inductively coupled plasma emission spectrometer(ICPES),and the microstructure was observed by scanning electron mierograph (SEM).The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere,and then were investigated by XRD.The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM).The experimental results reveal that the deposited Gd-Co alloy films are amorphous,while the annealing causes the samples to change from amorphous to polycrystalline,thus enhancing their magnetoerystalline anisotropy and coercivity.Moreover,the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.

  10. Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications

    Science.gov (United States)

    Zhang, F.; Weidmann, A.; Nebe, B. J.; Burkel, E.

    2009-01-01

    TiMn alloy was prepared by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS) technique for exploration of biomedical applications. The microstructures, mechanical properties and cytotoxicity of the TiMn alloys were investigated in comparison with the pure Ti and Mn metals. Ti8Mn and Ti12Mn alloys with high relative density (99%) were prepared by mechanical alloying for 60 h and SPS at 700 °C for 5 min. The doping of Mn in Ti has decreased the transformation temperature from α to β phase, increased the relative density and enhanced the hardness of the Ti metal significantly. The Ti8Mn alloys showed 86% cell viability which was comparable to that of the pure Ti (93%). The Mn can be used as a good alloying element for biomedical Ti metal, and the Ti8Mn alloy could have a potential use as bone substitutes and dental implants.

  11. Polylactide microcapsules and films: preparation and properties

    OpenAIRE

    Sawalha, H.I.M.

    2009-01-01

    This thesis aims at preparation of hollow polylactide (PLA) microcapsules for use as ultrasound contrast agents with controlled size, structure and mechanical and thermal properties. The microcapsules were prepared with multistage premix membrane emulsification. The mechanical and thermal properties of the microcapsules, and of films that were prepared under similar conditions, were highly dependent on the non-solvent and the liquid used as a template for the hollow core of the microcapsule. ...

  12. Study of morphology of oxide film formed on magnesium alloys in casting conditions (AZ91)

    International Nuclear Information System (INIS)

    Morphology of surface oxide film formed during pouring of molten magnesium alloy has been investigated. Due to surface turbulence during casting, the oxide film necessarily makes folded cause in a dry surface to dry surface mode creating a double oxide film with the volume of air that can be encapsulated between folds of the film and this led to make gas bubbles or shrinkage cavities form. These kinds of oxides called new oxide films that form in a very short time during pouring. It seems to be one of the main reasons for dross-like defects. However, study of characterization and features of oxide film affected on prediction of final mechanical properties. The inner, un wetted surfaces of the doubled film representing an unbounded interface in the liquid and therefore, effectively constitute a crack. Samples for the study were prepared based on a technique in which an oxide metal sandwich was made by the bubble impingement technique, after impingement the contact areas of two adjacent and entrapped bubbles oxide-metal-oxide layer were selected for the study. Features such as thickness, size, morphology and chemical composition of the oxide film were studied using a scanning electron microscope. Energy dispersive X-ray microanalysis was performed for detection of the composition of the oxide layers. Results showed that the morphology of the oxide film in molten of magnesium alloys is folded and quite rough included globally phases of magnesium oxide. Recently, researches showed that the morphology of the oxide film in aluminum alloys is different due to composition of base alloy. Magnesium alloys in liquid state due to high oxidation rate is sensitive to formation of oxide film. Thickness of the oxide film folds in magnesium alloys is 2-4 μm that in comparison to aluminum alloys are ten times higher. However, potential of casting defects is higher in Mg alloys. The contacting interface between impinged bubbles represents an elegant and powerful means for studying

  13. Effect of NaCl concentration in electrodeposited Co-P alloy thin films

    International Nuclear Information System (INIS)

    Cobalt-Phosphorous (Co-P) alloy thin films were prepared by electrodeposition technique from an aqueous electrolytic bath at various sodium chloride (NaCl) concentrations. The effect of sodium chloride concentration on electrochemical, structural, morphological, compositional and magnetic properties of the films was investigated by cyclic voltammetry, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and vibrating sample magnetometer techniques, respectively. The mechanism of formation of Co-P alloy thin films was studied using cyclic voltammetry. The compositional analysis shows that the content of phosphorous (P) increases and the content of cobalt (Co) decreases by adding NaCl. X-ray diffraction studies revealed amorphous nature for films obtained at high concentration of NaCl and hexagonal closed packed (hcp) structure for films obtained at low NaCl concentration. Magnetic properties illustrate that high value of coercivity, saturation magnetization, remanence, and saturating field were obtained at high concentration of NaCl.

  14. Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells

    OpenAIRE

    Zaghi, Armin E.; Buffiere, Marie; Brammertz, Guy; Batuk, Maria; Lenaers, Nick; Kniknie, Bas; Hadermann, Joke; MEURIS, Marc; Poortmans, Jef; Vleugels, Jef

    2014-01-01

    Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity ...

  15. Study on hydrogen evolution performance of the carbon supported PtRu alloy film electrodes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.

  16. Preparation and Properties of Polyaniline Composite Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-hua

    2002-01-01

    Polyaniline (PAn) was synthesized by chemical oxidation polymerization. The conductive polymer doped by camphor sulfonic acid (CSA) and a matrix polymer,polyamide- 66, polyamide - 1010 or polyamide- 11, were dissolved in m-cresol and the blend solution was cast in a glass and dried for preparing polyaniline composite films.Conductivity was from 10 -6 to 10 0Ω-1·cm-1 with different weight fraction of PAn-CSA. The crystallizttion of the films was studied by means of differential scanning calorimeter (DSC). The treatment of the composite films in different pH value solution would result in decrease of conductivity, especially in an alkaline solution.

  17. NMR study in amorphous CoZr thin film alloys

    International Nuclear Information System (INIS)

    59Co NMR study has been carried out in a series of magnetic thin film amorphous Co1-xZrx alloys in the concentration range 0.1< x<0.4. The analysis shows that every Zr nearest neighbour lowers the NMR frequency on Co in the amorphous CoZr alloys by about 30 MHz and that the alloy structure in Co-rich compositions resembles the polytetrahedrally closed packed crystalline phases. (orig.)

  18. Nanocrystalline CdS{sub 1−x}Se{sub x} alloys as thin films prepared by chemical bath deposition: Effect of x on the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ramirez, E.A. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Hernandez-Perez, M.A., E-mail: mhernandezp0606@ipn.mx [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Rangel-Salinas, E. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico)

    2014-12-05

    Highlights: • CdS1−xSe{sub x} films with tunable structural and optical properties were grown by CBD. • Thin films are composed by a solid solution of the CdS{sub 1−x}Se{sub x} ternary alloy. • Crystal size, band gap and photoluminescence signal, decrease with the composition. • Ternary alloys show hexagonal phase with preferential orientation on (0 0 2) plane. • Films with x ⩾ 0.5 show semi-spherical grains composed by nanoworms structures. - Abstract: CdS{sub 1−x}Se{sub x} thin films were deposited on Corning glass substrates at 75 °C by chemical bath deposition (CBD) varying the composition “x” from 0 to 1 at a constant deposition time of 120 min. The composition of the films was adjusted by modifying the concentration as well as the ratio of the precursors. The morphological, compositional, structural and optical properties of the films were analyzed using several techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), UV–Vis Spectroscopy (UV–Vis) and Photoluminescence (PL). The films grow as layers following the ion by ion mechanism, the density of the films decreases with x. Films are constituted by clusters (100–600 nm in diameter) of semispherical particles with sizes fluctuating from 10 to 20 nm. For x ⩾ 0.5 the particles are well-arranged in a “worm-like” structure. All the films are polycrystalline, to x = 0 (CdS) the cubic phase is present, the increase of composition promotes the formation of hexagonal phase or a mixture of both cubic and hexagonal phases. Preferential orientation in the (1 0 0) or (0 0 2) plane is observed. The crystal size decreases from 20 to 6 nm when x is increased. The optical properties can be easily tuned by adjusting the composition. Optical absorption analysis shows that the band gap (E{sub g}) value shifts to red in function of x (from 2.47 to 1.99 eV). Photoluminescence signal changes as “x” varies showing a regular behavior

  19. Effect of swift heavy ion irradiation on the physical properties of CuIn(S 0.4Se 0.6) 2 alloy thin films prepared by solution growth technique

    Science.gov (United States)

    Chavhan, S. D.; Deshpande, N. G.; Gudage, Y. G.; Ghosh, A.; Ahire, R. R.; Borse, S. V.; Khairnar, R. S.; Jadhav, K. M.; Singh, F.; Sharma, Ramphal

    2008-06-01

    Alloy thin films of CuIn(S 0.4Se 0.6) 2 material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 °C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5×10 12 ions/cm 2 on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S 0.4Se 0.6) 2 thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.

  20. Effect of swift heavy ion irradiation on the physical properties of CuIn(S{sub 0.4}Se{sub 0.6}){sub 2} alloy thin films prepared by solution growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, S.D.; Deshpande, N.G.; Gudage, Y.G.; Ghosh, A.; Ahire, R.R.; Borse, S.V. [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (M.S.) (India); Khairnar, R.S. [Department of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (M.S.) (India); Jadhav, K.M. [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (M.S.) (India); Singh, F. [Inter University Accelerator Centre (IUAC)/(NSC), New Delhi 110 067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (M.S.) (India)], E-mail: ramphalsharma@yahoo.com

    2008-06-15

    Alloy thin films of CuIn(S{sub 0.4}Se{sub 0.6}){sub 2} material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 deg. C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5x10{sup 12} ions/cm{sup 2} on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S{sub 0.4}Se{sub 0.6}){sub 2} thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.

  1. Preparation of composite electroheat carbon film

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  2. Effect of surface preparation on corrosion properties and nickel release of a NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    MIAO Weidong; MI Xujun; XU Guodong; LI Huachu

    2006-01-01

    Surface preparation is potentially important to the corrosion and biomedical properties of NiTi shape memory alloys.The effect of surface preparation on corrosion properties and nickel release of a Ti-56 wt.%Ni alloy has been studied.Surface of the NiTi coupons were prepared by four methods, namely, chemical etching, electropolishing, mechanical polishing and oxidizing, and then examined by corrosion test system.Furthermore, the Ni ion releases from NiTi samples with different surface preparations dipped in 1% HCl solution were analysed.Compared with the surface after chemical treatment, mechanical polishing and thermal oxidation, electropolished surface has better corrosion resistance and less nickel release for not only its lower surface roughness, but also the composition and property of its surface film.

  3. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film

    International Nuclear Information System (INIS)

    Amorphous SiC film has been successfully fabricated on the surface of WE43 magnesium alloy by plasma enhanced chemical vapour deposition (PECVD) technique. The microstructure and elemental composition were analyzed by transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS), respectively. The immersion test indicated that SiC film could efficiently slow down the degradation rate of WE43 alloy in simulated body fluid (SBF) at 37 ± 1 °C. The indirect toxicity experiment was conducted using L929 cell line and the results showed that the extraction medium of SiC coated WE43 alloys exhibited no inhibitory effect on L929 cell growth. The in vitro hemocompatibility of the samples was investigated by hemolysis test and blood platelets adhesion test, and it was found that the hemolysis rate of the coated WE43 alloy decreased greatly, and the platelets attached on the SiC film were slightly activated with a round shape. It could be concluded that SiC film prepared by PECVD made WE43 alloy more appropriate to biomedical application.

  4. Influence of annealing temperature on properties of Cu(In,Ga)(Se,S)2 thin films prepared by co-sputtering from quaternary alloy and In2S3 targets

    International Nuclear Information System (INIS)

    Pentanary Cu(In,Ga)(Se,S)2 (CIGSS) thin films were deposited on soda-lime glass substrate by co-sputtering quaternary alloy, and In2S3 targets. In this study, we investigated the influence of post-annealing temperature on structural, compositional, electrical, and optical properties of CIGSS films. Our experimental results show that the CIGS quaternary target had chalcopyrite characteristics. All CIGSS films annealed above 733 K exhibited a polycrystalline tetragonal chalcopyrite structure, with (1 1 2) preferred orientation. The carrier concentration and resistivity of the resultant CIGSS layer annealed above 763 K was 4.86x1016 cm-3 and 32 Ω cm, respectively, and the optical band-gap of the CIGSS absorber layer was 1.18 eV. Raman spectral analysis demonstrated the existence of many different phases, including CuInSe2, CuGaSe2, and CuInS2. This may be because the vibration frequencies of In-Se, In-S bonds are similar to the Ga-Se and Ga-S bonds, causing their absorption bands overlap. -- Research Highlights: → We report a chalcopyrite Cu(In,Ga)(Se,S)2 (CIGSS) thin films on soda lime glass substrate by co-sputtering quaternary single-phase chalcopyrite CIGS alloy, and In2S3 targets. → By incorporating sulfur into partly selenized CIGS films, researchers fabricated a chalcopyrite CIGSS layer with double-graded band-gap structure. → The CIGS quaternary target and Raman spectra were analyzed for investigating the CIGSS structure and quality.

  5. Unusual magnetic phases in MnCo ultrathin alloy films

    International Nuclear Information System (INIS)

    For over a quarter century the Mn : Co magnetic phase diagram has been controversial. We find that for Mn : Co ultrathin alloys with dilute Mn concentration, the Mn and Co moments are coupled parallel for dilute Mn concentrations using X-ray magnetic circular dichroism (XMCD), in contradistinction to the latest accepted bulk results using neutron scattering. To determine if the parallel coupling was the result of epitaxial strain, surface or interface effects, we also performed measurements on very thick films of the same compositions. XMCD shows that thick film Mn : Co alloys have identical magnetic coupling as ultrathin films. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  7. Liquid phase separating mechanism and preparation techniques of immiscible alloys

    Institute of Scientific and Technical Information of China (English)

    刘源; 李言祥; 郭景杰; 贾均; 苏彦庆; 丁宏升

    2002-01-01

    Immiscible alloys have attracted growing interest for their valuable physical and mechanical properties. However, their production is difficult because of metallurgical problems in which there is a serious tendency for gravity separation in the region of the miscibility gap. So far the study on the liquid separation mechanism is still one of the important projects in the spatial materials science and the spatial fluid science. The studied results about the liquid phase separating mechanism of immiscible alloys are presented, at the same time the preparation techniques of homogeneous immiscible alloys are summarized, and the existing problems and the related researching areas in the future are also pointed out.

  8. Preparation and corrosion resistance studies of nanometric sol-gel-based CeO{sub 2} film with a chromium-free pretreatment on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shiyan [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingswu@yeah.ne [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China)

    2010-01-01

    Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO{sub 2} thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO{sub 2} sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO{sub 2}. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.

  9. Preparation and Characterization of Higher-Copper Restorative Dental Alloys

    International Nuclear Information System (INIS)

    A series of restorative dental alloys related to the ternary system Ag-Sn-Cu were prepared using high purity 99.99% elemental constituents. The effect of increasing the copper concentration on the micro-structural and mechanical properties of conventional dental amalgam alloy was investigated. Copper content was varied in the range of 10-30wt% and that of silver in the range of 40-60wt%, while tin percentage was kept constant between 28-30wt%. Selected desired compositions were weighed, melted, and homogenized for 1h in fused-alumina crucible using wire-resistance tube furnace at 1100-o-C under an inert atmosphere of argon gas. Two types of alloys were prepared, the first one was by quenching in water the alloy melt from a peak temperature of 725-o-C, while the second type was by slow furnace-cooling of the melt down to the room temperature. Annealing of the alloys at 350- 400-o-C for 24 hrs was also conducted to enhance the growth of the γ phase. The resultant alloys were then cooled to room temperature (R.T) and milled mechanically to obtain a powder having particles sizes in the range between 30-80μm. The resultant powdered alloys was then stress-relieved at 100-o-C for 1h. XRD analysis, optical microscopy, micro hardness, and compression strength tests were all used for the characterization and properties determination at different Cu-concentrations for the as-prepared and amalgamated alloys in addition to the powders.. The obtained relative values for the above-mentioned properties were closely related to those listed in the literatures and lies between those of mechanically-milled and those of spherical particles. Also the γ2 phase was disappeared at high copper content of > 20wt% (author).

  10. Nanocrystalline Pd alloy films coated by electroless deposition.

    Science.gov (United States)

    Strukov, G V; Strukova, G K; Batov, I E; Sakharov, M K; Kudrenko, E A; Mazilkin, A A

    2011-10-01

    The structures of palladium and palladium alloys thin films deposited from organic electrolytes onto metallic substrates by electroless plating method have been investigated. The coatings are dense, pore-free 0.005-1 microm thick films with high adhesive strength to the substrate surface. EDX, XRD, SEM and TEM methods were used to determine the composition and structure of alloy coatings of the following binary systems: Pd-Au, Pd-Ag, Pd-Ni, Pd-Pb, and ternary system Pd-Au-Ni. The coatings of Pd-Au, Pd-Ag and Pd-Ni have a solid solution structure, whereas Pd-Pb is intermetallic compound. It has been found that the deposited films consist of nanocrystalline grains with sizes in the range of 11-35 nm. Scanning and transmission electron microscopy investigations reveal the existence of clusters formed by nanocrystalline grains. The origin for the formation of nanocrystalline structures of coating films is discussed. PMID:22400291

  11. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si3N4microcantilever mirror structures were fabricated

  12. STUDY ON Ni-Cr SYSTEM SOLAR SELECTIVE THIN FILMS PREPARED BY MAGNETRON REACTIVE SPUTTERING PROCESS

    Institute of Scientific and Technical Information of China (English)

    B.W. Wang; H. Shen

    2002-01-01

    Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactivesputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as targetmaterial and copper sheets as substrate. Using SEM, Spectrophotometer and Talystepto analyze the relations between the selective characteristic and the structure, theformation and the thickness of the thin films. The aim is to obtain good solar selectivethin films with high absorptance and low emittance, which is applied to flat plate solarheat collectors.

  13. Preparation of Indium Tin Oxide films deposited by reactive evaporation at different substrate-temperature and the properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Indium Tin Oxide films have been prepared at different substrate-temperature on glass substrates by reactive evaporation of In-Sn alloy with an oxygen pressure of 1.3 × 10-1 Pa and a deposition rate of 10-2 nm/s. The best ITO films obtained cm2v-1s-1. The influence of the substrate-temperature on the structural, optical and electrical properties of the obtained films has been investigated.

  14. Grain refinement of hypoeutectic Al-Si alloy prepared with ELTA by Al-4B master alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-xing; MENG Xiang-yong; LIU Zhi-yong; LIU Zhong-xia; WENG Yong-gang; SONG Tian-fu; YANG Sheng

    2006-01-01

    Electrolytic low-titanium aluminum (ELTA) was produced by adding TiO2 powder to an industrial aluminum electrolyzer.The grain refining effect of Al-4B master alloy in the hypoeutectic Al-Si alloy prepared by using ELTA was investigated, and compared with those of Al-5Ti, Al-5Ti-1B and Al-4B master alloys in the similar alloy prepared by using pure Al. The results indicate that when Al-4B is added to the melt of the alloy prepared by using ELTA in terms of the Ti/B mass ratio of 5:1, the grain refining effect is better than those of Al-5Ti, Al-5Ti-1B and Al-4B master alloys. Thus, using Al-4B to refine the grain of Al-Si alloys prepared by using ELTA will possibly become a feasible way of obtaining Al-Si alloy with homogeneous and fine microstructure.

  15. Preparation of copper-beryllium alloys from Indian beryl

    International Nuclear Information System (INIS)

    The report presents the results of laboratory scale investigations on the preparation of copper-beryllium and aluminium-beryllium master alloys starting from Indian beryl and adopting the fluoride process. The flow-sheet involves : (1) conversion of the Be-values in beryl into water soluble sodium beryllium fluoride (2) preparation of beryllium hydroxide by alkali treatment of aqueous Na2BeF4 (3) conversion of Be(OH)2 to (NH4)2BeF4 by treatment with NH4HF2 (4) thermal decomposition of (NH4)2BeF4 to BeF2 and (5) magnesium reduction of BeF2 (with the addition of copper/aluminium) to obtain beryllium alloys. The method has been successfully employed for the preparation of Cu-Be master alloys containing about 8% Be and free of Mg on a 200 gm scale. An overall Be-recovery of about 80% has been achieved. Al-8% Be master alloys have also been prepared by this method. Toxicity and health hazards associated with Be are discussed and the steps taken to ensure safe handling of Be are described. (author)

  16. Role of Stress in Thin Film Alloy Thermodynamics: Competition between Alloying and Dislocation Formation

    International Nuclear Information System (INIS)

    Using scanning tunneling microscopy (STM) and first-principles local-spin-density-approximation calculations to study submonolayer films of Co1-cAg c/Ru( 0001) alloys, we have discovered a novel phase-separation mechanism. When the Ag concentration c exceeds 0.4, the surface phase separates between a dislocated, pure Ag phase and a pseudomorphically strained Co0.6Ag 0.4 surface alloy. We attribute the phase separation to the competition between two stress relief mechanisms: surface alloying and dislocation formation. The agreement between STM measurements and our calculated phase diagram supports this interpretation

  17. Influence of Al content on the properties of ternary Al2xIn2−2xO3 alloy films prepared on YSZ (1 1 1) substrates by MOCVD

    International Nuclear Information System (INIS)

    Highlights: • Al2xIn2−2xO3 films were prepared on the Y-stabilized ZrO2 (1 1 1) substrates by MOCVD at 700 °C. • A phase transition from the bixbyite In2O3 structure to the amorphous structure was observed. • The lowest resistivity of 4.7 × 10−3 Ω cm was obtained for the Al0.4In1.6O3 film. • Tunable optical band gap from 3.7 to 4.8 eV was obtained. - Abstract: The ternary Al2xIn2−2xO3 films with different Al contents of x [Al/(Al + In) atomic ratio] have been fabricated on the Y-stabilized ZrO2 (1 1 1) substrates by metal organic chemical vapor deposition at 700 °C. The structural, electrical and optical properties of the films as a result of different Al contents (x = 0.1–0.9) were investigated in detail. With the increase of Al content from 10% to 90%, a phase transition from the bixbyite In2O3 structure with a single orientation along (1 1 1) to the amorphous structure was observed. The minimum resistivity of 4.7 × 10−3 Ω cm, a carrier concentration of 1.4 × 1020 cm−3 and a Hall mobility of 9.8 cm2 v−1 s−1 were obtained for the sample with x = 0.2. The average transmittances for the Al2xIn2−2xO3 films in the visible range were all over 78% and the optical band gap of the films could be tuned from 3.7 to 4.8 eV

  18. Electrodeposition of Er-Ni Alloy Film in Dimethylsulfoxide

    Institute of Scientific and Technical Information of China (English)

    李高仁; 童叶翔; 刘冠昆

    2002-01-01

    The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO4-DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol*L-1 ErCl3 -0.1 mol*L-1 LiClO4-DMSO system at 303K were 1.47×10-10 m2*s-1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol*L-1 NiCl2-0.1 mol*L-1 LiClO4-DMSO system at 303K were 3.38×10-10 m2*s-1 and 0.160 respectively. The homogeneous, strong adhesive Er-Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl3-NiCl2-LiClO4-DMSO system at -1.90~-2.55 V (vs SCE).

  19. Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

    Directory of Open Access Journals (Sweden)

    Luyang Han

    2011-08-01

    Full Text Available The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111 and epitaxial Pt(100 films on MgO(100 and SrTiO3(100 substrates, respectively. For this purpose, metallic Co nanoparticles (diameter 7 nm were prepared with a spacing of 100 nm by deposition of precursor-loaded reverse micelles, subsequent plasma etching and reduction on flat Pt surfaces. The samples were then annealed at successively higher temperatures under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111 films exhibiting grain sizes (20–30 nm smaller than the particle spacing (100 nm, the formation of local nanoalloys at the surface is strongly suppressed and Co incorporation into the film via grain boundaries is favoured. In contrast, due to the absence of grain boundaries on high quality epitaxial Pt(100 films with micron-sized grains, local alloying at the film surface was established. Signatures of alloy formation were evident from magnetic investigations. Upon annealing to temperatures up to 380 °C, we found an increase both of the coercive field and of the Co orbital magnetic moment, indicating the formation of a CoPt phase with strongly increased magnetic anisotropy compared to pure Co. At higher temperatures, however, the Co atoms diffuse into a nearby surface region where Pt-rich compounds are formed, as shown by element-specific microscopy.

  20. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    International Nuclear Information System (INIS)

    Highlights: ► We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. ► The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. ► The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO2 were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH3(CH2)11Si(OCH3)3). The CeO2 films fabricated with 20-min immersion yield a water contact angle of 137.5 ± 2°, while 20-min DTS treatment on top of CeO2 can further enhance the water contact angle to 146.7 ± 2°. Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  1. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan, E-mail: liuyan2000@jlu.edu.cn [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Lu Guolong; Liu Jindan; Han Zhiwu; Liu Zhenning [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. Black-Right-Pointing-Pointer The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. Black-Right-Pointing-Pointer The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO{sub 2} were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The CeO{sub 2} films fabricated with 20-min immersion yield a water contact angle of 137.5 {+-} 2 Degree-Sign , while 20-min DTS treatment on top of CeO{sub 2} can further enhance the water contact angle to 146.7 {+-} 2 Degree-Sign . Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  2. In situ oxidation studies on /001/ copper-nickel alloy thin films

    Science.gov (United States)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1977-01-01

    High-resolution transmission electron microscopy studies are reported of (001)-oriented single crystalline thin films of Cu-3%Ni, Cu-4.6%Ni, and Cu-50%Ni alloy which were prepared by vapor deposition onto (001) NaCl substrates and subsequently annealed at around 1100 K and oxidized at 725 K at low oxygen partial pressure. At all alloy concentrations, Cu2O and NiO nucleated and grew independently without the formation of mixed oxides. The shape and growth rates of Cu2O nuclei were similar to rates found earlier. For low-nickel alloy concentrations, the NiO nuclei were larger and the number density of NiO was less than that of Cu-50%Ni films for which the shape and growth rates of NiO were identical to those for pure nickel films. Phenomena involving a reduced induction period, surface precipitation, and through-thickness growth are also described. The results are consistent with previously established oxidation mechanisms for pure copper and pure nickel films.

  3. Annealing effects on the electrical resistivity of AuAl thin films alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, R.D., E-mail: rubdoming@live.com.mx [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico); Oliva, A.I.; Corona, J.E. [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico)

    2009-08-15

    Au/Al bilayer (50-250-nm thickness) thin films were deposited by thermal evaporation on p-type silicon (1 0 0) substrates. The formed Au/Al/Si systems were annealed from room temperature (RT) to 400 deg. C to form AuAl/Si alloys. Two groups of AuAl alloys were analyzed. The first group was prepared as a function of the atomic concentration and the second group was prepared as a function of thickness. The morphology and crystalline structure of the alloys were analyzed by AFM and X-ray diffraction techniques, respectively. The electrical resistivities of the AuAl alloys were measured by the four-probe technique. The first group of thin AuAl alloys presented segregations as a consequence of the annealing treatment and the atomic concentration; meanwhile, the electrical resistivity showed abrupt changes as a consequence of changing the atomic concentration. In the second group a monotonically increment in the grain size was found meanwhile for thickness below 100 nm the electrical resistivity presented important differences as compared with the before annealing process.

  4. Annealing effects on the electrical resistivity of AuAl thin films alloys

    International Nuclear Information System (INIS)

    Au/Al bilayer (50-250-nm thickness) thin films were deposited by thermal evaporation on p-type silicon (1 0 0) substrates. The formed Au/Al/Si systems were annealed from room temperature (RT) to 400 deg. C to form AuAl/Si alloys. Two groups of AuAl alloys were analyzed. The first group was prepared as a function of the atomic concentration and the second group was prepared as a function of thickness. The morphology and crystalline structure of the alloys were analyzed by AFM and X-ray diffraction techniques, respectively. The electrical resistivities of the AuAl alloys were measured by the four-probe technique. The first group of thin AuAl alloys presented segregations as a consequence of the annealing treatment and the atomic concentration; meanwhile, the electrical resistivity showed abrupt changes as a consequence of changing the atomic concentration. In the second group a monotonically increment in the grain size was found meanwhile for thickness below 100 nm the electrical resistivity presented important differences as compared with the before annealing process.

  5. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  6. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  7. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    Indian Academy of Sciences (India)

    S S Nayak; B S Murty; S K Pabi

    2008-06-01

    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  8. Microstructure of electroplated Cu(Ag) alloy thin films

    International Nuclear Information System (INIS)

    Electroplated Cu(Ag) alloy thin films are potential candidates for future electronic devices in terms of lifetime and reliability compared to copper as the state of the art interconnect material. In the present paper we focus on the microstructure of Cu(Ag) alloy films considering the grain evolution as well as silver incorporation and segregation. We show that Ag alloying addition prevents room temperature recrystallization. Thermally induced grain growth occurs mainly between 180 oC and 330 oC. Silver can be incorporated as solid solution into the Cu matrix by up to 0.8 at.% after annealing and even in higher concentrations in the as-deposited state, which is significantly above the equilibrium solubility limit. Precipitations are formed by the continuous mode and can be mainly found at the film surface but also inside the Cu(Ag) grains as ball-shaped particles. Based on our results a reliability improvement is expected by mechanical strengthening due to alloying effects while maintaining a low electrical resistivity and a {111} fiber texture.

  9. Characterization of thermally stable Ir-Ta alloy thin films deposited by sputtering

    OpenAIRE

    Watanabe, E; Abe, Y.; Sasaki, K; Iura, S.; 阿部, 良夫; 佐々木, 克孝

    2004-01-01

    Ir-Ta alloy thin films were deposited on Si0_2/Si substrates by a magnetron sputtering system using pure Ar as sputtering gas. The lr/Ta composition ratio of the alloy films was varied by changing the number of Ta chips on an lr target. The crystal structure of the alloy films changed from fcc-Ir to lr_3Ta, α-(Ir,Ta), Ta_3Ir, and bcc-Ta with increasing Ta content. Post-deposition annealing of the alloy films was carried out in oxygen at temperatures from 300℃ to 800℃ for 1 hour. The alloy fil...

  10. Metamorphosis quality preparing of alloy Ti64 in laboratory conditions

    Directory of Open Access Journals (Sweden)

    M. Žitňanský

    2007-01-01

    Full Text Available Purpose: The aim of our research was the developing of the method for preparing titanium alloy (Ti64 ELI byremold in laboratory conditions on our research workplace. As a reason for writing the paper is to inform thetechnical society.Design/methodology/approach: The objectives were achieved by using differently sources heating of remoldedtitanium alloy Ti64 ELI, by using of differently conditions by vacuum melting and pouring in to ceramics orcopper moulds. As main method used for our research was remolding, purification, casting in the vacuumand than special heat treating by HIP processes. The quality of microstructure was investigated by electronmicroscopy and tested by Charpy impact test. The mean aim was to get microcastings of very intricate shapesand with very high quality of casting material. Through application four differently conditions of remolding wehave found that in our workplace we have good ability to prepare the microcastings with very good quality,which is the main conclusion.Findings: For expectation it is possible by using such a process for production special microcastings from Ti64ELI alloy. The mean idea of this paper will have practical implications.Research limitations/implications: In this time as a limitation is a little small capacity of plasma burner.Practical implications: The result of this paper should be made some changes in practice e.g. as savings ofturning and lastly the using of Rapid Prototyping method.Originality/value: The original value of our paper is the testimony above quality of alloy Ti64 ELI as cast. Thequality of alloy Ti64 ELI as cast is comparable with certified Ti64 ELI from abroad. The reach a destination ofoutcome in our laboratory conditions is a perspective method for production of microcastings from alloy Ti64.

  11. Preparation and Analysis of Complex Barrier Layer of Heterocyclic and Long-Chain Organosilane on Copper Alloy Surface

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2016-07-01

    Full Text Available A single electrodeposited film of 6-(3-triethoxysilylpropylamino-1,3,5-triazine-2,4-dithiol monosodium (TES on a copper alloy surface was prepared by the galvanostatic method, then octyl-triethoxysilane (OTES or hexadecyl-trimethoxysilane (HDTMS was used to modify the electrodeposited film by the self-assembled technique to fabricate the complex film. The electrodeposition process was inferred by cyclic voltammetry. The single and complex films were characterized by means of contact angle, cyclic voltammetry, Fourier transform infrared spectroscopy (FT-IR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and scanning electron microscope (SEM. The results showed that the contact angle of the complex film covering the copper alloy surface was up to 118.1° compared with 89.4° of the bare copper alloy. The cyclic voltammogram, polarization curves and EIS indicated that the anti-corrosion performance of complex film was better than that of single electrodeposited TES film, and the protection efficiency was up to 90.2%.

  12. Influence of Alloying Elements on the Morphology of Thin Oxide Film Formed on FeCrX Alloys

    International Nuclear Information System (INIS)

    The structure on the scales formed on the surface of Fe-Cr-X alloys exposed to 1143K high temperature sulfidation/oxidation environment has been observed and analysed using SEM/EDS and XRD. High density of defects such as pores and cracks were observed in the sulfide scale, (Fe, Cr)Sx, formed on the surface of Fe-25Cr alloy. These defects allow the direct contact of alloy/scale interface with hot corrosive gas introduced from high temperature corrosion environment and thus scale do not protect the alloy from extensive corrosion. The addition of alloying elements, such as aluminium or titanium up to 6wt.% to Fe-25Cr alloy promotes the formation of thin layer of defect free sulfide film, (Cr, Al) Sx or (Cr, Ti)Sx at the alloy/scale interface which improves the protective property of sulfide scale. Compact and dense oxide film is able to form on the surface of Fe-25Cr-X alloys by the addition of zirconium as minor alloying element. The enrichment of zirconium at the oxide film/alloy interface promotes the protective film formation. About 2μm thick Al2O3 film forms on the surface of Fe-25Cr-6Al-2Zr alloy in both sulfidation and sulfidation/oxidation environment. Protective oxide, (Cr, Ti)Ox, about 2μm thick film forms on the surface of Fe-25Cr-6Ti-2Zr alloy with a thin alyer of (Ti, Zr)Ox at the film/alloy interface during exposure to the high temperature corrosion environment

  13. Preparation and Evaluation of Stomatitis Film Using Xyloglucan Containing Loperamide.

    Science.gov (United States)

    Kawano, Yayoi; Sasatsu, Masanaho; Mizutani, Ayako; Hirose, Kaoru; Hanawa, Takehisa; Onishi, Hiraku

    2016-06-01

    Stomatitis induced by radiation therapy or cancer chemotherapy is a factor in sleep disorders and/or eating disorders, markedly decreasing patient quality of life. In recent years, disintegrating oral films that are easy to handle have been developed; therefore, we focused on the formulation of these films. We prepared an adhesive film for the oral cavity using xyloglucan (Xylo), which is a water-soluble macromolecule. We used loperamide, which has been reported to relieve pain caused by stomatitis effectively, as a model drug in this study. Films were prepared from Xylo solutions (3% (w/w)) and hypromellose (HPMC) solutions (1% (w/w)). Xylo and HPMC solutions were mixed at ratios of 1 : 1, 2 : 1, or 3 : 1 for each film, and films 2×2 cm weighing 3 g were prepared and dried at 37°C for 24 h. Physicochemical properties such as strength, adhesiveness, disintegration behavior, and dissolution of loperamide from films were evaluated. Films prepared from Xylo solution alone had sufficient strength and mucosal adhesion. On the other hand, films prepared from a mixture of Xylo and HPMC were inferior to those made from Xylo, but showed sufficient strength and mucosal adhesion and were flexible and easy to handle. The films prepared in this study are useful as adhesion films in the oral cavity. PMID:26960400

  14. Separation of hydrogen isotopes with palladium alloy film

    International Nuclear Information System (INIS)

    The method of separating hydrogen isotopes with palladium alloy films has been the object of examination as the method applicable to the fuel supply and exhaust system for fusion reactors. It is necessary to treat tritium, deuterium and hydrogen in the isotopic separators for fusion reactors, and in the case of palladium alloy film method, since hydrogen isotopes permeate through the film in atomic state, it can be designed as the cascade of three-component system. Also, this method is the separating operation in gaseous phase, accordingly it is expected that tritium holdup is smaller than that in hydrogen liquefying rectification. As its faults, irreversible multi-stage operation and high temperature operation are required. The separation factor in the palladium alloy film cells of practical tube type depends on temperature, pressure, isotopic molecular composition, the flow mode of gas and so-called cut, therefore, in this study, it was decided to examine the separation factor and permeation performance under various operational conditions. The experiment and its results are reported. It was clarified that the tube length of 64 cm was sufficient, and counterflow mode was suitable, to increase the overall separation factor of the cells. (Kako, I.)

  15. Effects of electrolytic concentration on properties of micro-arc film on Ti6A14V alloy

    Institute of Scientific and Technical Information of China (English)

    SHI Xing-ling; WANG Qing-liang; WANG Fu-shun; GE Shi-rong

    2009-01-01

    To study the effect of electrolytic concentration, bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation (MAO) in aqueous solutions of different concentrations. Composition, mi-cro-morphology, wettability of the films and their corrosion behavior in a Hank's SBF were studied. Our experimental results show that the film is mainly composed of anatase, ruffle and amorphous phases. With an increase in electrolytic concentration, the ratio of ruffle in films enlarge and small amounts of calcium phosphate (Ca3(PO4)2) and hydroxyapatite (HA) appear. The number of mi-cropores in films increases but their dimensions decrease and their porosities increase slightly. As the surface roughness of MAO film increases with concentration, the wettablility of the oxide film improves continually, while micro-hardness increases at first and then decreases. MAO treatment clearly improves the corrosion resistance of substrates in a Hank's SBF.

  16. Influence of Al content on the properties of ternary Al{sub 2x}In{sub 2−2x}O{sub 3} alloy films prepared on YSZ (1 1 1) substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianjin; Zhao, Cansong; Li, Zhao; Luo, Yi; Ma, Jin, E-mail: jinmasduphy@163.com

    2015-10-15

    Highlights: • Al{sub 2x}In{sub 2−2x}O{sub 3} films were prepared on the Y-stabilized ZrO{sub 2} (1 1 1) substrates by MOCVD at 700 °C. • A phase transition from the bixbyite In{sub 2}O{sub 3} structure to the amorphous structure was observed. • The lowest resistivity of 4.7 × 10{sup −3} Ω cm was obtained for the Al{sub 0.4}In{sub 1.6}O{sub 3} film. • Tunable optical band gap from 3.7 to 4.8 eV was obtained. - Abstract: The ternary Al{sub 2x}In{sub 2−2x}O{sub 3} films with different Al contents of x [Al/(Al + In) atomic ratio] have been fabricated on the Y-stabilized ZrO{sub 2} (1 1 1) substrates by metal organic chemical vapor deposition at 700 °C. The structural, electrical and optical properties of the films as a result of different Al contents (x = 0.1–0.9) were investigated in detail. With the increase of Al content from 10% to 90%, a phase transition from the bixbyite In{sub 2}O{sub 3} structure with a single orientation along (1 1 1) to the amorphous structure was observed. The minimum resistivity of 4.7 × 10{sup −3} Ω cm, a carrier concentration of 1.4 × 10{sup 20} cm{sup −3} and a Hall mobility of 9.8 cm{sup 2} v{sup −1} s{sup −1} were obtained for the sample with x = 0.2. The average transmittances for the Al{sub 2x}In{sub 2−2x}O{sub 3} films in the visible range were all over 78% and the optical band gap of the films could be tuned from 3.7 to 4.8 eV.

  17. High-coercivity ferrite magnets prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Nanocrystalline hexaferrite (BaFe12O19 or SrFe12O19) and mixed Fe,Co-ferrite ((FexCo1-x)Fe2O4 with x=0-1) materials have been prepared by mechanical alloying and subsequent annealing. High coercivities were obtained in these nanocrystalline materials, 6-7 kOe for hexaferrite and ∝3 kOe for Co-ferrite. Hexaferrite powders prepared by mechanical alloying have been used as the starting material for high-coercivity bonded magnets. Hot-pressed anisotropic hexaferrite magnets have been produced with high values of coercivity and remanence. High magnetic performance was also achieved in some mixed Fe,Co-ferrites after magnetic annealing. (orig.)

  18. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Zhuang-zi; ZHANG Zhao-zhu; LIU Wei-min; TIAN Jun

    2005-01-01

    A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.

  19. PECULARITIES OF COMPOSITE POWDERS PLASMA SPRAYING PREPARED BY MECHANICAL ALLOYING

    OpenAIRE

    Kudinov, V.; Pekshev, P.; Tcherniakov, S.; Kondratenko, L.

    1990-01-01

    In the present paper the main advantages of mechanical alloying compared to the other methods of composite powders preparing are discussed from the point of view both of powder quality and structure and properties of sprayed coatings. As an example on the base of NiCr-ZrO2-, NiCr-Cr2C3-, W-Cu- compositions it is shown, that prepared powders are characterized by high particles composition homogeneity, fine disperse components distribution in particles volume, high values of bound strength and ...

  20. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  1. Preparation and characterization of thick cubic boron nitride films

    International Nuclear Information System (INIS)

    Cubic boron nitride (c-BN) films are prepared by the radio frequency magnetron sputtering technique. The stresses and crystallinities of the films are estimated by the Fourier transform infrared spectroscopy of c-BN samples, including the peak shifts and varieties of full widths at half maximum. The effects of the B—C—N interlayer and the two-stage deposition method on the c-BN films are investigated. Then the thick and stable c-BN films are prepared by a combination of the two methods. The properties of the interlayer and film are also characterized

  2. Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity

    Indian Academy of Sciences (India)

    Shipra Tripathi; G K Mehrotra; P K Dutta

    2011-02-01

    The chitosan–silver oxide encapsulated nanocomposite film was prepared by solution casting method. The prepared film was characterized by FTIR, scanning electron microscopy (SEM), thermal studies, and UV-Vis spectroscopy. The elemental composition of the film was studied by energy dispersive X-ray analysis (EDAX). The antibacterial activity of the composite film against pathogenic bacteria viz. Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa was measured by agar diffusion method. Our observations suggest that chitosan as biomaterial based nanocomposite film containing silver oxide has an excellent antibacterial ability for food packaging applications.

  3. 锂离子电池锡合金负极薄膜材料制备及性能%Preparation and performance of tin alloy film anode materials for lithium-ion battery

    Institute of Scientific and Technical Information of China (English)

    王连邦; 褚君尉; 张品杰; 姚金翰; 马淳安

    2012-01-01

    Tin thin-film electrodes were prepared by electroless plating on copper foil as anode of lithium-ion battery. There were three samples with different thickness and structure obtained depend on different deposited conditions. Their structure and properties were characterized and studied by X-ray diffration, scanning electron microscopy, charging/discharging test, cyclic voltammetry. The tin-thin film deposited for 10 minutes exhibited a structure of tetragonal crystal. The tin-thin film was composed of tin particles with the size of around 4 μm,and the tin particle was full of similar holes, which enhanced the specific furface area of electrode. The tin-thin film electrode showed high charge-discharge capacity. At potential of 0. 01 - 1. 00 V, The first discharge capacity of the tin-thin film electrode was 885. 7 mAh/g, its discharge capacity remained over 460 mAh/g after 100 cycles.%采用化学沉积的方法在铜箔上制备锡薄膜,通过改变沉积条件,制得三种不同厚度和结构的锡合金负极材料.运用XRD、SEM、充放电和循环伏安等多种方法对电极结构和性能进行表征和研究.研究表明:沉积时间为10 min的锡薄膜负极材料具有四方晶系结构,其表面由尺寸在4μm左右的合金颗粒构成,颗粒有大小均匀的孔洞结构,增加了电极的比表面积.该锡薄膜电极具有较高的容量,在0.01~1.00 V电压区间内,电极的首次放电容量为885.7 mAh/g,循环100周后放电容量仍保持在460 mAh/g以上.

  4. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Science.gov (United States)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  5. Magnetic properties of iron-based amorphous and nanocrystalline Fe-Zr-X-B (X: Cu, Al) alloy films

    International Nuclear Information System (INIS)

    Thermal stability and magnetic properties of thin films, of a few Fe-based amorphous and nanocrystalline alloys, have been studied. The alloys belong to the class Fe-M-B, whose representatives are Fe87Zr4CuB8, Fe87Zr7B6, and Fe87Zr7AlB5 and are of particular interest because of their wide variety of magnetic properties. The films were prepared by flash evaporation onto liquid nitrogen cooled substrates. Measurements of the Kerr effect, the Hall effect, and ferromagnetic resonance in the films were carried out as functions of the annealing temperature. It was found that the changes in the coercive field Hc, resonance linewidth ΔHpp, effective magnetization Meff, Hall parameters, and resistance were correlated with the structural changes in the studied films. (author)

  6. Transparent yttrium hydride thin films prepared by reactive sputtering

    OpenAIRE

    Mongstad, T.; Platzer-Björkman, C.; Karazhanov, S. Zh.; Holt, A.; Maehlen, J. P.; Hauback, B. C.

    2011-01-01

    Metal hydrides have earlier been suggested for utilization in solar cells. With this as a motivation we have prepared thin films of yttrium hydride by reactive magnetron sputter deposition. The resulting films are metallic for low partial pressure of hydrogen during the deposition, and black or yellow-transparent for higher partial pressure of hydrogen. Both metallic and semiconducting transparent YHx films have been prepared directly in-situ without the need of capping layers and post-deposi...

  7. Preparation and characterization of RF sputtered ITO thin films

    International Nuclear Information System (INIS)

    Thin films of tin doped indium oxide have been prepared on glass substrates using RF sputtering technique. Prepared films have been characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive analysis by X-rays (EDAX). Optical absorption is analysis (UV) showed that the deposited film possessed a direct band gap value of 3.5 eV. (author)

  8. Admittance Loci Based Design of a Plasmonic Structure Using Ag-Au Bimetallic Alloy Film

    OpenAIRE

    Kaushik Brahmachari; Mina Ray

    2013-01-01

    A theoretical study based on the use of admittance loci method in the design of surface plasmon resonance (SPR) based structure using Ag-Au bimetallic alloy film of different alloy fractions and nanoparticle sizes has been reported along with some interesting performance related simulated results at 633 nm wavelength. The sensitivity and other performance parameter issues of the structure based on the choice of correct alloy fraction and nanoparticle size of Ag-Au bimetallic alloy film have a...

  9. Gilbert damping constant of FePd alloy thin films estimated by broadband ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Kawai T.

    2014-07-01

    Full Text Available Magnetic relaxation of FePd alloy epitaxial thin films with very flat surfaces prepared on MgO(001 substrate are measured by in-plane broadband ferromagnetic resonance (FMR. Magnetic relaxation is investigated as Δω for FMR absorption peak by frequency sweep measurements. ΔH is calculated by using the measured Δω. Gilbert damping constant, α, is estimated by employing a straight line fitting of the resonant frequency dependence of ΔH. The α value for an FePd film deposited at 200 ˚C, which shows disordered A1 structure, is 0.010 and ΔH0, which is frequency independent part of ΔH, is 10 Oe. The α value for a film annealed at 400 ˚C, which shows partially L10 ordered structure (S=0.32, is 0.013, which is slightly larger than that for the disorder A1 structure film. However, ΔH0 for the annealed film is 85 Oe, which is much larger than that for the film with disordered structure. The results show that the magnetic relaxation of the 400 ˚C annealed film is mainly dominated by ΔH0, which is related with magnetic in-homogeneity caused by the appearance of perpendicular anisotropy of partially ordered phase.

  10. Hydrogen storage alloys prepared by high-energy milling

    Directory of Open Access Journals (Sweden)

    M. Staszewski

    2011-02-01

    Full Text Available Purpose: The aim of this work was to investigate an efficiency of high-energy milling, as a method to obtain hydrogen storage alloys with good properties.Design/methodology/approach: Two classes of the alloys were studied: AB2 type with atomic composition of (Ti0.5Zr0.5(V0.68Mn0.68Cr0.34Ni0.7 and AB5 type with atomic composition of (Ce0.63La0.37(Ni3.55Al0.3Mn0.4 Co0.75.The materials were prepared by arc melting and initially pulverized and afterwards subjected to wet milling process in a planetary mill.Findings: Both initially obtained alloys had proper, single phase structure of hexagonal symmetry. However their elemental composition was greatly inhomogeneous. High-energy milling causes both homogenization of the composition and severe fragmentation of the powder particles, which after milling have mean diameter of about 3 µm (AB2 alloy and below 2 µm (AB5 alloy. The morphology of obtained powders reveals that they tend to form agglomerates consisting of large number of crystallites. Mean crystallite sizes after milling are of about 4.5 nm and of 20 nm, respectively. The specific surface of the powders, measured using BET method, equals 8.74 m2/g and 2.70 m2/g, respectively.Research limitations/implications: The results provide the information on the possibility of obtaining hydrogen storage alloys by high-energy milling and on the transformations taking place as a result of this process.Practical implications: The obtained powders can be used to produce the elements of hydrogen-nickel batteries and fuel cells, providing improved properties; especially extreme rise of the specific surface of the hydrogen storage material, in compare to the standard methods.Originality/value: New method for preparation of hydrogen storage alloys by means of high-energy milling technique has been successfully tested.

  11. Silk fibroin/pullulan blend films: Preparation and characterization

    Science.gov (United States)

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.; Sarojini, B. K.; Somashekhar, R.; Asha, S.; Sangappa, Y.

    2016-05-01

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  12. Preparation and characterization of vanadium oxide thin films

    International Nuclear Information System (INIS)

    The thermotropic VO2 films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO2 and lime glass substrates. Thin films of V2O5 can be reduced to metastable VO2 thin films at the temperature of 450 grad C under the pressure of 10-2 Pa. These films are then converted to thermotropic VO2 at 700 grad C in argon under normal pressure. (authors)

  13. Hydrogen absorption by Zr-1Nb alloy with TiN[x] film deposited by filtered cathodic vacuum arc

    OpenAIRE

    Kashkarov, Egor Borisovich; Nikitenkov, Nikolai Nikolaevich; Syrtanov, Maksim Sergeevich; Babihina, M. N.

    2016-01-01

    This paper describes the opportunity of titanium nitride (TiNx) films application as protective coating for Zr-2.5Nb alloy from hydrogenation. Dense TiN[x] films were prepared by filtered cathodic vacuum arc (CVA). Hydrogen absorption rate was calculated from the kinetic curves of hydrogen sorption at elevated temperature of the sample (T=673 K) and pressure (P=2 atm). Results revealed that TiN[x] films significantly reduced hydrogen absorption rate of Zr-2.5Nb.

  14. A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys

    International Nuclear Information System (INIS)

    We report a novel strategy for the fabrication of nanoporous gold (NPG) films. The fabrication process involves the electrodeposition of a gold–tin alloy, followed by subsequent chemical dealloying of tin. Scanning electron microscopy (SEM) images show a bicontinuous nanoporous structure formed on the substrates after chemical dealloying. Energy dispersive x-ray (EDX) analysis indicates that there are no impurities in the Au–Sn alloy film with an average composition of 58 at. % Au and 42 at. % Sn. After dealloying, only gold remains in the NPG film indicating the effectiveness of this technique. X-ray diffraction (XRD) results reveal that the as-prepared Au–Sn alloy film is composed of two phases (Au5Sn and AuSn), while the NPG film is composed of a single phase (Au). We demonstrate that this approach enables the fabrication of NPG films, either freestanding or supported on various conductive substrates such as copper foil, stainless steel sheet and nickel foam. The resulting NPG electrode exhibits enhanced electrocatalytic activity toward both H2O2 reduction and methanol oxidation compared to the polished Au disc electrode. Our strategy provides a general method to fabricate high quality NPG films on conductive substrates, which will broaden the application potential of NPG or NPG-based materials in various fields such as catalysis, optics and sensor technology. (paper)

  15. Studies of nanocrystalline Pd alloy films coated by electroless deposition

    International Nuclear Information System (INIS)

    The microstructures of thin coating films of pure palladium and palladium alloys deposited from organic electrolytes onto different metallic substrates by electroless plating method have been investigated. The coatings are dense, pore-free 0.005-1 μm thick films with high adhesive strength to the substrate surface. X-ray spectral analysis, X-ray phase analysis, transmission and scanning electron microscopy were used to determine the composition and structure of alloy coatings of binary systems: Pd-Au, Pd-Ag, Pd-Ni, Pd-Pb, and ternary system Pd-Au-Ni. The coatings of Pd-Au, Pd-Ag, and Pd-Ni have a solid solution structure, whereas Pd-Pb is intermetallic compound. It has been found that the deposited films consist of nanocrystalline grains with sizes in the range of 11-35 nm. Scanning and transmission electron microscopy investigations reveal the existence of clusters formed by nanocrystalline grains. The origin for the formation of nanocrystalline structures of coating films is discussed.

  16. Preparation and properties of PSA for protective film of fluorine carbon aluminum-alloy profile%氟碳铝型材保护膜用压敏胶的制备与性能

    Institute of Scientific and Technical Information of China (English)

    何伟; 高明华; 姜云刚; 武鹏

    2013-01-01

    以丙烯酸丁酯(BA)和丙烯酸异辛酯(2-EHA)为软单体、甲基丙烯酸甲酯(MMA)为硬单体、丙烯酸(AA)和丙烯酸羟丙酯(HPA)为功能单体,采用降低PSA(压敏胶)的Tg(玻璃化转变温度)和预乳化半连续乳液聚合法合成了丙烯酸酯PSA乳液.研究结果表明:当m(软单体)∶m(硬单体)∶m(功能单体)=90∶5∶5、m(BA)∶m(2-EHA)=1∶2、w(AA)=1.0%、w(HPA)=5%、w(缓冲剂)=0.25%、w(引发剂)=w(复合乳化剂)=0.6%且m(阴离子型乳化剂)∶m(非离子型乳化剂)=1∶1时,PSA乳液的综合性能相对最好,用该PSA制成的保护膜对氟碳铝型材具有良好的附着力,并且其耐湿热老化性能和耐热老化性能俱佳.%With butyl acrylate(BA) and 2-ethylhexyl acrylate(2-EHA) as soft monomers,methyl melhacrylate (MMA) as hard monomer,acrylic acid(AA) and hydroxypropyl acrylate(HPA) as functional monomers,an acrylate PSA(pressure sensitive adhesive) emulsion was synthesized by reducing Tg(glass transition temperature) of PSA and pre-emulsifying semi-continuous emulsion polymerization. The research results showed that the PSA emulsion had the relatively best combination property because the adhesion between the protective film made by PSA and the fluorine carbon aluminum-alloy profiles was good,and the protective film had good wet-heat aging-resistance and heat aging-resistance when mass ratios of m(soft monomers):m(hard monomer):m(functional monomers) and m(BA):m(2-EHA) were 90:5:5 and 1:2 respectively,mass fractions of AA,HPA, buffering agent,initiator and composite emulsifier were 1.0%,5%,0.25%,0.6% and 0.6% respectively,and mass ratio of m(anionic emulsifier):m(non-ionic emulsifier) was 1:1.

  17. Two-dimensional Pb–Sn alloy monolayer films on Ag(1 1 1)

    International Nuclear Information System (INIS)

    Highlights: • Both Pb and Sn films form a hexagonal close-packed structure on Ag(1 1 1). • The 2D binary films of Pb and Sn exhibit an incommensurate structure close to (√13 × √13). • The binary 2D film is considered to follow the Hume-Rothery rule. - Abstract: Single and binary two-dimensional (2D) films of Pb and Sn on Ag(1 1 1) prepared at room temperature have been investigated using low-energy electron diffraction (LEED) and scanning tunneling microscopy. (√28 × √28)-Pb is observed in addition to (√3 × √3)-Pb at coverages higher than 0.35 ML. The nominal coverages for the (√28 × √28)-Pb and (√3 × √3)-Pb structures are determined to be 0.68 and 1/3 ML, respectively. The (1 × 1)-Sn structure is formed at coverages less than 1 ML. Both Pb and Sn films form a hexagonal close-packed structure on Ag(1 1 1). When the Sn coverage increases to more than 1 ML, excess Sn atoms form a (√3 × √3) structure on the (1 × 1)-Sn surface. The 2D binary films exhibit an incommensurate structure close to (√13 × √13) at Pb and Sn coverages of 0.5 and 0.25 ML, respectively. Atomic-resolution STM images exhibit a hexagonal close-packed structure. From the DFT total energy calculations, it is concluded that the Pb and Sn atoms of the (“√13 × √13″) structure do not form an ordered alloy but, rather, form a solid solution alloy. From these results, it is concluded that the binary 2D films also follow the Hume-Rothery rule

  18. Two-dimensional Pb–Sn alloy monolayer films on Ag(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Yuhara, J., E-mail: j-yuhara@nagoya-u.jp; Ako, T.

    2015-10-01

    Highlights: • Both Pb and Sn films form a hexagonal close-packed structure on Ag(1 1 1). • The 2D binary films of Pb and Sn exhibit an incommensurate structure close to (√13 × √13). • The binary 2D film is considered to follow the Hume-Rothery rule. - Abstract: Single and binary two-dimensional (2D) films of Pb and Sn on Ag(1 1 1) prepared at room temperature have been investigated using low-energy electron diffraction (LEED) and scanning tunneling microscopy. (√28 × √28)-Pb is observed in addition to (√3 × √3)-Pb at coverages higher than 0.35 ML. The nominal coverages for the (√28 × √28)-Pb and (√3 × √3)-Pb structures are determined to be 0.68 and 1/3 ML, respectively. The (1 × 1)-Sn structure is formed at coverages less than 1 ML. Both Pb and Sn films form a hexagonal close-packed structure on Ag(1 1 1). When the Sn coverage increases to more than 1 ML, excess Sn atoms form a (√3 × √3) structure on the (1 × 1)-Sn surface. The 2D binary films exhibit an incommensurate structure close to (√13 × √13) at Pb and Sn coverages of 0.5 and 0.25 ML, respectively. Atomic-resolution STM images exhibit a hexagonal close-packed structure. From the DFT total energy calculations, it is concluded that the Pb and Sn atoms of the (“√13 × √13″) structure do not form an ordered alloy but, rather, form a solid solution alloy. From these results, it is concluded that the binary 2D films also follow the Hume-Rothery rule.

  19. Hydrogen storage alloys prepared by high-energy milling

    OpenAIRE

    M. Staszewski; A. Sierczyńska; M. Kamińska; M. Osadnik; M. Czepelak; Swoboda, P.

    2011-01-01

    Purpose: The aim of this work was to investigate an efficiency of high-energy milling, as a method to obtain hydrogen storage alloys with good properties.Design/methodology/approach: Two classes of the alloys were studied: AB2 type with atomic composition of (Ti0.5Zr0.5)(V0.68Mn0.68Cr0.34Ni0.7) and AB5 type with atomic composition of (Ce0.63La0.37)(Ni3.55Al0.3Mn0.4 Co0.75).The materials were prepared by arc melting and initially pulverized and afterwards subjected to wet milling process in a ...

  20. Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature

    Institute of Scientific and Technical Information of China (English)

    Mi Lin Zhang; Yong De Yan; Zhi Yao Hou; Lu An Fan; Zeng Chen; Ding Xiang Tang

    2007-01-01

    A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten were investigated, and optimal electrolysis parameters were obtained. Mg-Li alloys with low lithium content (about 25%) were prepared by the unique method of a higher post-thermal treatment temperature after electrolysis at low temperature. The results showed that the electrolysis can be carried out at low temperature, which resulted in reducing preparation cost due to energy saving.The new technology for the preparation of Mg-Li alloy by electrolysis in molten salt was proved to be feasible.

  1. Influence of substrate composition on corrosion protection of sol-gel thin films on magnesium alloys in 0.6 M NaCl aqueous solution

    OpenAIRE

    El Hadad, Amin A.; Barranco, Violeta; Samaniego, Alejandro; Llorente, I. (Ignacio); García-Galván, F. R.; Jiménez-Morales, Antonia; Galván Sierra, Juan Carlos; Feliu Jr., S.

    2014-01-01

    The corrosion protection behaviour of organic–inorganic hybrid thin films on AZ31 and AZ61 magnesium alloy substrates has been studied. These films were prepared by a sol–gel dip-coating method. The organopolysiloxane precursors were γ-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethoxysilane (TMOS). An attempt was made to determine the possible relationships between the degradation of the sol–gel film and composition of the metal substrate during the exposure of the metal/coating sy...

  2. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei, E-mail: kwgao@yahoo.com

    2015-05-15

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  3. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    International Nuclear Information System (INIS)

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution

  4. Deposition of functional cellulose films on titanium alloy surfaces

    International Nuclear Information System (INIS)

    Titanium alloy (TiAl6V4) surfaces were treated with ultraviolet (UV) radiation to remove organic 'contamination' molecules which remained on the surfaces after conventional cleaning processes. The UV-technique simultaneously revealed reactive surface hydroxyl groups at the metal surface which were monitored by the reaction with perfluorooctanoylchloride and application of Fourier-Transform infrared reflection-absorption spectroscopy and contact angle measurements, respectively. Two different cellulose polymers each made soluble in methanol by functionalized hydroxylalkyl-spacer groups and their mixtures were deposited on UV-treated TiAl6V4 surfaces. Atomic force microscopy measurements could reveal polymer films which covered the metal surfaces completely without defects. Differences were indicated in the surface structure, especially between the pure cellulose phosphate films and cinnamate containing cellulose films

  5. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications

    International Nuclear Information System (INIS)

    In this study, hydroxyapatite precipitation on nanotubular film-formed Ti-6Al-4V alloy for biomedical applications has been investigated using a variety of techniques. To prepare the substrate samples for hydroxyapatite (HA) deposition, the starting Ti-6Al-4V alloy was polished and heat-treated for 12 h at 1050 °C in an Ar atmosphere, followed by water-quenching at 0 °C. Nanotube formation on the titanium alloy was performed using anodization with a DC power supply at 30 V for 1 h in 1 M H3PO4 + 0.8 wt.% NaF at 25 °C. Subsequent HA precipitation treatment was carried out by cyclic voltammetry over a potential range of −1.5 V to 0 V using a scanning rate of 100 mV/s in 0.03 M Ca(NO3)2 ∙ 4 H2O + 0.018 M NH4H2PO4 at 80° ± 1 °C. Four different numbers of cycles were employed: 10, 20, 30, and 50. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The heat-treated Ti–6Al–4V alloy has a needle-like duplex microstructure containing the martensitic α′ phase and β phase. Plate-like precipitates were formed on bulk Ti–6Al–4V alloy, and the size of these precipitates increased with the number of deposition cycles. The HA precipitates on the nanotube surface showed a mixture of plate-like and flower-like particles with more deposition cycles. The deposited HA phase in the coated layer had an amorphous structure, with particle composition in good agreement with Ca10(PO4)6(OH)2. - Highlights: • Hydroxyapatite (HA) precipitation on nanotubular films formed on Ti–6Al–4V alloy was investigated using a variety of experimental methods. • HA precipitation treatment was carried out using a cyclic voltammetry method after nanotube formation on Ti–6Al–4V alloy. • Plate-like precipitates were formed on the bulk (not anodized) alloy, and the size of precipitates increased with the number of deposition cycles.

  6. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Chae-Ik; Jeong, Yong-Hoon [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States)

    2013-12-31

    In this study, hydroxyapatite precipitation on nanotubular film-formed Ti-6Al-4V alloy for biomedical applications has been investigated using a variety of techniques. To prepare the substrate samples for hydroxyapatite (HA) deposition, the starting Ti-6Al-4V alloy was polished and heat-treated for 12 h at 1050 °C in an Ar atmosphere, followed by water-quenching at 0 °C. Nanotube formation on the titanium alloy was performed using anodization with a DC power supply at 30 V for 1 h in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF at 25 °C. Subsequent HA precipitation treatment was carried out by cyclic voltammetry over a potential range of −1.5 V to 0 V using a scanning rate of 100 mV/s in 0.03 M Ca(NO{sub 3}){sub 2} ∙ 4 H{sub 2}O + 0.018 M NH{sub 4}H{sub 2}PO{sub 4} at 80° ± 1 °C. Four different numbers of cycles were employed: 10, 20, 30, and 50. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The heat-treated Ti–6Al–4V alloy has a needle-like duplex microstructure containing the martensitic α′ phase and β phase. Plate-like precipitates were formed on bulk Ti–6Al–4V alloy, and the size of these precipitates increased with the number of deposition cycles. The HA precipitates on the nanotube surface showed a mixture of plate-like and flower-like particles with more deposition cycles. The deposited HA phase in the coated layer had an amorphous structure, with particle composition in good agreement with Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}. - Highlights: • Hydroxyapatite (HA) precipitation on nanotubular films formed on Ti–6Al–4V alloy was investigated using a variety of experimental methods. • HA precipitation treatment was carried out using a cyclic voltammetry method after nanotube formation on Ti–6Al–4V alloy. • Plate-like precipitates were formed on the bulk (not anodized) alloy, and the

  7. Preparation and characterization of aluminum based alloy - mica composites

    International Nuclear Information System (INIS)

    In this work, six pallets each of 2.0 cm dia and 0.5 cm thickness were prepared by powder metallurgy; half of them also contained 1% mica-powder to form a composite. Inclusion of mica resulted in a decreased density and an increased porosity of the sample. Brinell hardness was found to be 21% less for the composite than for the pure alloy. Micro-graphs of different areas of the sample show uniform distribution of mica particles and avoids around them. (author)

  8. Properties of Cu film and Ti/Cu film on polyimide prepared by ion beam techniques

    International Nuclear Information System (INIS)

    Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.

  9. Preparation and characterization of perylene/phthalocyanine film

    International Nuclear Information System (INIS)

    The PV, H2Pc, CuPc monolayer or PV/H2Pc, PV//CuPc bilayer films were prepared by vacuum deposition. The films were characterized by AFM, FTIR, UV/Vis and FL. Results showed that the surface of these films was very smooth, they presented strong adsorption in 450-750 nm. Though monolayer film displayed fluorescence, the bilayer film showed strong fluorescence quench. These phenomena agreed with the request of the uniform laser ablation of target in highly compressed implosion. (authors)

  10. A novel concept for the preparation of alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Milenkovic, Srdjan; Drensler, Stefanie; Hassel, Achim Walter [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Linz (Austria)

    2011-06-15

    A novel concept for the preparation of alloy nanowires has been developed. By combining two pseudobinary eutectic systems NiAl-W and NiAl-Cr with a completely miscible system Cr-W, a pseudoternary system was created in which there is large two-phase field between NiAl and W(Cr) solid solutions, separated by a eutectic trough. This enables the fabrication of nanowires with compositions from pure W to pure Cr allowing a free change of the ratio. The directional solidification in the pseudoternary system has been carried out. For the first time alloy nanowires in the W-Cr system have been reported. In addition, nanowires of pure W and Cr were fabricated as well. Moreover, an electrochemical procedure for the release of nanowires from the matrix has been established. High yield of W-Cr alloy nanowires with equiatomic composition. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Solid state amorphisation in binary systems prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G., E-mail: gemagonz@ivic.v [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Sagarzazu, A. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Bonyuet, D. [Instituto de Investigacion en Biomedicina y Ciencias Aplicadas, Universidad de Oriente, Cumana (Venezuela, Bolivarian Republic of); D' Angelo, L. [UNEXPO, Universidad Experimental Politecnica Luis Caballero Mejias, Dpto. Ing. Mecanica (Venezuela, Bolivarian Republic of); Villalba, R. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of)

    2009-08-26

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  12. Solid state amorphisation in binary systems prepared by mechanical alloying

    International Nuclear Information System (INIS)

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  13. Preparation and characterization of SOFC cathode films

    International Nuclear Information System (INIS)

    Solid Oxide Fuel Cells (SOFC) are being widely studied due to their possible utilization to produce electrical energy in a wide power range (from 1 kW up to few hundreds of kW).The principle of operation of this kind of fuel cells involves reduction of O2 in the cathode oxygen ions (O2-) diffusion of oxygen through the electrolyte and fuel oxidation in the anode.Commercial SOFC must work at temperature higher than to 1000 degree C to enable the O2- diffusion.Therefore, it is necessary to investigate new materials that enable to decrease the operation temperature, improving SOFC performance and cost. La1-xSrxCo1-yFeyO3-δ (LSCF) perovskites are good candidates for SOFC cathodes because these materials present high ionic and electronic conductivity. LSCF cathodes are adequate to fabricate Ce1-xGdxO2-δ electrolyte SOFC due to its low chemical reactivity with this material and its similar thermal expansion coefficient. In this work we present a study of microstructural and electrochemical characteristics of films for SOFC cathodes. La0.4Sr0.6Co0.8Fe0.2O3-δ compounds were prepared by the acetate reaction method.Then, cathodes were deposited onto a Ce0.9Gd0.1O2-δ electrolyte disk by dip coating and spray techniques.Structural characterization is made by X-ray diffraction XRD and scanning electron microscopy (SEM).Electrochemical properties are characterized by complex impedance measurements.Finally, the relation between structural characteristics and electrical properties is discussed

  14. M(o)ssbauer study of the field induced uniaxial anisotropy in electro-deposited FeCo alloy films

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-Wei; Yang Xu; Wang Hai-Bo; Liu Xin; Li Fa-Shen

    2009-01-01

    Thin ferromagnetic films with in-plane magnetic anisotropy are promising materials for obtaining high microwave permeability. The paper reports a M(o)ssbauer study of the field induced in-plane uniaxial anisotropy in electro-deposited FeCo alloy films. The FeCo alloy films were prepared by the electro-deposition method with and without an external magnetic field applied parallel to the film plane during deposition, Vibrating sample magnetometry and M(o)ssbauer spectroscopy measurements at room temperature indicate that the film deposited in external field shows an in-plane uniaxial anisotropy with an easy direction coinciding with the external field direction and a hard direction perpendicular to the field direction, whereas the film deposited without external field does not show any in-plane anisotropy. M(o)ssbauer spectra taken in three geometric arrangements show that the magnetic moments are almost constrained in the film plane for the film deposited with applied magnetic field. Also, the magnetic moments tend to align in the direction of the applied external magnetic field during deposition, indicating that the observed anisotropy should be attributed to directional ordering of atomic pairs.

  15. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Various plasma electrolytic oxidation (PEO) films were prepared on magnesium alloy AZ91D in a silicate bath with different additives such as phosphate, fluoride and borate. Effects of the additives on chemical composition and corrosion resistance of the PEO films were examined by means of scanning electron microscopy (SEM), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results showed that the PEO films obtained in solutions with both borate and fluoride had better corrosion resistance. In order to understand the corrosion mechanism of PEO films on magnesium alloy AZ91D, electronic property of the magnesium electrode with PEO films was studied by Mott-Schottky approach in a solution containing borate and chloride. The results indicated that magnesium electrodes with and without PEO films all exhibited n-type semiconducting property. However, in comparison with the magnesium electrode treated in solutions containing phosphate or borate, the electrode treated in solutions containing both borate and fluoride (M-film) had lower donor concentration and much negative flat band potential; therefore, the M-film had lower reactivity and higher corrosion resistance

  16. Structural and Thermal Study of Nanocrystalline Fe-Al-B Alloy Prepared by Mechanical Alloying

    Science.gov (United States)

    Gharsallah, Hana Ibn; Sekri, Abderrahmen; Azabou, Myriam; Escoda, Luiza; Suñol, Joan Josep; Khitouni, Mohamed

    2015-08-01

    Nanostructured iron-aluminum alloy of Fe-25 at. pct Al composition doped with 0.2 at. pct B was prepared by mechanical alloying. The phase transformations and structural changes occurring in the studied material during mechanical alloying and during subsequent heating were investigated by SEM, XRD, and DSC techniques. The patterns so obtained were analyzed using the Rietveld program. The alloyed powders were disordered Fe(Al) solid solutions and Fe2B boride phase. The Fe2B boride phase is formed after 4 hours of milling. The crystallite size reduction to the nanometer scale (5 to 8 nm) is accompanied by an increase in lattice strains. The powder milled for 40 hours was annealed at temperatures of 523 K, 823 K, 883 K, and 973 K (250 °C, 550 °C, 610 °C, and 700 °C) for 2 hours. Low temperatures annealing are responsible for the relaxation of the disordered structure, while high temperatures annealing enabled supersaturated Fe(Al) solid solutions to precipitate out fines Fe3Al, Fe2Al5, and Fe4Al13 intermetallics and, also the recrystallization and the grain growth phenomena.

  17. Properties of thin anodic oxide films on zirconium alloys

    International Nuclear Information System (INIS)

    Thin (0.1-0.2 μm) anodic oxide films were formed on zirconium, Zircaloy-2 and Zr-2.5 wt% Nb alloy specimens and examined by AC impedance spectroscopy (using both metal and aqueous electrolyte contacts), UV/VIS interferometry, and scanning electron microscopy (SEM). The SEM studies showed that the extent of oxide cracking was a function of the particular alloy and the electrolyte in which the oxide was formed. AC impedance spectroscopy showed that with metallic contacts a Young impedance behaviour was observed as a result of local conduction paths in the oxide film, probably resulting from second phase particles. The extent of cracking in the oxide was identified best from SEM and AC impedance measurements in aqueous electrolytes, and did not appear to contribute to the results obtained with metallic contacts. Large discrepancies between the apparent oxide thicknesses measured from AC impedance data obtained from measurements with aqueous electrolyte and liquid metal contacts, respectively, were shown to result from surface roughness and inadequate wetting by the liquid metals. These discrepancies could be eliminated by using evaporated platinum contacts, which also showed evidence for local conduction in the oxides. UV/VIS interferometry results for the oxide refractive indices and oxide thicknesses gave much scatter because of the small number of fringes available for the analysis and the difficulties in establishing the positions of interference minima with the same accuracy as was possible for interference maxima. The use of this combination of techniques still appears to be the best method for investigating the presence of conducting paths in thick porous oxide films on these alloys. Preference should be given to using evaporated rather than liquid metal contacts when studying such oxides. The advantages of easy removal for the liquid metal contacts often, however, outweigh the errors introduced by surface roughness when using them for repetitive measurements

  18. Preparation of pyrite films by plasma-assisted sulfurization of thin iron films

    OpenAIRE

    Bausch, S.; Sailer, B.; Keppner, Herbert; Willeke, G.; Bucher, E.; Frommeyer, G.

    2008-01-01

    Pyrite films were prepared using the pure elements as source materials: thin iron films were evaporated on quartz substrates and exposed to a sulfur plasma. The process was controlled by a transmission measurement. X-ray spectroscopy was used to characterize the films and preliminary optical and electrical measurements were carried out.

  19. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  20. Superelasticity of NiTi Shape Memory Alloy Thin Films

    Institute of Scientific and Technical Information of China (English)

    Zhenyu YUAN; Dong XU; Zhican YE; Bingchu CAI

    2005-01-01

    The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.

  1. Order-Disorder Transition in Sputter-Deposited Silver-Zinc Alloy Films

    Science.gov (United States)

    Maeda, Yoshihito; Minemura, Tetsuroh; Andoh, Hisashi

    1991-06-01

    An order-disorder transition between β' and β phases was observed to take place reversibly at 510 K in sputter-deposited AgZn alloy films of 30 nm thickness. The β' phase was found to exist in the as-deposited alloy film and the transition could be described by the order parameter of Bragg-Williams theory.

  2. Preparation of the electrodeposited Ni-Mo alloys with polymers

    Directory of Open Access Journals (Sweden)

    M. Karolus

    2006-04-01

    Full Text Available Purpose: The aim of the paper is presentation the process of forming the Ni-Mo electrodeposited layers with polypyrrole, polytiophne and polyethylene.Design/methodology/approach: There are three ways of polymeriztion and layer depositon.Findings: In case of polytiophen + Ni-Mo – there is observed process of electropolymerization and Ni-Mo electrodeposition in the cathodic process. In case of polypyrrole + Ni-Mo – there is observed two-step process: electropolymerization in the anodic process and Ni-Mo electrodeposition in the cathodic process. So the composite is forming when the electrodes have worked alternately as the anode and as the cathode. In case of polyethylene + Ni-Mo – there is observed process of Ni-Mo electrodeposition with grains of polyethylene in the cathodic process. From structural analyses by X-ray diffraction it was noticed that the solid solution of Mo in Ni is forming. The unit cell parameters of solid solution are slightly changing with the incerasing of molybdenum contents in the alloy from the value 3.57 to 3.61 Å. In case of all polymers, the crystallite size calculated basing on the Williamson-Hall theory is about 5 - 6 nanometers.Practical implications: The codeposition of alloys with polymers or polymerisation with alloys codeposition has created new opportunities in the preparation of novel composite materials. Conductive polymers have been investigated for use as the electrode materials for a number of applications including rechargeable batteries, electrochemical sensors etc. Electrochemical method described in this paper is unique in that it can be used for processing ceramics, polymers, metals, composites and hybrid materials.Originality/value: Using the electopolymerization and electrodeposition processes in preparation of the composites.

  3. Preparation of YBCO superconducting films by spray pyrolysis method

    International Nuclear Information System (INIS)

    The methodology for the preparation of YBCO superconducting films on Zr2O(Y) substrates by spray pyrolysis method is reported. The transition temperature of these films is superior than the boiling temperature of liquid 2N. Other critical parameters are similar to those reported by other authors using the same technique

  4. Preparation and performance of Ecobras/bentonite biodegrading films

    International Nuclear Information System (INIS)

    Compounds based on the biodegradable polymer Ecobras and bentonite clay in its pristine, sonicated, and organically modified with a quaternary ammonium salt forms were prepared as flat films. Clays and compounds were characterized by x-ray diffraction and scanning electron microscopy. Mechanical properties of the films were determined according to pertinent ASTM standards. Reasonable properties, higher than those of the matrix, were obtained with compounds prepared with purified clays and organoclays, particularly for low clay loading. (author)

  5. Thin film reactions on alloy semiconductor substrates

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.A.

    1990-11-01

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  6. Microstructure and properties of hydrophobic films derived from Fe-W amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    Song Wang; Yun-han Ling; Jun Zhang; Jian-jun Wang; Gui-ying Xu

    2014-01-01

    Amorphous metals are totally different from crystalline metals in regard to atom arrangement. Amorphous metals do not have grain boundaries and weak spots that crystalline materials contain, making them more resistant to wear and corrosion. In this study, amorphous Fe-W alloy films were first prepared by an electroplating method and were then made hydrophobic by modification with a water repellent (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. Hierarchical micro-nano structures can be obtained by slightly oxidizing the as-deposited alloy, accompanied by phase transformation from amorphous to crystalline during heat treatment. The mi-cro-nano structures can trap air to form an extremely thin cushion of air between the water and the film, which is critical to producing hydrophobicity in the film. Results show that the average values of capacitance, roughness factor, and impedance for specific surface areas of a 600°C heat-treated sample are greater than those of a sample treated at 500°C. Importantly, the coating can be fabricated on various metal substrates to act as a corrosion retardant.

  7. Polylactide microcapsules and films: preparation and properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.

    2009-01-01

    This thesis aims at preparation of hollow polylactide (PLA) microcapsules for use as ultrasound contrast agents with controlled size, structure and mechanical and thermal properties. The microcapsules were prepared with multistage premix membrane emulsification. The mechanical and thermal properties

  8. Preparation and evaluation of medicinal carbon oral films.

    Science.gov (United States)

    Sakuda, Yoko; Ito, Akihiko; Sasatsu, Masanaho; Machida, Yoshiharu

    2010-04-01

    Medicinal carbon (MC) films, which can be taken more easily than other dosage forms, were prepared using sodium carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC) and alginic acid sodium (ALG) as film base materials. Brilliant blue FCF (BB) was used as a model drug. The films containing MC had sufficient strength and disintegration time, but their ability to adsorb BB was clearly inhibited compared to that of MC in powder form. When ALG was used as the film base, the BB adsorption capacity of MC film was approximately 50% of that of MC powder. In an attempt to improve this adsorption ability, two saccharides, sorbitol (SOR) and maltitol (MT), were separately added to MC at a mixing ratio of 1 : 1 by weight. When ALG was the film base, MC films containing SOR or MT showed rapid adsorption profiles and had greatly increased capacities for BB adsorption compared with films containing MC alone. SOR was superior to MT as an additive, though both gave MC-containing films a BB adsorption capacity almost equal to that of MC powder after 24 h, and physical mixtures tended to have better BB adsorption capacities than pre-treatment mixture. In addition, both SOR and MT tended to increase vertical strength of films, but neither additive in either type of mixture had a clear effect on disintegration time. When CMC or HPMC was used as the film base, on the other hand, the addition of SOR or MT caused hardly any improvement in adsorption ability. The above results demonstrate that ALG is useful as a film base material for the preparation of MC films, and that MC films with sufficient strength and adsorption capacities equal to those of MC powders can be produced using a physical mixture of MC and SOR on an ALG base. PMID:20410622

  9. Stability of oxide film formed at different temperatures on Alloy 600 in lithiated environment

    International Nuclear Information System (INIS)

    The nickel base alloys are susceptible to localized corrosion attack and the major contributing factor in these corrosion mechanisms is the oxide film formed on the alloy. The chromium content in the oxide film determines its stability against localized attack that act as precursors for the initiation of stress corrosion cracking (SCC) in the material. The present study aimed at optimizing the hot conditioning parameter by varying the temperature of oxide formation for minimum ion release rate during reactor operation. The surface and in-depth compositional characterization of oxide film formed on Alloy 600 was carried out using micro-laser Raman spectroscopy (MLRS) and glow discharge quadrapole mass spectroscopy (GDQMS) respectively. The relative defect density of oxide films were studied using electrochemical impedance spectroscopy (EIS). The oxide film stability of Alloy 600 in chloride containing environment was correlated to chromium concentration in the film as well as relative defect density

  10. Transparent yttrium hydride thin films prepared by reactive sputtering

    International Nuclear Information System (INIS)

    Research highlights: → Thin films of transparent (semiconducting) and black (metallic) yttrium hydride. → Magnetron sputtering with an yttrium target and hydrogen as a reactive gas. → Optical transmission and reflection resemble β-YH2 (black) and γ-YH3 (transparent). → XRD shows that transparent films have an expanded fcc lattice with a = 5.35 A. → Samples are stable at ambient conditions. - Abstract: Metal hydrides have earlier been suggested for utilization in solar cells. With this as a motivation we have prepared thin films of yttrium hydride by reactive magnetron sputter deposition. The resulting films are metallic for low partial pressure of hydrogen during the deposition, and black or yellow-transparent for higher partial pressure of hydrogen. Both metallic and semiconducting transparent YHx films have been prepared directly in situ without the need of capping layers and post-deposition hydrogenation. Optically the films are similar to what is found for YHx films prepared by other techniques, but the crystal structure of the transparent films differ from the well-known YH3-η phase, as they have an fcc lattice instead of hcp.

  11. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  12. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.S., E-mail: yshzou75@gmail.com [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Wu, Y.F.; Yang, H.; Cang, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Song, G.H. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning, 110178 (China); Li, Z.X.; Zhou, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China)

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp{sup 3} carbon content and mechanical properties of the deposited DLC films. A maximum sp{sup 3} content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  13. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    International Nuclear Information System (INIS)

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  14. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Science.gov (United States)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  15. Novel tribological systems using shape memory alloys and thin films

    Science.gov (United States)

    Zhang, Yijun

    Shape memory alloys and thin films are shown to have robust indentation-induced shape memory and superelastic effects. Loading conditions that are similar to indentations are very common in tribological systems. Therefore novel tribological systems that have better wear resistance and stronger coating to substrate adhesion can be engineered using indentation-induced shape memory and superelastic effects. By incorporating superelastic NiTi thin films as interlayers between chromium nitride (CrN) and diamond-like carbon (DLC) hard coatings and aluminum substrates, it is shown that the superelasticity can improve tribological performance and increase interfacial adhesion. The NiTi interlayers were sputter deposited onto 6061 T6 aluminum and M2 steel substrates. CrN and DLC coatings were deposited by unbalanced magnetron sputter deposition. Temperature scanning X-ray diffraction and nanoindentation were used to characterize NiTi interlayers. Temperature scanning wear and scratch tests showed that superelastic NiTi interlayers improved tribological performance on aluminum substrates significantly. The two-way shape memory effect under contact loading conditions is demonstrated for the first time, which could be used to make novel tribological systems. Spherical indents in NiTi shape memory alloys and thin films had reversible depth changes that were driven by temperature cycling, after thermomechanical cycling, or one-cycle slip-plasticity deformation training. Reversible surface topography was realized after the indents were planarized. Micro- and nano- scale circular surface protrusions arose from planarized spherical indents in bulk and thin film NiTi alloy; line surface protrusions appeared from planarized scratch tracks. Functional surfaces with reversible surface topography can potentially result in novel tribological systems with reversible friction coefficient. A three dimensional constitutive model was developed to describe shape memory effects with slip

  16. The preparation and refractive index of BST thin films

    International Nuclear Information System (INIS)

    Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 deg. C and subsequently annealed at 700 deg. C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films' microstructure and texture

  17. AlN thin films prepared by DC arc deposition

    Science.gov (United States)

    Liang, Hai-feng; Yan, Yi-xin; Miao, Shu-fan

    2006-02-01

    Many researchers are interested in AlN films because of their novel thermal, chemical, mechanical, acoustic, and optical properties. Many methodsincluding such as DC/RF sputtering, chemical vapor deposition (CVD), laser chemical vapor deposition(LCVD), molecular beam epitaxy (MBE), thermal vapor deposition, can be used to prepare AlN films. In this paper, a new method, DC arc deposition, is used to deposite AlN films. It is an anti-reflective, protective film on optical elements. FTIR are used to determine the ALN structure and measure the transmittance spectrum. Ellipsometry is used to determine the films' refractive index, extinction index and thickness. The films' anti-wear properties are tested by pin-on-disc way and the anti-corrosion(anti-acid, anti-alkali, anti-salt) properties are also tested. The results show that the films is AlN films by the 670cm -1 typical peak, the films' extinction index is near to zero in the range of visible and infrared waveband, the films' refractive index is varied from 1.7 to 2.1 at range of visible and infrared waveband. The films have better anti-wear, anti-acid and anti-alkali properties, but their anti-salt properties are not good.

  18. Preparation and characterization of Al11Cr4 phase by diffusion of Al/Cr composite film

    International Nuclear Information System (INIS)

    Highlights: • Al11Cr4 was prepared by diffusion of electrodeposited Al/Cr composite film. • The compositional range of Al11Cr4 was from Al75.0Cr25.0 to Al76.0Cr24.0. • The decomposition temperature of Al11Cr4 was 829 °C. - Abstract: Al–Cr alloys were prepared by making Al/Cr composite films go through a low temperature heat treatment. Al/Cr composite films were electrodeposited from aqueous solution and ionic liquid successively. The effects of the composition of Al/Cr composite film on the phase constitutions of Al–Cr alloy were then investigated. The samples were characterized by metallographic microscope (OM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and spherical aberration corrected transmission electron microscope (Cs-TEM). The decomposition temperature of Al–Cr alloy was studied using differential thermal analysis. The results showed that single Al11Cr4 phase can be obtained from the Al/Cr composite film at the composition range of 75.0–76.0 at.% Al. The Al11Cr4 would decompose into Al4Cr and Al8Cr5 at 829 °C

  19. The Optical Property of CPD Prepared CdS Films

    Institute of Scientific and Technical Information of China (English)

    Deokjoon Cha; HUANG Ning-kang; Sunmi Kim

    2004-01-01

    CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before and after annealing was investigated at different measuring temperature from 10K to 300K. Optical absorption spectra show that the absorption edge is towards the shorter wavelengths, and the energy band gaps deduced from the plots of (α·hν)2 vs. hν are increased when the measuring temperature is decreased. The optical behaviors of the CdS films annealed at a certain temperature seem to have the similar tendency at different measuring temperature. Based on dEex/dT curve dependent on annealing temperature, some phenomena related microstructure in CdS films could be found.

  20. Electronic structures of the L-cysteine film on dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: e7141@cc.saga-u.ac.jp [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Tsujibayashi, T. [Department of Physics, Osaka Dental University, Osaka 573-1121 (Japan); Takahashi, K.; Azuma, J. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Kakimoto, K. [Department of Geriatric Dentistry, Osaka Dental University, Osaka 573-1121 (Japan); Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan)

    2011-04-15

    Research highlights: {yields} The electronic structures of dental alloys and L-cysteine film were studied by PES. {yields} The density of states in the dental alloy originates from Au and Cu as constituents. {yields} The Cu-3d states contribute dominantly to the occupied states near the Fermi level. {yields} The electronic structure of L-cysteine thin film is different from the thick film. {yields} The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  1. Electronic structures of the L-cysteine film on dental alloys

    International Nuclear Information System (INIS)

    Research highlights: → The electronic structures of dental alloys and L-cysteine film were studied by PES. → The density of states in the dental alloy originates from Au and Cu as constituents. → The Cu-3d states contribute dominantly to the occupied states near the Fermi level. → The electronic structure of L-cysteine thin film is different from the thick film. → The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  2. Preparation of Si sub 1 sub - sub x sub - sub y Ge sub x C sub y semiconductor films on Si by ion implantation and solid phase epitaxy

    CERN Document Server

    Liu Xue Qin; Zhen Cong Mian; Zhang Jing; Yang Yi; Guo Yong

    2002-01-01

    Si sub 1 sub - sub x sub - sub y Ge sub x C sub y ternary alloy semiconductor films were prepared on Si(100) substrates by C ion implanting SiGe films and subsequent solid phase epitaxy (SPE). Two-step annealing technique was employed in the SPE processing. The properties of the alloy films were determined using Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and High-resolution x-ray diffraction (HRXRD) measurements. It is shown that C atoms are located at substitutional sites and the incorporation of C relieves the compressive strain in the SiGe layer

  3. Preparation of graphene thin films for radioactive samples.

    Science.gov (United States)

    Roteta, Miguel; Fernández-Martínez, Rodolfo; Mejuto, Marcos; Rucandio, Isabel

    2016-03-01

    A new method for the preparation of conductive thin films is presented. The metallization of VYNS films guarantees the electrical conductivity but it results in the breaking of a high proportion of them. Graphene, a two-dimensional nanostructure of monolayer or few layers graphite has attracted a great deal of attention because of its excellent properties such as a good chemical stability, mechanical resistance and extraordinary electronic transport properties. In this work, the possibilities of graphene have been explored as a way to produce electrical conductive thin films without an extra metallization process. The procedure starts with preparing homogenous suspensions of reduced graphene oxide (rGO) in conventional VYNS solutions. Ultra-sonication is used to ensure a good dispersibility of rGO. Graphene oxide (GO) is prepared via oxidation of graphite and subsequent exfoliation by sonication. Different chemically rGO were obtained by reaction with hydrazine sulfate, sodium borohydride, ascorbic acid and hydroiodic acid as reducing agents. The preparation of the thin graphene films is done in a similar way as the conventional VYNS foil preparation procedure. Drops of the solution are deposited onto water. The graphene films have been used to prepare sources containing some electron capture radionuclides ((109)Cd, (55)Fe, (139)Ce) with an activity in the order of 3kBq. The samples have been measured to test the attainable low energy electron efficiency and the energy resolution of Auger and conversion electrons by 4π (electron capture)-γ coincidence measurements. The 4π (electron capture)-γ coincidence setup includes a pressurized proportional counter and a NaI(Tl) detector. Tests with different pressures up to 1000kPa were carried out. All these tests show similar values in both parameters (efficiency and resolution) as those obtained by using the conventional metallized films without the drawback of the high percentage of broken films. PMID:26651168

  4. Biskyrmion bubble lattice in Fe/Gd alloy thin films

    Science.gov (United States)

    Lee, James; Shi, Xiaowen; Chess, Jordan; Montoya, Sergio; Mishra, Shrawan; Sakharov, Lev; Parks, Daniel; McMorran, Ben; Kevan, Steven; Fullerton, Eric; Roy, Sujoy

    2015-03-01

    Magnetic bubbles with topologically non-trivial twists, called ``skyrmion bubbles,'' exhibit particle-like properties and novel magnetic interactions with each other. They are seen in non-centrosymmetric crystals, such as MnSi, and monolayers of Fe on Ir(111) substrates. Our study considers whether skyrmion bubbles can also form in soft ferrimagnetic alloys with perpendicular anisotropy. Using resonant x-ray scattering at the Fe L3 and Gd M5 transition edges, we show that triangular lattices of skyrmion bubbles form in Fe/Gd thin films in a limited temperature and magnetic field range. Uniaxial anisotropy in the resonant scattering pattern indicates the lattice unit cell contains two skyrmions. Lorentz TEM images reveal that the repeating unit is a bound pair of bubbles called biskyrmions. Adjusting the composition of the films can shift the temperature range of the biskyrmion lattice by 100 K, allowing the lattice to form at room temperature. Fe/Gd thin films may prove a promising material for spintronics.

  5. Electrochemical preparation of polypyrrole conducting films

    OpenAIRE

    Mária Filkusová*; Renáta Oriňáková

    2010-01-01

    Cyclic voltammetry has been used to investigate the electrochemical polymerization of pyrrole on the surface of a paraffin impregnated graphite electrode (PIGE). Effect of pH and concentration of the electrolyte solution on the electrochemical deposition of polypyrrole (PPy) was studied. The structure of the deposited layers was studied using scanning electron microscope (SEM). Well–adhering black PPy films were obtained.

  6. Preparation and Characteristics of GaN Films on Freestanding CVD Thick Diamond Films

    International Nuclear Information System (INIS)

    Prefer-oriented and fine grained polycrystalline GaN films are prepared by plasma enhanced metal organic chemical vapour deposition on nucleation surfaces of freestanding thick diamond films. The characteristics of the GaN films are characterized by x-ray diffraction, reflection high energy electron diffraction and atomic force microscopy. The results indicate that the structure and morphology of the films are strongly dependent on the deposition temperature. The most significant improvements in morphological and structural properties of GaN films are obtained under the proper deposition temperature of 400°C. (cross-disciplinary physics and related areas of science and technology)

  7. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    Science.gov (United States)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  8. Optical properties and electrochemical dealloying of Gold-Silver alloy nanoparticles immobilized on composite thin-film electrodes

    Science.gov (United States)

    Starr, Christopher A.

    Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (lambdamax = 404 nm) for pure silver to 4.1 x 107 M-1 cm -1 (lambdamax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl 4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The

  9. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    International Nuclear Information System (INIS)

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si1−xCx:H (with x 1−xCx:H layer. The effect of short-time annealing at 700 °C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 × 1012 cm−2) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si0.8C0.2 surfaces at 700 °C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO2, due to the differences in surface chemical properties. - Highlights: ► Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films ► Plasma deposited amorphous silicon carbide films with well-controlled properties ► Study on the thermal effect of 700 °C short-time annealing on the layer properties ► Low pressure chemical vapor deposition (LPCVD) of Si-NC ► High density (1 × 1012 cm−2) of Si-NC was achieved on a-Si0.8C0.2 surfaces by LPCVD.

  10. The effect of different aluminum alloy surface compositions on barrier anodic film formation

    International Nuclear Information System (INIS)

    The authors have grown barrier anodic coatings on samples of aluminum alloy with different elemental surface compositions. In one series of experiments, they characterized the surface composition present on 6061 aluminum alloy samples after different chemical treatments including a detergent-water and methyl-ethyl ketone solvent clean, a 50% nitric acid-water etch, and a concentrated nitric acid-ammonium bifluoride etch. They anodized samples which were prepared similarly to those analyzed to evaluate the practical effects of the three different surface compositions. The anodization voltage rise time to 950V at constant current was used as a figure of merit. The solvent cleaned and the 50% nitric acid etched samples required, respectively, 113% and 41% more time to reach 950V than the concentrated nitric acidammonium bifloride etched samples. In a second series of experiments, they alternately anodized groups of either 6061 or 1100 (commercially pure) aluminum alloy, observed rise times to 950V, and measured chloride ion concentrations in the electrolyte. Longer rise times and higher chloride ion concentrations were observed for the 1100 samples. It was observed that the chloride ion concentration fell from initially high levels when 6061 samples were anodized. The results of both series of experiments augment the results of other investigators, who report that the surface species initially present on aluminum have a significant effect on anodic film formation

  11. Preparation of lotus-like superhydrophobic fluoropolymer films

    International Nuclear Information System (INIS)

    Styrene and 2,2,3,4,4,4-hexafluorobutyl methacrylate copolymers were synthesized by bulk polymerization, and the superhydrophobic copolymer films were prepared subsequently using phase separation technique. The copolymer was dissolved in tetrahydrofuran, and then added ethanol into the solution thereafter, to induce phase separation. The microstructures of the polymer films were controlled by the degree of phase separation, which was enhanced properly by the concentration of ethanol. The surface morphology of the films, observed by environmental scanning electron microscope, is similar to that of the lotus leaf. The contact angle and sliding angle were measured as 154.3 deg. and 5.8 deg., respectively. The excellent superhydrophobic property demonstrated that the phase separation technique is useful for preparing lotus-like fluoropolymer films.

  12. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose.

    Science.gov (United States)

    Andresen, Martin; Stenstad, Per; Møretrø, Trond; Langsrud, Solveig; Syverud, Kristin; Johansson, Leena-Sisko; Stenius, Per

    2007-07-01

    We have prepared potentially permanent antimicrobial films based on surface-modified microfibrillated cellulose (MFC). MFC, obtained by disintegration of bleached softwood sulfite pulp in a homogenizer, was grafted with the quaternary ammonium compound octadecyldimethyl(3-trimethoxysilylpropyl)ammonium chloride (ODDMAC) by a simple adsorption-curing process. Films prepared from the ODDMAC-modified MFC were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) and tested for antibacterial activity against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. The films showed substantial antibacterial capacity even at very low concentrations of antimicrobial agent immobilized on the surface. A zone of inhibition test demonstrated that no ODDMAC diffused into the surroundings, verifying that the films were indeed of the nonleaching type. PMID:17542633

  13. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  14. Cu-Au-Ag alloy nanoparticles incorporated silica films using a new three-layer deposition technique.

    Science.gov (United States)

    Pal, Sudipto; Bysakh, Sandip; De, Goutam

    2010-02-01

    Formation of Au-Ag-Cu ternary alloy nanoparticles (NPs) is difficult mainly because the system Cu/Ag is immiscible. We present a new synthetic technique to generate such ternary alloy NPs in silica film matrix employing a three-layer (3L) coating design. In this methodology three successive coating layers were deposited on silica glass substrates from separately prepared Cu-, Au- and Ag-ion incorporated inorganic-organic hybrid silica sols by dipping method. The Au layer is kept in the middle because it is miscible with both the Ag and Cu. The 3L film assembly was subjected to UV- and heat-treatment at 450-750 degrees C in H2-N2 atmosphere. UV-treatment generates small Au and Ag NPs in the respective layers and Cu remains as Cu2+; subsequent heat-treatment in H2-N2 induces the formation of ternary alloy NPs by the interlayer diffusion of nanometals. The final heat-treated film (750 degrees C/H2-N2) shows single and sharp plasmon band centered at 480 nm in the UV-visible spectrum indicating the formation of alloy (solid solution) NPs. GIXRD study shows one set of diffraction peaks which are shifted towards higher angle with respect to the Au or Ag diffraction peaks. FESEM, GIXRD, HRTEM, and SAED analyses reveal that the alloy has a composition close to (Au + Ag)0.88Cu0.12. The EDS analyses using the nano probe attached with TEM confirm the presence of Au, Ag and Cu in all the alloy NPs. PMID:20352717

  15. Preparation and characterization of films from pea protein.

    Science.gov (United States)

    Viroben, G; Barbot, J; Mouloungui, Z; Guéguen, J

    2000-04-01

    The conditions for protein film preparation from an alkaline dispersion of a pea protein isolate were investigated in the presence of polyols as plasticizers. Mechanical and barrier properties of resulting films were studied as a function of protein dispersion conditions, protein and plasticizer concentrations and ratios, chain length of the plasticizer, and pH and composition of the alkaline medium. Neither the mode of protein hydration nor the pea isolate origin had a significant effect on the mechanical properties of pea protein films. However, increasing the plasticizer chain length induced slightly higher surface hydrophobicity but poor mechanical properties. Addition of monoglycerides to film-forming solution allowed a significant improvement of the films during aging. Both tensile strength and surface hydrophobicity increased when ammonium hydroxide was used as protein dispersing agent instead of sodium hydroxide. PMID:10775350

  16. Preparation of anodic films of stabilized zirconium at ambient temperature

    International Nuclear Information System (INIS)

    It was prepared zirconium oxide films through the anodic oxidation of the zirconium at constant current density in phosphoric acid solution.The film growth is characterized, at the cronopotenciograms curves, by linear increase of the potential and region of film breakdown, with potential oscillations. The films were analysed by x-rays and SEM. It was observed the formation of zirconia films in the monoclinic phase in H3 P O4 solution. When H3 P O4 was use with Na2 [Ca(EDTA)] complex were detected the formation of zirconium oxide partiality stabilized in the tetragonal cubic form. It was also observed that varying the concentration of the complex and the applied current density it was possible to obtain different quantity of the stabilized phase. (author)

  17. Preparation and superconductivity of iron selenide thin films

    OpenAIRE

    Han, Y.; Li, W. Y.; Cao, L. X.; S. Zhang; Xu, B; Zhao, B. R.

    2009-01-01

    FeSex (x = 0.80, 0.84, 0.88, 0.92) thin films were prepared on SrTiO3(001) (STO), (La,Sr)(Al,Ta)O3(001) (LSAT), and LaAlO3(001) (LAO) substrates by pulsed laser deposition method. All thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe0.88 thin films show Tc, onset of 11.8 K and Tc, 0 of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T.

  18. Preparation and characterization of Zn Se thin films

    CERN Document Server

    Ganchev, M; Stratieva, N; Gremenok, V; Zaretskaya, E; Goncharova, O

    2003-01-01

    Chemical bath deposition technique for preparation of ZnSe thin films is presented. The influence of bath temperature and duration of deposition on film growth and quality has been studied. The effect of post-deposition annealing in different ambient is also discussed. It has been determined that heat treatment removes the oxygen-containing phase from the as-deposited films and improves crystallinity. The optical and electric properties of the deposits show their potential for an alternative buffer layer in chalcopyrite-based solar cells.

  19. A combinatorial approach of developing alloy thin films using co-sputtering technique for displays

    Institute of Scientific and Technical Information of China (English)

    Jaydeep; SARKAR; Tien-Heng; HUANG; Lih-Ping; WANG; Peter; H.; McDONALD; Chi-Fung; LO; Paul; S.; GILMAN

    2009-01-01

    In this study we have used a combinatorial approach for producing binary and ternary alloy thin film libraries using a lab-scale RF co-sputtering system. Initially we used two elemental sputtering targets, i.e. aluminum (Al) target and neodymium (Nd) target, to produce a film library of varying composition and successfully identified a suitable composition range (1.95―2.38 at% Nd) in which resistance to hillock formation and resistivity of the film spots were found to be satisfactory in annealed state (350℃, 30 min). In another case, in order to form ternary alloy composition library we have used two sputtering targets, i.e. an Al-0.5 at% Nd alloy target and an elemental Ni target. Though, co-sputtered Al-0.6 at% Nd-0.9 at% Ni alloy films showed satisfactory resistance to hillock formation and low resistivity after annealing, film deposited from a ternary alloy target with the same composition failed to show satis- factory resistance to hillock formation during annealing. In case of Al-0.6 at% Nd-0.9 at% Ni alloy target, 250 nm thick film showed poor resistance to hillock formation than the 500 nm thick film. This clearly showed thickness-dependent hillock performance of Al-0.6 at% Nd-0.9 at% Ni alloy. In this study it was found that, in addition to the process variables, metallurgical microstructure of the alloy sputtering targets had significant effect on the film properties which was not obvious from the results of films deposited using co-sputtering of the individual elemental targets.

  20. A combinatorial approach of developing alloy thin films using co-sputtering technique for displays

    Institute of Scientific and Technical Information of China (English)

    Jaydeep SARKAR; Tien-Heng HUANG; Lih-Ping WANG; Peter H.McDONALD; Chi-Fung LO; Paul S.GILMAN

    2009-01-01

    In this study we have used a combinatorial approach for producing binary and ternary alloy thin film libraries using a lab-scale RF co-sputtering system. Initially we used two elemental sputtering targets, i.e. aluminum (Al) target and neodymium (Nd) target, to produce a film library of varying composition and successfully identified a suitable composition range (1.95-2.38 at% Nd) in which resistance to hillock formation and resistivity of the film spots were found to be satisfactory in annealed state (350℃, 30 min). In another case, in order to form ternary alloy composition library we have used two sputtering targets, i.e. an Al-0.5 at% Nd alloy target and an elemental Ni target. Though, co-sputtered Al-0.6 at% Nd-0.9 at% Ni alloy films showed satisfactory resistance to hillock formation and low resistivity after annealing, film deposited from a ternary alloy target with the same composition failed to show satis-factory resistance to hillock formation during annealing. In case of Al-0.6 at% Nd-0.9 at% Ni alloy target, 250 nm thick film showed poor resistance to hillock formation than the 500 nm thick film. This clearly showed thickness-dependent hillock performance of AI-0.6 at% Nd-0.9 at% Ni alloy. In this study it was found that, in addition to the process variables, metallurgical microstructure of the alloy sputtering targets had significant effect on the film properties which was not obvious from the results of films deposited using co-sputtering of the individual elemental targets.

  1. Properties of rhenium-based master alloys prepared by powder metallurgy techniques

    Directory of Open Access Journals (Sweden)

    A. Wrona

    2010-10-01

    Full Text Available Purpose: The aim of this work was to investigate an effect of phase composition, microstructure and selected properties of the rhenium-based alloys on the conditions of their preparation by mechanical alloying followed by pressure sintering.Design/methodology/approach: The structure and mechanical and physical properties of the Re-14.0% Ni, Re-13.7% Co and Re-9.1% Fe alloys prepared from pure metal powders by mechanical alloying in a planetary mill for 10 hours followed by sintering conducted for 1 hour at the temperature of 1150°C under the pressure of 600 MPa were investigated.Findings: The mechanical alloying results in partial dissolving of alloy components into each other, whereas their structure remains unchanged, and in a decrease in average density of powders and average diameter of their particles. As a result of sintering the alloy additives almost fully pass into rhenium-based solid solution. Density and hardness of the sinter compacts and homogeneity of alloying elements distribution were higher at longer times of mechanical alloying.Research limitations/implications: The obtained results provide complementary information on the possibility of obtaining high-melting alloys by mechanical alloying and on the rate of structural transformations taking place as a result of this process.Practical implications: The obtained materials can be used as master alloys for the production of contact materials and superalloys, providing higher homogeneity of the chemical composition and microstructure of the final products.Originality/value: A new method for preparation of rhenium-based alloys by means of mechanical alloying and powder metallurgy techniques has been successfully tested.

  2. Preparation of CulnSe2 thin films by paste coating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precursor pastes were obtained by milling Cu-In alloys and Se powders.CuInSe2 thin films were successfully prepared by precursor layers,which were coated using these pastes,and were annealed in a H2 atmosphere.The pastes were tested by laser particle diameter analyzer,simultaneous thermogravimetric and differential thermal analysis instruments (TG-DTA),and X-ray diffractometry (XRD).Selenized films were characterized by XRD,scanning electron microscopy (SEM),and energy dispersive spectroscopy (EDS).The results indicate that chalcopyrite CuInSe2 is formed at 180℃ and the crystallinity of this phase is improved as the temperature rises.All the CuInSe2 thin films,which were annealed at various temperatures,exhibit the preferred orientation along the (112) plane.The compression of precursor layers before selenization step is one oftbe most essential factors for the preparation of perfect CulnSe2 thin films.

  3. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH25Cdegrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe3O4) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author)

  4. Rh-V alloy formation in Rh-VOx thin films after high-temperature reduction studied by electron microscopy.

    Science.gov (United States)

    Penner, S; Jenewein, B; Wang, D; Schlögl, R; Hayek, K

    2006-03-14

    Rh nanoparticles (mean size 10 and 15 nm), prepared by epitaxial growth on NaCl surfaces, were covered with layers of crystalline vanadium oxide (mean thickness 1.5 and 25 nm) by reactive deposition in 10(-2) mbar O2. The 1.5 nm film was further stabilized with a coating layer of 25 nm amorphous alumina. The so-obtained Rh/vanadia films, containing vanadium in the V3+ and V2+ state, were treated in 1 bar O2 at 673 K for 1 h and thereafter reduced in 1 bar H2 at increased temperatures, particularly between 723 and 873 K. The structural and morphological changes were followed by (high-resolution) transmission electron microscopy and selected area diffraction. Oxidation at 673 K transforms the purely vanadia-supported samples into Rh/V2O5, while in the alumina-supported films containing only small amounts of VOx, the formation of topotactic V2O3 is observed. The formation of Rh-V alloys during the subsequent reduction is strongly determined by the intimate contact and the structural and orientational relationship between Rh particles and the surrounding VOx phase. Reduction above 473 K transforms the support into substoichiometric vanadium oxides of composition VO and V2O. Analysis of high-resolution images and diffraction patterns reveals the presence of different alloy phases after reduction with increasing T (from 573 up to 823 K). In the alumina-supported film (low V/Rh ratio) the epitaxial alignment between the Rh particles and the surrounding V2O3 phase apparently favours the primary formation of defined alloys of type V3Rh and VRh3, followed by VRh at higher temperature. On the contrary, mainly V3Rh5 is formed in the purely VOx-supported Rh/films, due to different epitaxial relations in the initial state. Possible pathways of alloy formation are discussed. PMID:16633603

  5. Toughness enhancement in hard ceramic thin films by alloy design

    Directory of Open Access Journals (Sweden)

    H. Kindlund

    2013-10-01

    Full Text Available Hardness is an essential property for a wide range of applications. However, hardness alone, typically accompanied by brittleness, is not sufficient to prevent failure in ceramic films exposed to high stresses. Using VN as a model system, we demonstrate with experiment and density functional theory (DFT that refractory VMoN alloys exhibit not only enhanced hardness, but dramatically increased ductility. V0.5Mo0.5N hardness is 25% higher than that of VN. In addition, while nanoindented VN, as well as TiN reference samples, suffer from severe cracking typical of brittle ceramics, V0.5Mo0.5N films do not crack. Instead, they exhibit material pile-up around nanoindents, characteristic of plastic flow in ductile materials. Moreover, the wear resistance of V0.5Mo0.5N is considerably higher than that of VN. DFT results show that tuning the occupancy of d–t2g metallic bonding states in VMoN facilitates dislocation glide, and hence enhances toughness, via the formation of stronger metal/metal bonds along the slip direction and weaker metal/N bonds across the slip plane.

  6. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  7. Effects of alloy and solution chemistry on the fracture of passive films on austenitic stainless steel

    International Nuclear Information System (INIS)

    The Taguchi analysis method was used to simultaneously study the effects of alloy chemistry, pH, and halide ion concentrations on the fracture of electrochemically grown passive films using a nanoindentation technique. Three austenitic stainless steels, 304L, 316L, and 904L were potentiostatically polarized in hydrochloric acid solutions. The fracture load was dominated primarily by alloy chemistry. Passive films mechanically weaken as the atomic iron concentration increases in the film. Prolonged anodic ageing time increases the fracture load of passive films

  8. Effects of alloy and solution chemistry on the fracture of passive films on austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Alamr, A. [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164-2920 (United States)]. E-mail: alamrz@wsu.edu; Bahr, D.F. [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164-2920 (United States)]. E-mail: bahr@mail.wsu.edu; Jacroux, Michael [Department of Statistics, Washington State University, Pullman, WA 99164-3144 (United States) ]. E-mail: jacroux@wsu.edu

    2006-04-15

    The Taguchi analysis method was used to simultaneously study the effects of alloy chemistry, pH, and halide ion concentrations on the fracture of electrochemically grown passive films using a nanoindentation technique. Three austenitic stainless steels, 304L, 316L, and 904L were potentiostatically polarized in hydrochloric acid solutions. The fracture load was dominated primarily by alloy chemistry. Passive films mechanically weaken as the atomic iron concentration increases in the film. Prolonged anodic ageing time increases the fracture load of passive films.

  9. Preparation and magnetic properties of Co-P thin films

    Institute of Scientific and Technical Information of China (English)

    Haicheng Wang; Zhongmei Du; Lijin Wang; Guanghua Yu; Fengwu Zhu

    2008-01-01

    Magnetic Co-P thin films were prepared by eleetroless deposition. The experiment results show that the film thickness has a significant influence on the coercivity. While the film thickness varied from 300 nm to 5 μm, the coercivity dropped sharply from 45.36 to 22.28 kA/m. As the film thickness increased further, the coercivity varied slowly. When the thickness of the film was 300 nm, the deposited film could realize the coercivity as high as 45.36 kA/m, and the remanent magnetization as high as 800 kA/m .The Co-P films were deposited on the surface of magnetic drums of encoders, whose diameter was 40 mm, and then 512 magnetic poles were recorded, meaning that the magnetizing pitch was 0.245 mm. The testing results indicate that the output signals are perfect, the output waveforms are steady and the pulses account is integral. Compared with the γ-Fe2O3 coating, the Co-P thin film is suitable to be the magnetic recording media for the high resolution magnetic rotary encoder.

  10. Influence of additive element on surface oxide film of A356 alloy

    Institute of Scientific and Technical Information of China (English)

    OUYANG Zhi-ying; LIANG Hong-yu; MAO Xie-min; HONG Mei

    2006-01-01

    The influences of RE-modification and Sr-modification on the hydrogen content and surface oxide film of A356 aluminum alloy melt were investigated. The hydrogen content of the melt was measured by reduce pressure test. The phases in the surface oxide film were analyzed by X-ray diffractometry (XRD), and the morphology of the surface oxide film was observed by scanning electronic microscopy (SEM). The results show that RE-modification reduces the hydrogen content of A356 aluminum alloy greatly.Contrarily, Sr-modification increases the hydrogen content remarkably. After being treated with RE, a large number of LaAl11O18 consisting of Al2O3 and La2O3, are generated in the surface oxide film of A356 alloy. The surface oxide film of Sr-modification is almost composed of Al2SrO4. According to the results of SEM, the surface oxide film of Sr-modification is very easy to crack,destroy the continuity and compactness of surface oxide film, accelerate the vapor diffusing into the melt, consequently, increase the hydrogen content of A356 alloy melt significantly. But RE-modification makes the surface oxide film compact, and restrains the aluminum exposed to water, so reduces the hydrogen content of A356 alloy melt.

  11. Preparation of thin carbon films (1963)

    International Nuclear Information System (INIS)

    Carbon deposits have been prepared on silica glass supports in order to determine more accurately than by weighing the losses liable to occur during oxidation, for example under irradiation in the presence of CO2. Several processes have been studied with a view to obtaining deposits for which the variation in optical density as a function of carbon departure shall be reproducible for each sample. Among the methods used, the most satisfactory is that in which the pyrolytic carbon deposited on a carbon filament is evaporated; however only the samples prepared simultaneously exhibit the required identical behaviour. The carbonaceous deposits have been studied by micro-electronic diffraction. An examination of the photographs shows the presence of graphite monocrystals of about (30 μ)2. (author)

  12. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  13. Mossbauer investigations of corrosion environment influence on Fe valence states in oxide films of zirconium alloys

    NARCIS (Netherlands)

    Filippov, V. P.; Petrov, V. I.; Shikanova, Yu. A.

    2006-01-01

    Mossbauer investigations about iron atom redistribution in oxide films of zirconium alloys subjected to corrosion at 500 degrees C in pure oxygen and water pair have been analysed. The alloys were also subjected to autoclave conditions at a pressure of 10.0 MPa and autoclave conditions at 350 degree

  14. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  15. Preparation and Characterization of PZT films Fabricated on Si Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Ying

    2006-01-01

    Lead zirconium titanate (PZT) films (Zr/Ti=45:55)with a high dielectric constant are prepared successfully on the low-resistance Si substrate in sol-gel dip-coating process with PT film used as the buffer layer.The dielectric and ferroelectric properties of the films as well as the relationship between crystallization and preparing condition are studied.It is shown that the PZT ferroelectric thin films with a (110) preferred orientation and a well-crystallized perovskite structure could be obtained after annealing at 800℃ for 15 min.The particle size of the sample is about 14-25 nm.The P-E hysteresis loops are measured by means of the Sawyer-Tower test system with a compensation resistor at room temperature.The remanent polarization (Pr) and coercive electric field (Ec) of the measured PZT thin films are 47.7 μC/cm2 and 18 kV/cm,respectively.The relative dielectric constant εr and the dissipation factor tgδ of the PZT thin films were measured with an LCR meter and were found to be 158 and 0.04-0.005,respectively.

  16. Preparation of DNA films for studies under vacuum conditions

    DEFF Research Database (Denmark)

    Smialek, M. A.; Balog, Richard; Jones, N. C.;

    2010-01-01

    to the evacuation process when films were formed from DNA samples in ultra high purity water only. A variety of bases were tested for their possible protective capabilities and sodium hydroxide solution was found to be the most effective in maintaining the supercoiled structure of plasmid DNA during the preparation...

  17. Preparation and magnetization reversal of exchange bias structured thin films

    International Nuclear Information System (INIS)

    Magnetically patterned thin films of NiFe/IrMn/Ta-NiFe/IrMnOx with laterally modulated unidirectional anisotropy were prepared by local oxidation of the antiferromagnetic IrMn layer. Varying the lateral dimensions and orientation with respect to the anisotropy modulation, the films exhibit different magnetization reversal behaviors. While stripes aligned parallel to the unidirectional anisotropy direction display a spin valve-like two step hysteresis loop, perpendicular orientation lead to a single step shifted hysteresis loop. Magnetic domain observation reveals separate switching of the stripes for the parallel alignment and simultaneous reversal for the perpendicular orientation. By decreasing the lateral dimensions, quasi-domain states have been observed. The presented magnetic data of the exchange biased-patterned films show that we did succeed in creating an alternative method for the preparation of materials with new hybrid properties

  18. Preparation and characterization of polymer-clay nanocomposite films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition,the adhesion strength,flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.

  19. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  20. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  1. Synthesis and characterization of Cu–Al–Ni shape memory alloy multilayer thin films

    International Nuclear Information System (INIS)

    Among active materials, shape memory alloys are well recognized for their work output density. Because of that, these alloys have attracted much attention to be used in micro/nano electromechanical systems. In the present work, the electron beam evaporation technique has been used to growth, by a multilayer method, two shape memory alloy thin films with different Cu–Al–Ni composition. Multilayers have been further thermally treated to produce the alloys by solid solution diffusion. The produced multilayers have been characterized and the presence of the martensite phase in the obtained thin films was studied. Furthermore, the influence of two different coatings onto the Si substrates, namely Si/SiO2 and Si/Si3N4, was investigated. Mechanically stable, not detaching from the substrates, Cu–Al–Ni shape memory alloy thin films, about 1 micrometre thick, showing a martensitic transformation have been produced. - Highlights: ► Multilayer thin films of Cu–Al–Ni shape memory alloys produced by e-beam evaporation. ► SiNX 200 nm thick coating is good for high quality Cu–Al–Ni shape memory thin films. ► Thermal treatment renders Cu–Al–Ni multilayer in homogeneous martensite thin film

  2. Amorphous silicon carbide films prepared using vaporized silicon ink

    Science.gov (United States)

    Masuda, Takashi; Shen, Zhongrong; Takagishi, Hideyuki; Ohdaira, Keisuke; Shimoda, Tatsuya

    2014-03-01

    The deposition of wide-band-gap silicon films using nonvacuum processes rather than conventional vacuum processes is of substantial interest because it may reduce cost. Herein, we present the optical and electrical properties of p-type hydrogenated amorphous silicon carbide (a-SiC:H) films prepared using a nonvacuum process in a simple chamber with a vaporized silicon ink consisting of cyclopentasilane, cyclohexene, and decaborane. The incorporation of carbon into the silicon network induced by the addition of cyclohexene to the silicon ink resulted in an increase in the optical band gap (Eg) of films from 1.56 to 2.11 eV. The conductivity of films with Eg 1.9 eV show lower conductivity than expected because of the incorporation of excess carbon without the formation of Si-C bonds.

  3. Effects of heat treatment process on thin film alloy resistance and its stability

    Institute of Scientific and Technical Information of China (English)

    周继承; 彭银桥

    2003-01-01

    Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process.

  4. Thermal Oxidation Preparation of Doped Hematite Thin Films for Photoelectrochemical Water Splitting

    OpenAIRE

    Song Li; Jiajia Cai; Yudong Mei; Yuping Ren; Gaowu Qin

    2014-01-01

    Sn- or Ge-doped hematite thin films were fabricated by annealing alloyed films for the purpose of photoelectrochemical (PEC) water splitting. The alloyed films were deposited on FTO glass by magnetron sputtering and their compositions were controlled by the target. The morphology, crystalline structure, optical properties, and photocatalytic activities have been investigated. The SEM observation showed that uniform, large area arrays of nanoflakes formed after thermal oxidation. The incorpora...

  5. The Effect of Silane on the Microstructure, Corrosion, and Abrasion Resistances of the Anodic Films on Ti Alloy

    Science.gov (United States)

    Wang, Jinwei; Chen, Jiali

    2016-04-01

    Anodic oxide films on Ti-6Al-4V alloy are prepared using sodium hydroxide as the base electrolyte containing aminopropyl trimethoxysilane (APS) as an additive. Some APS undergo hydrolysis, adsorption, and chemical reaction with the TiO x to form Ti-O-Si bond as confirmed by ATR-FTIR and XPS spectra, and in turn their surface appearance and roughness are greatly changed with the addition of APS as observed by their SEM images. These amino anodic films possess much higher corrosive resistances since the formation of Ti-O-Si complex enhances the compactness of the anodic films and the existence of aminopropyl groups inside the pores provides additional blocking effects. Besides, their improvement in anti-abrasive capability is attributed to the toughening effect of the chemically bonded silanes and the lubrication functions from both the chemically bonded and physically absorbed silanes between the touched interfaces.

  6. Ceramic Films Containing Ca,P and Al Formed on Surface of TC4 Alloy by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    FU Lian-chun; JIANG Zhao-hua; YAO Zhong-ping; SUN Xue-tong

    2004-01-01

    Ceramic films containing Ca, P and Al were prepared on surface of TC4 alloy by micro-arc oxidation using direct current supply to enhance its seawater and plankton corrosion resistance. XRD, EDS, SEM and EPMA were employed to characterize the microstructure and the phase composition. The results showed that 15 μm-ceramic films which was uniform and compact were formed on TC4 . The mass proportion of Ca, P and Al is about 2 : 3 : 4. There was AlPO4 crystal but Ca was not crystal. Cyclic Volt-Ampere test showed that the corrosion resistance of theceramic films was much better than that of the TC4 substrate.

  7. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  8. A comparison of the passive oxide films formed on CANDU steam generator tubing alloy 600 and alloy 800

    International Nuclear Information System (INIS)

    Alloy 600 (A600) steam generator (SG) tubing has been shown to be susceptible to stress corrosion cracking (SCC). Alloy 800 (A800) was developed as a replacement, though it has shown susceptibility to corrosion under certain conditions. The properties of the passive oxide films on both alloys were extensively analyzed to determine why the performance of A800 is superior to that of A600. Surface analysis to determine oxide composition was performed using X-ray photoelectron spectroscopy (XPS) and Auger Electron spectroscopy (AES). Electrochemical measurements were made using anodic polarization and electrochemical impedance spectroscopy (EIS). The oxide films on A600 and A800 were shown to have different electrochemical and compositional properties. (author)

  9. ON DEVELOPMENT OF OPTIMAL METALLURGICAL PROCESS FOR PREPARATION OF A NEW GENERATION OF INTERMETALLIC ALLOYS

    Directory of Open Access Journals (Sweden)

    Viliam Hrnčiar

    2009-06-01

    Full Text Available Intermetallic TiAl based alloys are used in extreme conditions, e.g. high temperature, aggressive atmosphere and combined high temperature mechanical loading. The contribution deals with development and optimization of plasma melting metallurgical process in new developed crystallizer with rotational and axial movement of melt, for preparation of new intermetallic alloys based on Ti-(45-48Al-(1-10Ta (at.%. The melting process parameters and their influence to final microstructure and properties of alloys are discussed. The aim of this work is to produce alloys with lower number of technological steps necessary to achieve chemical composition, homogeneity and purity as well.

  10. Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo [Kyonggi University, Suwon (Korea, Republic of)

    2013-06-15

    Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the correlation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.

  11. A 3D porous Ni-Cu alloy film for high-performance hydrazine electrooxidation

    Science.gov (United States)

    Sun, Ming; Lu, Zhiyi; Luo, Liang; Chang, Zheng; Sun, Xiaoming

    2016-01-01

    Structural design and catalyst screening are two most important factors for achieving exceptional electrocatalytic performance. Herein we demonstrate that constructing a three-dimensional (3D) porous Ni-Cu alloy film is greatly beneficial for improving the hydrazine oxidation reaction (HzOR) performance. A facile electrodeposition process is employed to synthesize a Ni-Cu alloy film with a 3D hierarchical porous structure. As an integrated electrode for HzOR, the Ni-Cu alloy film exhibits superior catalytic activity and stability to the Ni or Cu counterparts. The synthesis parameters are also systematically tuned for optimizing the HzOR performance. The excellent HzOR performance of the Ni-Cu alloy film is attributed to its high intrinsic activity, large electrochemical specific surface area, and 3D porous architecture which offers a ``superaerophobic'' surface to effectively remove the gas product in a small volume. It is believed that the Ni-Cu alloy film electrode has potential application in direct hydrazine fuel cells as well as other catalytic fields.Structural design and catalyst screening are two most important factors for achieving exceptional electrocatalytic performance. Herein we demonstrate that constructing a three-dimensional (3D) porous Ni-Cu alloy film is greatly beneficial for improving the hydrazine oxidation reaction (HzOR) performance. A facile electrodeposition process is employed to synthesize a Ni-Cu alloy film with a 3D hierarchical porous structure. As an integrated electrode for HzOR, the Ni-Cu alloy film exhibits superior catalytic activity and stability to the Ni or Cu counterparts. The synthesis parameters are also systematically tuned for optimizing the HzOR performance. The excellent HzOR performance of the Ni-Cu alloy film is attributed to its high intrinsic activity, large electrochemical specific surface area, and 3D porous architecture which offers a ``superaerophobic'' surface to effectively remove the gas product in a small

  12. New Au–Cu–Al thin film shape memory alloys with tunable functional properties and high thermal stability

    International Nuclear Information System (INIS)

    An Au–Cu–Al thin film materials library prepared by combinatorial sputter-deposition was characterized by high-throughput experimentation in order to identify and assess new shape memory alloys (SMAs) in this alloy system. Automated resistance measurements during thermal cycling between −20 and 250 °C revealed a wide composition range that undergoes reversible phase transformations with martensite transformation start temperatures, reverse transformation finish temperatures and transformation hysteresis ranging from −15 to 149 °C, 5 to 185 °C and 8 to 60 K, respectively. High-throughput X-ray diffraction analysis of the materials library confirmed that the phase-transforming compositions can be attributed to the existence of the β-AuCuAl parent phase and its martensite product. The formation of large amount of phases based on face-centered cubic (Au–Cu), Al–Cu and Al–Au is responsible for limiting the range of phase-transforming compositions. Selected alloys in this system show excellent thermal cyclic stability of the phase transformation. The functional properties of these alloys, combined with the inherent properties of Au-based alloys, i.e. aesthetic value, oxidation and corrosion resistance, makes them attractive as smart materials for a wide range of applications, including applications as SMAs for elevated temperatures in harsh environment

  13. Study of Co-Sn and Ni-Sn alloys prepared in molten chlorides and used as negative electrode in rechargeable lithium battery

    International Nuclear Information System (INIS)

    Ni3Sn2 and several Co-Sn alloys prepared by electrodeposition in molten LiCl-KCl were studied as anode materials in rechargeable Li-ion battery. In the case of Ni3Sn2, the charge-discharge curves do not exhibit any plateau in contrast with Co-Sn alloys. For Ni3Sn2, the reversible capacity and the coulombic efficiency tend to constant values of about 225 mAh/g and 85%, respectively, after subsequent cycles. Among the studied Co-Sn alloys, the best electrochemical performances was observed when CoSn2 was used as anode material: the reversible capacity and the coulombic efficiency observed after 60 cycles were about 530 mAh/g and 96%, respectively. Whatever the alloys, SEM investigations performed before and after cycling do not reveal any significant difference between the original material and the cycled material, indicating a good stability of the electrodeposited films upon cycling.

  14. Ferromagnetic resonance study of polycrystalline Fe1-xVx alloy thin films

    International Nuclear Information System (INIS)

    Ferromagnetic resonance has been used to study the magnetic properties and magnetization dynamics of polycrystalline Fe1-xVx alloy films with 0≤xeff and the Gilbert damping parameter α have been determined as a function of V concentration. The results are compared to those of epitaxial FeV films

  15. Spontaneous magnetization of thin films of ordered and disordered alloys of transition metals

    International Nuclear Information System (INIS)

    A method of calculation of spontaneous magnetization of thin films of transition metal alloys is described. The method is based on the Hubbard model for d electrons. Use of the Bragg-Williams approximation and two-dimensional canonical transformations has allowed to calculate the magnetization. Results for a Ni3Fe thin film are presented. (author). 11 refs, 1 fig

  16. Mechanical Effects of Hafnium and Boron Addition to Aluminum Alloy Films for Submicrometer LSI Interconnects

    Science.gov (United States)

    Onoda, Hiroshi; Takahashi, Eishi; Kawai, Yasuaki; Madokoro, Shoji; Fukuyo, Hideaki; Sawada, Susumu

    1993-11-01

    This is the first report on the mechanical properties of hafnium- and boron-added Al-Si-Cu alloy film for LSI interconnects. Two to three hundred ppm of hafnium and boron addition into Al-Si-Cu alloy film does not influence the Al alloy properties for metal lines as LSI interconnects, such as its low resistivity, low ohmic contact resistance with Si, and fine-line patterning feasibility. The mechanical properties of the Al alloy film, however, change greatly. Vertical hillock and lateral hillock formation is considerably suppressed during heat treatments used in LSI fabrication processes. Stress-induced void formation is also reduced during aging test at 125°C. These effects due to hafnium and boron addition are considered to be an impurity precipitation effect ihat was confirmed by X-ray diffraction analysis and electron probe microanalysis.

  17. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  18. Preparation of superhydrophobic films on titanium as effective corrosion barriers

    International Nuclear Information System (INIS)

    Stable superhydrophobic films were prepared on the electrochemical oxidized titania/titanium substrate by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltriethoxysilane [CF3(CF2)5(CH2)2Si(OCH2CH3)3, PTES] for 1 h at room temperature followed by a short annealing at 140 deg. C in air for 1 h. The surface morphologies and chemical composition of the film were characterized by means of water contact angle (CA), field emission scanning electron microscopy (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle on the surface of this film was measured to be as high as 160o. SEM images showed that the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. The corrosion resistance ability and durance property of the superhydrophobic film in 3.5 wt.% NaCl solution was evaluated by the electrochemical impedance spectroscopy (EIS). The anticorrosion properties of the superhydrophobic film are compared to those of unmodified pure titanium and titania/titanium substrates. The results showed that the superhydrophobic film provides an effective corrosion resistant coating for the titanium metal even with immersion periods up to 90 d in the 3.5 wt.% NaCl solution, pointing to promising future applications.

  19. Growth and characterization of uranium–zirconium alloy thin films for nuclear industry applications

    International Nuclear Information System (INIS)

    Polycrystalline and epitaxial U–Zr thin films have been grown on glass and single-crystal sapphire substrates using ultra-high vacuum magnetron sputtering at high temperatures (T = 800 °C). Mixed α- and γ-U phases were detected for polycrystalline U–Zr alloy thin films with the prevailing crystal structure controlled by composition. Epitaxial U–Zr thin film samples were determined to form bi-layered structures of single-crystal γ-U and α-U phases or γ-U, δ UZr2 and α-U phases depending on the concentration of the alloying element. (paper)

  20. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-06-01

    The corrosion behaviors of NiTi shape memory alloy in NaCl solution, H2SO4 solution and borate buffer solution were investigated. It was found that TiO2 in passive film improved the corrosion resistance of NiTi shape memory. However, low corrosion resistance of passive film was observed in low pH value acidic solution due to TiO2 dissolution. Moreover, the corrosion resistance of NiTi shape memory alloy decreased with the increasing of passivated potential in the three solutions. The donor density in passive film increased with the increasing of passivated potential. Different solutions affect the semiconductor characteristics of the passive film. The reducing in the corrosion resistance was attributed to the more donor concentrations in passive film and thinner thickness of the passive film. PMID:27040211

  1. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhibin, E-mail: huangzhibin83@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Zhou Wancheng; Tang Xiufeng [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-01-15

    Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 deg. C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 {mu}m was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 deg. C.

  2. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy

    International Nuclear Information System (INIS)

    Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 deg. C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 μm was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 deg. C.

  3. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte

    International Nuclear Information System (INIS)

    An environmental-friendly electrolyte of silicate and borate, which contained an addition agent of 1H-benzotriazole (BTA) with low toxicity (LD50 of 965 mg/kg), was used to prepare an anodized film on AZ31B magnesium alloy under the constant current density of 1.5 A/dm2 at room temperature. Effects of BTA on the properties of the anodized film were studied by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), loss weight measurement, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. The results demonstrated that anodized growth process, surface morphology, thickness, phase structure and corrosion resistance of the anodized film were strongly dependant on the BTA concentration, which might be attributed to the formation of an BTA adsorption layer on magnesium substrate surface. When the BTA concentration was 5 g/L in the electrolyte, a compact and thick anodized film could provide excellent corrosion resistance for AZ31B magnesium alloy.

  4. Preparation of Photocatalytic N-doped TiO2 Films by Combined Technology of Plasma Surface Alloying/Thermal Oxidation%等离子合金化/热氧化复合技术制备光催化N掺杂TiO2薄膜

    Institute of Scientific and Technical Information of China (English)

    靳晓敏; 高利珍; 王鹤峰

    2016-01-01

    Objective To improve the photocatalytic and hydrophilic properties of 316L stainless steel surface. Methods N doped TiO2 thin films were obtained by thermal oxidation of titanium nitride films, which were prepared by plasma surface alloying on stainless steel substrate. The resultant thin films were characterized by X-ray diffraction ( XRD) , X-ray photoelectron spectros-copy ( XPS) , scanning electron microscopy ( SEM) , and ultra violet-visible absorption spectroscopy ( UV-Vis) methods. The pho-tocatalytic properties and hydrophilicity of N doped TiO2 thin films were studied through photocatalysis and hydrophilicity tests. Results XRD patterns showed that anatase type TiO2 existed in the thin films after thermal oxidation at 450 ℃ in air for 2 h. Ac-cording to XPS, residual N atoms partially occupied O atom sites in the TiO2 lattice. The band-gaps of TiO2 and N-doped TiO2 were 3. 25 eV and 3. 08 eV, respectively. A uniform and dense surface containing three-dimensional homogenous protuberances growth of grains was observed in SEM images of thin films after thermal oxidation. The experimental results of degradation of Methylene blue solution under visible light indicated that photocatalysis efficiency of N doped TiO2 film was better than that of the undoped film. The ultimate degradation rate of N doped TiO2 was 20% in visible irradiation for 150 min. The N doped TiO2 films showed a higher hydrophilicity and the contact angle was lowered to 8. 5° by Vis-irradiation within 30 min. Conclusion The N doped TiO2 film could effectively improve the photocatalytic and hydrophilic properties of stainless steel surface.%目的 提高316 L不锈钢表面的光催化和亲水性能.方法 通过等离子表面合金化技术在316 L不锈钢表面制备结合良好的TiN薄膜,然后对TiN薄膜进行热氧化,得到N掺杂TiO2薄膜.利用X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜及紫外-可见分光光度仪对制备的N掺杂TiO2

  5. Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films

    Directory of Open Access Journals (Sweden)

    Z. Q. Chen

    2013-01-01

    Full Text Available Annealing induced amorphization in sputtered glass-forming thin films was generally observed in the supercooled liquid region. Based on X-ray diffraction and transmission electron microscope (TEM analysis, however, here, we demonstrate that nearly full amorphization could occur in nanocrystalline (NC sputtered NiW alloy films annealed at relatively low temperature. Whilst the supersaturation of W content caused by the formation of Ni4W phase played a crucial role in the amorphization process of NiW alloy films annealed at 473 K for 30 min, nearly full amorphization occurred upon further annealing of the film for 60 min. The redistribution of free volume from amorphous regions into crystalline regions was proposed as the possible mechanism underlying the nearly full amorphization observed in NiW alloys.

  6. Preparation of semi-solid billet of magnesium alloy and its thixoforming

    Institute of Scientific and Technical Information of China (English)

    JIANG Ju-fu; LUO Shou-jing

    2007-01-01

    Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angular extrusion to magnesium alloy. The results show that mechanical properties of AZ91D alloy at room temperature, such as yield strength(YS), ultimate tensile strength(UTS) and elongation, are enhanced greatly by four-pass equal channel angular extrusion(ECAE) at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20 μm. Through using ECAE as strain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment, semi-solid billet with fine spheroidal grains of 25 μm can be prepared successfully. Compared with common SIMA, thixoformed satellite angle frame components using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and high temperature of 373 K.

  7. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  8. Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys

    OpenAIRE

    Fengxia Wu; Jun Liang; Weixue Li

    2015-01-01

    Mg(OH)2/graphene oxide (GO) composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH)2/GO composite film were investigated by scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH)2 film, the Mg(OH)2/GO composite film exhibited more uniform and compac...

  9. Double switching hysteresis loop in a single layer Fe3Pt alloy thin films

    International Nuclear Information System (INIS)

    The Fe3Pt alloy thin films were epitaxially grown on MgO(100) substrate by e-beam evaporation. The films were partially ordered at the substrate deposition temperature above 350 deg. C. These partially ordered films exhibit very large biaxial magnetic anisotropy constant in the order of 105 J/m3 and produce double switching in the hysteresis loops. The difference of the switching field of these films can be up to about 3 x 105 A/m by tuning the angle of the applied field with respect to the easy axes. This double switching behavior stems from the large biaxial magnetic anisotropy of the films

  10. Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans.

    Science.gov (United States)

    Zhao, Yadong; Zhang, Yujia; Lindström, Mikael E; Li, Jiebing

    2015-03-01

    Cellulose nanocrystals (CNs) were prepared from tunicate by enzymatic hydrolysis (ECN), TEMPO-mediated oxidation (TCN) and acid hydrolysis (ACN). They were cast alone or blended with glucomannan (GM) from konjac or spruce to prepare films. Different CNs were obtained with a yield of ECN>TCN>ACN with corresponding order of decreased Mw but increased crystallinity. The CNs' diameters were on the nanometre scale, with lengths of ECN>TCN>ACN. For CN-films, TCN and ACN fibrils were stretched and parallel to each other due to surface charges. For CN-GM films, both components interacted strongly with each other, resulting in changes of crystallinity, specific surface area, fibril diameter and contact angle compared with CN films. The composite films had good thermal, optical and mechanical properties; the last ones are apparently better than similar films reported in the literature. This is the first systematic study of different tunicate CN-GM nanocomposite films and the first ever for spruce GM. PMID:25498637

  11. Preparation and superconductivity of iron selenide thin films.

    Science.gov (United States)

    Han, Y; Li, W Y; Cao, L X; Zhang, S; Xu, B; Zhao, B R

    2009-06-10

    FeSe(x) (x = 0.80,0.84,0.88,0.92) thin films were prepared on SrTiO(3)(001)(STO), (La,Sr)(Al,Ta)O(3)(001) (LSAT), and LaAlO(3)(001) (LAO) substrates by a pulsed laser deposition method. All of the thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe(0.88) thin films show a T(c,onset) of 11.8 K and a T(c,0) of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T. PMID:21825594

  12. Preparation and superconductivity of iron selenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y; Li, W Y; Cao, L X; Zhang, S; Xu, B; Zhao, B R [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: lxcao@aphy.iphy.ac.cn

    2009-06-10

    FeSe{sub x} (x = 0.80,0.84,0.88,0.92) thin films were prepared on SrTiO{sub 3}(001)(STO), (La,Sr)(Al,Ta)O{sub 3}(001) (LSAT), and LaAlO{sub 3}(001) (LAO) substrates by a pulsed laser deposition method. All of the thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe{sub 0.88} thin films show a T{sub c,onset} of 11.8 K and a T{sub c,0} of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T.

  13. Anisotropic Magnetoresistance of Cobalt Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Yuttanun PANSONG

    2005-01-01

    Full Text Available Cobalt films on silicon substrates were prepared by thermal evaporation. By evaporating 0.05 g of cobalt for 80-240 s, a thickness from 21.1 to 67.7 nm was obtained with a deposition rate about 0.26-0.32 nm per second. The 29 nm-thick cobalt film exhibited magnetoresistance (MR ranging from -0.0793% (field perpendicular to the current to +0.0134% (field parallel to the current with saturation in a 220 mT magnetic field. This MR was attributed to anisotropic magnetoresistance (AMR since changing the angle between the field and the current (θ gave rise to a change in the electrical resistance (Rθ. The results agreed with the theory since the plot between Rθ and cos2θ could be linearly fitted. AMR was not observed in non-ferromagnetic gold films whose resistance was insensitive to the angle between the current and magnetic field.

  14. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  15. Microstructure and Properties of W-15Cu Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering Process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiaoxin; SHI Xiaoliang; YANG Hua; DUAN Xinglong

    2008-01-01

    W-15Cu composite powders prepared by mechanical alloying (MA) of raw powders were consolidated by spark plasma sintering (SPS) process at temperature ranged 1230-1300℃ for 10min and under a pressure of 30MPa. By using high energy milling, particles containing very fine tungsten grains embedded in copper, called composite particles, could be produced. The W grains were homogeneously dispersed in copper phase, which was very important to obtain W-Cu alloy with high mechanical properties, fine and homogeneous microstructure. The microstructure and properties of W-15Cu alloys prepared by SPS processes at different temperature were researched. The results show that W-15Cu alloys consolidated by SPS can reach 99.6% relative density, and transverse rupture strength (TRS) is 1400.9MPa, Rockwell C hardness (HRC) is 45.2, the thermal conductivity is 196W/m·K at room temperature, the average grain size is less than 2μm, and W-15Cu alloy with excellent properties, homogeneous and fine microstructure is obtained.

  16. Colloidal CZTS nanoparticles and films: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Gong, Yanmei; Xu, Jian, E-mail: xujian@nbu.edu.cn; Fang, Gang; Xu, Qingbo; Dong, Jianfeng

    2013-10-15

    Highlights: •CZTS nanoparticles (NPs) with size ∼8–16 nm were synthesized by wet-chemical process. •Crystal phase of CZTS NPs was affected by the reaction temperature in synthesis. •Densified films were prepared from colloids, with drying and sintering in vacuum. •CZTS films (∼5 μm in thickness) have the band-gap of ∼1.5–2.0 eV. •CZTS conductivity change due to illumination was measured by AC impedance method. -- Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) compound semiconductor has the advantage of good matching with solar radiation in optical band-gap, large absorption coefficient, non-toxic and especially large abundance ratios of elements, so that CZTS has been considered as a good absorber layer used for the thin-film solar cells with most industrialization promising and environment friendly. In the present work, colloidal CZTS nanocrystals (average size ∼8–16 nm) with the band gap of ∼1.5 eV were synthesized via wet-chemical processing, using oleylamine (OLA) as solvent and capping molecules. The colloids were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–Vis–NIR spectroscopy. The structure and morphology of nanocrystals were influenced with the reaction temperature. The resulting nanocrystals were kesterite-phase CZTS when the reaction temperature was lower, but were wurtzite-phase CZTS when the reaction temperature above 275 °C. The CZTS films on glass substrates were prepared by drop-casting, from the colloidal 10 wt% CZTS–toluene solution where the CZTS colloids were synthesized at 260 °C with three different recipes. The resulting films with different heat-treatments were investigated by XRD, SEM and energy dispersive spectroscopy (EDS). Densified CZTS films (∼5 μm in thickness) could be obtained by drying and sintering in vacuum. The CZTS films have the band-gap around 1.6–2.0 eV, due to Zn rich and S poor in the films

  17. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    International Nuclear Information System (INIS)

    Highlights: • The as-forged Fe25Co75 alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe25Co75 alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe1−xCox (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe25Co75 alloy was 108 ppm and that of the as-cold rolled Fe25Co75 alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe25Co75 alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe25Co75 and Fe20Co80 alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction

  18. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  19. Effect of Perovskite Film Preparation on Performance of Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxian Pei

    2016-01-01

    Full Text Available For the perovskite solar cells (PSCs, the performance of the PSCs has become the focus of the research by improving the crystallization and morphology of the perovskite absorption layer. In this thesis, based on the structure of mesoporous perovskite solar cells (MPSCs, we designed the experiments to improve the photovoltaic performance of the PSCs by improved processing technique, which mainly includes the following two aspects. Before spin-coating PbI2 solution, we control the substrate temperature to modify the crystal quality and morphology of perovskite films. On the other hand, before annealing, we keep PbI2 films for the different drying time at room temperature to optimize films morphology. In our trials, it was found that the substrate temperature is more important in determining the photovoltaic performance than drying time. These results indicate that the crystallization and morphology of perovskite films affect the absorption intensity and obviously influence the short circuit current density of MPSCs. Utilizing films prepared by mentioning two methods, MPSCs with maximum power conversion efficiency of over 4% were fabricated for the active area of 0.5 × 0.5 cm2.

  20. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  1. Rain Erosion Behavior of Silicon Dioxide Films Prepared on Sapphire

    Institute of Scientific and Technical Information of China (English)

    Liping FENG; Zhengtang LIU; Wenting LIU

    2005-01-01

    Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to in crease both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD),respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared(FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.

  2. Preparation of molybdenum oxide thin films by MOCVD

    International Nuclear Information System (INIS)

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 oC (703 K). Thus, a range of deposition temperatures varying from 350 to 630 oC (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of α-MoO3 phase at deposition temperatures ranging from 400 to 560 oC (673-833 K). Crystalline α-MoO3 films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 oC (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance

  3. Chemical deposition and characterization of thorium-alloyed lead sulfide thin films

    International Nuclear Information System (INIS)

    We present a chemical bath deposition process for alloying PbS thin films with 232Th, a stable isotope of thorium, to provide a model system for radiation damage studies. Variation of deposition parameters such as temperature, reagent concentrations and time allows controlling the properties of the resulting films. Small amounts of incorporated thorium (0.5%) strongly affected the surface topography and the orientation of the films and slowed down the growth rate. The Th appears to be incorporated as substitutional ions in the PbS lattice. - Highlights: • Chemical bath deposition has been used for alloying lead sulfide films with 232Th. • The effect of Th on the structural and optical properties of the films was studied. • Incorporation of Th affected surface topography, orientation, Eg and growth rate

  4. Preparation and characterization of as-extruded Mg–Sn alloys for orthopedic applications

    International Nuclear Information System (INIS)

    Highlights: • As-extruded Mg–Sn alloys with various Sn content were fabricated. • Microstructure of alloys varied with increasing Sn content. • Mechanical properties of alloys could be adjusted by controlling the Sn content. • Corrosion properties of alloys could be adjusted by controlling the Sn content. • As-extruded Mg–1Sn and Mg–3Sn alloys did not induce toxicity to cells. - Abstract: In this study, as-extruded Mg–Sn alloys with various Sn content were prepared and characterized for orthopedic applications. The results of microstructure observations and X-ray diffraction analysis showed that as-extruded Mg–Sn alloys were composed of α-Mg and Mg2Sn phases, and the content of Mg2Sn phase increased with increasing Sn content. The microstructure of as-extruded Mg–Sn alloy with 1 wt.% Sn was equiaxed grain, while the one with a higher Sn content was inhomogeneous microstructure and the grain size of the long elongated grains decreased with increasing Sn content. Tensile test revealed that the yield strength and ultimate tensile strength of as-extruded Mg–Sn alloys increased while the elongation decreased with increasing Sn content. Immersion and electrochemical tests indicated that the microstructure of as-extruded Mg–Sn alloys affected their corrosion properties, and the increase of Mg2Sn phase resulted from the increase of the Sn content led to a higher corrosion rate. The cytotoxicity test showed that as-extruded Mg–1Sn and Mg–3Sn alloys met the requirement of cell toxicity for orthopedic applications. Our analyses showed that as-extruded Mg–1Sn and Mg–3Sn alloys were promising to be used as biodegradable orthopedic implants

  5. Preparation of organic thin-film field effect transistor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic thin-film field effect transistor was prepared through vacuum deposition by using teflon as di-electric material. Indium-tin-oxide acted as the source and drain electrodes. Copper phthalocyanine and teflon were used as the semiconductor layer and dielectric layer, respectively. The gate electrode was made of Ag. The channel length between the source and drain was 50 μm. After preparing the source and drain electrodes by lithography, the copper phthalocyanine layer, teflon layer and Ag layerwere prepared by vacuum deposition sequentially. The field effect electron mobility of the device reached 1.1×10ˉ6 cm2/(V@s), and the on/off current ratio reached 500.

  6. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Science.gov (United States)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-02-01

    Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  7. The preparation of well-dispersed Ni-B amorphous alloy nanoparticles at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ming [Department of Chemistry, Tongji University, Shanghai 200092 (China)], E-mail: m_wen@mail.tongji.edu.cn; Li Lujiang; Liu Qiuyan; Qi Haiquan [Department of Chemistry, Tongji University, Shanghai 200092 (China); Zhang Tao [Department of Materials Science and Engineering, Beijing University of Aeronaut and Astronaut, Beijing 100083 (China)

    2008-05-08

    The air-stable well-dispersed Ni-B amorphous alloy nanoparticles in the similar size of 5 nm with narrow deviation were prepared by a chemical solution alloying process at room temperature in a positive microemulsion system. The proposed interface reaction mechanism, element analysis and thermal stability as well as the magnetic behavior of Ni-B amorphous alloy nanoparticles were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), infrared spectroscopy (IR), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). All the results showed that as synthesized Ni-B amorphous alloy nanoparticles are air-stable in room temperature and coated by macromolecular compound oleic acid. The magnetic property of the as synthesized Ni-B amorphous alloy was discussed based on the obtained results.

  8. Preparation of CuCr alloys by thermit-reduction electromagnetic stirring

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influences of the additive CaF2, different molds, mold pre-heating temperature, electromagnetic stirring, and alloying elements on CuCr have been investigated respectively during the preparation of CuCr alloys by thermit-reduction electromagnetic cation point of slags to improve the metal separating efficiency from slags; the crystal particles become thinner because of the high cooling velocity in the metal mold; while casting in the graphite mold, the casting properties of CuCr improve with the increase of pre-heating temperature; the compact alloys are prepared at 500℃; electromagnetic stirring can prevent the growth of dendrite crystal into refine crystal particles, as well as homogenize Cu and Cr to improve the CuCr properties; the optimal stirring time is 7 min;when the alloying elements Ni and Co are added to the reactants, elements Cu and Cr can distribute evenly but the crystal particles become thick.

  9. New bulk glassy alloys in Cu-Zr-Ag ternary system prepared by casting and milling

    International Nuclear Information System (INIS)

    The thermal stability, crystallization behaviour and glass forming ability of Cu-Zr-Ag system have been investigated on the basis of a ternary phase diagram. We altered the concentration of the alloys from the Cu58Zr42 to the concentration of the deep eutectic point of the Cu-Zr-Ag ternary system and we calculated the glass forming ability parameters. This paper summarises the results of the procedure during which Cu-Zr-Ag amorphous alloys with different Ag content (0-25%) were prepared by casting and ball-milling. Wedge-shaped samples were prepared from the ingots by centrifugal casting into copper mold. The supercooled liquid region (ΔTx) exceeded 75K. Following the characterization of the cast alloys, master alloys of identical composition were milled in a Fritsch Pulverisette 2 ball-mill. The powders, milled for various periods of time were analysed by XRD in order to define the amorphous fraction.

  10. Preparation of porous U-10%Mo alloy by powder metallurgy and its microstructure characterization

    International Nuclear Information System (INIS)

    U-Mo alloy is one of candidates of metallic fuel for advanced nuclear reactor due to its good irradiation behavior. Reasonably analysis suggests that the irradiation swell of U-Mo alloy can be decreased by introducing homogeneously distributed voids, because they can accommodate gaseous fission products. The process of preparing low density U-Mo alloy by powder metallurgy was described, including preparing low density bulk materials by pressing and vacuum sintering. A serial of U-10%Mo alloys with different densities were obtained and the microstructure was analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). It is proved that the density of sample increases with sinister time under 1100℃. The void ratio can be controlled by adjusting sinister process conveniently. (authors)

  11. Lubrication properties of silver-palladium alloy prepared by ion plating method for high temperature stud bolt

    Institute of Scientific and Technical Information of China (English)

    Jung-Dae KWON; Sunghun LEE; Koo-Hyun LEE; Jong-Joo RHA; Kee-Seok NAN; Se-Hun KWON

    2011-01-01

    As a solid lubricant, silver-palladium (Ag-Pd) alloy coating was investigated for the application to high temperature studbolt. A glue layer nickel (Ni) film was deposited on the surface of the hex bolt sample and then Ag-Pd alloy coating was performed on it using ion plating method. The friction coefficient of Ag-Pd alloy film coated bolt was lower than that of N-5000 oil coated bolt by the result of axial force measurement. The cyclic test of heat treatment was conducted to evaluate the durability of Ag-Pd alloy film coated bolt. In a cycle, sample was assembled into the block using torque wrench, followed by heating and disassembling. It was not successful to disassemble the N-5000 oil coated bolt from the block after only one cycle. However, the Ag-Pd alloy film coated bolt was able to be disassembled softly till 12 cycles.

  12. Formation of barrier-type anodic films on ZE41 magnesium alloy in a fluoride/glycerol electrolyte

    International Nuclear Information System (INIS)

    Highlights: • Barrier anodic films formed on ZE41 Mg alloy in glycerol/fluoride electrolyte. • Films contain oxygen and fluorine species; formation ratio ∼1.3 nm V−1. • Nanocrystalline film structure, with MgO and MgF2. • Zinc enrichment in alloy beneath anodic film. • Modified film formed above Mg-Zn-RE second phase. - Abstract: Barrier-type, nanocrystalline anodic films have been formed on a ZE41 magnesium alloy under a constant current density of 5 mA cm−2 in a glycerol/fluoride electrolyte, containing 5 vol.% of added water, at 293 K. The films contain magnesium, fluorine and oxygen as the major species, and lower amounts of alloying element species. The films grow at an efficiency of ∼0.8 to 0.9, with a formation ratio in the range of ∼1.2 to 1.4 nm V−1 at the matrix regions and with a ratio of ∼1.8 nm V−1 at Mg-Zn-RE second phase. At the former regions, rare earth species are enriched at the film surface and zinc is enriched in the alloy. A carbon- and oxygen-rich band within the film suggests that the films grow at the metal/film and film/electrolyte interfaces

  13. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, F.O.; Willis, R.F. [Pennsylvania State Univ., University Park, PA (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  14. Preparation and characterization of ZnSe: Al thin films

    International Nuclear Information System (INIS)

    Thin films of ZnSe: Al were deposited on glass substrates by laser assisted evaporation. Parameters such as crystal structure, optical and electrical properties of the films have been investigated. X-ray diffraction shows that prepared films are polycrystalline with preferred (111) orientation and having a zinc blend cubic structure. The lattice constant has been evaluated for ZnSe, the value was found to be 0.56 nm, and the value does not show any appreciable change with the addition of aluminium. From optical measurement, it was found that optical band gap, Eg, decreases on adding Al. The value changes from 2.62 eV (for ZnSe) to 1.85 eV with 3.0 wt % of Al in the film. Hall effect measurements showed that the films are all n-type and the carrier concentration increases with the increase of Al concentration in the film. DC electrical conductivity may be thermally activated with negligible activation energy only when the Al concentration is lower than 3 wt % at temperature up to 2000 C, and the transport process may involve hopping of electrons in the localized states near the conduction band edge. However, at higher concentration of Al the process is dominated by usual transition of electrons to the mobility edge. Addition of Al up to 3 wt % does not only increase the electrical conductivity by a factor of 102 but also the carrier concentration by a factor of 103 which may bring about electron degeneracy at room temperature by dislodging the Fermi level (Authors)

  15. Photosensitive PZT gel films and their preparation for fine patterning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weihua; Zhao Gaoyang; Chen Zhiming

    2003-05-25

    A novel technique has been developed to lithographically make fine patterns on PZT films. Employing chemical modification in acetylacetone (AcAc), we have obtained an UV photosensitive PZT sol from which the PZT films to be patterned can be prepared. With methanol as solvent and AcAc as chemical modifier, three sols used to compose the PZT coating sol are obtained from Zirconium oxynitrate (ZrO(NO{sub 3}){sub 2}), lead acetate (Pb(CH{sub 3}COO){sub 2}), and tetrabutyl titanate ((C{sub 4}H{sub 9}O){sub 4}Ti), respectively. By means of UV-vis and FT-IR spectrophotometers we have found that AcAc can associate with Zr, Pb, and Ti ions to form three chelate complexes, the UV absorption peaks of which are located at wavelength 304, 315 and 329 nm, respectively. However, the photosensitive PZT coating sol has UV absorption peak at around 312 nm. Both the chelate complexes in sol and the UV absorption peak can be remained in the gel films. When the photosensitive PZT gel film is irradiated by UV light containing 312 nm wavelength, its solubility in solvents such as alcohol, acetone and so on is reduced remarkably, while the UV absorption peak disappears with the dissociation of the chelate complexes correspondingly. Utilizing the characteristics, a fine pattern can be obtained by irradiation of UV light on the PZT gel film through a pattern mask and dissolving the non-irradiated area in suitable solvent. After annealing at 680 deg. C for 30 min, the PZT films with specific fine pattern can be obtained.

  16. ELECTROCHEMICAL PREPARATION OF COPPER-NICKEL AND COPPER-NICKEL- MANGANESE ALLOYS AND CHARACTERIZATION

    OpenAIRE

    Pathak, R. K.; Neha Deshmukh

    2015-01-01

    lectrochemical preparation of binary alloy of ECu-Ni from acid sulphate bath containing citric acid using potentiostatic method. The effects of alloy composition were monitored. Copper is widely used in industry, because of its good thermal conductivity and mechanical properties. The addition of Nickel and Manganese to Copper improves its strength and durability and also the resistance to corrosion and erosion. Corrosion controls of metal have technical environmental and economical impo...

  17. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting

    OpenAIRE

    Luo Zongqiang; Zhang Weiwen; Xin Baoliang

    2011-01-01

    A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application. The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting. The results show that the equiaxed grains are determined by the pouring temperature of the melt, the cooling rate and the rotation speed of the mold. With the decrease in pouring temperature, the fraction of the equiaxed grains in the transverse section of the ingot i...

  18. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ndione, Paul F.; Li, Zhen; Zhu, Kai

    2016-09-07

    Complex refractive index and dielectric function spectra of organic-inorganic lead halide perovskite alloy thin films are presented, together with the critical-point parameter analysis (energy and broadening) of the respective composition. Thin films of methylammonium lead halide alloys (MAPbI3, MAPbBr3, MAPbBr2I, and MAPbBrI2), formamidinium lead halide alloys (FAPbI3, FAPbBr3, and FAPbBr2I), and formamidinium cesium lead halide alloys [FA0.85Cs0.15PbI3, FA0.85Cs0.15PbBrI2, and FA0.85Cs0.15Pb(Br0.4I0.6)3] were studied. The complex refractive index and dielectric functions were determined by spectroscopic ellipsometry (SE) in the photon energy range of 0.7-6.5 eV. Critical point energies and optical transitions were obtained by lineshape fitting to the second-derivative of the complex dielectric function data of these thin films as a function of alloy composition. Absorption onset in the vicinity of the bandgap, as well as critical point energies and optical band transition shift toward higher energies as the concentration of Br in the films increases. Cation alloying (Cs+) has less effect on the optical properties of the thin films compared to halide mixed alloys. The reported optical properties can help to understand the fundamental properties of the perovskite materials and also be used for optimizing or designing new devices.

  19. An Overview on Thin Films Prepared by Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Chemical vapor deposition, (CVD); involves the formation of a solid thin layer on a heated substrate surface by means of chemical reaction in gas or vapor phase. CVD techniques have expanded continuously and developed into the most important method for producing films for solid-state devices. CVD is considered to be the major technique for preparing most films used in the fabrication of semiconductor devices and integrated circuits. It has advantages such as the versatility, compatibility, quality, simplicity, reproducibility, and low cost. CVD has some disadvantages of; the use of comparatively high temperatures in many processes and chemical hazards caused by toxic, explosive, or corrosive gases. Chemical vapor deposition processes can be classified according to the type of their activation energy into thermally-activated CVD, plasma-enhanced CVD, laser-induced CVD, photochemical CVD, and electron-beam assisted CVD. In this paper an attempt is made to present all aspects of CVD equipment design and the variables affecting the deposition rate. Finally the preparation requirements and the application of CVD films are also summarized. 5 figs

  20. Preparation of biomimetic hydrophobic coatings on AZ91D magnesium alloy surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydrophobic coating has been a promising technology for improving surface performance. The surface performance of magnesium alloy has been limited in application. Furthermore, the hydrophobic of magnesium alloy is rarely investigated because magnesium alloy is an active metal alloy. In this paper, inspired by microstructure character of typical plant leaf surface such as lotus, the biomimetic hydrophobic coatings on AZ91D magnesium alloy surface were prepared by means of wet-chemical combining electroless. The samples were immersed into AgNO3 solution in wet-chemical method firstly. Then, biomimetic hydrophobic coatings were prepared by electroless after wet-method pretreatment. The microstructure was observed by SEM and the contact angles were measured by contact angle tester. The results indicated that the biomimetic hydrophobic coatings with uniform crystalline and dense structure could be obtained on AZ91D magnesium alloy surface. The results of contact angle revealed that the biomimetic nano-composite coatings were hydrophobic. The wet-chemical method treatment on the AZ91D magnesium alloy substrate provided a rough microstructure, thus improving adhesion of the coating and the substrate.

  1. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  2. Preparation and characterization of sintered Mo-Re alloys

    International Nuclear Information System (INIS)

    By the method of powder metallurgy, we have tried to fabricate Mo-Re alloys, which were electron beam weldable. Severe quality control was carried out during the whole fabrication process focused to reducing oxygen contamination. It is inevitable that the starting raw powders of Mo and Re were both high purity with 99.99 mass% up. Moreover, high vacuum sintering was performed before final sintering with high-purity hydrogen gas. As a result, we obtained electron beam weldable Mo-Re alloys, the total oxygen content of which was about 10 mass ppm or less, respectively. Several specimens were melted by electron beam welding (EBW) method. It was found that EBW gives an easy and effective survey to examine the weldability and the quality of the materials. Fracture surfaces examined by AES exhibited very low content of oxygen, carbon and nitrogen or that less than detectability limit. In conclusion, we have succeeded to obtain defect-free welds of sintered Mo-Re alloys. Furthermore it was found that Mo-Re alloys showed excellent potentialities not only in mechanical properties at low temperature but also in the respects of microstructure. (orig.)

  3. Preparation and characterization of sintered Mo-Re alloys

    Energy Technology Data Exchange (ETDEWEB)

    Morito, F. (National Research Inst. for Metals, Tsukuba (Japan))

    1993-11-01

    By the method of powder metallurgy, we have tried to fabricate Mo-Re alloys, which were electron beam weldable. Severe quality control was carried out during the whole fabrication process focused to reducing oxygen contamination. It is inevitable that the starting raw powders of Mo and Re were both high purity with 99.99 mass% up. Moreover, high vacuum sintering was performed before final sintering with high-purity hydrogen gas. As a result, we obtained electron beam weldable Mo-Re alloys, the total oxygen content of which was about 10 mass ppm or less, respectively. Several specimens were melted by electron beam welding (EBW) method. It was found that EBW gives an easy and effective survey to examine the weldability and the quality of the materials. Fracture surfaces examined by AES exhibited very low content of oxygen, carbon and nitrogen or that less than detectability limit. In conclusion, we have succeeded to obtain defect-free welds of sintered Mo-Re alloys. Furthermore it was found that Mo-Re alloys showed excellent potentialities not only in mechanical properties at low temperature but also in the respects of microstructure. (orig.).

  4. MgB{sub 2} thin films grown on graphene/Ni–Mo alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Linghu, Kehuan, E-mail: linghukehuan@126.com [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Song, Qingjun [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Zhang, Huai [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Yang, QianQian [College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Zhang, Jibo; Wu, Qianhong; Nie, Ruijuan [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Dai, Lun [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Feng, Qingrong; Wang, Furen [School of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2015-09-15

    Highlights: • Depositing MgB{sub 2} thin films on graphene/Ni–Mo alloy substrate by HPCVD is a completely new method. • The growth of MgB{sub 2} thin films in this system lays a good foundation of depositing MgB{sub 2} thick films. • We directly deposite MgB{sub 2} films on graphene(without transferring) which keeps graphene’s original morphology and properties. - Abstract: 200 nm Ni film is coated on 25 μm thick Mo foil, and graphene is grown on the Ni–Mo system by CVD method. After the annealing process of CVD, the Ni/Mo bilayer transforms into Ni–Mo alloy, then we have successfully fabricated MgB{sub 2} films on graphene/Ni–Mo alloy system via the hybrid physical–chemical vapor deposition (HPCVD) technique. The transition temperature T{sub c} onset is 38.25 K with a corresponding transition width of 0.75 K. The average thickness of MgB{sub 2} films is 200 nm (25% concentration B{sub 2}H{sub 6}). The critical current density derives from the magnetization measurement at 5 K is, j{sub c} (5 K, 0 T) = 9.6 × 10{sup 6} A/cm{sup 2}. We can easily deposite MgB{sub 2} on graphene/Ni–Mo alloy system with a lower B{sub 2}H{sub 6} concentration and less gas flow, which lays a good foundation for depositing MgB{sub 2} thick films. The graphene in this system is multilayer and with defects, it may act like an intermediary film for the growth of MgB{sub 2}, or a carbon-doping source.

  5. Semiconductor properties and protective role of passive films of iron base alloys

    International Nuclear Information System (INIS)

    Semiconductor properties of passive films formed on the Fe-18Cr alloy in a borate buffer solution (pH = 8.4) and 0.1 M H2SO4 solution were examined using a photoelectrochemical spectroscopy and an electrochemical impedance spectroscopy. Photo current reveals two photo action spectra that derived from outer hydroxide and inner oxide layers. A typical n-type semiconductor behaviour is observed by both photo current and impedance for the passive films formed in the borate buffer solution. On the other hand, a negative photo current generated, the absolute value of which decreased as applied potential increased in the sulfuric acid solution. This indicates that the passive film behaves as a p-type semiconductor. However, Mott-Schottky plot revealed the typical n-type semiconductor property. It is concluded that the passive film on the Fe-18Cr alloy formed in the borate buffer solution is composed of both n-type outer hydroxide and inner oxide layers. On the other hand, the passive film of the Fe-18Cr alloy in the sulphuric acid consists of p-type oxide and n-type hydroxide layers. The behaviour of passive film growth and corrosion was discussed in terms of the electronic structure in the passive film

  6. Structure and electrical properties of quaternary Cr–Si–Ni–W films prepared by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Highlights: • Quaternary Cr–Si–Ni–W thin film was prepared by IBSD. • As-deposited Cr–Si–Ni–W films show nanocrystalline state in XRD analysis. • Big massive particles in Cr–Si–Ni–W films are mainly formed in deposition process. • Conduction mechanism was discussed based on microscopic analysis. - Abstract: Si-rich Cr–Si–Ni–W films were deposited by ion beam sputter deposition (IBSD) using a mother alloy target on polished Al2O3 substrates. Effects of ion beam voltage, annealing temperature and deposition time on sheet resistance and TCR of Cr–Si–Ni–W films were studied. Experimental results reveal that the as-deposited Cr–Si–Ni–W films obtained by IBSD show a crystalline state because of a high mobility of deposition atoms and molecules with more energy obtained from high energy ions. XRD and AFM analysis show that the big massive particles mainly composed of Si and CrSi2 in Cr–Si–Ni–W films are formed in the process of IBSD rather than in post-annealing stage. Long deposition time is significantly important to a decrease of the number and size of gaps between big particles in Cr–Si–Ni–W films and to an improvement of the continuity and compactness of film structure, influencing resistivity and TCR of deposition film. The conduction mechanism was discussed based on microscopic analysis and the conductive model proposed for Cr–Si–Ni–W films mainly composed of big particles

  7. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  8. Properties of Ni2MnGa shape memory alloy prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Preparation of Ni2MnGa shape memory alloys (SMA) by spark plasma sintering (SPS) and property comparisons of sintered alloys to arc-melted alloys are investigated. The Ni2MnGa alloy with relative density of 99.6% is obtained with a maximum pressure of 80MPa and a maximum temperature of 1173 K applied in the sintering process. Heat treatment is subsequently performed at 1073 K for 864 ks in vacuum and slowly cooled. The martensitic transformation temperatures, Ms, Mf, As, Af, are determined as 235 K, 220 K, 239 K and 254 K respectively. The elastic moduli and Poisson ratio are 107.9GPa and 0.38 respectively. Tensile and compression tests are conducted at room temperature. The tensile fracture strength is increased in sintered alloys. For compression tests, sintered alloys show compressive ductility of 14.2% with transgranular cracking while arc-melted alloys only have 1.5% plastic deformation and both intergranular cracking and transgranular cracking. Furthermore, the sintered alloys possess higher yield stresses and fracture strengths. (orig.)

  9. Electrochemical studies on La-Co alloy film in acetamide-urea-NaBr melt system

    Institute of Scientific and Technical Information of China (English)

    GUO Cheng-yu; WANG Jian-chao; CHEN Bi-qing; WANG Jing-gui

    2005-01-01

    The kinetics of La-Co alloy film in acetamide-urea-NaBr molten salt electrolyte at 353 K was investigated. It is shown that the reduction of Co( Ⅱ ) to Co is irreversible reaction with the transfer coefficient of 0.28 and the diffusion coefficient of 7.46 × 10-5cm2/s. While La( Ⅲ ) cannot be reduced to La directly; but can be codeposited with cobalt. The content of La in the uncrystallized La-Co alloy film increases with increasing cathodic overpotential, molar ratio of La3+ to Co2+ and electrolysis time as well, and reaches the maximum of 66.32%.

  10. Nanocrystalline silicon films prepared by laser-induced crystallization

    Institute of Scientific and Technical Information of China (English)

    傅广生; 于威; 李社强; 侯海虹; 彭英才; 韩理

    2003-01-01

    The excimer laser-induced crystallization technique has been used to investigate the preparation of nanocrystalline silicon (nc-Si) from amorphous silicon (α-Si) thin films on silicon or glass substrates. The α-Si films without hydrogen grown by pulsed-laser deposition are chosen as precursor to avoid the problem of hydrogen effluence during annealing.Analyses have been performed by scanning electron microscopy, atomic force microscopy, Raman scattering spectroscopy and high-resolution transmission-electron microscopy. Experimental results show that silicon nanocrystals can be formed through laser annealing. The growth characters of nc-Si are strongly dependent on the laser energy density. It is shown that the volume of the molten silicon predominates essentially the grain size of nc-Si, and the surface tension of the crystallized silicon is responsible for the mechanism of nc-Si growth.

  11. Thin nanocrystalline zirconia films prepared by pulsed laser deposition

    Science.gov (United States)

    Dikovska, A. Og; Atanasova, G. B.; Avdeev, G. V.; Strijkova, V. Y.

    2016-03-01

    In the present work, thin zirconia films were prepared by pulsed laser deposition at different substrate temperatures and oxygen partial pressures. The substrate temperature was varied from 400 °C to 600 °C, and the oxygen pressure, from 0.01 to 0.05 mbar. The effect was investigated of the substrate temperature and oxygen pressure on the formation of m-zirconia and t-zirconia phases.The formation of a cubic phase of ZrO2 by using targets doped with 3 and 8 mol % content Y2O3 was also investigated. The variation in the optical properties was studied and discussed in relation with the zirconia films' microstructure.

  12. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content

    Directory of Open Access Journals (Sweden)

    Angeliki Lekatou

    2016-02-01

    Full Text Available Hypereutectic Al-Co alloys of various Co contents (7–20 weight % (wt.% Co were prepared by vacuum arc melting, aiming at investigating the influence of the cobalt content on the microstructure and corrosion behavior. Quite uniform and directional microstructures were attained. The obtained microstructures depended on the Co content, ranging from fully eutectic growth (7 wt.% and 10 wt.% Co to coarse primary Al9Co2 predominance (20 wt.% Co. Co dissolution in Al far exceeded the negligible equilibrium solubility of Co in Al; however, it was hardly uniform. By increasing the cobalt content, the fraction and coarseness of Al9Co2, the content of Co dissolved in the Al matrix, and the hardness and porosity of the alloy increased. All alloys exhibited similar corrosion behavior in 3.5 wt.% NaCl with high resistance to localized corrosion. Al-7 wt.% Co showed slightly superior corrosion resistance than the other compositions in terms of relatively low corrosion rate, relatively low passivation current density and scarcity of stress corrosion cracking indications. All Al-Co compositions demonstrated substantially higher resistance to localized corrosion than commercially pure Al produced by casting, cold rolling and arc melting. A corrosion mechanism was formulated. Surface films were identified.

  13. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction

    International Nuclear Information System (INIS)

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H2SO4 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H2O2. All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic electrolyte PtCoNi 70-8-22% by

  14. The deposit stress behavior and magnetic properties of electrodeposited Ni-Co-Fe ternary alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Soo; Kwak, Jun-Ho; Na, Seong-Hun; Lim, Seung-Kyu; Suh, Su-Jeong [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-08-15

    Ni-Co-Fe ternary alloy films were electrodeposited from a sulfate bath. The effects of the saccharin concentration on the deposit stress behavior of these films were investigated. When the saccharin concentration was 0.004 M, the deposit stress was the lowest (61 MPa, tensile stress mode). Then, the relation between the deposit stress and the magnetic properties was investigated. As the deposit stress of the Ni-Co-Fe thin films decreased from 307 to 61 MPa, the coercivity and the squareness decreased from 6.17 to 1.35 Oe and from 0.65 to 0.18, respectively. The dependence of the deposit stress on the temperature in the plating bath was investigated. As the temperature in the plating bath was increased from 25 to 50 .deg. C the deposit stress of the Ni-Co-Fe alloy films decreased from 61 to 32 MPa.

  15. An application of Au thin-film emissivity barrier on Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhibin [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechincial University, Xi' an 710072 (China)], E-mail: huangzhibin83@163.com; Zhu Dongmei; Lou Fa; Zhou Wancheng [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechincial University, Xi' an 710072 (China)

    2008-12-30

    1000 nm-thick Au film was sputter-deposited on two groups of nickel alloy substrates, in which one group (Group A) was oxidated at 800 deg. C for 20 h to form a oxide film before coating gold while another group (Group B) was unoxidated. The gold thin-film is applied to serve as a low emissivity coating to reflect thermal radiation. The gold-coated samples were heated in air at 600 deg. C for 150 h to explore the effect of high-temperature environment on the emissivity of coated Au film. After heat-treatment, the average thermal emissivity at the wavelength of 3-14 {mu}m of Group B greatly increased from 0.18 to 0.82 while that of Group A only increased a little. The diffusion between Au and other nickel alloy elements at 600 deg. C also had been discussed in this paper.

  16. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    Science.gov (United States)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  17. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    OpenAIRE

    Shuangshuang Sun; Xiance Jiang

    2014-01-01

    The mechanical model of the shape memory alloy (SMA) composite film with silicon (Si) substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation perfo...

  18. In situ surface magneto-optical Kerr effect (s-MOKE) study of ultrathin soft magnetic FeCuNbSiB alloy films

    International Nuclear Information System (INIS)

    Herein we report on an in situ surface magneto-optical Kerr effect (s-MOKE) study of ion-beam-sputtered ultra-thin films of an amorphous Fe73.9Cu0.9Nb3.1Si13.2B8.9 (FINEMET) alloy with film growth that ranges from a fraction of a nm to a few tens of nms. Extrapolating the linear variation of the Kerr signal with film thickness suggests the absence of a magnetic dead layer at the substrate/FINEMET film interface, and hence the absence of any intermixing. The presence of a thin SiO2 film at the surface of the Si substrate may be responsible for preventing possible intermixing of Fe with Si to form nonmagnetic silicide. Close to the onset of ferromagnetic ordering, a steep increase in the coercive field with film thickness can be explained in terms of the Volmer–Weber growth of the film. Furthermore, the temperature dependence of the hysteresis loops of a 41 nm-thick FINEMET film has been studied. The Curie temperature of the amorphous film is found to be lower than that of a ribbon of the same composition. The origin of a uniaxial magnetic anisotropy in the as-prepared stage is attributed to the generation of some long-range stresses in the film, which are relieved close to the onset temperature for nanocrystallization. (paper)

  19. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  20. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Highlights: •We studied plasma electrolytic oxidation (PEO) for a magnesium alloy, ACM522. •Amorphous film was obtained from silicate solution, while crystalline film was deposited from phosphate solution. •Both anodized films using silicate and phosphate solutions indicated a self-repairing behavior. •The addition of Na2B4O7 to the phosphate solution reduced the cracks on a self-repaired film. -- Abstract: Plasma electrolytic oxidation (PEO) on a die-casting ACM522 Mg alloy was conducted in aqueous silicate and phosphate solutions. The corrosion behavior of the anodized ACM522 Mg alloy was investigated in detail. During the investigation, the self-repairing behavior of the anodized films was evaluated by a salt spray test for 168 h, and the mechanism of this self-repairing was discussed in terms of thermodynamic equilibrium constants. Furthermore, the effects of additives to the phosphate solution on the self-repairing behavior were examined, and the addition of Na2B4O7 was found to effectively reduce cracks on a self-repaired film

  1. Research on the influencing factors of nitrogen content during process of zirconium alloy powder preparation

    International Nuclear Information System (INIS)

    In order to control effectively the nitrogen content of the zirconium alloy powder with strong activity, the research about the influencing factors during the process of the zirconium alloy preparation were carried out. Through analyzing the influencing factors during the process of the zirconium preparation, reducing the transient cracking temperature by adding alcohol medium when cracked the zirconium alloy, and removing the adsorbate under high temperature and black vacuum conditions, as well as protecting the zirconium hydride out of the furnace were studied. The combination nitrogen content of the powder and the total nitrogen content were measured by chemistry analysis technique, and high temperature and fusion method respectively; and the powder activity were analyzed. The results shown that adding alcohol medium is an effective method to reducing the nitrogen content of zirconium alloy; and removing the adsorbate under high temperature and black vacuum conditions can not realize the experimental purpose; moreover the method of protecting the zirconium hydride out of the furnace have some effective on reducing the nitrogen content of zirconium alloy, however, the result is not stable clearly. In this present study, it is found that a great deal physics-adsorption nitrogen among zirconium hydride have a direct influencing to the nitrogen content of zirconium alloy, and the transient cracking temperature is also an important influencing factor to it. (authors)

  2. Preparation of ZnO:CeO2-x thin films by AP-MOCVD: Structural and optical properties

    International Nuclear Information System (INIS)

    The growth of columnar CeO2, ZnO and ZnO:CeO2-x films on quartz and AA6066 aluminum alloy substrates by economic atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) is reported. A novel and efficient combination of metal acetylacetonate precursors as well as mild operating conditions were used in the deposition process. The correlation among crystallinity, surface morphology and optical properties of the as-prepared films was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The synthesized films showed different crystallographic orientations depending on the ZnO and CeO2 lattice mismatch, cerium content and growth rate. The CeO2 films synthesized in this work showed plate-like compact structures as a result of the growth process typical of CVD. Both pure and ZnO:CeO2-x films were obtained with a hexagonal structure and highly preferred orientation with the c-axis perpendicular to both substrates under the optimal deposition conditions. The microstructure was modified from dense, short round columns to round structures with cavities ('rose-flower-like' structures) and the typical ZnO morphology by controlling the cerium doping the film and substrate nature. High optical transmittance (>87%) was observed in the pure ZnO films. As for the ZnO:CeO2-x films, the optical transmission was decreased and the UV absorption increased, which subsequently was affected by an increase in cerium content. This paper assesses the feasibility of using ZnO:CeO2-x thin films as UV-absorbers in industrial applications. - Graphical abstract: TEM micrographs and their corresponding SAED pattern obtained for the as-deposited ZnO-CeO2-x thin films for a Zn/Ce metallic ratio 16:9.

  3. Electronic structure of the L-cysteine films on dental alloys studied by ultraviolet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The valence electronic structures of the dental alloys, type 1, type 3, K14, and MC12 and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The electronic states of the MC12 dental alloy originate dominantly from Cu 3d states and Pd 4d states around the top of the valence bands, while the 4∼7-eV electronic structure of MC12 originates from the Ag 4d states. The peak shift and the change in shape due to alloying are observed in all the dental alloys. For the L-cysteine thin films, new peak or structure observed around 2 eV on all the dental alloys is suggested to be due to the bonding of S 3sp orbitals with the dental alloy surfaces. The Cu-S bond as well as the Au-S and Au-O bonds may cause the change in the electronic structure of the L-cysteine on type 1, type 3 and K14. For MC12, the interaction with L-cysteine may be dominantly due to the Pd-S, Cu-S, and Ag-O bonds, while the contribution of the Ag-S bond is small.

  4. Properties of tungsten heavy alloys, prepared by spark-plasma sintering

    Science.gov (United States)

    Ermakova, N. S.; Yurlova, M. S.; Grigoryev, E. G.

    2016-04-01

    In this paper the effect of spark-plasma sintering parameters on the microstructure and mechanical properties of tungsten heavy alloys VNZHK-90 and VNZHK-93 are studied. The basic dependences of the density and strength characteristics from the sintering temperature and velocity are shown. Conclusions about the dependence of the method of preparation of the starting powders on the microstructure of alloys are formulated. It was found that by spark-plasma sintering technique it is possible to achieve the theoretical density of compact heavy alloys during solid-phase sintering. It is shown that the maximum level of alloys mechanical properties is observed when sintering temperature 1300 ° C. It is found that the change in the rate of heating does not contribute to change in the density of the samples. At the same time, on the mechanical properties the shrinkage rate has a significant effect.

  5. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  6. Preparation of films of a highly aligned lipid cubic phase.

    Science.gov (United States)

    Squires, Adam M; Hallett, James E; Beddoes, Charlotte M; Plivelic, Tomás S; Seddon, Annela M

    2013-02-12

    We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (Q(II)(D)) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L(3) phase) in the presence of butanediol, we can obtain a film of the Q(II)(D) phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that found in the oriented bulk material that we have reported previously; therefore, we can now reproducibly form Q(II)(D) samples oriented with either the [110] or the [100] axis aligned in the flow direction depending on the method of preparation. The deposition of MO as a film, via a moving fluid-air interface that leaves a coating of MO in the L(3) phase on the capillary wall, leads to a sample in the [110] orientation. This contrasts with the bulk material that we have previously demonstrated to be oriented in the [100] direction, arising from flow producing an oriented bulk slug of material within the capillary tube. The bulk sample contains significant amounts of residual butanediol, which can be estimated from the lattice parameter of the Q(II)(D) phase obtained. The sample orientation and lattice parameters are determined from synchrotron small-angle X-ray scattering patterns and confirmed by simulations. This has potential applications in the production of template materials and the growth of protein crystals for crystallography as well as deepening our understanding of the mechanisms underlying the behavior of lyotropic liquid-crystal phases. PMID:23347289

  7. Microstructure and properties of AZ80 magnesium alloy prepared by hot extrusion from recycled machined chips

    Institute of Scientific and Technical Information of China (English)

    刘英; 李元元; 张大童; 倪东惠; 陈维平

    2002-01-01

    AZ80 magnesium alloy was prepared by hot extrusion of recycled machined chips and its microstructure and mechanical properties were investigated. Hot pressing was employed to prepare extrusion billets of AZ80 chips, then the billets were hot extruded at 623K with an extrusion ratio of 25∶ 1. The extruded rods show a high ultimate tensile strength of 285MPa and a high elongation of 6%. Due to grain refinement by extrusion, mechanical properties of the extruded rods are much higher than those of as-cast AZ80 alloy. Process technique and chips densification mechanism were also studied. Results show that hot extrusion is an efficient method for AZ80 alloy chips recycling.

  8. Mechanically alloyed in-situ MgB{sub 2}: Aspects of powder preparation towards an industrial scale wire preparation

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Marko; Haessler, Wolfgang; Rodig, Christian; Schubert, Margitta; Kario, Ania; Nenkov, Konstantin; Scheiter, Juliane; Holzapfel, Bernhard; Schultz, Ludwig [IFW Dresden, Institute for Metallic Materials, Dresden (Germany); Schmolinga, Ludwig [Bruker HTS GmbH, Alzenau (Germany); Aubele, Andre; Sailer, Bernd; Schlenga, Klaus [Bruker EAS GmbH, Hanau (Germany)

    2011-07-01

    During the powder-in-tube preparation using sheath materials, e.g. Monel or CuNi alloys, it is necessary to recover the metallic sheath in order to reduce work hardening and allow for further deformation. In combination with a mechanically alloyed in-situ precursor this intermediate heat treatment is a sensitive processing step. Due to the high reactivity of the nanocrystalline precursor an unintended MgB{sub 2} formation starting at around 350 C is observed. With ongoing phase formation the hardness of the precursor is increasing and therefore limiting the deformability of the wire composite. In order to allow for a reliable wire preparation this paper concentrates on the characterization of the reactivity of mechanically alloyed precursor powders using x-ray diffraction studies with subsequent Rietveld analysis. Experimental results of transport measurements and microstructural investigations on MgB{sub 2} bulk samples, wires and tapes prepared with precursor powders of different processing, e.g. variation of milling energy and carbon addition, are discussed.

  9. Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, S.M.A.; Khawaja, E.E. [Laser Research Section, Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Box 1831, 31261 Dhahran (Saudi Arabia); Salim, M.A.; Al-Kuhaili, M.F.; Al-Shukri, A.M. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia)

    2002-02-15

    Thin films of tungsten oxide have been prepared by thermal evaporation. The effect of preparation conditions (heating of substrates and oxygen environment) on the optical constants (n and k) of the films has been studied. Satisfactory derivation of n and k from the measured normal incidence transmittance of the films was achieved. It was found that (a) both n and k have larger values for films deposited on heated substrates than for those deposited on unheated substrates, and at a given substrate temperature, (b) both n and k have smaller values for films deposited in the oxygen atmosphere than those deposited without an introduction of oxygen in the chamber.Thermochromic colouration of the films was carried out by annealing the films in vacuum. The annealing of the films produced significant loss in the oxygen content (measured by X-ray photoelectron spectroscopy) and modulation of the transmittance for the films deposited on unheated substrates with or without the oxygen environment and films deposited on heated substrates with the oxygen. The loss in the oxygen content and the modulation of transmittance, however, were very small for films deposited on heated substrates without the oxygen. For annealed films, satisfactory derivation of n and k was achieved for films deposited on unheated substrates, while for films deposited on heated substrates this was not possible. This study revealed that upon annealing the optical properties of the films prepared in the oxygen environment were mainly absorptance-modulated, and those of the films without the oxygen were reflectance-modulated.

  10. Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites

    OpenAIRE

    Panthapulakkal, S.; Sain, M.

    2012-01-01

    The aim of this study was to develop cellulose-nanofibril-film-reinforced polycarbonate composites by compression molding. Nano fibres were prepared from wood pulp fibres by mechanical defibrillation, and diameter distribution of the fibres produced was in the range of 1–100 nm. Nanofibre films were prepared from the nanofibre suspensions and were characterized in terms of strength properties, crystallinity, and thermal properties. Strength and modulus of the nano fibre films prepared were 24...

  11. Effect of SiC interlayer between Ti6Al4V alloy and hydroxyapatite films.

    Science.gov (United States)

    Azem, Funda Ak; Birlik, Isil; Braic, Viorel; Toparli, Mustafa; Celik, Erdal; Parau, Anca; Kiss, Adrian; Titorencu, Irina; Vladescu, Alina

    2015-04-01

    Bioactive coatings are frequently used to improve the osseointegration of the metallic implants used in dentistry or orthopaedics. Among different types of bioactive coatings, hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most extensively used due to its chemical similarities to the components of bones and teeth. In this article, production and characterization of hydroxyapatite films deposited on Ti6Al4V alloy prepared by magnetron sputtering were reported. Besides, SiC was deposited on substrate surface to study the interlayer effect. Obtained coatings were annealed at 600 °C for 30 and 120 min in a mixed atmosphere of N2 + H2O vapours with the heating rate of 12 °C min(-1). The effects of SiC interlayer and heat treatment parameters on the structural, mechanical and corrosion properties were investigated. After heat treatment process, the crystalline hydroxyapatite was obtained. Additionally, cell viability tests were performed. The results show that the presence of the SiC interlayer contributes a decrease in surface roughness and improves the mechanical properties and corrosion performance of the hydroxyapatite coatings. Biological properties were not affected by the presence of the SiC interlayer. PMID:25934259

  12. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release.

    Science.gov (United States)

    Zhou, Juan; Zhang, Bin; Liu, Xunwei; Shi, Lijun; Zhu, Jun; Wei, Daixu; Zhong, Jian; Sun, Gang; He, Dannong

    2016-06-01

    A facile approach was proposed to prepare silk fibroin (SF) and hyaluronic acid (HA) composite films from aqueous solution without crosslinking or any post treatment. Only by controlling the HA content and film formation temperature during the film casting, the HA/SF films with different composition were prepared. The films were then characterized by structural characteristics, thermal stability, morphology, water stability, water absorption, mechanical properties. After immersing in water for 24h, all of the films showed good structural integrity. The degradation rate of the HA/SF films in protease XIV can be controlled by changing the film formation temperature and HA content. Decreasing the temperature and adding HA resulted in the rapid release of VEGF (vascular endothelial growth factor) from the HA/SF films. Overall, the 5% HA/SF films formed at 37°C with more rapid VEGF release exhibited great potential in drug delivery, especially when the rapid vascularization was needed. PMID:27083373

  13. Preparation and characterization of thick BSCCO 2223 films

    International Nuclear Information System (INIS)

    Among the most widespread applications for critical high-temperature ceramic superconductors are for silver veined tapes, with the superconductor in the middle. These tapes are prepared by the powder- in - tube method. To attain high densities of critical current, the ceramic material must have a certain texture, with the grains oriented with the c axis perpendicular to the direction in which the current circulates. In the system that was studied, the degree of orientation increases as the distance to the vein decreases, with the maximum being in the silver-ceramic inter-phase. Superconductor tapes become inconvenient when defining the ceramic, especially because of the orientation of their plates as a function of the distance to the silver. Although the silver can be dissolved by a chemical attack in order to uncover the ceramic, greater precaution is needed while manipulating the superconductor and obtaining representative data. The behavior of thick films of the compound BSCCO 2223, deposited on silver sheets, forming silver-ceramic composites, was studied. These sheets simulate the silver-ceramic inter-phase and the distribution of the grains towards the center in a thick tape. After the samples were prepared, the phases that were present were characterized by x-ray diffraction and the resulting microstructure was analyzed with a SEM (Scanning Electron Microscope). Its mechanical properties were evaluated, following the formation and propagation of cracks in real time using four point flexion microassays inside the SEM chamber, as well as generating tension-deformation curves. The method of preparation of the thick films is discussed and its influence on the results obtained with the different characterizations (cw)

  14. Fabrication of Sn-Ni alloy film anode for Li-ion batteries by electrochemical deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-wei; YANG Chen-ge; DAI Jun; WEN Jian-wu; WANG Long; CHEN Chun-hua

    2009-01-01

    Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also investigated.By galvanostatic cell cycling the film anodes can deliver a steady specific capacity.The morphological changes cause the differences in capacity retention.After farther heat treatment,the film anodes present a better cycle performance,with a specific capacity of 314 mA-h/g after 100 cycles.This high capacity retention can be due to its smooth,compact surface formed in the heat treatment process.

  15. MARTENSITE AND REVERSE TRANSFORMATION IN PRESTRAINED TiNi SHAPE MEMORY ALLOY THIN FILM

    Institute of Scientific and Technical Information of China (English)

    X.P. Liu; M.Z. Cao; R. Yang

    2003-01-01

    The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un deformed TiNi film, the reverse transformation of pre-strained specimens was elevated to a higher temperature on the first heating, but martensite and reverse transforma tion on subsequent thermal cycles occurred at a lower temperature. The evolution of transformation behavior in pre-strained TiNi film was related to the change of elastic strain energy, irreversible energy and internal stress field.

  16. Tantalum-cadmium film coatings: Preparation, phase composition, and structure

    Science.gov (United States)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Zhakanbaev, E. A.

    2015-01-01

    Ion-plasma sputtering and codeposition of ultrafine Ta and Cd particles were used for the first time to prepare solid solutions, namely, alloys with up to 66.2 at % Cd in the form of coatings; the fact of such a production confirms the thermal-fluctuation melting and coalescence of small particles. When the coatings are formed by tantalum and cadmium nanolayers, the mutual dissolution of the components takes place, which is accompanied by the formation of solid solutions of one metal in the other. When the cadmium concentration is above 44 at %, the β-Ta tetragonal lattice transforms into the α-Ta body-centered cubic lattice. Beginning from 74.4 at % Cd, a hexagonal structure typical of cadmium is formed, and tantalum is present in the coatings in the form of amorphous phase. The formation of β-Ta- and Cd-based interstitial and α-Ta-based substitute solid solutions is stated. At 700°C, cadmium evaporates from Ta-based solid solutions, and porous tantalum is formed. The evaporation of cadmium from coatings, which consist of the mixture of tantalum solid solution in cadmium and amorphous tantalum, leads to the formation of tantalum characterized by a highly developed surface. The prepared Ta-based materials assume the technological application of the results of the investigation.

  17. Structural and magnetic properties of Cu-alloyed FePd films

    International Nuclear Information System (INIS)

    Multilayer films [Cu(d Å)/Fe(9 Å)/Pd(11 Å)]5 were deposited at room temperature on Si(001)/SiO2(400 nm) substrates. In order to induce chemical L10 ordering, the as-deposited samples were post-annealed by rapid thermal annealing (RTA) at 600 °C for 90 s followed additionally by heating in ultra-high vacuum (UHV) at 700 °C up to several hours. In this study the impact of post-annealing on the structural and magnetic properties of FePdCu alloy films in dependence on the Cu content was investigated. It was found that the addition of Cu to the FePd alloy has a strong influence on the chemical ordering process and the (001) texture formation. After the RTA treatment only an isotropic distribution of the easy axis of magnetization with coercive fields in the range of a few hundred mT was observed. In contrast, samples which were additionally heated for 1 h at 700 °C revealed an out-of-plane easy axis of magnetization with an effective magnetic anisotropy of about 2×105 J/m3 for the sample containing 10 at% of Cu. - Highlights: • Fabrication by two-step annealing of FePdCu thin alloy films. • The impact of post-annealing on the structural and magnetic properties of FePdCu alloy films. • The addition of Cu to the FePd alloy has a strong influence on the chemical ordering process and the (001) texture formation. • Importance of texture in polycrystalline L10 FePdCu alloy for perpendicular magnetic anisotropy

  18. Structural and magnetic properties of Cu-alloyed FePd films

    Energy Technology Data Exchange (ETDEWEB)

    Polit, A., E-mail: aleksander.polit@gmail.com [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Makarov, D., E-mail: d.makarov@ifw-dresden.de [Chemnitz University of Technology, Institute of Physics, D-09107 Chemnitz (Germany); Brombacher, C., E-mail: Christoph.Brombacher@vacuumschmelze.com [Chemnitz University of Technology, Institute of Physics, D-09107 Chemnitz (Germany); Krupinski, M., E-mail: michal.krupinski@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Perzanowski, M., E-mail: marcin.perzanowski@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Zabila, Y., E-mail: yevhen.zabila@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland); Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de [Chemnitz University of Technology, Institute of Physics, D-09107 Chemnitz (Germany); Marszałek, M., E-mail: marta.marszalek@ifj.edu.pl [The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-348 Krakow (Poland)

    2015-05-01

    Multilayer films [Cu(d Å)/Fe(9 Å)/Pd(11 Å)]{sub 5} were deposited at room temperature on Si(001)/SiO{sub 2}(400 nm) substrates. In order to induce chemical L1{sub 0} ordering, the as-deposited samples were post-annealed by rapid thermal annealing (RTA) at 600 °C for 90 s followed additionally by heating in ultra-high vacuum (UHV) at 700 °C up to several hours. In this study the impact of post-annealing on the structural and magnetic properties of FePdCu alloy films in dependence on the Cu content was investigated. It was found that the addition of Cu to the FePd alloy has a strong influence on the chemical ordering process and the (001) texture formation. After the RTA treatment only an isotropic distribution of the easy axis of magnetization with coercive fields in the range of a few hundred mT was observed. In contrast, samples which were additionally heated for 1 h at 700 °C revealed an out-of-plane easy axis of magnetization with an effective magnetic anisotropy of about 2×10{sup 5} J/m{sup 3} for the sample containing 10 at% of Cu. - Highlights: • Fabrication by two-step annealing of FePdCu thin alloy films. • The impact of post-annealing on the structural and magnetic properties of FePdCu alloy films. • The addition of Cu to the FePd alloy has a strong influence on the chemical ordering process and the (001) texture formation. • Importance of texture in polycrystalline L1{sub 0} FePdCu alloy for perpendicular magnetic anisotropy.

  19. Thermal stability of magnesium alloy AZ91 prepared by severe plastic deformation

    OpenAIRE

    Roman Štěpánek; Libor Pantělejev; Ondřej Man

    2013-01-01

    This paper deals with the thermal stability of ultrafine-grained alloy AZ91 prepared by means of ECAP (Equal Channel Angular Pressing) method. Annealing experiments were conducted isochronally for 30 minutes in the temperature range of 220 to 400 °C in argon atmosphere. EBSD (Electron Backscatter Diffraction) method was used to image the changes in microstructure due to increased temperature.

  20. Injection Molding of W-Ni-Fe Nanocomposite Powder Prepared by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline 90W-7Ni-3Fe (wt pct) composite powder was prepared by mechanical alloying and mixed with binder to form a feedstock. Its rheological and sintering behaviors were compared with those of the feedstock from the original powder. It is found that milling can increase the maximum powder loading of feedstock and enhance the sintering densification process.

  1. Film formation on the surface of magnesium-beryllium PMB-2 alloy in a diphenyl mixture under reactor irradiation

    International Nuclear Information System (INIS)

    A film growth on the surfaces of PMB-2 magnesium-beryllium alloy specimens in a diphenyl mixture under reactor irradiation was studies. It is shown that film thickness increases linearly with absorbed dose up to 3500 Mrad. The possibility of film washing off the specimen surfaces by boiling in the diphenyl mixture is investigated

  2. Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor

    International Nuclear Information System (INIS)

    Cerium oxide (CeO2) buffer layers play an important role for the development of YBa2Cu3O7-x (YBCO) based superconducting tapes using the rolling assisted biaxially textured substrates (RABiTS) approach. The chemical solution deposition (CSD) approach has been used to grow epitaxial CeO2 films on textured Ni-3 at.% W alloy substrates with various starting precursors of ceria. Precursors such as cerium acetate, cerium acetylacetonate, cerium 2-ethylhexanoate, cerium nitrate, and cerium trifluoroacetate were prepared in suitable solvents. The optimum growth conditions for these cerium precursors were Ar-4% H2 gas processing atmosphere, solution concentration levels of 0.2-0.5 M, a dwell time of 15 min, and a process temperature range of 1050-1150 deg. C. X-ray diffraction, AFM, SEM, and optical microscopy were used to characterize the CeO2 films. Highly textured CeO2 layers were obtained on Ni-W substrates with both cerium acetate and cerium acetylacetonate as starting precursors. YBCO films with a J c of 1.5 MA/cm2 were obtained on cerium acetylacetonate-based CeO2 films with sputtered YSZ and CeO2 cap layers

  3. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    Science.gov (United States)

    Wen, F. S.; Xiang, J. Y.; Hao, C. X.; Zhang, F.; Lv, Y. F.; Wang, W. H.; Hu, W. T.; Liu, Z. Y.

    2013-12-01

    The ultrathin films of Co2FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films.

  4. Surface Composition and Corrosion Property of TiNi Alloys Coated with Tantalum Films

    Institute of Scientific and Technical Information of China (English)

    Yan CHENG; Wei CAI; Liancheng ZHAO

    2004-01-01

    Multi-arc ion plating method was employed to coat TiNi alloys with Ta in order to improve radiopacity and corrosion resistance property. The surface composition, corrosion resistance property and Ni ions release amount of TiNi alloys coated with Ta films compared with TiNi alloys, are investigated by means of X-ray photoelectron spectrometry (XPS), electrochemical measurements and atomic absorption spectrophotometry (AAS), respectively. The results show that the coated surface composition is composed of Ta and O and the corrosion resistance is improved, whereas the Ni ions release amount of the coated sample is lower than that of the uncoated samples in the whole immersion period, indicating that Ta coating can improve the biocompatibility of TiNi alloys.

  5. Magnetic properties of Fe-Pt thick-film magnets prepared by RF sputtering

    International Nuclear Information System (INIS)

    Thick films of L10 ordered Fe-Pt alloy magnet with a high maximum energy product were prepared by using a three-dimensional sputtering apparatus. With decreasing the Ar pressure from 3 to 0.6Pa, the films annealed at 600 deg. C underwent a gradual phase transformation from the disordered FCC phase to the ordered FCT one. With further decreasing the pressure to 0.43Pa, the disordered phase appeared again. The values of Hc and (BH)max were maximized to be approximately 399kA/m and 90kJ/m3 at 0.6Pa of Ar pressure, respectively. While varying the input power at a stable pressure of 0.6Pa, the as-deposited samples were dominated by the disordered phase at the applied power of 100W RF, and the heat treatment resulted in a change to such L10 ordered phase. At input power higher than 120W, both the as-deposited and annealing samples were ordered to the hard L10 FCT phase, and high Hc and (BH)max values of about 446kA/m and 124kJ/m3, respectively, were obtained on the sample deposited at the input power of 180W

  6. Uniaxial in-plane magnetic anisotropy in silicon-iron films prepared using vacuum coating plant (VCP)

    Science.gov (United States)

    Kockar, H.; Meydan, T.

    2005-06-01

    The novel VCP system is a mobile physical deposition method to deposit metallic/magnetic films using various source materials including powder, lump, pre-alloyed ingots and wires. The VCP system consists of a large deposition area of 960 cm2 and has been used for the first time to prepare magnetic thin films of Si{3}Fe{97}. The source material evaporated by a resistively heated furnace, which was position right under the substrate within the VCP system, contains small pieces of conventional 3% silicon-iron steel as source materials. The magnetic analysis of the films was achieved by using a vibrating sample magnetometer (VSM). Observations indicate that the magnetic anisotropy and coercivity are dependent on the type of substrate and the deposition conditions. Results of all films deposited on flexible kapton^TM are anisotropic in the film plane whereas the films deposited on glass substrate indicate the less-well defined anisotropy in the film plane while the substrate holder of the VCP system was run at the speed of 100 rpm. In the case of stationary magnetic materials production, the films deposited on kapton and glass substrates show isotropic magnetic behaviour. All films showed planar magnetic anisotropy irrespective of type of substrate and the production conditions used. The findings are discussed in terms of scaling up the technique for the possible production of various shapes of circular, square or strip components with the compositions equivalent to that of conventional electrical steels in order to investigate a possible future to produce large scale of silicon-iron as the core materials for rotating machines and power transformers.

  7. The Effect of Diffusion Barrier and Bombardment on Adhesive Strength of CuCr Alloy Films

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-feng; SONG Zhong-xiao; XU Ke-wei; WANG Yuan

    2004-01-01

    A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different bombardment energies were used to improve the comprehensive properties of Cu alloy film. The results indicated that the effects of diffusion barriers and bombardment energy on adhesive strength could be evaluated by a rolling contact fatigue adhesion test. Diffusion barrier can enhance the adhesive strength, and the adhesion of CuCr/CrN was higher than that of CuCr/TiN. When bombarding energy was higher, the adhesive strength of CuCr/TiN films was higher due to the broader transition zone.

  8. Giant magnetoresistance of electrodeposited Cu–Co–Ni alloy films

    Indian Academy of Sciences (India)

    İ H Karahan; Ö F Bakkaloğlu; M Bedir

    2007-01-01

    Electrodeposition of CuCoNi alloys was performed in an acid–citrate medium. Nickel density parameter was varied in order to analyse its influence on the magnetoresistance. The structure and giant magneto- resistance (GMR) effect of CuCoNi alloys have been investigated. The maximum value for GMR ratio, at room temperature is 1% at a field of 12 kOe, and at 20 K is 2.1% at a field of 8.5 kOe for 3.1 Ni. The MR ratio of Cu100−−CoNi alloys first increases and then decreases monotonically with increasing Ni content. The GMR and its dependence on magnetic field and temperature were discussed.

  9. Effect of Cu concentration on the formation of Cu1−x Znx shape memory alloy thin films

    International Nuclear Information System (INIS)

    Highlights: • 3 different composition of Cu–Zn deposits successfully deposited from the non-cyanide sulphate electrolyte. • The homogeneous metal films and Cu–Zn alloys were electrodeposited on Al substrate. • The effect of Cu content was strongly effected structural and the electrical resistivity of Cu–Zn alloys. • The average crystallite size of the samples varied from 66 to 100 nm and decreased when Cu content in the electrolyte. • Microstrain has been decreased with increasing crystallite size. • Cyclic voltammetry of the electrolyte explained the characters of the baths. - Abstract: The CuxZn1−x (x = 0.06, 0.08, 0.1) deposits were fabricated by a electrodeposition method. The structural and electrical properties of the films were investigated by cyclic voltammetry (CV), X-ray diffraction (XRD), Scanning electron micrograph (SEM), and DC resistivity measurements. Phase identification of the samples was studied by the XRD patterns. XRD patterns shows the characteristics XRD peaks corresponding to the, β, and γ phases. The grain sizes of the samples were decreased whereas microstrain increased with the increase in Cu2+ substitution. The SEM study reveals the fine particle nature of the samples with increasing Cu content. DC resistivity indicates the metallic nature of the prepared samples. It has been found that the Cu ions have a critical influence on the resultant structure and resistivity properties of the Cu–Zn samples

  10. Structural and magnetic properties of Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films prepared by a novel nanocomposite technology

    International Nuclear Information System (INIS)

    Highlights: • A new method was developed to prepare dualistic soft magnetic nanocomposite thin films. • The structure and magnetic properties of nanocomposite thin films were investigated. • The soft magnetic properties of Ni0.5Zn0.5Fe2O4 thin films have been greatly improved. - Abstract: Fe65Co35 alloy nanoclusters prepared by using a plasma-gas-condensation method were encapsulated into Ni0.5Zn0.5Fe2O4 thin film to form new-type films in a nanocluster beam composite film deposition system. An average size of the Fe65Co35 alloy nanoclusters was about 5.5 nm with a narrow size distribution. Compared with that of Ni0.5Zn0.5Fe2O4 thin film, saturation magnetization of the Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films which contained 6 wt.% Fe65Co35 alloy nanoclusters was increased by about 64%, while the coercivity was reduced by almost 44.7%. Meanwhile, resistivity still maintained at a high value (1.67 × 1010 μΩ cm). The influence of annealing temperature on structure and magnetic properties of the Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films was also investigated. As the annealing temperature was increased, saturation magnetization rose gradually while coercivity revealed a complicated change tendency

  11. PREPARATION AND IN VITRO ASSESSMENT OF VARIOUS MUCOSA-ADHESIVE FILMS FOR BUCCAL DELIVERY

    Directory of Open Access Journals (Sweden)

    SEYED-AL1REZA MORTAZAVI REZA ABOOFAZELI

    2000-07-01

    Full Text Available The aim of this study was to examine various polymers considered to have mucosa-adhesive properties for the preparation of buccal-adhesive films and their in vitro evaluation. A number of materials, such as cellulose derivatives, carbopols and natural polymers, were employed for the preparation of buccal-adhesive films. Aqueous solutions containing the mucosa-adhesive polymer and a plasticizer were prepared and used to prepare films by the "solvent cast" method. Prepared films were then evaluated in terms of their physical appearance and film forming ability, in vitro mucosa-adhesive strength and duration of mucosa-adhesion. Results showed that among the various materials examined, sodium carboxymethyl cellulose (CMC formed very flexible films with the greatest mucosa-adhesive strength. Further studies showed that the combination of carbopols and CMC, along with glycerin as the plasticizer, resulted in the formation of films with desirable appearance and a relatively stronger mucosa-adhesive strength than films containing CMC alone. In vitro studies showed that films containing carbopol 934P, CMC and glycerin gave the greatest mucosa-adhesive strength and longer mucosa-adhesion. In conclusion, this formulation is proposed as a good base for the preparation of buccal-adhesive films and patches. Furthermore, it is suggested that in the development of buccal-adhesive drug delivery systems, and in particular films and patches, duration of mucosa-adhesion determined by in vitro experiments is a critical factor in the selection of the ultimate formulation.

  12. Microstructure and mechanical properties of hypereutectic Al-Fe alloys prepared by semi-solid formation

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2011-11-01

    Full Text Available The effects of alloying elements, electromagnetic stirring, reheating and semi-solid formation on the microstructure and mechanical properties of Al-Fe alloys prepared by semi-solid formation were studied. It was found that alloying elements and electromagnetic stirring can alter the morphology and growth mode of the iron-rich phase in Al-Fe alloys; and effectively refine the primary Al3Fe phase. In contrast to the microstructure obtained in conventional casting, the Al3Fe phase becomes thin short rod-like instead of thick needle-like; and the dendritic grain structure almost disappears in the semi-solid formation. The Al3Fe phase can be further refined through being dissolved or fused during subsequent reheating. It was also found that the larger extrusion ratio of semi-solid formation causes a greater crushing effect and therefore the Al3Fe phase is more refined and has more uniform distribution. Moreover, Al-Fe alloys prepared by semi-solid formation exhibit excellent mechanical properties at both room and high temperatures.

  13. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting

    Directory of Open Access Journals (Sweden)

    Luo Zongqiang

    2011-02-01

    Full Text Available A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application. The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting. The results show that the equiaxed grains are determined by the pouring temperature of the melt, the cooling rate and the rotation speed of the mold. With the decrease in pouring temperature, the fraction of the equiaxed grains in the transverse section of the ingot increases and the average length of columnar grain decreases. When the pouring temperature is confined below 1,250℃, complete equiaxed grains can be obtained. Based on the optimal centrifugal casting processing, the tensile strength of the developed alloy ingot with complete equiaxed grains reaches to 810 MPa and 435 MPa at room temperature and 500℃, respectively, which is 14% and 110% higher than that of common commercial QAl10-4-4 alloy. The wear rate of the developed alloy is 7.0 × 10-8 and 3.8 × 10-7 mm3•N-1•mm-1 at room temperature and 500℃, respectively, which is 5 times and 39 times lower than that of QAl10-4-4 alloy.

  14. Controllable preparation of nanosized TiO2 thin film and relationship between structure of film and its photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    魏刚; 张元晶; 熊蓉春

    2003-01-01

    TiO2 nano-crystalline film and fixed bed photocatalytic reactor were prepared by the sol-gel process using tetrabutylorthotitanate as a precursor and glass tube as the substrate. XRD, AFM, SEM and thickness analysis results indicate that the preparation of nano-crystalline film can be controlled by optimizing experiment process. Under the optimized process, the phase of TiO2 in film is anatase, and the grain size is 3-4 nm. The size of particles, which is about 20-80 nm, can be controlled. The thickness of monolayer film is in nanometer grade. The thickness and particles size in films growing on nanometer film can also be controlled in nanometer grade. As a result, the crack of film can be effectively avoided. Rhodamine B degradation results using UV-Vis spectrophotometer show that the activity of nano-crystalline film in the photocatalytic reactor has a good relation with the diameter of TiO2 particles, that is, the film shows high activity when the size is 20-30 nm and greatly reduced when the size is above 60 nm. The activity of film does not decrease with the increase of film thickness, and this result indicates that nano-crystalline film has no ill influence on the transmissivity of ultraviolet light.

  15. Preparation of a biocompatible magnetic film from an aqueous ferrofluid

    International Nuclear Information System (INIS)

    Very promising nanoparticles for biomedical applications or in medical drug targeting are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. Polyvinyl alcohol (PVA) is a unique synthetic biocompatible polymer that can be chemically cross-linked to form a gel. Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. In this paper we report the synthesis of an aqueous ferrofluid and the preparation of a biocompatible magnetic gel with polyvinyl alcohol and glutharaldehyde (GTA). HClO4 was used to induce the peptization since this kind of ferrofluid does not have surfactant. The magnetic gel was dried to generate a biocompatible film

  16. Preparation of a biocompatible magnetic film from an aqueous ferrofluid

    Science.gov (United States)

    Albornoz, Cecilia; Jacobo, Silvia E.

    2006-10-01

    Very promising nanoparticles for biomedical applications or in medical drug targeting are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. Polyvinyl alcohol (PVA) is a unique synthetic biocompatible polymer that can be chemically cross-linked to form a gel. Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. In this paper we report the synthesis of an aqueous ferrofluid and the preparation of a biocompatible magnetic gel with polyvinyl alcohol and glutharaldehyde (GTA). HClO 4 was used to induce the peptization since this kind of ferrofluid does not have surfactant. The magnetic gel was dried to generate a biocompatible film.

  17. Preparation of U–Zr–Mn, a Surrogate Alloy for Recycling Fast Reactor Fuel

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2015-01-01

    Full Text Available Metallic fuel slugs of U–10Zr–5Mn (wt%, a surrogate alloy for the U–TRU–Zr (TRU: a transuranic element alloys proposed for sodium-cooled fast reactors, were prepared by injection casting in a laboratory-scale furnace, and their characteristics were evaluated. As-cast U–Zr–Mn fuel rods were generally sound, without cracks or thin sections. Approximately 68% of the original Mn content was lost under dynamic vacuum and the resulting slug was denser than those prepared under Ar pressure. The concentration of volatile Mn was as per the target composition along the entire length of the rods prepared under 400 and 600 Torr. Impurities, namely, oxygen, carbon, silicon, and nitrogen, totaled less than 2,000 ppm, satisfying fuel criteria.

  18. Preparation of Al-Si-Ti Master Alloys by Electrolysis of Silica and Titania in Cryolite-Alumina Melts

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aluminum-silicon-titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite-alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed after about 90 min of electrolysis at 950℃. The current efficiency for the preparation of the Al-Si-Ti alloys varied with time, temperature and cathodic current density. It is concluded that this electrolytic method may be an interesting alternative to the direct metal mixing process for formation of Al-Si-Ti master alloys.

  19. Preparation and Characterization of InAs/Si Composite Film

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; LI Guang-Hai; ZHENG Mao-Jun; ZHANG Li-De

    2000-01-01

    Composite thin films consisting of nanosized InAs particles embedded in amorphous Si matrices were prepared by radio frequency co-sputtering of InAs and Si. X-ray diffraction spectra show that the particle size of InAs increases with the increasing annealing temperature, while the particle sizes of In and As reach their maximum values at the temperature of 200℃, and decrease with the further increase of the annealing temperature. In and As can not exist in the 500℃ sample due to the sublimation of In and As and the reaction In+As→InAs. The composition of the film in different levels was analyzed. We found that only in the deep level, the mole contents of As and In conform to the stoichiometric ratio and the oxidation occurs only a few nanometers from the surface. We believe that the scarcity of In and As near the surface is due to the sublimation of In and the oxide of As.

  20. Magnetic damping constant in Co-based full heusler alloy epitaxial films

    International Nuclear Information System (INIS)

    Co-based full-Heusler alloys, such as Co2MnSi and Co2MnGe, are expected to be used as half-metallic ferromagnetic material, which has complete spin polarization. They are the most promising materials for realizing half-metallicity at room temperature due to their high Curie temperature. The optimization of the magnetic damping constant of ferromagnetic materials is extremely important for achieving high-speed magnetization switching and reducing critical current density for spin torque transfer switching. We have systematically investigated the magnetic damping constant in Co-based full Heusler alloy epitaxial films. We found that the Gilbert damping constant seems to be roughly proportional to the total density of states at the Fermi level (EF) by first principle calculation. A very small magnetic damping constant of 0.003 in the Co2Fe0.4Mn0.6Si epitaxial film was demonstrated. The small magnetic damping constant in Co2FexMn1−xSi films with x < 0.6 can be attributed to the half-metallicity of Heusler alloys. Co-based full Heusler alloys with both half-metallicity and small magnetic damping will be very useful for future applications based on spintronic devices. (paper)

  1. Ion beam sputter deposition of TiNi shape memory alloy thin films

    Science.gov (United States)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  2. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH)2 layer, whereas in the bulk of the film, the molecules are randomly oriented.

  3. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    International Nuclear Information System (INIS)

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  4. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  5. Preparation of Li-B Alloy and Study of Its Microstructure and Discharge characteristics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Li-B alloy has been prepared using a pretreated amorphous B powder and pure Li ingot as starting materials by continually slow addition of B powder and intensified stirring in the process of melting. The microstructure and the discharge characteristic of the materials have been investigated. Results show that the problem of temperature control in synthesis would be modified by means of continual addition of B powder, the Li7B6 would be more finely distributed in the metal Li by means of intensified stirring. The discharge characteristic of the Li-B alloy using amorphous B as starting materials is almost the same with that of using crystalline B.

  6. Rapidly solidified hypereutectic Al-Si alloys prepared by powder hot extrusion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Rapidly solidified hypereutectic Al-Si alloys were prepared by powder hot extrusion. By eliminating vacuum degassing procedure, the fabrication routine was simplified. The tensile fracture mechanisms at room temperature and elevated temperature were investigated by SEM fractography. Compared with KS282 casting material, the tensile strength of rapidly solidified Al-Si alloy is greatly improved due to silicon particles refining while its density and coefficient of thermal expansion are lower than those of KS282. The wear resistance of RS AlSi is better than that of KS282.

  7. Study on the early surface films formed on Mg-Y molten alloy in different atmospheres

    Directory of Open Access Journals (Sweden)

    A.R. Mirak

    2015-09-01

    Full Text Available In the present study, the non-isothermal early stages of surface oxidation of liquid Mg-1%Y alloy during casting were studied under UPH argon, dry air, and air mixed with protective fluorine-bearing gases. The chemistry and morphology of the surface films were characterized by SEM and EDX analyses. The results indicate a layer of smooth and tightly coherent oxidation film composed of MgO and Y2O3 formed on the molten Mg-Y alloy surface with 40–60 nm thickness under dry air. A dendritic/cellular microstructure is clearly visible with Y-rich second phases gathered in surface of the melt and precipitated along the grain/cell boundaries under all gas conditions. Under fluorine-bearing gas mixtures, the surface film was a mixed oxide and fluoride and more even; a flat and folded morphology can be seen under SF6 with oxide as dominated phase and under 1, 1, 1, 2-tetra-fluoroethane, a smooth and compact surface film uniformly covering the inner surface of the bubble with equal oxide and fluoride thickness, which results in a film without any major defects. MgF2 phase appears to be the key characteristic of a good protective film.

  8. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer

    Institute of Scientific and Technical Information of China (English)

    JIANG Lai-Xin; WU Yi-Qun; WANG Yang; WEI Jing-Song; GAN Fu-Xi

    2009-01-01

    Sb-Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb-Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 38Onm are read out by a dynamic setup, the laser wavelength is 78Onto and the numerical aperture of pickup lens is 0.45. The effects of the Sb-Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb-Bi mask layer is about 0.5roW, and the corresponding carrier-to-noise ratio is about 20dB at the film thickness of 5Ohm. The super-resolution mechanism of the Sb-Bi alloy mask layer is discussed based on its temperature dependence of reflection.

  9. Preparation of photo-catalysis TiO2 films by combined plasma surface treatment

    International Nuclear Information System (INIS)

    TiO2 films with excellent bonding strength were fabricated on stainless steel substrate by plasma surface alloying and thermal oxidation duplex processing. Controllable elemental distribution and structure of the films could be achieved at 400-600 degree C. The films were characterized by metallography, glow discharge spectrometer (GDOES) and X-ray diffraction. The results show that the TiO2 films are of dense and uniform anatase. The Ti and O contents of the films are in gradient distribution. Phenol-containing wastewater was used to test photo-catalytic performance of the films. The TiO2 films have a degradation rate of phenol of about 73.5% in 3 h, much higher than commercial products of TiO2 powders. (authors)

  10. Preparation of hard magnetic materials in thin film form

    Energy Technology Data Exchange (ETDEWEB)

    Pigazo, F.; Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid-CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Cebollada, F. [EUITT-UPM, Carretera de Valencia km 7, 28031 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)], E-mail: jesus.m.gonzalez@icmm.csic.es

    2008-07-15

    We report on the preparation, by means of pulsed laser ablation deposition, of trilayers of nominal composition Cr/SmCo{sub 5}/Cr//Si with thicknesses in the order of 250/240/125 nm, respectively. According to the results of the structural, chemical and magnetic characterizations performed in our as-deposited samples, the Sm-Co layer was structurally amorphous, exhibited abrupt compositional interfaces with the capping and buffering layers, and coercivities of a few hundreds of Oe. Magnetic hardness was developed upon submitting the samples to current anneals under vacuum at temperatures in the range of 540-670 deg. C. The hardening process was followed in detail by correlating the phase distribution, the nature of the interlayer atomic diffusion processes, the occurrence of textures and the temperature dependence of the coercive force. From our results we conclude about (i) the occurrence of a large degree of Co diffusion/segregation, which results in the detection, from the diffraction and magnetometric results, of the presence of CoCr alloys in the treated samples, and (ii) the close correlation, evidenced from the fits of the temperature dependence of the coercive force to the micromagnetic model, between the coercivity optimization and the crystallinity enhancement of the SmCo{sub 5} grains.

  11. Structure and Magnetic Properties of Fe-N Films Prepared by Dual Ion Beam Sputtering

    Institute of Scientific and Technical Information of China (English)

    诸葛兰剑; 吴雪梅; 汤乃云; 叶春兰; 姚伟国

    2001-01-01

    Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).``

  12. The microstructure and coefficient transmission of think films Bi2Te3-xSex, alloyed by terbium

    International Nuclear Information System (INIS)

    The defects of films microstructures of the thermoelectric materials n- and p-type Bi2Te3-xSex, alloyed by Tb and Cl, with think, obtained by thermic evaporation in vacuum have been investigated by microscopic methods

  13. Microstructural studies of nanocomposite thin films of Ni/CrN prepared by reactive magnetron sputtering.

    Science.gov (United States)

    Kuppusami, P; Thirumurugesan, R; Divakar, R; Kataria, S; Ramaseshan, R; Mohandas, E

    2009-09-01

    Synthesis and characterization of nanocomposites of Ni/CrN thin films prepared by DC magnetron sputtering from a target of 50 wt.%Ni-50 wt.%Cr is investigated. The films prepared as a function of nitrogen flow rate and substrate temperature showed that the films contained Ni and CrN phases with crystallite sizes in the nanometer range. Measurement of nanomechanical properties of the composite films exhibited a significant decrease in the values of hardness and Young's modulus than those of pure CrN films. PMID:19928270

  14. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization.

    Science.gov (United States)

    Yabu, Hiroshi; Hirai, Yuji; Shimomura, Masatsugu

    2006-11-01

    This report describes the fabrication and electroless plating of regular porous and pincushion-like polymer structures prepared by self-organization. Honeycomb-patterned films were prepared by simple casting of polymer solution under applied humid air and pincushion structures by peeling off the top layer of the former films. Silver-deposited honeycomb-patterned films and pincushion films were obtained by simple electroless plating of the respective original structures. XPS revealed Ag deposition on the honeycomb-patterned film. After thermal decomposition or solvent elution of the template polymer, unique metal mesoscopic structures were obtained. PMID:17073508

  15. Preparation of Fresnel lens film by mold polymerization using electron beam irradiation

    International Nuclear Information System (INIS)

    Preparation of soft gel film having Fresnel lens surface by electron beam irradiation has been studied. Suitable compositions consisting of methyl methacrylate prepolymer or unsaturated polyester and polyfunctional monomers were selected for film preparation. The curing of the surface printed films was carried out by γ-ray irradiation or by heating with a premixed radical initiator. The preparation of composed Fresnel-lens-sheets consisting of Fresnel film and base material sheet such as inorganic glass and other plastics was also investigated. (author)

  16. Challenges of sample preparation for cross sectional EBSD analysis of electrodeposited nickel films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; Pantleon, Karen

    2009-01-01

    Thorough microstructure and crystallographic orientation analysis of thin films by means of electron backscatter diffraction requires cross section preparation of the film-substrate compound. During careful preparation, changes of the rather non-stable as-deposited microstructure must be avoided...

  17. Preparation and characterization of Cu-In-S thin films by electrodeposition

    International Nuclear Information System (INIS)

    In this paper, we report the preparation and characterization of Cu-In-S thin films on stainless steel prepared by electrodeposition technique. The electrolytic bath used for preparation of the thin films consists of metal salts dissolved in a buffer solution. This buffer solution can control the formation and composition of thin films. In order to get adequate crystalline of CuInS2 thin films, the as deposited films were annealed in N2-atmosphere. Samples were characterized using X-ray diffraction (XRD), electron probe micro-analysis (EPMA), and scanning electron microscopy (SEM). The band-gap value of the material was estimated using optical transmittance and reflectance data on thin films deposited on commercial glass/indium tin oxide (ITO) substrates. It was found that the band-gap of the films is close to 1.5 eV

  18. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.; Pedersen, Allan Schrøder; Hattel, J.; Linderoth, Søren

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and......-ray diffraction (XRD) and differential scanning calorimetry (DSC) for different alloy compositions and annealing temperatures. On annealing into the supercooled liquid state (441 K), specimens with no Al content remain basically amorphous while nanoparticles are formed and remain stable also at higher...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  19. Nitrogenation of Sm sub 2 Fe sub 17 prepared by mechanical alloying and subsequent heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lue Manqi; Miao Weifang; Song Qihong; Sun Wensheng; Wang Kaiyang; Wei Wenduo; Wang Lungbao (State Key Lab. of Rapidly Solidified Non-Equilibrium Alloys, Academia Sinica, Shenyang (China))

    1992-07-12

    Sm-Fe alloy was prepared by mechanical alloying of the elemental metals, and the Sm{sub 2}Fe{sub 17} phase was obtained through properly crystallizing the Sm-Fe alloy. Subsequently, the nitrogenation behaviour of the Sm{sub 2}Fe{sub 17} phase was investigated. The results show that nitrogenation consists of the following processes: incubation period, coexistence of Sm{sub 2}Fe{sub 17} and nitride phase, and transformation of the residual Sm{sub 2}Fe{sub 17} into nitride phase. During nitrogenation, small amounts of very fine {alpha}-Fe particles segregate. After nitrogenation, the metastable phase formed during crystallization disappears; this is attributed to the nitrogen-induced transformation of the hexagonal Sm{sub 2}Fe{sub 17} phase into the rhombohedral one. (orig.).

  20. Preparation Of Transparent Conducting Zinc Oxide Films By RF Reactive Sputtering

    Science.gov (United States)

    Vasanelli, L.; Valentini, A.; Losacco, A.

    1986-09-01

    Transparent conducting zinc oxide films have been prepared by reactive sputtering in an Ar/H2 mixture. The optical and electrical properties of the films are presented and discussed. The effects of some post-deposition thermal treatment have been also investigated. ZnO/CdTe heterojunctions have .been prepared by sputtering ZnO films on CdTe single crystals. The photovoltaic conversion efficiencies of the obtained solar cells was 6.8%.

  1. Comparison of physicomechanical properties of films prepared from organic solutions and aqueous dispersion of Eudragit RL

    OpenAIRE

    H Afrasiabi Garekani; M. Shahabi; F Sadeghi

    2011-01-01

    Background and the purpose of the study: Mechanical properties of films prepared from aqueous dispersion and organic solutions of Eudragit RL were assessed and the effects of plasticizer type, concentration and curing were examined. Methods: Films were prepared from aqueous dispersion and solutions of Eudragit RL (isopropyl alcohol-water 9:1) containing 0, 10 or 20% (based on polymer weight) of PEG 400 or Triethyl Citrate (TEC) as plasticizer using casting method. Samples of films were stored...

  2. Effect of humidity on microstructure and properties of YBCO films prepared by Electron Beam Coevaporation

    Institute of Scientific and Technical Information of China (English)

    WANG LianHong; SHU YongHua; FAN Jing

    2012-01-01

    YBCO superconducting films were prepared by Electron Beam Coevaporation method.All the YBCO films were annealed at 760℃ in humidity range of 2.3%-9.5%.Microstructure of the YBCO thin films was analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM).Superconducting properties of the YBCO films were measured by electromagnetic induction method.XRD results showed that c-axis-oriented grains existed in the YBCO films.Morphologies of the YBCO films showed that all the films had a smooth and crack-free surface.YBCO films prepared at 7.3% humidity condition showed Jc value of 4.6 MA cm-2 at 77 K in self-field.

  3. Ti-Ni-Cu shape-memory alloy thin film formed on polyimide substrate

    International Nuclear Information System (INIS)

    Ti-Ni-Cu shape-memory alloy (SMA) thin films were sputter-deposited on heated polyimide substrates. Ti-Ni-Cu films deposited at substrate temperatures of 543 and 583 K were found to be crystalline. Especially, a Ti48Ni29Cu23 film deposited at 583 K exhibited a high martensitic transformation temperature above room temperature and a narrow transformation temperature range, which enable the film to be used at room temperature. Double-beam cantilevers made of 8 μm thick Ti48Ni29Cu23 films deposited on 12.5 and 25 μm thick polyimide substrates displayed a repeatable shape-memory effect by a battery of 1.5 V and it was verified that the composite film consisting of an 8 μm thick Ti48Ni29Cu23 film and a 25 μm thick polyimide film is capable of moving 0.18 g wings of a dragonfly toy up and down. These results offer the prospect for using an SMA/polyimide actuator as a convenient small actuator, which will find wide-ranging applications

  4. Preparation of hard magnetic materials based on nitrogenated rare-earth iron alloys

    International Nuclear Information System (INIS)

    Nd Fe11Ti, Nd Fe10.5 Mo1.5 and Nd Fe10.75 Mo1.25 alloys were synthesized by reduction-diffusion calciothermic process (RDC) from neodymium chloride (NdCl3), iron, titanium, molybdenum and reduction agent (metallic calcium). The effect of process variables, like temperature, time, excess amount of NdCl3, heating rate, and composition variation of the Nd Fe12-xMox (1 ≥ x ≥ 2). Mother alloys in which 1:12 phase is major were nitrogenated by gas-solid reaction with N2 and by chemical reaction with sodium zide (Na N3). In addition, the influence of reducing particle size of the powdered mother alloys in the nitrogenation step with Na N3 were studied. As prepared and interstitially modified Nd Fe11 Ti, Nd Fe10.5 Mo1.5 and Nd Fe10.75 Mo1.25 alloys with nitrogen , were characterized by X-ray diffraction, Moessbauer spectroscopy, thermomagnetic, SEM and EDS. Nitrogenation by gas-solid reaction with N2 is found to be not promising, since resulted Curie temperatures (Tc) were lower than literature values. However, nitrogenation by chemical reaction with Na N3 was efficient with higher or same Tc than previous reported results. The average increases on Tc and volumetric expansion were 200 deg C and 4%, respectively. Milling of the mother alloys before nitrogenation at 330 deg C is preferred because reaction kinetics is enhanced. Nevertheless, at 450 deg C, a competition between the interstitially modified compound formation (alloy + N) and alloy dissociation has occurred, resulting in a Fe-α phase increase. (author)

  5. Thermal Oxidation Preparation of Doped Hematite Thin Films for Photoelectrochemical Water Splitting

    Directory of Open Access Journals (Sweden)

    Song Li

    2014-01-01

    Full Text Available Sn- or Ge-doped hematite thin films were fabricated by annealing alloyed films for the purpose of photoelectrochemical (PEC water splitting. The alloyed films were deposited on FTO glass by magnetron sputtering and their compositions were controlled by the target. The morphology, crystalline structure, optical properties, and photocatalytic activities have been investigated. The SEM observation showed that uniform, large area arrays of nanoflakes formed after thermal oxidation. The incorporation of doping elements into the hematite structure was confirmed by XRD. The photocurrent density-voltage characterization illustrated that the nanoflake films of Sn-doped hematite exhibited high PEC performance and the Sn concentration was optimized about 5%. The doped Ge4+ ions were proposed to occupy the empty octahedral holes and their effect on PEC performance of hematite is smaller than that of tin ions.

  6. Preparation and Properties of Non-Crosslinked and Ionically Crosslinked Chitosan/Agar Blended Hydrogel Films

    OpenAIRE

    Mahmoud Nasef, Mohamed; Esam A. El-hefian; Saalah, Sariah; Yahaya, Adul Hamid

    2011-01-01

    Hydrogel films of chitosan (Cs) and agar blends of various proportions were prepared using physical solution blending. Some of the obtained films were ionically cross-linked by treatment with calcium chloride solution. The obtained films were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry analysis (TGA), differential scanning calorimetery (DSC) and universal mechanical tester. The non-crosslinked Cs/agar blended films showed lower water swelling, melting tem...

  7. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    International Nuclear Information System (INIS)

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene

  8. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  9. Adsorption orientation of sodium of polyaspartic acid effect on anodic films formed on magnesium alloy

    Science.gov (United States)

    Liu, YuPing; Zhang, Dingfei; Chen, Changguo; Zhang, Jiangang; Cui, libo

    2011-06-01

    We previously reported organic addition agent in improving the performance of anodic film formed on magnesium alloy. Here we report that the environment-friendly electrolyte with sodium of polyaspartic acid (PASP) affects the anodizing process including the microstructure, phase constituents and corrosion performance. We have used SEM, XRD, XPS and polarization curve to study in detail the electrolyte impact. Our results show that the anodic film in electrolyte with 19.2-28.8 g/L PASP is compact, smooth and high corrosion resistant. And also, increasing the PASP concentration ranging from 9.6 to 28.8 g/L results in enhancing the cell voltage, thickness and the content of compound including MgO and Mg 2SiO 4 in anodic film. Interestingly, the anodic film is non-stoichiometric oxide. Comparing with Tafel curves of the anodic film to the addition of PASP or not to, the corrosion current density is 1-2 magnitudes less than the later. Furthermore, a plausible model we propose that the anodizing process is regulated by two main plausible adsorption orientations of PASP at the surface anode. With the increasing of PASP content, the adsorption orientation may transit from "end-on" to "flat-on". This research using organic addition agent PASP may further broaden applications of organic additive in the anti-corrosion engineering and electrochemical surface treatment of magnesium alloy.

  10. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  11. A computational study of kinetic phase diagrams for CoPt alloy films during epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zailin [Department of Physics and Key Laboratory of Atomic and Molecular Nanoscience (Ministry of Education), Tsinghua University, Beijing 100084 (China); Shi Lin [Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou 215125 (China); Ni Jun, E-mail: junni@mail.tsinghua.edu.c [Department of Physics and Key Laboratory of Atomic and Molecular Nanoscience (Ministry of Education), Tsinghua University, Beijing 100084 (China)

    2010-06-30

    We have studied the kinetic processes of the epitaxial growth for CoPt alloy films using the master equation method. The kinetic phase diagrams of CoPt alloy films which show the phase formation conditions during the epitaxial growth are determined. From the kinetic phase diagrams, we find that the [001] ordered structure is much easy to be grown at high temperature while the [100] ordered structure is easy to be grown at low temperature although both the [001] and [100] ordering could be the equilibrium ground states. The atomic deposition, ordering and surface segregation lead to a rich variety of phases in epitaxial growth. The surface segregation is found to enhance the [001] ordering and leads to the formation of the [001] ordered phase at high temperature.

  12. Determination of grain shape of laser-irradiated FePdCu thin alloy films

    International Nuclear Information System (INIS)

    The irradiation with the 10 ns pulsed infrared Nd:YAG laser was applied to transform FePdCu multilayers into chemically ordered L10 phase. The X-ray diffraction methods (θ/2θ scan, ψ-scan, ω-scan) were used to trace the presence of L10 phase after laser annealing with different number of pulses. The size and shape of crystallites was determined depending on their orientation with respect to film plane. The (1 1 1) oriented crystallites of constituent metals were built as coherent domains spreading through multilayers during deposition of films. Laser annealing induced the transformation of multilayers to alloy, and the ordering of (1 1 1) oriented crystallites. Simultaneously, the (0 0 2) oriented crystallites appeared confirming the transformation to L10 alloy.

  13. Formation and structure of V–Zr amorphous alloy thin films

    International Nuclear Information System (INIS)

    Although the equilibrium phase diagram predicts that alloys in the central part of the V–Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V–Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system

  14. A study on electrodeposited NiFe1− alloy films

    Indian Academy of Sciences (India)

    M Bedir; Ö F Bakkaloğlu; İ H Karahan; M Öztaş

    2006-06-01

    NiFe1− (0.22 ≤ ≤ 0.62) alloy films were grown by electrodeposition technique. A shift in diffraction peaks of NiFe and Ni3Fe was detected with increasing Ni content. The highest positive magnetoresistance ratio was detected as 5% in Ni0.51Fe0.49. Positive and negative anisotropic magnetoresistance were observed in longitudinal and transverse geometries respectively. The highest anisotropic magnetoresistance ratio of 9.8% was also detected in Ni0.51Fe0.49. The angular variation of magnetoresistance was studied. Magnetisation loop curves show that NiFe alloy films have a linear decreasing anisotropy constant with increasing Ni deposit content and show a decreasing behavior of coercivity which indicates soft magnetic property with increasing Ni deposit content.

  15. Influence of copper content on the property of Cu–W alloy prepared by microwave vacuum infiltration sintering

    International Nuclear Information System (INIS)

    Highlights: • Cu–W alloy was prepared under vacuum conditions through microwave infiltration sintering. • The phase of alloy with Cu content of 5% and 8% is mainly Cu0.4W0.6. • With the increasing of copper content, porosity of Cu–W alloy decreased obviously. • The copper components coated better on the tungsten particles utilization of microwave infiltration sintering. - Abstract: Cu–W alloy was prepared by utilizing microwave vacuum infiltration sintering furnace to assess the influence of different proportions of copper on the structure of Cu–W alloy. The microstructures of alloy and infiltration characteristics of Cu–W alloy were characterized using metallographic microscopy and scanning electron microscopy, while XRD was utilized to identify the structure changes. The pore distribution was also assessed. Experimental results showed that Cu–W alloy could be quickly prepared under vacuum conditions through microwave infiltration sintering with the main phase of alloy being Cu0.4W0.6 (PDF:50-1451) indicating stronger combination of tungsten and copper

  16. Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Valeanu, M., E-mail: valeanu@infim.ro [National Institute of Materials Physics, 077125 Bucharest (Romania); Lucaci, M. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Crisan, A.D.; Sofronie, M. [National Institute of Materials Physics, 077125 Bucharest (Romania); Leonat, L. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Kuncser, V. [National Institute of Materials Physics, 077125 Bucharest (Romania)

    2011-03-31

    Research highlights: > Martensitic transformation sequence in Ti50Ni30Cu20 prepared high - energy milling. > Two transformations (B2-B19, B2-B19') are evidenced after 10 hours of milling. > B2-B19 transformation is not more observed after 20 hours of milling. > A longer milling process promotes the formation of the secondary Ti{sub 2}(NiCu) phase. - Abstract: Phase transformation behavior of Ti50Ni30Cu20 shape memory alloys prepared by powder metallurgy is analyzed with respect to the duration of mechanical alloying. The processed blends were studied by differential scanning calorimetry and room temperature X-ray diffraction. The martensitic transformations evidenced by thermal scans are discussed in correlation with the relative phase content obtained from the refinement of the X-ray diffraction patterns.

  17. Preparation of Scandium-Bearing Master Alloys by Aluminum-Magnesium Thermoreduction

    Institute of Scientific and Technical Information of China (English)

    姜锋; 白兰; 尹志民

    2002-01-01

    The new preparation method of scandium-bearing master alloys, in which scandium oxide was fluorinated by reaction with NH4HF2 and then reduced by aluminum-magnesium in fused salt containing alkali and alkaline fluoride under atmosphere, was studied. The effect of sorts of metallic reductive and technique conditions such as reducing temperature and time on the recovery of Sc was discussed. When the liquid aluminum-magnesium was used as the reductive agent, the all-recovery exceeds 80% and the concentration of Sc in master alloy prepared exceeds 1.9%. The best reducing reaction temperature and time are 1100 K and 40 min respectively. The newly produced Sc from reduction combines with Al to produce the stable compound Al3Sc, so the reduction progress is sustained and the recovery of Sc is increased.

  18. Microstructure and mechanical properties of multiphase layer formed during depositing Ti film followed by plasma nitriding on 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.Y., E-mail: zfy19861010@163.com; Yan, M.F., E-mail: yanmufu@hit.edu.cn

    2014-05-01

    Highlights: • A novel duplex surface treatment on 2024 Al alloy was proposed. • A multiphase layer composed of TiN{sub 0.3}, Al{sub 3}Ti and Al{sub 18}Ti{sub 2}Mg{sub 3} was prepared on the surface of 2024 Al alloy. • The microstructures of TiN{sub 0.3}, Al{sub 3}Ti and Al{sub 18}Ti{sub 2}Mg{sub 3} were characterized by SEM and TEM. • The surface hardness of the multiphase layer reached to 590 HV{sub 0.01}, five times harder than 2024 Al alloy. • The wear resistance of 2024 Al alloy was improved significantly. - Abstract: In this study, a novel method was develop to fabricate an in situ multiphase layer on 2024 Al alloy to improve its surface mechanical properties. The method was divided into two steps, namely depositing pure Ti film on 2024 Al substrate by using magnetron sputtering, and plasma nitriding of Ti coated 2024 Al in a gas mixture comprising of 40% N{sub 2}–60% H{sub 2}. The microstructure and mechanical properties of the multiphase layer prepared at different nitriding time were investigated by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), microhardness tester and pin-on-disc tribometer. Results showed that multiphase layer with three sub-layers (i.e. the outmost TiN{sub 0.3} layer, the intermediate Al{sub 3}Ti layer and the inside Al{sub 18}Ti{sub 2}Mg{sub 3} layer) can be obtained. The thickness of the Al{sub 18}Ti{sub 2}Mg{sub 3} layer increased faster than TiN{sub 0.3} and Al{sub 3}Ti layer with increasing nitriding time. The hardness of the layer has reached about 593 HV, which is much higher than that of 2024 Al substrate. The wear rate of the coated samples decreased 53% for 4 h nitriding and 86% for 12 h nitriding, respectively, compared with that of the uncoated one. The analysis of worn surface indicated that the coated 2024 Al exhibited predominant abrasive wear, whereas the uncoated one showed severe adhesive wear.

  19. Nickel-niobium alloy formation process of electroless nickel composite plating film using niobium nano-power

    International Nuclear Information System (INIS)

    Composite plating improves functionalities of wear resistance, corrosion resistance, lubricity, etc. through co-deposition with suitable particles. For this study, reactive metallic particles were introduced intentionally as a dispersant. Heat treatment was used to form an alloy with a plated matrix. Composite plating films were formed using electroless Ni-P plating with Nb powder of two types as dispersants: nanopowder (ca. 300 nm diameter) and micropowder (ca. 50 μm diameter). The composite plating film was alloyed using heat treatment at 800degC for 1 hour under vacuum conditions. X-ray diffraction (XRD) analysis confirmed that the proportion of alloy to reactive composite film with nanopowder was much larger than that with micropowder. Results of X-ray photoelectron spectroscopy (XPS) analyses suggest that a selective Nb oxide was formed on the composite film surface when using Nb nanopowder. On the other hand, almost no Nb micropowder was changed to alloy or oxide in the composite films. Using nanopowder, much of the composite plating film formed reactive composite plating film alloy during heat treatment. (author)

  20. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    International Nuclear Information System (INIS)

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  1. Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys

    OpenAIRE

    Lucia V. Mercaldo; Iurie Usatii; Paola Delli Veneri

    2016-01-01

    The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied wi...

  2. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.F.; Liu, B.; Wu, B.J.; Liu, J.; Sun, H.; Leng, Y.X., E-mail: yxleng@263.net; Huang, N.

    2014-07-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  3. Growth and characterization of oxide films on zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Pressure tubes for CANDU reactors are made from extruded and cold-drawn Zr-2.5Nb alloy. Their microstructure consists of elongated α-Zr grains containing about 1 atom % Nb, surrounded by a thin network of metastable β-Zr phase, containing about 20 atom % Nb. Alloys of Zr-1Nb an Zr-20Nb were prepared, heat treated, and oxidized in 573 K water to produce bulk microstructures and oxides that would simulate those normally found on a much finer scale in pressure tubes. Oxidation of Zr-20Nb (β-Zr phase) was more rapid than that for the Zr-1Nb (predominantly α-Zr phase) but, despite this, the hydrogen absorption was considerably lower. During corrosion testing, the metastable β-Zr undergoes partial decomposition to omega phase. The oxides show contrasting morphologies in terms of crystallite size (20 to 60 nm for oxides on α-Zr versus about 15 nm for oxides on β-Zr). In addition to monoclinic ZrO2, there is evidence for either tetragonal ZrO2 or the mixed oxide, 6ZrO2Nb2O5 in the β-Zr oxide. Scanning transmission electron microscopy (STEM) imaging shows niobium associated with the oxide formed over the β-Zr phase in oxidized pressure tube material. Hydrogen depth profiling by 15N nuclear reaction analyses has been used to investigate the diffusion of hydrogen in these oxides. The oxide films were implanted with hydrogen and the progressive dispersion of the implanted hydrogen, as a result of annealing, was used to investigate hydrogen diffusion as a function of temperature. The nondispersive nature of the implanted hydrogen peaks in the Zr-1Nb oxide after annealing was suggestive of the presence of interconnected porosity in those oxides. The broadened peaks in the Zr-20Nb oxide after annealing are indicative of a normal diffusion process in a nonporous medium. The implications of these observations will be discussed in terms of corrosion and hydrogen uptake in Zr-2.5Nb pressure tubes

  4. Thermal stability of magnesium alloy AZ91 prepared by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Roman Štěpánek

    2013-12-01

    Full Text Available This paper deals with the thermal stability of ultrafine-grained alloy AZ91 prepared by means of ECAP (Equal Channel Angular Pressing method. Annealing experiments were conducted isochronally for 30 minutes in the temperature range of 220 to 400 °C in argon atmosphere. EBSD (Electron Backscatter Diffraction method was used to image the changes in microstructure due to increased temperature.

  5. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  6. Preparation of single-walled carbon nanotube reinforced magnesia films

    OpenAIRE

    Du, C S; Pan, Ning

    2004-01-01

    Single-walled carbon nanotube (SWNT)/MgO composite films were fabricated by growing carbon nanotubes while simultaneously sintering a MgO film. The effect of iron and molybdenum concentrations in liquid catalysts and the effect of the density of carbon nanotubes in the composite films on the quality of the films were investigated. Microstructure analysis showed that SWNTs were uniformly grown in the MgO film. The presence of a controlled amount of carbon nanotubes in MgO films is believed to ...

  7. Synthesis of c-oriented YbBa2Cu3O7-δ films on single and polycrystalline substrates by oxidation of liquid alloys

    International Nuclear Information System (INIS)

    Textured superconducting films of YbBa2Cu3O7-δ supported on single and polycrystalline substrates were prepared by oxidation of a liquid precursor alloy. The substrates were coated by dipping them into a molten alloy (YbBa2Cu3, m.p. ∼870 degree C), withdrawing them from the melt, then oxidizing the adhering liquid alloy layer to the corresponding oxide phase, i.e., YbBa2Cu3O7-δ. Samples prepared in this way exhibited a superconducting transition at ∼80 K following annealing in pure OP2 at 500 degree C. With SrTiO3 (100) and MgO (100) substrates, evidence was seen for the epitaxial growth of YbBa2Cu3O7-δ crystals having their c-axis parallel to the [100] direction of the substrate. For polycrystalline MgO, x-ray diffraction and microstructural examination showed that the high-Tc crystallites in the films were also oriented with their c-axis perpendicular to the substrate surface, but the a and b axes directions were randomly oriented rather than epitaxial

  8. Ion-beam mixing of ceramic alloys: preparation and mechanical properties

    International Nuclear Information System (INIS)

    Techniques used to produce unique states of pure metals mixed into ceramic materials are presented. The samples were prepared by irradiating a 1-MeV Fe+ beam on Al2O3 crystal surfaces over which a thin chromium or zirconium film had been evaporated. The limitations of using noble gas ion beams are noted. Micro Knoop hardness tests performed near the surfaces of the samples indicated a significant increase in the hardness of most samples prepared by ion beam mixing

  9. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    International Nuclear Information System (INIS)

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO2, anatase TiO2, and a large amount of Al2TiO5. The effects of single pulse energy on the

  10. Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu1−y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications

    International Nuclear Information System (INIS)

    In this paper comparative studies on the structural, mechanical and corrosion properties of Nb2O5/Ti and (NbyCu1−y)Ox/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64 GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb2O5 film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb0.75Cu0.25)Ox thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. - Highlights: • Nb2O5 and Nb2O5:Cu thin films were deposited on a Ti–Al–V surface using the magnetron sputtering. • Nb2O5 and Nb2O5:Cu thin films improve the surface mechanical properties of Ti6Al4V

  11. Role of precursor alloy phases and intermediate oxides in the preparation of Raney and Urushibara iron

    International Nuclear Information System (INIS)

    57Fe Moessbauer spectroscopy and scanning electron microscopy measurements of precursor phases formed during catalyst preparation and of the catalysts, themselves, demonstrate that the preparation of Raney iron from iron aluminum alloys involves the formation of Fe (OH)2 and Fe3O4 as intermediate phases. The metallic Fe is formed from subsequent reduction of Fe3O4 by hydrogen generated by the oxidation of aluminum metal by hydroxide ions. Precursors to Urushibara iron U-Fe (III) are found to consist of Fe-Zn alloys when Zn is used as a reductant and of epitaxial deposits of Fe on aluminum when Al is the reductant. The material resulting from the reduction of the iron salt by aluminum is not a hydrogenation catalyst; the absence of catalytic activity is related to the absence of any alloying of the iron and aluminum. A consideration of the preparation of Raney iron, Urushibara iron, ammonia synthesis and Fischer-Tropsch catalysts leads to the conclusions that catalytic activity is highly correlated to the existence of intermediate mixed-crystals phases and the presence of intimate mixtures of at least two phases in the final catalyst. (orig.)

  12. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    OpenAIRE

    Liu, Y.; Visser, P; Zhou, X.; Lyon, S B; Hashimoto, T; Curioni, M.; Gholinia, A.; Thompson, G. E.; Smyth, G.; Gibbon, S.R.; Graham, D; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 μm thickness formed within the area where an artificial defect was introduced by scribing through the coating to the base alloy. This film showed a multilayered structure consisting of a relatively compact layer near the alloy s...

  13. Protective Film Formation on AA2024-T3 Aluminum Alloy by Leaching of Lithium Carbonate from an Organic Coating

    OpenAIRE

    Yanwen Liu, Peter Visser, Xiaorong Zhou, Stuart B. Lyon, Teruo Hashimoto, Michele Curioni, Ali Gholinia, George E. Thompson, Gerard Smyth, Simon R. Gibbon, Derek Graham, Johannes M. C. Mol, and Herman Terryn

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 μm thickness formed within the area where an artificial defect was introduced by scribing through the coating to the base alloy. This film showed a multilayered structure consisting of a relatively compact layer near the alloy ...

  14. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  15. Magnetic anisotropy of [Co{sub 2}MnSi/Pd]{sub n} superlattice films prepared on MgO(001), (110), and (111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Naoki; Takamura, Yota; Fujino, Yorinobu; Nakagawa, Shigeki, E-mail: nakagawa@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Sonobe, Yoshiaki [Samsung R and D Institute Japan-Yokohama, 2-7, Sugasawa-cho, Tsurumi-ku, Yokohama-shi, Kanagawa-ken 230-0027 (Japan)

    2015-02-09

    Superlattice films with full-Heusler Co{sub 2}MnSi (CMS) alloy and Pd layers prepared on Pd-buffered MgO(001), (110), and (111) substrates were investigated. Crystal orientation and epitaxial relationship of Pd and CMS layers were analyzed from x-ray diffraction, pole figure measurements, and transmission electron microscope observation. Formation of the L2{sub 1}-ordered structure in the CMS layers was confirmed by observation of CMS(111) diffraction. Perpendicular magnetic anisotropy (PMA) was obtained in the [CMS (0.6 nm)/Pd (2 nm)]{sub 6} superlattice film formed using MgO(111) substrates although other superlattice films prepared using MgO(001) and (110) substrates showed in-plane and isotropic magnetic anisotropy, respectively. The perpendicular magnetic anisotropy energy constant K for the superlattice films prepared using MgO(111) substrate was estimated to be 2.3 Mergs/cm{sup 3}, and an interfacial anisotropy constant K{sub i} per one CMS-Pd interface in the superlattice films was estimated to be 0.16 ergs/cm{sup 2}. K{sub i} in superlattice films with various crystal orientations showed positive values, indicating that Pd/CMS interfaces had an ability to induce PMA regardless of their crystal orientation.

  16. Local structure and magnetism of L10-type FeNi alloy films with perpendicular magnetic anisotropy studied through 57Fe nuclear probes

    International Nuclear Information System (INIS)

    The local structure and magnetism of FeNi alloy films prepared by alternate deposition of Fe and Ni monatomic layers, where perpendicular magnetic anisotropy has been observed, were investigated through 57Fe nuclear probes using Mössbauer spectroscopy. It was confirmed that the films are composed of L10-type ordered FeNi phase and A1-type disordered FeNi phase. For the films grown at 40–70 °C, which have no perpendicular anisotropy, the A1-disordered phase is dominant, whereas for the films grown at 100–190 °C, which have a stronger perpendicular anisotropy, the relative amount of the L10-ordered phase reaches 40% or more. It was clearly shown that the magnetic anisotropy of these films is strongly correlated with the local environments of Fe in the films. The results imply that if a further increase in the ratio of the L10-ordered phase is successfully achieved, one would obtain films with a stronger magnetic anisotropy applicable to perpendicular magnetic recording. (paper)

  17. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Highlights: ► We prepare a perfect dense and smooth amorphous nitride high entropy film. ► The formation mechanism has been discussed based on thermodynamic theory. ► The hardness and Young’s modulus of the film can reach to 12 and 166 GPa. ► We discuss the effects of N2 flow ratios. - Abstract: The multicomponent amorphous nitride films of FeCoNiCuVZrAl high-entropy alloy were deposited by direct current magnetron sputtering in the mixture atmosphere of Ar and N2. The systematical investigations demonstrate that the chemical composition, microstructure, and mechanical properties of the amorphous films intimately rely on the concentration of N2 in the atmosphere mixture. When N2 flow ratio increases from 0% to 50%, the thickness of the films decreases, whereas the roughness firstly decreases and then increases. At the N2 flow ratio of 30%, a perfect dense and smooth amorphous nitride film could be achieved. While the hardness and Young’s modulus of the film reach the maximum values of 12 and 166 GPa, respectively

  18. Study of hard-soft magnetic ferrite films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Soft magnetic Mg0.1Ni0.3Zn0.6Fe2O4 and hard magnetic BaFe12O19 bulk nanocrystalline ferrites were synthesized using the sol-gel auto-combustion method, and were used as targets to deposit soft-hard thin films by the pulsed laser deposition (PLD) method. Various soft-hard thin films with different preparation conditions were deposited on Si (100) substrate, which can be effectively utilized to get better magnetic properties. The prepared films were characterized by the X-ray diffraction (XRD), atomic force microscopy (AFM) and magnetic measurements. XRD confirms the presence of soft and hard phases in the thin films. Coercivity of the prepared films ranges from 1.67 to 2.66 kA/m. AFM images show clustering of grains at the film surface with a characteristic columnar growth.

  19. Optical Response in Amorphous GaAs Thin Films Prepared by Pulsed Laser Deposition

    Science.gov (United States)

    Kiwa, Toshihiko; Kawashima, Ichiro; Nashima, Shigeki; Hangyo, Masanori; Tonouchi, Masayoshi

    2000-11-01

    Femtosecond optical response in GaAs thin films has been studied. We prepared GaAs thin films on MgO substrates and on YBa2Cu3O7-δ (YBCO) thin films using pulsed laser deposition (PLD) at temperatures below 250^\\circC@. A photocarrier lifetime of less than 1 ps is measured for the prepared GaAs thin films using femtosecond time-domain reflectivity change measurements. Pulsed electromagnetic wave [terahertz (THz) radiaiton] containing a frequency component of up to 1 THz is emitted from fabricated photoconductive switches using the prepared thin films. We also evaluated the THz radiation properties emitted from the photoswitches on the YBCO thin films.

  20. Effect of alumina film prepared by pack cementation aluminizing and thermal oxidation treatment of stainless steels on hydrogen permeation

    International Nuclear Information System (INIS)

    A technique concerned in preparing Al2O3 barrier film on the surface of stainless steels (00Cr17Ni14Mo2 and 1Cr18Ni9Ti) was studied. In order to test the permeation behavior, hydrogen was used to simulate the deuterium and tritium. Firstly, pack cementation aluminizing process was adopted to form a aluminum rich layer on the surface of stainless steels. The composition, structure and morphology of the layers were characterized by metallography, XRD and SEM. The aluminizing layer shows the compact structure and mainly FeAl phase. The layer shows multiplayer characteristics, which consists of inner layer (25 μm), external layer (5 μm) and transitional layer (30 μm). The good adherence can be seen between the sub-layers and the interface between the layer and substrate as observed by metallography. The mass fraction of the element Al in the aluminizing layer exceeds to 30%. Then the thermal oxidation processes were taken on the aluminized layer to form the Al2O3 film. The phase structure, the surface morphology, and three-dimension morphology of the Al2O3 film were characterized by the XRD, SEM/EDS and SPM. The thickness of Al2O3 film was tested by the ellipsometry technique. It shows that an even and compact Al2O3 film was grown on the aluminizing layer. The film thickness is about 0.6 μm in case of oxidization for 2 h at 900 degree C and 3 Pa oxygen pressure. In order to examine the hydrogen permeation property of the materials, the hydrogen permeation treatment were taken to both the treated and untreated alloys. Then the amount of hydrogen in the surface region of the alloys was measured by elastic recoil detection (ERD) method. It is found that the atomic content of hydrogen droppes gradually with the increasing depth of the surface. And the atomic content of hydrogen at the distance of 0.2 μm from the surface is 0.007% that is about to the hydorgen composition of the stainless steel originally. This implies that the hydrogen atoms can not be diffused

  1. Preparation of pure chitosan film using ternary solvents and its super absorbency.

    Science.gov (United States)

    Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun

    2016-11-20

    Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. PMID:27561494

  2. Dot arrays of L11 type Co-Pt ordered alloy perpendicular films

    International Nuclear Information System (INIS)

    Magnetic properties of dot arrays of L11 type Co-Pt ordered alloy perpendicular films were studied. L11-Co-Pt films with a large uniaxial magnetic anisotropy Ku of the order of 107 erg/cm3 were fabricated at a substrate temperature of 360 deg. C using ultrahigh vacuum sputter film deposition. Dot patterns with dot diameters of 70-200 nm were made using high resolution e-beam lithography and reactive ion etching (RIE). The values of Ku were measured by the GST method using the Anomalous Hall Effect; we observed the averaged signals of 6000 dots. The values of Ku for dot arrays of 10-nm-thick L11-Co50Pt50 films deposited on MgO(111) substrates (single crystal films) and glass disks (polycrystalline films) were nearly the same as those of the original films independent of D, indicating no significant etching damage by the RIE process. Magnetic force microscopy images revealed that all dots were single domains in the present D region. The coercivity Hc of the dot arrays was 25.0 kOe [MgO(111) substrate, D=70 nm] and 14.3 kOe (glass disks, D=80 nm). The switching field distribution σ/Hc was relatively small, σ/Hc=0.15, even for dot arrays fabricated on glass disks, indicating the homogeneous formation of a L11 type ordered structure in the Co50Pt50 layers

  3. Electrocatalytic activity and electrochemical hydrogen storage of Ni-La alloy prepared by electrodeposition from aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    陈卫祥; 成旦红; 刘淑兰; 郭鹤桐

    2002-01-01

    Ni-La alloy coating was prepared by electrodeposition.The effect of cathodic current density on the La content of the alloy coatings was discussed.It is found that the content of La in the alloy increases with increasing the cathodic current density.The microstructures and codeposition mechanism of Ni-La alloy coatings were investigated by means of X-ray diffraction (XRD) and cyclic voltammetry (CV).The results demonstrate that the Ni-La alloy is FCC and codeposited by the induced mechanism.The hydrogen evolution reaction (HER) on the electrodeposited Ni-La alloy electrodes in alkaline solution was evaluated by Tafel polarization curves.It is found that La-Ni alloy coating exhibites much higher exchange current density for HER than pure Ni electrode,and that the exchange current density increases with increasing the La content of alloys.The good electrocatalytic activity for HER of this Ni-La alloy is attributed to the synergism of the electronic structure of La and Ni.The electrodeposited La-Ni alloys have a certain electrochemical hydrogen storage capacity of 34~143 mAh/g,which increases with increasing the La content of alloys.

  4. Characterisation of fresh surface films formed on molten Mg-Nd alloy protected by different atmospheres

    Science.gov (United States)

    Mirak, A. R.; Davidson, C. J.; Taylor, J. A.

    2014-05-01

    This study examines the early stages of surface oxidation of liquid Mg-3 wt%Nd under UPH argon, dry air, and air mixed with protective fluorine-bearing gases. Each of the gases were introduced as bubbles into solidifying castings. The chemistry and structure of the protective film inside the trapped bubbles were characterized by SEM and EDX analyses. Results show that due to Nd added to Mg alloy under dry air, a dense and wrinkled surface film that contains MgO and Nd2O3 are formed. Under fluorine-bearing gas mixtures, a dense and coherent surface film was found to be a mixed fluoride and oxide. For SF6, the film thickness was 50-100 nm thick while for HFC-R134a it was 35-45 nm. Needle shaped phases distributed in the Mg matrix and flake-like phases segregated on the inner bubble surface in proximity to the interdendritic regions of the alloy were both identified as Nd rich compounds. These were present under all gas conditions. The results obtained lead to a conclusion that HFC-R134a is capable of providing the most effective melt protection. The integrity and protective capability of the early surface film formation on the liquid Mg-Nd alloy was found to be significantly improved compared to pure Mg under identical gas conditions due to formation of a dense and compact MgO/Nd2O3 layer, regardless of whether fluorine species were also present.

  5. Nano crystal SnO2:F films prepared by spray pyrolysis method

    International Nuclear Information System (INIS)

    Nano crystal thin films of fluorine doped tin oxide were prepared on glass substrates by the spray pyrolysis method. From X-ray diffraction patterns of the films, the structure and grain size of 9 nm and 14 nm were determined at temperatures of 390 oC and 420 oC, respectively. The transmission of the films has an average value of about 85% in the range of visible light, and the film thickness of 650 nm was estimated from the interference fingers. The optical band gap for direct allowed transitions is in the range from 4.0 eV to 4.17 eV, depending on the temperature of the substrates during films deposition. As prepared films show the sheet resistance of 15 Ω/cm2. The surface morphologies of the films were studied with SEM. (Author)

  6. Gas Sensitivity of Poly (3, 4-ethylene dioxythiophene) Prepared by a Modified LB Film Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huajing; JIANG Yadong; XU Jianhua; YANG Yajie

    2011-01-01

    An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl molecule and LB film. The gas sensitivity mechanism of poly (3,4-ethylene dioxythiophene) (PEDOT) muitilayer film can be explained by the charge transfer between p system of PEDOT and oxidization HCl system. The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested. The results showed that film thickness, treating temperature,deposition speed had different influence on film gas sensitivity. The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration (20-60 ppm) and linear response behavior at higher gas concentration was observed. The time of the compound LB film of the AA/PEDOT responding to the 30 ppm HCl gas is about 20 seconds, which is far quicker than the time of the film to the PEDOT- PRESS film(about 80 seconds). It is not higher film press to better film. When the film press attains 45 mNs/m, the sensitivity of the AA/PEDOT film on the contrary descends.

  7. Fabrication of L11 type Co-Pt ordered alloy films by sputter deposition

    International Nuclear Information System (INIS)

    L11 type Co-Pt ordered alloy films with a large uniaxial magnetic anisotropy, Ku, of the order of 107 erg/cm3 were successfully fabricated at relatively low substrate temperatures of 270-390 deg. C using ultrahigh vacuum sputter film deposition. L11 type ordered Co-Pt films, with the direction (easy axis of magnetization) perpendicular to the film plane, were fabricated on MgO(111) single crystal substrates and glass disks. The ordered structure was formed in a wide Pt content region of 40-75 at. %, and Ku showed a maximum at around 50 at. % Pt content. The values of the order parameter S and Ku for L11 type Co50Pt50 films increased as the substrate temperature Ts, increased. Ku reached about 3.7x107 erg/cm3 (S=0.54) at Ts=360 deg. C for the single crystal films deposited on MgO(111) substrates, indicating a potential increase in Ku by enhancing the ordering. The values of Ku for polycrystalline films deposited on glass disks were smaller than those for the single crystal films on MgO(111) substrates, however, Ku reached 1.9x107 erg/cm3 at Ts=360 deg. C. The experimental results demonstrate the potential of L11 type Co50Pt50 films for use in data storage applications, because of their very high Ku, comparable to L10 type Fe50Pt50 films, the relatively low fabrication temperature, and good controllability of the grain orientation

  8. Low refractive index SiOF thin films prepared by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    We have studied low refractive index fluorine doped silica thin films prepared by reactive magnetron sputtering. Two experimental parameters were varied to increase the porosity of the films, the geometry of the deposition process (i.e., the use of glancing angle deposition) and the presence of chemical etching agents (fluorine species) at the plasma discharge during film growth. The microstructure, chemistry, optical properties, and porosity of the films have been characterized by scanning electron and atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis, and spectroscopic ellipsometry. It is found that either the deposition at glancing angles or the incorporation of CFx species in the plasma discharge during film growth produces a decrease in the refractive index of the deposited films. The combined effect of the two experimental approaches further enhances the porosity of the films. Finally, the films prepared in a glancing geometry exhibit negative uniaxial birefringence. - Highlights: • SiOF thin films with controlled porosity prepared by reactive magnetron sputtering • Incorporation of CFx precursors in the plasma discharge enhances film porosity. • Deposition at glancing geometries further increases void fraction within the films

  9. Mössbauer study of alloy Fe67.5Ni32.5, prepared by mechanical alloying

    Science.gov (United States)

    Benitez Rodríguez, Edson Daniel; Bustos Rodríguez, Humberto; Oyola Lozano, Dagoberto; Rojas Martínez, Yebrail Antonio; Pérez Alcázar, German Antonio

    2015-06-01

    We present the study of effect of the particle size on the structural and magnetic properties of the Fe67.5Ni32.5 alloy, prepared by mechanical alloying (MA). After milling the powders during 10 hours they were separated by sieving using different meshes. The refinement of the X-ray patterns showed the coexistence of the BCC (Body Centered Cubic) and the FCC (Face Centered Cubic) phases in all samples with lattice parameters and crystallite sizes independent of the mean particle size. However, big particles presented bigger volumetric fraction of BCC grains. The Mossbauer spectra were fitted with a broad sextet corresponding to the ferromagnetic BCC phase, a hyperfine magnetic field distribution and a broad singlet which correspond to the ferromagnetic and paramagnetic sites of the FCC phase, respectively. Hysteresis loops showed a magnetically, soft behavior for all the samples, however, the saturation magnetization values are smaller for the original powder and for the powders with small, mean, particle size due to the dipolar magnetic interaction and the smaller mean magnetic moment, respectively. These effects were proved by Henkel plots that were made to the samples.

  10. A methodology for the preparation of nanoporous polyimide films with low dielectric constants

    International Nuclear Information System (INIS)

    A method to generate nanoporous polyimide films with low dielectric constants was proposed. The preparation consisted of two steps. Firstly, a polyimide/silica hybrid film was prepared via sol-gel process. Secondly, the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 20 and 120 nm, depending on the size of silica particles. Both hybrid and porous films were subjected to a variety of characterizations including transmission electron microscopy observation, dielectric constant measurement and tensile strength measurement

  11. Photocatalytic activity of porous TiO2 films prepared by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; WANG Tao; WANG Ling

    2007-01-01

    Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate.The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.

  12. Preparation of a new chemical radiochromic film dosimeter

    International Nuclear Information System (INIS)

    A new thin film dosimeter has been developed by using a chlorine-containing polymer matrix doped with malachite green methoxide as an indicator. Gamma irradiation of the film induces blue characteristic colour. The produced film with an average thickness of 0.05 mm has a linear response over the dose range of 1-60 kGy at the measured wavelength of 630 nm. The effects of temperature and relative humidity on the film response have been studied. The maximum absorbance of the film is found to be relatively stable over storage period of four weeks

  13. Obtaining, structural, magnetic and corrosive properties of Nd–Fe–B alloy thin films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Neacsu, Elena Ionela [“Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, Bucharest (Romania); Constantin, Virgil, E-mail: virgilconstantin@yahoo.com [“Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, Bucharest (Romania); Yanushkevish, Kazimir, E-mail: kazimir@ifttp.bas-net.by [Scientific-Practical Materials Research Center NAS, P. Broski Str.19, Minsk (Belarus); Galyas, Anatoly; Demidenko, Olga [Scientific-Practical Materials Research Center NAS, P. Broski Str.19, Minsk (Belarus); Calderon-Moreno, Jose; Popescu, Ana-Maria [“Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, Bucharest (Romania)

    2014-09-30

    Graphical abstract: - Highlights: • Nd–Fe–B thin film alloys are obtained by vacuum evaporation method. • XRD, SEM/EDS and XPS were used for characterization of the thin film alloys. • Magnetic properties determined by the ponderomotive method permit calculation of the coercive force and magnetic saturation field of Nd–Fe–B thin layers. • Corrosive properties were determined in 3.5 wt% NaCl solution. • XPS analysis showed that the different electrochemical corrosion performance was associated with the ability of the thin films to form a big and continuous Nd{sub 2}O{sub 3} passive film, while the formation of Nd(OH){sub 3} lead to a decrease of the corrosion resistance. - Abstract: By “flash” method at the installation of vacuum evaporation the thin Nd–Fe–B layers of 100 nm ≤ d ≤ 1000 nm were obtained on glass support. The structure and microstructure of the thin Nd–Fe–B films was studied by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The study of the specific magnetization temperature dependences of the Nd–Fe–B films on the glass substrate in the 80 ≤ T ≤ 800 K temperature range by ponderomotive method showed that the magnetization of the layer of d ≥ 1000 nm thickness are comparable to those for powder samples. The magnetization of film with d < 100 nm thickness at 100 K does not exceed 85 Å m{sup 2} kg{sup −1}. In such films the long-range structural order is destroyed. The values of the coercive force and magnetic saturation field of Nd–Fe–B thin layers are determined. The corrosion process of the thin Nd–Fe–B films magnets was studied experimentally in 3.5 wt% NaCl solution. X-ray photoelectron spectroscopy (XPS) analysis showed that the different electrochemical corrosion performance was associated with the ability of the thin films to form a big and continuous Nd{sub 2}O{sub 3} passive film, while the formation of Nd(OH){sub 3} lead to

  14. Microstructure of epitaxial thin films of the ferromagnetic shape memory alloy Ni{sub 2}MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Tobias

    2011-12-09

    This work is concerned with the preparation and detailed characterization of epitaxial thin films of the Heusler compound Ni{sub 2}MnGa. This multiferroic compound is of both technological and scientific interest due to the outstanding magnetic shape memory (MSM) behavior. Huge magnetic-field-induced strains up to 10 % have been observed for single crystals close to a Ni{sub 2}MnGa composition. The effect is based on a redistribution of crystallographic twin variants of tetragonal or orthorhombic symmetry. Under the driving force of the external magnetic field twin boundaries can move through the crystal, which largely affects the macroscopic shape. The unique combination of large reversible strain, high switching frequency and high work output makes the alloy a promising actuator material. Since the MSM effect results from an intrinsic mechanism, MSM devices possess great potential for implementation in microsystems, e.g. microfluidics. So far significant strains, in response to an external magnetic field, have been observed for bulk single crystals and foams solely. In order to take advantage of the effect in applications concepts for miniaturization are needed. The rather direct approach, based on epitaxial thin films, is explored in the course of this work. This involves sample preparation under optimized deposition parameters and fabrication of freestanding single-crystalline films. Different methods to achieve freestanding microstructures such as bridges and cantilevers are presented. The complex crystal structure is extensively studied by means of X-ray diffraction. Thus, the different crystallographic twin variants that are of great importance for the MSM effect are identified. In combination with microscopy the twinning architecture for films of different crystallographic orientation is clarified. Intrinsic blocking effects in samples of (100) orientation are explained on basis of the variant configuration. In contrast, a promising twinning microstructure

  15. Structural and magnetic study of thin films based on anisotropic ternary alloys FeNiPt{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Montsouka, R.V.P. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Arabski, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Derory, A. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Faerber, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Schmerber, G. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Pierron-Bohnes, V. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France)]. E-mail: vero@ipcms.u-strasbg.fr

    2006-01-25

    L1 ordered (Fe-Ni){sub 5}Pt{sub 5} alloy films with perpendicular magnetic anisotropy were successfully prepared by interdiffusing FePt(0 0 1) and NiPt(0 0 1) layers co-deposited on MgO(0 0 1) substrates by MBE. The [0 0 1] growth direction corresponds to the epitaxy of the alloy on the substrate and is the interesting growth orientation to get a perpendicular magnetization. The X-ray diffraction shows a high L1 chemical order (S = 0.7 {+-} 0.1). The easy magnetization direction is perpendicular for all samples. The MFM images display highly interconnected stripes corresponding to up and down orientations of the magnetization. Large uniaxial magnetic anisotropy (K {sub u} 9.10{sup 5} J/m{sup 3}) and suitable magnetic transition temperature (T {sub C} = 400 K) are obtained. The addition of Ni changes the spin-orbit interaction in the FePt compound system, hence causes a decrease of anisotropy, saturation magnetization and coercivity.

  16. New Cu(TiBN x ) copper alloy films for industrial applications

    Science.gov (United States)

    Lin, Chon-Hsin

    2016-06-01

    In this study, I explore a new type of copper alloy, Cu(TiBN x ), films by cosputtering Cu and TiB within an Ar/N2 gas atmosphere on Si substrates. The films are then annealed for 1 h in a vacuum environment at temperatures up to 700 °C. The annealed films exhibit not only excellent thermal stability and low resistivity but also little leakage current and strong adhesion to the substrates while no Cu/Si interfacial interactions are apparent. Within a Sn/Cu(TiBN x )/Si structure at 200 °C, the new alloy exhibits a minute dissolution rate, which is lower than that of pure Cu by at least one order of magnitude. Furthermore, the new alloy’s consumption rate is comparable to that of Ni commonly used in solder joints. The new films appear suitable for some industrial applications, such as barrierless Si metallization and new wetting and diffusion barrier layers required in flip-chip solder joints.

  17. Deposition and characterization of amorphous electroless Ni-Co-P alloy thin film for ULSI application

    International Nuclear Information System (INIS)

    Electroless based Ni-Co-P alloy thin films were deposited using sodium hypophosphite as a reducing agent and sodium citrate as a complexing agent in an alkaline plating bath. The effect of solution pH and temperature on the plating rate was examined. The decrease in activation energy (81.35 − 73.54 kJ mole−1) for the Ni-Co-P thin films deposited on corning glass was observed with the increase in pH (8.5–9.38) of the plating bath. There is a significant decrease in sheet resistance of alloy thin films as the post deposition annealing temperature approaches 400 °C. The presence of nickel as well as nickel phosphide peaks and transition from metastable Ni12P5, Ni8P5 and Ni5P2 phases into thermodynamically stable NiP, NiP2, Ni3P phases after annealing at 600 °C was observed in XRD spectra, indicating the crystallization of the thin films. Surface topography analysis shows the variation of grain size in the range 20–40 nm. (paper)

  18. Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys

    Directory of Open Access Journals (Sweden)

    Lucia V. Mercaldo

    2016-03-01

    Full Text Available The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied within thin-film Si solar cells for these purposes. Intrinsic a-SiOx:H films have been fabricated and characterized as a promising wide gap absorber for application in triple-junction solar cells. Single-junction test devices with open circuit voltage up to 950 mV and ~1 V have been demonstrated, in case of rough and flat front electrodes, respectively. Doped silicon oxide alloys with mixed-phase structure have been developed, characterized by considerably lower absorption and refractive index with respect to standard Si-based films, accompanied by electrical conductivity above 10−5 S/cm. These layers have been successfully applied both into single-junction and micromorph tandem solar cells as superior doped layers with additional functionalities.

  19. Hydrogen storage performances of LaMg11Ni + x wt% Ni (x = 100, 200) alloys prepared by mechanical milling

    International Nuclear Information System (INIS)

    Highlights: • Amorphous and nanostructured alloys were prepared by mechanical milling. • The maximum discharge capacity of ball milled alloys reaches to 1053.5 mA h/g. • The addition of Ni significantly increases the discharge capacity. • Increasing milling time reduces the kinetic performances of ball milled alloys. - Abstract: In order to improve the hydrogen storage performances of Mg-based materials, LaMg11Ni alloy was prepared by vacuum induction melting. Then the nanocrystalline/amorphous LaMg11Ni + x wt% Ni (x = 100, 200) hydrogen storage alloys were synthesized by ball milling technology. The structure characterizations of the alloys were carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage characteristics were tested by using programmed control battery testing system. The electrochemical impedance spectra (EIS), potentiodynamic polarization curves and potential-step curves were also plotted by an electrochemical workstation (PARSTAT 2273). The results indicate that the as-milled alloys exhibit a nanocrystalline and amorphous structure, and the amorphization degree of the alloys visibly increases with extending milling time. Prolonging the milling duration markedly enhances the electrochemical discharge capacity and cyclic stability of the alloys. The electrochemical kinetics, including high rate discharge ability (HRD), charge transfer rate, limiting current density (IL), hydrogen diffusion coefficient (D), monotonously decrease with milling time prolonging

  20. Preparation of Al-Mg Alloy Electrodes by Using Powder Metallurgy and Their Application for Hydrogen Production

    OpenAIRE

    Wen-Nong Hsu; Teng-Shih Shih; Ming-Yuan Lin

    2014-01-01

    The choice of an electrode is the most critical parameter for water electrolysis. In this study, powder metallurgy is used to prepare aluminum-magnesium (Al-Mg) alloy electrodes. In addition to pure Mg and Al electrodes, five Al-Mg alloy electrodes composed of Al-Mg (10 wt%), Al-Mg (25 wt%), Al-Mg (50 wt%), and Al-Mg (75 wt%) were prepared. In water electrolysis experiments, the pure Al electrode exhibited optimal electrolytic efficiency. However, the Al-Mg (25 wt%) alloy was the most efficie...

  1. Preparation and optical properties of sol-gel-deposited electrochromic iron oxide films

    Science.gov (United States)

    Ozer, Nilgun; Tepehan, Fatma; Tepehan, Galip

    1997-10-01

    The preparation and optical properties of sol-gel deposited iron oxide films are investigated in this study. The films are deposited on glass by spin-coating from polymeric sol-gel solutions. The coating solutions were prepared from Fe(OCH3H7)3 and isopropanol. Fe2O3 films were obtained at a firing temperature 180 degrees Celsius. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and UV-Vis spectroscopy. The electrochemical properties of the films were studied in 0.5 M LiClO4/propylene carbonate (PC) solution. The CV results showed reversibility of the Li+/e- insertion/extraction process in the Fe2O3 films up to 200 cycles. Reduction and oxidation of the amorphous films in 0.5 M LiClO4-PC solution caused noticeable changes in optical absorption. XRD of the films showed that they had an amorphous structure. Fourier transform infrared spectroscopy (FTIR) measurements showed that the composition of the film is Fe2O3. In-situ spectrophotometric measurements indicated that these films show weak electrochromism in the spectral range of 350 - 800 nm. The optical band gap is estimated to be 1.92 eV for the amorphous film. The spectroelectrochemical properties clearly indicated that cyclic stability of the iron oxide films deteriorated above 200 cycles.

  2. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8570 (Japan)

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO){sub 20}(PO){sub 70}(EO){sub 20}) or F127 ((EO){sub 106}(PO){sub 70}(EO){sub 106}), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films.

  3. Preparation, microstructure and degradation performance of biomedical magnesium alloy fine wires

    Directory of Open Access Journals (Sweden)

    Jing Bai

    2014-10-01

    Full Text Available With the development of new biodegradable Mg alloy implant devices, the potential applications of biomedical Mg alloy fine wires are realized and explored gradually. In this study, we prepared three kinds of Mg alloy fine wires containing 4 wt% RE(Gd/Y/Nd and 0.4 wt% Zn with the diameter less than 0.4 μm through casting, hot extruding and multi-pass cold drawing combined with intermediated annealing process. Their microstructures, mechanical and degradation properties were investigated. In comparison with the corresponding as-extruded alloy, the final fine wire has significantly refined grain with an average size of 3–4 μm, and meanwhile shows higher yield strength but lower ductility at room temperature. The degradation tests results and surface morphologies observations indicate that Mg–4Gd–0.4Zn and Mg–4Nd–0.4Zn fine wires have similar good corrosion resistance and the uniform corrosion behavior in SBF solution. By contrast, Mg–4Y–0.4Zn fine wire shows a poor corrosion resistance and the pitting corrosion behavior.

  4. Preparation and mechanical properties of in situ TiCx–Ni (Si, Ti) alloy composites

    International Nuclear Information System (INIS)

    Novel in situ TiCx reinforced Ni (Si, Ti) alloy composites with superior mechanical properties were prepared at 1250 °C for 30 min by pressureless sintering Ti3SiC2 (10 and 20 vol%) and Ni as precursors. The Ti3SiC2 particles decomposed into substoichiometric TiCx phase, while the additional Si and partial Ti atoms derived from Ti3SiC2 diffused into Ni matrix to form Ni (Si, Ti) alloy. The in situ formed TiCx phases are mainly dispersed on the grain boundaries of the Ni (Si, Ti) alloying, forming a strong skeleton and refining the microstructures of the metal matrix. The hardness, the yield stress σ0.2% and ultimate compressive strength of 20.6 vol%TiCx–Ni(Si, Ti) composite can reach 2.15±0.04 GPa, 466.8±55.8 MPa and 733.3±78.4 MPa, respectively. The enhanced mechanical properties of TiCx–Ni(Si, Ti) composites are due to the in situ formation of TiCx skeleton, the refined microstructures of Ni (Si, Ti) alloys and solid solution effects as well as good wettability between TiCx and Ni (Si, Ti) matrix

  5. A ferromagnetic resonance study of NiFe alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Diaz de Sihues, M. [Departamento de Fisica, Facultad de Ciencias, Universidad del Zulia, Apartado. Postal 526, Maracaibo 4001, Zulia (Venezuela); Durante-Rincon, C.A. [Departamento de Fisica, Facultad de Ciencias, Universidad del Zulia, Apartado. Postal 526, Maracaibo 4001, Zulia (Venezuela); Fermin, J.R. [Departamento de Fisica, Facultad de Ciencias, Universidad del Zulia, Apartado. Postal 526, Maracaibo 4001, Zulia (Venezuela)]. E-mail: jfermin@luz.edu.ve

    2007-09-15

    NiFe alloy films with thicknesses in the range from 60 to 150 A were sputtered onto Si (0 0 1) wafers by DC magnetron sputtering, and then characterized by in-plane ferromagnetic resonance technique (FMR) at x-band. The FMR field (H {sub R}) and linewidth ({delta}H) were studied as a function of the in-plane angle, {phi} {sub H}, film thickness, t, and temperature, T. The main effects of temperature on the magnetic properties of these films is to increase the in-plane uniaxial anisotropy and to induce a surface anisotropy that pushes the magnetization out-of-plane. These anisotropies were found to vary with thickness and temperature. The main processes that determine the line broadening are the intrinsic conduction mechanism and the in-plane uniaxial dispersions.

  6. Optical characteristics of poly(tetrafluoroethylene) thin film prepared by a vacuum evaporation

    Science.gov (United States)

    Ohnishi, Yasutaka; Kita, Rio; Tsuchiya, Kazuyoshi; Iwamori, Satoru

    2016-02-01

    Poly(tetrafluoroethylene) (PTFE) thin films were deposited onto a glass slide substrate by a heat-resistance type vacuum evaporation apparatus due to changing the evaporation conditions. Transparency of the PTFE thin films prepared by the vacuum evaporation depended on the deposition conditions, i.e., temperatures of the basket, and distance between the evaporation source and substrate. To elucidate relationship between the molecular structure and transparency of the PTFE thin film prepared by the vacuum evaporation, chemical structures, crystallinity and thermophysical property were investigated. The chemical bonding state of the PTFE thin film prepared by the vacuum evaporation was almost the same as that of the pristine PTFE, however, the crystalinity was different. Although the pristine PTFE was crystal structure, the transparent evaporated thin film was estimated to be microcrystal structure. In addition, endothermic peaks in a differential scanning calorimeter (DSC) spectrum of the PTFE thin film were different from that of the pristine PTFE. These endothermic peaks of the PTFE thin film prepared by the vacuum evaporation shifted lower temperature compared to the pristine PTFE, which suggests that molecular weight of the PTFE thin film prepared by the vacuum evaporation decreased compared with that of the pristine PTFE.

  7. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  8. Crystal structure of diamondlike carbon films prepared by ionized deposition from methane gas

    International Nuclear Information System (INIS)

    Diamondlike carbon films have been prepared by ionized deposition from methane gas. The film structures were examined by transmission electron microscopy, electron diffraction, and electron spectroscopy for chemical analysis techniques. It was found that the structure of the carbon films could be classified into three types: (i) amorphous, (ii) graphite, and (iii) cubic. These types depended mainly on the deposition conditions. Usually crystalline carbon films were diamond mixed with graphite showing an average grain size of several hundred angstroms. Very hard films were composed of diamond crystallites distributed in amorphous matrix

  9. Electroplated Fe-Pt thick films prepared in plating baths with various pH values

    OpenAIRE

    Yanai, T; Furutani, K.; Masaki, T; T. Ohgai; Nakano, M; Fukunaga, H

    2016-01-01

    Fe-Pt thick-films were electroplated on a Ta substrate using a direct current, and the effect of the pH value of the plating bath on the magnetic properties of the films was evaluated. For the films prepared from the baths with the same bath composition, the Fe composition and the thickness increased with increasing the pH value. In order to remove the effect of the change in the film composition on the magnetic properties, we controlled the film composition at approximately Fe50Pt50 or Fe60P...

  10. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    Science.gov (United States)

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials. PMID:25967812

  11. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Li Qizheng; Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-04-15

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO{sub 3}){sub 2} solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  12. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    International Nuclear Information System (INIS)

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO3)2 solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  13. Preparation and properties of low-calcium-content superconductive thin films in bismuth systems

    International Nuclear Information System (INIS)

    Superconductive, polycrystalline thin films from Bi systems with low Ca content in relation to the high-Tc phase and with various Bi(Pb) contents were obtained by two-step annealing of the deposited amorphous films prepared by rf magnetron sputtering. The obtained films, A, B, and C, exhibited a high Tc (Tc > 100 K) for a wide range of secondary annealing temperatures. The critical current densities of these films at 77.3 K in zero magnetic field were sensitive to the secondary annealing temperature. The highest critical current densities of the films were 2,700, 3,900, and 5,500 A/cm2 for films A, B, and C, respectively. Film B exhibited large decreases in critical current density under an applied magnetic field. The grain boundaries of this film, which were composed of PbO, CuO, and Bi2O3, apparently acted as weak links in the superconductor materials

  14. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    International Nuclear Information System (INIS)

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different

  15. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  16. The kinetics of cathodic oxygen reduction on thin films on Ni-Cr-Mo (W) alloys

    International Nuclear Information System (INIS)

    The kinetics of cathodic oxygen reduction is important to the evolution of crevice corrosion of Ni-Cr-Mo (W) alloys in high temperature brines. Various electrochemical and surface analytical techniques are being employed to investigate these kinetics on oxide-covered Alloy 22 surfaces and the film properties. Potential step experiments demonstrate that steady state currents depend on temperature and applied potential. The oxygen reduction currents were significantly suppressed by the growth of a passive film. Cyclic voltammetric experiments were conducted on surfaces pre-oxidized at different potentials throughout the passive region (-0.6 V to 0.6 V vs. Ag/AgCl) and temperatures (30oC - 90oC) in 5 mol L-1 NaCl solution. The data demonstrate that the kinetics of oxygen reduction depend on both temperature and pre-oxidation potential. Oxygen reduction currents are strongly suppressed in the passive region, but revived as the potential approaches the transpassive region (> 0.4V). With increasing temperature, the passive current increases suggesting a decrease in film resistance. TOF-SIMS depth profiles show a two-layer structure for the oxide film, with an inner region enriched in Cr2O3, NiO, MoO2, WO2, and an outer region of Cr(OH)3, Ni(OH)2, MoO3, and WO3. The thickness of the film increases with applied potential. EIS measurements show the film resistance reaches a maximum value in the passive region. (author)

  17. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    Science.gov (United States)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  18. Fabrication of L11-type (Co-Ni)-Pt ordered alloy films by sputter deposition

    International Nuclear Information System (INIS)

    L11-type (Co-Ni)-Pt ordered alloy perpendicular films were successfully fabricated on MgO(111) single crystal substrates using ultrahigh vacuum sputter film deposition; the addition of Ni to Co-Pt was effective to reduce saturation magnetization, Ms, maintaining a large Ku of the order of 107 erg/cm3. L11-type ordered structures, with the direction (easy axis of magnetization) perpendicular to the films, were successfully fabricated at a substrate temperature of 360 deg. C in a wide composition range with Co content less than 60 at. %. The order parameter, S, was almost a constant of about 0.5 in the stoichiometric composition of (Co1-XNiX)50Pt50, independent of Ni content, X. L11-type Co-Ni-Pt perpendicular films having a large Ku of (1-2.5)x107 erg/cm3 and a relatively low Ms of 400-700 emu/cm3 were successfully fabricated in the composition range of 10-35 at. % Co, 20-55 at. % Ni, and bal. Pt. Ku should increase further with enhanced ordering. Experimental results demonstrated the potential of these Co-Ni-Pt ordered films for use in data storage applications due to very high Ku potential comparable to L10-type Fe50Pt50 films, relatively low Ms, the relatively low fabrication temperature, and good controllability of the grain orientation

  19. Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kuchmizhak, Aleksandr, E-mail: ku4mijak@dvo.ru [Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio str., Vladivostok 690041 (Russian Federation); Gurbatov, Stanislav; Nepomniaschiy, Aleksandr; Mayor, Aleksandr [Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio str., Vladivostok 690041 (Russian Federation); Kulchin, Yuri; Vitrik, Oleg [Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio str., Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8 Sukhanova Str., Vladivostok 690041 (Russian Federation); Makarov, Sergey [Lebedev Physical Institute, Moscow 119991 (Russian Federation); ITMO University, St. Petersburg 197101 (Russian Federation); Kudryashov, Sergey [Lebedev Physical Institute, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation); Ionin, Andrey [Lebedev Physical Institute, Moscow 119991 (Russian Federation)

    2015-05-15

    Highlights: • Each type of laser-induced hydrodynamic instabilities results in the formation of corresponding frozen surface relief nanostructure: nanojets, nanocrowns or hybrid structures (a nanojet surrounded by a nanocrown). • The thickness of the metal film as well as the pulse energy were found to be the key parameters determining the type of the resulted surface structure. • Pd addition in the Au film results in the formation of the nanojets and the spherical droplets with a porous internal structure. - Abstract: We report on detailed experimental study of various nanoscale surface hydrodynamic instabilities on thin Au/Pd alloy films induced by tightly focused single femtosecond pulses. Each type of laser-induced hydrodynamic instabilities results in the formation of corresponding resolidified surface relief nanostructure: nanojet, nanocrown or hybrid structure (a nanojet surrounded by a nanocrown), where the hybrid structure is reported for the first time. Thickness of metal films, as well as the laser pulse energy, were found to be the key parameters determining the type of the resulting surface structures. Single nanojets were revealed to appear only on films with sub-100-nm thickness, while irradiation of thicker films (120–240 nm) leads to the formation of nanocrowns at near-threshold energies or hybrid structures at higher energies. The underlying formation mechanisms giving rise to all of these laser-induced nanostructures are also discussed.

  20. Ion beam analysis of a-C:H films on alloy steel substrate

    International Nuclear Information System (INIS)

    An a-C:H thin film deposited by plasma immersion ion implantation and deposition on alloy steel (16MnCr5) was analyzed using a self-consistent ion beam analysis technique. In the self-consistent analysis, the results of each individual technique are combined in a unique model, increasing confidence and reducing simulation errors. Self-consistent analysis, then, is able to improve the regular ion beam analysis since several analyses commonly used to process ion beam data still rely on handling each spectrum independently. The sample was analyzed by particle-induced x-ray emission (for trace elements), elastic backscattering spectrometry (for carbon), forward recoil spectrometry (for hydrogen) and Rutherford backscattering spectrometry (for film morphology). The self-consistent analysis provided reliable chemical information about the film, despite its “heavy” substrate. As a result, we could determine precisely the H/C ratio, contaminant concentration and some morphological characteristics of the film, such as roughness and discontinuities. - Highlights: • Self-consistent approach of ion beam analysis was used to characterize an a-C:H film. • The self-consistent analysis provided a unequivocal and reliable model of the sample. • Morphological aspects of the film were assessed with the ion beam analysis

  1. Effect of humidity on microstructure and properties of YBCO film prepared by TFA-MOD method

    Institute of Scientific and Technical Information of China (English)

    WANG Lianhong; LI Tao; GU Hongwei

    2009-01-01

    Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3. (001) substrate by metal organic deposition method. All YBCO films were fired at 820 ℃ in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was ana-lyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed Jc value of 3.3 MA/cm2 at 77 K in self-field.

  2. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Dagang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Jiang, Shouxiang, E-mail: kinor.j@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Zhao, Hongmei [Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao (China); Shang, Songmin; Chen, Zhuoming [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-12-15

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films.

  3. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films

  4. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jongnavakit, P. [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Amornpitoksuk, P., E-mail: ampongsa@yahoo.com [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); NANOTEC Center of Excellence at Prince of Songkla University (CENE), Hat Yai, Songkhla 90112 (Thailand); Suwanboon, S. [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); NANOTEC Center of Excellence at Prince of Songkla University (CENE), Hat Yai, Songkhla 90112 (Thailand); Ndiege, N. [Nanoscience and Nanotechnology Institute, W181 Chemistry Building, University of Iowa, Iowa City 52242, IA (United States)

    2012-08-01

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn{sup 2+} solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm{sup 2} of 0.5 mol% Cu-doped ZnO thin film are 15.92 {mu}M h{sup -1} and 0.049 {mu}M{sup -1}, respectively.

  5. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn2+ solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm2 of 0.5 mol% Cu-doped ZnO thin film are 15.92 μM h-1 and 0.049 μM-1, respectively.

  6. Exploration of CIGAS Alloy System for Thin-Film Photovoltaics on Novel Lightweight and Flexible Substrates

    Science.gov (United States)

    Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine

    2007-01-01

    Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.

  7. Preparation and characterization of silk fibroin/HPMC blend film

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, G. Rajesha [Department of Physics, Govt. First Grade College Hiriadka, Udupi - 576113 (India); Kumar, R. Madhu; Rao, B. Lakshmeesha; Asha, S.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India)

    2015-06-24

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  8. Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity

    International Nuclear Information System (INIS)

    Visible-light-activated C-modified anatase titania films have been synthesized from TiCl4 and carbonic ink by using the sol-gel route. The synthesized photocatalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The modifying carbon not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared films into visible region. The results of visible-light-induced degradation of methyl orange (MO) show that the C-modified titania films exhibits much higher photocatalytic activities than that of pure titania film prepared at the same conditions. - Graphical abstract: Carbon modifying not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared titania films into visible region

  9. Effects of preparation conditions on the optical properties of thin films of tellurium oxide

    International Nuclear Information System (INIS)

    Thin films of tellurium oxide were prepared by thermal evaporation. The effects of preparation conditions and post-deposition vacuum annealing on the optical constants of the thin films were studied. Substantial changes in the optical constants, density, structure and stoichiometry were observed following changes in the preparation conditions and annealing. The majority of the films were found to be deficient in oxygen. The presence of metallic Te was detected in films deposited on heated substrates and in all the films that were annealed. All the samples showed some degree of absorption at photon energies below the band gap. One explanation for this absorption could be oxygen deficiency and the presence of metallic Te. (author)

  10. Effects of preparation conditions on the optical properties of thin films of tellurium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kuhaili, M.F. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Durrani, S.M.A.; Khawaja, E.E [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Shirokoff, J. [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NF (Canada)

    2002-05-07

    Thin films of tellurium oxide were prepared by thermal evaporation. The effects of preparation conditions and post-deposition vacuum annealing on the optical constants of the thin films were studied. Substantial changes in the optical constants, density, structure and stoichiometry were observed following changes in the preparation conditions and annealing. The majority of the films were found to be deficient in oxygen. The presence of metallic Te was detected in films deposited on heated substrates and in all the films that were annealed. All the samples showed some degree of absorption at photon energies below the band gap. One explanation for this absorption could be oxygen deficiency and the presence of metallic Te. (author)

  11. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-01

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications. PMID:26784865

  12. Ultraflat indium tin oxide films prepared by ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Han Younggun; Kim, Donghwan; Cho, Jun-Sik; Koh, Seok-Keun

    2005-02-14

    Indium tin oxide (ITO) films with a smooth surface (root-mean-square roughness; R{sub rms}=0.40 nm) were made using a combination of the deposition conditions in the ion beam-sputtering method. Sheet resistance was 13.8 {omega}/sq for a 150-nm-thick film grown at 150 deg. C. Oxygen was fed into the growth chamber during film growth up to 15 nm, after which, the oxygen was turned off throughout the rest of the deposition. The surface of the films became smooth with the addition of ambient oxygen but electrical resistance increased. In films grown at 150 deg. C with no oxygen present, a rough surface (R{sub rms}=2.1 nm) and low sheet resistance (14.4 {omega}/sq) were observed. A flat surface (R{sub rms}=0.5 nm) with high sheet resistance (41 {omega}/sq) was obtained in the films grown with ambient oxygen throughout the film growth. Surface morphology and microstructure of the films were determined by the deposition conditions at the beginning of the growth. Therefore, fabrication of ITO films with a smooth surface and high electrical conductivity was possible by combining experimental conditions.

  13. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 200C and 900C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 900C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  14. Preparation, Characterization and Mechanical Properties of Cu-Sn Alloy/Graphite Composites

    Science.gov (United States)

    Dong, Ruifeng; Cui, Zhenduo; Zhu, Shengli; Xu, Xu; Yang, Xianjin

    2014-10-01

    Ni-B coating was prepared on the surface of graphite particles using the electroless plating method. The Ni-B coating was composed of spherical grains with average diameter of 80 nm. The phases of Ni-B coating were indexed as nanosized crystal Ni phase and amorphous Ni-B phase. Cu-Sn alloy/graphite composites with 0.5, 1.0, 1.5, and 2.0 wt pct graphite contents were synthesized by the powder metallurgy method. Ni-B coating improved the wettability and bonding strength between the Cu-Sn alloy and graphite. The composite with Ni-B coated graphite exhibited higher density, hardness, and compression strength compared with the composites with bare graphite. The crack propagation mechanism of the composites was also analyzed.

  15. CuZn dendritic alloys: their template-free electrochemical preparation and morphology-dependent wettability.

    Science.gov (United States)

    Qiao, Ru; Yin, Qiaoqiao; Qiu, Ri; Zhu, Lanlan; Fu, Jianong; Zhang, Xiao Li

    2013-06-01

    In this paper, we report a preparation of CuZn dendritic microstructures through a tunable template-free electrochemical approach. By simply tunning the applied depositing current, the morphology of the product can be well controlled. The growth mechanism of CuZn dendritic alloys was also verified. The experimental results suggest that the growth of the grass-like structures obtained at 5 mA is driven by diffusion limited aggregation, while the driving force of the formation of CuZn dendrites obtained at 10 mA and 15 mA is gas bubbling worked as the dynamic template. The contact angle test shows the modified CuZn dendritic products possess superhydrophobic property. Additionally, through annealing of CuZn alloys in argon as the protective gas, derivative Cu/ZnO composite materials can be produced. PMID:23862481

  16. Preparation of ferromagnetic binary alloy fine fibers byorganic gel-thermal reduction process

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiang-qian; CAO Kai; ZHOU Jian-xin

    2006-01-01

    Ferromagnetic metal fibers with a high aspect ratio (length/diameter) are attractive for use as high performance electromagnetic interference shielding materials. Ferromagnetic binary alloy fine fibers of iron-nickel, iron-cobalt and cobalt-nickel were prepared by the organic gel-thermal reduction process from the raw materials of critic acid and metal salts. These alloy fibers synthesized were featured with a diameter of about 1 μm and a length as long as 1 m. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of the gel precursors were characterized by FTIR, XRD, TG/DSC and SEM. The gel spinnability largely depends on the molecular structure of metal- carboxylates formed during the gel formation. The gel consisting of linear-type structural molecules shows good spinnability.

  17. Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential

    International Nuclear Information System (INIS)

    Oxide films on Ti6Al4V alloy are prepared using sodium hydroxide–sodium silicate as the base electrolyte with addition of aminopropyl trimethoxysilane (APS) as additive by potentiostatic anodizing under 10 V. APS is incorporated into the films during anodizing and the surface morphology of the oxide films is changed from particle stacked to honeycomb-like porous surfaces as shown by scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDX). The surface roughness and aminopropyl existence on the oxide films result in their differences in wettability as tested by the surface profile topography and contact angle measurements. The anti-abrasive ability of the anodic films is improved with the addition of APS due to its toughening effects and serving as lubricants in the ceramic oxide films as measured by ball-on-disk friction test. Also, potentiodynamic corrosion test proves that their anticorrosive ability in 3.5 wt.% NaCl is greatly improved as reflected by their much lower corrosion current (Icorr) and higher corrosion potential (Ecorr) than those of the substrate.

  18. Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiali; Wang, Jinwei, E-mail: wangjw@ustb.edu.cn; Yuan, Hongye

    2013-11-01

    Oxide films on Ti6Al4V alloy are prepared using sodium hydroxide–sodium silicate as the base electrolyte with addition of aminopropyl trimethoxysilane (APS) as additive by potentiostatic anodizing under 10 V. APS is incorporated into the films during anodizing and the surface morphology of the oxide films is changed from particle stacked to honeycomb-like porous surfaces as shown by scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDX). The surface roughness and aminopropyl existence on the oxide films result in their differences in wettability as tested by the surface profile topography and contact angle measurements. The anti-abrasive ability of the anodic films is improved with the addition of APS due to its toughening effects and serving as lubricants in the ceramic oxide films as measured by ball-on-disk friction test. Also, potentiodynamic corrosion test proves that their anticorrosive ability in 3.5 wt.% NaCl is greatly improved as reflected by their much lower corrosion current (I{sub corr}) and higher corrosion potential (E{sub corr}) than those of the substrate.

  19. Formation of ultra-thin amorphous conversion films on zinc alloy coatings

    International Nuclear Information System (INIS)

    Within the two parts of this contribution a detailed investigation of the nucleation and growth of ultra-thin amorphous conversion coatings on hot dip galvanised steel is reported. The first part deals with the composition and reactivity of the native ultra-thin oxyhydroxide films that are formed on the zinc alloy surface during the hot dip galvanising process due to the enrichment of aluminium at the outer surface of the alloy coating. Complimentary surface analytical techniques such as FT-IR-spectroscopy at grazing incidence and X-ray photo electron spectroscopy, high resolution AFM on selected grains to study the surface topography and cyclovoltammetry as well as quasi stationary current potential curves and Kelvin probe measurements to study surface ion and electron transfer reactions were applied. Changes in the chemical composition, the electronic properties and the morphology of the ultra-thin surface could thereby be analysed. The surface of the ZnAl alloy is composed of an about 3-4 nm thick mixed Zn and Al-oxyhydroxide layer with Zn-oxyhydroxide slightly enriched at the outermost surface. This mixed oxyhydroxide causes to a significant inhibition of electron transfer reactions. During alkaline cleaning the surface is nanoscopically roughened and the mixed oxyhydroxide is converted into an electro-conducting hydroxyl rich pure Zn-oxyhydroxide layer with a thickness of about 4 nm. In the second part of this paper the effect of the inorganic surface layer on the film formation is correlated with these findings

  20. Nanocrystalline CdS thin films prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Thambidurai, M.; Muthukumarasamy, N.; Agilan, S.; Vasantha, S. [Coimbatore Institute of Technology (India). Dept. of Physics; Velauthapillai, Dhayalan [Univ. College of Bergen (Norway). Dept. of Engineering; Murugan, N. [Coimbatore Institute of Technology (India). Dept. of Mechanical Engineering; Balasundaraprabhu, R. [PSG College of Technology, Coimbatore (India). Dept. of Physics

    2011-05-15

    Nanocrystalline CdS thin films have been prepared using cadmium nitrate and thiourea as precursors using the solgel spin coating method. The structural studies carried out on the prepared films using X-ray diffraction and high resolution transmission electron microscopy revealed that the CdS films exhibit hexagonal structure and the grain size was observed to be 10 and 14 nm for the films annealed at 250 C and 450 C. The surface topography of the films was studied using atomic force microscopy and the roughness was found to be 32 nm. The optical absorbance studies showed a strong blue shift due to the quantum confinement effect present in the CdS films. The grain size calculated using the band gap energy and quantum confinement effect was found to be in agreement with the results obtained from structural studies. (orig.)

  1. Synthesis and Structure of PEDOT Prepared through a Modified LB Film Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hua-Jing; JIANG Ya-Dong; XU Jian-Hua; YANG Ya-Jie

    2011-01-01

    Adopting LB film method, an arachidic acid (AA)/PEDOT multilayer LB film and polymerized EDOT monomers in hydrophilic group of LB were chosen to prepare the arachidic acid (AA)/PEDOT multilayer LB film. UV-Vis, FT-IR and XPS analyses implied that EDOT was effectively polymerized in film, and thus PEDOT conducting polymer was produced. Analyses of XRR and SIMS indicated that the film had a well-arranged lamella structure, and further research showed that polymerization of EDOT in AA film destroyed the orderliness of the original LB film. This phenomenon could be related to the destructive effect of polymerization on the layered structure. We used four-point probe and semiconductor instrument to study the conductivity property of the film, and observed that the conductivity of AA/PEDOT film had sudden changes with the changes of processing time in an effective conduction network, which was caused by "permeability" in conducting channel of multilayer film. The test results also indicated that the conductivity of AA/PEDOT film was obviously better than that of spin-coating PEDOT/PSS or ODA-SA/PEDOT-PSS film due to the higher π structure of PEDOT structure and ordered film structure.

  2. Ferroelectric thin film bismuth titanate prepared from acetate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxia; Hoelzer, D.T.; Schulze, W.A. [Alfred Univ., NY (United States); Tuttle, B.A.; Potter, B.G. [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01

    Bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) thin films were fabricated by spin coat deposition followed by rapid thermal processing (RTP). Acetate derived solutions for deposition were synthesized by blending bismuth acetate in aqueous acetic acid and then adding titanium acetate. A series of electrically insulating, semiconducting and conducting substrates were evaluated for Bi{sub 4}Ti{sub 3}O{sub 12} film deposition. While X-ray diffraction and TEM analyses indicated that the initial perovskite crystallization temperature was 500{degrees}C or less for these Bi{sub 4}Ti{sub 3}O{sub 12} films, a 700{degrees}C crystallization treatment was used to obtain single phase perovskite films. Bi{sub 4}Ti{sub 3}O{sub 12} film crystallographic orientation was shown to depend on three factors: substrate surface morphology, the number of coating layers and thermal processing. While preferred c-direction orientation was observed for Bi{sub 4}Ti{sub 3}O{sub 12} films deposited on silver foil substrates, preferred a-direction orientation was obtained for films deposited on both Si and Pt coated Si wafers. The films were dense, smooth, crack free, and had grain sizes ranging from 20 nm to 100 nm. Film thickness and refractive index were determined using a combination of ellipsometry, waveguide refractometry and TEM measurements. Both low field dielectric and ferroelectric properties were measured for an 800 nm thick film deposited on a Pt coated MgO substrate. A remanent polarization of 38 {mu}C/cm{sup 2} and a coercive field of 98 kV/cm were measured for this film that was crystallized at 700{degrees}C.

  3. Preparation and characterization of ZnS thin films by the chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashita, Taisuke [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Ando, Shizutoshi, E-mail: ando_shi@rs.kagu.tus.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Research Institute for Science and Technology, Advanced Device Laboratories (ADL), Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan); Research Institute for Science and Technology, Photovoltaic Science and Technology Research Division, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2012-10-01

    ZnS thin films prepared on quartz substrates by the chemical bath deposition (CBD) method with three type temperature profile processes have been investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray analysis and light transmission. One is a 1-step growth process, and the other is 2-steps growth and self-catalyst growth processes. The surface morphology of CBD-ZnS thin films prepared by the CBD method with the self-catalyst growth process is flat and smooth compared with that prepared by the 1-step and 2-steps growth processes. The self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement in crystallinity of ZnS thin films prepared by CBD. ZnS thin films prepared by CBD method with self-catalyst growth process can be expected for improvement in the conversion efficiency of Cu(InGa)Se{sub 2}-based thin film solar cells by using it for the buffer layer. - Highlights: Black-Right-Pointing-Pointer ZnS thin films were prepared by chemical bath deposition (CBD) method. Black-Right-Pointing-Pointer The crystallization of CBD-ZnS films was further improved. Black-Right-Pointing-Pointer The crystallinity of CBD-ZnS thin films is dependent on the zinc source material. Black-Right-Pointing-Pointer Self-catalyst growth process is useful for the growth of thin films by CBD method. Black-Right-Pointing-Pointer It is expected to improve the conversion efficiency of CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells.

  4. Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties

    OpenAIRE

    Elhefian, Esam. A.; Mohamed Mahmoud NASEF; Yahaya, Abdul Hamid

    2012-01-01

    Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component) in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA). It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan...

  5. Preparation and Characterization of Chitosan/Agar Blended Films: Part 1. Chemical Structure and Morphology

    OpenAIRE

    Esam A. El-Hefian; Mohamed Mahmoud NASEF; Yahaya, Abdul Hamid

    2012-01-01

    Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the main component) in solution forms. The chemical structure and the morphology of the obtained blended films were investigated using Fourier transform infrared (FTIR) and field emission scanning electron microscope (FESEM). It was revealed that chitosan and agar form a highly compatible blend and their films displayed homogenous and smooth surface properties compared to ...

  6. Preparation of high quality superconducting thin MgB2 films for electronics

    International Nuclear Information System (INIS)

    In this work we report the growth of high-Tc MgB2 smooth films which are prepared in a two-step process: 1) deposition of the precursor films and 2) their annealing in Mg vapor with a specially designed, reusable reactor. Our method opens perspectives for the use of MgB2 films in microelectronics, especially for high-frequency applications. (authors)

  7. Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells

    International Nuclear Information System (INIS)

    The semiconductor tungsten disulfide (WS2) exhibits van der Waals bonding, crystallizes in a layer-type structure and is of interest as an absorber layer for thin-film solar cells. In this review article different preparation routes for WS2 thin films, based on magnetron sputtering, are reviewed. Films prepared by direct magnetron sputtering, though exhibiting quite a good structural quality, are not or only poorly photoactive. This can be attributed to the generation of recombination centers, especially sulfur vacancies, during the ion bombardment of the films, due to the low defect-formation energy of tungsten disulfide, an intrinsic property of transition metal dichalcogenides. A promising preparation route, which leads to photoactive WS2 films, is a two-step process, where, in a first step, a sulfur-rich, X-ray amorphous tungsten sulfide is deposited at low substrate temperatures onto a thin metal film (Ni, Co). This film sandwich is after wards annealed in an ampoule in a sulfur atmosphere or in flowing gas with a sufficient H2S partial pressure. From in-situ transmission electron microscopy and energy-dispersive X-ray diffraction, it was found that the WS2 film crystallization with a pronounced (001) texture is closely related to the formation of the liquid (eutectic) metal-sulfur phase. Based on these in-situ investigations the growth of the 2-dimensional WS2 nanosheets from an amorphous WS3+x precursor can be described as an amorphous solid-liquid-crystalline solid process (SLS), somewhat similar to the well-known vapor-liquid-solid (VLS) process for the growth of whiskers or nanorods and nanotubes. Research opportunities, to overcome current limitations for a broad use of WS2 (and MoS2) as thin-film solar cell absorbers are given. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si (100) alloy thin films

    Science.gov (United States)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ∼200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ∼1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ∼75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  9. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films.

    Science.gov (United States)

    Wang, Ranran; Sun, Jing; Gao, Lian; Xu, Chaohe; Zhang, Jing; Liu, Yangqiao

    2011-03-01

    SWCNT-reduced graphite oxide hybrid films were prepared by a filtration method. An efficient post-treatment procedure was designed to reduce GO and remove dispersants simultaneously. The sheet resistance decreased significantly after treatment, by a factor of 4-13 times. Films with excellent performance (95.6%, 655 Ω per square) were obtained and had great potential applications. PMID:21132173

  10. Preparation and Haemocompatibility of Regular Array Microporous PLGA Films on Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Regular array microporous films from poly ( L-lactic-co-glycolic acid) ( PLGA ) were prepared on stainless steel substrates utilizing the condensation of water droplets on polymer solutions. The size of the pores and regularity can be controlled by atmospheric humidity and concentration of polymer solution. The microporons films have strong hydrophobicity and good haemocompatibility.

  11. Wettability of oxide thin films prepared by pulsed laser deposition: New insights

    Science.gov (United States)

    Prakash, Saurav

    The objective of the thesis is to investigate the wettability of good quality oxide thin films prepared by pulsed laser deposition (PLD). In this work, many shortfalls in the water contact angle measurement of thin films of oxides, responsible for the wide scatter in the values reported in literature, have been addressed. (Abstract shortened by UMI.).

  12. Preparation and properties of thin films used in activity determinations with a 4 π counter

    International Nuclear Information System (INIS)

    Comparative study of various methods of preparing thin films, for use as source holders in the 4 π counter, and of measuring their thickness. Comparative study of various properties: mechanical resistance; heat resistance; ageing; resistance of rhodopas, polystyrene, formvar and cellulose acetate films to the action of various chemical agents. (author)

  13. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV

  14. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  15. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    OpenAIRE

    Jelena Vukmirović; Djordjije Tripković; Branimir Bajac; Sanja Kojić; Goran M. Stojanović; Vladimir V. Srdić

    2015-01-01

    In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer). As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface...

  16. Preparation and characterization of bionanocomposite films reinforced with nano kaolin.

    Science.gov (United States)

    Jafarzadeh, Shima; Alias, Abd Karim; Ariffin, Fazilah; Mahmud, Shahrom; Najafi, Ali

    2016-02-01

    Effects of nano-kaolin incorporation into semolina films on the physical, mechanical, thermal, barrier and antimicrobial properties of the resulting bio-nanocomposite films were investigated. The properties included crystal structure (by X-ray diffraction), mechanical resistance, color, Fourier transform infrared spectra, decomposition temperature, water-vapor permeability (WVP), oxygen permeability (OP), and antimicrobial activity against Staphylococcus aureus and Escherichia coli. Kaolin was incorporated into biofilms at various amounts (1, 2, 3, 4, and 5 %, w/w total solid). All films were plasticized with 50 % (w/w total solid) combination of sorbitol/glycerol at 3:1 ratio. The incorporation of nanokaolin into semolina films decreased OP and WVP. The moisture content and water solubility of the films were found to decrease by nanokaolin reinforcement, and mechanical properties of films were improved by increasing nanokaolin concentration. Tensile strength and Young's modulus increased from 3.41 to 5.44 MPa and from 63.12 to 136.18, respectively, and elongation-at-break decreased. The films did not exhibit UV absorption. In conclusion, nanokaolin incorporation enhanced the barrier and mechanical properties of semolina films, indicating the potential application of these bio-nanocomposites in food-product packaging. PMID:27162391

  17. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

    Indian Academy of Sciences (India)

    K S Shamala; L C S Murthy; K Narasimha Rao

    2004-06-01

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2.65 × 10-2 -cm to 3.57 × 10-3 -cm in the temperature range 150–200°C. For undoped spray pyrolyzed films, the resistivity was observed to be in the range 1.2 × 10-1 to 1.69 × 10-2 -cm in the temperature range 250–370°C. Hall effect measurements indicated that the mobility as well as carrier concentration of evaporated films were greater than that of spray deposited films. The lowest resistivity for antimony doped tin oxide film was found to be 7.74 × 10-4 -cm, which was deposited at 350°C with 0.26 g of SbCl3 and 4 g of SnCl4 (SbCl3/SnCl4 = 0.065). Evaporated films were found to be amorphous in the temperature range up to 200°C, whereas spray pyrolyzed films prepared at substrate temperature of 300–370°C were polycrystalline. The morphology of tin oxide films was studied using SEM.

  18. The cheap preparation technology of A-, μC-SiC:H films for thin film solar cells

    International Nuclear Information System (INIS)

    We propose the use of a cheap liquid methyltrichlorosilane (MTCS) as a precursor in the modified plasma enhanced- chemical-vapor-deposition (PECVD) system with a very high frequency (VHF) discharge for preparing high quality hydrogenated amorphous silicon carbide (αSi1-xCx:H) films with the large carbon content. This method allows to control the composition and the morphology of the films in the region of 0.3< x<0.7. The monocrystalline fraction, consisting of 3C-SiC crystallites in an amorphous network (μc-SiC:H), is revealed in the films with the composition of about 0.5. (Author)

  19. The cheap preparation technology of A-, mC-SiC:H films for thin film solar cells

    International Nuclear Information System (INIS)

    We propose the use of a cheap liquid methyltriclorosilane (MTCS) as a precursor in the modified plasma-enhanced-chemical-vapor-deposition (PECVD) system with a very high frequency (VHF) discharge for preparing high quality hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films with the large carbon content. This method allows to control the composition and the morphology of the films in the region of 0.3< x<0.7. The monocrystalline fraction, consisting of 3C-SiC crystallites in an amorphous network (mc-SiC:H), is reveled in the films with the composition of about 0.5. (Author)

  20. Oxide film formation on a microcrystalline Al alloy at various temperatures in neutral borate solution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.C.; Birss, V.I. [Univ. of Calgary, Alberta (Canada). Dept. of Chemistry

    1997-10-01

    FVS0812 is a rapidly solidified Al alloy consisting of an intermetallic (dispersoid) phase, containing Al, Fe, V, and Si, surrounded by a predominantly Al matrix. The electrochemical behavior and the oxide film structure of FVS0812 were compared to that of its two phases, as well as pure Al, in neutral borate solution at a range of temperatures. While in acidic solution, FVS0812 is unable to form an adherent, thick, porous oxide film, in 60 C neutral solution, stable, although substantially thinner, porous oxides are formed on Al, FVS0812, and the matrix. In contrast to its dissolution in acidic medium, the dispersoid phase is retained within the porous film formed on the alloy in neutral solution. However, the dispersoid phase also causes the formation of a somewhat contorted porous oxide structure. Impedance measurements suggest that solution penetration into fine flaws in the barrier oxide at the barrier/porous oxide interface, a phenomenon exacerbated by increased temperature and time at applied potentials, is more prevalent for FVS0812 than for Al and the matrix.

  1. Importance of the passive film for long term reliability of copper alloy tubed heat exchanges

    International Nuclear Information System (INIS)

    Copper alloy tubed heat exchangers have been used for a number of years in heat exchangers cooled with seawater. In most cases tube degradation occurred due to destruction of an existing passive film due to pollutants in the seawater, microbiologically influenced corrosion, or as a result of erosion due to excessive water velocity through the tubes. Most installations of copper alloy tubed heat exchangers assume that a passive surface film will form readily during service providing corrosion protection and assuring long life, provided the above factors which have caused degradation are not present. This paper presents a case where because an adequate passive film was not able to form properly excessive wall degradation due to corrosion occurred requiring that the heat exchanger be retubed a number of times within a short period. This paper presents the events leading up to the frequent degradation of the heat exchanger leading up to the frequent degradation of the heat exchanger and the actions taken by the utility to diagnose and determine the most cost effective action to remedy the situation

  2. Origin of thickness dependent spin reorientation transition of B2 type FeCo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongyoo [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden); Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-12-07

    We have investigated the origin of thickness dependent spin reorientation transition (SRT) of B2 type FeCo alloy using the full potential linearized augmented plane wave method. It has been reported that FeCo alloy films on various substrates show a SRT from perpendicular to in-plane magnetization at an approximate thickness of 15 monolayers (MLs). The enhanced perpendicular magnetic anisotropy in bulk FeCo is attributed to a tetragonal distortion. However, we have found that the tetragonal distortion tends to suppress the magnetocrystalline anisotropy (MCA) energy at increasing film thickness in two-dimensional structure. In contrast, the magnitude of the shape anisotropy energy increases at increasing FeCo film thickness. Interestingly, the shape anisotropy overcomes the MCA and the SRT, from perpendicular anisotropy to in-plane magnetization, which occurs at a thickness of 15 ML. Consequently, we are able to clearly understand the physical mechanism of the thickness dependent SRT in terms of the competing reactions of these two counteracting contributions.

  3. A method to study the history of a double oxide film defect in liquid aluminum alloys

    Science.gov (United States)

    Raiszadeh, R.; Griffiths, W. D.

    2006-12-01

    Entrained double oxide films have been held responsible for reductions in mechanical properties in aluminum casting alloys. However, their behavior in the liquid metal, once formed, has not been studied directly. It has been proposed that the atmosphere entrapped in the double oxide film defect will continue to react with the liquid metal surrounding it, perhaps leading to its elimination as a significant defect. A silicon-nitride rod with a hole in one end was plunged into liquid aluminum to hold a known volume of air in contact with the liquid metal at a constant temperature. The change in the air volume with time was recorded by real-time X-ray radiography to determine the reaction rates of the trapped atmosphere with the liquid aluminum, creating a model for the behavior of an entrained double oxide film defect. The results from this experiment showed that first oxygen, and then nitrogen, was consumed by the aluminum alloy, to form aluminum oxide and aluminum nitride, respectively. The effect of adding different elements to the liquid aluminum and the effect of different hydrogen contents were also studied.

  4. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    International Nuclear Information System (INIS)

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  5. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Science.gov (United States)

    Barik, R. K.; Bera, A.; Raju, R. S.; Tanwar, A. K.; Baek, I. K.; Min, S. H.; Kwon, O. J.; Sattorov, M. A.; Lee, K. W.; Park, G.-S.

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  6. Structural analysis of surface film on alloy 600 formed under environment of PWR primary water

    International Nuclear Information System (INIS)

    It has been shown by one of the present authors and so forth that PWSCC of alloy 600 relates to dissolved hydrogen concentration (DH) in water and oxide film structure. However, the mechanism of PWSCC has not been clear yet. Therefore, in order to investigate relationship between them, structural analysis of the oxide film formed under the environment of PWR primary water was carried out by using X-ray diffraction, the scanning electron microscope and the transmission electron microscope. Especially, to perform accurate analysis, the synchrotron orbital radiation with SPring-8 was tried to use for thin film X-ray diffraction measurement. From the results, observed are as follows: 1. the oxide film is mainly composed of NiO, under the condition without hydrogen. 2. In the environment of DH 2.75ppm, the oxide film forms thin spinel structures. 3. On the other hand, needlelike oxides are formed at DH 1ppm. For this reason, around 1ppm of DH there would be the boundary that stable NiO and spinel oxide generate, and it agrees with the peak range of the PWSCC susceptibility on hydrogen. From this, it is suggested that the boundary of NiO/spinel oxide affects the SCC susceptibility. (author)

  7. Properties of TiO2 Thin Films Prepared by Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition processes and deposition rate on the structures and properties of TiO2 thin films. Anatase, rutile or amorphous TiO2 films with various crystalline structures and different photocatalytic, optical and electrical properties can be produced by varying sputtering gases, substrate temperature, annealing process, deposition rate and the characteristics of magnetron sputtering. This may in turn affect the functions of TiO2 films in many applications. Furthermore, TiO2-based composites films can overcome many limitations and improve the properties of TiO2 films.

  8. Preparation and Characterization of Self-Assembled Manganese Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2011-01-01

    Full Text Available Thin films of manganese dioxide (MnO2 were prepared by self-assembly of MnO2 nanoparticles directly unto nickel-coated poly(ethylene terephthalate flexible films using the newly developed horizontal submersion process. The thickness of deposited thin films was controllable by the deposition duration. This horizontal submersion deposition process for thin-film deposition is relatively easy, simple, and cost effective. Effects of deposition duration and calcination temperatures on the microstructure and electrochemical properties of self-assembled MnO2 thin films were investigated. Optimized MnO2 thin films exhibited high charge capacity, good cycling reversibility, and stability in a mild aqueous electrolyte and are thus promising electrode materials for the fabrication of thin-film electrochemical capacitors.

  9. Preparation of Biodegradable Silk Fibroin/Alginate Blend Films for Controlled Release of Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2013-01-01

    Full Text Available Silk fibroin (SF/alginate blend films have been prepared for controlled release of tetracycline hydrochloride, an antimicrobial model drug. The blend films were analysed by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and UV-vis spectroscopy. The functional groups of the SF/alginate blends were monitored from their FTIR spectra. The homogeneity of the blend films was observed from SEM images. The dissolution and film transparency of the blend films depended on the SF/alginate blend ratio. The in vitro drug release profile of the blend films was determined by plotting the cumulative drug release versus time. It was found that the drug release significantly decreased as the SF/alginate blend ratio increased. The results demonstrated that the SF/alginate blend films should be a useful controlled-release delivery system for water-soluble drugs.

  10. Titanium carbonitride films on cemented carbide cutting tool prepared by pulsed high energy density plasma

    Science.gov (United States)

    Feng, Wenran; Liu, Chizi; Chen, Guangliang; Zhang, Guling; Gu, Weichao; Niu, Erwu; Yang, Si-Ze

    2007-03-01

    Hard films prepared by pulsed high energy density plasma (PHEDP) are characterized by high film/substrate adhesive strength, and high wear resistance. Titanium carbonitride (TiCN) films were deposited onto YG11C (ISO G20) cemented carbide cutting tool substrates by PHEDP at room temperature. XRD, XPS, SEM, AES, etc. were adopted to analyze the phases (elements) composition, microstructure and the interface of the films, respectively. The results show that, the uniform dense films are composed of grains ranging from 70 to 90 nm. According to the AES result, there is a broad transition layer between the film and the substrate, due to the ion implantation effect of the PHEDP. The transition layer is favorable for the film/substrate adhesion.

  11. Facile approach to prepare drug-loading film from hemicelluloses and chitosan.

    Science.gov (United States)

    Guan, Ying; Qi, Xian-Ming; Chen, Ge-Gu; Peng, Feng; Sun, Run-Cang

    2016-11-20

    This study introduces a facile and green route to fabricate film from bio-based polymers. The film has been prepared by the cross-linking reaction of quaternized hemicelluloses (QH) and chitosan (CHO) with epichlorohydrin (ECH) as crosslinker. It exhibits an excellently mechanical performance as a result of its high tensile strength (up to 37MPa). Importantly, the roughness of film was 2-5nm in the area of 400nm, and smooth surface with pores were presented on the film based on the results of scanning electron microscope (SEM) and atomic force microscope (AFM). Ciprofloxacin was utilized as a mode compound to investigate the loading behavior of the film, and the highest loading concentration was about 18%. The drug release was about 20% in film1 in comparison to only 15% in film3 within 48h. Furthermore, the results of a 293T cell viability assay indicated its good biocompatibility and non-toxicity. PMID:27561527

  12. Growth and characterization of NixCu1-x alloy films, NixCu1-x/NiyCu1-y multilayers, and nanowires

    International Nuclear Information System (INIS)

    It was found that it is possible to grow NixCu1-x alloy systems of arbitrary composition by electrodepositing well-defined sub-monolayer quantities of Ni and Cu in alternation using a new method based on that used previously to prepare potentiostatically deposited magnetic multilayers from a single sulphamate-based electrolyte. Following growth, the chemical composition of NixCu1-x alloy films was obtained by ZAF-corrected energy dispersive X-Ray (EDX) analysis and less than a 4% difference between the nominal and actual composition was observed. The structure of the films was investigated by high-angle X-ray diffractometry (HAXRD) and transmission electron microscopy (TEM). The films grown on polycrystalline Cu substrates had (100) texture, while those grown on Au-coated glass had (111) texture. Some evidence of Ni clustering was obtained by vibrating sample magnetometry (VSM). Self-organisation of the deposited metal was suggested for Ni potentials more positive than ∼-1.4V. The transition from a Ni/Cu multilayer to a NixCu1-x alloy was also studied and an interesting aspect, namely a plateau region in a plot of magnetisation as a function of Ni layer thickness was observed, suggesting a preferred Ni cluster size in these alloy films. Anisotropic magnetoresistance (AMR) of the films decreased with increasing Cu content at 300K and 77K. SQUID measurements for Ni0.52Cu0.48 and Ni0.62CU0.38 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (TB) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. NixCu1-x/NiyCu1-y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed that NixCu1-x/NiyCu1-y

  13. Preparation, microstructure and properties of Al-Zn-Mg-Sc alloy tubes

    Institute of Scientific and Technical Information of China (English)

    何振波; 尹志民; 林森; 邓英; 商宝川; 周向

    2010-01-01

    The Al-6.0Zn-2.0Mg-0.2Sc-0.10Zr hollow tube ingots, prepared by semi-continuous casting technology, were subjected to ho- mogenization treatment, hot extrusion, intermediate annealing, tension, solution and aging treatment. The microstructures and properties of as-cast Al-Zn-Mg-Sc alloy at different homogenization treatment conditions were studied using hardness measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The results showed th...

  14. Thermal control coatings on magnesium alloys prepared by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Four kinds of oxide coatings with different solar absorptance properties were prepared on AZ91D magnesium alloys by plasma electrolytic oxidation. They were of different colors due to the different additives in the electrolytes. The microstructure and composition were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The optical properties were investigated by the UV-VIS-NIR spectrophotometer, and the thermal control properties were measured by solar spectrum reflectometer as well as emissivity tester. Results showed that the solar absorptance of the coatings ranged from 0.439 to 0.918 while the emittance remained unchanged.

  15. Thermal control coatings on magnesium alloys prepared by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingqian [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, Jiansong, E-mail: jszhou@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-09-01

    Four kinds of oxide coatings with different solar absorptance properties were prepared on AZ91D magnesium alloys by plasma electrolytic oxidation. They were of different colors due to the different additives in the electrolytes. The microstructure and composition were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The optical properties were investigated by the UV-VIS-NIR spectrophotometer, and the thermal control properties were measured by solar spectrum reflectometer as well as emissivity tester. Results showed that the solar absorptance of the coatings ranged from 0.439 to 0.918 while the emittance remained unchanged.

  16. Furnace bottom rise mechanism in preparation of Al-Si alloys by electrothermal process

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experiments of preparation of Al-Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied.It was found that the bottom rise can be divided into three types, including the low bottom temperature, abnormal reducing reaction and carbide deposition. The furnace bottom rise is related to the carbon ratio of the briquet, the heating speed of the briquet and the parameters and operation of furnace.

  17. Preparation and optical properties of GA(x)IN(1-x)P alloys

    Science.gov (United States)

    Rodot, H.; Horak, J.; Rouy, G.; Bourneix, J.

    1986-01-01

    The solution crystallization method was used to obtain Ga(z)In(1-x)P alloys for all values of x desired between zero and 1. The method of preparation makes it possible to crystallize the solid at a constant temperature. The points obtained by cathodoluminescence are nearly in straight lines. The optical absorption thresholds are confirmed in the results and make it possible to define the nature of the transitions except when x is in the neighborhood of 0.65. These determinations agree with those of Hilsum and Porteus (1968), but are not in agreement with those obtained by Lorenz et al, (1968).

  18. Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhaohua; ZENG Xiaobin; YAO Zhongping

    2006-01-01

    In the NaAlO2-Na2SiO3 compound system, the ceramic coatings were prepared on magnesium alloy by micro-arc oxidation. The morphology, phase composition, and thermal shock resistance of the ceramic coatings were studied by scanning electron microscope, X-ray diffraction and thermal shock tests, respectively. The results showed that the ceramic coating contains MgO, MgAl2O4, as well as a little amount of Mg2SiO4. The thickness of the ceramic coatings induced ceramic coating is the best. The hardness of the ceramic coating is up to 10 GPa or so.

  19. Preparation of iron cobaltite thin films by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Le Trong, H. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); Ho Chi Minh City University of Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Q 5, 750000 Ho Chi Minh City (Viet Nam); Bui, T.M.A. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Presmanes, L., E-mail: presmane@chimie.ups-tlse.fr [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); Barnabé, A.; Pasquet, I.; Bonningue, C.; Tailhades, Ph. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France)

    2015-08-31

    Iron cobaltite thin films with spinel structure have been elaborated by radio-frequency (RF) magnetron sputtering from a Co{sub 1.75}Fe{sub 1.25}O{sub 4} target. Influence of argon pressure on structure, microstructure and physical properties of films has been examined. Iron–cobalt oxide thin films essentially consist of one spinel phase when deposited at low pressure (0.5 and 1.0 Pa). At high pressure (2.0 Pa), the global stoichiometry of the film is changed which results in the precipitation of a mixed monoxide of cobalt and iron beside the spinel phase. This in-situ reduction due to an oxygen loss occurring mainly at high deposition pressure has been revealed by X-ray diffraction and Raman spectroscopy. Microstructural evolution of thin film with argon pressure has been shown by microscopic observations (AFM and SEM). The evolution of magnetic and electrical properties, versus argon pressure, has been also studied by SQUID and 4 point probe measurements. - Highlights: • Co{sub 1.75}Fe{sub 1.25}O{sub 4} phase is obtained at room temperature without any annealing. • This phase is a ferrimagnetic semiconductor with a coercive field of 32 kOe at 5 K. • Oxygen content of the thin film is related to the argon pressure during sputtering. • Monoxide phase grows into the film at high argon pressure. • Magnetic coupling effect reveals nanoscale impurities at low argon pressure.

  20. Preparation of highly textured surface ZnO thin films

    International Nuclear Information System (INIS)

    In order to investigate the influence of the deposition technique upon the surface morphology of ZnO thin films we have employed two methods, which are the spray pyrolysis and magnetron sputtering. The surface morphology of ZnO thin films is a crucial parameter for controlling the reflection losses reduction when the coating is used as a transparent front layer in solar cells. The morphology of the surface was characterized by optical microscopy and profilometry. The results indicate that spray technique enables the elaboration of films with a highly rough surface, however sputtering technique yields to smoother films. This difference originates from the different deposition processes involved in both techniques. A vertical r.m.s. (root mean square) roughness in the order of 200 nm was measured in sprayed film; however only 40 nm r.m.s. vertical roughness is reported in sputtered one. The surface morphology in sprayed films causes the incident light diffraction; consequently the reflection is reduced up to zero. Therefore we show that ZnO thin films deposited with spray method is a potential candidate for use as a front transparent layer in solar cells

  1. Study on AlxNiy Alloys as Diffusion Barriers in Flexible Thin Film Solar Cells%Study on AlxNiy Alloys as Diffusion Barriers in Flexible Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    岳红云; 吴爱民; 秦福文; 李廷举

    2011-01-01

    Co-sputtered AlxNiy thin films were used as diffusion barriers between aluminum and hydrogenated microcrystalline silicon (μc-Si:H) for flexible thin film solar cells. The stoichiometric ratio of AlxNiy showed a significant effect on the structures of the films. The obtained Al3Ni2 film was amorphous, while polycrystalline films were obtained when the ratio of aluminum to nickel was 1:1 and 2:3. An auger electron spectroscope and four-point probe system were applied to test the resistance to the interdiffusion between aluminum and silicon, as well as the conductivities of the AlxNiy barriers. The data of auger depth profile showed that the content of silicon was the minimum in the aluminum layer after sputtering for 4 min using AlNi thin film as the barrier layer. Compared to other AlxNiy alloys, the AlNi thin film possessed the lowest sheet resistance.

  2. Preparation and characterization of sponge film made from feathers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yuan; Wu, Xiaoqian [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Cao, Zhangjun [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhao, Xiaoxiang; Zhou, Meihua [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Gao, Pin, E-mail: gaopin@mail.dhu.edu.cn [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2013-12-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM{sub 10} was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology.

  3. Preparation and characterization of sponge film made from feathers

    International Nuclear Information System (INIS)

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM10 was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology

  4. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  5. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Suk; Park, Insik [Yonsei University, Wonju (Korea, Republic of); Choi, Hong Yeol [CJ Cheiljedang, Seoul (Korea, Republic of)

    2014-08-15

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

  6. Structure and interfacial analysis of nanoscale TiNi thin film prepared by biased target ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Huilong; Hamilton, Reginald F., E-mail: rfhamilton@psu.edu; Horn, Mark W. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-07-15

    Ultrathin, 65 nm thick, TiNi alloy films were fabricated by cosputtering Ti and Ni targets using the recently developed biased target ion beam deposition technique. Preheating the substrate by exposure to a low energy ion source resulted in as-deposited films with a pure B2 atomic crystal structure containing no secondary crystal structures or precipitates. Continuous films were produced with a smooth surface and minimal substrate/film interfacial diffusion. The diffusion layer was a small ratio of film thickness, which is a prerequisite for the B2 phase to undergo the martensitic transformation in ultrathin films.

  7. Preparation of films of a highly aligned lipid cubic phase

    OpenAIRE

    Squires, Adam; Hallett, J.E.; Beddoes, C. M.; Plivelic, T. S.; Seddon, A. M.

    2013-01-01

    We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (QII D) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L3 phase) in the presence of butanediol, we can obtain a film of the QII D phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that foun...

  8. Semiconducting ZnSn_xGe_(1−x)N_2 alloys prepared by reactive radio-frequency sputtering

    OpenAIRE

    Shing, Amanda M.; Coronel, Naomi C.; Lewis, Nathan S.; Atwater, Harry A.

    2015-01-01

    We report on the fabrication and structural and optoelectronic characterization of II-IV-nitride ZnSn_x Ge(1−x)N_2 thin-films. Three-target reactive radio-frequency sputtering was used to synthesize non-degenerately doped semiconducting alloys having

  9. Semiconducting ZnSnxGe1−xN2 alloys prepared by reactive radio-frequency sputtering

    OpenAIRE

    Shing, Amanda M.; Coronel, Naomi C.; Lewis, Nathan S.; Atwater, Harry A.

    2015-01-01

    We report on the fabrication and structural and optoelectronic characterization of II-IV-nitride ZnSnxGe1−xN2 thin-films. Three-target reactive radio-frequency sputtering was used to synthesize non-degenerately doped semiconducting alloys having

  10. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films

    International Nuclear Information System (INIS)

    Thin films of the high entropy alloy Nbx-CoCrCuFeNi with different niobium concentrations were deposited by magnetron sputtering. The film density and the residual stress of the niobium-free (x = 0) thin films clearly decreases at higher pressure-distance products. This behaviour can only be explained by the momentum transfer of the sputtered atoms and the reflected Ar atoms on the growing film as the energy per arriving atom shows little variation. The addition of Nb, which is the heaviest atom of the alloy, amplifies this effect. Hence, thin films with a high Nb content still show a high density at large pressure-distance products. However, as Nb has the largest radius of all constituent elements, the crystallographic structure of the thin films changes from a crystalline face-centred cubic structure at x = 0 to an amorphous (or nanocrystalline) structure for higher Nb fractions. Both trends, i.e. the changing deposition conditions and the niobium content, can be outlined by a study of the thin film microstrain. The trends observed in the intrinsic properties are correlated to a preliminary study of some functional properties (friction coefficient, thermal stability and contact resistance). - Highlights: • Nbx-CoCrCuFeNi thin films were deposited by sputtering pressed powder targets. • The Nb fraction and deposition conditions influence the intrinsic film properties. • The functional film properties are explained by the momentum transfer concept

  11. Development of technology for the large-scale preparation of 60Co polymer film source

    International Nuclear Information System (INIS)

    60Co sources (∼37 kBq) in the form of a thin film are widely used in position identification of perforation in offshore oil-well explorations. This paper describes the large-scale preparation of such sources using a radioactive polymer containing 60Co. 60Co was extracted into chloroform containing 8-hydroxyquinoline. The chloroform layer was mixed with polymethyl methacrylate (PMMA) polymer. A large film was prepared using the polymer solution containing the complex. The polymer film was then cut into circular sources, mounted on a source holder and supplied to various users

  12. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  13. Studies of preparing method of nano grain metal-insulator film Cu:CaF2

    International Nuclear Information System (INIS)

    A machine to prepare nano grain metal-insulator films, for example Cu:CaF2 film, by means of magnetron sputtering generating clusters and at the same time evaporating insulator medium, is introduced. This machine is suitable for almost all solid metal and semiconductor clusters. And with it, many kinds of function film series can be prepared. The size of cluster embedded in insulator is from 10 to 70 nm. The Cu cluster and medium CaF2 are both polycrystalline structure

  14. Thickness distribution of thin amorphous chalcogenide films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pavlista, Martin; Hrdlicka, Martin; Prikryl, Jan [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); Nemec, Petr; Frumar, Miloslav [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); University of Pardubice, Department of General and Inorganic Chemistry, Faculty of Chemical Technology, Pardubice (Czech Republic)

    2008-11-15

    Amorphous chalcogenide thin films were prepared from As{sub 2}Se{sub 3}, As{sub 3}Se{sub 2} and InSe bulk glasses by pulsed laser deposition using a KrF excimer laser. Thickness profiles of the films were determined using variable angle spectroscopic ellipsometry. The influence of the laser beam scanning process during the deposition on the thickness distribution of the prepared thin films was evaluated and the corresponding equations suggested. The results were compared with experimental data. (orig.)

  15. Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy

    International Nuclear Information System (INIS)

    This work investigates the protective behaviour of bis-[triethoxysilylpropyl] tetrasulfide silane pre-treatments on the AZ31 Mg alloy. The silane solution was modified by the addition of cerium nitrate or lanthanum nitrate in order to introduce corrosion inhibition properties in the silane film. The corrosion behaviour of the pre-treated AZ31 magnesium alloy was studied during immersion in 0.005 M NaCl solution, using electrochemical impedance spectroscopy and the scanning vibrating electrode technique (SVET). The electrochemical experiments showed that the presence of cerium ions or lanthanum ions improve the protective behaviour of the silane film. The SVET experiments evidenced that the presence cerium in the silane film led to an important reduction of the corrosion activity. The results demonstrate that either cerium ions or lanthanum ions can be used as additives to the silane solutions to improve the performance of the pre-treatments for the AZ31 magnesium alloy

  16. Chemical vapor deposition of ruthenium–phosphorus alloy thin films: Using phosphine as the phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Bost, Daniel E.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu

    2014-05-02

    The use of PH{sub 3} as the P source in the growth of amorphous ruthenium–phosphorus (Ru(P)) alloy films by dual-source chemical vapor deposition (CVD) with Ru{sub 3}(CO){sub 12} to produce thin (∼ 3 nm) Cu diffusion barriers is examined. Comparisons are made to films grown using P(CH{sub 3}){sub 3}. Carbon contamination of 10 at.% carbon or less was observed in PH{sub 3}-produced Ru(P) films, compared to greater than 30 atomic % carbon in films using P(CH{sub 3}){sub 3}, and lower resistivity was also observed. PH{sub 3} was found to be much more reactive than previously-used P precursors, requiring the use of very low PH{sub 3} partial pressures (∼ 0.13 mPa) and a sequenced addition process that allowed accumulated P to diffuse into the Ru(P) film during growth. X-ray reflectivity and atomic force microscopy indicate that films of good continuity and smoothness can be grown by CVD in the 3 nm thickness range. X-ray diffraction shows the amorphous phase to be stable for annealing at 400 °C for 3 h. Electric field stress tests to failure for Cu/Ru(P)/SiO{sub 2}/Si stacks indicate that low-carbon Ru(P) barrier films function at least as well as their higher-carbon counterparts as Cu barriers and better than Ta/TaN stacks of similar thickness grown for comparison purposes. - Highlights: • Reports the CVD growth of 3 to 5 nm amorphous Ru(P) thin films PH{sub 3} as the P source • PH{sub 3}-grown Ru(P) films have ∼ 10% C content the same as films with zero % P. • Fast PH{sub 3} decomposition at 250 °C can lead to P accumulation on the growth surface. • Amorphous, continuous 3 nm Ru(P) films realized for P content > 20 atom % • Electrical field stress tests indicate 3 nm Ru(P) function as a Cu diffusion barrier.

  17. Chemical vapor deposition of ruthenium–phosphorus alloy thin films: Using phosphine as the phosphorus source

    International Nuclear Information System (INIS)

    The use of PH3 as the P source in the growth of amorphous ruthenium–phosphorus (Ru(P)) alloy films by dual-source chemical vapor deposition (CVD) with Ru3(CO)12 to produce thin (∼ 3 nm) Cu diffusion barriers is examined. Comparisons are made to films grown using P(CH3)3. Carbon contamination of 10 at.% carbon or less was observed in PH3-produced Ru(P) films, compared to greater than 30 atomic % carbon in films using P(CH3)3, and lower resistivity was also observed. PH3 was found to be much more reactive than previously-used P precursors, requiring the use of very low PH3 partial pressures (∼ 0.13 mPa) and a sequenced addition process that allowed accumulated P to diffuse into the Ru(P) film during growth. X-ray reflectivity and atomic force microscopy indicate that films of good continuity and smoothness can be grown by CVD in the 3 nm thickness range. X-ray diffraction shows the amorphous phase to be stable for annealing at 400 °C for 3 h. Electric field stress tests to failure for Cu/Ru(P)/SiO2/Si stacks indicate that low-carbon Ru(P) barrier films function at least as well as their higher-carbon counterparts as Cu barriers and better than Ta/TaN stacks of similar thickness grown for comparison purposes. - Highlights: • Reports the CVD growth of 3 to 5 nm amorphous Ru(P) thin films PH3 as the P source • PH3-grown Ru(P) films have ∼ 10% C content the same as films with zero % P. • Fast PH3 decomposition at 250 °C can lead to P accumulation on the growth surface. • Amorphous, continuous 3 nm Ru(P) films realized for P content > 20 atom % • Electrical field stress tests indicate 3 nm Ru(P) function as a Cu diffusion barrier

  18. Wear Resistance of Anodic Titanium Dioxide Films Produced on Ti-6Al-4V Alloy

    OpenAIRE

    María Laura Vera; Mario Roberto Rosenberger; Carlos Enrique Schvezov; Alicia Esther Ares

    2015-01-01

    Ti-6Al-4V alloy with TiO2 coating is the most commonly selected material to construct an aortic heart valve. Wear resistance is the main mechanical property to be evaluated for this purpose. In this paper, the wear resistance of TiO2 thin films obtained by anodic oxidation of Ti-6Al-4V is evaluated. Anodic oxidation was performed at 20 V to 70 V with a H2SO4 1 M electrolyte. The samples were thermally treated at 500°C for 1 h, and crystalline phases of TiO2 were obtained. The wear was perform...

  19. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  20. Comparison of physicomechanical properties of films prepared from organic solutions and aqueous dispersion of Eudragit RL

    Directory of Open Access Journals (Sweden)

    H Afrasiabi Garekani

    2011-05-01

    Full Text Available Background and the purpose of the study: Mechanical properties of films prepared from aqueous dispersion and organic solutions of Eudragit RL were assessed and the effects of plasticizer type, concentration and curing were examined. Methods: Films were prepared from aqueous dispersion and solutions of Eudragit RL (isopropyl alcohol-water 9:1 containing 0, 10 or 20% (based on polymer weight of PEG 400 or Triethyl Citrate (TEC as plasticizer using casting method. Samples of films were stored in oven at 60ºC for 24 hrs (Cured. The stress-strain curve was obtained for each film using material testing machine and tensile strength, elastic modulus, %elongation and work of failure were calculated. Results and major conclusion: The films with no plasticizer showed different mechanical properties depending on the vehicle used. Addition of 10% or 20% of plasticizer decreased the tensile strength and elastic modulus and increased %elongation and work of failure for all films. The effect of PEG400 on mechanical properties of Eudragit RL films was more pronounced. The differences in mechanical properties of the films due to vehicle decreased by addition of plasticizer and increase in its concentration. Curing process weakened the mechanical properties of the films with no plasticizer and for films with 10% plasticizer no considerable difference in mechanical properties was observed before and after curing. For those with 20% plasticizer only films prepared from aqueous dispersion showed remarkable difference in mechanical properties before and after curing. Results of this study suggest that the mechanical properties of the Eudragit RL films were affected by the vehicle, type of plasticizer and its concentration in the coating liquid.