WorldWideScience

Sample records for allometric scaling theory

  1. Crown ratio influences allometric scaling in trees

    Science.gov (United States)

    Annikki Makela; Harry T. Valentine

    2006-01-01

    Allometric theories suggest that the size and shape of organisms follow universal rules, with a tendency toward quarter-power scaling. In woody plants, however, structure is influenced by branch death and shedding, which leads to decreasing crown ratios, accumulation of heartwood, and stem and branch tapering. This paper examines the impacts on allometric scaling of...

  2. Unified theory of interspecific allometric scaling

    International Nuclear Information System (INIS)

    Silva, Jafferson K L da; Barbosa, Lauro A; Silva, Paulo Roberto

    2007-01-01

    A general simple theory for the interspecific allometric scaling is developed in the d + 1-dimensional space (d biological lengths and a physiological time) of metabolic states of organisms. It is assumed that natural selection shaped the metabolic states in such a way that the mass and energy d + 1-densities are size-invariant quantities (independent of body mass). The different metabolic states (basal and maximum) are described by considering that the biological lengths and the physiological time are related by different transport processes of energy and mass. In the basal metabolism, transportation occurs by ballistic and diffusion processes. In d = 3, the 3/4 law occurs if the ballistic movement is the dominant process, while the 2/3 law appears when both transport processes are equivalent. Accelerated movement during the biological time is related to the maximum aerobic sustained metabolism, which is characterized by the scaling exponent 2d/(2d + 1) (6/7 in d = 3). The results are in good agreement with empirical data and a verifiable empirical prediction about the aorta blood velocity in maximum metabolic rate conditions is made. (fast track communication)

  3. Multi-scaling allometric analysis for urban and regional development

    Science.gov (United States)

    Chen, Yanguang

    2017-01-01

    The concept of allometric growth is based on scaling relations, and it has been applied to urban and regional analysis for a long time. However, most allometric analyses were devoted to the single proportional relation between two elements of a geographical system. Few researches focus on the allometric scaling of multielements. In this paper, a process of multiscaling allometric analysis is developed for the studies on spatio-temporal evolution of complex systems. By means of linear algebra, general system theory, and by analogy with the analytical hierarchy process, the concepts of allometric growth can be integrated with the ideas from fractal dimension. Thus a new methodology of geo-spatial analysis and the related theoretical models emerge. Based on the least squares regression and matrix operations, a simple algorithm is proposed to solve the multiscaling allometric equation. Applying the analytical method of multielement allometry to Chinese cities and regions yields satisfying results. A conclusion is reached that the multiscaling allometric analysis can be employed to make a comprehensive evaluation for the relative levels of urban and regional development, and explain spatial heterogeneity. The notion of multiscaling allometry may enrich the current theory and methodology of spatial analyses of urban and regional evolution.

  4. An allometric scaling relation based on logistic growth of cities

    Science.gov (United States)

    Chen, Yanguang

    2014-08-01

    The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed "exponential allometry", which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the abovementioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed "logistic allometry". The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective.

  5. An allometric scaling relation based on logistic growth of cities

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2014-01-01

    Highlights: • An allometric scaling based on logistic process can be used to model urban growth. • The traditional allometry is based on exponential growth instead of logistic growth. • The exponential allometry represents a local scaling of urban growth. • The logistic allometry represents a global scaling of urban growth. • The exponential allometry is an approximation relation of the logistic allometry. - Abstract: The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed “exponential allometry”, which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the above mentioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed “logistic allometry”. The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective

  6. Allometric convergence in savanna trees and implications for the use of plant scaling models in variable ecosystems.

    Directory of Open Access Journals (Sweden)

    Andrew T Tredennick

    Full Text Available Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of 'universal' scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and 'global' (i.e. interspecific scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST, Geometric Similarity, and Stress Similarity in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and

  7. Problems of allometric scaling analysis : Examples from mammalian reproductive biology

    NARCIS (Netherlands)

    Martin, RD; Genoud, M; Hemelrijk, CK

    Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric

  8. Allometric scaling for predicting human clearance of bisphenol A

    International Nuclear Information System (INIS)

    Collet, Séverine H.; Picard-Hagen, Nicole; Lacroix, Marlène Z.; Puel, Sylvie; Viguié, Catherine; Bousquet-Melou, Alain; Toutain, Pierre-Louis; Gayrard, Véronique

    2015-01-01

    The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady state volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPA plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min

  9. Allometric scaling for predicting human clearance of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Collet, Séverine H., E-mail: s.collet@envt.fr; Picard-Hagen, Nicole, E-mail: n.hagen-picard@envt.fr; Lacroix, Marlène Z., E-mail: m.lacroix@envt.fr; Puel, Sylvie, E-mail: s.puel@envt.fr; Viguié, Catherine, E-mail: c.viguie@envt.fr; Bousquet-Melou, Alain, E-mail: a.bousquet-Melou@envt.fr; Toutain, Pierre-Louis, E-mail: pltoutain@wanadoo.fr; Gayrard, Véronique, E-mail: v.gayrard@envt.fr

    2015-05-01

    The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady state volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPA plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min.

  10. Why allometric variation in mammalian metabolism is curvilinear on the logarithmic scale.

    Science.gov (United States)

    Packard, Gary C

    2017-11-01

    Studies performed over the last 20 years have repeatedly documented a slight convex curvature (relative to the x-axis) in double-logarithmic plots of basal metabolic rate (BMR) versus body mass in mammals. This curvilinear pattern has usually been interpreted in the context of a simple, two-parameter power function on the arithmetic scale, y  =  a  ×  x b , with the exponent in the equation supposedly increasing systematically with body size. An equation of this form has caused concern among ecologists because a variable exponent is inconsistent with an assumption underlying the metabolic theory of ecology (MTE). However, the appearance of an exponent that varies with body size is an artifact resulting from the widespread use of logarithmic transformations in allometric analyses. Curvature in the distribution on the logarithmic scale actually is caused by a requirement for an explicit, non-zero intercept-and not a variable exponent-in the model describing the distribution on the arithmetic scale. Thus, the MTE need not be revised to accommodate an exponent that varies with body size in the scaling of mammalian BMR, but the theory may need to be tweaked to accommodate an intercept in the allometric equation. In general, any bivariate dataset that is well described by a three-parameter power equation on the arithmetic scale will follow a curvilinear path when displayed on the logarithmic scale. Consequently, reports of curvilinearity in log domain (i.e., "complex allometry") need to be revisited because conclusions from those investigations are likely to be flawed. © 2018 Wiley Periodicals, Inc.

  11. Allometric scaling relationship between frequency of intestinal ...

    Indian Academy of Sciences (India)

    2013-02-27

    Feb 27, 2013 ... 2Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran. 3School of Electrical and Computer Engineering, College of Engineering, University of Tehran, ... The question is, what kind of relationship can be ... allometric scaling has been used to predict human clinical.

  12. Allometric scaling of chemical restraint associated with inhalant anesthesia in giant anteaters.

    Science.gov (United States)

    Carregaro, Adriano Bonfim; Gerardi, Patrícia Molina; Honsho, Daniel Kan

    2009-04-01

    This study describes the use of allometric scaling in five giant anteaters (Myrmecophaga tridactyla) submitted for osteosynthesis, gastrostomy, or treatment of burns. Chemical restraint was performed by allometric scaling using the dog as a reference; acepromazine (0.06 mg/kg), diazepam (0.3 mg/kg), ketamine (8.8 mg/kg), and buprenorphine (5.9 microg/kg) were combined, and the animals were maintained under isoflurane anesthesia. Heart rate, respiratory rate, hemoglobin oxygen saturation, temperature, and anesthetic depth were measured. Postoperative treatment consisted of ketoprofen, buprenorphine, and ceftiofur. Anesthetic induction was obtained in 10-15 min, achieving muscle relaxation and absence of excitement. Physiologic parameters were stable during the procedures, and postoperative treatment was effective. Allometric scaling was effective for chemical restraint and postoperative treatment.

  13. Allometric and temporal scaling of movement characteristics in Galapagos tortoises

    Science.gov (United States)

    Bastille-Rousseau, Guillaume; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Freddy; Blake, Stephen

    2016-01-01

    Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs.We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour – giant Galapagos tortoises (Chelonoidis spp.) – to test how movement metrics estimated on a monthly basis scaled with body size.We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex.Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates.Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one

  14. Allometric Scaling and Central Source Systems

    International Nuclear Information System (INIS)

    Dreyer, Olaf

    2001-01-01

    Allometric scaling relations abound in nature. Examples include the power law relating the metabolic rate of animals and plants to their masses and the power law describing the dependence of the size of the drainage basin of a river on the total amount of water contained in that river. The exponent is of the form D/D+1 , where D is the dimension of the system. We show that this scaling exponent is simply a consequence of the source distribution of the systems considered and requires no further assumptions. To demonstrate the wide range of validity of the result we present a simple experiment that shows the predicted behavior in one dimension

  15. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.

    Science.gov (United States)

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-03-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. © 2015 Anatomical Society.

  16. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    He Jihuan

    2006-01-01

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  17. Allometric basis of enrofloxacin scaling in green iguanas.

    Science.gov (United States)

    Maxwell, L K; Jacobson, E R

    2008-02-01

    When body size varies greatly, drug disposition can best be described as an allometric function of body weight. Therefore, the allometry of standard metabolic rate (SMR; 3/4 power) and body surface area (BSA; 2/3 power) have been advocated as surrogate markers for the prediction of key pharmacokinetic parameters. The goal of the present study was to examine the allometric basis of pharmacokinetic scaling within a species, green iguanas. Enrofloxacin was administered intravenously to 20 green iguanas (322-3824 g), and noncompartmental analysis was used to calculate standard pharmacokinetic parameters, which were log(10) transformed and regressed against log(10) body weight. The slopes of significant regressions were compared with the values of unity, 3/4, and 2/3. The slope of enrofloxacin total body clearance (Cl) was also compared with the slopes relating SMR and renal Cl of (99m)Tc-diethylenetriamine penta-acetic acid ((99m)DTPA) to body weight in iguanas. Enrofloxacin Cl depended allometrically on body weight with the power of 0.32. The slope of enrofloxacin Cl was significantly less than those of SMR, Cl of (99m)DTPA, and the 2/3 value. Therefore, the relationship between enrofloxacin Cl and body weight does not directly depend on the allometry of BSA, SMR, or renal Cl of (99m)DTPA in iguanas.

  18. Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices

    International Nuclear Information System (INIS)

    Qian Mengcen; Jiang Zhiqiang; Zhou Weixing

    2010-01-01

    The investigations of financial markets from a complex network perspective have unveiled many phenomenological properties, in which the majority of these studies map the financial markets into one complex network. In this work, we investigate 30 world stock market indices through their visibility graphs by adopting the visibility algorithm to convert each single stock index into one visibility graph. A universal allometric scaling law is uncovered in the minimal spanning trees, whose scaling exponent is independent of the stock market and the length of the stock index. In contrast, the maximal spanning trees and the random spanning trees do not exhibit universal allometric scaling behaviors. There are marked discrepancies in the allometric scaling behaviors between the stock indices and the Brownian motions. Using surrogate time series, we find that these discrepancies are caused by the fat-tailedness of the return distribution and the nonlinear long-term correlation.

  19. The effect of allometric scaling in coral thermal microenvironments.

    Directory of Open Access Journals (Sweden)

    Robert H Ong

    Full Text Available A long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest. The primary aim of this study was to develop an approximation that predicts coral thermal microenvironments as a function of colony morphology (shape and size, light or irradiance, and flow velocity or regime. To do so, we provided intuitive interpretation of their energy budgets for both massive and branching colonies, and then quantified the heat-size exponent (b* and allometric constant (m using logarithmic linear regression. The data demonstrated a positive relationship between thermal rates and changes in irradiance, A/V ratio, and flow, with an interaction where turbulent regime had less influence on overall stress which may serve to ameliorate the effects of temperature rise compared to the laminar regime. These findings indicated that smaller corals have disproportionately higher stress, however they can reach thermal equilibrium quicker. Moreover, excellent agreements between the predicted and simulated microscale temperature values with no significant bias were observed for both the massive and branching colonies, indicating that the numerical approximation should be within the accuracy with which they could be measured. This study may assist in estimating the coral microscale temperature under known conditions of water flow and irradiance

  20. Problems of allometric scaling analysis: examples from mammalian reproductive biology.

    Science.gov (United States)

    Martin, Robert D; Genoud, Michel; Hemelrijk, Charlotte K

    2005-05-01

    Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best

  1. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang; Im, Hong G.; Shim, Eun Bo

    2016-01-01

    The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  2. Choice of resolution by functional trait or taxonomy affects allometric scaling in soil webs

    NARCIS (Netherlands)

    Sechi, V.; Brussaard, L.; Goede, de R.G.M.; Rutgers, M.; Mulder, C.

    2014-01-01

    Belowground organisms often display a shift in their mass-abundance scaling relationships due to environmental factors such as soil chemistry and atmospheric deposition. Here we present new empirical data that show strong differences in allometric scaling according to whether the resolution at the

  3. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang

    2016-02-02

    Background Allometric scaling, which represents the dependence of biological trait or process relates on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. Methods A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. Results A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value smaller than 2/3. Conclusion The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  4. Application of the allometric scale for the submaximal oxygen uptake in runners and rowers

    Directory of Open Access Journals (Sweden)

    M.P. Tartaruga

    2010-12-01

    Full Text Available Background: The aim of the current study was to determine the allometric exponents for runners and rower’s metabolic cost, while also verifying the relation of performance with and without the allometric application. Methods: Eleven runners (age: 22.3±10.4 years; height: 174±8.8 cm; body mass: 61.7±9.3 kg; maximum oxygen uptake ( •VO2max: 56.3±3.9 ml.kg[sup]-1[/sup].min[sup]-1[/sup] and fifteen rowers (age: 24±5.4 years; height: 185.5±6.5 cm; body mass: 83.5±7.2 kg; •VO2max: 61.2±3.4 ml.kg[sup]-1[/sup].min[sup]-1[/sup] carried out a specific progressive maximum test. The allometric exponent was determined from the logarithmic equation Log y = Log b Log x, where x is the mass, y is the VO2max (l.min[sup]-1[/sup], a is one constant and b is the allometric exponent. The data were analyzed using descriptive and comparative statistics (independent T test of the Student, with p<0.05 (SPSS version 13.0. Results: The allometric exponent of the rowers was 0.70 and that of the runners was 1.00. Significant differences were found between the fat mass percentage, with higher value for rowers, suggesting that this variable may influence the behavior of the allometric exponent and consequently of the basal metabolic rate. Conclusions: Scaling may help in understanding variation in aerobic power and in defining the physiological limitations of work capacity.

  5. Choice of resolution by functional trait or taxonomy affects allometric scaling in soil food webs

    NARCIS (Netherlands)

    Sechi, V.; Brussaard, L.; Goede, de R.G.M.; Rutgers, M.; Mulder, C.

    2015-01-01

    Belowground organisms often display a shift in their mass-abundance scaling relationships due to environmental factors such as soil chemistry and atmospheric deposition. Here we present new empirical data that show strong differences in allometric scaling according to whether the resolution at the

  6. Allometric scaling of echocardiographic measurements in healthy Spanish foals with different body weight.

    Science.gov (United States)

    Rovira, S; Muñoz, A; Rodilla, V

    2009-04-01

    Scaling in biology is usually allometric, and therefore, the size of the heart may be expressed as a power function of body weight (BW). The present research analyses the echocardiographic measurements in 68 healthy Spanish foals weighed between 70 and 347kg in order to determine the correct scaling exponent for the allometric equation. The echocardiographic parameters measured were: left ventricular internal dimensions (LVID), free wall thickness (LVFWT), interventricular septum thickness (IVST) at systole (s) and diastole (d), EPSS (distance between the point E of the mitral valve and the interventricular septum), and aorta diameters at the level of the aortic valve (AOD), base of valve leaflets (ABS), sinus of Valsalva (ASV) and sino-tubular junction (AJT). Indices of left ventricular performance were calculated. It was found that LVIDd, IVSTs, AOD, and ASV have a relationship to BW raised to 0.300-0.368 power, whereas left ventricular end-diastolic volume and stroke volume scaled to BW raised to 0.731-0.712 power. With these data, appropriate values can be calculated for normal Spanish foals.

  7. Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up

    Science.gov (United States)

    Greenman, John; Ieropoulos, Ioannis A.

    2017-07-01

    This case study reports for the first time on the comparison between allometric scaling of lifeforms and scale-up of microbial fuel cell entities; enlarging individual units in volume, footprint and electrode surface area but also multiplying a static size/footprint and electrode surface area to scale-up by stacking. A study published in 2010 by DeLong et al. showed for the first time that Kleiber's law does not apply uniformly to all lifeforms, and that in fact growth rate for prokaryotes is superlinear, for protists is linear and for metazoa is sublinear. The current study, which is utilising data from previous experiments, is showing for the first time that for individual MFC units, which are enlarged, growth rate/power is sublinear, whereas for stacks this is superlinear.

  8. Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar

    Science.gov (United States)

    Chen, Qi

    2015-08-01

    Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.

  9. The influence of the allometric scale on the relationship between running economy and biomechanical variables in distance runners

    Directory of Open Access Journals (Sweden)

    MP Tartaruga

    2009-09-01

    Full Text Available Studies have demonstrated the need for the use of parameters that diminish the effect of body mass, for intra and inter group comparison, in individuals with different masses in order to provide a different analysis on the behaviour of the relation between running economy (RE and biomechanical variables (BVs. The allometric scale is represented by a regression equation that indicates the behaviour of a physiological variable in relation to the variable mass (RE=a.xb, where x is body mass in (kg and the dimensionless coefficient a is characteristic of the species analysed, and the dimensionless exponent b determines the percentage of mass to be associated with the physiological variable. The influence of the allometric scale (b=-1; -0.75; -0.73; -0.67 on the relationship between RE and BVs - stride length (SL, relative stride length (RSL, stride rate (SR, stride time (ST, support time (SUPT and balance time (BALT - at 12 km.h-1, was analysed in nine elite runners. Factorial analysis and Pearson's Correlation Coefficient test (r with P<0.05 were used. A decrease in the explanation power of the RE was observed, with the use of the allometric exponent, due to the BVs, as well as a reduction of the correlation coefficients between SL versus RE, ST versus RE and SR versus RE. The BALT presented a higher correlation where b=-0.75. The RSL and SUPT presented non-significant correlations. The variables SL, ST, SR and BALT were the most effective predictors of the RE, Where: b=-1, the allometric scale was most efficient to predict the running performance.

  10. Cardiovascular performance of adult breeding sows fails to obey allometric scaling laws.

    Science.gov (United States)

    van Essen, G J; Vernooij, J C M; Heesterbeek, J A P; Anjema, D; Merkus, D; Duncker, D J

    2011-02-01

    In view of the remarkable decrease of the relative heart weight (HW) and the relative blood volume in growing pigs, we investigated whether HW, cardiac output (CO), and stroke volume (SV) of modern growing pigs are proportional to BW, as predicted by allometric scaling laws: HW (or CO or SV) = a·BW(b), in which a and b are constants, and constant b is a multiple of 0.25 (quarter-power scaling law). Specifically, we tested the hypothesis that both HW and CO scale with BW to the power of 0.75 (HW or CO = a·BW(0.75)) and SV scales with BW to the power of 1.00 (SV = a·BW(1.0)). For this purpose, 2 groups of pigs (group 1, consisting of 157 pigs of 50 ± 1 kg; group 2, consisting of 45 pigs of 268 ± 18 kg) were surgically instrumented with a flow probe or a thermodilution dilution catheter, under open-chest anesthetized conditions to measure CO and SV, after which HW was determined. The 95% confidence intervals of power-coefficient b for HW were 0.74 to 0.80, encompassing the predicted value of 0.75, suggesting that HW increased proportionally with BW, as predicted by the allometric scaling laws. In contrast, the 95% confidence intervals of power-coefficient b for CO and SV as measured with flow probes were 0.40 to 0.56 and 0.39 to 0.61, respectively, and values obtained with the thermodilution technique were 0.34 to 0.53 and 0.40 to 0.62, respectively. Thus, the 95% confidence limits failed to encompass the predicted values of b for CO and SV of 0.75 and 1.0, respectively. In conclusion, although adult breeding sows display normal heart growth, cardiac performance appears to be disproportionately low for BW. This raises concern regarding the health status of adult breeding sows.

  11. Allometric Scaling and Resource Limitations Model of Total Aboveground Biomass in Forest Stands: Site-scale Test of Model

    Science.gov (United States)

    CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.

    2013-12-01

    Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily

  12. Allometric scaling and cell ratios in multi-organ in vitro models of human metabolism

    Directory of Open Access Journals (Sweden)

    Nadia eUcciferri

    2014-12-01

    Full Text Available Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step towards building an integrated picture of systemic metabolism and signalling in physiological or pathological conditions. However the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here we analyse the physiologic relationship between cells, cell metabolism and exchange in the human body using allometric rules, downscaling them to an organ-on-a plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (Cell Number Scaling Model, CNSM, and Metabolic and Surface Scaling model, MSSM are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions which can be extrapolated to the in vivo

  13. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    International Nuclear Information System (INIS)

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  14. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ucciferri, Nadia [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Sbrana, Tommaso [Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Ahluwalia, Arti, E-mail: arti.ahluwalia@unipi.it [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy)

    2014-12-17

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  15. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.

    Science.gov (United States)

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  16. Allometric scaling of kidney function in green iguanas.

    Science.gov (United States)

    Maxwell, Lara K; Jacobson, Elliott R

    2004-07-01

    Numerous physiological parameters, such as metabolic rate and glomerular filtration rate (GFR), are allometrically related to body mass. Whereas the interspecific relationships between metabolic rate and body mass have been extensively studied in vertebrates, intraspecific studies of renal function have been limited. Therefore, kidney function was studied in 16 green iguanas, (Iguana iguana; 322-4764 g), by using nuclear scintigraphy to measure the renal uptake of 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), following either intravenous or intraosseous administration. Route of 99mTc-DTPA administration did not affect the percentage of the dose that accumulated in the kidney (P > 0.05). Renal uptake of 99mTc-DTPA was related to body mass (W, g) as: %Dose Kidney (min-1) = 11.09W(-0.235). Although not directly measured, the apparent renal clearance of 99mTc-DTPA could be described as: Renal CL 99mTc-DTPA (ml.min-1) = 0.005W(0.759), and the mass exponent did not differ from either the 2/3 or 3/4 values (P > 0.05). The similarity of the mass exponents relating both renal function and metabolic rate to body mass suggests a common mechanism underlying these allometric relationships. As this study also demonstrated that renal scintigraphy can be used to quantify kidney function in iguanas, this technique may be a useful research and diagnostic tool.

  17. Allometric disparity in rodent evolution

    OpenAIRE

    Wilson LAB

    2013-01-01

    In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results ...

  18. Allometric Scaling in Biology

    Science.gov (United States)

    Banavar, Jayanth

    2009-03-01

    The unity of life is expressed not only in the universal basis of inheritance and energetics at the molecular level, but also in the pervasive scaling of traits with body size at the whole-organism level. More than 75 years ago, Kleiber and Brody and Proctor independently showed that the metabolic rates, B, of mammals and birds scale as the three-quarter power of their mass, M. Subsequent studies showed that most biological rates and times scale as M-1/4 and M^1/4 respectively, and that these so called quarter-power scaling relations hold for a variety of organisms, from unicellular prokaryotes and eukaryotes to trees and mammals. The wide applicability of Kleiber's law, across the 22 orders of magnitude of body mass from minute bacteria to giant whales and sequoias, raises the hope that there is some simple general explanation that underlies the incredible diversity of form and function. We will present a general theoretical framework for understanding the relationship between metabolic rate, B, and body mass, M. We show how the pervasive quarter-power biological scaling relations arise naturally from optimal directed resource supply systems. This framework robustly predicts that: 1) whole organism power and resource supply rate, B, scale as M^3/4; 2) most other rates, such as heart rate and maximal population growth rate scale as M-1/4; 3) most biological times, such as blood circulation time and lifespan, scale as M^1/4; and 4) the average velocity of flow through the network, v, such as the speed of blood and oxygen delivery, scales as M^1/12. Our framework is valid even when there is no underlying network. Our theory is applicable to unicellular organisms as well as to large animals and plants. This work was carried out in collaboration with Amos Maritan along with Jim Brown, John Damuth, Melanie Moses, Andrea Rinaldo, and Geoff West.

  19. Theoretical basis of allometric relationships in juvenile brachyura ...

    African Journals Online (AJOL)

    ... fishery scientists. The present analytical studies has opened a new approach to the elucidation of the biological significance of the allometric factor b, through the theories of tractal geometry (where b is seen as a fractal dimension equivalent and salutatory ontogeny where b is a critical point in the early life history of crabs.

  20. Allometric scaling and accidents at work

    Science.gov (United States)

    Cempel, Czesław; Tabaszewski, Maciej; Ordysiński, Szymon

    2016-01-01

    Allometry is the knowledge concerning relations between the features of some beings, like animals, or cities. For example, the daily energy rate is proportional to a mass of mammals rise of 3/4. This way of thinking has spread quickly from biology to many areas of research concerned with sociotechnical systems. It was revealed that the number of innovations, patents or heavy crimes rises as social interaction increases in a bigger city, while other urban indexes such as suicides decrease with social interaction. Enterprise is also a sociotechnical system, where social interaction and accidents at work take place. Therefore, do these interactions increase the number of accidents at work or, on the contrary, are they reduction-driving components? This article tries to catch such links and assess the allometric exponent between the number of accidents at work and the number of employees in an enterprise. PMID:26655044

  1. Musculoskeletal determinants of pelvic sucker function in Hawaiian stream gobiid fishes: interspecific comparisons and allometric scaling.

    Science.gov (United States)

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2013-07-01

    Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall-climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall-climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross-sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. Copyright © 2013 Wiley Periodicals, Inc.

  2. An Allometric Algorithm for Fractal-Based Cobb-Douglas Function of Geographical Systems

    Directory of Open Access Journals (Sweden)

    Hongyu Luo

    2014-01-01

    Full Text Available The generalized Cobb-Douglas production function has been derived from a general input-output relation based on fractality assumptions. It was proved to be a useful self-affine model for geographical analysis. However, the ordinary least square calculation is always an ineffectual method for the Cobb-Douglas modeling because of the multicollinearity in the logarithmic linear regression. In this paper, a novel approach is proposed to build the geographical Cobb-Douglas models. Combining the concept of allometric scaling with the linear regression technique, we obtain a simple algorithm that can be employed to estimate the parameters of the Cobb-Douglas function. As a case, the algorithm and models are applied to the public transportation of China’s cities, and the results validate the allometric algorithm. A conclusion can be drawn that the allometric analysis is an effective way of modeling geographical systems with the general Cobb-Douglas function. This study is significant for integrating the notions of allometry, fractals, and scaling into a new framework to form a quantitative methodology of spatial analysis.

  3. Kinetic and allometric models for dosimetry using radiopharmaceuticals labeled with lanthanides

    International Nuclear Information System (INIS)

    Lima, Marina Ferreira

    2012-01-01

    This work proposes two models based in compartmental analyses: Animal model and Human model, using images from gamma camera measurements to determinate the kinetic constants of the 177 Lu-DOTATATE to three animal species (rat Wistar, Armenian hamster and Syrian hamster) and to the human in biodistribution studies split in two phases: Phase 1 governed by uptake from the blood and Phase 2 governed by the real excretion. The kinetic constants obtained from the animals' data ere used to build allometric scaling to predict radiopharmaceutical biodistribution in the human employing relations by mass, metabolism, by life span and by physiological parameters. These extrapolation results were compared with the PRRT (Peptide receptor radiotherapy) patients kinetic data calculated using the Human model. The kinetic constants obtained from humans were used in dose assessment to PRRT patients considering MIRD 26 organs and tissues. Dosimetry results were in agreement with available results from literature. For the Phase 1 allometric scaling from kinetic data from the blood to the organs straight responsible for the 177 Lu-DOTATATE metabolism and excretion - liver, kidneys and urinary bladder -show good correlation in the scaling by mass, metabolism and physiological and parameters. For the Phase 2, only the kinetic data from blood to the liver and to the kidneys show good correlation. Based in the anaesthetics inhibitory action over the renal excretion, there is not empirical basis to allow measurement times over 40 minutes in in vivo studies with small animals. Consequently, the Phase 1 results seem enough to make allometric scaling to assessment dose in PRRT. (author)

  4. Root-shoot growth responses during interspecific competition quantified using allometric modelling.

    Science.gov (United States)

    Robinson, David; Davidson, Hazel; Trinder, Clare; Brooker, Rob

    2010-12-01

    Plant competition studies are restricted by the difficulty of quantifying root systems of competitors. Analyses are usually limited to above-ground traits. Here, a new approach to address this issue is reported. Root system weights of competing plants can be estimated from: shoot weights of competitors; combined root weights of competitors; and slopes (scaling exponents, α) and intercepts (allometric coefficients, β) of ln-regressions of root weight on shoot weight of isolated plants. If competition induces no change in root : shoot growth, α and β values of competing and isolated plants will be equal. Measured combined root weight of competitors will equal that estimated allometrically from measured shoot weights of each competing plant. Combined root weights can be partitioned directly among competitors. If, as will be more usual, competition changes relative root and shoot growth, the competitors' combined root weight will not equal that estimated allometrically and cannot be partitioned directly. However, if the isolated-plant α and β values are adjusted until the estimated combined root weight of competitors matches the measured combined root weight, the latter can be partitioned among competitors using their new α and β values. The approach is illustrated using two herbaceous species, Dactylis glomerata and Plantago lanceolata. Allometric modelling revealed a large and continuous increase in the root : shoot ratio by Dactylis, but not Plantago, during competition. This was associated with a superior whole-plant dry weight increase in Dactylis, which was ultimately 2·5-fold greater than that of Plantago. Whole-plant growth dominance of Dactylis over Plantago, as deduced from allometric modelling, occurred 14-24 d earlier than suggested by shoot data alone. Given reasonable assumptions, allometric modelling can analyse competitive interactions in any species mixture, and overcomes a long-standing problem in studies of competition.

  5. Developing a generalized allometric equation for aboveground biomass estimation

    Science.gov (United States)

    Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.

    2015-12-01

    A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how

  6. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  7. Assessing allometric models to predict vegetative growth of mango (Mangifera indica; Anacardiaceae) at the current-year branch scale.

    Science.gov (United States)

    Normand, Frédéric; Lauri, Pierre-Éric

    2012-03-01

    Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.

  8. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  9. Organization and scaling in water supply networks

    Science.gov (United States)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  10. Allometric scaling of infraorbital surface topography in Homo.

    Science.gov (United States)

    Maddux, Scott D; Franciscus, Robert G

    2009-02-01

    Infraorbital morphology is often included in phylogenetic and functional analyses of Homo. The inclusion of distinct infraorbital configurations, such as the "canine fossa" in Homo sapiens or the "inflated" maxilla in Neandertals, is generally based on either descriptive or qualitative assessments of this morphology, or simple linear chord and subtense measurements. However, the complex curvilinear surface of the infraorbital region has proven difficult to quantify through these traditional methods. In this study, we assess infraorbital shape and its potential allometric scaling in fossil Homo (n=18) and recent humans (n=110) with a geometric morphometric method well-suited for quantifying complex surface topographies. Our results indicate that important aspects of infraorbital shape are correlated with overall infraorbital size across Homo. Specifically, individuals with larger infraorbital areas tend to exhibit relatively flatter infraorbital surface topographies, taller and narrower infraorbital areas, sloped inferior orbital rims, anteroinferiorly oriented maxillary body facies, posteroinferiorly oriented maxillary processes of the zygomatic, and non-everted lateral nasal margins. In contrast, individuals with smaller infraorbital regions generally exhibit relatively depressed surface topographies, shorter and wider infraorbital areas, projecting inferior orbital rims, posteroinferiorly oriented maxillary body facies, anteroinferiorly oriented maxillary processes, and everted lateral nasal margins. These contrasts form a continuum and only appear dichotomized at the ends of the infraorbital size spectrum. In light of these results, we question the utility of incorporating traditionally polarized infraorbital morphologies in phylogenetic and functional analyses without due consideration of continuous infraorbital and facial size variation in Homo. We conclude that the essentially flat infraorbital surface topography of Neandertals is not unique and can be

  11. Anatomical and physiological basis for the allometric scaling of cisplatin clearance in dogs.

    Science.gov (United States)

    Achanta, S; Sewell, A; Ritchey, J W; Broaddus, K; Bourne, D W A; Clarke, C R; Maxwell, L K

    2016-06-01

    Cisplatin is a platinum-containing cytotoxic drug indicated for the treatment of solid tumors in veterinary and human patients. Several of the algorithms used to standardize the doses of cytotoxic drugs utilize allometry, or the nonproportional relationships between anatomical and physiological variables, but the underlying basis for these relationships is poorly understood. The objective of this proof of concept study was to determine whether allometric equations explain the relationships between body weight, kidney weight, renal physiology, and clearance of a model, renally cleared anticancer agent in dogs. Postmortem body, kidney, and heart weights were collected from 364 dogs (127 juveniles and 237 adults, including 51 dogs ≥ 8 years of age). Renal physiological and cisplatin pharmacokinetic studies were conducted in ten intact male dogs including two juvenile and eight adult dogs (4-55 kg). Glomerular filtration rate (GFR), effective renal plasma flow, effective renal blood flow, renal cisplatin clearance, and total cisplatin clearance were allometrically related to body weight with powers of 0.75, 0.59, 0.61, 0.71, and 0.70, respectively. The similar values of these diverse mass exponents suggest a common underlying basis for the allometry of kidney size, renal physiology, and renal drug handling. © 2015 John Wiley & Sons Ltd.

  12. Allometric scaling of peak oxygen uptake in male roller hockey players under 17 years old

    NARCIS (Netherlands)

    Valente-dos-Santos, J.; Sherar, L.; Coelho-e-Silva, MJ; Pereira, J.R.; Vaz, V.; Cupido-dos-Santos, A.; Baxter-Jones, A.; Visscher, C.; Elferink-Gemser, M.T.; Malina, R.M.

    Peak oxygen uptake ((V) over dotO(2peak)) is routinely expressed in litres per minute and by unit of body mass (mL.kg(-1).min(-1)) despite the theoretical and statistical limitations of using ratios. Allometric modeling is an effective approach for partitioning body-size effects in a performance

  13. An allometric approach of tumor-angiogenesis.

    Science.gov (United States)

    Szasz, Oliver; Vincze, Gyula; Szigeti, Gyula Peter; Benyo, Zoltan; Szasz, Andras

    2018-07-01

    Angiogenesis is one of the main supporting factors of tumor-progression. It is a complex set of interactions together with hypoxia and inflammation, regulating tumor growth. The objective of this study is to examine the effect of angiogenesis with an allometric approach applied to angiogenesis and the regulating factors. The results show that allometry has the potential to describe this aspect, including the sigmoid-like transport function. There are particular conditions under which the complex control maximizes the relative tumor mass. Linear growth of malignancy diameter with an allometric approach was proven. Copyright © 2018. Published by Elsevier Ltd.

  14. Comparative Pharmacokinetics and Allometric Scaling of Carboplatin in Different Avian Species.

    Directory of Open Access Journals (Sweden)

    Gunther Antonissen

    Full Text Available The use of chemotherapeutics as a possible treatment strategy in avian oncology is steadily increasing over the last years. Despite this, literature reports regarding dosing strategies and pharmacokinetic behaviour of chemotherapeutics in avian species are lacking. The aim of the present study was to investigate the pharmacokinetics of carboplatin in a representative species of the order of Galliformes, Anseriformes, Columbiformes and Psittaciformes. Eight chickens, ducks and pigeons and twenty-eight parakeets were administered carboplatin intravenously (5 mg/kg body weight. A specific and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of the free carboplatin in plasma of the four birds species (limit of quantification: 20 ng/mL for chicken and duck, 50 ng/mL for pigeon and 100 ng/mL for parakeets. Non-compartmental pharmacokinetic analysis and allometric scaling demonstrated a significant correlation (R² = 0.9769 between body weight (BW and elimination half-life (T1/2el. T1/2el ranged from 0.41 h in parakeets (BW: 61 ± 8 g to 1.16 h chickens (BW: 1909 ± 619 g. T1/2el is a good parameter for dose optimization of carboplatin in other avian species, since also the previously reported T1/2el in cockatoos (average BW: 769 ± 68 g of 1.00 h corresponds to the results obtained in the present study.

  15. Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio

    Directory of Open Access Journals (Sweden)

    Fidel Ernesto Castro Morales

    2016-03-01

    Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.

  16. Allometric and non-allometric consequences of inbreeding on Drosophila melanogaster wings

    DEFF Research Database (Denmark)

    Trotta, Vincenzo; Cavicchi, Sandro; Guerra, Daniela

    2011-01-01

    Inbreeding is expected to increase the variability in size and shape within populations. The distinct effects of inbreeding on size and shape suggest that they are governed by different developmental pathways. One unresolved question is whether the non-allometric shape component is partially unco...

  17. Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers

    International Nuclear Information System (INIS)

    Bonomini, MP; Valentinuzzi, M E; Arini, P D; Ingallina, F; Barone, V

    2011-01-01

    Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specificity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.

  18. Evolution of static allometries: adaptive change in allometric slopes of eye span in stalk-eyed flies.

    Science.gov (United States)

    Voje, Kjetil L; Hansen, Thomas F

    2013-02-01

    Julian Huxley showed that within-species (static) allometric (power-law) relations can arise from proportional growth regulation with the exponent in the power law equaling the factor of proportionality. Allometric exponents may therefore be hard to change and act as constraints on the independent evolution of traits. In apparent contradiction to this, many empirical studies have concluded that static allometries are evolvable. Many of these studies have been based, however, on a broad definition of allometry that includes any monotonic shape change with size, and do not falsify the hypothesis of constrained narrow-sense allometry. Here, we present the first phylogenetic comparative study of narrow-sense allometric exponents based on a reanalysis of data on eye span and body size in stalk-eyed flies (Diopsidae). Consistent with a role in sexual selection, we found strong evidence that male slopes were tracking "optima" based on sexual dimorphism and relative male trait size. This tracking was slow, however, with estimated times of 2-3 million years for adaptation to exceed ancestral influence on the trait. Our results are therefore consistent with adaptive evolution on million-year time scales, but cannot rule out that static allometry may act as a constraint on eye-span adaptation at shorter time scales. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  19. Patterns of cranial ontogeny in lacertid lizards: morphological and allometric disparity.

    Science.gov (United States)

    Urošević, A; Ljubisavljević, K; Ivanović, A

    2013-02-01

    We explored the ontogenetic dynamics of the morphological and allometric disparity in the cranium shapes of twelve lacertid lizard species. The analysed species (Darevskia praticola, Dinarolacerta mosorensis, Iberolacerta horvathi, Lacerta agilis, L. trilineata, L. viridis, Podarcis erhardii, P. melisellensis, P. muralis, P. sicula, P. taurica and Zootoca vivipara) can be classified into different ecomorphs: terrestrial lizards that inhabit vegetated habitats (habitats with lush or sparse vegetation), saxicolous and shrub-climbing lizards. We observed that there was an overall increase in the morphological disparity (MD) during the ontogeny of the lacertid lizards. The ventral cranium, which is involved in the mechanics of jaw movement and feeding, showed higher levels of MD, an ontogenetic shift in the morphospace planes and more variable allometric patterns than more conserved dorsal crania. With respect to ecology, the allometric trajectories of the shrub-climbing species tended to cluster together, whereas the allometric trajectories of the saxicolous species were highly dispersed. Our results indicate that the ontogenetic patterns of morphological and allometric disparity in the lacertid lizards are modified by ecology and functional constraints and that the identical mechanisms that lead to intraspecific morphological variation also produce morphological divergence at higher taxonomic levels. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  20. Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation.

    Science.gov (United States)

    Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique

    2017-02-01

    The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.

  1. THE ALLOMETRIC-AUTOREGRESSIVE MODEL IN GENETIC ...

    African Journals Online (AJOL)

    The application of an allometric-autoregressive model for the quantification of growth and efficiency of feed utilization for purposes of selection for ... be of value in genetic studies. ... mass) gives a fair indication of the cumulative preweaning.

  2. National scale biomass estimators for United States tree species

    Science.gov (United States)

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2003-01-01

    Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...

  3. FITTING AND TESTING ALLOMETRIC EQUATIONS FOR MEXICO’S SINALOAN TROPICAL DRY TREES AND FOREST INVENTORY PLOTS

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Navar Chaidez

    2016-05-01

    Full Text Available Aboveground tree biomass (bole, branches and foliage, M, plays a key role in the conventional and sustainable management of forest communities. The standard approach to assess tree or plot M is harvesting trees, developing and fitting allometric equations to trees or forest inventory plot data. In the absence of local tree allometry, it is usually recommended to fit off site allometric equations to evaluate tree or plot M. This research aims: (a to develop an updated on site allometric equation (b to fit available off site allometric equations to destructively harvested trees and (c to fit available allometric equations to plot M of Mexico’s Sinaloan tropical dry forests to understand sources of inherent tree and plot M variability. Results showed that: (a the improved on site allometric equation increases precision in contrast to the conventional biomass equation previously reported as well as to off site tree M equations, (b off site allometry projects tree and plot M deviates by close to one order of magnitude. Two tested and recommended approaches to increase tree and plot M precision when fitting off site equations are: (i to use all available tree allometric functions to come up with a mean equation or (ii to calibrate off site equations by fitting new, local parameters that can be calculated using statistical programs.These options would eventually increase tree and plot M precision in regional evaluations.

  4. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales).

    Science.gov (United States)

    Neustupa, J

    2016-02-01

    The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Estimating the biological half-life for radionuclides in homoeothermic vertebrates: a simplified allometric approach

    Energy Technology Data Exchange (ETDEWEB)

    Beresford, N.A. [Lancaster Environment Centre, NERC Centre for Ecology and Hydrology, Lancaster (United Kingdom); Vives i Batlle, J. [Belgian Nuclear Research Centre, Mol (Belgium)

    2013-11-15

    The application of allometric, or mass-dependent, relationships within radioecology has increased with the evolution of models to predict the exposure of organisms other than man. Allometry presents a method of addressing the lack of empirical data on radionuclide transfer and metabolism for the many radionuclide-species combinations which may need to be considered. However, sufficient data across a range of species with different masses are required to establish allometric relationships and this is not always available. Here, an alternative allometric approach to predict the biological half-life of radionuclides in homoeothermic vertebrates which does not require such data is derived. Biological half-life values are predicted for four radionuclides and compared to available data for a range of species. All predictions were within a factor of five of the observed values when the model was parameterised appropriate to the feeding strategy of each species. This is an encouraging level of agreement given that the allometric models are intended to provide broad approximations rather than exact values. However, reasons why some radionuclides deviate from what would be anticipated from Kleiber's law need to be determined to allow a more complete exploitation of the potential of allometric extrapolation within radioecological models. (orig.)

  6. How acoustic signals scale with individual body size: common trends across diverse taxa

    OpenAIRE

    Rafael L. Rodríguez; Marcelo Araya-Salas; David A. Gray; Michael S. Reichert; Laurel B. Symes; Matthew R. Wilkins; Rebecca J. Safran; Gerlinde Höbel

    2015-01-01

    We use allometric analysis to explore how acoustic signals scale on individual body size and to test hypotheses about the factors shaping relationships between signals and body size. Across case studies spanning birds, crickets, tree crickets, and tree frogs, we find that most signal traits had low coefficients of variation, shallow allometric scalings, and little dispersion around the allometric function. We relate variation in these measures to the shape of mate preferences and the level of...

  7. Prediction of spatial distribution for some land use allometric ...

    African Journals Online (AJOL)

    Prediction of spatial distribution for some land use allometric characteristics in land use planning models with geostatistic and Geographical Information System (GIS) (Case study: Boein and Miandasht, Isfahan Province, Iran)

  8. The scaling of maximum and basal metabolic rates of mammals and birds

    Science.gov (United States)

    Barbosa, Lauro A.; Garcia, Guilherme J. M.; da Silva, Jafferson K. L.

    2006-01-01

    Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here, we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as M, maximum heart rate as M, and muscular capillary density as M, in agreement with data.

  9. Prediction of clearance, volume of distribution and half-life by allometric scaling and by use of plasma concentrations predicted from pharmacokinetic constants: a comparative study.

    Science.gov (United States)

    Mahmood, I

    1999-08-01

    Pharmacokinetic parameters (clearance, CL, volume of distribution in the central compartment, VdC, and elimination half-life, t1/2beta) predicted by an empirical allometric approach have been compared with parameters predicted from plasma concentrations calculated by use of the pharmacokinetic constants A, B, alpha and beta, where A and B are the intercepts on the Y axis of the plot of plasma concentration against time and alpha and beta are the rate constants, both pairs of constants being for the distribution and elimination phases, respectively. The pharmacokinetic parameters of cefpiramide, actisomide, troglitazone, procaterol, moxalactam and ciprofloxacin were scaled from animal data obtained from the literature. Three methods were used to generate plots for the prediction of clearance in man: dependence of clearance on body weight (simple allometric equation); dependence of the product of clearance and maximum life-span potential (MLP) on body weight; and dependence of the product of clearance and brain weight on body weight. Plasma concentrations of the drugs were predicted in man by use of A, B, alpha and beta obtained from animal data. The predicted plasma concentrations were then used to calculate CL, VdC and t1/2beta. The pharmacokinetic parameters predicted by use of both approaches were compared with measured values. The results indicate that simple allometry did not predict clearance satisfactorily for actisomide, troglitazone, procaterol and ciprofloxacin. Use of MLP or the product of clearance and brain weight improved the prediction of clearance for these four drugs. Except for troglitazone, VdC and t1/2beta predicted for man by use of the allometric approach were comparable with measured values for the drugs studied. CL, VdC and t1/2beta predicted by use of pharmacokinetic constants were comparable with values predicted by simple allometry. Thus, if simple allometry failed to predict clearance of a drug, so did the pharmacokinetic constant

  10. Kinetic and allometric models for dosimetry using radiopharmaceuticals labeled with lanthanides; Proposicao de modelos cineticos e alometricos para a dosimetria de radiofarmacos marcados com lantanideos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marina Ferreira

    2012-07-01

    This work proposes two models based in compartmental analyses: Animal model and Human model, using images from gamma camera measurements to determinate the kinetic constants of the {sup 177}Lu-DOTATATE to three animal species (rat Wistar, Armenian hamster and Syrian hamster) and to the human in biodistribution studies split in two phases: Phase 1 governed by uptake from the blood and Phase 2 governed by the real excretion. The kinetic constants obtained from the animals' data ere used to build allometric scaling to predict radiopharmaceutical biodistribution in the human employing relations by mass, metabolism, by life span and by physiological parameters. These extrapolation results were compared with the PRRT (Peptide receptor radiotherapy) patients kinetic data calculated using the Human model. The kinetic constants obtained from humans were used in dose assessment to PRRT patients considering MIRD 26 organs and tissues. Dosimetry results were in agreement with available results from literature. For the Phase 1 allometric scaling from kinetic data from the blood to the organs straight responsible for the {sup 177}Lu-DOTATATE metabolism and excretion - liver, kidneys and urinary bladder -show good correlation in the scaling by mass, metabolism and physiological and parameters. For the Phase 2, only the kinetic data from blood to the liver and to the kidneys show good correlation. Based in the anaesthetics inhibitory action over the renal excretion, there is not empirical basis to allow measurement times over 40 minutes in in vivo studies with small animals. Consequently, the Phase 1 results seem enough to make allometric scaling to assessment dose in PRRT. (author)

  11. Allometric methodology for the assessment of radon exposures to terrestrial wildlife

    International Nuclear Information System (INIS)

    Vives i Batlle, J.; Copplestone, D.; Jones, S.R.

    2012-01-01

    A practical approach to calculate 222 Rn daughter dose rates to terrestrial wildlife is presented. The method scales allometrically the relevant parameters for respiration in different species of wildlife, allowing inter-species calculation of the dose per unit radon concentration in air as simple base-and-exponent power functions of the mass. For plants, passive gas exchange through the leaf surface is assumed, also leading to specific power relationships with mass. The model generates conservative predictions in which the main contributor to the dose rate of target tissues of the respiratory system is from α radiation arising from 222 Rn daughters. Tabulated 222 Rn DPURn values are given for 69 species used by the England and Wales Environment Agency for habitats assessments. The approach is then applied to assess the authorised discharges of 222 Rn from sites in England, demonstrating that, from a whole-body dose perspective, the biota considered are protected from effects at the population level. - Highlights: ► Allometric method developed to calculate radon daughter doses to 69 species of terrestrial wildlife. ► Model satisfactorily compared with previous studies of lung dose rates for mammals. ► The main contributor to the dose rate of the respiratory system is internal α-radiation from the 222 Rn daughters. ► Air immersion is the principal contributor to the external dose rate. ► Assessment for 7 authorised sites in England suggests that wildlife populations are adequately protected from the anthropogenic radon emissions considered in this study.

  12. Short-term responses to selection for parameters of the allometric ...

    African Journals Online (AJOL)

    The allometric-autoregressive model describes growth accurately and is useful in the characterization of growth responses. ... of value in genetic studies and some of its parameters ..... (1990) appear to be fair estimates of the heritabilities of.

  13. Body size and allometric variation in facial shape in children.

    Science.gov (United States)

    Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt

    2018-02-01

    Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.

  14. Little string theory from double-scaling limits of field theories

    International Nuclear Information System (INIS)

    Ling, Henry; Shieh, H.-H.; Anders, Greg van

    2007-01-01

    We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5

  15. Allometric methodology for the assessment of radon exposures to terrestrial wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Vives i Batlle, J., E-mail: jordi.vives.i.batlle@sckcen.be [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Copplestone, D. [School of Biological and Environmental Sciences, University of Stirling (United Kingdom); Jones, S.R. [SJ Scientific Ltd, 13 Fern Bank, Cockermouth, Cumbria (United Kingdom)

    2012-06-15

    A practical approach to calculate {sup 222}Rn daughter dose rates to terrestrial wildlife is presented. The method scales allometrically the relevant parameters for respiration in different species of wildlife, allowing inter-species calculation of the dose per unit radon concentration in air as simple base-and-exponent power functions of the mass. For plants, passive gas exchange through the leaf surface is assumed, also leading to specific power relationships with mass. The model generates conservative predictions in which the main contributor to the dose rate of target tissues of the respiratory system is from {alpha} radiation arising from {sup 222}Rn daughters. Tabulated {sup 222}Rn DPURn values are given for 69 species used by the England and Wales Environment Agency for habitats assessments. The approach is then applied to assess the authorised discharges of {sup 222}Rn from sites in England, demonstrating that, from a whole-body dose perspective, the biota considered are protected from effects at the population level. - Highlights: Black-Right-Pointing-Pointer Allometric method developed to calculate radon daughter doses to 69 species of terrestrial wildlife. Black-Right-Pointing-Pointer Model satisfactorily compared with previous studies of lung dose rates for mammals. Black-Right-Pointing-Pointer The main contributor to the dose rate of the respiratory system is internal {alpha}-radiation from the {sup 222}Rn daughters. Black-Right-Pointing-Pointer Air immersion is the principal contributor to the external dose rate. Black-Right-Pointing-Pointer Assessment for 7 authorised sites in England suggests that wildlife populations are adequately protected from the anthropogenic radon emissions considered in this study.

  16. Method for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations

    CSIR Research Space (South Africa)

    Kirton, A

    2010-08-01

    Full Text Available for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations A KIRTON B SCHOLES S ARCHIBALD CSIR Ecosystem Processes and Dynamics, Natural Resources and the Environment P.O. BOX 395, Pretoria, 0001, South... intervals (confidence intervals for predicted values) for allometric estimates can be obtained using an example of estimating tree biomass from stem diameter. It explains how to deal with relationships which are in the power function form - a common form...

  17. Influence of tree age and variety on allometric characteristics and water use of Mangifera indica L. growing in plantation

    NARCIS (Netherlands)

    Oguntunde, P.G.; fasinmirin, J.T.; Van de Giesen, N.C.

    2011-01-01

    Data on water relations and growth characteristics of mango trees needed for productive plantation management are currently lacking in West Africa. Relationships between allometric properties and water use in mango trees were examined. In addition, the effects on allometric characteristics and xylem

  18. Mokken scale analysis : Between the Guttman scale and parametric item response theory

    NARCIS (Netherlands)

    van Schuur, Wijbrandt H.

    2003-01-01

    This article introduces a model of ordinal unidimensional measurement known as Mokken scale analysis. Mokken scaling is based on principles of Item Response Theory (IRT) that originated in the Guttman scale. I compare the Mokken model with both Classical Test Theory (reliability or factor analysis)

  19. Polonium-210 and lead-210 in marine organisms: allometric relationships and their significance

    International Nuclear Information System (INIS)

    Cherry, R.D.; Heyraud, M.

    1991-01-01

    Allometric relationships which indicate that Po-210 concentrations in marine organisms decrease with increasing organism mass have been reported previously in a few taxa. We report here the results of a study of nearly 400 data covering nine taxa of marine organisms. The data for each taxon are fitted to the allometric equation log Q = log a + b log M, where Q is the Po-210 concentration (mBq/g dry mass) and M is the dry mass per individual (g). The weighted mean of the nine Po-210 slopes is -0.24 ± 0.05, and of the eight Pb-210 slopes is -0.22 ± 0.05. These values are close to the slope of -0.25 frequently found in mass-specific allometric relationships in biology; an association between radionuclide concentration and food ingestion rate is indicated. The intertaxon variations in the intercept log a are large, nearly two orders of magnitude for Po-210, a fact which almost certainly reflects intertaxon differences in diet and/or assimilation. Within taxa, sub-groupings of the Po-210 data are found; these are discussed and an attempt is made to classify them statistically for the data as a whole. (Author)

  20. Allometric relationship between changes of visceral fat and total fat mass

    DEFF Research Database (Denmark)

    Hallgreen, C. E.; Hall, K. D.

    2008-01-01

    Objective: To elucidate the mathematical relationship between changes of visceral adipose tissue (VAT) and total body fat mass (FM) during weight loss. Design: We hypothesized that changes of VAT mass are allometrically related to changes of FM, regardless of the type of weight-loss intervention...

  1. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes.

    Science.gov (United States)

    Esquerré, Damien; Sherratt, Emma; Keogh, J Scott

    2017-12-01

    Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species-rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well-adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  3. Evaluating Generic Pantropical Allometric Models for the Estimation of Above-Ground Biomass in the Teak Plantations of Southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    S. Sandeep

    2015-09-01

    Full Text Available The use of suitable tree biomass allometric equations is crucial for making precise and non- destructive estimation of carbon storage and biomass energy values. The aim of this research was to evaluate the accuracy of the most commonly used pantropical allometric models and site-specific models to estimate the above-ground biomass (AGB in different aged teak plantations of Southern Western Ghats of India. For this purpose, the AGB data measured for 70 trees with diameter >10 cm from different aged teak plantations in Kerala part of Southern Western Ghats following destructive procedure was used. The results show that site specific models based on a single predictor variable diameter at breast height (dbh, though simple, may grossly increase the uncertainty across sites. Hence, a generic model encompassing dbh, height and wood specific gravity with sufficient calibration taking into account different forest types is advised for the tropical forest systems. The study also suggests that the commonly used pantropical models should be evaluated for different ecosystems prior to their application at national or regional scales.

  4. Neoclassical theory of electromagnetic interactions a single theory for macroscopic and microscopic scales

    CERN Document Server

    Babin, Anatoli

    2016-01-01

    In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...

  5. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    Science.gov (United States)

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  6. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  7. Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran

    Directory of Open Access Journals (Sweden)

    Akbar Ghasemi

    2016-07-01

    Full Text Available Today, it is important to use of ecological indicators, such as biomass for recognizing the special status of ecosystems, such as mangrove forests and also monitoring and evaluating changes through a specific period. Because using the direct method of evaluating biomass would be destructive, it is common in all similar area to use determine exact Allometric equations by using the statistical relationship between the structural characteristics of trees and their biomass and use these equations to estimate the biomass of trees. The aim of this study is estimate the aboveground biomass of mangroves and determine Allometric models for Nayband area in Bushehr, located in southern Iran. A number of mangrove trees were randomly selected. Collar diameter, crown diameter and tree height of standing trees were measured. After logging and weighing fresh weight, dry weight, trunk and branches were obtained in laboratory and biomass of components was calculated. The relationship between quantities feature of trees and biomass for determination of allometric equation was studied by using linear, power and exponential regression. The equations were compared with each other based on the different modeling parameters. The highest significant correlation was found between crown diameters and dry weight (R > 0.90. The best equations were obtained by means of an exponential and power regression models (R2adj> 0.90. The models were obtained from explained factor, suggests that there might be a relationship between the characteristics of mangrove trees and biomass.

  8. [Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China].

    Science.gov (United States)

    Jia, Mei-yu; Li, Xue-hua; Oh, Choong-hyeon; Park, Hong-chul; Miao, Chun-ping; Han, Xu

    2015-10-01

    Research on fine scale pattern and characteristics of allometric growth could contribute to better understanding plants' adaptation in moving sandy dunes. The abundance, height and biomass of 3 species Agriophilum aquarrosum, Corispermum candelabrum and Setaria viridis in twenty-eight 1 m x 1 m quadrats of Horqin Sandy Land were identified, mapped and described. The nearest neighbor method and O-ring O(r) function analysis were applied to analyze the spatial patterns. The results showed that the individual spatial pattern was mainly aggregated in 1 m x 1 m quadrat at community level but mainly random at population level. At 0-50 cm individual distance scale, both intraspecific and interspecific relationship were facilitation and aggregated distribution occurred at some scales and varied with increasing plant abundance in 1 m x 1 m quadrat. In 0-40 cm, the aggregated distribution of S. viridis and A. aquarrosum increased obviously; in 10-20 cm, both intraspecific and interspecific aggregation increased; in 10-30 cm, the occurrence possibility of positive correlations between S. viridis and A. aquarrosum, S. viridis and C. candelabrum all increased; in 40-50 cm, the possibility of positive correlations between A. squarrosum and S. viridis, A. squarrosum and C. candelabrum all increased. Research on the three species components indicated that the growth rate of above-ground was faster than that of underground. S. viridis had the highest ratio of under-ground biomass to above-ground biomass but its nutritional organs' biomass ratio was medium. C. candelabrum allocated more biomass to propagative organs and stem, but A. squarrosum allocated more biomass to nutritional organs. Based on the spatial distribution and allometric characteristics, the three common species in moving sand dunes preferred r strategy in their life history.

  9. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Science.gov (United States)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  10. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nam

    Full Text Available Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB and root biomass (RB based on 300 (of 45 species and 40 (of 25 species sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH and tree height (H, wood density (WD was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  11. A new simplified allometric approach for predicting the biological half-life of radionuclides in reptiles

    International Nuclear Information System (INIS)

    Beresford, N.A.; Wood, M.D.

    2014-01-01

    A major source of uncertainty in the estimation of radiation dose to wildlife is the prediction of internal radionuclide activity concentrations. Allometric (mass-dependent) relationships describing biological half-life (T 1/2b ) of radionuclides in organisms can be used to predict organism activity concentrations. The establishment of allometric expressions requires experimental data which are often lacking. An approach to predict the T 1/2b in homeothermic vertebrates has recently been proposed. In this paper we have adapted this to be applicable to reptiles. For Cs, Ra and Sr, over a mass range of 0.02–1.5 kg, resultant predictions were generally within a factor of 6 of reported values demonstrating that the approach can be used when measured T 1/2b data are lacking. However, the effect of mass on reptilian radionuclide T 1/2b is minimal. If sufficient measured data are available for a given radionuclide then it is likely that these would give a reasonable estimate of T 1/2b in any reptile species. - Highlights: • An allometric approach to predict radionuclide T 1/2b values in reptiles is derived. • Predictions are generally within a factor of six of measured values. • Radionuclide biological half-life is in-effect mass independent

  12. Testing the cranial evolutionary allometric 'rule' in Galliformes.

    Science.gov (United States)

    Linde-Medina, M

    2016-09-01

    Recent comparative studies have indicated the existence of a common cranial evolutionary allometric (CREA) pattern in mammals and birds, in which smaller species have relatively smaller faces and bigger braincases than larger species. In these studies, cranial allometry was tested using a multivariate regression between shape (described using landmarks coordinates) and size (i.e. centroid size), after accounting for phylogenetic relatedness. Alternatively, cranial allometry can be determined by comparing the sizes of two anatomical parts using a bivariate regression analysis. In this analysis, a slope higher or lower than one indicates the existence of positive or negative allometry, respectively. Thus, in those species that support the CREA 'rule', positive allometry is expected for the association between face size and braincase size, which would indicate that larger species have disproportionally larger faces. In this study, I applied these two approaches to explore cranial allometry in 83 Galliformes (Aves, Galloanserae), ranging in mean body weight from 30 g to 2.5 kg. The multivariate regression between shape and centroid size revealed the existence of a significant allometric pattern resembling CREA, whereas the second analysis revealed a negative allometry for beak size and braincase size (i.e. contrary to the CREA 'rule', larger galliform species have disproportionally shorter beaks than smaller galliform species). This study suggests that the presence of CREA may be overestimated when using cranium size as the standard measurement. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  13. Gaussian-3 theory using scaled energies

    International Nuclear Information System (INIS)

    Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.; Pople, John A.

    2000-01-01

    A modification of Guassian-3 (G3) theory using multiplicative scale factors, instead of the additive higher level correction, is presented. In this method, referred to as G3S, the correlation energy is scaled by five parameters and the Hartree-Fock energy by one parameter. The six parameters are fitted to the G2/97 test set of 299 energies and the resulting mean absolute deviation from experiment is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. The G3S method has the advantage compared to G3 theory in that it can be used for studying potential energy surfaces where the products and reactants have a different number of paired electrons. In addition, versions of the computationally less intensive G3(MP3) and G3(MP2) methods that use scaled energies are also presented. These methods, referred to as G3S(MP3) and G3S(MP2), have mean absolute deviations of 1.16 and 1.35 kcal/mol, respectively. (c) 2000 American Institute of Physics

  14. Scaling of Theory-of-Mind Tasks

    Science.gov (United States)

    Wellman, Henry M.; Liu, David

    2004-01-01

    Two studies address the sequence of understandings evident in preschoolers' developing theory of mind. The first, preliminary study provides a meta-analysis of research comparing different types of mental state understandings (e.g., desires vs. beliefs, ignorance vs. false belief). The second, primary study tests a theory-of-mind scale for…

  15. Astrophysical tests of scale-covariant gravity theories

    International Nuclear Information System (INIS)

    Mansfield, V.N.; Malin, S.

    1980-01-01

    Starting from the most general form of the conservation laws in scale-covariant gravitation theory, a conservation of energy equation appropriate for stars is derived. Applications to white dwarfs and neutron stars reveal serious difficulties for some choices of gauge that have been frequently employed in the literature on scale-covariant gravity. We also show how to restrict some of the possible gauges that result from theories which are independent of the Large Numbers Hypothesis

  16. Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands

    Directory of Open Access Journals (Sweden)

    Norman W.H. Mason

    2014-02-01

    Full Text Available Many studies have quantified uncertainty in forest carbon (C storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1 allometric biomass equations; (2 measurement errors of shrubs harvested for the allometry; and (3 measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage. Mean C sequestration (1.73 Mg C ha–1 year–1 exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage.

  17. Allometric relationships among body mass, MUZZLE-tail length, and tibia length during the growth of Wistar rats.

    Science.gov (United States)

    Santiago, Hildemberg Agostinho Rocha de; De Pierro, Lucas Rodolfo; Reis, Rafael Menezes; Caluz, Antônio Gabriel Ricardo Engracia; Ribeiro, Victor Barbosa; Volpon, José Batista

    2015-11-01

    To investigate allometric relationships among body mass (BM), muzzle-tail length (MTL), and tibia length (TL) in Wistar rats and establish their growth rate change parameters. Eighteen male and 18 female Wistar rats were studied from the 3rd to the 21st week of age. BM, MTL, and TL were measured daily, and relative growth was compared using allometry. A positive correlation between BM and MTL (p<0.05) and BM and TL (p<0.05) was observed. Males and females showed comparable curves; however, females had turning points at a younger age. The allometric relationship between BM and MTL presented a regular increase until reaching a mass of 351 g (males) and 405 g (females). BM and TL showed an initial increase until 185 g (males) and 182 g (females), and then reached a plateau that finished at 412 g (males) and 334 g (females), to display another increase. The allometric relationship of body mass with animal length and tibia length was comparable for male and female rats, with female rats maturing earlier. Animal longitudinal growth occurred in a single stage. In contrast, tibia length depicted two stages of accelerated growth with an intermediate period of deceleration.

  18. Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site.

    Science.gov (United States)

    Rosas, Antonio; Bastir, Markus

    2004-06-01

    Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.

  19. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    Science.gov (United States)

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved

  20. Secondary osteons scale allometrically in mammalian humerus and femur.

    Science.gov (United States)

    Felder, A A; Phillips, C; Cornish, H; Cooke, M; Hutchinson, J R; Doube, M

    2017-11-01

    Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We measured the cross-sectional area of individual intact secondary osteons and their central Haversian canals in transverse sections from 40 stylopodal bones of 39 mammalian species (body mass 0.3-21 000 kg). Scaling analysis of our data shows that mean osteonal resorption area (negative allometry, exponent 0.23, R 2  0.54, p <0.005) and Haversian canal area (negative allometry, exponent 0.31, R 2  0.45, p <0.005) are significantly related to body mass, independent of phylogeny. This study is the most comprehensive of its kind to date, and allows us to describe overall trends in the scaling behaviour of secondary osteon dimensions, supporting the inference that the osteonal resorption area may be limited by the need to avoid fracture in smaller mammalian species, but the need to maintain osteocyte viability in larger mammalian species.

  1. Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrarium tumidum

    International Nuclear Information System (INIS)

    Hedouin, L.; Metian, M.; Teyssie, J.-L.; Fowler, S.W.; Fichez, R.; Warnau, M.

    2006-01-01

    Although metal contamination is a problem of major concern in the lagoon of New Caledonia due to intense mining activities conducted on land, very little is known on the metal ecotoxicology of local marine organisms. The clam Gafrarium tumidum was investigated to assess its usefulness as a bioindicator species of metal contamination in this lagoon. More particularly, allometric relationships between metal accumulation and clam size were determined for five common metals in New Caledonian lagoon waters (Cd, Cr, Co, Zn and Ag) using a highly sensitive radiotracer technique. Experimental results showed that allometric relationships were dependent on the element and on the body compartment considered. As a rule, allometric relationships of metal concentration factor were more pronounced in shell than in soft parts. Significant relationships with clam size for Cd, Cr, Co and Zn followed inverse power functions. In contrast, the degree of Ag bioaccumulation was positively correlated with size. In view of the literature on Ag in bivalves, the latter observation suggests the occurrence of a specific detoxification mechanism (sequestration) that would be more efficient in old individuals. Overall, the experimental results indicate that the use of G. tumidum as a bioindicator in monitoring programmes requires selecting individuals of a specific size range in order to obtain comparable information about ambient metal levels. Since the size effect is greatest among smaller individuals, it is recommended to select clams with a shell width greater than 35 mm

  2. Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrarium tumidum

    Energy Technology Data Exchange (ETDEWEB)

    Hedouin, L. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Laboratoire de Biologie et d' Environnement Marins, FRE 2727, La Rochelle University, 22 Av. Michel Crepeau, F-17000 La Rochelle (France); Institut de Recherche pour le Developpement, Centre d' Oceanologie de Marseille, Station Marine d' Endoume, Rue de la Batterie des Lions, F-13007 Marseille (France); Metian, M. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Teyssie, J.-L. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Fowler, S.W. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Fichez, R. [Institut de Recherche pour le Developpement, Centre d' Oceanologie de Marseille, Station Marine d' Endoume, Rue de la Batterie des Lions, F-13007 Marseille (France); Warnau, M. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco)]. E-mail: m.warnau@iaea.org

    2006-07-31

    Although metal contamination is a problem of major concern in the lagoon of New Caledonia due to intense mining activities conducted on land, very little is known on the metal ecotoxicology of local marine organisms. The clam Gafrarium tumidum was investigated to assess its usefulness as a bioindicator species of metal contamination in this lagoon. More particularly, allometric relationships between metal accumulation and clam size were determined for five common metals in New Caledonian lagoon waters (Cd, Cr, Co, Zn and Ag) using a highly sensitive radiotracer technique. Experimental results showed that allometric relationships were dependent on the element and on the body compartment considered. As a rule, allometric relationships of metal concentration factor were more pronounced in shell than in soft parts. Significant relationships with clam size for Cd, Cr, Co and Zn followed inverse power functions. In contrast, the degree of Ag bioaccumulation was positively correlated with size. In view of the literature on Ag in bivalves, the latter observation suggests the occurrence of a specific detoxification mechanism (sequestration) that would be more efficient in old individuals. Overall, the experimental results indicate that the use of G. tumidum as a bioindicator in monitoring programmes requires selecting individuals of a specific size range in order to obtain comparable information about ambient metal levels. Since the size effect is greatest among smaller individuals, it is recommended to select clams with a shell width greater than 35 mm.

  3. Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay

    KAUST Repository

    Bachiller, Eneko; Irigoien, Xabier

    2012-01-01

    The body size of fish is an important factor in determining their biology and ecology, as predators eat prey smaller than themselves. Predator mouth size restricts the availability of possible prey. In this paper we provide the allometric

  4. A scale distortion theory of anchoring.

    Science.gov (United States)

    Frederick, Shane W; Mochon, Daniel

    2012-02-01

    We propose that anchoring is often best interpreted as a scaling effect--that the anchor changes how the response scale is used, not how the focal stimulus is perceived. Of importance, we maintain that this holds true even for so-called objective scales (e.g., pounds, calories, meters, etc.). In support of this theory of scale distortion, we show that prior exposure to a numeric standard changes respondents' use of that specific response scale but does not generalize to conceptually affiliated judgments rendered on similar scales. Our findings highlight the necessity of distinguishing response language effects from representational effects in places where the need for that distinction has often been assumed away.

  5. Scaling adult doses of antifungal and antibacterial agents to children.

    Science.gov (United States)

    Dawson, Thomas H

    2012-06-01

    My general pharmacokinetic scaling theory is discussed for the important matter of determining pediatric dosing for existing and new therapeutic drugs when optimal, or near-optimal, dosing for adults is known. The basis for the scaling is the requirement of a time-scaled likeness of the free-drug concentration time histories of children and adults. Broad categories of single and periodic dosing are considered. The former involves the scaling of dosage, and the latter involves both the dosage and schedule. The validity of the scaling relations is demonstrated by using measurements from previously reported clinical trials with adults and children (with ages generally 1 year or older) for the relatively new antifungal agent caspofungin and for the relatively new antibacterial agent linezolid. Standard pharmacodynamic effectiveness criteria are shown to be satisfied for the scaled dosage and schedule for children to the same extent that they are for the referenced adult. Consideration of scaling from adults to children is discussed for the case of new agents where no pediatric data are available and needed parameters are determined from in vitro measurements and preclinical animal data. A connection is also made between the allometric representation of clearance data and the dosing formulas. Limitations of the scaling results for infants because of growth and maturational matters are discussed. The general conclusion from this work is that the scaling theory does indeed have application to pediatric dosing for children, for both confirmation and refinement of present practice and guidance in pediatric treatment with new therapeutic agents.

  6. An allometric approach to quantify the extinction vulnerability of birds and mammals.

    Science.gov (United States)

    Hilbers, J P; Schipper, A M; Hendriks, A J; Verones, F; Pereira, H M; Huijbregts, M A J

    2016-03-01

    Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species

  7. Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands

    Science.gov (United States)

    Lauro Rodrigues Nogueira; Vera Lex Engel; John A. Parrotta; Antonio Carlos Galvão de Melo; Danilo Scorzoni Ré

    2014-01-01

    Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of São Paulo State – Brazil to develop allometric equations to estimate tree biomass of...

  8. On the character of scale symmetry breaking in gauge theories

    International Nuclear Information System (INIS)

    Gusijnin, V.P.; Kushnir, V.A.; Miransky, V.A.

    1988-01-01

    The problem of scale symmetry breaking in gauge theories is discussed. It is shown that the phenomenon of spontaneous breaking of scale symmetry in gauge theories is incompatible with the PCAAC dynamics. 12 refs

  9. The evolving Planck mass in classically scale-invariant theories

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2017-04-05

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  10. The evolving Planck mass in classically scale-invariant theories

    Science.gov (United States)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  11. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  12. Experimental signature of scaling violation implied by field theories

    International Nuclear Information System (INIS)

    Tung, W.

    1975-01-01

    Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated

  13. Histological and allometric growth analysis of eye in Caspian kutum, Rutilus kutum Kamensky, 1901 (Teleostei: Cyprinidae during early developmental stages

    Directory of Open Access Journals (Sweden)

    Shaghayegh Hasanpour

    2016-10-01

    Full Text Available Fish larvae have several sensory systems that are functional at or soon after hatching and then are developed further during larval and juvenile stages. This study was conducted to investigate development of the eye in Rutilus kutum, based on histological and allometric growth analysis during early developmental stages up to 35 day post hatching with emphasis on retinal morphology. For this purpose, the histological sections were prepared and allometric growth pattern of the eye was calculated. The results showed that the most eye’s structures along with the retina of the newly hatched larvae, as the inner sensory (photosensitive tissue were completely differentiated. Allometric growth pattern of the eye diameter up to the inflexion point (7 dph was somewhat positive and then it became negative. The results revealed that the Caspian kutum is dependence on visual capability as visual feeder during their larval period which itself explains completion of eye structures and the high growth rate of eye before 3 dph i.e. beginning of mixed feeding.

  14. Development of allometric models for above and belowground biomass in swidden cultivation fallows of Northern Laos

    DEFF Research Database (Denmark)

    McNicol, Iain M.; Berry, Nicholas J.; Bruun, Thilde Bech

    2015-01-01

    fields and patches of mature forest. Quantifying tree biomass in these landscapes is limited by the availability of reliable allometric models, hindering accurate carbon stock estimation and thus quantification of GHG emission associated with land use transitions. We therefore developed new allometric...... for each tree type. Thus, we suggest that field efforts should be directed towards checking resprouting status over the estimation of tree height. We also found that models fit using non-linear regression provided equally good fits to the data compared to the traditional approach of log......-transforming the data. Our models were subsequently applied to 12 nearby plots spanning a chronosequence of fallows to examine the impact of re-sprouting allometry on biomass estimation. Root biomass stocks were on average 58% higher after accounting for the allometry of resprouting trees, resulting in an average 9...

  15. Scaling algebras and renormalization group in algebraic quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Verch, R.

    1995-01-01

    For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)

  16. Allometric growth and allocation in forests: a perspective from FLUXNET.

    Science.gov (United States)

    Wolf, Adam; Field, Christopher B; Berry, Joseph A

    2011-07-01

    To develop a scheme for partitioning the products of photosynthesis toward different biomass components in land-surface models, a database on component mass and net primary productivity (NPP), collected from FLUXNET sites, was examined to determine allometric patterns of allocation. We found that NPP per individual of foliage (Gfol), stem and branches (Gstem), coarse roots (Gcroot) and fine roots (Gfroot) in individual trees is largely explained (r2 = 67-91%) by the magnitude of total NPP per individual (G). Gfol scales with G isometrically, meaning it is a fixed fraction of G ( 25%). Root-shoot trade-offs were manifest as a slow decline in Gfroot, as a fraction of G, from 50% to 25% as stands increased in biomass, with Gstem and Gcroot increasing as a consequence. These results indicate that a functional trade-off between aboveground and belowground allocation is essentially captured by variations in G, which itself is largely governed by stand biomass and only secondarily by site-specific resource availability. We argue that forests are characterized by strong competition for light, observed as a race for individual trees to ascend by increasing partitioning toward wood, rather than by growing more leaves, and that this competition stronglyconstrains the allocational plasticity that trees may be capable of. The residual variation in partitioning was not related to climatic or edaphic factors, nor did plots with nutrient or water additions show a pattern of partitioning distinct from that predicted by G alone. These findings leverage short-term process studies of the terrestrial carbon cycle to improve decade-scale predictions of biomass accumulation in forests. An algorithm for calculating partitioning in land-surface models is presented.

  17. Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar

    International Nuclear Information System (INIS)

    Razakamanarivo, Ramarson H.; Razakavololona, Ando; Razafindrakoto, Marie-Antoinette; Vieilledent, Ghislain; Albrecht, Alain

    2012-01-01

    Short rotations of Eucalyptus plantations under coppice regime are extensively managed for wood production in Madagascar. Nevertheless, little is known about their biomass production and partitioning and their potential in terms of carbon sequestration. If above-ground biomass (AGB) can be estimated based on established allometric relations, below-ground (BGB) estimates are much less common. The aim of this work was to develop allometric equations to estimate biomass of these plantations, mainly for the root components. Data from 9 Eucalyptus robusta stands (47–87 years of plantation age, 3–5 years of coppice-shoot age) were collected and analyzed. Biomass of 3 sampled trees per stand was determined destructively. Dry weight of AGB components (leaves, branches and stems) were estimated as a function of basal area of all shoots per stump and dry weight for BGB components (mainly stump, coarse root (CR) and medium root (MR)) were estimated as a function of stump circumference. Biomass was then computed using allometric equations from stand inventory data. Stand biomass ranged from 102 to 130 Mg ha −1 with more than 77% contained in the BGB components. The highest dry weight was allocated in the stump and in the CR (51% and 42% respectively) for BGB parts and in the stem (69%) for AGB part. Allometric relationships developed herein could be applied to other Eucalyptus plantations which present similar stand density and growing conditions; anyhow, more is needed to be investigated in understanding biomass production and partitioning over time for this kind of forest ecosystem. -- Highlights: ► We studied the potential of old eucalyptus coppices in Madagascar to mitigate global warming. ► Biomass measurement, mainly for below-ground BGB (stump, coarse-medium-and fine roots) was provided. ► BGB allometry relationships for short rotation forestry under coppice were established. ► BGB were found to be important with their 102-130MgC ha -1 (<77% of the C in

  18. Conductive sapwood area prediction from stem and canopy areas - allometric equations of Kalahari trees, Botswana

    NARCIS (Netherlands)

    Lubczynski, M.W.; Chavarro-Rincon, D.C.; Rossiter, David

    2017-01-01

    Conductive sapwood (xylem) area (Ax) of all trees in a given forested area is the main factor contributing to spatial tree transpiration. One hundred ninety-five trees of 9 species in the Kalahari region of Botswana were felled, stained, cut into discs, and measured to develop allometric equations

  19. Gender-based differences in the shape of the human corpus callosum are associated with allometric variations

    Science.gov (United States)

    Bruner, Emiliano; de la Cuétara, José Manuel; Colom, Roberto; Martin-Loeches, Manuel

    2012-01-01

    The corpus callosum displays considerable morphological variability between individuals. Although some characteristics are thought to differ between male and female brains, there is no agreement regarding the source of this variation. Biomedical imaging and geometric morphometrics have provided tools to investigate shape and size variation in terms of integration and correlation. Here we analyze variations at the midsagittal outline of the corpus callosum in a sample of 102 young adults in order to describe and quantify the pattern of covariation associated with its morphology. Our results suggest that the shape of the corpus callosum is characterized by low levels of morphological integration, which explains the large variability. In larger brains, a minor allometric component involves a relative reduction of the splenium. Small differences between males and?females are associated with this allometric pattern, induced primarily by size variation rather than gender-specific characteristics. PMID:22296183

  20. On the scaling limits in the Euclidean (quantum) field theory

    International Nuclear Information System (INIS)

    Gielerak, R.

    1983-01-01

    The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)

  1. Allometric equations for estimating aboveground biomass for common shrubs in northeastern California

    Science.gov (United States)

    Steve Huff; Martin Ritchie; H. Temesgen

    2017-01-01

    Selected allometric equations and fitting strategies were evaluated for their predictive abilities for estimating above ground biomass for seven species of shrubs common to northeastern California. Size classes for woody biomass were categorized as 1-h fuels (0.1–0.6 cm), 10-h fuels (0.6–2.5 cm), 100-h fuels (2.5–7.6 cm), and 1000-h fuels (greater than 7.7 cm in...

  2. Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence

    Science.gov (United States)

    Rubinstein, Robert

    1994-01-01

    Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.

  3. The fractal geometry of nutrient exchange surfaces does not provide an explanation for 3/4-power metabolic scaling

    Directory of Open Access Journals (Sweden)

    Painter Page R

    2005-08-01

    Full Text Available Abstract Background A prominent theoretical explanation for 3/4-power allometric scaling of metabolism proposes that the nutrient exchange surface of capillaries has properties of a space-filling fractal. The theory assumes that nutrient exchange surface area has a fractal dimension equal to or greater than 2 and less than or equal to 3 and that the volume filled by the exchange surface area has a fractal dimension equal to or greater than 3 and less than or equal to 4. Results It is shown that contradicting predictions can be derived from the assumptions of the model. When errors in the model are corrected, it is shown to predict that metabolic rate is proportional to body mass (proportional scaling. Conclusion The presence of space-filling fractal nutrient exchange surfaces does not provide a satisfactory explanation for 3/4-power metabolic rate scaling.

  4. Allometric models for estimating the aboveground biomass of the mangrove Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    Heide Vanessa Souza Santos

    Full Text Available Abstract The development of species-specific allometric models is critical to the improvement of aboveground biomass estimates, as well as to the estimation of carbon stock and sequestration in mangrove forests. This study developed allometric equations for estimating aboveground biomass of Rhizophora mangle in the mangroves of the estuary of the São Francisco River, in northeastern Brazil. Using a sample of 74 trees, simple linear regression analysis was used to test the dependence of biomass (total and per plant part on size, considering both transformed (ln and not-transformed data. Best equations were considered as those with the lowest standard error of estimation (SEE and highest adjusted coefficient of determination (R2a. The ln-transformed equations showed better results, with R2a near 0.99 in most cases. The equations for reproductive parts presented low R2a values, probably attributed to the seasonal nature of this compartment. "Basal Area2 × Height" showed to be the best predictor, present in most of the best-fitted equations. The models presented here can be considered reliable predictors of the aboveground biomass of R. mangle in the NE-Brazilian mangroves as well as in any site were this widely distributed species present similar architecture to the trees used in the present study.

  5. Allometric Equations for Estimating Carbon Stocks in Natural Forest in New Zealand

    Directory of Open Access Journals (Sweden)

    Andrea Brandon

    2012-09-01

    Full Text Available Species-specific and mixed-species volume and above ground biomass allometric equations were developed for 15 indigenous tree species and four tree fern species in New Zealand. A mixed-species tree equation based on breast height diameter (DBH and tree height (H provided acceptable estimates of stem plus branch (>10 cm in diameter over bark volume, which was multiplied by live tree density to estimate dry matter. For dead standing spars, DBH, estimated original height, actual spar height and compatible volume/taper functions provided estimates of dead stem volume, which was multiplied by live tree density and a density modifier based on log decay class from field assessments to estimate dry matter. Live tree density was estimated using ratio estimators. Ratio estimators were based on biomass sample trees, and utilized density data from outerwood basic density surveys which were available for 35 tree species sampled throughout New Zealand. Foliage and branch ( < 10 cm in diameter over bark dry matter were estimated directly from tree DBH. Tree fern above ground dry matter was estimated using allometric equations based on DBH and H. Due to insufficient data, below ground carbon for trees was estimated using the default IPCC root/shoot ratio of 25%, but for tree ferns it was estimated using measured root/shoot ratios which averaged 20%.

  6. Nonperturbative scale anomaly and composite operators in gauge field theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1987-01-01

    In non-asymptotically free gauge theories with a non-trivial ultraviolet fixed point scale symmetry breaking (the scale anomaly) caused by the nonperturbative PCAC dynamics is studied. In the two-loop approximation the analytical expression for the gluon condensate is obtained. It is shown that the form of the anomaly depends on the type of the phase of a theory to which it relates. The hypothesis about the soft behaviour at small distances of composite operators in such theories is confirmed. 14 refs.; 1 fig

  7. Generalized allometric regression to estimate biomass of Populus in short-rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Ben Brahim, Mohammed; Gavaland, Andre; Cabanettes, Alain [INRA Centre de Toulouse, Castanet-Tolosane Cedex (France). Unite Agroforesterie et Foret Paysanne

    2000-07-01

    Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.

  8. Scaling theory and the classification of phase transitions

    International Nuclear Information System (INIS)

    Hilfer, R.

    1992-01-01

    In this paper, the recent classification theory for phase transitions and its relation with the foundations of statistical physics is reviewed. First it is outlined how Ehrenfests classification scheme can be generalized into a general thermodynamic classification theory for phase transitions. The classification theory implies scaling and multiscaling thereby eliminating the need to postulate the scaling hypothesis as a fourth law of thermodynamics. The new classification has also led to the discovery and distinction of nonequilibrium transitions within equilibrium statistical physics. Nonequilibrium phase transitions are distinguished from equilibrium transitions by orders less than unity and by the fact the equilibrium thermodynamics and statistical mechanics become inapplicable at the critical point. The latter fact requires a change in the Gibbs assumption underlying the canonical and grandcanonical ensembles in order to recover the thermodynamic description in the critical limit

  9. The physics of musical scales: Theory and experiment

    Science.gov (United States)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  10. Adaptive diversification of growth allometry in the plant Arabidopsis thaliana.

    Science.gov (United States)

    Vasseur, François; Exposito-Alonso, Moises; Ayala-Garay, Oscar J; Wang, George; Enquist, Brian J; Vile, Denis; Violle, Cyrille; Weigel, Detlef

    2018-03-27

    Seed plants vary tremendously in size and morphology; however, variation and covariation in plant traits may be governed, at least in part, by universal biophysical laws and biological constants. Metabolic scaling theory (MST) posits that whole-organismal metabolism and growth rate are under stabilizing selection that minimizes the scaling of hydrodynamic resistance and maximizes the scaling of resource uptake. This constrains variation in physiological traits and in the rate of biomass accumulation, so that they can be expressed as mathematical functions of plant size with near-constant allometric scaling exponents across species. However, the observed variation in scaling exponents calls into question the evolutionary drivers and the universality of allometric equations. We have measured growth scaling and fitness traits of 451 Arabidopsis thaliana accessions with sequenced genomes. Variation among accessions around the scaling exponent predicted by MST was correlated with relative growth rate, seed production, and stress resistance. Genomic analyses indicate that growth allometry is affected by many genes associated with local climate and abiotic stress response. The gene with the strongest effect, PUB4 , has molecular signatures of balancing selection, suggesting that intraspecific variation in growth scaling is maintained by opposing selection on the trade-off between seed production and abiotic stress resistance. Our findings suggest that variation in allometry contributes to local adaptation to contrasting environments. Our results help reconcile past debates on the origin of allometric scaling in biology and begin to link adaptive variation in allometric scaling to specific genes. Copyright © 2018 the Author(s). Published by PNAS.

  11. AN ANALYSIS OF HATCHLING RESTING METABOLISM - IN SEARCH OF ECOLOGICAL CORRELATES THAT EXPLAIN DEVIATIONS FROM ALLOMETRIC RELATIONS

    NARCIS (Netherlands)

    KLAASSEN, M; DRENT, R

    From data in the literature, an allometric equation is compiled for hatchling resting metabolic rate and an attempt is made to explain residual variation in terms of hatchling type, yolk and water content, embryonic and postnatal growth rate, and environmental circumstances (latitudinal

  12. Allometric Equations for Estimating Biomass of Euterpe precatoria, the Most Abundant Palm Species in the Amazon

    Directory of Open Access Journals (Sweden)

    Fernando Da Silva

    2015-02-01

    Full Text Available Allometric models to estimate biomass components such as stem mass Ms, foliage mass Ml, root mass Mr and aboveground mass Ma, were developed for the palm species Euterpe precatoria Mart., which is the most abundant tree species in the Amazon. We harvested twenty palms including above- and below-ground parts in an old growth Amazonian forest in Brazil. The diameter at breast height D ranged from 3.9–12.7 cm, and the stem height H ranged from 2.3–16.4 m. The D, diameter at ground basis D0, crown diameter CD, H, stem specific gravity ρ, and number of fronds Nf were considered as independent variables and incorporated into a power function model. The best predictors were D2Hρ for Ms and Ma, D2HNf for Ml, and D for Mr. Slender index (H/D ranged from 0.56–1.46 m·cm−1, and the D-H relationship suggested that the stem shape becomes more slender with increasing D. On the other hand, ρ increased with D implying a stiffening of stem tissue. The average root/shoot ratio was estimated as 0.29 which was higher than that reported for the non-palm tree species in the Amazon. Comparisons of several models to estimate Ma of different palm species, suggested that the variations of the D-H relationship and ρ should be considered to develop allometric models for estimating biomass in palm species. In particular the ρ largely varied depending on individual size, which should be important to consider, when developing the allometric models for palms.

  13. Another scheme for quantization of scale invariant gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1987-10-01

    A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs

  14. Testing the Grandchildren's Received Affection Scale using Affection Exchange Theory.

    Science.gov (United States)

    Mansson, Daniel H

    2013-04-01

    The purpose of this study was to test the Grandchildren's Received Affection Scale (GRAS) using Affection Exchange Theory (Floyd, 2006). In accordance with Affection Exchange Theory, it was hypothesized that grandchildren's scores on the Trait Affection Received Scale (i.e., the extent to which individuals by nature receive affection) would be related significantly and positively to their reports of received affection from their grandparents (i.e., their scores on the GRAS). Additionally, a research question was asked to explore if grandchildren's received affection from their grandparents is dependent on their grandparent's biological sex or lineage (i.e., maternal vs paternal). Thus, young adult grandchildren (N = 422) completed the GRAS and the Trait Affection Received Scale. The results of zero-order Pearson correlational analyses provided support for the hypothesis, whereas the results of MANOVAs tests only partially support extant grandparent-grandchild theory and research. These findings broaden the scope of Affection Exchange Theory and also bolster the GRAS's utility in future grandparent-grandchild affectionate communication research.

  15. Scaling in the sine-Gordon theory

    International Nuclear Information System (INIS)

    Ben-Abraham, S.I.

    1976-01-01

    It is shown that both the classical and the quantum sine-Gordon theory depend on a single scaling parameter and therefore the coupling constant cannot be freely chosen. To introduce a meaningful coupling constant it is proposed to include higher Fourier terms in the sine-Gordon potential. The two term case is exactly solvable. (Auth.)

  16. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  17. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  18. Electrodynamics in scale-covariant gravity theory

    International Nuclear Information System (INIS)

    Mansfield, V.N.; Malin, S.

    1980-01-01

    Utilizing the inherent scale-invariance of Maxwell's Equations, classical electrodynamics is incorporated into the theory of scale-invariant gravity. In this incorporation the gravitational constant G is shown to transform like β -2 (β is the gauge function), the generalized Lorentz Force Law is derived, the electric charge is shown to be invariant under gauge transformation, and matter creation is shown to be a necessity. In all nontrivial gauges a modified version of QED is obtained. The deviation from standard QED, however, is shown to be beyond the range of experimental detection when G α β -2 . (orig.)

  19. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  20. Allometric variation among juvenile, adult male and female eastern bearded dragons Pogona barbata (Cuvier, 1829), with comments on the behavioural implications.

    Science.gov (United States)

    Wotherspoon, Danny; Burgin, Shelley

    2011-02-01

    The functional significance of allometric change in reptiles has received limited attention and the reason for such changes has been regarded as 'obscure'. In this paper we report data on the Australian Pogona barbata, the eastern bearded dragon, from across their range and review changes in allometric growth among juveniles, and adult males and females and consider the functional relevance of these changes. There were significant differences in the population for mass, tail length, tail width, rear leg length and jaw length. These differences were consistent with differences required in locomotor performance and thus habitat use, together with access to different preferred dietary components. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  1. Geometrical approach to length-biomass allometry in predominantly ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    2006b). An allometric scaling law between gray matter and white matter of cerebral cortex, Chaos Soliton. Fract., 27: 864-867. He JH (2006c). Application of E-infinity theory to biology, Chaos Soliton. Fract., 28: 285-289. He JH ...

  2. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  3. Importance of proper scaling of aerobic power when relating to cardiometabolic risk factors in children

    DEFF Research Database (Denmark)

    McMurray, Robert; Hosick ‎, Peter; Bugge, Anna

    2011-01-01

    . VO(2max) was estimated in mL/min from cycle ergometry and scaled to body mass (kg), fat free mass (kg(FFM)), body surface area (m(2)), height (cm) and allometric (mL/kg(0.67)/min). RESULTS: Unadjusted correlations between CMRF and many of the scaled VO(2max) units were significant (p

  4. Finite size scaling and lattice gauge theory

    International Nuclear Information System (INIS)

    Berg, B.A.

    1986-01-01

    Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs

  5. Scaling and allometry in the building geometries of Greater London

    Science.gov (United States)

    Batty, M.; Carvalho, R.; Hudson-Smith, A.; Milton, R.; Smith, D.; Steadman, P.

    2008-06-01

    Many aggregate distributions of urban activities such as city sizes reveal scaling but hardly any work exists on the properties of spatial distributions within individual cities, notwithstanding considerable knowledge about their fractal structure. We redress this here by examining scaling relationships in a world city using data on the geometric properties of individual buildings. We first summarise how power laws can be used to approximate the size distributions of buildings, in analogy to city-size distributions which have been widely studied as rank-size and lognormal distributions following Zipf [ Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, 1949)] and Gibrat [ Les Inégalités Économiques (Librarie du Recueil Sirey, Paris, 1931)]. We then extend this analysis to allometric relationships between buildings in terms of their different geometric size properties. We present some preliminary analysis of building heights from the Emporis database which suggests very strong scaling in world cities. The data base for Greater London is then introduced from which we extract 3.6 million buildings whose scaling properties we explore. We examine key allometric relationships between these different properties illustrating how building shape changes according to size, and we extend this analysis to the classification of buildings according to land use types. We conclude with an analysis of two-point correlation functions of building geometries which supports our non-spatial analysis of scaling.

  6. Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum)

    DEFF Research Database (Denmark)

    Qin, Xiao-liang; Weiner, Jacob; Qi, Lin

    2013-01-01

    allocation should be analyzed and interpreted allometrically because ratios or fractions such as Reproductive Effort or Harvest Index are size dependent. We investigated reproductive allocation of individuals in 6 varieties of Triticum (wheat) grown at a wide range of densities. We harvested leaves, stems...... size. There were significant differences among the varieties in the allometric exponent (slope of log–log relationship) of grain versus vegetative mass, such that some varieties produced higher yield (and therefore had a higher Harvest Index) than others when plants were small, while others had higher...... yield at larger sizes. Thus, the Harvest Index and its rank among varieties changed with plant size, which puts into question the practice of selecting for Harvest Index when crop performance varies greatly among individuals, years or environments. Selection for a high Harvest Index when individuals...

  7. Sequential Progressions in a Theory of Mind Scale: Longitudinal Perspectives

    Science.gov (United States)

    Wellman, Henry M.; Fuxi, Fang; Peterson, Candida C.

    2011-01-01

    Consecutive re-testings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in cross-sectional scaling data also characterized longitudinal sequences of understanding for individual children. The match between cross-sectional and longitudinal sequences appeared for children who exhibit different progressions across cultures (U.S. vs. China) and for children with substantial delays (deaf children of hearing parents). Moreover, greater scale distances reflected larger longitudinal age differences. PMID:21428982

  8. Scale transformation and massless limit in neutral-vector field theory. [Gauge transformation unified theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Takahashi, Y; Yokoyama, K

    1975-01-01

    In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.

  9. SCALE Sensitivity Calculations Using Contributon Theory

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Perfetti, Chris; Williams, Mark L.; Petrie, Lester M. Jr.

    2010-01-01

    The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case k-eff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.

  10. Scaling theory of quantum resistance distributions in disordered systems

    International Nuclear Information System (INIS)

    Jayannavar, A.M.

    1991-01-01

    The large scale distribution of quantum Ohmic resistance of a disorderd one-dimensional conductor is derived explicitly. It is shown that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder single parameter scaling consistent with existing theoretical treatments is recovered. (author). 33 refs., 4 figs

  11. Scaling theory of quantum resistance distributions in disordered systems

    International Nuclear Information System (INIS)

    Jayannavar, A.M.

    1990-05-01

    We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments. (author). 32 refs, 4 figs

  12. ALLOMETRIC GROWTH OF PRIMAL CUTS AND TISSUES IN THE PIG

    Directory of Open Access Journals (Sweden)

    Frank Siewerdt

    1994-12-01

    Full Text Available Data from 82 purebred and crossbred Large White and Duroc barrows and gilts were used to describe the growth of carcass primal cuts, of tissues, and of several organs. Pigs were allowed ad libitum to a conventional diet, which contained com and soybean meal. Pigs were weighted weekly and were slaughtered when attained a liveweight over 90kg. An allometric pattern of growth was assumed. Within the observed range of liveweight, the carcass grew slower than the whole animal. An increase of carcass weight corresponds to a similar increase of lean, but also corresponds to a larger increase of fat tissues. A suggestion to slaughter pigs near to 90kg of liveweight is presented, in order to obtain leaner carcasses.

  13. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    Science.gov (United States)

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may

  14. Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.

    1988-01-01

    Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model

  15. Quantum no-scale regimes in string theory

    Science.gov (United States)

    Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé

    2018-05-01

    We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.

  16. Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? 

    Science.gov (United States)

    M.R. McHale; I.C. Burke; M.A. Lefsky; P.J. Peper; E.G. McPherson

    2009-01-01

    Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban trees. These studies have been limited by a lack of research on urban tree biomass, such that estimates of carbon storage in urban systems have relied upon allometric relationships developed in traditional forests. As urbanization increases globally, it is becoming...

  17. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  18. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration

    Science.gov (United States)

    Smith, T. J.; Whelan, K.R.T.

    2006-01-01

    Mathematical relations that use easily measured variables to predict difficult-to-measure variables are important to resource managers. In this paper we develop allometric relations to predict total aboveground biomass and individual components of biomass (e.g., leaves, stems, branches) for three species of mangroves for Everglades National Park, Florida, USA. The Greater Everglades Ecosystem is currently the subject of a 7.8-billion-dollar restoration program sponsored by federal, state, and local agencies. Biomass and production of mangroves are being used as a measure of restoration success. A technique for rapid determination of biomass over large areas is required. We felled 32 mangrove trees and separated each plant into leaves, stems, branches, and for Rhizophora mangle L., prop roots. Wet weights were measured in the field and subsamples returned to the laboratory for determination of wet-to-dry weight conversion factors. The diameter at breast height (DBH) and stem height were also measured. Allometric equations were developed for each species for total biomass and components of biomass. We compared our equations with those from the same, or similar, species from elsewhere in the world. Our equations explained ???93% of the variance in total dry weight using DBH. DBH is a better predictor of dry weight than is stem height and DBH is much easier to measure. Furthermore, our results indicate that there are biogeographic differences in allometric relations between regions. For a given DBH, stems of all three species have less mass in Florida than stems from elsewhere in the world. ?? Springer 2006.

  19. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  20. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Scaling theory of depinning in the Sneppen model

    International Nuclear Information System (INIS)

    Maslov, S.; Paczuski, M.

    1994-01-01

    We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev. Lett. 69, 3539 (1992)]. This theory is based on a ''gap'' equation that describes the self-organization process to a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two independent exponents, ν parallel (d) and ν perpendicular (d), characterizing the divergence of the parallel and perpendicular correlation lengths as the interface approaches its dynamical attractor

  2. The fourth dimension of life: fractal geometry and allometric scaling of organisms.

    Science.gov (United States)

    West, G B; Brown, J H; Enquist, B J

    1999-06-04

    Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.

  3. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  4. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  5. Tipping the scales: Evolution of the allometric slope independent of average trait size.

    Science.gov (United States)

    Stillwell, R Craig; Shingleton, Alexander W; Dworkin, Ian; Frankino, W Anthony

    2016-02-01

    The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling-relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log-linear scaling relationships-the intercept or mean trait size and the slope-can evolve independently. Here, using the wing-body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual-based selection experiments to study the expression and evolution of morphological scaling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)

    1975-01-04

    Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.

  7. Sequential Progressions in a Theory-of-Mind Scale: Longitudinal Perspectives

    Science.gov (United States)

    Wellman, Henry M.; Fang, Fuxi; Peterson, Candida C.

    2011-01-01

    Consecutive retestings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in…

  8. Scaling of theory-of-mind understandings in Chinese children.

    Science.gov (United States)

    Wellman, Henry M; Fang, Fuxi; Liu, David; Zhu, Liqi; Liu, Guoxiong

    2006-12-01

    Prior research demonstrates that understanding of theory of mind develops at different paces in children raised in different cultures. Are these differences simply differences in timing, or do they represent different patterns of cultural learning? That is, to what extent are sequences of theory-of-mind understanding universal, and to what extent are they culture-specific? We addressed these questions by using a theory-of-mind scale to examine performance of 140 Chinese children living in Beijing and to compare their performance with that of 135 English-speaking children living in the United States and Australia. Results reveal a common sequence of understanding, as well as sociocultural differences in children's developing theories of mind.

  9. BPS ZN string tensions, sine law and Casimir scaling, and integrable field theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A. C.

    2007-01-01

    We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G→U(1) r →C G , with C G being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the two vacua the ratio of the tensions of the BPS Z N strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K ij and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories

  10. Getting a head in hard soils: Convergent skull evolution and divergent allometric patterns explain shape variation in a highly diverse genus of pocket gophers (Thomomys).

    Science.gov (United States)

    Marcy, Ariel E; Hadly, Elizabeth A; Sherratt, Emma; Garland, Kathleen; Weisbecker, Vera

    2016-10-10

    High morphological diversity can occur in closely related animals when selection favors morphologies that are subject to intrinsic biological constraints. A good example is subterranean rodents of the genus Thomomys, one of the most taxonomically and morphologically diverse mammalian genera. Highly procumbent, tooth-digging rodent skull shapes are often geometric consequences of increased body size. Indeed, larger-bodied Thomomys species tend to inhabit harder soils. We used geometric morphometric analyses to investigate the interplay between soil hardness (the main extrinsic selection pressure on fossorial mammals) and allometry (i.e. shape change due to size change; generally considered the main intrinsic factor) on crania and humeri in this fast-evolving mammalian clade. Larger Thomomys species/subspecies tend to have more procumbent cranial shapes with some exceptions, including a small-bodied species inhabiting hard soils. Counter to earlier suggestions, cranial shape within Thomomys does not follow a genus-wide allometric pattern as even regional subpopulations differ in allometric slopes. In contrast, humeral shape varies less with body size and with soil hardness. Soft-soil taxa have larger humeral muscle attachment sites but retain an orthodont (non-procumbent) cranial morphology. In intermediate soils, two pairs of sister taxa diverge through differential modifications on either the humerus or the cranium. In the hardest soils, both humeral and cranial morphology are derived through large muscle attachment sites and a high degree of procumbency. Our results show that conflict between morphological function and intrinsic allometric patterning can quickly and differentially alter the rodent skeleton, especially the skull. In addition, we found a new case of convergent evolution of incisor procumbency among large-, medium-, and small-sized species inhabiting hard soils. This occurs through different combinations of allometric and non-allometric changes

  11. Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga

    Science.gov (United States)

    Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.

    2012-08-01

    In temperate and tropical rainforests, ontogenetic structure and allometry during tree ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of tree growth would be enough to produce an ontogenetic structure and allometric growth similar to rainforest canopy trees. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy tree of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of rainforest tree species, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae tree species in tropical rainforests, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from rainforest trees. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low tree density and more frequent xylem embolism as the main drivers of tree allometric shape in DTW. This indicates that tree ontogenetic structure and allometric relationships depend on vegetation

  12. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    Science.gov (United States)

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  13. Scale-covariant theory of gravitation and astrophysical applications

    International Nuclear Information System (INIS)

    Canuto, V.; Adams, P.J.; Hsieh, S.; Tsiang, E.

    1977-01-01

    By associating the mathematical operation of scale transformation with the physics of using different dynamical systems to measure space-time distances, we formulate a scale-covariant theory of gravitation. Corresponding to each dynamical system of units is a gauge condition which determines the otherwise arbitrary gauge function. For gravitational units, the gauge condition is chosen so that the standard Einstein equations are recovered. Assuming the atomic units, derivable from atomic dynamics, to be distinct from the gravitational units, a different gauge condition must be imposed. It is suggested that Dirac's large-number hypothesis be used for the determination of this condition so that gravitational phenomena can be described in atomic units. The result allows a natural interpretation of the possible variation of the gravitational constant without compromising the validity of general relativity. A geometrical interpretation of the scale-covariant theory is possible if the covariant tensors in Riemannian space are replaced by cocovariant cotensors in an integrable Weyl space. A scale-invariant action principle is constructed from the metrical potentials of the integrable Weyl space. Application of the dynamical equations in atomic units to cosmology yields a family of homogeneous solutions characterized by R approx. t for large cosmological times. Equations of motion in atomic units are solved for spherically symmetric gravitational fields. Expressions for perihelion shift and light deflection are derived. They do not differ from the predictions of general relativity except for secular variations, having the age of the universe as a time scale. Similar variations of periods and radii for planetary orbits are also derived

  14. Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics

    KAUST Repository

    Li, Tiejun; Li, Fangting; Li, Xianggang; Lu, Cheng

    2016-01-01

    theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also

  15. A quantization scheme for scale-invariant pure gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1988-01-01

    A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)

  16. Allometric relationships to liver tissue concentrations of cyclic volatile methyl siloxanes in Atlantic cod

    International Nuclear Information System (INIS)

    Warner, Nicholas A.; Nøst, Therese H.; Andrade, Hector; Christensen, Guttorm

    2014-01-01

    Spatial distribution and relationship of allometric measurements (length, weight and age) to liver concentrations of cyclic volatile methyl siloxanes (cVMS) including octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclosiloxane (D6) in Atlantic cod (Gadus morhua) collected near the community of Tromsø in Northern Norway were assessed. These congeners were benchmarked against known persistent polychlorinated biphenyls (PCBs 153 and 180) to assess accumulation behavior of cVMS. D5 was the dominate cVMS detected in all fish livers with lipid normalized concentrations up to 10 times or greater than those observed for PCB 153 and 180. D4 and D6 concentration were negatively correlated with fish length and weight, indicating a greater elimination capacity compared to uptake processes with increasing fish size for these chemicals. These results indicate relationships between allometric measurements and cVMS concentrations may account for concentration variations observed within fish and should be assessed in future studies evaluating cVMS bioaccumulation potential. - Highlights: • cVMS spatial distribution investigated within cod surrounding an Arctic community. • Highest cVMS concentrations detected in biota collected near human settlements. • Cod liver concentrations of D5 were higher compared to PCBs. • D4 and D6 liver concentrations were negatively correlated with fish length/weight. - Liver concentrations of cVMS congeners decreased with increasing fish length and weight in Atlantic cod collected near emission sources of cVMS

  17. Boomerang RG flows in M-theory with intermediate scaling

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar

    2017-07-01

    We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.

  18. 10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

    Science.gov (United States)

    Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O

    2016-06-01

    The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

  19. Allometric Models Based on Bayesian Frameworks Give Better Estimates of Aboveground Biomass in the Miombo Woodlands

    Directory of Open Access Journals (Sweden)

    Shem Kuyah

    2016-02-01

    Full Text Available The miombo woodland is the most extensive dry forest in the world, with the potential to store substantial amounts of biomass carbon. Efforts to obtain accurate estimates of carbon stocks in the miombo woodlands are limited by a general lack of biomass estimation models (BEMs. This study aimed to evaluate the accuracy of most commonly employed allometric models for estimating aboveground biomass (AGB in miombo woodlands, and to develop new models that enable more accurate estimation of biomass in the miombo woodlands. A generalizable mixed-species allometric model was developed from 88 trees belonging to 33 species ranging in diameter at breast height (DBH from 5 to 105 cm using Bayesian estimation. A power law model with DBH alone performed better than both a polynomial model with DBH and the square of DBH, and models including height and crown area as additional variables along with DBH. The accuracy of estimates from published models varied across different sites and trees of different diameter classes, and was lower than estimates from our model. The model developed in this study can be used to establish conservative carbon stocks required to determine avoided emissions in performance-based payment schemes, for example in afforestation and reforestation activities.

  20. Morphological development and allometric growth patterns of Acipenser persicus Borodin, 1897 (Actinopterygii, Acipenseridae during early development

    Directory of Open Access Journals (Sweden)

    Soheil Eagderi

    2017-06-01

    Full Text Available Morphological development and allometric growth patterns of reared Persian sturgeon, Acipenser persicus, were studied from hatching to 50 days post-hatching (dph. The larvae were sampled, their left sides photographed and seven morphometric characters, including total length, head length, tail length, trunk length, snout length, caudal peduncle and predorsal length were measured. Allometric growth patterns were calculated as a power function of total length and described using the growth coefficient to find important steps in early life history. The total length of the newly hatched larvae and fry were 10.59±0.8 and 38.8±2.9 mm at 1 and 50 dph, respectively. Morphogenesis and differentiation were the highest rates during the first 11 days of early development, i.e. endogenous feeding period. There were higher growth rate of head, snout and tail regions compared with those of other organs from the hatch up to yolk sac absorption, followed by positive or almost isometric patterns, after the begin of exogenous feeding, showing priority to enhance the feeding and swimming capabilities. This study confirmed that most of morphological changes of this species are occurred from hatching until the onset of exogenous feeding i.e. during the lecithotrophic phase.

  1. Time-sliced perturbation theory for large scale structure I: general formalism

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  2. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  3. The corrections to scaling within Mazenko's theory in the limit of low ...

    Indian Academy of Sciences (India)

    functions'. In fact both the scaling functions and scaling exponents describe only the leading behaviour in the theory of scaling phenomena. There may be, and usually are, subdominant corrections, known as corrections to scaling. These corrections cannot be neglected in practice if more accurate values for exponents and ...

  4. Allometric models of tree biomass for airborne laser scanning and ground inventory of carbon pool in the forests of Eurasia: Comparative analysis

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2016-08-01

    Full Text Available For the main tree species in North America, Europe and Japan, a number of thousands of allometric equations for single-tree biomass estimation using mostly tree height and stem diameter at breast height are designed that are intended for terrestrial forest mensuration. However, an innovative airborne laser method of the forest canopy sensing allows processing of on-line a number of morphological indices of trees, to combine them with the biomass allometric models and to evaluate the forest carbon pools. The database of 28 wood and shrub species containing 2.4 thousand definitions is compiled for the first time in the forests of Eurasia, and on its basis, the allometric transcontinental models of fractional structure of biomass of two types and dual use are developed. The first of them include as regressors the tree height and crown diameter and are intended for airborne laser location, while the latter have a traditional appointment for terrestrial forest biomass taxation using tree height and stem diameter. Those and others explain, in most cases, more than 90 % of tree biomass variability. Processing speed of laser location, incommensurable with the terrestrial mensuration, gives the possibility of assessing the change of carbon pool of forests on some territories during periodic overflights. The proposed information can be useful when implementing activities on climate stabilization, as well as in the validation of the simulation results when evaluating the carbon depositing capacity of forests.

  5. From coastal barriers to mountain belts - commonalities in fundamental geomorphic scaling laws

    Science.gov (United States)

    Lazarus, E.

    2016-12-01

    Overwash is a sediment-transport process essential to the form and resilience of coastal barrier landscapes. Driven by storm events, overwash leaves behind distinctive sedimentary features that, although intensively studied, have lacked unifying quantitative descriptions with which to compare their morphological attributes across documented examples or relate them to other morphodynamic phenomena. Geomorphic scaling laws quantify how measures of shape and size change with respect to another - information that helps to constrain predictions of future change and reconstructions of past environmental conditions. Here, a physical model of erosional and depositional overwash morphology yields intrinsic, allometric scaling laws involving length, width, area, volume, and alongshore spacing. Corroborative comparisons with natural washover morphology indicate scale invariance spanning several orders of magnitude. Several observers of the physical model remarked that the overwashed barrier resembled a dissected linear mountain front with an alluvial apron - an intriguing reimagining of the intended analog. Indeed, that resemblance is reflected quantitatively in these new scaling relationships, which align with canonical scaling laws for terrestrial and marine drainage basins and alluvial fans on Earth and Mars. This finding suggests disparate geomorphic systems that share common allometric properties may be related dynamically, perhaps by an influence more fundamental than characteristic erosion and deposition processes. Such an influence could come from emergent behavior at the intersection of advection and diffusion. Geomorphic behaviors at advection-diffusion transitions (and vice versa), specifically, could be the key to disentangling mechanistic causality from acausality in physical landscape patterns.

  6. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    Science.gov (United States)

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  7. The algebraic construction of the scale-invariant asymtotic theory

    International Nuclear Information System (INIS)

    Gatto, R.; Sartori, G.

    1975-01-01

    The procedure proposed in the preceding paper to construct the asymptotic scale-invariant theory is applied to massive free fields. The contracted fields (of the asymptotic theory) are calculated in terms of the original fields by two different procedures. The contracted charges are calculated and their general relation to the original charges is verified. The problem of defining a vacuum state for the contracted fields and charges is solved. The relation to the problem of non-equivalent representations of the commutator relations is pointed out

  8. How to derive biological information from the value of the normalization constant in allometric equations.

    Science.gov (United States)

    Kaitaniemi, Pekka

    2008-04-09

    Allometric equations are widely used in many branches of biological science. The potential information content of the normalization constant b in allometric equations of the form Y = bX(a) has, however, remained largely neglected. To demonstrate the potential for utilizing this information, I generated a large number of artificial datasets that resembled those that are frequently encountered in biological studies, i.e., relatively small samples including measurement error or uncontrolled variation. The value of X was allowed to vary randomly within the limits describing different data ranges, and a was set to a fixed theoretical value. The constant b was set to a range of values describing the effect of a continuous environmental variable. In addition, a normally distributed random error was added to the values of both X and Y. Two different approaches were then used to model the data. The traditional approach estimated both a and b using a regression model, whereas an alternative approach set the exponent a at its theoretical value and only estimated the value of b. Both approaches produced virtually the same model fit with less than 0.3% difference in the coefficient of determination. Only the alternative approach was able to precisely reproduce the effect of the environmental variable, which was largely lost among noise variation when using the traditional approach. The results show how the value of b can be used as a source of valuable biological information if an appropriate regression model is selected.

  9. Differential scaling patterns of vertebrae and the evolution of neck length in mammals.

    Science.gov (United States)

    Arnold, Patrick; Amson, Eli; Fischer, Martin S

    2017-06-01

    Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. Nasonia Parasitic Wasps Escape from Haller's Rule by Diphasic, Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations

    NARCIS (Netherlands)

    Groothuis, Jitte; Smid, Hans M.

    2017-01-01

    Haller's rule states that brains scale allometrically with body size in all animals, meaning that relative brain size increases with decreasing body size. This rule applies both on inter- and intraspecific comparisons. Only 1 species, the extremely small parasitic wasp Trichogramma evanescens, is

  11. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    Science.gov (United States)

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial

  12. ONETEP: linear-scaling density-functional theory with plane-waves

    International Nuclear Information System (INIS)

    Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C

    2006-01-01

    This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep

  13. Scaling Theory of Polyelectrolyte Nanogels

    International Nuclear Information System (INIS)

    Qu Li-Jian

    2017-01-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. (paper)

  14. Development and psychometric validation of social cognitive theory scales in an oral health context.

    Science.gov (United States)

    Jones, Kelly; Parker, Eleanor J; Steffens, Margaret A; Logan, Richard M; Brennan, David; Jamieson, Lisa M

    2016-04-01

    This study aimed to develop and evaluate scales reflecting potentially modifiable social cognitive theory-based risk indicators associated with homeless populations' oral health. The scales are referred to as the social cognitive theory risk scales in an oral health context (SCTOH) and are referred to as SCTOH(SE), SCTOH(K) and SCTOH(F), respectively. The three SCTOH scales assess the key constructs of social cognitive theory: self-efficacy, knowledge and fatalism. The reliability and validity of the three scales were evaluated in a convenience sample of 248 homeless participants (age range 17-78 years, 79% male) located in a metropolitan setting in Australia. The scales were supported by exploratory factor analysis and established three distinct and internally consistent domains of social cognition: oral health-related self-efficacy, oral health-related knowledge and oral health-related fatalism, with Cronbach's alphas of 0.95, 0.85 and Spearman's-Brown ρ of 0.69. Concurrent ability was confirmed by each SCTOH scale's association with oral health status in the expected directions. The three SCTOH scales appear to be internally valid and reliable. If confirmed by further research, these scales could potentially be used for tailored educational and cognitive-behavioural interventions to reduce oral health inequalities among homeless and other vulnerable populations. © 2015 Public Health Association of Australia.

  15. A general model for metabolic scaling in self-similar asymmetric networks.

    Directory of Open Access Journals (Sweden)

    Alexander Byers Brummer

    2017-03-01

    Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  16. Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Gusynin, V.P.

    1987-01-01

    The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed

  17. Be careful for neglected diseases

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Application of E-infinity theory to biology, Chaos Soliton. Fract. 28: 285-289. He JH (2008). Fatalness of virus depends upon its cell fractal geometry,. Chaos Soliton Fract. 38: 1390-1393. West GB, Brown JH, Enquist BJ (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms, ...

  18. Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2017-07-01

    Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

  19. Departures from scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Gutbrod, F.

    1987-01-01

    High statistics Monte Carlo Data in SU(2) lattice gauge theory are presented. At β = 2.6 and β = 2.7 large deviations form scaling are observed for Creutz ratios, when 12 4 and 24 4 lattice data are compared. There is a trend towards a restauration of asymptotic scaling with increasing β, which vanishes if at the higher value of β larger loops are considered than at lower β. The static qanti q-potential and an upper limit for the string tension are given. (orig.)

  20. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  1. Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.

    Science.gov (United States)

    Xu, Wen-Sheng; Freed, Karl F

    2013-06-21

    Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain

  2. Item Response Theory Models for Wording Effects in Mixed-Format Scales

    Science.gov (United States)

    Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu

    2015-01-01

    Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…

  3. An Item Response Theory Analysis of the Community of Inquiry Scale

    Science.gov (United States)

    Horzum, Mehmet Baris; Uyanik, Gülden Kaya

    2015-01-01

    The aim of this study is to examine validity and reliability of Community of Inquiry Scale commonly used in online learning by the means of Item Response Theory. For this purpose, Community of Inquiry Scale version 14 is applied on 1,499 students of a distance education center's online learning programs at a Turkish state university via internet.…

  4. Renormalization group scale-setting from the action—a road to modified gravity theories

    International Nuclear Information System (INIS)

    Domazet, Silvije; Štefančić, Hrvoje

    2012-01-01

    The renormalization group (RG) corrected gravitational action in Einstein–Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein–Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein–Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor. (paper)

  5. Renormalization group scale-setting from the action—a road to modified gravity theories

    Science.gov (United States)

    Domazet, Silvije; Štefančić, Hrvoje

    2012-12-01

    The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.

  6. Theory-based scaling of the SOL width in circular limited tokamak plasmas

    International Nuclear Information System (INIS)

    Halpern, F.D.; Ricci, P.; Labit, B.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Arnoux, G.; Silva, C.; Gunn, J.P.; Horacek, J.; Kočan, M.; LaBombard, B.

    2013-01-01

    A theory-based scaling for the characteristic length of a circular, limited tokamak scrape-off layer (SOL) is obtained by considering the balance between parallel losses and non-linearly saturated resistive ballooning mode turbulence driving anomalous perpendicular transport. The SOL size increases with plasma size, resistivity, and safety factor q. The scaling is verified against flux-driven non-linear turbulence simulations, which reveal good agreement within a wide range of dimensionless parameters, including parameters closely matching the TCV tokamak. An initial comparison of the theory against experimental data from several tokamaks also yields good agreement. (letter)

  7. Eliminating infinities in the λφ4 theory by simple scaling

    International Nuclear Information System (INIS)

    Aragao, Cristiane M.L. de; Carneiro, C.E.I.

    2006-01-01

    We present an alternative method to remove infinities in the perturbative φ 4 theory. In our method, the renormalization is performed in two stages. Firstly, the infinities are eliminated by rescaling the Lagrangian. The Green functions obtained from this rescaled Lagrangian are finite to all orders in perturbation. Secondly, we fix the values of parameters of the resulting finite theory at a certain mass scale by using the standard renormalization conditions. This second stage allows us to derive renormalization equations which yields the critical behavior of the theory. We show that our method does not change the critical behavior of the λφ 4 theory in 4-ε dimensions. In particular, we recover the usual critical exponents

  8. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

    International Nuclear Information System (INIS)

    Hamer, C.J.; Barber, M.N.

    1979-01-01

    Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

  9. Validation of Theory of Consumption Values Scales for Deal Sites

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    2016-01-01

    Deal sites became a widely used artefact. But there is still only a limited number of papers investigating their adoption and use. Most of the research published on the topic is qualitative. It is typical for an early stage of investigation of any new artefact. The Theory of Consumption Values ex...... explains purchase behavior. The aim of this paper is to validate scales for the Theory of Consumption Values for deal sites. This should pave a way for quantitative investigation of motives for purchasing using deal sites....

  10. Translation Fidelity of Psychological Scales: An Item Response Theory Analysis of an Individualism-Collectivism Scale.

    Science.gov (United States)

    Bontempo, Robert

    1993-01-01

    Describes a method for assessing the quality of translations based on item response theory (IRT). Results from the IRT technique with French and Chinese versions of a scale measuring individualism-collectivism for samples of 250 U.S., 357 French, and 290 Chinese undergraduates show how several biased items are detected. (SLD)

  11. [Scale Relativity Theory in living beings morphogenesis: fratal, determinism and chance].

    Science.gov (United States)

    Chaline, J

    2012-10-01

    The Scale Relativity Theory has many biological applications from linear to non-linear and, from classical mechanics to quantum mechanics. Self-similar laws have been used as model for the description of a huge number of biological systems. Theses laws may explain the origin of basal life structures. Log-periodic behaviors of acceleration or deceleration can be applied to branching macroevolution, to the time sequences of major evolutionary leaps. The existence of such a law does not mean that the role of chance in evolution is reduced, but instead that randomness and contingency may occur within a framework which may itself be structured in a partly statistical way. The scale relativity theory can open new perspectives in evolution. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2015-08-01

    Full Text Available Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  13. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Font, Anamaría [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany); Fuchs, Michael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Herschmann, Daniela, E-mail: herschma@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sekiguchi, Yuta; Wolf, Florian [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany)

    2015-08-15

    Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  14. Many ways to be small: different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster

    OpenAIRE

    Shingleton, Alexander W.; Estep, Chad M.; Driscoll, Michael V.; Dworkin, Ian

    2009-01-01

    Static allometries, the scaling relationship between body and trait size, describe the shape of animals in a population or species, and are generated in response to variation in genetic or environmental regulators of size. In principle, allometries may vary with the different size regulators that generate them, which can be problematic since allometric differences are also used to infer patterns of selection on morphology. We test this hypothesis by examining the patterns of scaling in Drosop...

  15. F-theory, GUTs, and the weak scale

    International Nuclear Information System (INIS)

    Heckman, Jonathan J.; Vafa, Cumrun

    2009-01-01

    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the μ term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare μ and Bμ terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value μ ∼ 10 2 -10 3 GeV when the hidden sector scale of supersymmetry breaking is F 1/2 ∼ 10 8.5 GeV. Further, the Bμ problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f a ∼ M GUT cμ/Λ, where Λ ∼ 10 5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio μ/Λ ∼ M GUT /M pl ∼ 10 -3 . We find f a ∼ 10 12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10 1 -10 2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10 2 -10 3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tanβ ∼ 30±7.

  16. Scaling Theory of Polyelectrolyte Nanogels

    Science.gov (United States)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  17. Intra- and Interspecific Interactions as Proximate Determinants of Sexual Dimorphism and Allometric Trajectories in the Bottlenose Dolphin Tursiops truncatus (Cetacea, Odontoceti, Delphinidae.

    Directory of Open Access Journals (Sweden)

    Maria Carla de Francesco

    Full Text Available Feeding adaptation, social behaviour, and interspecific interactions related to sexual dimorphism and allometric growth are particularly challenging to be investigated in the high sexual monomorphic Delphinidae. We used geometric morphometrics to extensively explore sexual dimorphism and ontogenetic allometry of different projections of the skull and the mandible of the bottlenose dolphin Tursiops truncatus. Two-dimensional landmarks were recorded on the dorsal, ventral, lateral, and occipital views of the skull, and on the lateral view of the left and the right mandible of 104 specimens from the Mediterranean and the North Seas, differing environmental condition and degree of interspecific associations. Landmark configurations were transformed, standardized and superimposed through a Generalized Procrustes Analysis. Size and shape differences between adult males and females were respectively evaluated through ANOVA on centroid size, Procrustes ANOVA on Procrustes distances, and MANOVA on Procrustes coordinates. Ontogenetic allometry was investigated by multivariate regression of shape coordinates on centroid size in the largest homogenous sample from the North Sea. Results evidenced sexual dimorphic asymmetric traits only detected in the adults of the North Sea bottlenose dolphins living in monospecific associations, with females bearing a marked incision of the cavity hosting the left tympanic bulla. These differences were related to a more refined echolocalization system that likely enhances the exploitation of local resources by philopatric females. Distinct shape in immature versus mature stages and asymmetric changes in postnatal allometry of dorsal and occipital traits, suggest that differences between males and females are established early during growth. Allometric growth trajectories differed between males and females for the ventral view of the skull. Allometric trajectories differed among projections of skull and mandible, and were

  18. Detailed treatment of scaling violations in asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Hinchliffe, I.; Llewellyn Smith, C.H.

    1977-01-01

    Scaling violations in lepto-production are discussed on the basis of asymptotically free gauge theories. Detailed attention is given to the problems of operator mixing and data parametrisation. All the electro-/muo-production data for F 2 can be accommodated. The calculated values for Fsub(L) are also compatible with the data in the region where the theory may be trusted. It is shown that the FNAL data for sigmasup(anti γ)/sigmasup(γ) and sup(anti γ) can be explained if the freedom to input rather large amounts of antiquarks is exploited. It is therefore premature to conclude that new flavours are required. Predictions are given for very high energies which are relevant for possible new experimental facilities. The consequences of a conjecture about the possible pattern of scaling violations in the production of W's, Z's and μ-pairs are explored. Some theoretical problems and uncertainties in testing asymptotic freedom are discussed. (Auth.)

  19. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  20. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  1. Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species.

    Science.gov (United States)

    Calvo-Alvarado, J C; McDowell, N G; Waring, R H

    2008-11-01

    We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.

  2. Conservation laws and radiation in the scale covariant theory of gravitation

    International Nuclear Information System (INIS)

    Beesham, A.

    1988-01-01

    The conservation laws for mass, energy, and momentum are derived in the scale covariant theory of gravitation. The entropy problem which exists in the standard Friedmann-Lemaitre-Robertson-Walker models can be solved in the present context. Since the weak and strong energy conditions may be violated, a big bang singularity may be avoided, in contrast to general relativity. Since beta is shown to be constant during the radiation-dominated era, the difficulties in the theory associated with nucleosynthesis are avoided. 10 references

  3. Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, R.; Jauho, Antti-Pekka

    2007-01-01

    We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires...

  4. On the GUT scale of F-theory SU(5)

    International Nuclear Information System (INIS)

    Leontaris, G.K.; Vlachos, N.D.

    2011-01-01

    In F-theory GUTs, threshold corrections from Kaluza-Klein (KK) massive modes arising from gauge and matter multiplets play an important role in the determination of the weak mixing angle and the strong gauge coupling of the effective low energy model. In this Letter we further explore the induced modifications on the gauge couplings running and the GUT scale. In particular, we focus on the KK-contributions from matter curves and analyze the conditions on the chiral and Higgs matter spectrum which imply a GUT scale consistent with the minimal unification scenario. As an application, we present an explicit computation of these thresholds for matter fields residing on specific non-trivial Riemann surfaces.

  5. Characterizing Sources of Uncertainty in Item Response Theory Scale Scores

    Science.gov (United States)

    Yang, Ji Seung; Hansen, Mark; Cai, Li

    2012-01-01

    Traditional estimators of item response theory scale scores ignore uncertainty carried over from the item calibration process, which can lead to incorrect estimates of the standard errors of measurement (SEMs). Here, the authors review a variety of approaches that have been applied to this problem and compare them on the basis of their statistical…

  6. Direct gauging of the Poincare group V. Group scaling, classical gauge theory, and gravitational corrections

    International Nuclear Information System (INIS)

    Edelen, D.G.B.

    1986-01-01

    Homogeneous scaling of the group space of the Poincare group, P 10 , is shown to induce scalings of all geometric quantities associated with the local action of P 10 . The field equations for both the translation and the Lorentz rotation compensating fields reduce to O(1) equations if the scaling parameter is set equal to the general relativistic gravitational coupling constant 8πGc -4 . Standard expansions of all field variables in power series in the scaling parameter give the following results. The zeroth-order field equations are exactly the classical field equations for matter fields on Minkowski space subject to local action of an internal symmetry group (classical gauge theory). The expansion process is shown to break P 10 -gauge covariance of the theory, and hence solving the zeroth-order field equations imposes an implicit system of P 10 -gauge conditions. Explicit systems of field equations are obtained for the first- and higher-order approximations. The first-order translation field equations are driven by the momentum-energy tensor of the matter and internal compensating fields in the zeroth order (classical gauge theory), while the first-order Lorentz rotation field equations are driven by the spin currents of the same classical gauge theory. Field equations for the first-order gravitational corrections to the matter fields and the gauge fields for the internal symmetry group are obtained. Direct Poincare gauge theory is thus shown to satisfy the first two of the three-part acid test of any unified field theory. Satisfaction of the third part of the test, at least for finite neighborhoods, seems probable

  7. Features and New Physical Scales in Primordial Observables: Theory and Observation

    CERN Document Server

    Chluba, Jens; Patil, Subodh P.

    2015-01-01

    All cosmological observations to date are consistent with adiabatic, Gaussian and nearly scale invariant initial conditions. These findings provide strong evidence for a particular symmetry breaking pattern in the very early universe (with a close to vanishing order parameter, $\\epsilon$), widely accepted as conforming to the predictions of the simplest realizations of the inflationary paradigm. However, given that our observations are only privy to perturbations, in inferring something about the background that gave rise to them, it should be clear that many different underlying constructions project onto the same set of cosmological observables. Features in the primordial correlation functions, if present, would offer a unique and discriminating window onto the parent theory in which the mechanism that generated the initial conditions is embedded. In certain contexts, simple linear response theory allows us to infer new characteristic scales from the presence of features that can break the aforementioned de...

  8. New Allometric Equations to Support Sustainable Plantation Management of Rosewood (Aniba rosaeodora Ducke in the Central Amazon

    Directory of Open Access Journals (Sweden)

    Pedro Krainovic

    2017-09-01

    Full Text Available Rosewood (Aniba rosaeodora Ducke is an endangered Amazonian tree species which produces one of the most valuable essential oils in the world. The species is used in silvicultural systems which are seen as a means to reducing the pressure of exploitation of natural rosewood populations. There are no specific equations for rosewood plantations, and therefore generalized equations are inappropriate for the species in commercial systems. This study presents allometric equations from 144 trees sampled in different rosewood plantations of Central Amazonia. The equations generated were compared with an equation used in forest management to estimate wood volume and another one recommended by law for rosewood biomass. The equation suggested by current legislation underestimates the actual values by more than 70% making the viable use of this equation impossible in commercial plantations. The equations generated to estimate the volume and biomass serve as an alternative to the need to develop specific equations for each area and age of the plant. The generic equation for the species is consistent for fresh mass management, with a generalized R2 of 0.80 and an underestimation of 0.33%. The equation for crown fresh mass estimation presented a generalized R2 of 0.32 and an underestimation of 0.24%. The underestimation of the mass production by rosewood plantations represents a serious impediment to this forest activity. The allometric equations developed are highly applicable under different conditions and management options and should be suggested by the legal provisions regulating rosewood-related activity in Central Amazonia.

  9. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea).

    Science.gov (United States)

    de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  10. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    Science.gov (United States)

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  11. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes.

    Science.gov (United States)

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2012-11-15

    Many species of gobiid fishes adhere to surfaces using a sucker formed from fusion of the pelvic fins. Juveniles of many amphidromous species use this pelvic sucker to scale waterfalls during migrations to upstream habitats after an oceanic larval phase. However, adults may still use suckers to re-scale waterfalls if displaced. If attachment force is proportional to sucker area and if growth of the sucker is isometric, then increases in the forces that climbing fish must resist might outpace adhesive capacity, causing climbing performance to decline through ontogeny. To test for such trends, we measured pressure differentials and adhesive suction forces generated by the pelvic sucker across wide size ranges in six goby species, including climbing and non-climbing taxa. Suction was achieved via two distinct growth strategies: (1) small suckers with isometric (or negatively allometric) scaling among climbing gobies and (2) large suckers with positively allometric growth in non-climbing gobies. Species using the first strategy show a high baseline of adhesive capacity that may aid climbing performance throughout ontogeny, with pressure differentials and suction forces much greater than expected if adhesion were a passive function of sucker area. In contrast, large suckers possessed by non-climbing species may help compensate for reduced pressure differentials, thereby producing suction sufficient to support body weight. Climbing Sicyopterus species also use oral suckers during climbing waterfalls, and these exhibited scaling patterns similar to those for pelvic suckers. However, oral suction force was considerably lower than that for pelvic suckers, reducing the ability for these fish to attach to substrates by the oral sucker alone.

  12. Controversy in the allometric application of fixed- versus varying-exponent models: a statistical and mathematical perspective.

    Science.gov (United States)

    Tang, Huadong; Hussain, Azher; Leal, Mauricio; Fluhler, Eric; Mayersohn, Michael

    2011-02-01

    This commentary is a reply to a recent article by Mahmood commenting on the authors' article on the use of fixed-exponent allometry in predicting human clearance. The commentary discusses eight issues that are related to criticisms made in Mahmood's article and examines the controversies (fixed-exponent vs. varying-exponent allometry) from the perspective of statistics and mathematics. The key conclusion is that any allometric method, which is to establish a power function based on a limited number of animal species and to extrapolate the resulting power function to human values (varying-exponent allometry), is infused with fundamental statistical errors. Copyright © 2010 Wiley-Liss, Inc.

  13. Validity and reliability analysis of the planned behavior theory scale related to the testicular self-examination in a Turkish context.

    Science.gov (United States)

    Iyigun, Emine; Tastan, Sevinc; Ayhan, Hatice; Kose, Gulsah; Acikel, Cengizhan

    2016-06-01

    This study aimed to determine the validity and reliability levels of the Planned Behavior Theory Scale as related to a testicular self-examination. The study was carried out in a health-profession higher-education school in Ankara, Turkey, from April to June 2012. The study participants comprised 215 male students. Study data were collected by using a questionnaire, a planned behavior theory scale related to testicular self-examination, and Champion's Health Belief Model Scale (CHBMS). The sub-dimensions of the planned behavior theory scale, namely those of intention, attitude, subjective norms and self-efficacy, were found to have Cronbach's alpha values of between 0.81 and 0.89. Exploratory factor analysis showed that items of the scale had five factors that accounted for 75% of the variance. Of these, the sub-dimension of intention was found to have the highest level of contribution. A significant correlation was found between the sub-dimensions of the testicular self-examination planned behavior theory scale and those of CHBMS (p Planned Behavior Theory Scale is a valid and reliable measurement for Turkish society.

  14. Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures.

    Science.gov (United States)

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2015-06-01

    Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  15. Scaling theory for the quasideterministic limit of continuous bifurcations.

    Science.gov (United States)

    Kessler, David A; Shnerb, Nadav M

    2012-05-01

    Deterministic rate equations are widely used in the study of stochastic, interacting particles systems. This approach assumes that the inherent noise, associated with the discreteness of the elementary constituents, may be neglected when the number of particles N is large. Accordingly, it fails close to the extinction transition, when the amplitude of stochastic fluctuations is comparable with the size of the population. Here we present a general scaling theory of the transition regime for spatially extended systems. We demonstrate this through a detailed study of two fundamental models for out-of-equilibrium phase transitions: the Susceptible-Infected-Susceptible (SIS) that belongs to the directed percolation equivalence class and the Susceptible-Infected-Recovered (SIR) model belonging to the dynamic percolation class. Implementing the Ginzburg criteria we show that the width of the fluctuation-dominated region scales like N^{-κ}, where N is the number of individuals per site and κ=2/(d_{u}-d), d_{u} is the upper critical dimension. Other exponents that control the approach to the deterministic limit are shown to be calculable once κ is known. The theory is extended to include the corrections to the front velocity above the transition. It is supported by the results of extensive numerical simulations for systems of various dimensionalities.

  16. Higgs mass scales and matter-antimatter oscillations in grand unified theories

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1982-01-01

    A general discussion of mass scales in grand unified theories is presented, with special emphasis on Higgs scalars which mediate neutron-antineutron (n-anti n) and hydrogen-antihydrogen (H-anti H) oscillations. It is shown that the analogue of survival hypothesis for fermions naturally makes such particles superheavy, thus leading to unobservable lifetimes. If this hypothesis is relaxed, an interesting possibility of potentially observable n-anti n and H-anti H transitions, mutually related arises in the context of SU(5) theory with spontaneously broken B-L symmetry

  17. Initial density affects biomass – density and allometric relationships in self-thinning populations of Fagopyrum esculentum

    DEFF Research Database (Denmark)

    Li, Lei; Weiner, Jacob; Zhou, Daowei

    2013-01-01

    and the biomass–density trajectory, we grew Fagopyrum esculentum populations at three high densities and measured shoot biomass, density and the height and diameter of individual plants at six harvests. * Initial density did not affect the slope of the log biomass–log density relationship, but there was a clear...... by the biomass density: the relationship between mass and volume. Initial density could affect this by altering allometric growth in a way that influences architectural compactness. An alternative hypothesis is that competition at higher initial density is more size symmetric, which has been shown to reduce...

  18. Neutral Theory and Scale-Free Neural Dynamics

    Science.gov (United States)

    Martinello, Matteo; Hidalgo, Jorge; Maritan, Amos; di Santo, Serena; Plenz, Dietmar; Muñoz, Miguel A.

    2017-10-01

    Neural tissues have been consistently observed to be spontaneously active and to generate highly variable (scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as criticality has been argued to entail many possible important functional advantages in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even if the network operates in a regime far from the edge of any phase transition. We show that perturbations to the system state unfold dynamically according to a "neutral drift" (i.e., guided only by stochasticity) with respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics is likely to play an important role in the cortex functioning. We discuss the implications of these findings to design new empirical approaches to shed further light on how the brain processes and stores information.

  19. Watching More Closely: Shot Scale Affects Film Viewers’ Theory of Mind Tendency But Not Ability

    Science.gov (United States)

    Rooney, Brendan; Bálint, Katalin E.

    2018-01-01

    Recent research debates the effects of exposure to narrative fiction on recognition of mental states in others and self, referred to as Theory of Mind. The current study explores the mechanisms by which such effects could occur in fictional film. Using manipulated film scenes, we conducted a between subject experiment (N = 136) exploring how film shot-scale affects viewers’ Theory of Mind. Specifically, in our methods we distinguish between the trait Theory of Mind abilities (ToM ability), and the state-like tendency to recognize mental states in others and self (ToM tendency). Results showed that close-up shots (compared to long shots) of a character was associated with higher levels of Theory of Mind tendency, when the facial expression was sad but not when it was neutral. And this effect did not transfer to other characters in the film. There was also no observable effect of character depiction on viewers’ general Theory of Mind ability. Together the findings suggest that formal and content features of shot scale can elicit Theory of Mind responses by directing attention toward character mental states rather than improving viewers’ general Theory of Mind ability. PMID:29387032

  20. Watching More Closely: Shot Scale Affects Film Viewers’ Theory of Mind Tendency But Not Ability

    Directory of Open Access Journals (Sweden)

    Brendan Rooney

    2018-01-01

    Full Text Available Recent research debates the effects of exposure to narrative fiction on recognition of mental states in others and self, referred to as Theory of Mind. The current study explores the mechanisms by which such effects could occur in fictional film. Using manipulated film scenes, we conducted a between subject experiment (N = 136 exploring how film shot-scale affects viewers’ Theory of Mind. Specifically, in our methods we distinguish between the trait Theory of Mind abilities (ToM ability, and the state-like tendency to recognize mental states in others and self (ToM tendency. Results showed that close-up shots (compared to long shots of a character was associated with higher levels of Theory of Mind tendency, when the facial expression was sad but not when it was neutral. And this effect did not transfer to other characters in the film. There was also no observable effect of character depiction on viewers’ general Theory of Mind ability. Together the findings suggest that formal and content features of shot scale can elicit Theory of Mind responses by directing attention toward character mental states rather than improving viewers’ general Theory of Mind ability.

  1. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    Science.gov (United States)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  2. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive....... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...

  3. Friedmann cosmology with a cosmological 'constant' in the scale covariant theory

    International Nuclear Information System (INIS)

    Beesham, A.

    1986-01-01

    Homogeneous isotropic cosmologies in the presence of a cosmological 'constant' are studied in the scale covariant theory. A class of solutions is obtained for kappa = 0 for models filled with dust, radiation or stiff matter. For kappa not= 0, solutions are presented for the radiation models. (author)

  4. Experimental verification of the statistical theories of scaling factor effect in fatigue fracture of steel

    International Nuclear Information System (INIS)

    Svistun, R.P.; Babej, Yu.I.; Tkachenko, N.N.

    1976-01-01

    Statistical theories of the scale effect in the fatigue failure of 40KH18N9T, 10 and 20 steels have been verified. The theories are shown to be not invariably suitable for a satisfactory exlanation of the fatigue strength of the samples with respect to their dimensions. One of the main reasons for displaying the scale effect in the process of steel fatigue is the sample self-heating, i.e. a temperature factor which in many cases overlaps a statistical one

  5. Experimental verification of the statistical theories of scaling factor effect in fatigue fracture of steel

    Energy Technology Data Exchange (ETDEWEB)

    Svistun, R P; Babei, Yu I; Tkachenko, N N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.; L' vovskij Lesotekhnicheskij Inst. (Ukrainian SSR))

    1976-01-01

    Statistical theories of the scale effect in the fatigue failure of 40KH18N9T, 10 and 20 steels have been verified. The theories are shown to be not invariably suitable for a satisfactory exlanation of the fatigue strength of the samples with respect to their dimensions. One of the main reasons for displaying the scale effect in the process of steel fatigue is the sample self-heating, i.e. a temperature factor which in many cases overlaps a statistical one.

  6. Inflationary perturbations in no-scale theories

    Energy Technology Data Exchange (ETDEWEB)

    Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-15

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)

  7. Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics

    KAUST Repository

    Li, Tiejun

    2016-01-07

    The construction of energy landscape for bio-dynamics is attracting more and more attention recent years. In this talk, I will introduce the strategy to construct the landscape from the connection to rare events, which relies on the large deviation theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also discussed. We demonstrate different diffusive limits arise when considering different regimes for genetic translation and switching processes.

  8. Conductance of finite systems and scaling in localization theory

    Science.gov (United States)

    Suslov, I. M.

    2012-11-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β( g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β( g) in 1/ g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ɛ looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ - iω for conductivity are discussed.

  9. Conductance of finite systems and scaling in localization theory

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2012-01-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β(g) in 1/g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ε looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ −iω for conductivity are discussed.

  10. Cosmological tests of a scale covariant theory of gravitation

    International Nuclear Information System (INIS)

    Owen, J.R.

    1979-01-01

    The Friedmann models with #betta# = 0 are subjected to several optical and radio tests within the standard and scale covariant theories of gravitation. Within standard cosmology, both interferometric and scintillation data are interpreted in terms of selection effects and evolution. Within the context of scale covariant cosmology are derived: (1) the full solution to Einstein's gravitational equations in atomic units for a matter dominated universe, (2) the study of the magnitude vs. redshift relation for elliptical galaxies, (3) the derivation of the evolutionary parameter used in (2), (4) the isophotal angular diameter vs. redshift relation, (5) the metric angular diameter vs. redshift relation, (6) the N(m) vs. magnitude relation for QSO's and their m vs z relation, and finally (7) the integrated and differential expressions for the number count vs. radio flux test. The results, both in graphical and tabular form, are presented for four gauges (i.e. parametrized relations between atomic and gravitational units). No contradiction between the new theory and the data is found with any of the tests studied. For some gauges, which are suggested by a recent analysis of the time variation of the Moon's period which is discussed in the text in terms of the new theory, the effect of the deceleration parameter on cosmological predictions is enhanced over standard cosmology and it is possible to say that the data are more easily reconciled with an open universe. Within the same gauge, the main features of both the N(m) vs. m and m-z test are accounted for by the same simple evolutionary parametrization whereas different evolutionary rates were indicated by interpretation within standard cosmology. The same consistency, lacking in standard cosmology on this level of analysis, is achieved for the integrated and differential number count - radio flux tests within the same gauge

  11. Biomass estimation by allometric relationships, nutrients, and carbon associated to heart-of-palm plantations in Costa Rica

    International Nuclear Information System (INIS)

    Ares, A.; Boniche, Y.; Quesada, J.P.; Yost, R.; Molina, E.; Smyth, T.J.

    2002-01-01

    Peach palm (Bactris gasipaes) agroecosystems constitute a productive and sustainable land use for the humid tropics. Allometric methods allow to predict biomass non-destructively at any time and, subsequently, to determine the span of growth phases, biomass and nutrient pools, and economic yields. The overall goals of this study were to obtain and validate predictive functions of aboveground dry biomass, and to relate standing biomass with heart-of-palm yields as well. Towards this purpose, peach palm shoots were harvested and separated into components: foliage, petiole and stem, in the Atlantic region of Costa Rica. A non-linear seemingly unrelated regression (NSUR) procedure, which simultaneously fits the component equations that predict leaf, petiole and stem in order to assure biomass additivity, was used to generate the allometric equations. Basal diameter (BD) was a more effective predictor of biomass than height to the fork between the spear leaf and the first fully expanded leaf, total height and number of leaves. Regression models explained 70-89% of the variance in biomass components (foliage, petiole and stem) or total shoot biomass. Three growth stages were identified: establishment (0-1 years), fast growth (1-3 or 1-8 years depending on plant density) and maturity (> 8 years). Nutrient contents associated to above- and below-ground biomass were measured. For above-ground biomass nutrient contents were N (up to 150 kg ha-1)>K (up to 119 kg ha-1)>Ca (up to 45 kg ha-1)>Mg=S=P (between 15-17 kg ha-1). The below-ground biomass: above-ground biomass ratio increased with the plantation age [es

  12. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  13. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  14. A simplified density matrix minimization for linear scaling self-consistent field theory

    International Nuclear Information System (INIS)

    Challacombe, M.

    1999-01-01

    A simplified version of the Li, Nunes and Vanderbilt [Phys. Rev. B 47, 10891 (1993)] and Daw [Phys. Rev. B 47, 10895 (1993)] density matrix minimization is introduced that requires four fewer matrix multiplies per minimization step relative to previous formulations. The simplified method also exhibits superior convergence properties, such that the bulk of the work may be shifted to the quadratically convergent McWeeny purification, which brings the density matrix to idempotency. Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and Tuma [SIAM J. Sci. Comp. 17, 1135 (1996)] is introduced to linear scaling electronic structure theory, and found to be essential in transformations between orthogonal and nonorthogonal representations. These methods have been developed with an atom-blocked sparse matrix algebra that achieves sustained megafloating point operations per second rates as high as 50% of theoretical, and implemented in the MondoSCF suite of linear scaling SCF programs. For the first time, linear scaling Hartree - Fock theory is demonstrated with three-dimensional systems, including water clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with minimization in an orthonormal representation. An early onset of linear scaling is found for both minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with system size is investigated for various levels of approximation. copyright 1999 American Institute of Physics

  15. Distribution of Heavy Metals in the Different Parts of Cerithidea Obtusa and the Relationships between Metal Distribution and Allometric Parameters of the Snail

    Directory of Open Access Journals (Sweden)

    Chee Kong YAP

    2010-07-01

    Full Text Available The intertidal gastropod, Cerithidea obtusa were obtained from Bako and Sematan (Sarawak and Deralik (Perak. Besides the shell, the snails were dissected into five different soft tissues. The soft tissues and the shell were then analysed for heavy metals. It was found that the highest concentrations of Cu (112 - 178 μg/g dw and Zn (117 - 161 μg/g dw were found in the tentacle; the highest concentrations of Cd (4.41 - 5.37 μg/g dw, Pb (53.2 - 63.8 μg/g dw and Ni (26.1 - 27.9 μg/g dw were found in the shell. On the other hand, the highest Fe concentrations (910 - 2921 μg/g dw were found in the operculum. The Spearman's correlation coefficient and multiple stepwise linear regression also revealed that the allometric parameters can influence the distribution of heavy metals in some of the different parts. From the present findings indicated that the heavy metals accumulated by the C. obtusa from the environment might affect its physical growth, which was shown by the negative correlations found between the metals in the different parts with the allometric parameters.

  16. The maximum sizes of large scale structures in alternative theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sourav [IUCAA, Pune University Campus, Post Bag 4, Ganeshkhind, Pune, 411 007 India (India); Dialektopoulos, Konstantinos F. [Dipartimento di Fisica, Università di Napoli ' Federico II' , Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, Napoli, I-80126 Italy (Italy); Romano, Antonio Enea [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52–21, Medellín (Colombia); Skordis, Constantinos [Department of Physics, University of Cyprus, 1 Panepistimiou Street, Nicosia, 2109 Cyprus (Cyprus); Tomaras, Theodore N., E-mail: sbhatta@iitrpr.ac.in, E-mail: kdialekt@gmail.com, E-mail: aer@phys.ntu.edu.tw, E-mail: skordis@ucy.ac.cy, E-mail: tomaras@physics.uoc.gr [Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, 70013 Heraklion (Greece)

    2017-07-01

    The maximum size of a cosmic structure is given by the maximum turnaround radius—the scale where the attraction due to its mass is balanced by the repulsion due to dark energy. We derive generic formulae for the estimation of the maximum turnaround radius in any theory of gravity obeying the Einstein equivalence principle, in two situations: on a spherically symmetric spacetime and on a perturbed Friedman-Robertson-Walker spacetime. We show that the two formulae agree. As an application of our formula, we calculate the maximum turnaround radius in the case of the Brans-Dicke theory of gravity. We find that for this theory, such maximum sizes always lie above the ΛCDM value, by a factor 1 + 1/3ω, where ω>> 1 is the Brans-Dicke parameter, implying consistency of the theory with current data.

  17. Necessity of intermediate mass scales in grand unified theories with spontaneously broken CP invariance

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1982-07-01

    It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)

  18. Scaling Law for Photon Transmission through Optically Turbid Slabs Based on Random Walk Theory

    Directory of Open Access Journals (Sweden)

    Xuesong Li

    2012-03-01

    Full Text Available Past work has demonstrated the value of a random walk theory (RWT to solve multiple-scattering problems arising in numerous contexts. This paper’s goal is to investigate the application range of the RWT using Monte Carlo simulations and extending it to anisotropic media using scaling laws. Meanwhile, this paper also reiterates rules for converting RWT formulas to real physical dimensions, and corrects some errors which appear in an earlier publication. The RWT theory, validated by the Monte Carlo simulations and combined with the scaling law, is expected to be useful to study multiple scattering and to greatly reduce the computation cost.

  19. Scaling of olfactory antennae of the terrestrial hermit crabs Coenobita rugosus and Coenobita perlatus during ontogeny

    Directory of Open Access Journals (Sweden)

    Lindsay D. Waldrop

    2014-08-01

    Full Text Available Although many lineages of terrestrial crustaceans have poor olfactory capabilities, crabs in the family Coenobitidae, including the terrestrial hermit crabs in the genus Coenobita, are able to locate food and water using olfactory antennae (antennules to capture odors from the surrounding air. Terrestrial hermit crabs begin their lives as small marine larvae and must find a suitable place to undergo metamorphosis into a juvenile form, which initiates their transition to land. Juveniles increase in size by more than an order of magnitude to reach adult size. Since odor capture is a process heavily dependent on the size and speed of the antennules and physical properties of the fluid, both the transition from water to air and the large increase in size during ontogeny could impact odor capture. In this study, we examine two species of terrestrial hermit crabs, Coenobita perlatus H. Milne-Edwards and Coenobita rugosus H. Milne-Edwards, to determine how the antennule morphometrics and kinematics of flicking change in comparison to body size during ontogeny, and how this scaling relationship could impact odor capture by using a simple model of mass transport in flow. Many features of the antennules, including the chemosensory sensilla, scaled allometrically with carapace width and increased slower than expected by isometry, resulting in relatively larger antennules on juvenile animals. Flicking speed scaled as expected with isometry. Our mass-transport model showed that allometric scaling of antennule morphometrics and kinematics leads to thinner boundary layers of attached fluid around the antennule during flicking and higher odorant capture rates as compared to antennules which scaled isometrically. There were no significant differences in morphometric or kinematic measurements between the two species.

  20. Allometric relations of total volumes of prolactin cells and corticotropic cells to body length in the annual cyprinodont Cynolebias whitei: effects of environmental salinity, stress and ageing

    NARCIS (Netherlands)

    Ruijter, J. M.; Wendelaar Bonga, S. E.

    1987-01-01

    An analysis of the allometric relations of the total volumes occupied by prolactin (PRL) and corticotropic (ACTH) cells (PRL volume and ACTH volume, respectively) to body length and a study of the immunocytochemical staining intensity of PRL and ACTH cells were used to determine the differences in

  1. A Polytomous Item Response Theory Analysis of Social Physique Anxiety Scale

    Science.gov (United States)

    Fletcher, Richard B.; Crocker, Peter

    2014-01-01

    The present study investigated the social physique anxiety scale's factor structure and item properties using confirmatory factor analysis and item response theory. An additional aim was to identify differences in response patterns between groups (gender). A large sample of high school students aged 11-15 years (N = 1,529) consisting of n =…

  2. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    Science.gov (United States)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  3. Scaling of adult body weight to height across sex and race/ethnic groups: relevance to BMI.

    Science.gov (United States)

    Heymsfield, Steven B; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Schuna, John M; Hong, Sangmo; Choi, Woong

    2014-12-01

    Body mass index (BMI) is formulated on the assumption that body weight (BW) scales to height with a power of 2 (BW∝height(2)), independent of sex and race-ethnicity. Powers differing from 2 are observed in studies of selected samples, thus raising the question if BMI is a generalizable metric that makes BW independent of height across populations. The objectives were to test the hypothesis that adult BW scales to height with a power of 2 independent of sex and race-ethnicity and to advance an understanding of BMI as a measure of shape by extending allometric analyses to waist circumference (WC). We conducted cross-sectional subject evaluations, including body composition, from the NHANES and the Korean NHANES (KNHANES). Variations of the allometric model (Y = αX(β)) were used to establish height scaling powers (β ± SE) across non-Hispanic white and black, Mexican American, and Korean men and women. Exploratory analyses in population samples established age and adiposity as important independent determinants of height scaling powers (i.e., β). After age and adiposity in the next series of analyses were controlled for, BW scaling powers were nonsignificantly different between race/ethnic groups within each sex group; WC findings were similar in women, whereas small but significant between-race differences were observed in the men. Sex differences in β values were nonsignificant except for BW in non-Hispanic blacks and WC in Koreans (P ethnic groups, an observation that makes BMI a generalizable height-independent measure of shape across most populations. WC also follows generalizable scaling rules, a finding that has implications for defining body shape in populations who differ in stature. © 2014 American Society for Nutrition.

  4. Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest.

    Science.gov (United States)

    Cheng, Dongliang; Zhong, Quanlin; Niklas, Karl J; Ma, Yuzhu; Yang, Yusheng; Zhang, Jianhua

    2015-02-01

    Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs. In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log-log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made. The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants. The results support the AP theory's prediction that MA scales nearly one-to-one with MR (i.e. MA ∝ MR (≈1·0)) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents

  5. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  6. Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling

    International Nuclear Information System (INIS)

    Fischbacher, Thomas; Klose, Thomas; Plefka, Jan

    2005-01-01

    We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)

  7. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2013-12-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  8. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  9. Shifts in mass-scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hirst, Andrew G.

    2014-01-01

    The metabolic rate of organisms may be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law, or it may be considered a property of the organism that emerges as a result of the adaptation to the environ...... and be the result of the optimization of trade-offs that allow sufficient feeding and growth rates to balance mortality...

  10. Minimizing bias in biomass allometry: Model selection and log transformation of data

    Science.gov (United States)

    Joseph Mascaro; undefined undefined; Flint Hughes; Amanda Uowolo; Stefan A. Schnitzer

    2011-01-01

    Nonlinear regression is increasingly used to develop allometric equations for forest biomass estimation (i.e., as opposed to the raditional approach of log-transformation followed by linear regression). Most statistical software packages, however, assume additive errors by default, violating a key assumption of allometric theory and possibly producing spurious models....

  11. Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory

    CERN Document Server

    Bars, Itzhak

    2010-01-01

    In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.

  12. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  13. The role of instantons in scale-invariant gauge theories

    International Nuclear Information System (INIS)

    Affleck, I.

    1980-01-01

    Instanton calculations in scale-invariant gauge theories, such as QCD, have long been plagued by divergences at large distances where strong coupling effects are important. Furthermore, Witten has argued that quantum effects may cause the instanton gas to disappear and has displayed this phenomenon in the CPsup(N-1) model at large N. It is argued here that instantons can play a role in calculations involving an inherent infrared cut-off, and this is demonstrated in the CPsup(N-1) model for large N at a finite temperature. Some results on finite-temperature QED are also obtained in passing. (orig.)

  14. Using G-Theory to Enhance Evidence of Reliability and Validity for Common Uses of the Paulhus Deception Scales.

    Science.gov (United States)

    Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat

    2018-01-01

    We applied a new approach to Generalizability theory (G-theory) involving parallel splits and repeated measures to evaluate common uses of the Paulhus Deception Scales based on polytomous and four types of dichotomous scoring. G-theory indices of reliability and validity accounting for specific-factor, transient, and random-response measurement error supported use of polytomous over dichotomous scores as contamination checks; as control, explanatory, and outcome variables; as aspects of construct validation; and as indexes of environmental effects on socially desirable responding. Polytomous scoring also provided results for flagging faking as dependable as those when using dichotomous scoring methods. These findings argue strongly against the nearly exclusive use of dichotomous scoring for the Paulhus Deception Scales in practice and underscore the value of G-theory in demonstrating this. We provide guidelines for applying our G-theory techniques to other objectively scored clinical assessments, for using G-theory to estimate how changes to a measure might improve reliability, and for obtaining software to conduct G-theory analyses free of charge.

  15. The string tension and the scaling behavior of SU(2) gauge theory on a random lattice

    International Nuclear Information System (INIS)

    Qui Zhaoming; Ren Haichang; Academia Sinica, Beijing; Wang Xiaoqun; Yang Zhixing; Zhao Enping

    1987-01-01

    The SU(2) gauge theory on an 8 4 random lattice has been studied by the Monte Carlo method. The string tensions have been evaluated. They display the expected scaling behavior for β = 1.2-1.3. The scale parameter Λ RAN has been determined approximately. (orig.)

  16. Supply-demand balance in outward-directed networks and Kleiber's law

    OpenAIRE

    Painter Page R

    2005-01-01

    Abstract Background Recent theories have attempted to derive the value of the exponent α in the allometric formula for scaling of basal metabolic rate from the properties of distribution network models for arteries and capillaries. It has recently been stated that a basic theorem relating the sum of nutrient currents to the specific nutrient uptake rate, together with a relationship claimed to be required in order to match nutrient supply to nutrient demand in 3-dimensional outward-directed n...

  17. A critical review on the scaling theory of dispersion

    Science.gov (United States)

    Zech, Alraune; Mai, Juliane; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg; Fiori, Aldo; Rubin, Yoram

    2014-05-01

    The phenomenon of dispersive mixing of solutes in aquifers is subject of research since decades. The characterization of dispersivity at a particular field site is a prerequisite to predict the movement and spreading of a contaminant plume. Experimental investigations have shown, that field-scale dispersivities vary over orders of magnitude, which apparently depends on the scale of measurement. Gelhar et al. [1992] and Schulze-Makuch [2005] have reviewed a large number of transport experiments reported in the literature. Based on that data Schulze-Makuch [2005] performed a trend analysis of longitudinal dispersivity, fostering the empirical relationship of a power law between dispersivities and the scale of measurement without an upper bound. The goal of our study is to critically revisit not only the data used for the trend analysis but the power-law scale dependence of longitudinal dispersivity (e.g. Neuman [1990], Xu and Eckstein [1995]). Our particular focus is on the reported dispersivities of large amount (larger than 100m) and large measurement scales (in the order of kilometers). We aim to evaluate current theories of transport against a critical "mass" of field experiments and to bracket the conditions of their applicability. We further aim to evaluate the adequacy of the field sampling techniques that were employed from the perspective of more than 30 years development in modeling and field characterization. Given the tremendous progress in field data acquisition techniques and new insights gained, it is reasonable to expect that interpretations of past experiments may be flawed due to the limitations or inadequacy of field sampling techniques. Gelhar, L.W., C. Welty, and K.R. Rehfeldt, 1992, A critical review of data on field-scale dispersion in aquifers, Water Resources Research 28, No. 7: 1955-1974. Schulze-Makuch, D., 2005, Longitudinal dispersivity data and implications for scaling behavior, Ground Water, Vol. 43, No. 3, 443-456. Neuman, S.P., 1990

  18. Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory

    International Nuclear Information System (INIS)

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.; McDonald, Kristian L.

    2008-01-01

    If scale invariance is a classical symmetry then both the Planck scale and the weak scale should emerge as quantum effects. We show that this can be realized in simple scale invariant theories with a hidden sector. The weak/Planck scale hierarchy emerges in the (technically natural) limit in which the hidden sector decouples from the ordinary sector. In this limit, finite corrections to the weak scale are consequently small, while quadratic divergences are absent by virtue of classical scale invariance, so there is no hierarchy problem

  19. A computational comparison of theory and practice of scale intonation in Byzantine chant

    DEFF Research Database (Denmark)

    Panteli, Maria; Purwins, Hendrik

    2013-01-01

    Byzantine Chant performance practice is quantitatively compared to the Chrysanthine theory. The intonation of scale degrees is quantified, based on pitch class profiles. An analysis procedure is introduced that consists of the following steps: 1) Pitch class histograms are calculated via non-parametric...... kernel smoothing. 2) Histogram peaks are detected. 3) Phrase ending analysis aids the finding of the tonic to align histogram peaks. 4) The theoretical scale degrees are mapped to the practical ones. 5) A schema of statistical tests detects significant deviations of theoretical scale tuning from...... the estimated ones in performance practice. The analysis of 94 echoi shows a tendency of the singer to level theoretic particularities of the echos that stand out of the general norm in the octoechos: theoretically extremely large scale steps are diminished in performance....

  20. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  1. Cosmological large-scale structures beyond linear theory in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)

    2011-06-01

    We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.

  2. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    Directory of Open Access Journals (Sweden)

    Simonete Silva

    Full Text Available Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP. We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR, handgrip strength (HG, standing long jump (SLJ and the shuttle run speed (SR tests; physical activity (PA was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences.

  3. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    Science.gov (United States)

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences.

  4. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance

    Science.gov (United States)

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T.; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9–15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences. PMID:26939118

  5. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  6. Large-scale transportation network congestion evolution prediction using deep learning theory.

    Science.gov (United States)

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  7. Recent development of linear scaling quantum theories in GAMESS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2003-06-01

    Linear scaling quantum theories are reviewed especially focusing on the method adopted in GAMESS. The three key translation equations of the fast multipole method (FMM) are deduced from the general polypolar expansions given earlier by Steinborn and Rudenberg. Simplifications are introduced for the rotation-based FMM that lead to a very compact FMM formalism. The OPS (optimum parameter searching) procedure, a stable and efficient way of obtaining the optimum set of FMM parameters, is established with complete control over the tolerable error {epsilon}. In addition, a new parallel FMM algorithm requiring virtually no inter-node communication, is suggested which is suitable for the parallel construction of Fock matrices in electronic structure calculations.

  8. De Sitter and scaling solutions in a higher-order modified teleparallel theory

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, Andronikos, E-mail: anpaliat@phys.uoa.gr [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile)

    2017-08-01

    The existence and the stability conditions for some exact relativistic solutions of special interest are studied in a higher-order modified teleparallel gravitational theory. The theory with the use of a Lagrange multiplier is equivalent with that of General Relativity with a minimally coupled noncanonical field. The conditions for the existence of de Sitter solutions and ideal gas solutions in the case of vacuum are studied as also the stability criteria. Furthermore, in the presence of matter the behaviour of scaling solutions is given. Finally, we discuss the degrees of freedom of the field equations and we reduce the field equations in an algebraic equation, where in order to demonstrate our result we show how this noncanonical scalar field can reproduce the Hubble function of Λ-cosmology.

  9. Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    CERN Document Server

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-01-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...

  10. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  11. Multiple spatial scaling and the weak-coupling approximation. I. General formulation and equilibrium theory

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-04-01

    Multiple spatial scaling is incorporated in a modified form of the Bogoliubov plasma cluster expansion; then this proposed reformulation of the plasma weak-coupling approximation is used to derive, from the BBGKY Hierarchy, a decoupled set of equations for the one-and two-particle distribution functions in the limit as the plasma parameter goes to zero. Because the reformulated cluster expansion permits retention of essential two-particle collisional information in the limiting equations, while simultaneously retaining the well-established Debye-scale relative ordering of the correlation functions, decoupling of the Hierarchy is accomplished without introduction of the divergence problems encountered in the Bogoliubov theory, as is indicated by an exact solution of the limiting equations for the equilibrium case. To establish additional links with existing plasma equilibrium theories, the two-particle equilibrium correlation function is used to calculate the interaction energy and the equation of state. The limiting equation for the equilibrium three-particle correlation function is then developed, and a formal solution is obtained.

  12. Creation and validation of the barriers to alcohol reduction (BAR) scale using classical test theory and item response theory.

    Science.gov (United States)

    Kunicki, Zachary J; Schick, Melissa R; Spillane, Nichea S; Harlow, Lisa L

    2018-06-01

    Those who binge drink are at increased risk for alcohol-related consequences when compared to non-binge drinkers. Research shows individuals may face barriers to reducing their drinking behavior, but few measures exist to assess these barriers. This study created and validated the Barriers to Alcohol Reduction (BAR) scale. Participants were college students ( n  = 230) who endorsed at least one instance of past-month binge drinking (4+ drinks for women or 5+ drinks for men). Using classical test theory, exploratory structural equation modeling found a two-factor structure of personal/psychosocial barriers and perceived program barriers. The sub-factors, and full scale had reasonable internal consistency (i.e., coefficient omega = 0.78 (personal/psychosocial), 0.82 (program barriers), and 0.83 (full measure)). The BAR also showed evidence for convergent validity with the Brief Young Adult Alcohol Consequences Questionnaire ( r  = 0.39, p  Theory (IRT) analysis showed the two factors separately met the unidimensionality assumption, and provided further evidence for severity of the items on the two factors. Results suggest that the BAR measure appears reliable and valid for use in an undergraduate student population of binge drinkers. Future studies may want to re-examine this measure in a more diverse sample.

  13. Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Glazier, Douglas S.; Atkinson, David

    2014-01-01

    Metabolism fuels all of life’s activities, from biochemical reactions to ecological interactions. According to two intensely debated theories, body size affects metabolism via geometrical influences on the transport of resources and wastes. However, these theories differ crucially in whether...... the size dependence of metabolism is derived from material transport across external surfaces, or through internal resource-transport networks. We show that when body shape changes during growth, these models make opposing predictions. These models are tested using pelagic invertebrates, because...... these animals exhibit highly variable intraspecific scaling relationships for metabolic rate and body shape. Metabolic scaling slopes of diverse integument-breathing species were significantly positively correlated with degree of body flattening or elongation during ontogeny, as expected from surface area...

  14. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    Science.gov (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  15. Large-scale transportation network congestion evolution prediction using deep learning theory.

    Directory of Open Access Journals (Sweden)

    Xiaolei Ma

    Full Text Available Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS and Internet of Things (IoT, transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  16. Allometric relationships of the dentition of the great White Shark, Carcharodon carcharias, in forensic investigations of shark attacks.

    Science.gov (United States)

    Nambiar, P; Bridges, T E; Brown, K A

    1991-06-01

    As a result of a systematic morphometric study of shark dentitions, a system of notation for describing the location of shark teeth has been developed and is proposed as a standard to be adopted for use in similar studies in the future. The macroscopic morphology of White Shark teeth has been characterised in order to gain quantitative data which might assist in identification of these sharks from bite marks on victims or objects or from shark carcasses. Using these data, a nomogram has been developed which can be used to estimate the body length of a White Shark from measurements of tooth or bite mark morphology. An example of the forensic application of such allometric data is provided as it applied to a recent fatal attack on a diver by a White Shark.

  17. Wave-particle duality through an extended model of the scale relativity theory

    International Nuclear Information System (INIS)

    Ioannou, P D; Nica, P; Agop, M; Paun, V; Vizureanu, P

    2008-01-01

    Considering that the chaotic effect of associated wave packet on the particle itself results in movements on the fractal (continuous and non-differentiable) curves of fractal dimension D F , wave-particle duality through an extension of the scale relativity theory is given. It results through an equation of motion for the complex speed field, that in a fractal fluid, the convection, dissipation and dispersion are reciprocally compensating at any scale (differentiable or non-differentiable). From here, for an irrotational movement, a generalized Schroedinger equation is obtained. The absence of dispersion implies a generalized Navier-Stokes type equation, whereas, for the irrotational movement and the fractal dimension, D F = 2, the usual Schroedinger equation results. The absence of dissipation implies a generalized Korteweg-de Vries type equation. In such conjecture, at the differentiable scale, the duality is achieved through the flowing regimes of the fractal fluid, i.e. the wave character by means of the non-quasi-autonomous flowing regime and the particle character by means of the quasi-autonomous flowing regime. These flowing regimes are separated by '0.7 structure'. At the non-differentiable scale, a fractal potential acts as an energy accumulator and controls through the coherence the duality. The correspondence between the differentiable and non-differentiable scales implies a Cantor space-time. Moreover, the wave-particle duality implies at any scale a fractal.

  18. Item Response Theory Analyses of the Parent and Teacher Ratings of the DSM-IV ADHD Rating Scale

    Science.gov (United States)

    Gomez, Rapson

    2008-01-01

    The graded response model (GRM), which is based on item response theory (IRT), was used to evaluate the psychometric properties of the inattention and hyperactivity/impulsivity symptoms in an ADHD rating scale. To accomplish this, parents and teachers completed the DSM-IV ADHD Rating Scale (DARS; Gomez et al., "Journal of Child Psychology and…

  19. On Δβ and the search for asymptotic scaling in lattice gauge theory

    International Nuclear Information System (INIS)

    Petcher, D.

    1986-01-01

    An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)

  20. On Δβ and the search for asymptotic scaling in lattice gauge theory

    International Nuclear Information System (INIS)

    Petcher, D.

    1986-01-01

    An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block-spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two-loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)

  1. Scale dependence of the average potential around the maximum in Φ4 theories

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1992-04-01

    The average potential describes the physics at a length scale k - 1 by averaging out the degrees of freedom with characteristic moments larger than k. The dependence on k can be described by differential evolution equations. We solve these equations for the nonconvex part of the potential around the origin in φ 4 theories, in the phase with spontaneous symmetry breaking. The average potential is real and approaches the convex effective potential in the limit k → 0. Our calculation is relevant for processes for which the shape of the potential at a given scale is important, such as tunneling phenomena or inflation. (orig.)

  2. Measurement with multiple indicators and psychophysical scaling in the context of Fishbein and Ajzen's theory of reasoned action

    NARCIS (Netherlands)

    van den Putte, B.; Saris, W.E.; Hoogstraten, J.

    1995-01-01

    Two experiments were carried out to test the theory of reasoned action of Fishbein and Ajzen. The measurements were done using two category scales and two psychophysical scales. No consistent difference in results was found between the four modalities. However, if the latter were used as multiple

  3. Development and validation of the nasopharyngeal cancer scale among the system of quality of life instruments for cancer patients (QLICP-NA V2.0): combined classical test theory and generalizability theory.

    Science.gov (United States)

    Wu, Jiayuan; Hu, Liren; Zhang, Gaohua; Liang, Qilian; Meng, Qiong; Wan, Chonghua

    2016-08-01

    This research was designed to develop a nasopharyngeal cancer (NPC) scale based on quality of life (QOL) instruments for cancer patients (QLICP-NA). This scale was developed by using a modular approach and was evaluated by classical test and generalizability theories. Programmed decision procedures and theories on instrument development were applied to create QLICP-NA V2.0. A total of 121 NPC inpatients were assessed using QLICP-NA V2.0 to measure their QOL data from hospital admission until discharge. Scale validity, reliability, and responsiveness were evaluated by correlation, factor, parallel, multi-trait scaling, and t test analyses, as well as by generalizability (G) and decision (D) studies of the generalizability theory. Results of multi-trait scaling, correlation, factor, and parallel analyses indicated that QLICP-NA V2.0 exhibited good construct validity. The significant difference of QOL between the treated and untreated NPC patients indicated a good clinical validity of the questionnaire. The internal consistency (α) and test-retest reliability coefficients (intra-class correlations) of each domain, as well as the overall scale, were all >0.70. Ceiling effects were not found in all domains and most facets, except for common side effects (24.8 %) in the domain of common symptoms and side effects, tumor early symptoms (27.3 %) and therapeutic side effects (23.2 %) in specific domain, whereas floor effects did not exist in each domain/facet. The overall changes in the physical and social domains were significantly different between pre- and post-treatments with a moderate effective size (standard response mean) ranging from 0.21 to 0.27 (p theory. QLICP-NA V2.0 exhibited reasonable degrees of validity, reliability, and responsiveness. However, this scale must be further improved before it can be used as a practical instrument to evaluate the QOL of NPC patients in China.

  4. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  5. Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay

    KAUST Repository

    Bachiller, Eneko

    2012-11-21

    The body size of fish is an important factor in determining their biology and ecology, as predators eat prey smaller than themselves. Predator mouth size restricts the availability of possible prey. In this paper we provide the allometric relationships of eight common, small pelagic fish species in the Bay of Biscay. In addition, we describe the predator-prey size ratios for different species, and we determine changes in their ratio-based trophic-niche breadth with increasing body size. Results suggest that gape size does not totally determine the predator-prey size ratio distribution, but predators use the entire available prey size range, including the smallest. As they grow they simply incorporate larger prey as their increased gape size permits. Accordingly, a large degree of overlap was found in the diet composition in terms of size and predator-prey ratios, even between fish of different sizes. Of the species studied, only horse mackerels seem to be clearly specialized in relatively large prey. © 2012 International Council for the Exploration of the Sea.

  6. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  7. Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory

    International Nuclear Information System (INIS)

    Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin

    2009-01-01

    We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.

  8. Allometric trajectories and "stress"

    NARCIS (Netherlands)

    Anfodillo, Tommaso; Petit, Giai; Sterck, Frank; Lechthaler, Silvia; Olson, Mark E.

    2016-01-01

    The term "stress" is an important but vague term in plant biology. We show situations in which thinking in terms of "stress" is profitably replaced by quantifying distance from functionally optimal scaling relationships between plant parts. These relationships include, for example, the

  9. Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs.

    Science.gov (United States)

    Prondvai, Edina; Godefroit, Pascal; Adriaens, Dominique; Hu, Dong-Yu

    2018-01-10

    With their elongated forelimbs and variable aerial skills, paravian dinosaurs, a clade also comprising modern birds, are in the hotspot of vertebrate evolutionary research. Inferences on the early evolution of flight largely rely on bone and feather morphology, while osteohistological traits are usually studied to explore life-history characteristics. By sampling and comparing multiple homologous fore- and hind limb elements, we integrate for the first time qualitative and quantitative osteohistological approaches to get insight into the intraskeletal growth dynamics and their functional implications in five paravian dinosaur taxa, Anchiornis, Aurornis, Eosinopteryx, Serikornis, and Jeholornis. Our qualitative assessment implies a considerable diversity in allometric/isometric growth patterns among these paravians. Quantitative analyses show that neither taxa nor homologous elements have characteristic histology, and that ontogenetic stage, element size and the newly introduced relative element precocity only partially explain the diaphyseal histovariability. Still, Jeholornis, the only avialan studied here, is histologically distinct from all other specimens in the multivariate visualizations raising the hypothesis that its bone tissue characteristics may be related to its superior aerial capabilities compared to the non-avialan paravians. Our results warrant further research on the osteohistological correlates of flight and developmental strategies in birds and bird-like dinosaurs.

  10. Planck-scale induced left–right gauge theory at LHC and experimental tests

    Directory of Open Access Journals (Sweden)

    M.K. Parida

    2016-05-01

    Full Text Available Recent measurements at LHC have inspired searches for TeV scale left–right gauge theory originating from grand unified theories. We show that inclusion of Planck-scale induced effects due to dim.5 operator not only does away with all the additional intermediate symmetries, but also it predicts the minimal set of light Higgs scalars tailored after neutrino masses and dilepton, or trilepton signals. The heavy-light neutrino mixings are predicted from charged fermion mass fits in SO(10 and LFV constraints which lead to new predictions for dilepton or trilepton production signals. Including fine-structure constant matching and two-loop, and threshold effects predict MWR=g2R104.3±1.5±0.2 GeV and proton lifetime τp=1036.15±5.8±0.2 yrs with WR gauge boson coupling g2R=0.56–0.57. Predictions on lepton flavour and lepton number violations are accessible to ongoing experiments. Current CMS data on di-electron excess at s=8 TeV are found to be consistent with WR gauge boson mass MWR≥1.9–2.2 TeV which also agrees with the values obtained from dijet resonance production data. We also discuss plausible explanations for diboson production excesses observed at LHC and make predictions expected at s=14 TeV.

  11. Universality and scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Michael, C.; Teper, M.; Oxford Univ.

    1988-01-01

    We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)

  12. Comparative Allometric Growth of the Mimetic Ephippid Reef Fishes Chaetodipterus faber and Platax orbicularis.

    Directory of Open Access Journals (Sweden)

    Breno Barros

    Full Text Available Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes.

  13. Analysis of critical neutron- scattering data from iron and dynamical scaling theory

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1970-01-01

    Experimental three- axis spectrometer data of critical neutron- scattering data from Fe are reanalyzed and compared with the recent theoretical prediction by P. Resibois and C. Piette. The reason why the spin- diffusion parameter did not obey the prediction of dynamical scaling theory is indicated....... Double- axis spectrometer data have previously been interpreted in terms of a non- Lorentzian susceptibility. It is shown that with proper corrections for the inelasticity of the scattering the data are consistent with a Lorentzian form of susceptibility....

  14. Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia

    Science.gov (United States)

    Mokria, Mulugeta; Mekuria, Wolde; Gebrekirstos, Aster; Aynekulu, Ermias; Belay, Beyene; Gashaw, Tadesse; Bräuning, Achim

    2018-02-01

    Accurate biomass estimation is critical to quantify the changes in biomass and carbon stocks following the restoration of degraded landscapes. However, there is lack of site-specific allometric equations for the estimation of aboveground biomass (AGB), which consequently limits our understanding of the contributions of restoration efforts in mitigating climate change. This study was conducted in northwestern Ethiopia to develop a multi-species allometric equation and investigate the spatial and temporal variation of C-stocks following the restoration of degraded landscapes. We harvested and weighed 84 trees from eleven dominant species from six grazing exclosures and adjacent communal grazing land. We observed that AGB correlates significantly with diameter at stump height D 30 (R 2 = 0.78 P < 0.01), and tree height H (R 2 = 0.41, P < 0.05). Our best model, which includes D 30 and H as predictors explained 82% of the variations in AGB. This model produced the lowest bias with narrow ranges of errors across different diameter classes. Estimated C-stock showed a significant positive correlation with stem density (R 2 = 0.80, P < 0.01) and basal area (R 2 = 0.84, P < 0.01). At the watershed level, the mean C-stock was 3.8 (±0.5) Mg C ha-1. Plot-level C-stocks varied between 0.1 and 13.7 Mg C ha-1. Estimated C-stocks in three- and seven-year-old exclosures exceeded estimated C-stock in the communal grazing land by 50%. The species that contribute most to C-stocks were Leucaena sp. (28%), Calpurnia aurea (21%), Euclea racemosa (20.9%), and Dodonaea angustifolia (15.8%). The equations developed in this study allow monitoring changes in C-stocks and C-sequestration following the implementation of restoration practices in northern Ethiopia over space and time. The estimated C-stocks can be used as a reference against which future changes in C-stocks can be compared.

  15. Psychometric Properties of the Theory of Mind Assessment Scale in a Sample of Adolescents and Adults.

    Science.gov (United States)

    Bosco, Francesca M; Gabbatore, Ilaria; Tirassa, Maurizio; Testa, Silvia

    2016-01-01

    This research aimed at the evaluation of the psychometric properties of the Theory of Mind Assessment Scale (Th.o.m.a.s.). Th.o.m.a.s. is a semi-structured interview meant to evaluate a person's Theory of Mind (ToM). It is composed of several questions organized in four scales, each focusing on one of the areas of knowledge in which such faculty may manifest itself: Scale A (I-Me) investigates first-order first-person ToM; Scale B (Other-Self) investigates third-person ToM from an allocentric perspective; Scale C (I-Other) again investigates third-person ToM, but from an egocentric perspective; and Scale D (Other-Me) investigates second-order ToM. The psychometric proprieties of Th.o.m.a.s. were evaluated in a sample of 156 healthy persons: 80 preadolescent and adolescent (aged 11-17 years, 42 females) and 76 adults (aged from 20 to 67 years, 35 females). Th.o.m.a.s. scores show good inter-rater agreement and internal consistency; the scores increase with age. Evidence of criterion validity was found as Scale B scores were correlated with those of an independent instrument for the evaluation of ToM, the Strange Stories task. Confirmatory factor analysis (CFA) showed good fit of the four-factors theoretical model to the data, although the four factors were highly correlated. For each of the four scales, Rasch analyses showed that, with few exceptions, items fitted the Partial credit model and their functioning was invariant for gender and age. The results of this study, along with those of previous researches with clinical samples, show that Th.o.m.a.s. is a promising instrument to assess ToM in different populations.

  16. Item response theory analysis of the Lichtenberg Financial Decision Screening Scale.

    Science.gov (United States)

    Teresi, Jeanne A; Ocepek-Welikson, Katja; Lichtenberg, Peter A

    2017-01-01

    The focus of these analyses was to examine the psychometric properties of the Lichtenberg Financial Decision Screening Scale (LFDSS). The purpose of the screen was to evaluate the decisional abilities and vulnerability to exploitation of older adults. Adults aged 60 and over were interviewed by social, legal, financial, or health services professionals who underwent in-person training on the administration and scoring of the scale. Professionals provided a rating of the decision-making abilities of the older adult. The analytic sample included 213 individuals with an average age of 76.9 (SD = 10.1). The majority (57%) were female. Data were analyzed using item response theory (IRT) methodology. The results supported the unidimensionality of the item set. Several IRT models were tested. Ten ordinal and binary items evidenced a slightly higher reliability estimate (0.85) than other versions and better coverage in terms of the range of reliable measurement across the continuum of financial incapacity.

  17. Developing Scale for Assimilate the Integration between Learning Theories and E-learning.

    Directory of Open Access Journals (Sweden)

    George Maher Iskander

    2014-03-01

    Full Text Available As e-learning tend to get more and more significant for all kind of universities, researchers and consultants are becoming aware of the fact that a high technology approach and Blackboard do not guarantee successful teaching and learning. Thus, a move to pedagogy-based theories can be observed within the field of e-learning. This study describes the procedure of the development of an empirically-based psychometrically-sound instrument to measure instructional model for e-learning system at Middle East universities. In order to accelerate the acceptance of e-learning and implementation of institution-wide adoption of e-learning, it is important to understand students' perceptions with instructional model for e- learning. The 19-item scale developed shows a high probability of differentiating between positive and negative perceptions and the methods which can be used for embedding the traditional learning theories into e-learning.

  18. Zurek-Kibble mechanism for the spontaneous vortex formation in Nb-Al/Al-ox/Nb Josephson tunnel junctions: New theory and experiment

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Aarøe, Morten

    2006-01-01

    New scaling behavior has been both predicted and observed in the spontaneous production of fluxons in quenched Nb-Al/Al-ox/Nb annular Josephson tunnel junctions (JTJs) as a function of the quench time, tau(Q). The probability f(1) to trap a single defect during the normal-metal-superconductor pha...... that predicted sigma=0.25, commensurate with the then much poorer data. Our experiment remains the only condensed matter experiment to date to have measured a scaling exponent with any reliability....... transition clearly follows an allometric dependence on tau(Q) with a scaling exponent sigma=0.5, as predicted from the Zurek-Kibble mechanism for realistic JTJs formed by strongly coupled superconductors. This definitive experiment replaces one reported by us earlier, in which an idealized model was used...

  19. Scale-Adjusted Metrics for Predicting the Evolution of Urban Indicators and Quantifying the Performance of Cities.

    Directory of Open Access Journals (Sweden)

    Luiz G A Alves

    Full Text Available More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al. [PLoS ONE 5 (2010 e13541], we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metric provides a more appropriate/informative summary of the evolution of urban indicators and reveals patterns that do not appear in the evolution of per capita values of indicators obtained from Brazilian cities. We also show that these scale-adjusted metrics are strongly correlated with their past values by a linear correspondence and that they also display crosscorrelations among themselves. Simple linear models account for 31%-97% of the observed variance in data and correctly reproduce the average of the scale-adjusted metric when grouping the cities in above and below the allometric laws. We further employ these models to forecast future values of urban indicators and, by visualizing the predicted changes, we verify the emergence of spatial clusters characterized by regions of the Brazilian territory where we expect an increase or a decrease in the values of urban indicators.

  20. Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Montvay, I.; Gutbrod, F.

    1983-11-01

    The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)

  1. Continuum (scaling) limits of lattice field theories (triviality of lambda/phi/4 in D greater than or equal to dimensions)

    International Nuclear Information System (INIS)

    Frohlich, J.

    1983-01-01

    The author describes some recent techniques for constructing the continuum (= scaling) limit of lattice field theories, including the one- and two- component lambda/less than or equal to→/phi// 4 theories and the Ising and rotator models in a space (- imaginary time) of dimension d >greater than or equal to 4. These techniques should have applications to other related models, like the selfavoiding random walk in five or more dimensions and bond percolation in seven or more dimensions. Some plausible conjectures concerning the Gaussian nature of the scaling limit of the d greater than or equal to 2 dimensional rotator model and the d greater than or equal to 4 dimensional U(1) lattice gauge theory in the low temperature (weak coupling) phase are described

  2. Forests as Patrimonies? From Theory to Tangible Processes at Various Scales

    Directory of Open Access Journals (Sweden)

    Genevieve Michon

    2012-09-01

    Full Text Available Among theoretical fields addressing the conceptualization of interrelationships between nature and society, patrimonial approaches remain relatively unexplored. Stressing the multiplication of local dynamics where elements of nature are redefined as "patrimonies" (ranging from local patrimonies to world heritage by various social groups, this conceptual field tries to qualify these dynamics and their determiners to understand how they allow us to better address contemporary environmental challenges. Through a multidisciplinary approach in social sciences, centered on rural forests, we analyze the multiplication of patrimonial processes in forest development at various scales. First, we elaborate on the concept of patrimony and on patrimonial processes and present the current construction and dynamics of forest patrimonies. A crucial question concerns the links that form between the many spatial-temporal levels where these processes develop. Moreover, these patrimonial processes can be quite divergent, not only across scales from local to global, but also between "endogenous" (or bottom-up and "exogenous" (or top-down processes. We present two detailed examples in Morocco and Sumatra, where patrimonial constructions are developing simultaneously at various scales and through various actors who treat the forest in very different ways. Drawing from these examples, we discuss how and why the simultaneous development of different, often overlapping, patrimonial constructions along these scales allows collaboration or, conversely, can lead their holders into conflict. Lastly, we discuss the contribution of patrimonial concepts to resilience thinking and social-ecological systems theory.

  3. Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2011-08-01

    Full Text Available A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1 quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2 to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245 in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1 spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2 different sensors give different scalings, and (3 the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere

  4. An Analysis of the Connectedness to Nature Scale Based on Item Response Theory.

    Science.gov (United States)

    Pasca, Laura; Aragonés, Juan I; Coello, María T

    2017-01-01

    The Connectedness to Nature Scale (CNS) is used as a measure of the subjective cognitive connection between individuals and nature. However, to date, it has not been analyzed at the item level to confirm its quality. In the present study, we conduct such an analysis based on Item Response Theory. We employed data from previous studies using the Spanish-language version of the CNS, analyzing a sample of 1008 participants. The results show that seven items presented appropriate indices of discrimination and difficulty, in addition to a good fit. The remaining six have inadequate discrimination indices and do not present a good fit. A second study with 321 participants shows that the seven-item scale has adequate levels of reliability and validity. Therefore, it would be appropriate to use a reduced version of the scale after eliminating the items that display inappropriate behavior, since they may interfere with research results on connectedness to nature.

  5. Henry's Constants of Persistent Organic Pollutants by a Group-Contribution Method Based on Scaled-Particle Theory.

    Science.gov (United States)

    Razdan, Neil K; Koshy, David M; Prausnitz, John M

    2017-11-07

    A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.

  6. Convergent evolution of vascular optimization in kelp (Laminariales)

    DEFF Research Database (Denmark)

    Drobnitch, Sarah Tepler; Jensen, Kaare Hartvig; Prentice, Paige

    2015-01-01

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric...... (Phaeophyceae) are one such group—as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy...... and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong...

  7. Plant interactions alter the predictions of metabolic scaling theory.

    Directory of Open Access Journals (Sweden)

    Yue Lin

    Full Text Available Metabolic scaling theory (MST is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning. Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric, and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.

  8. Thresholds, switches and hysteresis in hydrology from the pedon to the catchment scale: a non-linear systems theory

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.

  9. Estimating peach palm fruit surface area using allometric relationships Estimativa da área superficial de frutos de pupunheira por relações alométricas

    Directory of Open Access Journals (Sweden)

    Marilene Leão Alves Bovi

    2002-12-01

    Full Text Available Fruit surface area is an important trait in studies of developmental physiology, as well as in entomological and phytopathological research, where damage caused by insects and/or microorganisms needs to be quantified. Nonetheless, direct measurement of this trait is difficult, not very precise and destructive. This study establishes allometric relationships to estimate the surface area of peach palm (Bactris gasipaes Kunth, Palmae fruits. Five fruits were harvested, at different maturation stages, from each of 18 plants. Image digitalization and edition methodology was adapted and compared with the traditional gravimetric method. Regression analysis and curve fitting were used to compare the two methods and establish allometric relationships among fruit surface area and fruit weight and size. The method based on image digitalization was twice as fast as the gravimetric method. Curve fitting for all pairs of independent and dependent variables was better with the image method. For most relationships, the best model was the exponential function (Y = ax b, although, due to its simplicity, the linear model is also adequated. The best allometric estimates of fruit surface area (Y were obtained using the product of fruit length by maximum width (x were: Y = 2.077 x 1.189 (R² = 94.8%; and Y = - 6.261 + 3.961 x (R² = 94.5%. Traits needed to establish this relationship are easily measured and non-destructive in nature. Validation of the allometric equations is essential when applied to other populations or landraces.A área superficial do fruto é de importância fundamental em estudos relacionados à fisiologia do desenvolvimento, bem como em pesquisas entomológicas e fitopatológicas, onde o dano causado por insetos e/ou microorganismos precisa ser quantificado. No entanto, a medição direta dessa característica é difícil, além de não muito precisa e destrutiva. Neste estudo foram estabelecidas relações alométricas visando estimar a

  10. Cosmological models with a hybrid scale factor in an extended gravity theory

    Science.gov (United States)

    Mishra, B.; Tripathy, S. K.; Tarai, Sankarsan

    2018-03-01

    A general formalism to investigate Bianchi type V Ih universes is developed in an extended theory of gravity. A minimally coupled geometry and matter field is considered with a rescaled function of f(R,T) substituted in place of the Ricci scalar R in the geometrical action. Dynamical aspects of the models are discussed by using a hybrid scale factor (HSF) that behaves as power law in an initial epoch and as an exponential form at late epoch. The power law behavior and the exponential behavior appear as two extreme cases of the present model.

  11. An item-response theory approach to safety climate measurement: The Liberty Mutual Safety Climate Short Scales.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Lee, Jin; Chen, Zhuo; Perry, MacKenna; Cheung, Janelle H; Wang, Mo

    2017-06-01

    Zohar and Luria's (2005) safety climate (SC) scale, measuring organization- and group- level SC each with 16 items, is widely used in research and practice. To improve the utility of the SC scale, we shortened the original full-length SC scales. Item response theory (IRT) analysis was conducted using a sample of 29,179 frontline workers from various industries. Based on graded response models, we shortened the original scales in two ways: (1) selecting items with above-average discriminating ability (i.e. offering more than 6.25% of the original total scale information), resulting in 8-item organization-level and 11-item group-level SC scales; and (2) selecting the most informative items that together retain at least 30% of original scale information, resulting in 4-item organization-level and 4-item group-level SC scales. All four shortened scales had acceptable reliability (≥0.89) and high correlations (≥0.95) with the original scale scores. The shortened scales will be valuable for academic research and practical survey implementation in improving occupational safety. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates.

    Science.gov (United States)

    Niklas, Karl J

    2006-02-01

    Life forms as diverse as unicellular algae, zooplankton, vascular plants, and mammals appear to obey quarter-power scaling rules. Among the most famous of these rules is Kleiber's (i.e. basal metabolic rates scale as the three-quarters power of body mass), which has a botanical analogue (i.e. annual plant growth rates scale as the three-quarters power of total body mass). Numerous theories have tried to explain why these rules exist, but each has been heavily criticized either on conceptual or empirical grounds. N,P-STOICHIOMETRY: Recent models predicting growth rates on the basis of how total cell, tissue, or organism nitrogen and phosphorus are allocated, respectively, to protein and rRNA contents may provide the answer, particularly in light of the observation that annual plant growth rates scale linearly with respect to standing leaf mass and that total leaf mass scales isometrically with respect to nitrogen but as the three-quarters power of leaf phosphorus. For example, when these relationships are juxtaposed with other allometric trends, a simple N,P-stoichiometric model successfully predicts the relative growth rates of 131 diverse C3 and C4 species. The melding of allometric and N,P-stoichiometric theoretical insights provides a robust modelling approach that conceptually links the subcellular 'machinery' of protein/ribosomal metabolism to observed growth rates of uni- and multicellular organisms. Because the operation of this 'machinery' is basic to the biology of all life forms, its allometry may provide a mechanistic explanation for the apparent ubiquity of quarter-power scaling rules.

  13. Scale and scaling in agronomy and environmental sciences

    Science.gov (United States)

    Scale is of paramount importance in environmental studies, engineering, and design. The unique course covers the following topics: scale and scaling, methods and theories, scaling in soils and other porous media, scaling in plants and crops; scaling in landscapes and watersheds, and scaling in agro...

  14. Allometric scaling of hepatic biotransformation in rainbow trout

    Science.gov (United States)

    Biotransformation can markedly reduce the extent to which hydrophobic organic chemicals accumulate in fish. However, predicting the impacts of biotransformation on chemical accumulation is complicated by a number of factors, including the possible influence of differences in fis...

  15. Effective field theory analysis on μ problem in low-scale gauge mediation

    International Nuclear Information System (INIS)

    Zheng Sibo

    2012-01-01

    Supersymmetric models based on the scenario of gauge mediation often suffer from the well-known μ problem. In this paper, we reconsider this problem in low-scale gauge mediation in terms of effective field theory analysis. In this paradigm, all high energy input soft mass can be expressed via loop expansions. If the corrections coming from messenger thresholds are small, as we assume in this letter, then all RG evaluations can be taken as linearly approximation for low-scale supersymmetric breaking. Due to these observations, the parameter space can be systematically classified and studied after constraints coming from electro-weak symmetry breaking are imposed. We find that some old proposals in the literature are reproduced, and two new classes are uncovered. We refer to a microscopic model, where the specific relations among coefficients in one of the new classes are well motivated. Also, we discuss some primary phenomenologies.

  16. Generalizability theory and item response theory

    OpenAIRE

    Glas, Cornelis A.W.; Eggen, T.J.H.M.; Veldkamp, B.P.

    2012-01-01

    Item response theory is usually applied to items with a selected-response format, such as multiple choice items, whereas generalizability theory is usually applied to constructed-response tasks assessed by raters. However, in many situations, raters may use rating scales consisting of items with a selected-response format. This chapter presents a short overview of how item response theory and generalizability theory were integrated to model such assessments. Further, the precision of the esti...

  17. El Naschie's ε (∞) space-time and scale relativity theory in the topological dimension D = 4

    International Nuclear Information System (INIS)

    Agop, M.; Murgulet, C.

    2007-01-01

    In the topological dimension D = 4 of the scale relativity theory, the self-structuring of a coherent quantum fluid implies the Golden mean renormalization group. Then, the transfinite set of El Naschie's ε (∞) space-time becomes the background of a new physics (the transfinite physics)

  18. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  19. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  20. Understanding the Functionality of Human Activity Hotspots from Their Scaling Pattern Using Trajectory Data

    Directory of Open Access Journals (Sweden)

    Tao Jia

    2017-11-01

    Full Text Available Human activity hotspots are the clusters of activity locations in space and time, and a better understanding of their functionality would be useful for urban land use planning and transportation. In this article, using trajectory data, we aim to infer the functionality of human activity hotspots from their scaling pattern in a reliable way. Specifically, a large number of stopping locations are extracted from trajectory data, which are then aggregated into activity hotspots. Activity hotspots are found to display scaling patterns in terms of the sublinear scaling relationships between the number of stopping locations and the number of points of interest (POIs, which indicates economies of scale of human interactions with urban land use. Importantly, this scaling pattern remains stable over time. This finding inspires us to devise an allometric ruler to identify the activity hotspots, whose functionality could be reliably estimated using the stopping locations. Thereafter, a novel Bayesian inference model is proposed to infer their urban functionality, which examines the spatial and temporal information of stopping locations covering 75 days. Experimental results suggest that the functionality of identified activity hotspots are reliably inferred by stopping locations, such as the railway station.

  1. Towards a better prediction of peak concentration, volume of distribution and half-life after oral drug administration in man, using allometry.

    Science.gov (United States)

    Sinha, Vikash K; Vaarties, Karin; De Buck, Stefan S; Fenu, Luca A; Nijsen, Marjoleen; Gilissen, Ron A H J; Sanderson, Wendy; Van Uytsel, Kelly; Hoeben, Eva; Van Peer, Achiel; Mackie, Claire E; Smit, Johan W

    2011-05-01

    It is imperative that new drugs demonstrate adequate pharmacokinetic properties, allowing an optimal safety margin and convenient dosing regimens in clinical practice, which then lead to better patient compliance. Such pharmacokinetic properties include suitable peak (maximum) plasma drug concentration (C(max)), area under the plasma concentration-time curve (AUC) and a suitable half-life (t(½)). The C(max) and t(½) following oral drug administration are functions of the oral clearance (CL/F) and apparent volume of distribution during the terminal phase by the oral route (V(z)/F), each of which may be predicted and combined to estimate C(max) and t(½). Allometric scaling is a widely used methodology in the pharmaceutical industry to predict human pharmacokinetic parameters such as clearance and volume of distribution. In our previous published work, we have evaluated the use of allometry for prediction of CL/F and AUC. In this paper we describe the evaluation of different allometric scaling approaches for the prediction of C(max), V(z)/F and t(½) after oral drug administration in man. Twenty-nine compounds developed at Janssen Research and Development (a division of Janssen Pharmaceutica NV), covering a wide range of physicochemical and pharmacokinetic properties, were selected. The C(max) following oral dosing of a compound was predicted using (i) simple allometry alone; (ii) simple allometry along with correction factors such as plasma protein binding (PPB), maximum life-span potential or brain weight (reverse rule of exponents, unbound C(max) approach); and (iii) an indirect approach using allometrically predicted CL/F and V(z)/F and absorption rate constant (k(a)). The k(a) was estimated from (i) in vivo pharmacokinetic experiments in preclinical species; and (ii) predicted effective permeability in man (P(eff)), using a Caco-2 permeability assay. The V(z)/F was predicted using allometric scaling with or without PPB correction. The t(½) was estimated from

  2. Allometry as evidence of sexual selection in monochromatic birds: the case of the Coscoroba Swan (Anseriformes: Anatidae

    Directory of Open Access Journals (Sweden)

    Cecilia P. Calabuig

    2013-08-01

    Full Text Available The Coscoroba Swan, Coscoroba coscoroba (Molina, 1782, is a poorly known aberrant Anserine endemic to South America. We captured adult birds (189 male, 157 female from the largest population in Brazil at the Taim Ecological Reserve, State of Rio Grande do Sul, Brazil. Different patterns between sexes can reflect differences in selection, and positive allometry may indicate that a character is sexually selected. We used body weight and 10 morphological measurements to examine allometric differences between males and females of C. coscoroba. Males were consistently larger than females. Analysis of scaling relationships against body mass showed that nostril, tail, wing and bill height were positively allometric (i.e., heavier birds had relatively larger character lengths, but there were no sexual differences in allometric slopes. However, for a given mass, mature females had longer tails, longer wings (up to metacarpophalangeal articulation and shorter heads than males. In the light of current debate in the literature, we discuss whether such positively allometric traits and sexual differences in scaling may be indicative of sexual selection. Although Coscoroba Swan is a monogamous species, increasing the size of some attributes may confer some advantage for mate selection or male-male competition and, contrary to other studies, we suggest that positively allometric slopes alone should not be considered as evidence for sexual selection of the considered traits.

  3. Universality in quantum chaos and the one-parameter scaling theory.

    Science.gov (United States)

    García-García, Antonio M; Wang, Jiao

    2008-02-22

    The one-parameter scaling theory is adapted to the context of quantum chaos. We define a generalized dimensionless conductance, g, semiclassically and then study Anderson localization corrections by renormalization group techniques. This analysis permits a characterization of the universality classes associated to a metal (g-->infinity), an insulator (g-->0), and the metal-insulator transition (g-->g(c)) in quantum chaos provided that the classical phase space is not mixed. According to our results the universality class related to the metallic limit includes all the systems in which the Bohigas-Giannoni-Schmit conjecture holds but automatically excludes those in which dynamical localization effects are important. The universality class related to the metal-insulator transition is characterized by classical superdiffusion or a fractal spectrum in low dimensions (d < or = 2). Several examples are discussed in detail.

  4. Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

    Directory of Open Access Journals (Sweden)

    Vashishta P.

    2011-05-01

    Full Text Available A linear-scaling algorithm based on a divide-and-conquer (DC scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT. This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations

  5. Gravitational theory in atomic scale units in Dirac cosmology

    International Nuclear Information System (INIS)

    Davidson, W.

    1984-01-01

    The implication of Dirac's large numbers hypothesis (LNH) that there are two cosmological space-time metrics, gravitational (E) and atomic (A), is used to formulate the gravitational laws for a general mass system in atomic scale units within such a cosmology. The gravitational laws are illustrated in application to the case of a single spherical mass immersed in the smoothed out expanding universe. The condition is determined for such a metric to apply approximately just outside a typical member of a cosmic distribution of such masses. Conversely, the condition is given when the influence of the universe as a whole can be neglected outside such a mass. In the latter situation, which applies in particular to stars, a Schwarzschild-type metric is derived which incorporates variable G in accordance with the LNH. The dynamics of freely moving particles and photons in such a metric are examined according to the theory and observational tests are formulated. (author)

  6. A Cultural Insight into the Development of Teacher Autonomy Support Scale: A Self-Determination Theory Perspective

    Science.gov (United States)

    Awang-Hashim, Rosna; Thaliah, Rajaletchumi; Kaur, Amrita

    2017-01-01

    Purpose: The cross-cultural significance of autonomy within self-determination theory is divisive on universal significance. This paper aims to report a sequential exploratory mixed methods study conducted to construct and validate a scale to investigate how, in Malaysian context, the construct of autonomy is conceptualized in comparison with the…

  7. Generic mechanism of optimal energy transfer efficiency: a scaling theory of the mean first-passage time in exciton systems.

    Science.gov (United States)

    Wu, Jianlan; Silbey, Robert J; Cao, Jianshu

    2013-05-17

    An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy transfer in light-harvesting systems. A quantum state orthogonal to the trap will exhibit noise-assisted transfer, clarifying the significance of initial preparation. For such an initial state, the efficiency is enhanced in the weak damping limit (⟨t⟩ ∼ 1/Γ), and suppressed in the strong damping limit (⟨t⟩ ∼ Γ), analogous to Kramers turnover in classical rate theory. An interpolating expression ⟨t⟩ = A/Γ + B + CΓ quantitatively describes the trapping time over the entire range of the dissipation strength, and predicts the optimal efficiency at Γ(opt) ∼ J for homogenous systems. In the presence of static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker dependence on the environment. The prediction of the scaling theory is verified in a symmetric dendrimer system by numerically exact quantum calculations. Though formulated in the context of excitation energy transfer, the analysis and conclusions apply in general to open quantum processes, including electron transfer, fluorescence emission, and heat conduction.

  8. Generalizability theory and item response theory

    NARCIS (Netherlands)

    Glas, Cornelis A.W.; Eggen, T.J.H.M.; Veldkamp, B.P.

    2012-01-01

    Item response theory is usually applied to items with a selected-response format, such as multiple choice items, whereas generalizability theory is usually applied to constructed-response tasks assessed by raters. However, in many situations, raters may use rating scales consisting of items with a

  9. Physics on all scales. Scalar-tensor theories of quantum gravity in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Henz, Tobias

    2016-05-10

    In this thesis, we investigate dilaton quantum gravity using a functional renormalization group approach. We derive and discuss flow equations both in the background field approximation and using a vertex expansion as well as solve the fixed point equations globally to show how realistic gravity, connecting ultraviolet and infrared physics, can be realized on a pure fixed point trajectory by virtue of spontaneous breaking of scale invariance. The emerging physical system features a dynamically generated moving Planck scale resembling the Newton coupling as well as slow roll inflation with an exponentially decreasing effective cosmological constant that vanishes completely in the infrared. The moving Planck scale might make quantum gravity experimentally accessible at a different energy scale than previously believed. We therefore not only provide further evidence for the existence of a consistent quantum theory of gravity based on general relativity, but also offer potential solutions towards the hierarchy and cosmological constant problems, thereby opening up exciting opportunities for further research.

  10. Allometric biomass and carbon factors database

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Z. [European Commission Joint Research Centre, Ispra (Italy). Institute for Environment and Sustainability]|[Hungarian Forest Research Institute, Budapest (Hungary); Teobaldelli, M.; Federici, S.; Pagliari, V.; Grassi, G.; Seufert, G. [European Commission Joint Research Centre, Ispra (Italy). Institute for Environment and Sustainability; Matteucci, G. [Consiglio Nazionale delle Ricerche, Rende (Italy). Istituto per i Sistemi Agricoli e Forestali del Mediterraneo

    2008-09-30

    DATA clearinghouse. The 'Allometric, Biomass and Carbon factors' database (ABC factors database) was designed to facilitate the estimation of the biomass carbon stocks of forests in order to support the development and the verification of greenhouse gas inventories in the LULUCF sector. The database contains several types of expansion, conversion and combined factors, by various tree species or species groups that can be used to calculate biomass or carbon of forests of Eurasian region from proxy variables (e.g., tree volume) that may come from forest inventories. In addition to the factors, and depending on the information that was available in the cited source, the database indicates: (1) the biomass compartments involved when the factor was developed; and (2) the possible applicability of the factor, e.g. by country or by ecological regions. The applicability of the factors is either suggested by the source itself, or the type of source (e.g. National Greenhouse Gas Inventory Report), or was based on the expert judgement by the compilers of the database. Finally, in order to facilitate the selection of the most appropriate of the data, the web-based interface provides the possibility to compare several factors that may come from different sources.

  11. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    Science.gov (United States)

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  12. The validity and scalability of the Theory of Mind Scale with toddlers and preschoolers.

    Science.gov (United States)

    Hiller, Rachel M; Weber, Nathan; Young, Robyn L

    2014-12-01

    Despite the importance of theory of mind (ToM) for typical development, there remain 2 key issues affecting our ability to draw robust conclusions. One is the continued focus on false belief as the sole measure of ToM. The second is the lack of empirically validated measures of ToM as a broad construct. Our key aim was to examine the validity and reliability of the 5-item ToM scale (Peterson, Wellman, & Liu, 2005). In particular, we extended on previous research of this scale by assessing its scalability and validity for use with children from 2 years of age. Sixty-eight typically developing children (aged 24 to 61 months) were assessed on the scale's 5 tasks, along with a sixth Sally-Anne false-belief task. Our data replicated the scalability of the 5 tasks for a Rasch-but not Guttman-scale. Guttman analysis showed that a 4-item scale may be more suitable for this age range. Further, the tasks showed good internal consistency and validity for use with children as young as 2 years of age. Overall, the measure provides a valid and reliable tool for the assessment of ToM, and in particular, the longitudinal assessment of this ability as a construct. (c) 2014 APA, all rights reserved.

  13. Development and validation of the irritable bowel syndrome scale under the system of quality of life instruments for chronic diseases QLICD-IBS: combinations of classical test theory and generalizability theory.

    Science.gov (United States)

    Lei, Pingguang; Lei, Guanghe; Tian, Jianjun; Zhou, Zengfen; Zhao, Miao; Wan, Chonghua

    2014-10-01

    This paper is aimed to develop the irritable bowel syndrome (IBS) scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-IBS) by the modular approach and validate it by both classical test theory and generalizability theory. The QLICD-IBS was developed based on programmed decision procedures with multiple nominal and focus group discussions, in-depth interview, and quantitative statistical procedures. One hundred twelve inpatients with IBS were used to provide the data measuring QOL three times before and after treatments. The psychometric properties of the scale were evaluated with respect to validity, reliability, and responsiveness employing correlation analysis, factor analyses, multi-trait scaling analysis, t tests and also G studies and D studies of generalizability theory analysis. Multi-trait scaling analysis, correlation, and factor analyses confirmed good construct validity and criterion-related validity when using SF-36 as a criterion. Test-retest reliability coefficients (Pearson r and intra-class correlation (ICC)) for the overall score and all domains were higher than 0.80; the internal consistency α for all domains at two measurements were higher than 0.70 except for the social domain (0.55 and 0.67, respectively). The overall score and scores for all domains/facets had statistically significant changes after treatments with moderate or higher effect size standardized response mean (SRM) ranging from 0.72 to 1.02 at domain levels. G coefficients and index of dependability (Ф coefficients) confirmed the reliability of the scale further with more exact variance components. The QLICD-IBS has good validity, reliability, responsiveness, and some highlights and can be used as the quality of life instrument for patients with IBS.

  14. Theory and evidence for using the economy-of-scale law in power plant economics

    International Nuclear Information System (INIS)

    Phung, D.L.

    1987-05-01

    This report compiles theory and evidence for the use of the economy-of-scale law in energy economics, particularly in the estimation of capital costs for coal-fired and nuclear power plants. The economy-of-scale law is widely used in its simplest form: cost is directly proportional to capacity raised to an exponent. An additive constant is an important component that is not generally taken into account. Also, the economy of scale is perforce valid only over a limited size range. The majority of engineering studies have estimated an economy of scale exponent of 0.7 to 0.9 for coal-fired plants and an exponent of 0.4 to 0.6 for nuclear plants in the capacity ranges of 400 to 1000 MWe. However, the majority of econometric analyses found little or no economy of scale for coal-fired plants and only a slight economy of scale for nuclear plants. This disparity is explained by the fact that economists have included regulatory and time-related costs in addition to the direct and indirect costs used by the engineers. Regulatory and time-related costs have become an increasingly larger portion of total costs during the last decade. In addition, these costs appeared to have either a very small economy of scale or to be increasing as the size of the power plant increased. We conclude that gains in economy of scale can only be made by reducing regulatory and time-related costs through design standardization and regulatory stability, in combination with more favorable economic conditions. 59 refs

  15. Scaling of Metabolic Scaling within Physical Limits

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2014-10-01

    Full Text Available Both the slope and elevation of scaling relationships between log metabolic rate and log body size vary taxonomically and in relation to physiological or developmental state, ecological lifestyle and environmental conditions. Here I discuss how the recently proposed metabolic-level boundaries hypothesis (MLBH provides a useful conceptual framework for explaining and predicting much, but not all of this variation. This hypothesis is based on three major assumptions: (1 various processes related to body volume and surface area exert state-dependent effects on the scaling slope for metabolic rate in relation to body mass; (2 the elevation and slope of metabolic scaling relationships are linked; and (3 both intrinsic (anatomical, biochemical and physiological and extrinsic (ecological factors can affect metabolic scaling. According to the MLBH, the diversity of metabolic scaling relationships occurs within physical boundary limits related to body volume and surface area. Within these limits, specific metabolic scaling slopes can be predicted from the metabolic level (or scaling elevation of a species or group of species. In essence, metabolic scaling itself scales with metabolic level, which is in turn contingent on various intrinsic and extrinsic conditions operating in physiological or evolutionary time. The MLBH represents a “meta-mechanism” or collection of multiple, specific mechanisms that have contingent, state-dependent effects. As such, the MLBH is Darwinian in approach (the theory of natural selection is also meta-mechanistic, in contrast to currently influential metabolic scaling theory that is Newtonian in approach (i.e., based on unitary deterministic laws. Furthermore, the MLBH can be viewed as part of a more general theory that includes other mechanisms that may also affect metabolic scaling.

  16. Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus).

    Science.gov (United States)

    Smith, Nicola C; Jespers, Karin J; Wilson, Alan M

    2010-04-01

    Kinematic and kinetic parameters of running gait were investigated through growth in the ostrich, from two weeks up to 10 months of age, in order to investigate the effects of increasing body size. Ontogenetic scaling relationships were compared with published scaling relationships found to exist with increasing body size between species to determine whether dynamic similarity is maintained during growth. During the study, ostrich mass (M(b)) ranged from 0.7 kg to 108.8 kg. Morphological measurements showed that lengths scaled with positive allometry during growth (hip height proportional to M(b)(0.40); foot segment length proportional to M(b)(0.40); tarsometatarsus length proportional to M(b)(0.41); tibiotarsus length proportional to M(b)(0.38); femur length proportional to M(b)(0.37)), significantly exceeding the close to geometric scaling observed between mammalian and avian species of increasing body size. Scaling of kinematic variables largely agreed with predicted scaling for increasing size and demonstrated relationships close to dynamic similarity and, as such, ontogenetic scaling of locomotor parameters was similar to that observed with increasing body mass between species. However, the ways in which these scaling trends were achieved were very different, with ontogenetic scaling of locomotor mechanics largely resulting from simple scaling of the limb segments rather than postural changes, likely to be due to developmental constraints. Small deviations from dynamic similarity of kinematic parameters and a reduction in the predicted scaling of limb stiffness (proportional to M(b)(0.59)) were found to be accounted for by the positive allometric scaling of the limb during growth.

  17. On the consistency of scale among experiments, theory, and simulation

    Science.gov (United States)

    McClure, James E.; Dye, Amanda L.; Miller, Cass T.; Gray, William G.

    2017-02-01

    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.

  18. The effect of allometric growth on morphometric traits of wolf (Canis lupus using geometric truss

    Directory of Open Access Journals (Sweden)

    Rasoul Khosravi

    2012-12-01

    Full Text Available Iranian wolf is found in different habitats of Iran and possesses different morphological characteristics with respect to its cranium shape based on its distribution. This study was conducted to investigate the allometric growth and geometric changes of cranium in relation to its growth .A total of 35 skulls were collected from different regions and divided into two groups (adult and subadult. Seventeen angles that were drown by joining the measuring points on the whole, neurocranium, and viscerocranium. The correlation between skull index and angle measurements were analyzed in three categories. The decreasing of angles among dorsal face point on the external occipital crest, junction on the median plane of the right and left nasofrontal sutures, the most lateral point of the zygomatic arch and anterior end of the interincisive suture located between the roots of the upper central incisor teeth showed width of the skull increased more than the skull length with age, therefore, skull index increased with age. Results of geometry surveys showed that cranial width did not increase as much compared to the length of neurocranium length. Therefore, the angles of this section increased with age. Also, viscerocranium width increased more than viscerocranium length and the skull became widened with age.

  19. Tree height-diameter allometry across the United States.

    Science.gov (United States)

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-03-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.

  20. Tree height–diameter allometry across the United States

    Science.gov (United States)

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-01-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325

  1. Development and validation of the coronary heart disease scale under the system of quality of life instruments for chronic diseases QLICD-CHD: combinations of classical test theory and Generalizability Theory.

    Science.gov (United States)

    Wan, Chonghua; Li, Hezhan; Fan, Xuejin; Yang, Ruixue; Pan, Jiahua; Chen, Wenru; Zhao, Rong

    2014-06-04

    Quality of life (QOL) for patients with coronary heart disease (CHD) is now concerned worldwide with the specific instruments being seldom and no one developed by the modular approach. This paper is aimed to develop the CHD scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-CHD) by the modular approach and validate it by both classical test theory and Generalizability Theory. The QLICD-CHD was developed based on programmed decision procedures with multiple nominal and focus group discussions, in-depth interview, pre-testing and quantitative statistical procedures. 146 inpatients with CHD were used to provide the data measuring QOL three times before and after treatments. The psychometric properties of the scale were evaluated with respect to validity, reliability and responsiveness employing correlation analysis, factor analyses, multi-trait scaling analysis, t-tests and also G studies and D studies of Genralizability Theory analysis. Multi-trait scaling analysis, correlation and factor analyses confirmed good construct validity and criterion-related validity when using SF-36 as a criterion. The internal consistency α and test-retest reliability coefficients (Pearson r and Intra-class correlations ICC) for the overall instrument and all domains were higher than 0.70 and 0.80 respectively; The overall and all domains except for social domain had statistically significant changes after treatments with moderate effect size SRM (standardized response mea) ranging from 0.32 to 0.67. G-coefficients and index of dependability (Ф coefficients) confirmed the reliability of the scale further with more exact variance components. The QLICD-CHD has good validity, reliability, and moderate responsiveness and some highlights, and can be used as the quality of life instrument for patients with CHD. However, in order to obtain better reliability, the numbers of items for social domain should be increased or the items' quality, not quantity, should be

  2. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  3. An evaluation of string theory for the prediction of dynamic tire properties using scale model aircraft tires

    Science.gov (United States)

    Clark, S. K.; Dodge, R. N.; Nybakken, G. H.

    1972-01-01

    The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.

  4. The plasma transport equations derived by multiple time-scale expansions and turbulent transport. I. General theory

    International Nuclear Information System (INIS)

    Edenstrasser, J.W.

    1995-01-01

    A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics

  5. Theory and evidence of economies of scale in the development of waste management systems

    International Nuclear Information System (INIS)

    Chang, Shoou-Yuh; Rivera, A.L.

    1989-01-01

    Waste is a cost of doing business. This cost can be considered in terms of the potential adverse health and environmental impacts, or the waste management costs associated with avoiding, minimizing, and controlling those impacts. There is an anticipated increase in the cost of waste management as a result of the increasing requirements for regulatory compliance. To meet the total waste management capacity needs of the organization and the compliance requirements, low-level radioactive, hazardous, and mixed waste management will need demonstrated technologies strategically managed as a technology portfolio. The role of the decision maker is to select the optimum mix of technologies and facilities to provide the waste management capacity needed for the next twenty years. The waste management system resulting from this mix includes multiple small-scale fixed facilities, large-scale centralized facilities, and waste management subcontracts. This study was conducted to examine the theory and evidence of economies of scale in the development of waste management systems as as exploratory research on the economic considerations in the process of technology selection and implementation. 25 refs., 24 figs., 11 tabs

  6. Gas production in the Barnett Shale obeys a simple scaling theory.

    Science.gov (United States)

    Patzek, Tad W; Male, Frank; Marder, Michael

    2013-12-03

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States' oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.

  7. The Development of the Functional Literacy Experience Scale Based upon Ecological Theory (FLESBUET) and Validity-Reliability Study

    Science.gov (United States)

    Özenç, Emine Gül; Dogan, M. Cihangir

    2014-01-01

    This study aims to perform a validity-reliability test by developing the Functional Literacy Experience Scale based upon Ecological Theory (FLESBUET) for primary education students. The study group includes 209 fifth grade students at Sabri Taskin Primary School in the Kartal District of Istanbul, Turkey during the 2010-2011 academic year.…

  8. A New Functional Health Literacy Scale for Japanese Young Adults Based on Item Response Theory.

    Science.gov (United States)

    Tsubakita, Takashi; Kawazoe, Nobuo; Kasano, Eri

    2017-03-01

    Health literacy predicts health outcomes. Despite concerns surrounding the health of Japanese young adults, to date there has been no objective assessment of health literacy in this population. This study aimed to develop a Functional Health Literacy Scale for Young Adults (funHLS-YA) based on item response theory. Each item in the scale requires participants to choose the most relevant term from 3 choices in relation to a target item, thus assessing objective rather than perceived health literacy. The 20-item scale was administered to 1816 university students and 1751 responded. Cronbach's α coefficient was .73. Difficulty and discrimination parameters of each item were estimated, resulting in the exclusion of 1 item. Some items showed different difficulty parameters for male and female participants, reflecting that some aspects of health literacy may differ by gender. The current 19-item version of funHLS-YA can reliably assess the objective health literacy of Japanese young adults.

  9. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  10. The O(epsilon2) scaling law for dsigma/dt in the Reggeon field theory

    International Nuclear Information System (INIS)

    Dash, J.W.; Grandou, Thierry.

    1979-04-01

    The two loop contributions were calculated within the epsilon-expansion to the Reggeon Field Theory scaling law for dsigma/dt, derived using the renormalization group and a general renormalization point for the Pomeron propagator. This generalizes the O(epsilon) work of Abarbanel, Bartels, Bronzan, and Sidhu. The invariance of the results under certain coupling constant rescalings is demonstrated. Some qualitative comments were made regarding phenomenological applications. Our amplitude in a certain limit approximates the form of the low energy diffractive amplitude advocated by Kane

  11. Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure.

    Science.gov (United States)

    Kaiyala, Karl J

    2014-01-01

    Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.

  12. Constructal Theory Of Design In Engineering And Nature

    Directory of Open Access Journals (Sweden)

    Adrian Bejan

    2005-02-01

    Full Text Available This is a brief introduction to an engineering theory on the origin and generation of geometric form in all flow systems: the animate, the inanimate and the engineered. The theory is named constructal, and is based on the thought that it is natural for currents to construct for themselves in time paths of greater flow access. It is shown that this process of flow path optimization can be reasoned on the basis of principle: the maximization of global performance subject to finite-size constraints. One example is the generation of tree-shaped flow patterns, as paths of least resistance between one point (source, sink and an infinity of points (area, volume, as in the circulatory, respiratory and nervous systems. An other is the generation of regular spacings in heat generating volumes, such as swarms of honeybees. The optimized tree-flow geometries account for allometric laws, e. g., the relationship between the total tube contact area and the body size, the proportionality between metabolic rate and body size raised to the power 3/4, the proportionality between breathing and heartbeating times and body size raised to the power 1/4, and the proportionality between the cruising speed of flying bodies (insects, birds, airplanes and body mass raised to the power 1/6. The optimized flow structures constitute robust designs, and robustness improves as the complexity of the system increases. Flow architectures that are more efficient look more natural.

  13. Inflation in a Scale Invariant Universe

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Noller, Johannes [Zurich U.; Ross, Graham G. [Oxford U., Theor. Phys.

    2018-02-16

    A scale-invariant universe can have a period of accelerated expansion at early times: inflation. We use a frame-invariant approach to calculate inflationary observables in a scale invariant theory of gravity involving two scalar fields - the spectral indices, the tensor to scalar ratio, the level of isocurvature modes and non-Gaussianity. We show that scale symmetry leads to an exact cancellation of isocurvature modes and that, in the scale-symmetry broken phase, this theory is well described by a single scalar field theory. We find the predictions of this theory strongly compatible with current observations.

  14. An Analysis of Cross Racial Identity Scale Scores Using Classical Test Theory and Rasch Item Response Models

    Science.gov (United States)

    Sussman, Joshua; Beaujean, A. Alexander; Worrell, Frank C.; Watson, Stevie

    2013-01-01

    Item response models (IRMs) were used to analyze Cross Racial Identity Scale (CRIS) scores. Rasch analysis scores were compared with classical test theory (CTT) scores. The partial credit model demonstrated a high goodness of fit and correlations between Rasch and CTT scores ranged from 0.91 to 0.99. CRIS scores are supported by both methods.…

  15. Assessing the Implicit Theory of Willpower for Strenuous Mental Activities Scale: Multigroup, across-gender, and cross-cultural measurement invariance and convergent and divergent validity.

    Science.gov (United States)

    Napolitano, Christopher M; Job, Veronika

    2018-05-21

    Why do some people struggle with self-control (colloquially called willpower) whereas others are able to sustain it during challenging circumstances? Recent research showed that a person's implicit theories of willpower-whether they think self-control capacity is a limited or nonlimited resource-predict sustained self-control on laboratory tasks and on goal-related outcomes in everyday life. The present research tests the Implicit Theory of Willpower for Strenuous Mental Activities Scale (or ITW-M) Scale for measurement invariance across samples and gender within each culture, and two cultural contexts (the U.S. and Switzerland/Germany). Across a series of multigroup confirmatory factor analyses, we found support for the measurement invariance of the ITW-M scale across samples within and across two cultures, as well as across men and women. Further, the analyses showed expected patterns of convergent (with life-satisfaction and trait-self-control) and discriminant validity (with implicit theory of intelligence). These results provide guidelines for future research and clinical practice using the ITW-M scale for the investigation of latent group differences, for example, between gender or cultures. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. The mind behind the message: Advancing theory of mind scales for typically developing children, and those with deafness, autism, or Asperger Syndrome

    Science.gov (United States)

    Peterson, Candida C.; Wellman, Henry M.; Slaughter, Virginia

    2013-01-01

    Children aged 3 to 12 years (n=184) with typical development, deafness, autism or Asperger Syndrome took a series of theory-of-mind (ToM) tasks to confirm and extend previous developmental scaling evidence. A new sarcasm task, in the format of Wellman and Liu’s (2004) 5-step ToM scale, added a statistically reliable sixth step to the scale for all diagnostic groups. A key previous finding, divergence in task sequencing for children with autism, was confirmed. Comparisons among diagnostic groups, controlling age and language ability, showed that typical developers mastered the six ToM steps ahead of each of the three disabled groups, with implications for ToM theories. The final (sarcasm) task challenged even nondisabled 9-year-olds, demonstrating the new scale’s sensitivity to post-preschool ToM growth. PMID:22304467

  17. Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.

    1996-01-01

    We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a open-quote no goclose quotes for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a open-quotes continuum limitclose quotes in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined

  18. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  19. Relações alométricas para estimativa da fitomassa aérea em pupunheira Peach palm biomass estimates based on allometric relationships

    Directory of Open Access Journals (Sweden)

    Fernando Vinicio A. Vega

    2004-03-01

    Full Text Available A estimativa da fitomassa aérea da pupunheira (Bactris gasipaes Kunth por meio de relações alométricas tem aplicação teórica e prática, sendo essencial em estudos de fisiologia de crescimento, bem como para identificar respostas e predizer a produção. No presente trabalho foram avaliadas diferentes equações buscando o melhor ajuste alométrico representativo da fitomassa da pupunheira cultivada para a produção de palmito. Foram utilizadas palmeiras inermes, da raça Putumayo, em diferentes estádios de desenvolvimento, cultivadas em Ubatuba (SP no espaçamento de 2 x 1 m. Selecionaram-se 117 plantas, com alturas entre 0,22 e 5,04 m e diâmetros entre 2,23 e 27,06 cm. Medidas diretas, relacionadas ao crescimento, foram realizadas antes do corte. Em seguida as plantas foram separadas em diferentes partes estruturais, sendo medidas, pesadas e secas, obtendo-se a massa da matéria seca. Os dados foram submetidos à análise de regressão e ajuste de equações, tendo como variáveis independentes os caracteres facilmente mensuráveis e não destrutivos. A fitomassa da pupunheira pode ser estimada de forma precisa a partir de equações simples, valendo-se de relações alométricas. A altura da haste principal, medida do solo até a inserção da folha +1, foi o caráter preditório indireto ideal para estimar a fitomassa de pupunheiras em cultivo comercial. Identificou-se também que, do estádio de implantação ao início de colheita de palmito, a contribuição dos perfilhos para a fitomassa aérea total é pequena e pode ser desprezada.Biomass estimates based on allometric relationships have theoretical and practical application. These data are useful tools in growth analysis experiments and yield prediction. Several equations were studied to define the best allometric fit to peach palm grown for heart-of-palm purpose. Spineless peach palms (Bactris gasipaes Kunth, from Putumayo landrace, were utilized. The experiment, in a 2 x 1

  20. High Agreement was Obtained Across Scores from Multiple Equated Scales for Social Anxiety Disorder using Item Response Theory.

    Science.gov (United States)

    Sunderland, Matthew; Batterham, Philip; Calear, Alison; Carragher, Natacha; Baillie, Andrew; Slade, Tim

    2018-04-10

    There is no standardized approach to the measurement of social anxiety. Researchers and clinicians are faced with numerous self-report scales with varying strengths, weaknesses, and psychometric properties. The lack of standardization makes it difficult to compare scores across populations that utilise different scales. Item response theory offers one solution to this problem via equating different scales using an anchor scale to set a standardized metric. This study is the first to equate several scales for social anxiety disorder. Data from two samples (n=3,175 and n=1,052), recruited from the Australian community using online advertisements, were utilised to equate a network of 11 self-report social anxiety scales via a fixed parameter item calibration method. Comparisons between actual and equated scores for most of the scales indicted a high level of agreement with mean differences <0.10 (equivalent to a mean difference of less than one point on the standardized metric). This study demonstrates that scores from multiple scales that measure social anxiety can be converted to a common scale. Re-scoring observed scores to a common scale provides opportunities to combine research from multiple studies and ultimately better assess social anxiety in treatment and research settings. Copyright © 2018. Published by Elsevier Inc.

  1. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    Science.gov (United States)

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  2. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    Science.gov (United States)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  3. Lawton IADL scale in dementia: can item response theory make it more informative?

    Science.gov (United States)

    McGrory, Sarah; Shenkin, Susan D; Austin, Elizabeth J; Starr, John M

    2014-07-01

    impairment of functional abilities represents a crucial component of dementia diagnosis. Current functional measures rely on the traditional aggregate method of summing raw scores. While this summary score provides a quick representation of a person's ability, it disregards useful information on the item level. to use item response theory (IRT) methods to increase the interpretive power of the Lawton Instrumental Activities of Daily Living (IADL) scale by establishing a hierarchy of item 'difficulty' and 'discrimination'. this cross-sectional study applied IRT methods to the analysis of IADL outcomes. Participants were 202 members of the Scottish Dementia Research Interest Register (mean age = 76.39, range = 56-93, SD = 7.89 years) with complete itemised data available. a Mokken scale with good reliability (Molenaar Sijtsama statistic 0.79) was obtained, satisfying the IRT assumption that the items comprise a single unidimensional scale. The eight items in the scale could be placed on a hierarchy of 'difficulty' (H coefficient = 0.55), with 'Shopping' being the most 'difficult' item and 'Telephone use' being the least 'difficult' item. 'Shopping' was the most discriminatory item differentiating well between patients of different levels of ability. IRT methods are capable of providing more information about functional impairment than a summed score. 'Shopping' and 'Telephone use' were identified as items that reveal key information about a patient's level of ability, and could be useful screening questions for clinicians. © The Author 2013. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@ oup.com.

  4. Covariantized matrix theory for D-particles

    Energy Technology Data Exchange (ETDEWEB)

    Yoneya, Tamiaki [Institute of Physics, The University of Tokyo,3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); School of Graduate Studies, The Open University of Japan,2-11 Wakaba, Mihama-ku, Chiba 261-8586 (Japan)

    2016-06-09

    We reformulate the Matrix theory of D-particles in a manifestly Lorentz-covariant fashion in the sense of 11 dimesnional flat Minkowski space-time, from the viewpoint of the so-called DLCQ interpretation of the light-front Matrix theory. The theory is characterized by various symmetry properties including higher gauge symmetries, which contain the usual SU(N) symmetry as a special case and are extended from the structure naturally appearing in association with a discretized version of Nambu’s 3-bracket. The theory is scale invariant, and the emergence of the 11 dimensional gravitational length, or M-theory scale, is interpreted as a consequence of a breaking of the scaling symmetry through a super-selection rule. In the light-front gauge with the DLCQ compactification of 11 dimensions, the theory reduces to the usual light-front formulation. In the time-like gauge with the ordinary M-theory spatial compactification, it reduces to a non-Abelian Born-Infeld-like theory, which in the limit of large N becomes equivalent with the original BFSS theory.

  5. The Measurement and Role of Ecological Resilience Systems Theory Across Domain-Specific Outcomes: The Domain-Specific Resilient Systems Scales.

    Science.gov (United States)

    Maltby, John; Day, Liz; Hall, Sophie S; Chivers, Sally

    2017-10-01

    Research suggests that trait resilience may be best understood within an ecological resilient systems theory, comprising engineering, ecological, and adaptive capacity resilience. However, there is no evidence as to how this theory translates to specific life domains. Data from two samples (the United States, n = 1,278; the United Kingdom, n = 211) facilitated five studies that introduce the Domain-Specific Resilient Systems Scales for assessing ecological resilient systems theory within work, health, marriage, friendships, and education. The Domain-Specific Resilient Systems Scales are found to predict unique variance in job satisfaction, lower job burnout, quality-of-life following illness, marriage commitment, and educational engagement, while controlling for factors including sex, age, personality, cognitive ability, and trait resilience. The findings also suggest a distinction between the three resilience dimensions in terms of the types of systems to which they contribute. Engineering resilience may contribute most to life domains where an established system needs to be maintained, for example, one's health. Ecological resilience may contribute most to life domains where the system needs sustainability in terms of present and future goal orientation, for example, one's work. Adaptive Capacity may contribute most to life domains where the system needs to be retained, preventing it from reaching a crisis state, for example, work burnout.

  6. The Australian Racism, Acceptance, and Cultural-Ethnocentrism Scale (RACES): item response theory findings.

    Science.gov (United States)

    Grigg, Kaine; Manderson, Lenore

    2016-03-17

    Racism and associated discrimination are pervasive and persistent challenges with multiple cumulative deleterious effects contributing to inequities in various health outcomes. Globally, research over the past decade has shown consistent associations between racism and negative health concerns. Such research confirms that race endures as one of the strongest predictors of poor health. Due to the lack of validated Australian measures of racist attitudes, RACES (Racism, Acceptance, and Cultural-Ethnocentrism Scale) was developed. Here, we examine RACES' psychometric properties, including the latent structure, utilising Item Response Theory (IRT). Unidimensional and Multidimensional Rating Scale Model (RSM) Rasch analyses were utilised with 296 Victorian primary school students and 182 adolescents and 220 adults from the Australian community. RACES was demonstrated to be a robust 24-item three-dimensional scale of Accepting Attitudes (12 items), Racist Attitudes (8 items), and Ethnocentric Attitudes (4 items). RSM Rasch analyses provide strong support for the instrument as a robust measure of racist attitudes in the Australian context, and for the overall factorial and construct validity of RACES across primary school children, adolescents, and adults. RACES provides a reliable and valid measure that can be utilised across the lifespan to evaluate attitudes towards all racial, ethnic, cultural, and religious groups. A core function of RACES is to assess the effectiveness of interventions to reduce community levels of racism and in turn inequities in health outcomes within Australia.

  7. Low-energy limit of two-scale field theories

    International Nuclear Information System (INIS)

    Leon, J.; Perez-Mercader, J.; Sanchez, M.F.

    1991-01-01

    We present a full and self-contained discussion of the decoupling theorem applied to several general models in four-dimensional field theory. We compute in each case the low-energy effective action and show the explicit one-loop expressions for each of the effective parameters. We find that for suitable conditions one can always build an effective low-energy theory where the conditions of the decoupling theorem are satisfied

  8. Single-polymer dynamics under constraints: scaling theory and computer experiment

    International Nuclear Information System (INIS)

    Milchev, Andrey

    2011-01-01

    The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces-a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations. (topical review)

  9. Examining the validity of the Academic Motivation Scale by comparing scale construction to self-determination theory.

    Science.gov (United States)

    Cokley, K O

    2000-04-01

    This study examined the construct validity of the Academic Motivation Scale. Specifically, subscale correlations were examined to assess whether support for a continuum of self-determination would be provided. The three types of Intrinsic Motivation were significantly and positively correlated with each other .67, .62, and .58, while the three types of Extrinsic Motivation were significantly and positively intercorrelated .50, .49, and .45. The former subscales, however, correlated higher with Introjected Regulation than Identified Regulation, suggesting that Introjected Regulation may be indicative of more self-determined behavior than has previously been believed. Also, the Intrinsic Motivation To Accomplish subscale had a stronger relationship with two of the Extrinsic Motivation subscales, Identified Regulation and Introjected Regulation, than did the Extrinsic Motivation subscales with each other. This suggests that the differences between Extrinsic and Intrinsic Motivation are not as obvious as has been believed. Also, contrary to self-determination theory, Amotivation had a stronger negative correlation with Identified Regulation (r = -.31) than with any of the Intrinsic Motivation subscales (rs = -.27, -.19, and -.11).

  10. Improving Measurement Efficiency of the Inner EAR Scale with Item Response Theory.

    Science.gov (United States)

    Jessen, Annika; Ho, Andrew D; Corrales, C Eduardo; Yueh, Bevan; Shin, Jennifer J

    2018-02-01

    Objectives (1) To assess the 11-item Inner Effectiveness of Auditory Rehabilitation (Inner EAR) instrument with item response theory (IRT). (2) To determine whether the underlying latent ability could also be accurately represented by a subset of the items for use in high-volume clinical scenarios. (3) To determine whether the Inner EAR instrument correlates with pure tone thresholds and word recognition scores. Design IRT evaluation of prospective cohort data. Setting Tertiary care academic ambulatory otolaryngology clinic. Subjects and Methods Modern psychometric methods, including factor analysis and IRT, were used to assess unidimensionality and item properties. Regression methods were used to assess prediction of word recognition and pure tone audiometry scores. Results The Inner EAR scale is unidimensional, and items varied in their location and information. Information parameter estimates ranged from 1.63 to 4.52, with higher values indicating more useful items. The IRT model provided a basis for identifying 2 sets of items with relatively lower information parameters. Item information functions demonstrated which items added insubstantial value over and above other items and were removed in stages, creating a 8- and 3-item Inner EAR scale for more efficient assessment. The 8-item version accurately reflected the underlying construct. All versions correlated moderately with word recognition scores and pure tone averages. Conclusion The 11-, 8-, and 3-item versions of the Inner EAR scale have strong psychometric properties, and there is correlational validity evidence for the observed scores. Modern psychometric methods can help streamline care delivery by maximizing relevant information per item administered.

  11. Intraspecific scaling of arterial blood pressure in the Burmese python.

    Science.gov (United States)

    Enok, Sanne; Slay, Christopher; Abe, Augusto S; Hicks, James W; Wang, Tobias

    2014-07-01

    Interspecific allometric analyses indicate that mean arterial blood pressure (MAP) increases with body mass of snakes and mammals. In snakes, MAP increases in proportion to the increased distance between the heart and the head, when the heart-head vertical distance is expressed as ρgh (where ρ is the density of blood, G: is acceleration due to gravity and h is the vertical distance above the heart), and the rise in MAP is associated with a larger heart to normalize wall stress in the ventricular wall. Based on measurements of MAP in Burmese pythons ranging from 0.9 to 3.7 m in length (0.20-27 kg), we demonstrate that although MAP increases with body mass, the rise in MAP is merely half of that predicted by heart-head distance. Scaling relationships within individual species, therefore, may not be accurately predicted by existing interspecific analyses. © 2014. Published by The Company of Biologists Ltd.

  12. Fast-forward scaling theory for phase imprinting on a BEC: creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance

    Science.gov (United States)

    Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio

    2018-02-01

    We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.

  13. Renormalization group evolution of the universal theories EFT

    International Nuclear Information System (INIS)

    Wells, James D.; Zhang, Zhengkang

    2016-01-01

    The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, but dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. We perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.

  14. Fractal physiology and the fractional calculus: a perspective

    Directory of Open Access Journals (Sweden)

    Bruce J West

    2010-10-01

    Full Text Available This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. We review the allometric aggregation approach to the processing of physiologic time series as a way of determining the fractal character of the underlying phenomena. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. Fractional operators acting on fractal functions yield fractal functions, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine. Allometric control incorporates long-time memory, inverse power-law (IPL correlations, and long-range interactions in complex phenomena as manifest by IPL distributions. We hypothesize that allometric control, rather than homeostatic control, maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can be described using the fractional calculus to capture the dynamics of complex physiologic networks. This hypothesis is supported by a number of physiologic time series data.

  15. Disorder in large-N theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar; Yankielowicz, Shimon

    2016-01-01

    We consider Euclidean Conformal Field Theories perturbed by quenched disorder, namely by random fluctuations in their couplings. Such theories are relevant for second-order phase transitions in the presence of impurities or other forms of disorder. Theories with quenched disorder often flow to new fixed points of the renormalization group. We begin with disorder in free field theories. Imry and Ma showed that disordered free fields can only exist for d>4. For d>4 we show that disorder leads to new fixed points which are not scale-invariant. We then move on to large-N theories (vector models or gauge theories in the ‘t Hooft limit). We compute exactly the beta function for the disorder, and the correlation functions of the disordered theory. We generalize the results of Imry and Ma by showing that such disordered theories exist only when disorder couples to operators of dimension Δ>d/4. Sometimes the disordered fixed points are not scale-invariant, and in other cases they have unconventional dependence on the disorder, including non-trivial effects due to irrelevant operators. Holography maps disorder in conformal theories to stochastic differential equations in a higher dimensional space. We use this dictionary to reproduce our field theory results. We also study the leading 1/N corrections, both by field theory methods and by holography. These corrections are particularly important when disorder scales with the number of degrees of freedom.

  16. Disorder in large-N theories

    Energy Technology Data Exchange (ETDEWEB)

    Aharony, Ofer; Komargodski, Zohar [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Yankielowicz, Shimon [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2016-04-04

    We consider Euclidean Conformal Field Theories perturbed by quenched disorder, namely by random fluctuations in their couplings. Such theories are relevant for second-order phase transitions in the presence of impurities or other forms of disorder. Theories with quenched disorder often flow to new fixed points of the renormalization group. We begin with disorder in free field theories. Imry and Ma showed that disordered free fields can only exist for d>4. For d>4 we show that disorder leads to new fixed points which are not scale-invariant. We then move on to large-N theories (vector models or gauge theories in the ‘t Hooft limit). We compute exactly the beta function for the disorder, and the correlation functions of the disordered theory. We generalize the results of Imry and Ma by showing that such disordered theories exist only when disorder couples to operators of dimension Δ>d/4. Sometimes the disordered fixed points are not scale-invariant, and in other cases they have unconventional dependence on the disorder, including non-trivial effects due to irrelevant operators. Holography maps disorder in conformal theories to stochastic differential equations in a higher dimensional space. We use this dictionary to reproduce our field theory results. We also study the leading 1/N corrections, both by field theory methods and by holography. These corrections are particularly important when disorder scales with the number of degrees of freedom.

  17. The Mind behind the Message: Advancing Theory-of-Mind Scales for Typically Developing Children, and Those with Deafness, Autism, or Asperger Syndrome

    Science.gov (United States)

    Peterson, Candida C.; Wellman, Henry M.; Slaughter, Virginia

    2012-01-01

    Children aged 3-2 years (n = 184) with typical development, deafness, autism, or Asperger syndrome took a series of theory-of-mind (ToM) tasks to confirm and extend previous developmental scaling evidence. A new sarcasm task, in the format of H. M. Wellman and D. Liu's (2004) 5-step ToM Scale, added a statistically reliable 6th step to the scale…

  18. The mind behind the message: Advancing theory of mind scales for typically developing children, and those with deafness, autism, or Asperger Syndrome

    OpenAIRE

    Peterson, Candida C.; Wellman, Henry M.; Slaughter, Virginia

    2012-01-01

    Children aged 3 to 12 years (n=184) with typical development, deafness, autism or Asperger Syndrome took a series of theory-of-mind (ToM) tasks to confirm and extend previous developmental scaling evidence. A new sarcasm task, in the format of Wellman and Liu’s (2004) 5-step ToM scale, added a statistically reliable sixth step to the scale for all diagnostic groups. A key previous finding, divergence in task sequencing for children with autism, was confirmed. Comparisons among diagnostic grou...

  19. Allometric considerations when assessing aortic aneurysms in Turner syndrome: Implications for activity recommendations and medical decision-making.

    Science.gov (United States)

    Corbitt, Holly; Maslen, Cheryl; Prakash, Siddharth; Morris, Shaine A; Silberbach, Michael

    2018-02-01

    In Turner syndrome, the potential to form thoracic aortic aneurysms requires routine patient monitoring. However, the short stature that typically occurs complicates the assessment of severity and risk because the relationship of body size to aortic dimensions is different in Turner syndrome compared to the general population. Three allometric formula have been proposed to adjust aortic dimensions, all employing body surface area: aortic size index, Turner syndrome-specific Z-scores, and Z-scores based on a general pediatric and young adult population. In order to understand the differences between these formula we evaluated the relationship between age and aortic size index and compared Turner syndrome-specific Z-scores and pediatric/young adult based Z-scores in a group of girls and women with Turner syndrome. Our results suggest that the aortic size index is highly age-dependent for those under 15 years; and that Turner-specific Z-scores are significantly lower than Z-scores referenced to the general population. Higher Z-scores derived from the general reference population could result in stigmatization, inappropriate restriction from sports, and increasing the risk of unneeded medical or operative treatments. We propose that when estimating aortic dissection risk clinicians use Turner syndrome-specific Z-score for those under fifteen years of age. © 2017 Wiley Periodicals, Inc.

  20. String theory as a Lilliputian world

    International Nuclear Information System (INIS)

    Ambjørn, J.; Makeenko, Y.

    2016-01-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  1. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  2. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors.

    Science.gov (United States)

    Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P

    2015-05-01

    The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the 'paradox of enrichment' which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.

    Science.gov (United States)

    Kalenichenko, V. V.

    A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.

  4. Analysis of effectiveness of possible queuing models at gas stations using the large-scale queuing theory

    Directory of Open Access Journals (Sweden)

    Slaviša M. Ilić

    2011-10-01

    Full Text Available This paper analyzes the effectiveness of possible models for queuing at gas stations, using a mathematical model of the large-scale queuing theory. Based on actual data collected and the statistical analysis of the expected intensity of vehicle arrivals and queuing at gas stations, the mathematical modeling of the real process of queuing was carried out and certain parameters quantified, in terms of perception of the weaknesses of the existing models and the possible benefits of an automated queuing model.

  5. Story of the string theory. From hadrons to Planck scale

    International Nuclear Information System (INIS)

    Petropoulos, P.M.

    2010-01-01

    Originally the string theory was devised to describe the scattering between hadron particles but was quickly put aside by the success of the quantum chromodynamics. Now string theory appears in the quantum gravity theory and has been involved in almost all attempts to define a physics beyond the standard model and to unify basic interactions. (A.C.)

  6. Nuclear scales

    Energy Technology Data Exchange (ETDEWEB)

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  7. Nuclear scales

    International Nuclear Information System (INIS)

    Friar, J.L.

    1998-01-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the π-γ force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted

  8. Scale invariant Volkov–Akulov supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S., E-mail: sergio.ferrara@cern.ch [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Porrati, M., E-mail: mp9@nyu.edu [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10003 (United States); Sagnotti, A., E-mail: sagnotti@sns.it [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-10-07

    A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  9. Scaling of the low-energy structure in above-threshold ionization in the tunneling regime: theory and experiment.

    Science.gov (United States)

    Guo, L; Han, S S; Liu, X; Cheng, Y; Xu, Z Z; Fan, J; Chen, J; Chen, S G; Becker, W; Blaga, C I; DiChiara, A D; Sistrunk, E; Agostini, P; DiMauro, L F

    2013-01-04

    A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold ionization is presented for the case when the binding potential is the unscreened Coulomb potential. Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the theory by considering the depletion of the atomic ground state due to the applied laser field, which is well defined and does not require the introduction of a screening constant. We focus on the low-energy structure, which was observed in recent experiments with a midinfrared wavelength laser field. Both the spectra and, in particular, the observed scaling versus the Keldysh parameter and the ponderomotive energy are reproduced. The theory provides evidence that the origin of the structure lies in the long-range Coulomb interaction.

  10. Psychometric analysis of the Generalized Anxiety Disorder scale (GAD-7) in primary care using modern item response theory.

    Science.gov (United States)

    Jordan, Pascal; Shedden-Mora, Meike C; Löwe, Bernd

    2017-01-01

    The Generalized Anxiety Disorder scale (GAD-7) is one of the most frequently used diagnostic self-report scales for screening, diagnosis and severity assessment of anxiety disorder. Its psychometric properties from the view of the Item Response Theory paradigm have rarely been investigated. We aimed to close this gap by analyzing the GAD-7 within a large sample of primary care patients with respect to its psychometric properties and its implications for scoring using Item Response Theory. Robust, nonparametric statistics were used to check unidimensionality of the GAD-7. A graded response model was fitted using a Bayesian approach. The model fit was evaluated using posterior predictive p-values, item information functions were derived and optimal predictions of anxiety were calculated. The sample included N = 3404 primary care patients (60% female; mean age, 52,2; standard deviation 19.2) The analysis indicated no deviations of the GAD-7 scale from unidimensionality and a decent fit of a graded response model. The commonly suggested ultra-brief measure consisting of the first two items, the GAD-2, was supported by item information analysis. The first four items discriminated better than the last three items with respect to latent anxiety. The information provided by the first four items should be weighted more heavily. Moreover, estimates corresponding to low to moderate levels of anxiety show greater variability. The psychometric validity of the GAD-2 was supported by our analysis.

  11. Dynamics of SU(N) supersymmetric gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, M R [Rutgers - the State Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy; Shenker, S H [Rutgers - the State Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    1995-08-07

    We study the physics of the Seiberg-Witten and Argyres-Faraggi-Klemm-Lerche-Theisen-Yankielowicz solutions of D=4, N=2 and N=1 SU(N) supersymmetric gauge theory. The N=1 theory is confining and its effective Lagrangian is a spontaneously broken U(1){sup N-1} abelian gauge theory. We identify some features of its physics which see this internal structure, including a spectrum of different string tensions. We discuss the limit N{yields}{infinity}, identify a scaling regime in which instanton and monopole effects survive, and give exact results for the crossover from weak to strong coupling along a scaling trajectory. We find a large hierarchy of mass scales in the scaling regime, including very light W bosons, and the absence of weak coupling. The light W`s leave a novel imprint on the effective dual magnetic theory. The effective Lagrangian appears to be inadequate to understand the conventional large N limit of the confining N=1 theory. (orig.).

  12. Scale invariant Volkov–Akulov supergravity

    Directory of Open Access Journals (Sweden)

    S. Ferrara

    2015-10-01

    Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  13. Adding constraints to predation through allometric relation of scats to consumption.

    Science.gov (United States)

    Chakrabarti, Stotra; Jhala, Yadvendradev V; Dutta, Sutirtha; Qureshi, Qamar; Kadivar, Riaz F; Rana, Vishwadipsinh J

    2016-05-01

    A thorough understanding of mechanisms of prey consumption by carnivores and the constraints on predation help us in evaluating the role of carnivores in an ecosystem. This is crucial in developing appropriate management strategies for their conservation and mitigating human-carnivore conflict. Current models on optimal foraging suggest that mammalian carnivores would profit most from killing the largest prey that they can subdue with minimal risk of injury to themselves. Wild carnivore diets are primarily estimated through analysis of their scats. Using extensive feeding experiments (n = 68) on a wide size range (4·5-130 kg) of obligate carnivores - lion, leopard, jungle cat and domestic cat, we parameterize biomass models that best relate consumption to scat production. We evaluate additional constraints of gut fill, prey digestibility and carcass utilization on carnivory that were hereto not considered in optimal foraging studies. Our results show that patterns of consumption to scat production against prey size are similar and asymptotic, contrary to established linear models, across these carnivores after accounting for the effect of carnivore size. This asymptotic, allometric relationship allowed us to develop a generalized model: biomass consumed per collectable scat/predator weight = 0·033-0·025exp(-4·284(prey weight/predator weight)) , which is applicable to all obligate carnivores to compute prey biomass consumed from scats. Our results also depict a relationship for prey digestibility which saturates at about 90% for prey larger than predator size. Carcass utilization declines exponentially with prey size. These mechanisms result in digestible biomass saturating at prey weights approximately equal to predator weight. Published literature on consumption by tropical carnivores that has relied on linear biomass models is substantially biased. We demonstrate the nature of these biases by correcting diets of tiger, lion and leopard in recent

  14. The electroweak theory

    International Nuclear Information System (INIS)

    Chris Quigg

    2001-01-01

    After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2) L (circle-times) U(1) Y electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity

  15. Convergent evolution of vascular optimization in kelp (Laminariales).

    Science.gov (United States)

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  16. Wilsonian effective action of superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2017-01-25

    By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.

  17. DGDFT: A massively parallel method for large scale density functional theory calculations.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-09-28

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10(-4) Hartree/atom in terms of the error of energy and 6.2 × 10(-4) Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.

  18. DGDFT: A massively parallel method for large scale density functional theory calculations

    International Nuclear Information System (INIS)

    Hu, Wei; Yang, Chao; Lin, Lin

    2015-01-01

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10 −4 Hartree/atom in terms of the error of energy and 6.2 × 10 −4 Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail

  19. DGDFT: A massively parallel method for large scale density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei, E-mail: whu@lbl.gov; Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States)

    2015-09-28

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10{sup −4} Hartree/atom in terms of the error of energy and 6.2 × 10{sup −4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.

  20. Towards Transition Theory

    NARCIS (Netherlands)

    J. de Haan (Hans)

    2010-01-01

    textabstractThis thesis is a treatise on a theory for societal transitions: pillar theory. Societal transitions are complex processes taking place in complex systems, large-scale, long-term processes in which societal systems radically change the way they are composed and function. Since we all are

  1. Absolute calibration of the mass scale in the inverse problem of the physical theory of fireballs

    Science.gov (United States)

    Kalenichenko, V. V.

    1992-08-01

    A method of the absolute calibration of the mass scale is proposed for solving the inverse problem of the physical theory of fireballs. The method is based on data on the masses of fallen meteorites whose fireballs have been photographed in flight. The method can be applied to fireballs whose bodies have not experienced significant fragmentation during their flight in the atmosphere and have kept their shape relatively well. Data on the Lost City and Innisfree meteorites are used to calculate the calibration coefficients.

  2. Isolating Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) from Modular Ocean Model (MOM5) to Couple it with a Global Ocean Model

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.; Park, H. S.; Kim, K. Y.; Lee, J.; Byun, Y. H.

    2017-12-01

    This research is motivated by a need to develop a new coupled ocean-biogeochemistry model, a key tool for climate projections. The Modular Ocean Model (MOM5) is a global ocean/ice model developed by the Geophysical Fluid Dynamics Laboratory (GFDL) in the US, and it incorporates Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ), which simulates the marine biota associated with carbon cycles. We isolated TOPAZ from MOM5 into a stand-alone version (TOPAZ-SA), and had it receive initial data and ocean physical fields required. Then, its reliability was verified by comparing the simulation results from the TOPAZ-SA with the MOM5/TOPAZ. This stand-alone version of TOPAZ is to be coupled to the Nucleus for European Modelling of the Ocean (NEMO). Here we present the preliminary results. Acknowledgements This research was supported by the project "Research and Development for KMA Weather, Climate, and Earth system Services" (NIMS-2016-3100) of the National Institute of Meteorological Sciences/Korea Meteorological Administration.

  3. Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, J.C. [College of Mechanical and Electrical Engineering, Central South University, Changsha (China); School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Hu, Y.P.; Liu, D.S. [School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Long, X. [Hara XEMC Windpower Co., Ltd., Xiangtan (China)

    2011-03-15

    The aerodynamic loads for MW scale horizontal-axis wind turbines are calculated and analyzed in the established coordinate systems which are used to describe the wind turbine. In this paper, the blade element momentum (BEM) theory is employed and some corrections, such as Prandtl and Buhl models, are carried out. Based on the B-L semi-empirical dynamic stall (DS) model, a new modified DS model for NACA63-4xx airfoil is adopted. Then, by combing BEM modified theory with DS model, a set of calculation method of aerodynamic loads for large scale wind turbines is proposed, in which some influence factors such as wind shear, tower, tower and blade vibration are considered. The research results show that the presented dynamic stall model is good enough for engineering purpose; the aerodynamic loads are influenced by many factors such as tower shadow, wind shear, dynamic stall, tower and blade vibration, etc, with different degree; the single blade endures periodical changing loads but the variations of the rotor shaft power caused by the total aerodynamic torque in edgewise direction are very small. The presented study approach of aerodynamic loads calculation and analysis is of the university, and helpful for thorough research of loads reduction on large scale wind turbines. (author)

  4. Quantum field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    1975-01-01

    At first a heuristic understanding is given how the relation between quantum field theory and statistical mechanics near phase transitions comes about. A long range scale invariant theory is constructed, critical indices are calculated and the relations among them are proved, field theoretical Kadanoff-scale transformations are formulated and scaling corrections calculated. A precise meaning to many of Kadanoffs considerations and a model matching Wegners phenomenological scheme is given. It is shown, that soft parametrization is most transparent for the discussion of scaling behaviour. (BJ) [de

  5. Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA.

    Directory of Open Access Journals (Sweden)

    Tyson L Swetnam

    Full Text Available A significant concern about Metabolic Scaling Theory (MST in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1 tree condition and physical form, (2 the level of inter-tree competition (e.g. open vs closed stand structure, (3 increasing tree age, and (4 differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381 were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926. Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058, as did recently dead standing trees (n = 375. Exponent value of the mean-tree model that disregarded tree condition (n = 3,740 was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST.

  6. Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA.

    Science.gov (United States)

    Swetnam, Tyson L; O'Connor, Christopher D; Lynch, Ann M

    2016-01-01

    A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST.

  7. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  8. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    Science.gov (United States)

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  9. Mean field theory of EM algorithm for Bayesian grey scale image restoration

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi; Tanaka, Kazuyuki

    2003-01-01

    The EM algorithm for the Bayesian grey scale image restoration is investigated in the framework of the mean field theory. Our model system is identical to the infinite range random field Q-Ising model. The maximum marginal likelihood method is applied to the determination of hyper-parameters. We calculate both the data-averaged mean square error between the original image and its maximizer of posterior marginal estimate, and the data-averaged marginal likelihood function exactly. After evaluating the hyper-parameter dependence of the data-averaged marginal likelihood function, we derive the EM algorithm which updates the hyper-parameters to obtain the maximum likelihood estimate analytically. The time evolutions of the hyper-parameters and so-called Q function are obtained. The relation between the speed of convergence of the hyper-parameters and the shape of the Q function is explained from the viewpoint of dynamics

  10. Scaling of Advanced Theory-of-Mind Tasks

    Science.gov (United States)

    Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate

    2016-01-01

    Advanced theory-of-mind (AToM) development was investigated in three separate studies involving 82, 466, and 402 elementary school children (8-, 9-, and 10-year-olds). Rasch and factor analyses assessed whether common conceptual development underlies higher-order false-belief understanding, social understanding, emotion recognition, and…

  11. Toward city-scale water quality control: building a theory for smart stormwater systems

    Science.gov (United States)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  12. Generalized probabilistic scale space for image restoration.

    Science.gov (United States)

    Wong, Alexander; Mishra, Akshaya K

    2010-10-01

    A novel generalized sampling-based probabilistic scale space theory is proposed for image restoration. We explore extending the definition of scale space to better account for both noise and observation models, which is important for producing accurately restored images. A new class of scale-space realizations based on sampling and probability theory is introduced to realize this extended definition in the context of image restoration. Experimental results using 2-D images show that generalized sampling-based probabilistic scale-space theory can be used to produce more accurate restored images when compared with state-of-the-art scale-space formulations, particularly under situations characterized by low signal-to-noise ratios and image degradation.

  13. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  14. Shear rate normalization is not essential for removing the dependency of flow-mediated dilation on baseline artery diameter: past research revisited

    International Nuclear Information System (INIS)

    Atkinson, Greg

    2014-01-01

    A ratio index (FMD%) is used ubiquitously to scale (by simple division) brachial artery flow-mediated dilation (D diff ) in direct proportion to baseline diameter (D base ). It is now known that D diff is inversely proportional to D base rendering FMD% wholly inappropriate. Consequently, FMD% is still substantially dependent on D base . Although this problem is grounded in statistics, normalization of FMD% for the change in arterial shear rate (ΔSR) has been proposed to remove this D base -dependency. It was hypothesized that, if the flow-mediated response is scaled properly to D base in the first place, shear rate normalization would not be needed to remove D base -dependency. Dedicated software (Digitizelt) was employed to extract the data from a seminal study on FMD% normalization. The underlying allometric relationship between D base and peak diameter (D peak ) was described. The re-analyses revealed that the absolute change in arterial diameter was strongly inversely proportional to D base (r= − 0.7, P < 0.0005). The allometric exponent for the D base –D peak relationship was 0.82 (95% CI: 0.78–0.86) rather than the value of 1 needed for appropriate use of FMD%. The allometric approach completely eliminated the originally reported dependency on D base without any need for ΔSR normalization (r=0.0, P=0.96). The correlation between ΔSR and FMD% reduced from 0.69 to 0.37, when adjusted for D base . In conclusion, this new re-analysis of data from an influential study demonstrates that the FMD%–D base correlation is caused by the inappropriate size-scaling properties of FMD% itself. Removal of D base -dependency via FMD%/ΔSR normalization is not essential at all if allometric scaling is applied to isolate the flow-mediated response in the first place. Consequently, the influence of ΔSR on this properly scaled response can also be isolated and quantified accurately without the confounding influence of D base . (paper)

  15. A note on finite-scale Navier–Stokes theory: The case of constant viscosity, strictly adiabatic flow

    International Nuclear Information System (INIS)

    Jordan, P.M.; Keiffer, R.S.

    2015-01-01

    We investigate the “piston problem” for the case of a viscous, but non-thermally conducting, gas with constant transport coefficients under the recently introduced generalization of the Navier–Stokes (NS) equations known as the finite-scale Navier–Stokes (FSNS) equations. Along with determining and analyzing the integral curves of the resulting kink-type traveling wave solutions (TWS)s, the present study also reveals the importance of the bulk viscosity vis-a-vis this special case of FSNS theory and highlights the impact that averaging has on the structure of the shock profile

  16. An item response theory analysis of Harter's Self-Perception Profile for children or why strong clinical scales should be distrusted.

    Science.gov (United States)

    Egberink, Iris J L; Meijer, Rob R

    2011-06-01

    The authors investigated the psychometric properties of the subscales of the Self-Perception Profile for Children with item response theory (IRT) models using a sample of 611 children. Results from a nonparametric Mokken analysis and a parametric IRT approach for boys (n = 268) and girls (n = 343) were compared. The authors found that most scales formed weak scales and that measurement precision was relatively low and only present for latent trait values indicating low self-perception. The subscales Physical Appearance and Global Self-Worth formed one strong scale. Children seem to interpret Global Self-Worth items as if they measure Physical Appearance. Furthermore, the authors found that strong Mokken scales (such as Global Self-Worth) consisted mostly of items that repeat the same item content. They conclude that researchers should be very careful in interpreting the total scores on the different Self-Perception Profile for Children scales. Finally, implications for further research are discussed.

  17. Small numbers in supersymmetric theories of nature

    International Nuclear Information System (INIS)

    Graesser, Michael L.

    1999-01-01

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10 -32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject

  18. Mass corrections in string theory and lattice field theory

    International Nuclear Information System (INIS)

    Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo

    2009-01-01

    Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.

  19. On classification of N=2 supersymmetric theories

    International Nuclear Information System (INIS)

    Cecotti, S.; Vafa, C.

    1993-01-01

    We find a relation between the spectrum of solitons of massive N=2 quantum field theories in d=2 and the scaling dimensions of chiral fields at the conformal point. The condition that the scaling dimensions be real imposes restrictions on the soliton numbers and leads to a classification program for symmetric N=2 conformal theories and their massive deformations in terms of a suitable generalization of Dynkin diagrams (which coincides with the A-D-E Dynkin diagrams for minimal models). The Landau-Ginzburg theories are a proper subset of this classification. In the particular case of LG theories we relate the soliton numbers with intersection of vanishing cycles of the corresponding singularity; the relation between soliton numbers and the scaling dimensions in this particular case is a well known application of Picard-Lefschetz theory. (orig.)

  20. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1987-01-01

    Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found

  1. [Modeling continuous scaling of NDVI based on fractal theory].

    Science.gov (United States)

    Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng

    2013-07-01

    Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.

  2. Metabolism and Aging : Effects of Cold Exposure on Metabolic Rate, Body Composition, and Longevity in Mice

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Schubert, Kristin A.; Visser, G. Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory ( Pearl 1928) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals,

  3. An Asymptotic Derivation of Weakly Nonlinear Ray Theory

    Indian Academy of Sciences (India)

    The transport equation for the amplitude has been deduced with an error (2) where is the small parameter appearing in the high frequency approximation. On a length scale over which Choquet–Bruhat's theory is valid, this theory reduces to the former. The theory is valid on a much larger length scale and the leading ...

  4. Phase space properties of local observables and structure of scaling limits

    International Nuclear Information System (INIS)

    Buchholz, D.

    1995-05-01

    For any given algebra of local observables in relativistic quantum field theory there exists an associated scaling algebra which permits one to introduce renormalization group transformations and to construct the scaling (short distance) limit of the theory. On the basis of this result it is discussed how the phase space properties of a theory determine the structure of its scaling limit. Bounds on the number of local degrees of freedom appearing in the scaling limit are given which allow one to distinguish between theories with classical and quantum scaling limits. The results can also be used to establish physically significant algebraic properties of the scaling limit theories, such as the split property. (orig.)

  5. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch in the Mu Us Desert of Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2015-12-01

    Full Text Available Allometric models are useful for assessment of aboveground net primary productivity (ANPP and aboveground biomass (AGB of forests and shrubs, and are widely implemented in forest inventory and management. Multiple forms of allometric models have been used to estimate vegetation carbon storage for desert shrubland, but their validity for biomass estimation has not been tested at a region scale with different habitats. To verify the validity of habitat-specific models, general models (combining data from all habitats/sites, and previously developed models for biomass prediction, we developed both general models and habitat-specific models for aboveground biomass and ANPP of Artemisia ordosica Krasch, a dominant shrub of the Mu Us Desert. Our results showed that models based on crown area or canopy volume consistently explained large parts of the variations in aboveground biomass and ANPP. Model fitting highlighted that general allometric models were inadequate across different habitats, and habitat-specific models were useful for that specific habitat. Previous models might be inappropriate for other sites because of site quality differences. There was a strong habitat effect on the allometric relationships of A. ordosica. Although our study is a case in point, the results indicate that allometric models for desert shrubs should be used with caution and require robust validation if adopted from other studies or applied to different sites/habitats.

  6. Allometric trajectories and "stress": a quantitative approach

    Directory of Open Access Journals (Sweden)

    Tommaso Anfodillo

    2016-11-01

    Full Text Available The term stress is an important but vague term in plant biology. We show situations in which thinking in terms of stress is profitably replaced by quantifying distance from functionally optimal scaling relationships between plant parts. These relationships include, for example, the often-cited one between leaf area and sapwood area, which presumably reflects mutual dependence between source and sink tissues and which scales positively within individuals and across species. These relationships seem to be so basic to plant functioning that they are favored by selection across nearly all plant lineages. Within a species or population, individuals that are far from the common scaling patterns are thus expected to perform negatively. For instance, too little leaf area (e.g. due to herbivory or disease per unit of active stem mass would be expected to incur to low carbon income per respiratory cost and thus lead to lower growth. We present a framework that allows quantitative study of phenomena traditionally assigned to stress, without need for recourse to this term. Our approach contrasts with traditional approaches for studying stress, e.g. revealing that small stressed plants likely are in fact well suited to local conditions. We thus offer a quantitative perspective to the study of phenomena often referred to under such terms as stress, plasticity, adaptation, and acclimation.

  7. Allometric Trajectories and "Stress": A Quantitative Approach.

    Science.gov (United States)

    Anfodillo, Tommaso; Petit, Giai; Sterck, Frank; Lechthaler, Silvia; Olson, Mark E

    2016-01-01

    The term "stress" is an important but vague term in plant biology. We show situations in which thinking in terms of "stress" is profitably replaced by quantifying distance from functionally optimal scaling relationships between plant parts. These relationships include, for example, the often-cited one between leaf area and sapwood area, which presumably reflects mutual dependence between sources and sink tissues and which scales positively within individuals and across species. These relationships seem to be so basic to plant functioning that they are favored by selection across nearly all plant lineages. Within a species or population, individuals that are far from the common scaling patterns are thus expected to perform negatively. For instance, "too little" leaf area (e.g., due to herbivory or disease) per unit of active stem mass would be expected to incur to low carbon income per respiratory cost and thus lead to lower growth. We present a framework that allows quantitative study of phenomena traditionally assigned to "stress," without need for recourse to this term. Our approach contrasts with traditional approaches for studying "stress," e.g., revealing that small "stressed" plants likely are in fact well suited to local conditions. We thus offer a quantitative perspective to the study of phenomena often referred to under such terms as "stress," plasticity, adaptation, and acclimation.

  8. Correction: General optimization procedure towards the design of a new family of minimal parameter spin-component-scaled double-hybrid density functional theory.

    Science.gov (United States)

    Roch, Loïc M; Baldridge, Kim K

    2018-02-07

    Correction for 'General optimization procedure towards the design of a new family of minimal parameter spin-component-scaled double-hybrid density functional theory' by Loïc M. Roch and Kim K. Baldridge, Phys. Chem. Chem. Phys., 2017, 19, 26191-26200.

  9. From Fancy to Reason: Scaling Deaf and Hearing Children’s Understanding of Theory of Mind and Pretence

    OpenAIRE

    Peterson, Candida C.; Wellman, Henry M.

    2009-01-01

    We examined deaf and hearing children’s progression of steps in theory-of-mind (ToM) development including their understanding of social pretending. Ninety-three children (33 deaf; 60 hearing) aged 3 to 13 years were tested on a set of six closely-matched ToM tasks. Results showed that deaf children were delayed substantially behind hearing children in understanding pretending, false belief and other ToM concepts, in line with their delayed uptake of social pretend play. By using a scaling me...

  10. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior

    Science.gov (United States)

    Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia

    2016-01-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…

  11. Deep inelastic scattering in an asymptotically free gauge theory

    International Nuclear Information System (INIS)

    Fujiwara, Tsutomu

    1977-01-01

    This paper reviews the success of the asymptotically free gauge theory which describes the deep inelastic lepton-hadron scattering. The asymptotically free gauge theory was discussed as well as the reason why the parton has the nature like free particles by the aid of the field theory. The asymptotically free gauge theory (AFGT) gives the prediction that the Bjorken scaling gives rise to logarithmic violation. The theory was applied to the exchange processes of single photon and two photons. First, this paper describes the approaches to the Bjorken scaling. The approaches are the discussion of the scaling law dependent on the model and the discussion of the scaling law independent of the model. The field theoretical treatment in described. This is called the method of the renormalization group introduced by Wilson. The asymptotically free gauge theory was formed on the basis of the Callan-Symanzik equation (CSE) and of the Weinberg's power counting theorem. The exact Bjorken scaling does not hold in the quantum field theory, at least there must be logarithmic violation. The pattern of the scaling violation cannot be clarified by the present data. Discussions concerning two gamma process are presented. The measurement of the photon-photon scattering process will give the judgement whether the prediction of the AFGT is correct or not. (Kato, T.)

  12. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory.

    Science.gov (United States)

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.

  13. The natural selection of metabolism explains curvature in allometric scaling

    OpenAIRE

    Witting, Lars

    2016-01-01

    I simulate the evolution of metabolism and mass to explain the curvature in the metabolic allometry for placental and marsupial mammals. I assume that the release of inter-specific competition by the extinction of dinosaurs 65 million years ago made it possible for each clade to diversity into a multitude of species across a wide range of niches. The natural selection of metabolism and mass was then fitted to explain the maximum observed body masses over time, as well as the current inter-spe...

  14. Symmetry-guided large-scale shell-model theory

    Czech Academy of Sciences Publication Activity Database

    Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.

    2016-01-01

    Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016

  15. New horizons for aerobic fitness normalization in children: Breaking the paradigm

    Directory of Open Access Journals (Sweden)

    Giovani dos Santos Cunha

    2014-10-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2014v16n6p709 Traditional methods to normalize aerobic fitness (VO2max have been considered inadequate for not properly adjusting the effects of body size in children, adolescents and adults. Allometric scaling (Y=aXb has emerged as an efficient method to compare individuals of different body dimensions. Studies aimed to compare VO2max in individuals with different body sizes should use methodology that properly accounts for the body size effect, thereby avoiding misinterpretation and reaching the potentially wrong conclusion. The use of allometric scaling for studies aimed to compare aerobic fitness in children and adolescents who dramatically vary in body size is strongly recommended.

  16. Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations

    Science.gov (United States)

    Ghanbarian, Behzad; Berg, Carl F.

    2017-09-01

    Accurate quantification of formation resistivity factor F (also called formation factor) provides useful insight into connectivity and pore space topology in fully saturated porous media. In particular the formation factor has been extensively used to estimate permeability in reservoir rocks. One of the widely applied models to estimate F is Archie's law (F = ϕ- m in which ϕ is total porosity and m is cementation exponent) that is known to be valid in rocks with negligible clay content, such as clean sandstones. In this study we compare formation factors determined by percolation and effective-medium theories as well as Archie's law with numerical simulations of electrical resistivity on digital rock models. These digital models represent Bentheimer and Fontainebleau sandstones and are derived either by reconstruction or directly from micro-tomographic images. Results show that the universal quadratic power law from percolation theory accurately estimates the calculated formation factor values in network models over the entire range of porosity. However, it crosses over to the linear scaling from the effective-medium approximation at the porosity of 0.75 in grid models. We also show that the effect of critical porosity, disregarded in Archie's law, is nontrivial, and the Archie model inaccurately estimates the formation factor in low-porosity homogeneous sandstones.

  17. Generalized uncertainty principle as a consequence of the effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam (Netherlands); Nassar, Ali, E-mail: anassar@zewailcity.edu.eg [Department of Physics, Zewail City of Science and Technology, 12588, Giza (Egypt)

    2017-02-10

    We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  18. Generalized uncertainty principle as a consequence of the effective field theory

    Directory of Open Access Journals (Sweden)

    Mir Faizal

    2017-02-01

    Full Text Available We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  19. Recent developments in the theory of critical phenomena

    International Nuclear Information System (INIS)

    Schroer, B.

    1974-01-01

    The work of Kadanoff, Wilson and Wegner, in the language of Euclidian field theory, is revised. In addition to Wilson's renormalization group method, which is based on the idea of eliminating short range fluctuations, the renormalization method of quantum field theory is discussed, which, in the present context, is called reparametrization (in order to avoid confusion). A reparametrization which is of particular interest in the theory of critical phenomena is the one which leads to scaling equations. New scaling equations which remain free of infrared divergences in two and three dimensions, are derived. The method allows a rather compact and unified discussion of Kadanoff's scaling laws and the related concept of global scaling fields, as well as the scale invariant correlation functions [pt

  20. Chewing rates among domestic dog breeds

    Science.gov (United States)

    Gerstner, Geoffrey E.; Cooper, Meghan; Helvie, Peter

    2010-01-01

    The mammalian masticatory rhythm is produced by a brainstem timing network. The rhythm is relatively fixed within individual animals but scales allometrically with body mass (Mb) across species. It has been hypothesized that sensory feedback and feed-forward adjust the rhythm to match the jaw's natural resonance frequency, with allometric scaling being an observable consequence. However, studies performed with adult animals show that the rhythm is not affected by jaw mass manipulations, indicating that either developmental or evolutionary mechanisms are required for allometry to become manifest. The present study was performed to tease out the relative effects of development versus natural selection on chewing rate allometry. Thirty-one dog breeds and 31 mass-matched non-domestic mammalian species with a range in Mb from ∼2 kg to 50 kg were studied. Results demonstrated that the chewing rhythm did not scale with Mb among dog breeds (R=0.299, P>0.10) or with jaw length (Lj) (R=0.328, P>0.05). However, there was a significant relationship between the chewing rhythm and Mb among the non-domestic mammals (R=0.634, Pgeneration but they do not explain the 1/3rd to 1/4th allometric scaling observed among adult mammals. The rhythm of the timing network is either adjusted to the physical parameters of the jaw system during early development only, is genetically determined independently of the jaw system or is uniquely hard-wired among dogs and laboratory rodents. PMID:20543125

  1. Maslowian Scale.

    Science.gov (United States)

    Falk, C.; And Others

    The development of the Maslowian Scale, a method of revealing a picture of one's needs and concerns based on Abraham Maslow's levels of self-actualization, is described. This paper also explains how the scale is supported by the theories of L. Kohlberg, C. Rogers, and T. Rusk. After a literature search, a list of statements was generated…

  2. Causality violations in Lovelock theories

    Science.gov (United States)

    Brustein, Ram; Sherf, Yotam

    2018-04-01

    Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.

  3. Isotropic-nematic transition in a mixture of hard spheres and hard spherocylinders: scaled particle theory description

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2017-12-01

    Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.

  4. Modifications of Einstein's theory of gravity at large distances

    CERN Document Server

    2015-01-01

    In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories.   In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments.   Edite...

  5. THE HALO MASS FUNCTION FROM EXCURSION SET THEORY. I. GAUSSIAN FLUCTUATIONS WITH NON-MARKOVIAN DEPENDENCE ON THE SMOOTHING SCALE

    International Nuclear Information System (INIS)

    Maggiore, Michele; Riotto, Antonio

    2010-01-01

    A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside 'Markovian' terms, we find 'memory' terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the

  6. Microcontinuum field theories

    CERN Document Server

    Eringen, A Cemal

    1999-01-01

    Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...

  7. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    International Nuclear Information System (INIS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank; Valeev, Edward F.

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate

  8. Preclinical pharmacokinetics, interspecies scaling, and pharmacokinetics of a Phase I clinical trial of TTAC-0001, a fully human monoclonal antibody against vascular endothelial growth factor 2

    Directory of Open Access Journals (Sweden)

    Lee WS

    2018-03-01

    Full Text Available Weon Sup Lee,1 Sang Ryeol Shim,1 Seon Young Lee,1 Jin San Yoo,1 Sung Kweon Cho2 1PharmAbcine, Inc., Daejeon, Republic of Korea; 2Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea Background: VEGF is a highly selective mitogen that serves as the central regulator of tumor angiogenesis by mediating endothelial proliferation, permeability, and survival. Tanibirumab (TTAC-0001 is a fully human IgG1 monoclonal antibody derived from a fully human naïve single-chain variable fragment (ScFv phage library that was developed to inhibit the effects of VEGF in the treatment of solid tumors, especially those of the brain. Methods: In the present study, we conducted intravenous pharmacokinetic studies of TTAC-0001 in mice, rats, and cynomolgus monkeys. At the doses studied (3 mg/kg, 10 mg/kg, 30 mg/kg, TTAC-0001 exhibited dose proportionality in mice and monkeys. At a dose of ~10 mg/kg, the clearance of TTAC-0001 from serum was 0.017 mL/h in mice, 0.35 mL/h in rats, and 2.19 mL/h in cynomolgus monkeys, and the terminal half-life ranged from 20–30 h among the three species. Pharmacokinetic data in mice, rats, and cynomolgus monkeys were used to predict the pharmacokinetics of TTAC-0001 in humans using allometric scaling. The predicted serum clearance of TTAC-0001 in humans was 102.45 mL/h and the terminal half-life was 27.52 h. Results: The maximum life span-corrected clearance value was 72.92 mL/h. The observed clearance in humans was more similar to the predicted scaled clearance. Conclusion: We investigated the pharmacokinetics of TTAC-0001 in mice, rats, and cynomolgus monkeys after intravenous administration. At the doses studied, TTAC-0001 exhibited dose proportionality in mice and monkeys. The scaled pharmacokinetics of TTAC-0001 reported here was useful for designing first-in-human studies. Allometric scaling in the therapeutic antibody is feasible. Keywords: VEGF2, tanibirumab, pharmacokinetics

  9. Using Procedure Based on Item Response Theory to Evaluate Classification Consistency Indices in the Practice of Large-Scale Assessment

    Directory of Open Access Journals (Sweden)

    Shanshan Zhang

    2017-09-01

    Full Text Available In spite of the growing interest in the methods of evaluating the classification consistency (CC indices, only few researches are available in the field of applying these methods in the practice of large-scale educational assessment. In addition, only few studies considered the influence of practical factors, for example, the examinee ability distribution, the cut score location and the score scale, on the performance of CC indices. Using the newly developed Lee's procedure based on the item response theory (IRT, the main purpose of this study is to investigate the performance of CC indices when practical factors are taken into consideration. A simulation study and an empirical study were conducted under comprehensive conditions. Results suggested that with negatively skewed distribution, the CC indices were larger than with other distributions. Interactions occurred among ability distribution, cut score location, and score scale. Consequently, Lee's IRT procedure is reliable to be used in the field of large-scale educational assessment, and when reporting the indices, it should be treated with caution as testing conditions may vary a lot.

  10. Scaling theory of drying in porous media

    International Nuclear Information System (INIS)

    Tsimpanogiannis, I.N.; Yortsos, Y.C.; Poulou, S.; Kanellopoulos, N.; Stubos, A.K.

    1999-01-01

    Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front. It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front, which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental results of Shaw [Phys Rev. Lett. 59, 1671 (1987)]. A framework for a continuum description of the upstream drying regimes is also developed. copyright 1999 The American Physical Society

  11. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  12. Psychometric properties of the Chinese version of resilience scale specific to cancer: an item response theory analysis.

    Science.gov (United States)

    Ye, Zeng Jie; Liang, Mu Zi; Zhang, Hao Wei; Li, Peng Fei; Ouyang, Xue Ren; Yu, Yuan Liang; Liu, Mei Ling; Qiu, Hong Zhong

    2018-06-01

    Classic theory test has been used to develop and validate the 25-item Resilience Scale Specific to Cancer (RS-SC) in Chinese patients with cancer. This study was designed to provide additional information about the discriminative value of the individual items tested with an item response theory analysis. A two-parameter graded response model was performed to examine whether any of the items of the RS-SC exhibited problems with the ordering and steps of thresholds, as well as the ability of items to discriminate patients with different resilience levels using item characteristic curves. A sample of 214 Chinese patients with cancer diagnosis was analyzed. The established three-dimension structure of the RS-SC was confirmed. Several items showed problematic thresholds or discrimination ability and require further revision. Some problematic items should be refined and a short-form of RS-SC maybe feasible in clinical settings in order to reduce burden on patients. However, the generalizability of these findings warrants further investigations.

  13. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    Science.gov (United States)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  14. A dual theory of price and value in a meso-scale economic model with stochastic profit rate

    Science.gov (United States)

    Greenblatt, R. E.

    2014-12-01

    The problem of commodity price determination in a market-based, capitalist economy has a long and contentious history. Neoclassical microeconomic theories are based typically on marginal utility assumptions, while classical macroeconomic theories tend to be value-based. In the current work, I study a simplified meso-scale model of a commodity capitalist economy. The production/exchange model is represented by a network whose nodes are firms, workers, capitalists, and markets, and whose directed edges represent physical or monetary flows. A pair of multivariate linear equations with stochastic input parameters represent physical (supply/demand) and monetary (income/expense) balance. The input parameters yield a non-degenerate profit rate distribution across firms. Labor time and price are found to be eigenvector solutions to the respective balance equations. A simple relation is derived relating the expected value of commodity price to commodity labor content. Results of Monte Carlo simulations are consistent with the stochastic price/labor content relation.

  15. A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Schaeper, Nina D; Prpic, Nikola-Michael; Wimmer, Ernst A

    2009-08-01

    The genes encoding the closely related zinc finger transcription factors Buttonhead (Btd) and D-Sp1 are expressed in the developing limb primordia of Drosophila melanogaster and are required for normal growth of the legs. The D-Sp1 homolog of the red flour beetle Tribolium castaneum, Sp8 (appropriately termed Sp8/9), is also required for the proper growth of the leg segments. Here we report on the isolation and functional study of the Sp8/9 gene from the milkweed bug Oncopeltus fasciatus. We show that Sp8/9 is expressed in the developing appendages throughout development and that the downregulation of Sp8/9 via RNAi leads to antennae, rostrum, and legs with shortened and fused segments. This supports a conserved role of Sp8/9 in allometric leg segment growth. However, all leg segments including the claws are present and the expression of the leg genes Distal-less, dachshund, and homothorax are proportionally normal, thus providing no evidence for a role of Sp8/9 in appendage specification.

  16. Exact form factors for the scaling ZN-Ising and the affine AN-1-Toda quantum field theories

    International Nuclear Information System (INIS)

    Babujian, H.; Karowski, M.

    2003-01-01

    Previous results on form factors for the scaling Ising and the sinh-Gordon models are extended to general Z N -Ising and affine A N-1 -Toda quantum field theories. In particular result for order, disorder parameters and para-Fermi fields σ Q (x), μ Q-tilde (x) and ψ Q (x) are presented for the Z N -model. For the A N-1 -Toda model form factors for exponentials of the Toda fields are proposed. The quantum field equation of motion is proved and the mass and wave function renormalization are calculated exactly

  17. Development and validation of an item response theory-based Social Responsiveness Scale short form.

    Science.gov (United States)

    Sturm, Alexandra; Kuhfeld, Megan; Kasari, Connie; McCracken, James T

    2017-09-01

    Research and practice in autism spectrum disorder (ASD) rely on quantitative measures, such as the Social Responsiveness Scale (SRS), for characterization and diagnosis. Like many ASD diagnostic measures, SRS scores are influenced by factors unrelated to ASD core features. This study further interrogates the psychometric properties of the SRS using item response theory (IRT), and demonstrates a strategy to create a psychometrically sound short form by applying IRT results. Social Responsiveness Scale analyses were conducted on a large sample (N = 21,426) of youth from four ASD databases. Items were subjected to item factor analyses and evaluation of item bias by gender, age, expressive language level, behavior problems, and nonverbal IQ. Item selection based on item psychometric properties, DIF analyses, and substantive validity produced a reduced item SRS short form that was unidimensional in structure, highly reliable (α = .96), and free of gender, age, expressive language, behavior problems, and nonverbal IQ influence. The short form also showed strong relationships with established measures of autism symptom severity (ADOS, ADI-R, Vineland). Degree of association between all measures varied as a function of expressive language. Results identified specific SRS items that are more vulnerable to non-ASD-related traits. The resultant 16-item SRS short form may possess superior psychometric properties compared to the original scale and emerge as a more precise measure of ASD core symptom severity, facilitating research and practice. Future research using IRT is needed to further refine existing measures of autism symptomatology. © 2017 Association for Child and Adolescent Mental Health.

  18. Comparing Theory and Practice: An Application of Complexity Theory to General Ridgway’s Success in Korea

    Science.gov (United States)

    2010-12-02

    will face in an uncertain future. Complexity Theory , History, Practice, Military Theory , Leadership 14. SUBJECT TERMS 70 15. NUMBER OF PAGES...complexity theory : scale, adaptive leadership , and bottom up feedback from the agents (the soldiers in the field). These are all key sub components of...Approved for Public Release; Distribution is Unlimited COMPARING THEORY AND PRACTICE: AN APPLICATION OF COMPLEXITY THEORY TO GENERAL RIDGWAY’S

  19. CEPF Western Ghats Special Series: Length-weight and length-length relationship of three species of snakehead fish, Channa diplogramma, C. marulius and C. striata from the riverine reaches of Lake Vembanad, Kerala, India.

    Directory of Open Access Journals (Sweden)

    A. Ali

    2013-09-01

    Full Text Available The length-weight relationship (LWR and length-length relationships (LLR of three snakehead fishes, Channa diplogramma, C. marulius and C. striata, exploited by small-scale fishers in the riverine reaches of Lake Vembanad, Kerala were studied using the allometric growth equation Y = aXb. Our analysis shows that the LWR of C. diplogramma and C. marulius is nonisometric with exponents much smaller than the cubic value (b = 3, while that of C. striata is isometric. Channa marulius showed a definite change in LWR with size, with smaller fish growing with positive allometric exponents (b greater than 3 and larger individuals having negative allometric relationship (b less than 3, indicating a possible age-related change in growth pattern. In the case of LLR, all three snakehead species showed non-isometric growth patterns. The caudal fin did not grow substantially with increasing fish length.

  20. Allometric growth pattern, sexual dimorphism and size at the onset of sexual maturity in Opusia indica (Brachyura: Ocypodoidea: Camptandriidae from mangrove areas of Pakistan

    Directory of Open Access Journals (Sweden)

    Noor Us Saher

    2016-08-01

    Full Text Available Size at sexual maturity and patterns of somatic growth are important aspects of reproductive history of crab. The main purpose of this study is to provide an estimate for the onset of morphological sexual maturity in mangrove crab, Opusia indica from a population located in Korangi creek intertidal mud flat (Karachi, Pakistan based on relative growth. The crabs were monthly collected through quadrat method from March 2001 to February 2002. A total of 1702 crabs was obtained, of which 764 were males, 939 were female. The morphometric measurement of carapace, abdomen, cheliped and male gonopod was related to carapace width. Based on carapace width males were significantly larger than female, indicating sexual dimorphism. The size at onset of sexual maturity in males was estimated as 5.51 mm carapace width and 5.3 mm carapace width in females. The positive allometric growth of female abdominal width were likely related to the incubation process.

  1. LEP constraints on grand unified theories

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    1993-01-01

    Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs

  2. A New Likert Scale Based on Fuzzy Sets Theory

    Science.gov (United States)

    Li, Cheryl Qing

    2010-01-01

    In social science research, the Likert method is commonly used as a psychometric scale to measure responses. This measurement scale has a procedure that facilitates survey construction and administration, and data coding and analysis. However, there are some problems with Likert scaling. This dissertation addresses the information distortion and…

  3. Monte Carlo studies of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Creutz, M.

    1980-05-01

    After some general remarks on the efficiency of various Monte Carlo algorithms for gauge theories, the calculation of the asymptotic freedom scales of SU(2) and SU(3) gauge theories in the absence of quarks was discussed. There are large numerical factors between these scales when defined in terms of the bare coupling of the lattice theory or when defined in terms of the physical force between external sources

  4. Gauge theory description of compactified pp-waves

    International Nuclear Information System (INIS)

    Bertolini, Matteo; Boer, Jan de; Harmark, Troels; Imeroni, Emiliano; Obers, Niels A.

    2003-01-01

    We find a new Penrose limit of AdS 5 xS 5 that gives the maximally symmetric pp-wave background of type-IIB string theory in a coordinate system that has a manifest space-like isometry. This induces a new pp-wave/gauge-theory duality which on the gauge theory side involves a novel scaling limit of N=4 SYM theory. The new Penrose limit, when applied to AdS 5 xS 5 /Z M , yields a pp-wave with a space-like circle. The dual gauge theory description involves a triple scaling limit of an N=2 quiver gauge theory. We present in detail the map between gauge theory operators and string theory states including winding states, and verify agreement between the energy eigenvalues obtained from string theory and those computed in gauge theory, at least to one-loop order in the planar limit. We furthermore consider other related new Penrose limits and explain how these limits can be understood as part of a more general framework. (author)

  5. Renormalization group theory of critical phenomena

    International Nuclear Information System (INIS)

    Menon, S.V.G.

    1995-01-01

    Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)

  6. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove

    2018-01-01

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  7. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.

    Science.gov (United States)

    Petit, Giai; Anfodillo, Tommaso

    2009-07-07

    The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

  8. Parental care trade-offs and life-history relationships in insects.

    Science.gov (United States)

    Gilbert, James D J; Manica, Andrea

    2010-08-01

    Insect parental care is extensive and varied, but its life-history implications have never been comparatively tested. Using original and literature data, we tested predictions about egg size, egg number (lifetime fecundity), and body size under different parental care modes across a phylogeny of 287 insect species. Life-history theory and both comparative and intraspecific evidence from ectotherms suggest parental care should select for bigger, fewer eggs, but that allometric scaling of egg size and lifetime fecundity may depend on whether care consists of provisioning (density-dependent offspring survival) or merely guarding (density-independent offspring survival). Against expectation, egg size was indistinguishable among parental care modes, covarying only with body size. This refutes most theory of egg size evolution under parental care. Lifetime fecundity scaled differently depending on parental investment-positively under no care and guarding, as in most ectotherms, but negatively under provisioning. Reproductive allocation in provisioning insects resembled that in mammals and birds, also groups with obligate provisioning. We propose that the metabolic demands of multiple offspring must scale with species body size more steeply than the parent's provisioning capacity, resulting in larger females laying fewer eggs. These patterns lay the groundwork for a more general understanding of parental care and life history.

  9. Some nonlinear dynamic inequalities on time scales

    Indian Academy of Sciences (India)

    In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...

  10. Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores

    International Nuclear Information System (INIS)

    Neimark, Alexander V; Ravikovitch, Peter I; Vishnyakov, Aleksey

    2003-01-01

    With the example of the capillary condensation of Lennard-Jones fluid in nanopores ranging from 1 to 10 nm, we show that the non-local density functional theory (NLDFT) with properly chosen parameters of intermolecular interactions bridges the scale gap from molecular simulations to macroscopic thermodynamics. On the one hand, NLDFT correctly approximates the results of Monte Carlo simulations (shift of vapour-liquid equilibrium, spinodals, density profiles, adsorption isotherms) for pores wider than about 2 nm. On the other hand, NLDFT smoothly merges (above 7-10 nm) with the Derjaguin-Broekhoff-de Boer equations which represent augmented Laplace-Kelvin equations of capillary condensation and desorption

  11. Could reggeon field theory be an effective theory for QCD in the Regge limit?

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Jochen [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Contreras, Carlos [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. España 1680, Casilla 110-V, Valparaiso (Chile); Vacca, G.P. [INFN Sezione di Bologna, DIFA, Via Irnerio 46, I-40126 Bologna (Italy)

    2016-03-30

    In this paper we investigate the possibility whether, in the extreme limit of high energies and large transverse distances, reggeon field theory might serve as an effective theory of high energy scattering for strong interactions. We analyse the functional renormalization group equations (flow equations) of reggeon field theory and search for fixed points in the space of (local) reggeon field theories. We study in complementary ways the candidate for the scaling solution, investigate its main properties and briefly discuss possible physical interpretations.

  12. From the Neutral Theory to a Comprehensive and Multiscale Theory of Ecological Equivalence.

    Science.gov (United States)

    Munoz, François; Huneman, Philippe

    2016-09-01

    The neutral theory of biodiversity assumes that coexisting organisms are equally able to survive, reproduce, and disperse (ecological equivalence), but predicts that stochastic fluctuations of these abilities drive diversity dynamics. It predicts remarkably well many biodiversity patterns, although substantial evidence for the role of niche variation across organisms seems contradictory. Here, we discuss this apparent paradox by exploring the meaning and implications of ecological equivalence. We address the question whether neutral theory provides an explanation for biodiversity patterns and acknowledges causal processes. We underline that ecological equivalence, although central to neutral theory, can emerge at local and regional scales from niche-based processes through equalizing and stabilizing mechanisms. Such emerging equivalence corresponds to a weak conception of neutral theory, as opposed to the assumption of strict equivalence at the individual level in strong conception. We show that this duality is related to diverging views on hypothesis testing and modeling in ecology. In addition, the stochastic dynamics exposed in neutral theory are pervasive in ecological systems and, rather than a null hypothesis, ecological equivalence is best understood as a parsimonious baseline to address biodiversity dynamics at multiple scales.

  13. Browse Title Index

    African Journals Online (AJOL)

    Items 651 - 700 of 11090 ... ... results in physiological and behavioral changes in male mice ... Amplification of deoxyribonucleic acid (DNA) fragment using ... Vol 7, No 6 (2008), An allometric scaling law for understanding mammalian sleep ...

  14. Scaling anomalies in Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Delbourgo, R.; Thompson, G.; Weber, R.O.

    1987-01-01

    The effect of Pauli interactions on the scaling anomaly is to add F/sup 4/, (∂F)/sup 2/ and m/sup 2/F/sup 2/ terms to the trace of the stress-tensor at one loop level, such terms being connected with renormalization. However, when the sum over all modes is taken, these extra contributions vanish upon zeta-function regularisation

  15. Measuring health workers' motivation composition: validation of a scale based on Self-Determination Theory in Burkina Faso.

    Science.gov (United States)

    Lohmann, Julia; Souares, Aurélia; Tiendrebéogo, Justin; Houlfort, Nathalie; Robyn, Paul Jacob; Somda, Serge M A; De Allegri, Manuela

    2017-05-22

    Although motivation of health workers in low- and middle-income countries (LMICs) has become a topic of increasing interest by policy makers and researchers in recent years, many aspects are not well understood to date. This is partly due to a lack of appropriate measurement instruments. This article presents evidence on the construct validity of a psychometric scale developed to measure motivation composition, i.e., the extent to which motivation of different origin within and outside of a person contributes to their overall work motivation. It is theoretically grounded in Self-Determination Theory (SDT). We conducted a cross-sectional survey of 1142 nurses in 522 government health facilities in 24 districts of Burkina Faso. We assessed the scale's validity in a confirmatory factor analysis framework, investigating whether the scale measures what it was intended to measure (content, structural, and convergent/discriminant validity) and whether it does so equally well across health worker subgroups (measurement invariance). Our results show that the scale measures a slightly modified version of the SDT continuum of motivation well. Measurements were overall comparable between subgroups, but results indicate that caution is warranted if a comparison of motivation scores between groups is the focus of analysis. The scale is a valuable addition to the repository of measurement tools for health worker motivation in LMICs. We expect it to prove useful in the quest for a more comprehensive understanding of motivation as well as of the effects and potential side effects of interventions intended to enhance motivation.

  16. Item response theory analysis of the Utrecht Work Engagement Scale for Students (UWES-S) using a sample of Japanese university and college students majoring medical science, nursing, and natural science.

    Science.gov (United States)

    Tsubakita, Takashi; Shimazaki, Kazuyo; Ito, Hiroshi; Kawazoe, Nobuo

    2017-10-30

    The Utrecht Work Engagement Scale for Students has been used internationally to assess students' academic engagement, but it has not been analyzed via item response theory. The purpose of this study was to conduct an item response theory analysis of the Japanese version of the Utrecht Work Engagement Scale for Students translated by authors. Using a two-parameter model and Samejima's graded response model, difficulty and discrimination parameters were estimated after confirming the factor structure of the scale. The 14 items on the scale were analyzed with a sample of 3214 university and college students majoring medical science, nursing, or natural science in Japan. The preliminary parameter estimation was conducted with the two parameter model, and indicated that three items should be removed because there were outlier parameters. Final parameter estimation was conducted using the survived 11 items, and indicated that all difficulty and discrimination parameters were acceptable. The test information curve suggested that the scale better assesses higher engagement than average engagement. The estimated parameters provide a basis for future comparative studies. The results also suggested that a 7-point Likert scale is too broad; thus, the scaling should be modified to fewer graded scaling structure.

  17. Using combined morphological, allometric and molecular approaches to identify species of the genus Raillietiella (Pentastomida.

    Directory of Open Access Journals (Sweden)

    Crystal Kelehear

    Full Text Available Taxonomic studies of parasites can be severely compromised if the host species affects parasite morphology; an uncritical analysis might recognize multiple taxa simply because of phenotypically plastic responses of parasite morphology to host physiology. Pentastomids of the genus Raillietiella are endoparasitic crustaceans primarily infecting the respiratory system of carnivorous reptiles, but also recorded from bufonid anurans. The delineation of pentastomids at the generic level is clear, but the taxonomic status of many species is not. We collected raillietiellids from lungs of the invasive cane toad (Rhinella marina, the invasive Asian house gecko (Hemidactylus frenatus, and a native tree frog (Litoria caerulea in tropical Australia, and employed a combination of genetic analyses, and traditional and novel morphological methods to clarify their identity. Conventional analyses of parasite morphology (which focus on raw values of morphological traits revealed two discrete clusters in terms of pentastome hook size, implying two different species of pentastomes: one from toads and a tree frog (Raillietiella indica and another from lizards (Raillietiella frenatus. However, these clusters disappeared in allometric analyses that took pentastome body size into account, suggesting that only a single pentastome taxon may be involved. Our molecular data revealed no genetic differences between parasites in toads versus lizards, confirming that there was only one species: R. frenatus. This pentastome (previously known only from lizards clearly is also capable of maturing in anurans. Our analyses show that the morphological features used in pentastomid taxonomy change as the parasite transitions through developmental stages in the definitive host. To facilitate valid descriptions of new species of pentastomes, future taxonomic work should include both morphological measurements (incorporating quantitative measures of body size and hook bluntness and

  18. Problems with False Vacua in Supersymmetric Theories

    CERN Document Server

    Bajc, Borut; Senjanovic, Goran

    2011-01-01

    It has been suggested recently that in a consistent theory any Minkowski vacuum must be exactly stable. As a result, a large class of theories that in ordinary treatment would appear sufficiently long-lived, in reality make no sense. In particular, this applies to supersymmetric models in which global supersymmetry is broken in a false vacuum. We show that in any such theory the dynamics of supersymmetry breaking cannot be decoupled from the Planck scale physics. This finding poses an obvious challenge for the idea of low-scale metastable (for example gauge) mediation.

  19. A compact to revitalise large-scale irrigation systems: A ‘theory of change’ approach

    Directory of Open Access Journals (Sweden)

    Bruce A. Lankford

    2016-02-01

    Full Text Available In countries with transitional economies such as those found in South Asia, large-scale irrigation systems (LSIS with a history of public ownership account for about 115 million ha (Mha or approximately 45% of their total area under irrigation. In terms of the global area of irrigation (320 Mha for all countries, LSIS are estimated at 130 Mha or 40% of irrigated land. These systems can potentially deliver significant local, regional and global benefits in terms of food, water and energy security, employment, economic growth and ecosystem services. For example, primary crop production is conservatively valued at about US$355 billion. However, efforts to enhance these benefits and reform the sector have been costly and outcomes have been underwhelming and short-lived. We propose the application of a 'theory of change' (ToC as a foundation for promoting transformational change in large-scale irrigation centred upon a 'global irrigation compact' that promotes new forms of leadership, partnership and ownership (LPO. The compact argues that LSIS can change by switching away from the current channelling of aid finances controlled by government irrigation agencies. Instead it is for irrigators, closely partnered by private, public and NGO advisory and regulatory services, to develop strong leadership models and to find new compensatory partnerships with cities and other river basin neighbours. The paper summarises key assumptions for change in the LSIS sector including the need to initially test this change via a handful of volunteer systems. Our other key purpose is to demonstrate a ToC template by which large-scale irrigation policy can be better elaborated and discussed.

  20. Kerlinger's Criterial Referents Theory Revisited.

    Science.gov (United States)

    Zak, Itai; Birenbaum, Menucha

    1980-01-01

    Kerlinger's criterial referents theory of attitudes was tested cross-culturally by administering an education attitude referents summated-rating scale to 713 individuals in Israel. The response pattern to criterial and noncriterial referents was examined. Results indicated empirical cross-cultural validity of theory, but questioned measuring…