Unified theory of interspecific allometric scaling
International Nuclear Information System (INIS)
Silva, Jafferson K L da; Barbosa, Lauro A; Silva, Paulo Roberto
2007-01-01
A general simple theory for the interspecific allometric scaling is developed in the d + 1-dimensional space (d biological lengths and a physiological time) of metabolic states of organisms. It is assumed that natural selection shaped the metabolic states in such a way that the mass and energy d + 1-densities are size-invariant quantities (independent of body mass). The different metabolic states (basal and maximum) are described by considering that the biological lengths and the physiological time are related by different transport processes of energy and mass. In the basal metabolism, transportation occurs by ballistic and diffusion processes. In d = 3, the 3/4 law occurs if the ballistic movement is the dominant process, while the 2/3 law appears when both transport processes are equivalent. Accelerated movement during the biological time is related to the maximum aerobic sustained metabolism, which is characterized by the scaling exponent 2d/(2d + 1) (6/7 in d = 3). The results are in good agreement with empirical data and a verifiable empirical prediction about the aorta blood velocity in maximum metabolic rate conditions is made. (fast track communication)
Crown ratio influences allometric scaling in trees
Annikki Makela; Harry T. Valentine
2006-01-01
Allometric theories suggest that the size and shape of organisms follow universal rules, with a tendency toward quarter-power scaling. In woody plants, however, structure is influenced by branch death and shedding, which leads to decreasing crown ratios, accumulation of heartwood, and stem and branch tapering. This paper examines the impacts on allometric scaling of...
Banavar, Jayanth
2009-03-01
The unity of life is expressed not only in the universal basis of inheritance and energetics at the molecular level, but also in the pervasive scaling of traits with body size at the whole-organism level. More than 75 years ago, Kleiber and Brody and Proctor independently showed that the metabolic rates, B, of mammals and birds scale as the three-quarter power of their mass, M. Subsequent studies showed that most biological rates and times scale as M-1/4 and M^1/4 respectively, and that these so called quarter-power scaling relations hold for a variety of organisms, from unicellular prokaryotes and eukaryotes to trees and mammals. The wide applicability of Kleiber's law, across the 22 orders of magnitude of body mass from minute bacteria to giant whales and sequoias, raises the hope that there is some simple general explanation that underlies the incredible diversity of form and function. We will present a general theoretical framework for understanding the relationship between metabolic rate, B, and body mass, M. We show how the pervasive quarter-power biological scaling relations arise naturally from optimal directed resource supply systems. This framework robustly predicts that: 1) whole organism power and resource supply rate, B, scale as M^3/4; 2) most other rates, such as heart rate and maximal population growth rate scale as M-1/4; 3) most biological times, such as blood circulation time and lifespan, scale as M^1/4; and 4) the average velocity of flow through the network, v, such as the speed of blood and oxygen delivery, scales as M^1/12. Our framework is valid even when there is no underlying network. Our theory is applicable to unicellular organisms as well as to large animals and plants. This work was carried out in collaboration with Amos Maritan along with Jim Brown, John Damuth, Melanie Moses, Andrea Rinaldo, and Geoff West.
Multi-scaling allometric analysis for urban and regional development
Chen, Yanguang
2017-01-01
The concept of allometric growth is based on scaling relations, and it has been applied to urban and regional analysis for a long time. However, most allometric analyses were devoted to the single proportional relation between two elements of a geographical system. Few researches focus on the allometric scaling of multielements. In this paper, a process of multiscaling allometric analysis is developed for the studies on spatio-temporal evolution of complex systems. By means of linear algebra, general system theory, and by analogy with the analytical hierarchy process, the concepts of allometric growth can be integrated with the ideas from fractal dimension. Thus a new methodology of geo-spatial analysis and the related theoretical models emerge. Based on the least squares regression and matrix operations, a simple algorithm is proposed to solve the multiscaling allometric equation. Applying the analytical method of multielement allometry to Chinese cities and regions yields satisfying results. A conclusion is reached that the multiscaling allometric analysis can be employed to make a comprehensive evaluation for the relative levels of urban and regional development, and explain spatial heterogeneity. The notion of multiscaling allometry may enrich the current theory and methodology of spatial analyses of urban and regional evolution.
Allometric scaling relationship between frequency of intestinal ...
Indian Academy of Sciences (India)
2013-02-27
Feb 27, 2013 ... 2Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran. 3School of Electrical and Computer Engineering, College of Engineering, University of Tehran, ... The question is, what kind of relationship can be ... allometric scaling has been used to predict human clinical.
Allometric Scaling and Central Source Systems
International Nuclear Information System (INIS)
Dreyer, Olaf
2001-01-01
Allometric scaling relations abound in nature. Examples include the power law relating the metabolic rate of animals and plants to their masses and the power law describing the dependence of the size of the drainage basin of a river on the total amount of water contained in that river. The exponent is of the form D/D+1 , where D is the dimension of the system. We show that this scaling exponent is simply a consequence of the source distribution of the systems considered and requires no further assumptions. To demonstrate the wide range of validity of the result we present a simple experiment that shows the predicted behavior in one dimension
An allometric scaling relation based on logistic growth of cities
Chen, Yanguang
2014-08-01
The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed "exponential allometry", which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the abovementioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed "logistic allometry". The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective.
Problems of allometric scaling analysis : Examples from mammalian reproductive biology
Martin, RD; Genoud, M; Hemelrijk, CK
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric
An allometric scaling relation based on logistic growth of cities
International Nuclear Information System (INIS)
Chen, Yanguang
2014-01-01
Highlights: • An allometric scaling based on logistic process can be used to model urban growth. • The traditional allometry is based on exponential growth instead of logistic growth. • The exponential allometry represents a local scaling of urban growth. • The logistic allometry represents a global scaling of urban growth. • The exponential allometry is an approximation relation of the logistic allometry. - Abstract: The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed “exponential allometry”, which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the above mentioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed “logistic allometry”. The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective
Allometric scaling and accidents at work
Cempel, Czesław; Tabaszewski, Maciej; Ordysiński, Szymon
2016-01-01
Allometry is the knowledge concerning relations between the features of some beings, like animals, or cities. For example, the daily energy rate is proportional to a mass of mammals rise of 3/4. This way of thinking has spread quickly from biology to many areas of research concerned with sociotechnical systems. It was revealed that the number of innovations, patents or heavy crimes rises as social interaction increases in a bigger city, while other urban indexes such as suicides decrease with social interaction. Enterprise is also a sociotechnical system, where social interaction and accidents at work take place. Therefore, do these interactions increase the number of accidents at work or, on the contrary, are they reduction-driving components? This article tries to catch such links and assess the allometric exponent between the number of accidents at work and the number of employees in an enterprise. PMID:26655044
Allometric scaling for predicting human clearance of bisphenol A
Energy Technology Data Exchange (ETDEWEB)
Collet, Séverine H., E-mail: s.collet@envt.fr; Picard-Hagen, Nicole, E-mail: n.hagen-picard@envt.fr; Lacroix, Marlène Z., E-mail: m.lacroix@envt.fr; Puel, Sylvie, E-mail: s.puel@envt.fr; Viguié, Catherine, E-mail: c.viguie@envt.fr; Bousquet-Melou, Alain, E-mail: a.bousquet-Melou@envt.fr; Toutain, Pierre-Louis, E-mail: pltoutain@wanadoo.fr; Gayrard, Véronique, E-mail: v.gayrard@envt.fr
2015-05-01
The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady state volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPA plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min.
Allometric scaling for predicting human clearance of bisphenol A
International Nuclear Information System (INIS)
Collet, Séverine H.; Picard-Hagen, Nicole; Lacroix, Marlène Z.; Puel, Sylvie; Viguié, Catherine; Bousquet-Melou, Alain; Toutain, Pierre-Louis; Gayrard, Véronique
2015-01-01
The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady state volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPA plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min
Allometric and temporal scaling of movement characteristics in Galapagos tortoises
Bastille-Rousseau, Guillaume; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Freddy; Blake, Stephen
2016-01-01
Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs.We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour – giant Galapagos tortoises (Chelonoidis spp.) – to test how movement metrics estimated on a monthly basis scaled with body size.We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex.Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates.Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one
Allometric basis of enrofloxacin scaling in green iguanas.
Maxwell, L K; Jacobson, E R
2008-02-01
When body size varies greatly, drug disposition can best be described as an allometric function of body weight. Therefore, the allometry of standard metabolic rate (SMR; 3/4 power) and body surface area (BSA; 2/3 power) have been advocated as surrogate markers for the prediction of key pharmacokinetic parameters. The goal of the present study was to examine the allometric basis of pharmacokinetic scaling within a species, green iguanas. Enrofloxacin was administered intravenously to 20 green iguanas (322-3824 g), and noncompartmental analysis was used to calculate standard pharmacokinetic parameters, which were log(10) transformed and regressed against log(10) body weight. The slopes of significant regressions were compared with the values of unity, 3/4, and 2/3. The slope of enrofloxacin total body clearance (Cl) was also compared with the slopes relating SMR and renal Cl of (99m)Tc-diethylenetriamine penta-acetic acid ((99m)DTPA) to body weight in iguanas. Enrofloxacin Cl depended allometrically on body weight with the power of 0.32. The slope of enrofloxacin Cl was significantly less than those of SMR, Cl of (99m)DTPA, and the 2/3 value. Therefore, the relationship between enrofloxacin Cl and body weight does not directly depend on the allometry of BSA, SMR, or renal Cl of (99m)DTPA in iguanas.
Problems of allometric scaling analysis: examples from mammalian reproductive biology.
Martin, Robert D; Genoud, Michel; Hemelrijk, Charlotte K
2005-05-01
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best
The effect of allometric scaling in coral thermal microenvironments.
Directory of Open Access Journals (Sweden)
Robert H Ong
Full Text Available A long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest. The primary aim of this study was to develop an approximation that predicts coral thermal microenvironments as a function of colony morphology (shape and size, light or irradiance, and flow velocity or regime. To do so, we provided intuitive interpretation of their energy budgets for both massive and branching colonies, and then quantified the heat-size exponent (b* and allometric constant (m using logarithmic linear regression. The data demonstrated a positive relationship between thermal rates and changes in irradiance, A/V ratio, and flow, with an interaction where turbulent regime had less influence on overall stress which may serve to ameliorate the effects of temperature rise compared to the laminar regime. These findings indicated that smaller corals have disproportionately higher stress, however they can reach thermal equilibrium quicker. Moreover, excellent agreements between the predicted and simulated microscale temperature values with no significant bias were observed for both the massive and branching colonies, indicating that the numerical approximation should be within the accuracy with which they could be measured. This study may assist in estimating the coral microscale temperature under known conditions of water flow and irradiance
Directory of Open Access Journals (Sweden)
Andrew T Tredennick
Full Text Available Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of 'universal' scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and 'global' (i.e. interspecific scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST, Geometric Similarity, and Stress Similarity in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and
Allometric scaling of infraorbital surface topography in Homo.
Maddux, Scott D; Franciscus, Robert G
2009-02-01
Infraorbital morphology is often included in phylogenetic and functional analyses of Homo. The inclusion of distinct infraorbital configurations, such as the "canine fossa" in Homo sapiens or the "inflated" maxilla in Neandertals, is generally based on either descriptive or qualitative assessments of this morphology, or simple linear chord and subtense measurements. However, the complex curvilinear surface of the infraorbital region has proven difficult to quantify through these traditional methods. In this study, we assess infraorbital shape and its potential allometric scaling in fossil Homo (n=18) and recent humans (n=110) with a geometric morphometric method well-suited for quantifying complex surface topographies. Our results indicate that important aspects of infraorbital shape are correlated with overall infraorbital size across Homo. Specifically, individuals with larger infraorbital areas tend to exhibit relatively flatter infraorbital surface topographies, taller and narrower infraorbital areas, sloped inferior orbital rims, anteroinferiorly oriented maxillary body facies, posteroinferiorly oriented maxillary processes of the zygomatic, and non-everted lateral nasal margins. In contrast, individuals with smaller infraorbital regions generally exhibit relatively depressed surface topographies, shorter and wider infraorbital areas, projecting inferior orbital rims, posteroinferiorly oriented maxillary body facies, anteroinferiorly oriented maxillary processes, and everted lateral nasal margins. These contrasts form a continuum and only appear dichotomized at the ends of the infraorbital size spectrum. In light of these results, we question the utility of incorporating traditionally polarized infraorbital morphologies in phylogenetic and functional analyses without due consideration of continuous infraorbital and facial size variation in Homo. We conclude that the essentially flat infraorbital surface topography of Neandertals is not unique and can be
Why allometric variation in mammalian metabolism is curvilinear on the logarithmic scale.
Packard, Gary C
2017-11-01
Studies performed over the last 20 years have repeatedly documented a slight convex curvature (relative to the x-axis) in double-logarithmic plots of basal metabolic rate (BMR) versus body mass in mammals. This curvilinear pattern has usually been interpreted in the context of a simple, two-parameter power function on the arithmetic scale, y = a × x b , with the exponent in the equation supposedly increasing systematically with body size. An equation of this form has caused concern among ecologists because a variable exponent is inconsistent with an assumption underlying the metabolic theory of ecology (MTE). However, the appearance of an exponent that varies with body size is an artifact resulting from the widespread use of logarithmic transformations in allometric analyses. Curvature in the distribution on the logarithmic scale actually is caused by a requirement for an explicit, non-zero intercept-and not a variable exponent-in the model describing the distribution on the arithmetic scale. Thus, the MTE need not be revised to accommodate an exponent that varies with body size in the scaling of mammalian BMR, but the theory may need to be tweaked to accommodate an intercept in the allometric equation. In general, any bivariate dataset that is well described by a three-parameter power equation on the arithmetic scale will follow a curvilinear path when displayed on the logarithmic scale. Consequently, reports of curvilinearity in log domain (i.e., "complex allometry") need to be revisited because conclusions from those investigations are likely to be flawed. © 2018 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Qian Mengcen; Jiang Zhiqiang; Zhou Weixing
2010-01-01
The investigations of financial markets from a complex network perspective have unveiled many phenomenological properties, in which the majority of these studies map the financial markets into one complex network. In this work, we investigate 30 world stock market indices through their visibility graphs by adopting the visibility algorithm to convert each single stock index into one visibility graph. A universal allometric scaling law is uncovered in the minimal spanning trees, whose scaling exponent is independent of the stock market and the length of the stock index. In contrast, the maximal spanning trees and the random spanning trees do not exhibit universal allometric scaling behaviors. There are marked discrepancies in the allometric scaling behaviors between the stock indices and the Brownian motions. Using surrogate time series, we find that these discrepancies are caused by the fat-tailedness of the return distribution and the nonlinear long-term correlation.
Allometric scaling of chemical restraint associated with inhalant anesthesia in giant anteaters.
Carregaro, Adriano Bonfim; Gerardi, Patrícia Molina; Honsho, Daniel Kan
2009-04-01
This study describes the use of allometric scaling in five giant anteaters (Myrmecophaga tridactyla) submitted for osteosynthesis, gastrostomy, or treatment of burns. Chemical restraint was performed by allometric scaling using the dog as a reference; acepromazine (0.06 mg/kg), diazepam (0.3 mg/kg), ketamine (8.8 mg/kg), and buprenorphine (5.9 microg/kg) were combined, and the animals were maintained under isoflurane anesthesia. Heart rate, respiratory rate, hemoglobin oxygen saturation, temperature, and anesthetic depth were measured. Postoperative treatment consisted of ketoprofen, buprenorphine, and ceftiofur. Anesthetic induction was obtained in 10-15 min, achieving muscle relaxation and absence of excitement. Physiologic parameters were stable during the procedures, and postoperative treatment was effective. Allometric scaling was effective for chemical restraint and postoperative treatment.
Allometric scaling of kidney function in green iguanas.
Maxwell, Lara K; Jacobson, Elliott R
2004-07-01
Numerous physiological parameters, such as metabolic rate and glomerular filtration rate (GFR), are allometrically related to body mass. Whereas the interspecific relationships between metabolic rate and body mass have been extensively studied in vertebrates, intraspecific studies of renal function have been limited. Therefore, kidney function was studied in 16 green iguanas, (Iguana iguana; 322-4764 g), by using nuclear scintigraphy to measure the renal uptake of 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), following either intravenous or intraosseous administration. Route of 99mTc-DTPA administration did not affect the percentage of the dose that accumulated in the kidney (P > 0.05). Renal uptake of 99mTc-DTPA was related to body mass (W, g) as: %Dose Kidney (min-1) = 11.09W(-0.235). Although not directly measured, the apparent renal clearance of 99mTc-DTPA could be described as: Renal CL 99mTc-DTPA (ml.min-1) = 0.005W(0.759), and the mass exponent did not differ from either the 2/3 or 3/4 values (P > 0.05). The similarity of the mass exponents relating both renal function and metabolic rate to body mass suggests a common mechanism underlying these allometric relationships. As this study also demonstrated that renal scintigraphy can be used to quantify kidney function in iguanas, this technique may be a useful research and diagnostic tool.
An allometric scaling law between gray matter and white matter of cerebral cortex
International Nuclear Information System (INIS)
He Jihuan
2006-01-01
An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data
A model for allometric scaling of mammalian metabolism with ambient heat loss
Kwak, Ho Sang; Im, Hong G.; Shim, Eun Bo
2016-01-01
The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.
Choice of resolution by functional trait or taxonomy affects allometric scaling in soil food webs
Sechi, V.; Brussaard, L.; Goede, de R.G.M.; Rutgers, M.; Mulder, C.
2015-01-01
Belowground organisms often display a shift in their mass-abundance scaling relationships due to environmental factors such as soil chemistry and atmospheric deposition. Here we present new empirical data that show strong differences in allometric scaling according to whether the resolution at the
Choice of resolution by functional trait or taxonomy affects allometric scaling in soil webs
Sechi, V.; Brussaard, L.; Goede, de R.G.M.; Rutgers, M.; Mulder, C.
2014-01-01
Belowground organisms often display a shift in their mass-abundance scaling relationships due to environmental factors such as soil chemistry and atmospheric deposition. Here we present new empirical data that show strong differences in allometric scaling according to whether the resolution at the
Application of the allometric scale for the submaximal oxygen uptake in runners and rowers
Directory of Open Access Journals (Sweden)
M.P. Tartaruga
2010-12-01
Full Text Available Background: The aim of the current study was to determine the allometric exponents for runners and rower’s metabolic cost, while also verifying the relation of performance with and without the allometric application. Methods: Eleven runners (age: 22.3±10.4 years; height: 174±8.8 cm; body mass: 61.7±9.3 kg; maximum oxygen uptake ( •VO2max: 56.3±3.9 ml.kg[sup]-1[/sup].min[sup]-1[/sup] and fifteen rowers (age: 24±5.4 years; height: 185.5±6.5 cm; body mass: 83.5±7.2 kg; •VO2max: 61.2±3.4 ml.kg[sup]-1[/sup].min[sup]-1[/sup] carried out a specific progressive maximum test. The allometric exponent was determined from the logarithmic equation Log y = Log b Log x, where x is the mass, y is the VO2max (l.min[sup]-1[/sup], a is one constant and b is the allometric exponent. The data were analyzed using descriptive and comparative statistics (independent T test of the Student, with p<0.05 (SPSS version 13.0. Results: The allometric exponent of the rowers was 0.70 and that of the runners was 1.00. Significant differences were found between the fat mass percentage, with higher value for rowers, suggesting that this variable may influence the behavior of the allometric exponent and consequently of the basal metabolic rate. Conclusions: Scaling may help in understanding variation in aerobic power and in defining the physiological limitations of work capacity.
Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up
Greenman, John; Ieropoulos, Ioannis A.
2017-07-01
This case study reports for the first time on the comparison between allometric scaling of lifeforms and scale-up of microbial fuel cell entities; enlarging individual units in volume, footprint and electrode surface area but also multiplying a static size/footprint and electrode surface area to scale-up by stacking. A study published in 2010 by DeLong et al. showed for the first time that Kleiber's law does not apply uniformly to all lifeforms, and that in fact growth rate for prokaryotes is superlinear, for protists is linear and for metazoa is sublinear. The current study, which is utilising data from previous experiments, is showing for the first time that for individual MFC units, which are enlarged, growth rate/power is sublinear, whereas for stacks this is superlinear.
A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.
Christen, Patrik; Ito, Keita; van Rietbergen, Bert
2015-03-01
Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. © 2015 Anatomical Society.
Secondary osteons scale allometrically in mammalian humerus and femur.
Felder, A A; Phillips, C; Cornish, H; Cooke, M; Hutchinson, J R; Doube, M
2017-11-01
Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We measured the cross-sectional area of individual intact secondary osteons and their central Haversian canals in transverse sections from 40 stylopodal bones of 39 mammalian species (body mass 0.3-21 000 kg). Scaling analysis of our data shows that mean osteonal resorption area (negative allometry, exponent 0.23, R 2 0.54, p <0.005) and Haversian canal area (negative allometry, exponent 0.31, R 2 0.45, p <0.005) are significantly related to body mass, independent of phylogeny. This study is the most comprehensive of its kind to date, and allows us to describe overall trends in the scaling behaviour of secondary osteon dimensions, supporting the inference that the osteonal resorption area may be limited by the need to avoid fracture in smaller mammalian species, but the need to maintain osteocyte viability in larger mammalian species.
Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar
Chen, Qi
2015-08-01
Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.
A model for allometric scaling of mammalian metabolism with ambient heat loss
Kwak, Ho Sang
2016-02-02
Background Allometric scaling, which represents the dependence of biological trait or process relates on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. Methods A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. Results A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value smaller than 2/3. Conclusion The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.
Rovira, S; Muñoz, A; Rodilla, V
2009-04-01
Scaling in biology is usually allometric, and therefore, the size of the heart may be expressed as a power function of body weight (BW). The present research analyses the echocardiographic measurements in 68 healthy Spanish foals weighed between 70 and 347kg in order to determine the correct scaling exponent for the allometric equation. The echocardiographic parameters measured were: left ventricular internal dimensions (LVID), free wall thickness (LVFWT), interventricular septum thickness (IVST) at systole (s) and diastole (d), EPSS (distance between the point E of the mitral valve and the interventricular septum), and aorta diameters at the level of the aortic valve (AOD), base of valve leaflets (ABS), sinus of Valsalva (ASV) and sino-tubular junction (AJT). Indices of left ventricular performance were calculated. It was found that LVIDd, IVSTs, AOD, and ASV have a relationship to BW raised to 0.300-0.368 power, whereas left ventricular end-diastolic volume and stroke volume scaled to BW raised to 0.731-0.712 power. With these data, appropriate values can be calculated for normal Spanish foals.
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism
International Nuclear Information System (INIS)
Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti
2014-01-01
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W
2013-07-01
Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall-climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall-climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross-sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. Copyright © 2013 Wiley Periodicals, Inc.
Allometric scaling and cell ratios in multi-organ in vitro models of human metabolism
Directory of Open Access Journals (Sweden)
Nadia eUcciferri
2014-12-01
Full Text Available Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step towards building an integrated picture of systemic metabolism and signalling in physiological or pathological conditions. However the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here we analyse the physiologic relationship between cells, cell metabolism and exchange in the human body using allometric rules, downscaling them to an organ-on-a plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (Cell Number Scaling Model, CNSM, and Metabolic and Surface Scaling model, MSSM are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions which can be extrapolated to the in vivo
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.
Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti
2014-01-01
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism
Energy Technology Data Exchange (ETDEWEB)
Ucciferri, Nadia [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Sbrana, Tommaso [Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Ahluwalia, Arti, E-mail: arti.ahluwalia@unipi.it [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy)
2014-12-17
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.
2013-12-01
Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily
Directory of Open Access Journals (Sweden)
Fidel Ernesto Castro Morales
2016-03-01
Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.
Cardiovascular performance of adult breeding sows fails to obey allometric scaling laws.
van Essen, G J; Vernooij, J C M; Heesterbeek, J A P; Anjema, D; Merkus, D; Duncker, D J
2011-02-01
In view of the remarkable decrease of the relative heart weight (HW) and the relative blood volume in growing pigs, we investigated whether HW, cardiac output (CO), and stroke volume (SV) of modern growing pigs are proportional to BW, as predicted by allometric scaling laws: HW (or CO or SV) = a·BW(b), in which a and b are constants, and constant b is a multiple of 0.25 (quarter-power scaling law). Specifically, we tested the hypothesis that both HW and CO scale with BW to the power of 0.75 (HW or CO = a·BW(0.75)) and SV scales with BW to the power of 1.00 (SV = a·BW(1.0)). For this purpose, 2 groups of pigs (group 1, consisting of 157 pigs of 50 ± 1 kg; group 2, consisting of 45 pigs of 268 ± 18 kg) were surgically instrumented with a flow probe or a thermodilution dilution catheter, under open-chest anesthetized conditions to measure CO and SV, after which HW was determined. The 95% confidence intervals of power-coefficient b for HW were 0.74 to 0.80, encompassing the predicted value of 0.75, suggesting that HW increased proportionally with BW, as predicted by the allometric scaling laws. In contrast, the 95% confidence intervals of power-coefficient b for CO and SV as measured with flow probes were 0.40 to 0.56 and 0.39 to 0.61, respectively, and values obtained with the thermodilution technique were 0.34 to 0.53 and 0.40 to 0.62, respectively. Thus, the 95% confidence limits failed to encompass the predicted values of b for CO and SV of 0.75 and 1.0, respectively. In conclusion, although adult breeding sows display normal heart growth, cardiac performance appears to be disproportionately low for BW. This raises concern regarding the health status of adult breeding sows.
Directory of Open Access Journals (Sweden)
Olga Kapellou
2006-08-01
Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.
Comparative Pharmacokinetics and Allometric Scaling of Carboplatin in Different Avian Species.
Directory of Open Access Journals (Sweden)
Gunther Antonissen
Full Text Available The use of chemotherapeutics as a possible treatment strategy in avian oncology is steadily increasing over the last years. Despite this, literature reports regarding dosing strategies and pharmacokinetic behaviour of chemotherapeutics in avian species are lacking. The aim of the present study was to investigate the pharmacokinetics of carboplatin in a representative species of the order of Galliformes, Anseriformes, Columbiformes and Psittaciformes. Eight chickens, ducks and pigeons and twenty-eight parakeets were administered carboplatin intravenously (5 mg/kg body weight. A specific and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of the free carboplatin in plasma of the four birds species (limit of quantification: 20 ng/mL for chicken and duck, 50 ng/mL for pigeon and 100 ng/mL for parakeets. Non-compartmental pharmacokinetic analysis and allometric scaling demonstrated a significant correlation (R² = 0.9769 between body weight (BW and elimination half-life (T1/2el. T1/2el ranged from 0.41 h in parakeets (BW: 61 ± 8 g to 1.16 h chickens (BW: 1909 ± 619 g. T1/2el is a good parameter for dose optimization of carboplatin in other avian species, since also the previously reported T1/2el in cockatoos (average BW: 769 ± 68 g of 1.00 h corresponds to the results obtained in the present study.
Directory of Open Access Journals (Sweden)
MP Tartaruga
2009-09-01
Full Text Available Studies have demonstrated the need for the use of parameters that diminish the effect of body mass, for intra and inter group comparison, in individuals with different masses in order to provide a different analysis on the behaviour of the relation between running economy (RE and biomechanical variables (BVs. The allometric scale is represented by a regression equation that indicates the behaviour of a physiological variable in relation to the variable mass (RE=a.xb, where x is body mass in (kg and the dimensionless coefficient a is characteristic of the species analysed, and the dimensionless exponent b determines the percentage of mass to be associated with the physiological variable. The influence of the allometric scale (b=-1; -0.75; -0.73; -0.67 on the relationship between RE and BVs - stride length (SL, relative stride length (RSL, stride rate (SR, stride time (ST, support time (SUPT and balance time (BALT - at 12 km.h-1, was analysed in nine elite runners. Factorial analysis and Pearson's Correlation Coefficient test (r with P<0.05 were used. A decrease in the explanation power of the RE was observed, with the use of the allometric exponent, due to the BVs, as well as a reduction of the correlation coefficients between SL versus RE, ST versus RE and SR versus RE. The BALT presented a higher correlation where b=-0.75. The RSL and SUPT presented non-significant correlations. The variables SL, ST, SR and BALT were the most effective predictors of the RE, Where: b=-1, the allometric scale was most efficient to predict the running performance.
Allometric scaling of peak oxygen uptake in male roller hockey players under 17 years old
Valente-dos-Santos, J.; Sherar, L.; Coelho-e-Silva, MJ; Pereira, J.R.; Vaz, V.; Cupido-dos-Santos, A.; Baxter-Jones, A.; Visscher, C.; Elferink-Gemser, M.T.; Malina, R.M.
Peak oxygen uptake ((V) over dotO(2peak)) is routinely expressed in litres per minute and by unit of body mass (mL.kg(-1).min(-1)) despite the theoretical and statistical limitations of using ratios. Allometric modeling is an effective approach for partitioning body-size effects in a performance
Anatomical and physiological basis for the allometric scaling of cisplatin clearance in dogs.
Achanta, S; Sewell, A; Ritchey, J W; Broaddus, K; Bourne, D W A; Clarke, C R; Maxwell, L K
2016-06-01
Cisplatin is a platinum-containing cytotoxic drug indicated for the treatment of solid tumors in veterinary and human patients. Several of the algorithms used to standardize the doses of cytotoxic drugs utilize allometry, or the nonproportional relationships between anatomical and physiological variables, but the underlying basis for these relationships is poorly understood. The objective of this proof of concept study was to determine whether allometric equations explain the relationships between body weight, kidney weight, renal physiology, and clearance of a model, renally cleared anticancer agent in dogs. Postmortem body, kidney, and heart weights were collected from 364 dogs (127 juveniles and 237 adults, including 51 dogs ≥ 8 years of age). Renal physiological and cisplatin pharmacokinetic studies were conducted in ten intact male dogs including two juvenile and eight adult dogs (4-55 kg). Glomerular filtration rate (GFR), effective renal plasma flow, effective renal blood flow, renal cisplatin clearance, and total cisplatin clearance were allometrically related to body weight with powers of 0.75, 0.59, 0.61, 0.71, and 0.70, respectively. The similar values of these diverse mass exponents suggest a common underlying basis for the allometry of kidney size, renal physiology, and renal drug handling. © 2015 John Wiley & Sons Ltd.
Normand, Frédéric; Lauri, Pierre-Éric
2012-03-01
Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.
Tipping the scales: Evolution of the allometric slope independent of average trait size.
Stillwell, R Craig; Shingleton, Alexander W; Dworkin, Ian; Frankino, W Anthony
2016-02-01
The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling-relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log-linear scaling relationships-the intercept or mean trait size and the slope-can evolve independently. Here, using the wing-body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual-based selection experiments to study the expression and evolution of morphological scaling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
The fourth dimension of life: fractal geometry and allometric scaling of organisms.
West, G B; Brown, J H; Enquist, B J
1999-06-04
Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.
Mahmood, I
1999-08-01
Pharmacokinetic parameters (clearance, CL, volume of distribution in the central compartment, VdC, and elimination half-life, t1/2beta) predicted by an empirical allometric approach have been compared with parameters predicted from plasma concentrations calculated by use of the pharmacokinetic constants A, B, alpha and beta, where A and B are the intercepts on the Y axis of the plot of plasma concentration against time and alpha and beta are the rate constants, both pairs of constants being for the distribution and elimination phases, respectively. The pharmacokinetic parameters of cefpiramide, actisomide, troglitazone, procaterol, moxalactam and ciprofloxacin were scaled from animal data obtained from the literature. Three methods were used to generate plots for the prediction of clearance in man: dependence of clearance on body weight (simple allometric equation); dependence of the product of clearance and maximum life-span potential (MLP) on body weight; and dependence of the product of clearance and brain weight on body weight. Plasma concentrations of the drugs were predicted in man by use of A, B, alpha and beta obtained from animal data. The predicted plasma concentrations were then used to calculate CL, VdC and t1/2beta. The pharmacokinetic parameters predicted by use of both approaches were compared with measured values. The results indicate that simple allometry did not predict clearance satisfactorily for actisomide, troglitazone, procaterol and ciprofloxacin. Use of MLP or the product of clearance and brain weight improved the prediction of clearance for these four drugs. Except for troglitazone, VdC and t1/2beta predicted for man by use of the allometric approach were comparable with measured values for the drugs studied. CL, VdC and t1/2beta predicted by use of pharmacokinetic constants were comparable with values predicted by simple allometry. Thus, if simple allometry failed to predict clearance of a drug, so did the pharmacokinetic constant
International Nuclear Information System (INIS)
Rittenberg, V.
1983-01-01
Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given
Allometric disparity in rodent evolution
Wilson LAB
2013-01-01
In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results ...
Scaling Theory of Polyelectrolyte Nanogels
Qu, Li-Jian
2017-08-01
The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014
Scaling Theory of Polyelectrolyte Nanogels
International Nuclear Information System (INIS)
Qu Li-Jian
2017-01-01
The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. (paper)
Theoretical basis of allometric relationships in juvenile brachyura ...
African Journals Online (AJOL)
... fishery scientists. The present analytical studies has opened a new approach to the elucidation of the biological significance of the allometric factor b, through the theories of tractal geometry (where b is seen as a fractal dimension equivalent and salutatory ontogeny where b is a critical point in the early life history of crabs.
Allometric trajectories and "stress"
Anfodillo, Tommaso; Petit, Giai; Sterck, Frank; Lechthaler, Silvia; Olson, Mark E.
2016-01-01
The term "stress" is an important but vague term in plant biology. We show situations in which thinking in terms of "stress" is profitably replaced by quantifying distance from functionally optimal scaling relationships between plant parts. These relationships include, for example, the
Scaling of Theory-of-Mind Tasks
Wellman, Henry M.; Liu, David
2004-01-01
Two studies address the sequence of understandings evident in preschoolers' developing theory of mind. The first, preliminary study provides a meta-analysis of research comparing different types of mental state understandings (e.g., desires vs. beliefs, ignorance vs. false belief). The second, primary study tests a theory-of-mind scale for…
Developing a generalized allometric equation for aboveground biomass estimation
Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.
2015-12-01
A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
Directory of Open Access Journals (Sweden)
Manfred J Müller
Full Text Available Resting energy expenditure (REE-power relationships result from multiple underlying factors including weight and height. In addition, detailed body composition, including fat free mass (FFM and its components, skeletal muscle mass and internal organs with high metabolic rates (i.e. brain, heart, liver, kidneys, are major determinants of REE. Since the mass of individual organs scales to height as well as to weight (and, thus, to constitution, the variance in these associations may also add to the variance in REE. Here we address body composition (measured by magnetic resonance imaging and REE (assessed by indirect calorimetry in a group of 330 healthy volunteers differing with respect to age (17-78 years, sex (61% female and BMI (15.9-47.8 kg/m(2. Using three dimensional data interpolation we found that the inter-individual variance related to scaling of organ mass to height and weight and, thus, the constitution-related variances in either FFM (model 1 or kidneys, muscle, brain and liver (model 2 explained up to 43% of the inter-individual variance in REE. These data are the first evidence that constitution adds to the complexity of REE. Since organs scale differently as weight as well as height the "fit" of organ masses within constitution should be considered as a further trait.
A scale distortion theory of anchoring.
Frederick, Shane W; Mochon, Daniel
2012-02-01
We propose that anchoring is often best interpreted as a scaling effect--that the anchor changes how the response scale is used, not how the focal stimulus is perceived. Of importance, we maintain that this holds true even for so-called objective scales (e.g., pounds, calories, meters, etc.). In support of this theory of scale distortion, we show that prior exposure to a numeric standard changes respondents' use of that specific response scale but does not generalize to conceptually affiliated judgments rendered on similar scales. Our findings highlight the necessity of distinguishing response language effects from representational effects in places where the need for that distinction has often been assumed away.
Scaling in the sine-Gordon theory
International Nuclear Information System (INIS)
Ben-Abraham, S.I.
1976-01-01
It is shown that both the classical and the quantum sine-Gordon theory depend on a single scaling parameter and therefore the coupling constant cannot be freely chosen. To introduce a meaningful coupling constant it is proposed to include higher Fourier terms in the sine-Gordon potential. The two term case is exactly solvable. (Auth.)
THE ALLOMETRIC-AUTOREGRESSIVE MODEL IN GENETIC ...
African Journals Online (AJOL)
The application of an allometric-autoregressive model for the quantification of growth and efficiency of feed utilization for purposes of selection for ... be of value in genetic studies. ... mass) gives a fair indication of the cumulative preweaning.
Electrodynamics in scale-covariant gravity theory
International Nuclear Information System (INIS)
Mansfield, V.N.; Malin, S.
1980-01-01
Utilizing the inherent scale-invariance of Maxwell's Equations, classical electrodynamics is incorporated into the theory of scale-invariant gravity. In this incorporation the gravitational constant G is shown to transform like β -2 (β is the gauge function), the generalized Lorentz Force Law is derived, the electric charge is shown to be invariant under gauge transformation, and matter creation is shown to be a necessity. In all nontrivial gauges a modified version of QED is obtained. The deviation from standard QED, however, is shown to be beyond the range of experimental detection when G α β -2 . (orig.)
Gaussian-3 theory using scaled energies
International Nuclear Information System (INIS)
Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.; Pople, John A.
2000-01-01
A modification of Guassian-3 (G3) theory using multiplicative scale factors, instead of the additive higher level correction, is presented. In this method, referred to as G3S, the correlation energy is scaled by five parameters and the Hartree-Fock energy by one parameter. The six parameters are fitted to the G2/97 test set of 299 energies and the resulting mean absolute deviation from experiment is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. The G3S method has the advantage compared to G3 theory in that it can be used for studying potential energy surfaces where the products and reactants have a different number of paired electrons. In addition, versions of the computationally less intensive G3(MP3) and G3(MP2) methods that use scaled energies are also presented. These methods, referred to as G3S(MP3) and G3S(MP2), have mean absolute deviations of 1.16 and 1.35 kcal/mol, respectively. (c) 2000 American Institute of Physics
SCALE Sensitivity Calculations Using Contributon Theory
International Nuclear Information System (INIS)
Rearden, Bradley T.; Perfetti, Chris; Williams, Mark L.; Petrie, Lester M. Jr.
2010-01-01
The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case k-eff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.
On the character of scale symmetry breaking in gauge theories
International Nuclear Information System (INIS)
Gusijnin, V.P.; Kushnir, V.A.; Miransky, V.A.
1988-01-01
The problem of scale symmetry breaking in gauge theories is discussed. It is shown that the phenomenon of spontaneous breaking of scale symmetry in gauge theories is incompatible with the PCAAC dynamics. 12 refs
Experimental signature of scaling violation implied by field theories
International Nuclear Information System (INIS)
Tung, W.
1975-01-01
Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated
An allometric approach of tumor-angiogenesis.
Szasz, Oliver; Vincze, Gyula; Szigeti, Gyula Peter; Benyo, Zoltan; Szasz, Andras
2018-07-01
Angiogenesis is one of the main supporting factors of tumor-progression. It is a complex set of interactions together with hypoxia and inflammation, regulating tumor growth. The objective of this study is to examine the effect of angiogenesis with an allometric approach applied to angiogenesis and the regulating factors. The results show that allometry has the potential to describe this aspect, including the sigmoid-like transport function. There are particular conditions under which the complex control maximizes the relative tumor mass. Linear growth of malignancy diameter with an allometric approach was proven. Copyright © 2018. Published by Elsevier Ltd.
Inflationary perturbations in no-scale theories
Energy Technology Data Exchange (ETDEWEB)
Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)
2017-04-15
We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)
Root-shoot growth responses during interspecific competition quantified using allometric modelling.
Robinson, David; Davidson, Hazel; Trinder, Clare; Brooker, Rob
2010-12-01
Plant competition studies are restricted by the difficulty of quantifying root systems of competitors. Analyses are usually limited to above-ground traits. Here, a new approach to address this issue is reported. Root system weights of competing plants can be estimated from: shoot weights of competitors; combined root weights of competitors; and slopes (scaling exponents, α) and intercepts (allometric coefficients, β) of ln-regressions of root weight on shoot weight of isolated plants. If competition induces no change in root : shoot growth, α and β values of competing and isolated plants will be equal. Measured combined root weight of competitors will equal that estimated allometrically from measured shoot weights of each competing plant. Combined root weights can be partitioned directly among competitors. If, as will be more usual, competition changes relative root and shoot growth, the competitors' combined root weight will not equal that estimated allometrically and cannot be partitioned directly. However, if the isolated-plant α and β values are adjusted until the estimated combined root weight of competitors matches the measured combined root weight, the latter can be partitioned among competitors using their new α and β values. The approach is illustrated using two herbaceous species, Dactylis glomerata and Plantago lanceolata. Allometric modelling revealed a large and continuous increase in the root : shoot ratio by Dactylis, but not Plantago, during competition. This was associated with a superior whole-plant dry weight increase in Dactylis, which was ultimately 2·5-fold greater than that of Plantago. Whole-plant growth dominance of Dactylis over Plantago, as deduced from allometric modelling, occurred 14-24 d earlier than suggested by shoot data alone. Given reasonable assumptions, allometric modelling can analyse competitive interactions in any species mixture, and overcomes a long-standing problem in studies of competition.
Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique
2017-02-01
The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.
On the scaling limits in the Euclidean (quantum) field theory
International Nuclear Information System (INIS)
Gielerak, R.
1983-01-01
The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)
Mokken scale analysis : Between the Guttman scale and parametric item response theory
van Schuur, Wijbrandt H.
2003-01-01
This article introduces a model of ordinal unidimensional measurement known as Mokken scale analysis. Mokken scaling is based on principles of Item Response Theory (IRT) that originated in the Guttman scale. I compare the Mokken model with both Classical Test Theory (reliability or factor analysis)
Allometric and non-allometric consequences of inbreeding on Drosophila melanogaster wings
DEFF Research Database (Denmark)
Trotta, Vincenzo; Cavicchi, Sandro; Guerra, Daniela
2011-01-01
Inbreeding is expected to increase the variability in size and shape within populations. The distinct effects of inbreeding on size and shape suggest that they are governed by different developmental pathways. One unresolved question is whether the non-allometric shape component is partially unco...
Non-Abelian gauge field theory in scale relativity
International Nuclear Information System (INIS)
Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry
2006-01-01
Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description
Organization and scaling in water supply networks
Cheng, Likwan; Karney, Bryan W.
2017-12-01
Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.
The physics of musical scales: Theory and experiment
Durfee, Dallin S.; Colton, John S.
2015-10-01
The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.
Theory and Validity of Life Satisfaction Scales
Diener, Ed; Inglehart, Ronald; Tay, Louis
2013-01-01
National accounts of subjective well-being are being considered and adopted by nations. In order to be useful for policy deliberations, the measures of life satisfaction must be psychometrically sound. The reliability, validity, and sensitivity to change of life satisfaction measures are reviewed. The scales are stable under unchanging conditions,…
A quantization scheme for scale-invariant pure gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1988-01-01
A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)
Astrophysical tests of scale-covariant gravity theories
International Nuclear Information System (INIS)
Mansfield, V.N.; Malin, S.
1980-01-01
Starting from the most general form of the conservation laws in scale-covariant gravitation theory, a conservation of energy equation appropriate for stars is derived. Applications to white dwarfs and neutron stars reveal serious difficulties for some choices of gauge that have been frequently employed in the literature on scale-covariant gravity. We also show how to restrict some of the possible gauges that result from theories which are independent of the Large Numbers Hypothesis
Graph-based linear scaling electronic structure theory
Energy Technology Data Exchange (ETDEWEB)
Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Another scheme for quantization of scale invariant gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1987-10-01
A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs
Challenges for Large Scale Structure Theory
CERN. Geneva
2018-01-01
I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal.
Scaling anomalies in Kaluza-Klein theory
International Nuclear Information System (INIS)
Delbourgo, R.; Thompson, G.; Weber, R.O.
1987-01-01
The effect of Pauli interactions on the scaling anomaly is to add F/sup 4/, (∂F)/sup 2/ and m/sup 2/F/sup 2/ terms to the trace of the stress-tensor at one loop level, such terms being connected with renormalization. However, when the sum over all modes is taken, these extra contributions vanish upon zeta-function regularisation
Scaling theory of drying in porous media
International Nuclear Information System (INIS)
Tsimpanogiannis, I.N.; Yortsos, Y.C.; Poulou, S.; Kanellopoulos, N.; Stubos, A.K.
1999-01-01
Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front. It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front, which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental results of Shaw [Phys Rev. Lett. 59, 1671 (1987)]. A framework for a continuum description of the upstream drying regimes is also developed. copyright 1999 The American Physical Society
Nonperturbative scale anomaly and composite operators in gauge field theories
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1987-01-01
In non-asymptotically free gauge theories with a non-trivial ultraviolet fixed point scale symmetry breaking (the scale anomaly) caused by the nonperturbative PCAC dynamics is studied. In the two-loop approximation the analytical expression for the gluon condensate is obtained. It is shown that the form of the anomaly depends on the type of the phase of a theory to which it relates. The hypothesis about the soft behaviour at small distances of composite operators in such theories is confirmed. 14 refs.; 1 fig
Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation
Energy Technology Data Exchange (ETDEWEB)
Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)
1975-01-04
Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.
Babin, Anatoli
2016-01-01
In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...
Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence
Rubinstein, Robert
1994-01-01
Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.
Scaling theory of quantum resistance distributions in disordered systems
International Nuclear Information System (INIS)
Jayannavar, A.M.
1991-01-01
The large scale distribution of quantum Ohmic resistance of a disorderd one-dimensional conductor is derived explicitly. It is shown that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder single parameter scaling consistent with existing theoretical treatments is recovered. (author). 33 refs., 4 figs
Scaling theory of quantum resistance distributions in disordered systems
International Nuclear Information System (INIS)
Jayannavar, A.M.
1990-05-01
We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments. (author). 32 refs, 4 figs
Scaling algebras and renormalization group in algebraic quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Verch, R.
1995-01-01
For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)
Little string theory from double-scaling limits of field theories
International Nuclear Information System (INIS)
Ling, Henry; Shieh, H.-H.; Anders, Greg van
2007-01-01
We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5
An Allometric Algorithm for Fractal-Based Cobb-Douglas Function of Geographical Systems
Directory of Open Access Journals (Sweden)
Hongyu Luo
2014-01-01
Full Text Available The generalized Cobb-Douglas production function has been derived from a general input-output relation based on fractality assumptions. It was proved to be a useful self-affine model for geographical analysis. However, the ordinary least square calculation is always an ineffectual method for the Cobb-Douglas modeling because of the multicollinearity in the logarithmic linear regression. In this paper, a novel approach is proposed to build the geographical Cobb-Douglas models. Combining the concept of allometric scaling with the linear regression technique, we obtain a simple algorithm that can be employed to estimate the parameters of the Cobb-Douglas function. As a case, the algorithm and models are applied to the public transportation of China’s cities, and the results validate the allometric algorithm. A conclusion can be drawn that the allometric analysis is an effective way of modeling geographical systems with the general Cobb-Douglas function. This study is significant for integrating the notions of allometry, fractals, and scaling into a new framework to form a quantitative methodology of spatial analysis.
Perturbation theory instead of large scale shell model calculations
International Nuclear Information System (INIS)
Feldmeier, H.; Mankos, P.
1977-01-01
Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de
Scaling theory of depinning in the Sneppen model
International Nuclear Information System (INIS)
Maslov, S.; Paczuski, M.
1994-01-01
We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev. Lett. 69, 3539 (1992)]. This theory is based on a ''gap'' equation that describes the self-organization process to a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two independent exponents, ν parallel (d) and ν perpendicular (d), characterizing the divergence of the parallel and perpendicular correlation lengths as the interface approaches its dynamical attractor
Prediction of spatial distribution for some land use allometric ...
African Journals Online (AJOL)
Prediction of spatial distribution for some land use allometric characteristics in land use planning models with geostatistic and Geographical Information System (GIS) (Case study: Boein and Miandasht, Isfahan Province, Iran)
Large-scale structure in the universe: Theory vs observations
International Nuclear Information System (INIS)
Kashlinsky, A.; Jones, B.J.T.
1990-01-01
A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)
An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans
Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin
2016-01-01
Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover
The evolving Planck mass in classically scale-invariant theories
Energy Technology Data Exchange (ETDEWEB)
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)
2017-04-05
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
Characterizing Sources of Uncertainty in Item Response Theory Scale Scores
Yang, Ji Seung; Hansen, Mark; Cai, Li
2012-01-01
Traditional estimators of item response theory scale scores ignore uncertainty carried over from the item calibration process, which can lead to incorrect estimates of the standard errors of measurement (SEMs). Here, the authors review a variety of approaches that have been applied to this problem and compare them on the basis of their statistical…
The evolving Planck mass in classically scale-invariant theories
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.
2017-04-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
Energy Technology Data Exchange (ETDEWEB)
Kubo, R; Takahashi, Y; Yokoyama, K
1975-01-01
In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.
Divergence of perturbation theory in large scale structures
Pajer, Enrico; van der Woude, Drian
2018-05-01
We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.
Scaling theory and the classification of phase transitions
International Nuclear Information System (INIS)
Hilfer, R.
1992-01-01
In this paper, the recent classification theory for phase transitions and its relation with the foundations of statistical physics is reviewed. First it is outlined how Ehrenfests classification scheme can be generalized into a general thermodynamic classification theory for phase transitions. The classification theory implies scaling and multiscaling thereby eliminating the need to postulate the scaling hypothesis as a fourth law of thermodynamics. The new classification has also led to the discovery and distinction of nonequilibrium transitions within equilibrium statistical physics. Nonequilibrium phase transitions are distinguished from equilibrium transitions by orders less than unity and by the fact the equilibrium thermodynamics and statistical mechanics become inapplicable at the critical point. The latter fact requires a change in the Gibbs assumption underlying the canonical and grandcanonical ensembles in order to recover the thermodynamic description in the critical limit
The effective field theory of cosmological large scale structures
Energy Technology Data Exchange (ETDEWEB)
Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2012-09-20
Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c^{2}_{s} ≈ 10^{–6}c^{2} and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)^{4}. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc^{–1}.
Scaling of theory-of-mind understandings in Chinese children.
Wellman, Henry M; Fang, Fuxi; Liu, David; Zhu, Liqi; Liu, Guoxiong
2006-12-01
Prior research demonstrates that understanding of theory of mind develops at different paces in children raised in different cultures. Are these differences simply differences in timing, or do they represent different patterns of cultural learning? That is, to what extent are sequences of theory-of-mind understanding universal, and to what extent are they culture-specific? We addressed these questions by using a theory-of-mind scale to examine performance of 140 Chinese children living in Beijing and to compare their performance with that of 135 English-speaking children living in the United States and Australia. Results reveal a common sequence of understanding, as well as sociocultural differences in children's developing theories of mind.
Sequential Progressions in a Theory of Mind Scale: Longitudinal Perspectives
Wellman, Henry M.; Fuxi, Fang; Peterson, Candida C.
2011-01-01
Consecutive re-testings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in cross-sectional scaling data also characterized longitudinal sequences of understanding for individual children. The match between cross-sectional and longitudinal sequences appeared for children who exhibit different progressions across cultures (U.S. vs. China) and for children with substantial delays (deaf children of hearing parents). Moreover, greater scale distances reflected larger longitudinal age differences. PMID:21428982
Quantum no-scale regimes in string theory
Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé
2018-05-01
We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.
Testing the Grandchildren's Received Affection Scale using Affection Exchange Theory.
Mansson, Daniel H
2013-04-01
The purpose of this study was to test the Grandchildren's Received Affection Scale (GRAS) using Affection Exchange Theory (Floyd, 2006). In accordance with Affection Exchange Theory, it was hypothesized that grandchildren's scores on the Trait Affection Received Scale (i.e., the extent to which individuals by nature receive affection) would be related significantly and positively to their reports of received affection from their grandparents (i.e., their scores on the GRAS). Additionally, a research question was asked to explore if grandchildren's received affection from their grandparents is dependent on their grandparent's biological sex or lineage (i.e., maternal vs paternal). Thus, young adult grandchildren (N = 422) completed the GRAS and the Trait Affection Received Scale. The results of zero-order Pearson correlational analyses provided support for the hypothesis, whereas the results of MANOVAs tests only partially support extant grandparent-grandchild theory and research. These findings broaden the scope of Affection Exchange Theory and also bolster the GRAS's utility in future grandparent-grandchild affectionate communication research.
Chemical theory and modelling through density across length scales
International Nuclear Information System (INIS)
Ghosh, Swapan K.
2016-01-01
One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)
The algebraic construction of the scale-invariant asymtotic theory
International Nuclear Information System (INIS)
Gatto, R.; Sartori, G.
1975-01-01
The procedure proposed in the preceding paper to construct the asymptotic scale-invariant theory is applied to massive free fields. The contracted fields (of the asymptotic theory) are calculated in terms of the original fields by two different procedures. The contracted charges are calculated and their general relation to the original charges is verified. The problem of defining a vacuum state for the contracted fields and charges is solved. The relation to the problem of non-equivalent representations of the commutator relations is pointed out
Validation of Theory of Consumption Values Scales for Deal Sites
DEFF Research Database (Denmark)
Sudzina, Frantisek
2016-01-01
Deal sites became a widely used artefact. But there is still only a limited number of papers investigating their adoption and use. Most of the research published on the topic is qualitative. It is typical for an early stage of investigation of any new artefact. The Theory of Consumption Values ex...... explains purchase behavior. The aim of this paper is to validate scales for the Theory of Consumption Values for deal sites. This should pave a way for quantitative investigation of motives for purchasing using deal sites....
Departures from scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Gutbrod, F.
1987-01-01
High statistics Monte Carlo Data in SU(2) lattice gauge theory are presented. At β = 2.6 and β = 2.7 large deviations form scaling are observed for Creutz ratios, when 12 4 and 24 4 lattice data are compared. There is a trend towards a restauration of asymptotic scaling with increasing β, which vanishes if at the higher value of β larger loops are considered than at lower β. The static qanti q-potential and an upper limit for the string tension are given. (orig.)
Kinetic and allometric models for dosimetry using radiopharmaceuticals labeled with lanthanides
International Nuclear Information System (INIS)
Lima, Marina Ferreira
2012-01-01
This work proposes two models based in compartmental analyses: Animal model and Human model, using images from gamma camera measurements to determinate the kinetic constants of the 177 Lu-DOTATATE to three animal species (rat Wistar, Armenian hamster and Syrian hamster) and to the human in biodistribution studies split in two phases: Phase 1 governed by uptake from the blood and Phase 2 governed by the real excretion. The kinetic constants obtained from the animals' data ere used to build allometric scaling to predict radiopharmaceutical biodistribution in the human employing relations by mass, metabolism, by life span and by physiological parameters. These extrapolation results were compared with the PRRT (Peptide receptor radiotherapy) patients kinetic data calculated using the Human model. The kinetic constants obtained from humans were used in dose assessment to PRRT patients considering MIRD 26 organs and tissues. Dosimetry results were in agreement with available results from literature. For the Phase 1 allometric scaling from kinetic data from the blood to the organs straight responsible for the 177 Lu-DOTATATE metabolism and excretion - liver, kidneys and urinary bladder -show good correlation in the scaling by mass, metabolism and physiological and parameters. For the Phase 2, only the kinetic data from blood to the liver and to the kidneys show good correlation. Based in the anaesthetics inhibitory action over the renal excretion, there is not empirical basis to allow measurement times over 40 minutes in in vivo studies with small animals. Consequently, the Phase 1 results seem enough to make allometric scaling to assessment dose in PRRT. (author)
Detailed treatment of scaling violations in asymptotically free gauge theories
International Nuclear Information System (INIS)
Hinchliffe, I.; Llewellyn Smith, C.H.
1977-01-01
Scaling violations in lepto-production are discussed on the basis of asymptotically free gauge theories. Detailed attention is given to the problems of operator mixing and data parametrisation. All the electro-/muo-production data for F 2 can be accommodated. The calculated values for Fsub(L) are also compatible with the data in the region where the theory may be trusted. It is shown that the FNAL data for sigmasup(anti γ)/sigmasup(γ) and sup(anti γ) can be explained if the freedom to input rather large amounts of antiquarks is exploited. It is therefore premature to conclude that new flavours are required. Predictions are given for very high energies which are relevant for possible new experimental facilities. The consequences of a conjecture about the possible pattern of scaling violations in the production of W's, Z's and μ-pairs are explored. Some theoretical problems and uncertainties in testing asymptotic freedom are discussed. (Auth.)
Allometric growth and allocation in forests: a perspective from FLUXNET.
Wolf, Adam; Field, Christopher B; Berry, Joseph A
2011-07-01
To develop a scheme for partitioning the products of photosynthesis toward different biomass components in land-surface models, a database on component mass and net primary productivity (NPP), collected from FLUXNET sites, was examined to determine allometric patterns of allocation. We found that NPP per individual of foliage (Gfol), stem and branches (Gstem), coarse roots (Gcroot) and fine roots (Gfroot) in individual trees is largely explained (r2 = 67-91%) by the magnitude of total NPP per individual (G). Gfol scales with G isometrically, meaning it is a fixed fraction of G ( 25%). Root-shoot trade-offs were manifest as a slow decline in Gfroot, as a fraction of G, from 50% to 25% as stands increased in biomass, with Gstem and Gcroot increasing as a consequence. These results indicate that a functional trade-off between aboveground and belowground allocation is essentially captured by variations in G, which itself is largely governed by stand biomass and only secondarily by site-specific resource availability. We argue that forests are characterized by strong competition for light, observed as a race for individual trees to ascend by increasing partitioning toward wood, rather than by growing more leaves, and that this competition stronglyconstrains the allocational plasticity that trees may be capable of. The residual variation in partitioning was not related to climatic or edaphic factors, nor did plots with nutrient or water additions show a pattern of partitioning distinct from that predicted by G alone. These findings leverage short-term process studies of the terrestrial carbon cycle to improve decade-scale predictions of biomass accumulation in forests. An algorithm for calculating partitioning in land-surface models is presented.
Bontempo, Robert
1993-01-01
Describes a method for assessing the quality of translations based on item response theory (IRT). Results from the IRT technique with French and Chinese versions of a scale measuring individualism-collectivism for samples of 250 U.S., 357 French, and 290 Chinese undergraduates show how several biased items are detected. (SLD)
Boomerang RG flows in M-theory with intermediate scaling
Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar
2017-07-01
We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.
Systematic renormalization of the effective theory of Large Scale Structure
International Nuclear Information System (INIS)
Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico
2016-01-01
A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.
Scale-covariant theory of gravitation and astrophysical applications
International Nuclear Information System (INIS)
Canuto, V.; Adams, P.J.; Hsieh, S.; Tsiang, E.
1977-01-01
By associating the mathematical operation of scale transformation with the physics of using different dynamical systems to measure space-time distances, we formulate a scale-covariant theory of gravitation. Corresponding to each dynamical system of units is a gauge condition which determines the otherwise arbitrary gauge function. For gravitational units, the gauge condition is chosen so that the standard Einstein equations are recovered. Assuming the atomic units, derivable from atomic dynamics, to be distinct from the gravitational units, a different gauge condition must be imposed. It is suggested that Dirac's large-number hypothesis be used for the determination of this condition so that gravitational phenomena can be described in atomic units. The result allows a natural interpretation of the possible variation of the gravitational constant without compromising the validity of general relativity. A geometrical interpretation of the scale-covariant theory is possible if the covariant tensors in Riemannian space are replaced by cocovariant cotensors in an integrable Weyl space. A scale-invariant action principle is constructed from the metrical potentials of the integrable Weyl space. Application of the dynamical equations in atomic units to cosmology yields a family of homogeneous solutions characterized by R approx. t for large cosmological times. Equations of motion in atomic units are solved for spherically symmetric gravitational fields. Expressions for perihelion shift and light deflection are derived. They do not differ from the predictions of general relativity except for secular variations, having the age of the universe as a time scale. Similar variations of periods and radii for planetary orbits are also derived
Allometric biomass and carbon factors database
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Z. [European Commission Joint Research Centre, Ispra (Italy). Institute for Environment and Sustainability]|[Hungarian Forest Research Institute, Budapest (Hungary); Teobaldelli, M.; Federici, S.; Pagliari, V.; Grassi, G.; Seufert, G. [European Commission Joint Research Centre, Ispra (Italy). Institute for Environment and Sustainability; Matteucci, G. [Consiglio Nazionale delle Ricerche, Rende (Italy). Istituto per i Sistemi Agricoli e Forestali del Mediterraneo
2008-09-30
DATA clearinghouse. The 'Allometric, Biomass and Carbon factors' database (ABC factors database) was designed to facilitate the estimation of the biomass carbon stocks of forests in order to support the development and the verification of greenhouse gas inventories in the LULUCF sector. The database contains several types of expansion, conversion and combined factors, by various tree species or species groups that can be used to calculate biomass or carbon of forests of Eurasian region from proxy variables (e.g., tree volume) that may come from forest inventories. In addition to the factors, and depending on the information that was available in the cited source, the database indicates: (1) the biomass compartments involved when the factor was developed; and (2) the possible applicability of the factor, e.g. by country or by ecological regions. The applicability of the factors is either suggested by the source itself, or the type of source (e.g. National Greenhouse Gas Inventory Report), or was based on the expert judgement by the compilers of the database. Finally, in order to facilitate the selection of the most appropriate of the data, the web-based interface provides the possibility to compare several factors that may come from different sources.
F-theory, GUTs, and the weak scale
International Nuclear Information System (INIS)
Heckman, Jonathan J.; Vafa, Cumrun
2009-01-01
In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the μ term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare μ and Bμ terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value μ ∼ 10 2 -10 3 GeV when the hidden sector scale of supersymmetry breaking is F 1/2 ∼ 10 8.5 GeV. Further, the Bμ problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f a ∼ M GUT cμ/Λ, where Λ ∼ 10 5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio μ/Λ ∼ M GUT /M pl ∼ 10 -3 . We find f a ∼ 10 12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10 1 -10 2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10 2 -10 3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tanβ ∼ 30±7.
The role of instantons in scale-invariant gauge theories
International Nuclear Information System (INIS)
Affleck, I.
1980-01-01
Instanton calculations in scale-invariant gauge theories, such as QCD, have long been plagued by divergences at large distances where strong coupling effects are important. Furthermore, Witten has argued that quantum effects may cause the instanton gas to disappear and has displayed this phenomenon in the CPsup(N-1) model at large N. It is argued here that instantons can play a role in calculations involving an inherent infrared cut-off, and this is demonstrated in the CPsup(N-1) model for large N at a finite temperature. Some results on finite-temperature QED are also obtained in passing. (orig.)
On the GUT scale of F-theory SU(5)
International Nuclear Information System (INIS)
Leontaris, G.K.; Vlachos, N.D.
2011-01-01
In F-theory GUTs, threshold corrections from Kaluza-Klein (KK) massive modes arising from gauge and matter multiplets play an important role in the determination of the weak mixing angle and the strong gauge coupling of the effective low energy model. In this Letter we further explore the induced modifications on the gauge couplings running and the GUT scale. In particular, we focus on the KK-contributions from matter curves and analyze the conditions on the chiral and Higgs matter spectrum which imply a GUT scale consistent with the minimal unification scenario. As an application, we present an explicit computation of these thresholds for matter fields residing on specific non-trivial Riemann surfaces.
Plant interactions alter the predictions of metabolic scaling theory
DEFF Research Database (Denmark)
Lin, Yue; Berger, Uta; Grimm, Volker
2013-01-01
Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive....... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...
Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model
International Nuclear Information System (INIS)
Hamer, C.J.; Barber, M.N.
1979-01-01
Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ
Scaling theory for the quasideterministic limit of continuous bifurcations.
Kessler, David A; Shnerb, Nadav M
2012-05-01
Deterministic rate equations are widely used in the study of stochastic, interacting particles systems. This approach assumes that the inherent noise, associated with the discreteness of the elementary constituents, may be neglected when the number of particles N is large. Accordingly, it fails close to the extinction transition, when the amplitude of stochastic fluctuations is comparable with the size of the population. Here we present a general scaling theory of the transition regime for spatially extended systems. We demonstrate this through a detailed study of two fundamental models for out-of-equilibrium phase transitions: the Susceptible-Infected-Susceptible (SIS) that belongs to the directed percolation equivalence class and the Susceptible-Infected-Recovered (SIR) model belonging to the dynamic percolation class. Implementing the Ginzburg criteria we show that the width of the fluctuation-dominated region scales like N^{-κ}, where N is the number of individuals per site and κ=2/(d_{u}-d), d_{u} is the upper critical dimension. Other exponents that control the approach to the deterministic limit are shown to be calculable once κ is known. The theory is extended to include the corrections to the front velocity above the transition. It is supported by the results of extensive numerical simulations for systems of various dimensionalities.
A critical review on the scaling theory of dispersion
Zech, Alraune; Mai, Juliane; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg; Fiori, Aldo; Rubin, Yoram
2014-05-01
The phenomenon of dispersive mixing of solutes in aquifers is subject of research since decades. The characterization of dispersivity at a particular field site is a prerequisite to predict the movement and spreading of a contaminant plume. Experimental investigations have shown, that field-scale dispersivities vary over orders of magnitude, which apparently depends on the scale of measurement. Gelhar et al. [1992] and Schulze-Makuch [2005] have reviewed a large number of transport experiments reported in the literature. Based on that data Schulze-Makuch [2005] performed a trend analysis of longitudinal dispersivity, fostering the empirical relationship of a power law between dispersivities and the scale of measurement without an upper bound. The goal of our study is to critically revisit not only the data used for the trend analysis but the power-law scale dependence of longitudinal dispersivity (e.g. Neuman [1990], Xu and Eckstein [1995]). Our particular focus is on the reported dispersivities of large amount (larger than 100m) and large measurement scales (in the order of kilometers). We aim to evaluate current theories of transport against a critical "mass" of field experiments and to bracket the conditions of their applicability. We further aim to evaluate the adequacy of the field sampling techniques that were employed from the perspective of more than 30 years development in modeling and field characterization. Given the tremendous progress in field data acquisition techniques and new insights gained, it is reasonable to expect that interpretations of past experiments may be flawed due to the limitations or inadequacy of field sampling techniques. Gelhar, L.W., C. Welty, and K.R. Rehfeldt, 1992, A critical review of data on field-scale dispersion in aquifers, Water Resources Research 28, No. 7: 1955-1974. Schulze-Makuch, D., 2005, Longitudinal dispersivity data and implications for scaling behavior, Ground Water, Vol. 43, No. 3, 443-456. Neuman, S.P., 1990
Allometric scaling of hepatic biotransformation in rainbow trout
Biotransformation can markedly reduce the extent to which hydrophobic organic chemicals accumulate in fish. However, predicting the impacts of biotransformation on chemical accumulation is complicated by a number of factors, including the possible influence of differences in fis...
The natural selection of metabolism explains curvature in allometric scaling
Witting, Lars
2016-01-01
I simulate the evolution of metabolism and mass to explain the curvature in the metabolic allometry for placental and marsupial mammals. I assume that the release of inter-specific competition by the extinction of dinosaurs 65 million years ago made it possible for each clade to diversity into a multitude of species across a wide range of niches. The natural selection of metabolism and mass was then fitted to explain the maximum observed body masses over time, as well as the current inter-spe...
Conductance of finite systems and scaling in localization theory
Suslov, I. M.
2012-11-01
The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β( g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β( g) in 1/ g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ɛ looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ - iω for conductivity are discussed.
Cosmological tests of a scale covariant theory of gravitation
International Nuclear Information System (INIS)
Owen, J.R.
1979-01-01
The Friedmann models with #betta# = 0 are subjected to several optical and radio tests within the standard and scale covariant theories of gravitation. Within standard cosmology, both interferometric and scintillation data are interpreted in terms of selection effects and evolution. Within the context of scale covariant cosmology are derived: (1) the full solution to Einstein's gravitational equations in atomic units for a matter dominated universe, (2) the study of the magnitude vs. redshift relation for elliptical galaxies, (3) the derivation of the evolutionary parameter used in (2), (4) the isophotal angular diameter vs. redshift relation, (5) the metric angular diameter vs. redshift relation, (6) the N(m) vs. magnitude relation for QSO's and their m vs z relation, and finally (7) the integrated and differential expressions for the number count vs. radio flux test. The results, both in graphical and tabular form, are presented for four gauges (i.e. parametrized relations between atomic and gravitational units). No contradiction between the new theory and the data is found with any of the tests studied. For some gauges, which are suggested by a recent analysis of the time variation of the Moon's period which is discussed in the text in terms of the new theory, the effect of the deceleration parameter on cosmological predictions is enhanced over standard cosmology and it is possible to say that the data are more easily reconciled with an open universe. Within the same gauge, the main features of both the N(m) vs. m and m-z test are accounted for by the same simple evolutionary parametrization whereas different evolutionary rates were indicated by interpretation within standard cosmology. The same consistency, lacking in standard cosmology on this level of analysis, is achieved for the integrated and differential number count - radio flux tests within the same gauge
Conductance of finite systems and scaling in localization theory
International Nuclear Information System (INIS)
Suslov, I. M.
2012-01-01
The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β(g) in 1/g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ε looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ −iω for conductivity are discussed.
Neutral Theory and Scale-Free Neural Dynamics
Martinello, Matteo; Hidalgo, Jorge; Maritan, Amos; di Santo, Serena; Plenz, Dietmar; Muñoz, Miguel A.
2017-10-01
Neural tissues have been consistently observed to be spontaneously active and to generate highly variable (scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as criticality has been argued to entail many possible important functional advantages in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even if the network operates in a regime far from the edge of any phase transition. We show that perturbations to the system state unfold dynamically according to a "neutral drift" (i.e., guided only by stochasticity) with respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics is likely to play an important role in the cortex functioning. We discuss the implications of these findings to design new empirical approaches to shed further light on how the brain processes and stores information.
Voje, Kjetil L; Hansen, Thomas F
2013-02-01
Julian Huxley showed that within-species (static) allometric (power-law) relations can arise from proportional growth regulation with the exponent in the power law equaling the factor of proportionality. Allometric exponents may therefore be hard to change and act as constraints on the independent evolution of traits. In apparent contradiction to this, many empirical studies have concluded that static allometries are evolvable. Many of these studies have been based, however, on a broad definition of allometry that includes any monotonic shape change with size, and do not falsify the hypothesis of constrained narrow-sense allometry. Here, we present the first phylogenetic comparative study of narrow-sense allometric exponents based on a reanalysis of data on eye span and body size in stalk-eyed flies (Diopsidae). Consistent with a role in sexual selection, we found strong evidence that male slopes were tracking "optima" based on sexual dimorphism and relative male trait size. This tracking was slow, however, with estimated times of 2-3 million years for adaptation to exceed ancestral influence on the trait. Our results are therefore consistent with adaptive evolution on million-year time scales, but cannot rule out that static allometry may act as a constraint on eye-span adaptation at shorter time scales. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Recent development of linear scaling quantum theories in GAMESS
Energy Technology Data Exchange (ETDEWEB)
Choi, Cheol Ho [Kyungpook National Univ., Daegu (Korea, Republic of)
2003-06-01
Linear scaling quantum theories are reviewed especially focusing on the method adopted in GAMESS. The three key translation equations of the fast multipole method (FMM) are deduced from the general polypolar expansions given earlier by Steinborn and Rudenberg. Simplifications are introduced for the rotation-based FMM that lead to a very compact FMM formalism. The OPS (optimum parameter searching) procedure, a stable and efficient way of obtaining the optimum set of FMM parameters, is established with complete control over the tolerable error {epsilon}. In addition, a new parallel FMM algorithm requiring virtually no inter-node communication, is suggested which is suitable for the parallel construction of Fock matrices in electronic structure calculations.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Gravitational theory in atomic scale units in Dirac cosmology
International Nuclear Information System (INIS)
Davidson, W.
1984-01-01
The implication of Dirac's large numbers hypothesis (LNH) that there are two cosmological space-time metrics, gravitational (E) and atomic (A), is used to formulate the gravitational laws for a general mass system in atomic scale units within such a cosmology. The gravitational laws are illustrated in application to the case of a single spherical mass immersed in the smoothed out expanding universe. The condition is determined for such a metric to apply approximately just outside a typical member of a cosmic distribution of such masses. Conversely, the condition is given when the influence of the universe as a whole can be neglected outside such a mass. In the latter situation, which applies in particular to stars, a Schwarzschild-type metric is derived which incorporates variable G in accordance with the LNH. The dynamics of freely moving particles and photons in such a metric are examined according to the theory and observational tests are formulated. (author)
Density Functional Theory and Materials Modeling at Atomistic Length Scales
Directory of Open Access Journals (Sweden)
Swapan K. Ghosh
2002-04-01
Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.
Plant interactions alter the predictions of metabolic scaling theory.
Directory of Open Access Journals (Sweden)
Yue Lin
Full Text Available Metabolic scaling theory (MST is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning. Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric, and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.
On the consistency of scale among experiments, theory, and simulation
McClure, James E.; Dye, Amanda L.; Miller, Cass T.; Gray, William G.
2017-02-01
As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.
Universality and scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Michael, C.; Teper, M.; Oxford Univ.
1988-01-01
We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)
Body size and allometric variation in facial shape in children.
Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt
2018-02-01
Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.
A flux-scaling scenario for high-scale moduli stabilization in string theory
Directory of Open Access Journals (Sweden)
Ralph Blumenhagen
2015-08-01
Full Text Available Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.
A flux-scaling scenario for high-scale moduli stabilization in string theory
Energy Technology Data Exchange (ETDEWEB)
Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Font, Anamaría [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany); Fuchs, Michael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Herschmann, Daniela, E-mail: herschma@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sekiguchi, Yuta; Wolf, Florian [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany)
2015-08-15
Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.
Allometric trajectories and "stress": a quantitative approach
Directory of Open Access Journals (Sweden)
Tommaso Anfodillo
2016-11-01
Full Text Available The term stress is an important but vague term in plant biology. We show situations in which thinking in terms of stress is profitably replaced by quantifying distance from functionally optimal scaling relationships between plant parts. These relationships include, for example, the often-cited one between leaf area and sapwood area, which presumably reflects mutual dependence between source and sink tissues and which scales positively within individuals and across species. These relationships seem to be so basic to plant functioning that they are favored by selection across nearly all plant lineages. Within a species or population, individuals that are far from the common scaling patterns are thus expected to perform negatively. For instance, too little leaf area (e.g. due to herbivory or disease per unit of active stem mass would be expected to incur to low carbon income per respiratory cost and thus lead to lower growth. We present a framework that allows quantitative study of phenomena traditionally assigned to stress, without need for recourse to this term. Our approach contrasts with traditional approaches for studying stress, e.g. revealing that small stressed plants likely are in fact well suited to local conditions. We thus offer a quantitative perspective to the study of phenomena often referred to under such terms as stress, plasticity, adaptation, and acclimation.
Allometric Trajectories and "Stress": A Quantitative Approach.
Anfodillo, Tommaso; Petit, Giai; Sterck, Frank; Lechthaler, Silvia; Olson, Mark E
2016-01-01
The term "stress" is an important but vague term in plant biology. We show situations in which thinking in terms of "stress" is profitably replaced by quantifying distance from functionally optimal scaling relationships between plant parts. These relationships include, for example, the often-cited one between leaf area and sapwood area, which presumably reflects mutual dependence between sources and sink tissues and which scales positively within individuals and across species. These relationships seem to be so basic to plant functioning that they are favored by selection across nearly all plant lineages. Within a species or population, individuals that are far from the common scaling patterns are thus expected to perform negatively. For instance, "too little" leaf area (e.g., due to herbivory or disease) per unit of active stem mass would be expected to incur to low carbon income per respiratory cost and thus lead to lower growth. We present a framework that allows quantitative study of phenomena traditionally assigned to "stress," without need for recourse to this term. Our approach contrasts with traditional approaches for studying "stress," e.g., revealing that small "stressed" plants likely are in fact well suited to local conditions. We thus offer a quantitative perspective to the study of phenomena often referred to under such terms as "stress," plasticity, adaptation, and acclimation.
Story of the string theory. From hadrons to Planck scale
International Nuclear Information System (INIS)
Petropoulos, P.M.
2010-01-01
Originally the string theory was devised to describe the scattering between hadron particles but was quickly put aside by the success of the quantum chromodynamics. Now string theory appears in the quantum gravity theory and has been involved in almost all attempts to define a physics beyond the standard model and to unify basic interactions. (A.C.)
National scale biomass estimators for United States tree species
Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey
2003-01-01
Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...
On the Renormalization of the Effective Field Theory of Large Scale Structures
Pajer, Enrico; Zaldarriaga, Matias
2013-01-01
Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...
The scaling of maximum and basal metabolic rates of mammals and birds
Barbosa, Lauro A.; Garcia, Guilherme J. M.; da Silva, Jafferson K. L.
2006-01-01
Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here, we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as M, maximum heart rate as M, and muscular capillary density as M, in agreement with data.
The corrections to scaling within Mazenko's theory in the limit of low ...
Indian Academy of Sciences (India)
functions'. In fact both the scaling functions and scaling exponents describe only the leading behaviour in the theory of scaling phenomena. There may be, and usually are, subdominant corrections, known as corrections to scaling. These corrections cannot be neglected in practice if more accurate values for exponents and ...
A New Likert Scale Based on Fuzzy Sets Theory
Li, Cheryl Qing
2010-01-01
In social science research, the Likert method is commonly used as a psychometric scale to measure responses. This measurement scale has a procedure that facilitates survey construction and administration, and data coding and analysis. However, there are some problems with Likert scaling. This dissertation addresses the information distortion and…
How acoustic signals scale with individual body size: common trends across diverse taxa
Rafael L. Rodríguez; Marcelo Araya-Salas; David A. Gray; Michael S. Reichert; Laurel B. Symes; Matthew R. Wilkins; Rebecca J. Safran; Gerlinde Höbel
2015-01-01
We use allometric analysis to explore how acoustic signals scale on individual body size and to test hypotheses about the factors shaping relationships between signals and body size. Across case studies spanning birds, crickets, tree crickets, and tree frogs, we find that most signal traits had low coefficients of variation, shallow allometric scalings, and little dispersion around the allometric function. We relate variation in these measures to the shape of mate preferences and the level of...
Testing the cranial evolutionary allometric 'rule' in Galliformes.
Linde-Medina, M
2016-09-01
Recent comparative studies have indicated the existence of a common cranial evolutionary allometric (CREA) pattern in mammals and birds, in which smaller species have relatively smaller faces and bigger braincases than larger species. In these studies, cranial allometry was tested using a multivariate regression between shape (described using landmarks coordinates) and size (i.e. centroid size), after accounting for phylogenetic relatedness. Alternatively, cranial allometry can be determined by comparing the sizes of two anatomical parts using a bivariate regression analysis. In this analysis, a slope higher or lower than one indicates the existence of positive or negative allometry, respectively. Thus, in those species that support the CREA 'rule', positive allometry is expected for the association between face size and braincase size, which would indicate that larger species have disproportionally larger faces. In this study, I applied these two approaches to explore cranial allometry in 83 Galliformes (Aves, Galloanserae), ranging in mean body weight from 30 g to 2.5 kg. The multivariate regression between shape and centroid size revealed the existence of a significant allometric pattern resembling CREA, whereas the second analysis revealed a negative allometry for beak size and braincase size (i.e. contrary to the CREA 'rule', larger galliform species have disproportionally shorter beaks than smaller galliform species). This study suggests that the presence of CREA may be overestimated when using cranium size as the standard measurement. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Mogilevskij, O.A.
1988-01-01
Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model
Low-energy limit of two-scale field theories
International Nuclear Information System (INIS)
Leon, J.; Perez-Mercader, J.; Sanchez, M.F.
1991-01-01
We present a full and self-contained discussion of the decoupling theorem applied to several general models in four-dimensional field theory. We compute in each case the low-energy effective action and show the explicit one-loop expressions for each of the effective parameters. We find that for suitable conditions one can always build an effective low-energy theory where the conditions of the decoupling theorem are satisfied
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
Allometric methodology for the assessment of radon exposures to terrestrial wildlife
International Nuclear Information System (INIS)
Vives i Batlle, J.; Copplestone, D.; Jones, S.R.
2012-01-01
A practical approach to calculate 222 Rn daughter dose rates to terrestrial wildlife is presented. The method scales allometrically the relevant parameters for respiration in different species of wildlife, allowing inter-species calculation of the dose per unit radon concentration in air as simple base-and-exponent power functions of the mass. For plants, passive gas exchange through the leaf surface is assumed, also leading to specific power relationships with mass. The model generates conservative predictions in which the main contributor to the dose rate of target tissues of the respiratory system is from α radiation arising from 222 Rn daughters. Tabulated 222 Rn DPURn values are given for 69 species used by the England and Wales Environment Agency for habitats assessments. The approach is then applied to assess the authorised discharges of 222 Rn from sites in England, demonstrating that, from a whole-body dose perspective, the biota considered are protected from effects at the population level. - Highlights: ► Allometric method developed to calculate radon daughter doses to 69 species of terrestrial wildlife. ► Model satisfactorily compared with previous studies of lung dose rates for mammals. ► The main contributor to the dose rate of the respiratory system is internal α-radiation from the 222 Rn daughters. ► Air immersion is the principal contributor to the external dose rate. ► Assessment for 7 authorised sites in England suggests that wildlife populations are adequately protected from the anthropogenic radon emissions considered in this study.
Allometric methodology for the assessment of radon exposures to terrestrial wildlife
Energy Technology Data Exchange (ETDEWEB)
Vives i Batlle, J., E-mail: jordi.vives.i.batlle@sckcen.be [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Copplestone, D. [School of Biological and Environmental Sciences, University of Stirling (United Kingdom); Jones, S.R. [SJ Scientific Ltd, 13 Fern Bank, Cockermouth, Cumbria (United Kingdom)
2012-06-15
A practical approach to calculate {sup 222}Rn daughter dose rates to terrestrial wildlife is presented. The method scales allometrically the relevant parameters for respiration in different species of wildlife, allowing inter-species calculation of the dose per unit radon concentration in air as simple base-and-exponent power functions of the mass. For plants, passive gas exchange through the leaf surface is assumed, also leading to specific power relationships with mass. The model generates conservative predictions in which the main contributor to the dose rate of target tissues of the respiratory system is from {alpha} radiation arising from {sup 222}Rn daughters. Tabulated {sup 222}Rn DPURn values are given for 69 species used by the England and Wales Environment Agency for habitats assessments. The approach is then applied to assess the authorised discharges of {sup 222}Rn from sites in England, demonstrating that, from a whole-body dose perspective, the biota considered are protected from effects at the population level. - Highlights: Black-Right-Pointing-Pointer Allometric method developed to calculate radon daughter doses to 69 species of terrestrial wildlife. Black-Right-Pointing-Pointer Model satisfactorily compared with previous studies of lung dose rates for mammals. Black-Right-Pointing-Pointer The main contributor to the dose rate of the respiratory system is internal {alpha}-radiation from the {sup 222}Rn daughters. Black-Right-Pointing-Pointer Air immersion is the principal contributor to the external dose rate. Black-Right-Pointing-Pointer Assessment for 7 authorised sites in England suggests that wildlife populations are adequately protected from the anthropogenic radon emissions considered in this study.
Neustupa, J
2016-02-01
The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Directory of Open Access Journals (Sweden)
Julio C. Juvenal
2008-11-01
anestesia durante a colheita de sêmen por tal método.This paper reports the anesthetic effects of the combination of tiletamine HCl, zolazepam HCl, and xylazine HCl in tigrinas, Leopardus tigrinus Schreber, 1775 (Fam. Felidae, submitted to semen collection by electroejaculation. Three different protocols and the individual anesthetic doses were calculated by interspecific allometric scaling, based on the usual recommendations for a 10.0 kg domestic dog: On Protocol 1 (n=10 the basis for calculation was 5.0mg/kg for tiletamine + zolazepam and 0.5mg/kg for xylazine; on Protocol 2 (n=12 5.0mg/kg for tiletamine + zolazepam and 0.75mg/kg for xylazine; and on Protocol 3 (n=11 5.0mg/kg for tiletamine + zolazepam and 1.0mg/kg for xylazine. The tigrinas were anesthetized on three different occasions with a minimum interval of 30 days. During 120 minutes after the drug administration cardiac and respiratory frequencies, rectal temperature, limb myorelaxation and sensitivity to deep pain were monitored. Latency period, anesthetic period, and contamination of the semen with urine were also monitored. From a total of 32 collections, 10 samples (31.2% and 18 aliquots (0.07% were contaminated and rejected, but this episodes were not detrimental for semen analysis and processing. A discrete increase in rectal temperature during electroejaculation caused by muscle contraction, followed by temperature decrease, was observed. Cardiac and respiratory frequency varied during the experiment, but remained within physiological standards for the species. The three tested protocols showed to be safe and effective to produce analgesia and anesthesia in L. tigrinus during semen collection by electroejaculation.
ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST
Directory of Open Access Journals (Sweden)
Sandhi Imam Maulana
2014-10-01
Full Text Available Allometric equations can be used to estimate biomass and carbon stock of the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of commercial species. Few equations have been developed for the commercial species of Intsia, Pometia, Palaquium and Vatica genera and an equation of a mix of these genera. The number of trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of fit for the equation. An alternative model to incorporate wood density should be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is considered to give a better estimation of biomass.
Scaling of Advanced Theory-of-Mind Tasks
Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate
2016-01-01
Advanced theory-of-mind (AToM) development was investigated in three separate studies involving 82, 466, and 402 elementary school children (8-, 9-, and 10-year-olds). Rasch and factor analyses assessed whether common conceptual development underlies higher-order false-belief understanding, social understanding, emotion recognition, and…
Symmetry-guided large-scale shell-model theory
Czech Academy of Sciences Publication Activity Database
Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.
2016-01-01
Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016
An item response theory analysis of the Olweus Bullying scale.
Breivik, Kyrre; Olweus, Dan
2014-12-02
In the present article, we used IRT (graded response) modeling as a useful technology for a detailed and refined study of the psychometric properties of the various items of the Olweus Bullying scale and the scale itself. The sample consisted of a very large number of Norwegian 4th-10th grade students (n = 48 926). The IRT analyses revealed that the scale was essentially unidimensional and had excellent reliability in the upper ranges of the latent bullying tendency trait, as intended and desired. Gender DIF effects were identified with regard to girls' use of indirect bullying by social exclusion and boys' use of physical bullying by hitting and kicking but these effects were small and worked in opposite directions, having negligible effects at the scale level. Also scale scores adjusted for DIF effects differed very little from non-adjusted scores. In conclusion, the empirical data were well characterized by the chosen IRT model and the Olweus Bullying scale was considered well suited for the conduct of fair and reliable comparisons involving different gender-age groups. Information Aggr. Behav. 9999:XX-XX, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
ALLOMETRIC GROWTH OF PRIMAL CUTS AND TISSUES IN THE PIG
Directory of Open Access Journals (Sweden)
Frank Siewerdt
1994-12-01
Full Text Available Data from 82 purebred and crossbred Large White and Duroc barrows and gilts were used to describe the growth of carcass primal cuts, of tissues, and of several organs. Pigs were allowed ad libitum to a conventional diet, which contained com and soybean meal. Pigs were weighted weekly and were slaughtered when attained a liveweight over 90kg. An allometric pattern of growth was assumed. Within the observed range of liveweight, the carcass grew slower than the whole animal. An increase of carcass weight corresponds to a similar increase of lean, but also corresponds to a larger increase of fat tissues. A suggestion to slaughter pigs near to 90kg of liveweight is presented, in order to obtain leaner carcasses.
Scale-invariant entropy-based theory for dynamic ordering
International Nuclear Information System (INIS)
Mahulikar, Shripad P.; Kumari, Priti
2014-01-01
Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations
Self-similarity and scaling theory of complex networks
Song, Chaoming
Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.
Scale-covariant theory of gravitation and astrophysical applications
International Nuclear Information System (INIS)
Canuto, V.; Hsieh, S.H.; Adams, P.J.
1977-01-01
We present generalized Einstein equations, invariant under scale transformations, and study several astrophysical tests. It is assumed that the dynamics of atoms or clocks used as measuring apparatus is given a priori. Connection with gauge fields and broken symmetries is made through the cosmological constant
Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires
DEFF Research Database (Denmark)
Markussen, Troels; Rurali, R.; Jauho, Antti-Pekka
2007-01-01
We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires...
Sequential Progressions in a Theory-of-Mind Scale: Longitudinal Perspectives
Wellman, Henry M.; Fang, Fuxi; Peterson, Candida C.
2011-01-01
Consecutive retestings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in…
International Nuclear Information System (INIS)
Senjanovic, G.
1982-07-01
It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)
Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics
Li, Tiejun; Li, Fangting; Li, Xianggang; Lu, Cheng
2016-01-01
theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also
On the non-linear scale of cosmological perturbation theory
Blas, Diego; Konstandin, Thomas
2013-01-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On the non-linear scale of cosmological perturbation theory
International Nuclear Information System (INIS)
Blas, Diego; Garny, Mathias; Konstandin, Thomas
2013-04-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers
International Nuclear Information System (INIS)
Bonomini, MP; Valentinuzzi, M E; Arini, P D; Ingallina, F; Barone, V
2011-01-01
Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specificity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.
Short-term responses to selection for parameters of the allometric ...
African Journals Online (AJOL)
The allometric-autoregressive model describes growth accurately and is useful in the characterization of growth responses. ... of value in genetic studies and some of its parameters ..... (1990) appear to be fair estimates of the heritabilities of.
Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay
Bachiller, Eneko; Irigoien, Xabier
2012-01-01
The body size of fish is an important factor in determining their biology and ecology, as predators eat prey smaller than themselves. Predator mouth size restricts the availability of possible prey. In this paper we provide the allometric
The string tension and the scaling behavior of SU(2) gauge theory on a random lattice
International Nuclear Information System (INIS)
Qui Zhaoming; Ren Haichang; Academia Sinica, Beijing; Wang Xiaoqun; Yang Zhixing; Zhao Enping
1987-01-01
The SU(2) gauge theory on an 8 4 random lattice has been studied by the Monte Carlo method. The string tensions have been evaluated. They display the expected scaling behavior for β = 1.2-1.3. The scale parameter Λ RAN has been determined approximately. (orig.)
Item Response Theory Models for Wording Effects in Mixed-Format Scales
Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu
2015-01-01
Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…
An Item Response Theory Analysis of the Community of Inquiry Scale
Horzum, Mehmet Baris; Uyanik, Gülden Kaya
2015-01-01
The aim of this study is to examine validity and reliability of Community of Inquiry Scale commonly used in online learning by the means of Item Response Theory. For this purpose, Community of Inquiry Scale version 14 is applied on 1,499 students of a distance education center's online learning programs at a Turkish state university via internet.…
Scaled unscented transform Gaussian sum filter: Theory and application
Luo, Xiaodong
2010-05-01
In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT) (Julier and Uhlmann (2004) [16]), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf (Arulampalam et al. (2002) [7]). In applications, a potential problem of a Gaussian sum filter is that the number of Gaussian distributions may increase very rapidly. To this end, we also propose an auxiliary algorithm to conduct pdf re-approximation so that the number of Gaussian distributions can be reduced. With the auxiliary algorithm, in principle the SUT-GSF can achieve almost the same computational speed as the SUKF if the SUT-GSF is implemented in parallel. As an example, we will use the SUT-GSF to assimilate a 40-dimensional system due to
Building an Evaluation Scale using Item Response Theory.
Lalor, John P; Wu, Hao; Yu, Hong
2016-11-01
Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.
Explaining the electroweak scale and stabilizing moduli in M theory
International Nuclear Information System (INIS)
Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Kumar, Piyush; Shao Jing
2007-01-01
In a recent paper [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] it was shown that in fluxless M theory vacua with at least two hidden sectors undergoing strong gauge dynamics and a particular form of the Kaehler potential, all moduli are stabilized by the effective potential and a stable hierarchy is generated, consistent with standard gauge unification. This paper explains the results of [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] in more detail and generalizes them, finding an essentially unique de Sitter vacuum under reasonable conditions. One of the main phenomenological consequences is a prediction which emerges from this entire class of vacua: namely, gaugino masses are significantly suppressed relative to the gravitino mass. We also present evidence that, for those vacua in which the vacuum energy is small, the gravitino mass, which sets all the superpartner masses, is automatically in the TeV-100 TeV range
Explaining the electroweak scale and stabilizing moduli in M theory
Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Kumar, Piyush; Shao, Jing
2007-12-01
In a recent paper [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.191601] it was shown that in fluxless M theory vacua with at least two hidden sectors undergoing strong gauge dynamics and a particular form of the Kähler potential, all moduli are stabilized by the effective potential and a stable hierarchy is generated, consistent with standard gauge unification. This paper explains the results of [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.191601] in more detail and generalizes them, finding an essentially unique de Sitter vacuum under reasonable conditions. One of the main phenomenological consequences is a prediction which emerges from this entire class of vacua: namely, gaugino masses are significantly suppressed relative to the gravitino mass. We also present evidence that, for those vacua in which the vacuum energy is small, the gravitino mass, which sets all the superpartner masses, is automatically in the TeV 100 TeV range.
Low mass-scale parity restoration in expanded gauge theories
International Nuclear Information System (INIS)
Rajpoot, S.
1982-07-01
It is shown that schemes of grand unification with SU(2n) 4 gauge symmetry permit the embedding of the left-right symmetric SU(2)sub(L)xSU(2)sub(R)xU(1)xSU(3) intermediate symmetry at relatively low energies (between 250 GeV and 1 TeV) as well as allowing light unification mass-scales ( 5 TeV) if n>=3 for values of the weak angle Sin 2 thetasub(W) and the strong coupling αsub(s) in the ranges 0.20 2 thetasub(W)<=0.25, 0.10<=αsub(s)<=0.15. (author)
Theory-based transport simulation of tokamaks: density scaling
International Nuclear Information System (INIS)
Ghanem, E.S.; Kinsey, J.; Singer, C.; Bateman, G.
1992-01-01
There has been a sizeable amount of work in the past few years using theoretically based flux-surface-average transport models to simulate various types of experimental tokamak data. Here we report two such studies, concentrating on the response of the plasma to variation of the line averaged electron density. The first study reported here uses a transport model described by Ghanem et al. to examine the response of global energy confinement time in ohmically heated discharges. The second study reported here uses a closely related and more recent transport model described by Bateman to examine the response of temperature profiles to changes in line-average density in neutral-beam-heated discharges. Work on developing a common theoretical model for these and other scaling experiments is in progress. (author) 5 refs., 2 figs
CSIR Research Space (South Africa)
Kirton, A
2010-08-01
Full Text Available for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations A KIRTON B SCHOLES S ARCHIBALD CSIR Ecosystem Processes and Dynamics, Natural Resources and the Environment P.O. BOX 395, Pretoria, 0001, South... intervals (confidence intervals for predicted values) for allometric estimates can be obtained using an example of estimating tree biomass from stem diameter. It explains how to deal with relationships which are in the power function form - a common form...
Development and psychometric validation of social cognitive theory scales in an oral health context.
Jones, Kelly; Parker, Eleanor J; Steffens, Margaret A; Logan, Richard M; Brennan, David; Jamieson, Lisa M
2016-04-01
This study aimed to develop and evaluate scales reflecting potentially modifiable social cognitive theory-based risk indicators associated with homeless populations' oral health. The scales are referred to as the social cognitive theory risk scales in an oral health context (SCTOH) and are referred to as SCTOH(SE), SCTOH(K) and SCTOH(F), respectively. The three SCTOH scales assess the key constructs of social cognitive theory: self-efficacy, knowledge and fatalism. The reliability and validity of the three scales were evaluated in a convenience sample of 248 homeless participants (age range 17-78 years, 79% male) located in a metropolitan setting in Australia. The scales were supported by exploratory factor analysis and established three distinct and internally consistent domains of social cognition: oral health-related self-efficacy, oral health-related knowledge and oral health-related fatalism, with Cronbach's alphas of 0.95, 0.85 and Spearman's-Brown ρ of 0.69. Concurrent ability was confirmed by each SCTOH scale's association with oral health status in the expected directions. The three SCTOH scales appear to be internally valid and reliable. If confirmed by further research, these scales could potentially be used for tailored educational and cognitive-behavioural interventions to reduce oral health inequalities among homeless and other vulnerable populations. © 2015 Public Health Association of Australia.
BPS ZN string tensions, sine law and Casimir scaling, and integrable field theories
International Nuclear Information System (INIS)
Kneipp, Marco A. C.
2007-01-01
We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G→U(1) r →C G , with C G being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the two vacua the ratio of the tensions of the BPS Z N strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K ij and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories
On the renormalization of the effective field theory of large scale structures
International Nuclear Information System (INIS)
Pajer, Enrico; Zaldarriaga, Matias
2013-01-01
Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections
On the renormalization of the effective field theory of large scale structures
Energy Technology Data Exchange (ETDEWEB)
Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)
2013-08-01
Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.
Scaling Law for Photon Transmission through Optically Turbid Slabs Based on Random Walk Theory
Directory of Open Access Journals (Sweden)
Xuesong Li
2012-03-01
Full Text Available Past work has demonstrated the value of a random walk theory (RWT to solve multiple-scattering problems arising in numerous contexts. This paper’s goal is to investigate the application range of the RWT using Monte Carlo simulations and extending it to anisotropic media using scaling laws. Meanwhile, this paper also reiterates rules for converting RWT formulas to real physical dimensions, and corrects some errors which appear in an earlier publication. The RWT theory, validated by the Monte Carlo simulations and combined with the scaling law, is expected to be useful to study multiple scattering and to greatly reduce the computation cost.
International Nuclear Information System (INIS)
Svistun, R.P.; Babej, Yu.I.; Tkachenko, N.N.
1976-01-01
Statistical theories of the scale effect in the fatigue failure of 40KH18N9T, 10 and 20 steels have been verified. The theories are shown to be not invariably suitable for a satisfactory exlanation of the fatigue strength of the samples with respect to their dimensions. One of the main reasons for displaying the scale effect in the process of steel fatigue is the sample self-heating, i.e. a temperature factor which in many cases overlaps a statistical one
Energy Technology Data Exchange (ETDEWEB)
Svistun, R P; Babei, Yu I; Tkachenko, N N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.; L' vovskij Lesotekhnicheskij Inst. (Ukrainian SSR))
1976-01-01
Statistical theories of the scale effect in the fatigue failure of 40KH18N9T, 10 and 20 steels have been verified. The theories are shown to be not invariably suitable for a satisfactory exlanation of the fatigue strength of the samples with respect to their dimensions. One of the main reasons for displaying the scale effect in the process of steel fatigue is the sample self-heating, i.e. a temperature factor which in many cases overlaps a statistical one.
Theory-based scaling of the SOL width in circular limited tokamak plasmas
International Nuclear Information System (INIS)
Halpern, F.D.; Ricci, P.; Labit, B.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Arnoux, G.; Silva, C.; Gunn, J.P.; Horacek, J.; Kočan, M.; LaBombard, B.
2013-01-01
A theory-based scaling for the characteristic length of a circular, limited tokamak scrape-off layer (SOL) is obtained by considering the balance between parallel losses and non-linearly saturated resistive ballooning mode turbulence driving anomalous perpendicular transport. The SOL size increases with plasma size, resistivity, and safety factor q. The scaling is verified against flux-driven non-linear turbulence simulations, which reveal good agreement within a wide range of dimensionless parameters, including parameters closely matching the TCV tokamak. An initial comparison of the theory against experimental data from several tokamaks also yields good agreement. (letter)
Comparison of relativity theories with observer-independent scales of both velocity and length/mass
International Nuclear Information System (INIS)
Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea
2003-01-01
We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants
Theory of critical phenomena in finite-size systems scaling and quantum effects
Brankov, Jordan G; Tonchev, Nicholai S
2000-01-01
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals
Non-equilibrium mean-field theories on scale-free networks
International Nuclear Information System (INIS)
Caccioli, Fabio; Dall'Asta, Luca
2009-01-01
Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks
Watching More Closely: Shot Scale Affects Film Viewers’ Theory of Mind Tendency But Not Ability
Rooney, Brendan; Bálint, Katalin E.
2018-01-01
Recent research debates the effects of exposure to narrative fiction on recognition of mental states in others and self, referred to as Theory of Mind. The current study explores the mechanisms by which such effects could occur in fictional film. Using manipulated film scenes, we conducted a between subject experiment (N = 136) exploring how film shot-scale affects viewers’ Theory of Mind. Specifically, in our methods we distinguish between the trait Theory of Mind abilities (ToM ability), and the state-like tendency to recognize mental states in others and self (ToM tendency). Results showed that close-up shots (compared to long shots) of a character was associated with higher levels of Theory of Mind tendency, when the facial expression was sad but not when it was neutral. And this effect did not transfer to other characters in the film. There was also no observable effect of character depiction on viewers’ general Theory of Mind ability. Together the findings suggest that formal and content features of shot scale can elicit Theory of Mind responses by directing attention toward character mental states rather than improving viewers’ general Theory of Mind ability. PMID:29387032
Watching More Closely: Shot Scale Affects Film Viewers’ Theory of Mind Tendency But Not Ability
Directory of Open Access Journals (Sweden)
Brendan Rooney
2018-01-01
Full Text Available Recent research debates the effects of exposure to narrative fiction on recognition of mental states in others and self, referred to as Theory of Mind. The current study explores the mechanisms by which such effects could occur in fictional film. Using manipulated film scenes, we conducted a between subject experiment (N = 136 exploring how film shot-scale affects viewers’ Theory of Mind. Specifically, in our methods we distinguish between the trait Theory of Mind abilities (ToM ability, and the state-like tendency to recognize mental states in others and self (ToM tendency. Results showed that close-up shots (compared to long shots of a character was associated with higher levels of Theory of Mind tendency, when the facial expression was sad but not when it was neutral. And this effect did not transfer to other characters in the film. There was also no observable effect of character depiction on viewers’ general Theory of Mind ability. Together the findings suggest that formal and content features of shot scale can elicit Theory of Mind responses by directing attention toward character mental states rather than improving viewers’ general Theory of Mind ability.
Theory of finite-entanglement scaling at one-dimensional quantum critical points.
Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E
2009-06-26
Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.
Energy Technology Data Exchange (ETDEWEB)
Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)
2017-06-01
Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.
Jia, Mei-yu; Li, Xue-hua; Oh, Choong-hyeon; Park, Hong-chul; Miao, Chun-ping; Han, Xu
2015-10-01
Research on fine scale pattern and characteristics of allometric growth could contribute to better understanding plants' adaptation in moving sandy dunes. The abundance, height and biomass of 3 species Agriophilum aquarrosum, Corispermum candelabrum and Setaria viridis in twenty-eight 1 m x 1 m quadrats of Horqin Sandy Land were identified, mapped and described. The nearest neighbor method and O-ring O(r) function analysis were applied to analyze the spatial patterns. The results showed that the individual spatial pattern was mainly aggregated in 1 m x 1 m quadrat at community level but mainly random at population level. At 0-50 cm individual distance scale, both intraspecific and interspecific relationship were facilitation and aggregated distribution occurred at some scales and varied with increasing plant abundance in 1 m x 1 m quadrat. In 0-40 cm, the aggregated distribution of S. viridis and A. aquarrosum increased obviously; in 10-20 cm, both intraspecific and interspecific aggregation increased; in 10-30 cm, the occurrence possibility of positive correlations between S. viridis and A. aquarrosum, S. viridis and C. candelabrum all increased; in 40-50 cm, the possibility of positive correlations between A. squarrosum and S. viridis, A. squarrosum and C. candelabrum all increased. Research on the three species components indicated that the growth rate of above-ground was faster than that of underground. S. viridis had the highest ratio of under-ground biomass to above-ground biomass but its nutritional organs' biomass ratio was medium. C. candelabrum allocated more biomass to propagative organs and stem, but A. squarrosum allocated more biomass to nutritional organs. Based on the spatial distribution and allometric characteristics, the three common species in moving sand dunes preferred r strategy in their life history.
Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.
Xu, Wen-Sheng; Freed, Karl F
2013-06-21
Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain
Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory
Bars, Itzhak
2010-01-01
In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.
Patterns of cranial ontogeny in lacertid lizards: morphological and allometric disparity.
Urošević, A; Ljubisavljević, K; Ivanović, A
2013-02-01
We explored the ontogenetic dynamics of the morphological and allometric disparity in the cranium shapes of twelve lacertid lizard species. The analysed species (Darevskia praticola, Dinarolacerta mosorensis, Iberolacerta horvathi, Lacerta agilis, L. trilineata, L. viridis, Podarcis erhardii, P. melisellensis, P. muralis, P. sicula, P. taurica and Zootoca vivipara) can be classified into different ecomorphs: terrestrial lizards that inhabit vegetated habitats (habitats with lush or sparse vegetation), saxicolous and shrub-climbing lizards. We observed that there was an overall increase in the morphological disparity (MD) during the ontogeny of the lacertid lizards. The ventral cranium, which is involved in the mechanics of jaw movement and feeding, showed higher levels of MD, an ontogenetic shift in the morphospace planes and more variable allometric patterns than more conserved dorsal crania. With respect to ecology, the allometric trajectories of the shrub-climbing species tended to cluster together, whereas the allometric trajectories of the saxicolous species were highly dispersed. Our results indicate that the ontogenetic patterns of morphological and allometric disparity in the lacertid lizards are modified by ecology and functional constraints and that the identical mechanisms that lead to intraspecific morphological variation also produce morphological divergence at higher taxonomic levels. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Energy Technology Data Exchange (ETDEWEB)
Beresford, N.A. [Lancaster Environment Centre, NERC Centre for Ecology and Hydrology, Lancaster (United Kingdom); Vives i Batlle, J. [Belgian Nuclear Research Centre, Mol (Belgium)
2013-11-15
The application of allometric, or mass-dependent, relationships within radioecology has increased with the evolution of models to predict the exposure of organisms other than man. Allometry presents a method of addressing the lack of empirical data on radionuclide transfer and metabolism for the many radionuclide-species combinations which may need to be considered. However, sufficient data across a range of species with different masses are required to establish allometric relationships and this is not always available. Here, an alternative allometric approach to predict the biological half-life of radionuclides in homoeothermic vertebrates which does not require such data is derived. Biological half-life values are predicted for four radionuclides and compared to available data for a range of species. All predictions were within a factor of five of the observed values when the model was parameterised appropriate to the feeding strategy of each species. This is an encouraging level of agreement given that the allometric models are intended to provide broad approximations rather than exact values. However, reasons why some radionuclides deviate from what would be anticipated from Kleiber's law need to be determined to allow a more complete exploitation of the potential of allometric extrapolation within radioecological models. (orig.)
Friedmann cosmology with a cosmological 'constant' in the scale covariant theory
International Nuclear Information System (INIS)
Beesham, A.
1986-01-01
Homogeneous isotropic cosmologies in the presence of a cosmological 'constant' are studied in the scale covariant theory. A class of solutions is obtained for kappa = 0 for models filled with dust, radiation or stiff matter. For kappa not= 0, solutions are presented for the radiation models. (author)
A Polytomous Item Response Theory Analysis of Social Physique Anxiety Scale
Fletcher, Richard B.; Crocker, Peter
2014-01-01
The present study investigated the social physique anxiety scale's factor structure and item properties using confirmatory factor analysis and item response theory. An additional aim was to identify differences in response patterns between groups (gender). A large sample of high school students aged 11-15 years (N = 1,529) consisting of n =…
Energy Technology Data Exchange (ETDEWEB)
Lima, Marina Ferreira
2012-07-01
This work proposes two models based in compartmental analyses: Animal model and Human model, using images from gamma camera measurements to determinate the kinetic constants of the {sup 177}Lu-DOTATATE to three animal species (rat Wistar, Armenian hamster and Syrian hamster) and to the human in biodistribution studies split in two phases: Phase 1 governed by uptake from the blood and Phase 2 governed by the real excretion. The kinetic constants obtained from the animals' data ere used to build allometric scaling to predict radiopharmaceutical biodistribution in the human employing relations by mass, metabolism, by life span and by physiological parameters. These extrapolation results were compared with the PRRT (Peptide receptor radiotherapy) patients kinetic data calculated using the Human model. The kinetic constants obtained from humans were used in dose assessment to PRRT patients considering MIRD 26 organs and tissues. Dosimetry results were in agreement with available results from literature. For the Phase 1 allometric scaling from kinetic data from the blood to the organs straight responsible for the {sup 177}Lu-DOTATATE metabolism and excretion - liver, kidneys and urinary bladder -show good correlation in the scaling by mass, metabolism and physiological and parameters. For the Phase 2, only the kinetic data from blood to the liver and to the kidneys show good correlation. Based in the anaesthetics inhibitory action over the renal excretion, there is not empirical basis to allow measurement times over 40 minutes in in vivo studies with small animals. Consequently, the Phase 1 results seem enough to make allometric scaling to assessment dose in PRRT. (author)
Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Gusynin, V.P.
1987-01-01
The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed
International Nuclear Information System (INIS)
Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.
1998-01-01
A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)
International Nuclear Information System (INIS)
Edelen, D.G.B.
1986-01-01
Homogeneous scaling of the group space of the Poincare group, P 10 , is shown to induce scalings of all geometric quantities associated with the local action of P 10 . The field equations for both the translation and the Lorentz rotation compensating fields reduce to O(1) equations if the scaling parameter is set equal to the general relativistic gravitational coupling constant 8πGc -4 . Standard expansions of all field variables in power series in the scaling parameter give the following results. The zeroth-order field equations are exactly the classical field equations for matter fields on Minkowski space subject to local action of an internal symmetry group (classical gauge theory). The expansion process is shown to break P 10 -gauge covariance of the theory, and hence solving the zeroth-order field equations imposes an implicit system of P 10 -gauge conditions. Explicit systems of field equations are obtained for the first- and higher-order approximations. The first-order translation field equations are driven by the momentum-energy tensor of the matter and internal compensating fields in the zeroth order (classical gauge theory), while the first-order Lorentz rotation field equations are driven by the spin currents of the same classical gauge theory. Field equations for the first-order gravitational corrections to the matter fields and the gauge fields for the internal symmetry group are obtained. Direct Poincare gauge theory is thus shown to satisfy the first two of the three-part acid test of any unified field theory. Satisfaction of the third part of the test, at least for finite neighborhoods, seems probable
Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.
2016-01-01
Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.
The maximum sizes of large scale structures in alternative theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Sourav [IUCAA, Pune University Campus, Post Bag 4, Ganeshkhind, Pune, 411 007 India (India); Dialektopoulos, Konstantinos F. [Dipartimento di Fisica, Università di Napoli ' Federico II' , Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, Napoli, I-80126 Italy (Italy); Romano, Antonio Enea [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52–21, Medellín (Colombia); Skordis, Constantinos [Department of Physics, University of Cyprus, 1 Panepistimiou Street, Nicosia, 2109 Cyprus (Cyprus); Tomaras, Theodore N., E-mail: sbhatta@iitrpr.ac.in, E-mail: kdialekt@gmail.com, E-mail: aer@phys.ntu.edu.tw, E-mail: skordis@ucy.ac.cy, E-mail: tomaras@physics.uoc.gr [Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, 70013 Heraklion (Greece)
2017-07-01
The maximum size of a cosmic structure is given by the maximum turnaround radius—the scale where the attraction due to its mass is balanced by the repulsion due to dark energy. We derive generic formulae for the estimation of the maximum turnaround radius in any theory of gravity obeying the Einstein equivalence principle, in two situations: on a spherically symmetric spacetime and on a perturbed Friedman-Robertson-Walker spacetime. We show that the two formulae agree. As an application of our formula, we calculate the maximum turnaround radius in the case of the Brans-Dicke theory of gravity. We find that for this theory, such maximum sizes always lie above the ΛCDM value, by a factor 1 + 1/3ω, where ω>> 1 is the Brans-Dicke parameter, implying consistency of the theory with current data.
Eliminating infinities in the λφ4 theory by simple scaling
International Nuclear Information System (INIS)
Aragao, Cristiane M.L. de; Carneiro, C.E.I.
2006-01-01
We present an alternative method to remove infinities in the perturbative φ 4 theory. In our method, the renormalization is performed in two stages. Firstly, the infinities are eliminated by rescaling the Lagrangian. The Green functions obtained from this rescaled Lagrangian are finite to all orders in perturbation. Secondly, we fix the values of parameters of the resulting finite theory at a certain mass scale by using the standard renormalization conditions. This second stage allows us to derive renormalization equations which yields the critical behavior of the theory. We show that our method does not change the critical behavior of the λφ 4 theory in 4-ε dimensions. In particular, we recover the usual critical exponents
Kunicki, Zachary J; Schick, Melissa R; Spillane, Nichea S; Harlow, Lisa L
2018-06-01
Those who binge drink are at increased risk for alcohol-related consequences when compared to non-binge drinkers. Research shows individuals may face barriers to reducing their drinking behavior, but few measures exist to assess these barriers. This study created and validated the Barriers to Alcohol Reduction (BAR) scale. Participants were college students ( n = 230) who endorsed at least one instance of past-month binge drinking (4+ drinks for women or 5+ drinks for men). Using classical test theory, exploratory structural equation modeling found a two-factor structure of personal/psychosocial barriers and perceived program barriers. The sub-factors, and full scale had reasonable internal consistency (i.e., coefficient omega = 0.78 (personal/psychosocial), 0.82 (program barriers), and 0.83 (full measure)). The BAR also showed evidence for convergent validity with the Brief Young Adult Alcohol Consequences Questionnaire ( r = 0.39, p Theory (IRT) analysis showed the two factors separately met the unidimensionality assumption, and provided further evidence for severity of the items on the two factors. Results suggest that the BAR measure appears reliable and valid for use in an undergraduate student population of binge drinkers. Future studies may want to re-examine this measure in a more diverse sample.
Oguntunde, P.G.; fasinmirin, J.T.; Van de Giesen, N.C.
2011-01-01
Data on water relations and growth characteristics of mango trees needed for productive plantation management are currently lacking in West Africa. Relationships between allometric properties and water use in mango trees were examined. In addition, the effects on allometric characteristics and xylem
Renormalization group scale-setting from the action—a road to modified gravity theories
International Nuclear Information System (INIS)
Domazet, Silvije; Štefančić, Hrvoje
2012-01-01
The renormalization group (RG) corrected gravitational action in Einstein–Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein–Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein–Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor. (paper)
Renormalization group scale-setting from the action—a road to modified gravity theories
Domazet, Silvije; Štefančić, Hrvoje
2012-12-01
The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.
Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling
International Nuclear Information System (INIS)
Fischbacher, Thomas; Klose, Thomas; Plefka, Jan
2005-01-01
We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)
Time-sliced perturbation theory for large scale structure I: general formalism
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.
Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics
Li, Tiejun
2016-01-07
The construction of energy landscape for bio-dynamics is attracting more and more attention recent years. In this talk, I will introduce the strategy to construct the landscape from the connection to rare events, which relies on the large deviation theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also discussed. We demonstrate different diffusive limits arise when considering different regimes for genetic translation and switching processes.
Higgs mass scales and matter-antimatter oscillations in grand unified theories
International Nuclear Information System (INIS)
Senjanovic, G.
1982-01-01
A general discussion of mass scales in grand unified theories is presented, with special emphasis on Higgs scalars which mediate neutron-antineutron (n-anti n) and hydrogen-antihydrogen (H-anti H) oscillations. It is shown that the analogue of survival hypothesis for fermions naturally makes such particles superheavy, thus leading to unobservable lifetimes. If this hypothesis is relaxed, an interesting possibility of potentially observable n-anti n and H-anti H transitions, mutually related arises in the context of SU(5) theory with spontaneously broken B-L symmetry
Conservation laws and radiation in the scale covariant theory of gravitation
International Nuclear Information System (INIS)
Beesham, A.
1988-01-01
The conservation laws for mass, energy, and momentum are derived in the scale covariant theory of gravitation. The entropy problem which exists in the standard Friedmann-Lemaitre-Robertson-Walker models can be solved in the present context. Since the weak and strong energy conditions may be violated, a big bang singularity may be avoided, in contrast to general relativity. Since beta is shown to be constant during the radiation-dominated era, the difficulties in the theory associated with nucleosynthesis are avoided. 10 references
Directory of Open Access Journals (Sweden)
N. A. Brunsell
2011-08-01
Full Text Available A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1 quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2 to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245 in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1 spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2 different sensors give different scalings, and (3 the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere
Physics on all scales. Scalar-tensor theories of quantum gravity in particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Henz, Tobias
2016-05-10
In this thesis, we investigate dilaton quantum gravity using a functional renormalization group approach. We derive and discuss flow equations both in the background field approximation and using a vertex expansion as well as solve the fixed point equations globally to show how realistic gravity, connecting ultraviolet and infrared physics, can be realized on a pure fixed point trajectory by virtue of spontaneous breaking of scale invariance. The emerging physical system features a dynamically generated moving Planck scale resembling the Newton coupling as well as slow roll inflation with an exponentially decreasing effective cosmological constant that vanishes completely in the infrared. The moving Planck scale might make quantum gravity experimentally accessible at a different energy scale than previously believed. We therefore not only provide further evidence for the existence of a consistent quantum theory of gravity based on general relativity, but also offer potential solutions towards the hierarchy and cosmological constant problems, thereby opening up exciting opportunities for further research.
A computational comparison of theory and practice of scale intonation in Byzantine chant
DEFF Research Database (Denmark)
Panteli, Maria; Purwins, Hendrik
2013-01-01
Byzantine Chant performance practice is quantitatively compared to the Chrysanthine theory. The intonation of scale degrees is quantified, based on pitch class profiles. An analysis procedure is introduced that consists of the following steps: 1) Pitch class histograms are calculated via non-parametric...... kernel smoothing. 2) Histogram peaks are detected. 3) Phrase ending analysis aids the finding of the tonic to align histogram peaks. 4) The theoretical scale degrees are mapped to the practical ones. 5) A schema of statistical tests detects significant deviations of theoretical scale tuning from...... the estimated ones in performance practice. The analysis of 94 echoi shows a tendency of the singer to level theoretic particularities of the echos that stand out of the general norm in the octoechos: theoretically extremely large scale steps are diminished in performance....
Bosco, Francesca M; Gabbatore, Ilaria; Tirassa, Maurizio; Testa, Silvia
2016-01-01
This research aimed at the evaluation of the psychometric properties of the Theory of Mind Assessment Scale (Th.o.m.a.s.). Th.o.m.a.s. is a semi-structured interview meant to evaluate a person's Theory of Mind (ToM). It is composed of several questions organized in four scales, each focusing on one of the areas of knowledge in which such faculty may manifest itself: Scale A (I-Me) investigates first-order first-person ToM; Scale B (Other-Self) investigates third-person ToM from an allocentric perspective; Scale C (I-Other) again investigates third-person ToM, but from an egocentric perspective; and Scale D (Other-Me) investigates second-order ToM. The psychometric proprieties of Th.o.m.a.s. were evaluated in a sample of 156 healthy persons: 80 preadolescent and adolescent (aged 11-17 years, 42 females) and 76 adults (aged from 20 to 67 years, 35 females). Th.o.m.a.s. scores show good inter-rater agreement and internal consistency; the scores increase with age. Evidence of criterion validity was found as Scale B scores were correlated with those of an independent instrument for the evaluation of ToM, the Strange Stories task. Confirmatory factor analysis (CFA) showed good fit of the four-factors theoretical model to the data, although the four factors were highly correlated. For each of the four scales, Rasch analyses showed that, with few exceptions, items fitted the Partial credit model and their functioning was invariant for gender and age. The results of this study, along with those of previous researches with clinical samples, show that Th.o.m.a.s. is a promising instrument to assess ToM in different populations.
A simplified density matrix minimization for linear scaling self-consistent field theory
International Nuclear Information System (INIS)
Challacombe, M.
1999-01-01
A simplified version of the Li, Nunes and Vanderbilt [Phys. Rev. B 47, 10891 (1993)] and Daw [Phys. Rev. B 47, 10895 (1993)] density matrix minimization is introduced that requires four fewer matrix multiplies per minimization step relative to previous formulations. The simplified method also exhibits superior convergence properties, such that the bulk of the work may be shifted to the quadratically convergent McWeeny purification, which brings the density matrix to idempotency. Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and Tuma [SIAM J. Sci. Comp. 17, 1135 (1996)] is introduced to linear scaling electronic structure theory, and found to be essential in transformations between orthogonal and nonorthogonal representations. These methods have been developed with an atom-blocked sparse matrix algebra that achieves sustained megafloating point operations per second rates as high as 50% of theoretical, and implemented in the MondoSCF suite of linear scaling SCF programs. For the first time, linear scaling Hartree - Fock theory is demonstrated with three-dimensional systems, including water clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with minimization in an orthonormal representation. An early onset of linear scaling is found for both minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with system size is investigated for various levels of approximation. copyright 1999 American Institute of Physics
Scale dependence of the average potential around the maximum in Φ4 theories
International Nuclear Information System (INIS)
Tetradis, N.; Wetterich, C.
1992-04-01
The average potential describes the physics at a length scale k - 1 by averaging out the degrees of freedom with characteristic moments larger than k. The dependence on k can be described by differential evolution equations. We solve these equations for the nonconvex part of the potential around the origin in φ 4 theories, in the phase with spontaneous symmetry breaking. The average potential is real and approaches the convex effective potential in the limit k → 0. Our calculation is relevant for processes for which the shape of the potential at a given scale is important, such as tunneling phenomena or inflation. (orig.)
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
ONETEP: linear-scaling density-functional theory with plane-waves
International Nuclear Information System (INIS)
Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C
2006-01-01
This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep
Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Montvay, I.; Gutbrod, F.
1983-11-01
The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)
Features and New Physical Scales in Primordial Observables: Theory and Observation
Chluba, Jens; Patil, Subodh P.
2015-01-01
All cosmological observations to date are consistent with adiabatic, Gaussian and nearly scale invariant initial conditions. These findings provide strong evidence for a particular symmetry breaking pattern in the very early universe (with a close to vanishing order parameter, $\\epsilon$), widely accepted as conforming to the predictions of the simplest realizations of the inflationary paradigm. However, given that our observations are only privy to perturbations, in inferring something about the background that gave rise to them, it should be clear that many different underlying constructions project onto the same set of cosmological observables. Features in the primordial correlation functions, if present, would offer a unique and discriminating window onto the parent theory in which the mechanism that generated the initial conditions is embedded. In certain contexts, simple linear response theory allows us to infer new characteristic scales from the presence of features that can break the aforementioned de...
DEFF Research Database (Denmark)
Hirst, Andrew G.; Glazier, Douglas S.; Atkinson, David
2014-01-01
Metabolism fuels all of life’s activities, from biochemical reactions to ecological interactions. According to two intensely debated theories, body size affects metabolism via geometrical influences on the transport of resources and wastes. However, these theories differ crucially in whether...... the size dependence of metabolism is derived from material transport across external surfaces, or through internal resource-transport networks. We show that when body shape changes during growth, these models make opposing predictions. These models are tested using pelagic invertebrates, because...... these animals exhibit highly variable intraspecific scaling relationships for metabolic rate and body shape. Metabolic scaling slopes of diverse integument-breathing species were significantly positively correlated with degree of body flattening or elongation during ontogeny, as expected from surface area...
[Scale Relativity Theory in living beings morphogenesis: fratal, determinism and chance].
Chaline, J
2012-10-01
The Scale Relativity Theory has many biological applications from linear to non-linear and, from classical mechanics to quantum mechanics. Self-similar laws have been used as model for the description of a huge number of biological systems. Theses laws may explain the origin of basal life structures. Log-periodic behaviors of acceleration or deceleration can be applied to branching macroevolution, to the time sequences of major evolutionary leaps. The existence of such a law does not mean that the role of chance in evolution is reduced, but instead that randomness and contingency may occur within a framework which may itself be structured in a partly statistical way. The scale relativity theory can open new perspectives in evolution. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Analysis of critical neutron- scattering data from iron and dynamical scaling theory
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage
1970-01-01
Experimental three- axis spectrometer data of critical neutron- scattering data from Fe are reanalyzed and compared with the recent theoretical prediction by P. Resibois and C. Piette. The reason why the spin- diffusion parameter did not obey the prediction of dynamical scaling theory is indicated....... Double- axis spectrometer data have previously been interpreted in terms of a non- Lorentzian susceptibility. It is shown that with proper corrections for the inelasticity of the scattering the data are consistent with a Lorentzian form of susceptibility....
Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.
Nottale, Laurent; Auffray, Charles
2008-05-01
In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential
Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure
Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo
2018-04-01
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
Allometric relationship between changes of visceral fat and total fat mass
DEFF Research Database (Denmark)
Hallgreen, C. E.; Hall, K. D.
2008-01-01
Objective: To elucidate the mathematical relationship between changes of visceral adipose tissue (VAT) and total body fat mass (FM) during weight loss. Design: We hypothesized that changes of VAT mass are allometrically related to changes of FM, regardless of the type of weight-loss intervention...
Lubczynski, M.W.; Chavarro-Rincon, D.C.; Rossiter, David
2017-01-01
Conductive sapwood (xylem) area (Ax) of all trees in a given forested area is the main factor contributing to spatial tree transpiration. One hundred ninety-five trees of 9 species in the Kalahari region of Botswana were felled, stained, cut into discs, and measured to develop allometric equations
Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands
Lauro Rodrigues Nogueira; Vera Lex Engel; John A. Parrotta; Antonio Carlos Galvão de Melo; Danilo Scorzoni Ré
2014-01-01
Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of SÃ£o Paulo State â Brazil to develop allometric equations to estimate tree biomass of...
An Analysis of the Connectedness to Nature Scale Based on Item Response Theory.
Pasca, Laura; Aragonés, Juan I; Coello, María T
2017-01-01
The Connectedness to Nature Scale (CNS) is used as a measure of the subjective cognitive connection between individuals and nature. However, to date, it has not been analyzed at the item level to confirm its quality. In the present study, we conduct such an analysis based on Item Response Theory. We employed data from previous studies using the Spanish-language version of the CNS, analyzing a sample of 1008 participants. The results show that seven items presented appropriate indices of discrimination and difficulty, in addition to a good fit. The remaining six have inadequate discrimination indices and do not present a good fit. A second study with 321 participants shows that the seven-item scale has adequate levels of reliability and validity. Therefore, it would be appropriate to use a reduced version of the scale after eliminating the items that display inappropriate behavior, since they may interfere with research results on connectedness to nature.
A New Functional Health Literacy Scale for Japanese Young Adults Based on Item Response Theory.
Tsubakita, Takashi; Kawazoe, Nobuo; Kasano, Eri
2017-03-01
Health literacy predicts health outcomes. Despite concerns surrounding the health of Japanese young adults, to date there has been no objective assessment of health literacy in this population. This study aimed to develop a Functional Health Literacy Scale for Young Adults (funHLS-YA) based on item response theory. Each item in the scale requires participants to choose the most relevant term from 3 choices in relation to a target item, thus assessing objective rather than perceived health literacy. The 20-item scale was administered to 1816 university students and 1751 responded. Cronbach's α coefficient was .73. Difficulty and discrimination parameters of each item were estimated, resulting in the exclusion of 1 item. Some items showed different difficulty parameters for male and female participants, reflecting that some aspects of health literacy may differ by gender. The current 19-item version of funHLS-YA can reliably assess the objective health literacy of Japanese young adults.
Directory of Open Access Journals (Sweden)
Jose de Jesus Navar Chaidez
2016-05-01
Full Text Available Aboveground tree biomass (bole, branches and foliage, M, plays a key role in the conventional and sustainable management of forest communities. The standard approach to assess tree or plot M is harvesting trees, developing and fitting allometric equations to trees or forest inventory plot data. In the absence of local tree allometry, it is usually recommended to fit off site allometric equations to evaluate tree or plot M. This research aims: (a to develop an updated on site allometric equation (b to fit available off site allometric equations to destructively harvested trees and (c to fit available allometric equations to plot M of Mexico’s Sinaloan tropical dry forests to understand sources of inherent tree and plot M variability. Results showed that: (a the improved on site allometric equation increases precision in contrast to the conventional biomass equation previously reported as well as to off site tree M equations, (b off site allometry projects tree and plot M deviates by close to one order of magnitude. Two tested and recommended approaches to increase tree and plot M precision when fitting off site equations are: (i to use all available tree allometric functions to come up with a mean equation or (ii to calibrate off site equations by fitting new, local parameters that can be calculated using statistical programs.These options would eventually increase tree and plot M precision in regional evaluations.
Wave-particle duality through an extended model of the scale relativity theory
International Nuclear Information System (INIS)
Ioannou, P D; Nica, P; Agop, M; Paun, V; Vizureanu, P
2008-01-01
Considering that the chaotic effect of associated wave packet on the particle itself results in movements on the fractal (continuous and non-differentiable) curves of fractal dimension D F , wave-particle duality through an extension of the scale relativity theory is given. It results through an equation of motion for the complex speed field, that in a fractal fluid, the convection, dissipation and dispersion are reciprocally compensating at any scale (differentiable or non-differentiable). From here, for an irrotational movement, a generalized Schroedinger equation is obtained. The absence of dispersion implies a generalized Navier-Stokes type equation, whereas, for the irrotational movement and the fractal dimension, D F = 2, the usual Schroedinger equation results. The absence of dissipation implies a generalized Korteweg-de Vries type equation. In such conjecture, at the differentiable scale, the duality is achieved through the flowing regimes of the fractal fluid, i.e. the wave character by means of the non-quasi-autonomous flowing regime and the particle character by means of the quasi-autonomous flowing regime. These flowing regimes are separated by '0.7 structure'. At the non-differentiable scale, a fractal potential acts as an energy accumulator and controls through the coherence the duality. The correspondence between the differentiable and non-differentiable scales implies a Cantor space-time. Moreover, the wave-particle duality implies at any scale a fractal.
Theory and evidence for using the economy-of-scale law in power plant economics
International Nuclear Information System (INIS)
Phung, D.L.
1987-05-01
This report compiles theory and evidence for the use of the economy-of-scale law in energy economics, particularly in the estimation of capital costs for coal-fired and nuclear power plants. The economy-of-scale law is widely used in its simplest form: cost is directly proportional to capacity raised to an exponent. An additive constant is an important component that is not generally taken into account. Also, the economy of scale is perforce valid only over a limited size range. The majority of engineering studies have estimated an economy of scale exponent of 0.7 to 0.9 for coal-fired plants and an exponent of 0.4 to 0.6 for nuclear plants in the capacity ranges of 400 to 1000 MWe. However, the majority of econometric analyses found little or no economy of scale for coal-fired plants and only a slight economy of scale for nuclear plants. This disparity is explained by the fact that economists have included regulatory and time-related costs in addition to the direct and indirect costs used by the engineers. Regulatory and time-related costs have become an increasingly larger portion of total costs during the last decade. In addition, these costs appeared to have either a very small economy of scale or to be increasing as the size of the power plant increased. We conclude that gains in economy of scale can only be made by reducing regulatory and time-related costs through design standardization and regulatory stability, in combination with more favorable economic conditions. 59 refs
International Nuclear Information System (INIS)
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.; McDonald, Kristian L.
2008-01-01
If scale invariance is a classical symmetry then both the Planck scale and the weak scale should emerge as quantum effects. We show that this can be realized in simple scale invariant theories with a hidden sector. The weak/Planck scale hierarchy emerges in the (technically natural) limit in which the hidden sector decouples from the ordinary sector. In this limit, finite corrections to the weak scale are consequently small, while quadratic divergences are absent by virtue of classical scale invariance, so there is no hierarchy problem
The validity and scalability of the Theory of Mind Scale with toddlers and preschoolers.
Hiller, Rachel M; Weber, Nathan; Young, Robyn L
2014-12-01
Despite the importance of theory of mind (ToM) for typical development, there remain 2 key issues affecting our ability to draw robust conclusions. One is the continued focus on false belief as the sole measure of ToM. The second is the lack of empirically validated measures of ToM as a broad construct. Our key aim was to examine the validity and reliability of the 5-item ToM scale (Peterson, Wellman, & Liu, 2005). In particular, we extended on previous research of this scale by assessing its scalability and validity for use with children from 2 years of age. Sixty-eight typically developing children (aged 24 to 61 months) were assessed on the scale's 5 tasks, along with a sixth Sally-Anne false-belief task. Our data replicated the scalability of the 5 tasks for a Rasch-but not Guttman-scale. Guttman analysis showed that a 4-item scale may be more suitable for this age range. Further, the tasks showed good internal consistency and validity for use with children as young as 2 years of age. Overall, the measure provides a valid and reliable tool for the assessment of ToM, and in particular, the longitudinal assessment of this ability as a construct. (c) 2014 APA, all rights reserved.
Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism
Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-01-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...
De Sitter and scaling solutions in a higher-order modified teleparallel theory
Energy Technology Data Exchange (ETDEWEB)
Paliathanasis, Andronikos, E-mail: anpaliat@phys.uoa.gr [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile)
2017-08-01
The existence and the stability conditions for some exact relativistic solutions of special interest are studied in a higher-order modified teleparallel gravitational theory. The theory with the use of a Lagrange multiplier is equivalent with that of General Relativity with a minimally coupled noncanonical field. The conditions for the existence of de Sitter solutions and ideal gas solutions in the case of vacuum are studied as also the stability criteria. Furthermore, in the presence of matter the behaviour of scaling solutions is given. Finally, we discuss the degrees of freedom of the field equations and we reduce the field equations in an algebraic equation, where in order to demonstrate our result we show how this noncanonical scalar field can reproduce the Hubble function of Λ-cosmology.
Developing Scale for Assimilate the Integration between Learning Theories and E-learning.
Directory of Open Access Journals (Sweden)
George Maher Iskander
2014-03-01
Full Text Available As e-learning tend to get more and more significant for all kind of universities, researchers and consultants are becoming aware of the fact that a high technology approach and Blackboard do not guarantee successful teaching and learning. Thus, a move to pedagogy-based theories can be observed within the field of e-learning. This study describes the procedure of the development of an empirically-based psychometrically-sound instrument to measure instructional model for e-learning system at Middle East universities. In order to accelerate the acceptance of e-learning and implementation of institution-wide adoption of e-learning, it is important to understand students' perceptions with instructional model for e- learning. The 19-item scale developed shows a high probability of differentiating between positive and negative perceptions and the methods which can be used for embedding the traditional learning theories into e-learning.
Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.
2017-10-01
The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.
Romeny, Bart M Haar
2008-01-01
Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective
Absolute calibration of the mass scale in the inverse problem of the physical theory of fireballs
Kalenichenko, V. V.
1992-08-01
A method of the absolute calibration of the mass scale is proposed for solving the inverse problem of the physical theory of fireballs. The method is based on data on the masses of fallen meteorites whose fireballs have been photographed in flight. The method can be applied to fireballs whose bodies have not experienced significant fragmentation during their flight in the atmosphere and have kept their shape relatively well. Data on the Lost City and Innisfree meteorites are used to calculate the calibration coefficients.
Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.
Kalenichenko, V. V.
A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.
Cosmological models with a hybrid scale factor in an extended gravity theory
Mishra, B.; Tripathy, S. K.; Tarai, Sankarsan
2018-03-01
A general formalism to investigate Bianchi type V Ih universes is developed in an extended theory of gravity. A minimally coupled geometry and matter field is considered with a rescaled function of f(R,T) substituted in place of the Ricci scalar R in the geometrical action. Dynamical aspects of the models are discussed by using a hybrid scale factor (HSF) that behaves as power law in an initial epoch and as an exponential form at late epoch. The power law behavior and the exponential behavior appear as two extreme cases of the present model.
The O(epsilon2) scaling law for dsigma/dt in the Reggeon field theory
International Nuclear Information System (INIS)
Dash, J.W.; Grandou, Thierry.
1979-04-01
The two loop contributions were calculated within the epsilon-expansion to the Reggeon Field Theory scaling law for dsigma/dt, derived using the renormalization group and a general renormalization point for the Pomeron propagator. This generalizes the O(epsilon) work of Abarbanel, Bartels, Bronzan, and Sidhu. The invariance of the results under certain coupling constant rescalings is demonstrated. Some qualitative comments were made regarding phenomenological applications. Our amplitude in a certain limit approximates the form of the low energy diffractive amplitude advocated by Kane
International Nuclear Information System (INIS)
Neimark, Alexander V; Ravikovitch, Peter I; Vishnyakov, Aleksey
2003-01-01
With the example of the capillary condensation of Lennard-Jones fluid in nanopores ranging from 1 to 10 nm, we show that the non-local density functional theory (NLDFT) with properly chosen parameters of intermolecular interactions bridges the scale gap from molecular simulations to macroscopic thermodynamics. On the one hand, NLDFT correctly approximates the results of Monte Carlo simulations (shift of vapour-liquid equilibrium, spinodals, density profiles, adsorption isotherms) for pores wider than about 2 nm. On the other hand, NLDFT smoothly merges (above 7-10 nm) with the Derjaguin-Broekhoff-de Boer equations which represent augmented Laplace-Kelvin equations of capillary condensation and desorption
Effective field theory analysis on μ problem in low-scale gauge mediation
International Nuclear Information System (INIS)
Zheng Sibo
2012-01-01
Supersymmetric models based on the scenario of gauge mediation often suffer from the well-known μ problem. In this paper, we reconsider this problem in low-scale gauge mediation in terms of effective field theory analysis. In this paradigm, all high energy input soft mass can be expressed via loop expansions. If the corrections coming from messenger thresholds are small, as we assume in this letter, then all RG evaluations can be taken as linearly approximation for low-scale supersymmetric breaking. Due to these observations, the parameter space can be systematically classified and studied after constraints coming from electro-weak symmetry breaking are imposed. We find that some old proposals in the literature are reproduced, and two new classes are uncovered. We refer to a microscopic model, where the specific relations among coefficients in one of the new classes are well motivated. Also, we discuss some primary phenomenologies.
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block-spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two-loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
Cosmological large-scale structures beyond linear theory in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)
2011-06-01
We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.
Item response theory analysis of the Lichtenberg Financial Decision Screening Scale.
Teresi, Jeanne A; Ocepek-Welikson, Katja; Lichtenberg, Peter A
2017-01-01
The focus of these analyses was to examine the psychometric properties of the Lichtenberg Financial Decision Screening Scale (LFDSS). The purpose of the screen was to evaluate the decisional abilities and vulnerability to exploitation of older adults. Adults aged 60 and over were interviewed by social, legal, financial, or health services professionals who underwent in-person training on the administration and scoring of the scale. Professionals provided a rating of the decision-making abilities of the older adult. The analytic sample included 213 individuals with an average age of 76.9 (SD = 10.1). The majority (57%) were female. Data were analyzed using item response theory (IRT) methodology. The results supported the unidimensionality of the item set. Several IRT models were tested. Ten ordinal and binary items evidenced a slightly higher reliability estimate (0.85) than other versions and better coverage in terms of the range of reliable measurement across the continuum of financial incapacity.
Forests as Patrimonies? From Theory to Tangible Processes at Various Scales
Directory of Open Access Journals (Sweden)
Genevieve Michon
2012-09-01
Full Text Available Among theoretical fields addressing the conceptualization of interrelationships between nature and society, patrimonial approaches remain relatively unexplored. Stressing the multiplication of local dynamics where elements of nature are redefined as "patrimonies" (ranging from local patrimonies to world heritage by various social groups, this conceptual field tries to qualify these dynamics and their determiners to understand how they allow us to better address contemporary environmental challenges. Through a multidisciplinary approach in social sciences, centered on rural forests, we analyze the multiplication of patrimonial processes in forest development at various scales. First, we elaborate on the concept of patrimony and on patrimonial processes and present the current construction and dynamics of forest patrimonies. A crucial question concerns the links that form between the many spatial-temporal levels where these processes develop. Moreover, these patrimonial processes can be quite divergent, not only across scales from local to global, but also between "endogenous" (or bottom-up and "exogenous" (or top-down processes. We present two detailed examples in Morocco and Sumatra, where patrimonial constructions are developing simultaneously at various scales and through various actors who treat the forest in very different ways. Drawing from these examples, we discuss how and why the simultaneous development of different, often overlapping, patrimonial constructions along these scales allows collaboration or, conversely, can lead their holders into conflict. Lastly, we discuss the contribution of patrimonial concepts to resilience thinking and social-ecological systems theory.
Cokley, K O
2000-04-01
This study examined the construct validity of the Academic Motivation Scale. Specifically, subscale correlations were examined to assess whether support for a continuum of self-determination would be provided. The three types of Intrinsic Motivation were significantly and positively correlated with each other .67, .62, and .58, while the three types of Extrinsic Motivation were significantly and positively intercorrelated .50, .49, and .45. The former subscales, however, correlated higher with Introjected Regulation than Identified Regulation, suggesting that Introjected Regulation may be indicative of more self-determined behavior than has previously been believed. Also, the Intrinsic Motivation To Accomplish subscale had a stronger relationship with two of the Extrinsic Motivation subscales, Identified Regulation and Introjected Regulation, than did the Extrinsic Motivation subscales with each other. This suggests that the differences between Extrinsic and Intrinsic Motivation are not as obvious as has been believed. Also, contrary to self-determination theory, Amotivation had a stronger negative correlation with Identified Regulation (r = -.31) than with any of the Intrinsic Motivation subscales (rs = -.27, -.19, and -.11).
International Nuclear Information System (INIS)
Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin
2009-01-01
We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.
International Nuclear Information System (INIS)
Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M
2016-01-01
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1976-04-01
Multiple spatial scaling is incorporated in a modified form of the Bogoliubov plasma cluster expansion; then this proposed reformulation of the plasma weak-coupling approximation is used to derive, from the BBGKY Hierarchy, a decoupled set of equations for the one-and two-particle distribution functions in the limit as the plasma parameter goes to zero. Because the reformulated cluster expansion permits retention of essential two-particle collisional information in the limiting equations, while simultaneously retaining the well-established Debye-scale relative ordering of the correlation functions, decoupling of the Hierarchy is accomplished without introduction of the divergence problems encountered in the Bogoliubov theory, as is indicated by an exact solution of the limiting equations for the equilibrium case. To establish additional links with existing plasma equilibrium theories, the two-particle equilibrium correlation function is used to calculate the interaction energy and the equation of state. The limiting equation for the equilibrium three-particle correlation function is then developed, and a formal solution is obtained.
Large-scale transportation network congestion evolution prediction using deep learning theory.
Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai
2015-01-01
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
Large-scale transportation network congestion evolution prediction using deep learning theory.
Directory of Open Access Journals (Sweden)
Xiaolei Ma
Full Text Available Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS and Internet of Things (IoT, transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
Planck-scale induced left–right gauge theory at LHC and experimental tests
Directory of Open Access Journals (Sweden)
M.K. Parida
2016-05-01
Full Text Available Recent measurements at LHC have inspired searches for TeV scale left–right gauge theory originating from grand unified theories. We show that inclusion of Planck-scale induced effects due to dim.5 operator not only does away with all the additional intermediate symmetries, but also it predicts the minimal set of light Higgs scalars tailored after neutrino masses and dilepton, or trilepton signals. The heavy-light neutrino mixings are predicted from charged fermion mass fits in SO(10 and LFV constraints which lead to new predictions for dilepton or trilepton production signals. Including fine-structure constant matching and two-loop, and threshold effects predict MWR=g2R104.3±1.5±0.2 GeV and proton lifetime τp=1036.15±5.8±0.2 yrs with WR gauge boson coupling g2R=0.56–0.57. Predictions on lepton flavour and lepton number violations are accessible to ongoing experiments. Current CMS data on di-electron excess at s=8 TeV are found to be consistent with WR gauge boson mass MWR≥1.9–2.2 TeV which also agrees with the values obtained from dijet resonance production data. We also discuss plausible explanations for diboson production excesses observed at LHC and make predictions expected at s=14 TeV.
DEFF Research Database (Denmark)
McNicol, Iain M.; Berry, Nicholas J.; Bruun, Thilde Bech
2015-01-01
fields and patches of mature forest. Quantifying tree biomass in these landscapes is limited by the availability of reliable allometric models, hindering accurate carbon stock estimation and thus quantification of GHG emission associated with land use transitions. We therefore developed new allometric...... for each tree type. Thus, we suggest that field efforts should be directed towards checking resprouting status over the estimation of tree height. We also found that models fit using non-linear regression provided equally good fits to the data compared to the traditional approach of log......-transforming the data. Our models were subsequently applied to 12 nearby plots spanning a chronosequence of fallows to examine the impact of re-sprouting allometry on biomass estimation. Root biomass stocks were on average 58% higher after accounting for the allometry of resprouting trees, resulting in an average 9...
A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors.
Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P
2015-05-01
The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the 'paradox of enrichment' which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Directory of Open Access Journals (Sweden)
S. Sandeep
2015-09-01
Full Text Available The use of suitable tree biomass allometric equations is crucial for making precise and non- destructive estimation of carbon storage and biomass energy values. The aim of this research was to evaluate the accuracy of the most commonly used pantropical allometric models and site-specific models to estimate the above-ground biomass (AGB in different aged teak plantations of Southern Western Ghats of India. For this purpose, the AGB data measured for 70 trees with diameter >10 cm from different aged teak plantations in Kerala part of Southern Western Ghats following destructive procedure was used. The results show that site specific models based on a single predictor variable diameter at breast height (dbh, though simple, may grossly increase the uncertainty across sites. Hence, a generic model encompassing dbh, height and wood specific gravity with sufficient calibration taking into account different forest types is advised for the tropical forest systems. The study also suggests that the commonly used pantropical models should be evaluated for different ecosystems prior to their application at national or regional scales.
Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory
International Nuclear Information System (INIS)
Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.
1996-01-01
We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a open-quote no goclose quotes for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a open-quotes continuum limitclose quotes in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined
Scaling adult doses of antifungal and antibacterial agents to children.
Dawson, Thomas H
2012-06-01
My general pharmacokinetic scaling theory is discussed for the important matter of determining pediatric dosing for existing and new therapeutic drugs when optimal, or near-optimal, dosing for adults is known. The basis for the scaling is the requirement of a time-scaled likeness of the free-drug concentration time histories of children and adults. Broad categories of single and periodic dosing are considered. The former involves the scaling of dosage, and the latter involves both the dosage and schedule. The validity of the scaling relations is demonstrated by using measurements from previously reported clinical trials with adults and children (with ages generally 1 year or older) for the relatively new antifungal agent caspofungin and for the relatively new antibacterial agent linezolid. Standard pharmacodynamic effectiveness criteria are shown to be satisfied for the scaled dosage and schedule for children to the same extent that they are for the referenced adult. Consideration of scaling from adults to children is discussed for the case of new agents where no pediatric data are available and needed parameters are determined from in vitro measurements and preclinical animal data. A connection is also made between the allometric representation of clearance data and the dosing formulas. Limitations of the scaling results for infants because of growth and maturational matters are discussed. The general conclusion from this work is that the scaling theory does indeed have application to pediatric dosing for children, for both confirmation and refinement of present practice and guidance in pediatric treatment with new therapeutic agents.
Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R
2016-01-01
Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.
International Nuclear Information System (INIS)
Hedouin, L.; Metian, M.; Teyssie, J.-L.; Fowler, S.W.; Fichez, R.; Warnau, M.
2006-01-01
Although metal contamination is a problem of major concern in the lagoon of New Caledonia due to intense mining activities conducted on land, very little is known on the metal ecotoxicology of local marine organisms. The clam Gafrarium tumidum was investigated to assess its usefulness as a bioindicator species of metal contamination in this lagoon. More particularly, allometric relationships between metal accumulation and clam size were determined for five common metals in New Caledonian lagoon waters (Cd, Cr, Co, Zn and Ag) using a highly sensitive radiotracer technique. Experimental results showed that allometric relationships were dependent on the element and on the body compartment considered. As a rule, allometric relationships of metal concentration factor were more pronounced in shell than in soft parts. Significant relationships with clam size for Cd, Cr, Co and Zn followed inverse power functions. In contrast, the degree of Ag bioaccumulation was positively correlated with size. In view of the literature on Ag in bivalves, the latter observation suggests the occurrence of a specific detoxification mechanism (sequestration) that would be more efficient in old individuals. Overall, the experimental results indicate that the use of G. tumidum as a bioindicator in monitoring programmes requires selecting individuals of a specific size range in order to obtain comparable information about ambient metal levels. Since the size effect is greatest among smaller individuals, it is recommended to select clams with a shell width greater than 35 mm
International Nuclear Information System (INIS)
Beresford, N.A.; Wood, M.D.
2014-01-01
A major source of uncertainty in the estimation of radiation dose to wildlife is the prediction of internal radionuclide activity concentrations. Allometric (mass-dependent) relationships describing biological half-life (T 1/2b ) of radionuclides in organisms can be used to predict organism activity concentrations. The establishment of allometric expressions requires experimental data which are often lacking. An approach to predict the T 1/2b in homeothermic vertebrates has recently been proposed. In this paper we have adapted this to be applicable to reptiles. For Cs, Ra and Sr, over a mass range of 0.02–1.5 kg, resultant predictions were generally within a factor of 6 of reported values demonstrating that the approach can be used when measured T 1/2b data are lacking. However, the effect of mass on reptilian radionuclide T 1/2b is minimal. If sufficient measured data are available for a given radionuclide then it is likely that these would give a reasonable estimate of T 1/2b in any reptile species. - Highlights: • An allometric approach to predict radionuclide T 1/2b values in reptiles is derived. • Predictions are generally within a factor of six of measured values. • Radionuclide biological half-life is in-effect mass independent
Energy Technology Data Exchange (ETDEWEB)
Hedouin, L. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Laboratoire de Biologie et d' Environnement Marins, FRE 2727, La Rochelle University, 22 Av. Michel Crepeau, F-17000 La Rochelle (France); Institut de Recherche pour le Developpement, Centre d' Oceanologie de Marseille, Station Marine d' Endoume, Rue de la Batterie des Lions, F-13007 Marseille (France); Metian, M. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Teyssie, J.-L. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Fowler, S.W. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Fichez, R. [Institut de Recherche pour le Developpement, Centre d' Oceanologie de Marseille, Station Marine d' Endoume, Rue de la Batterie des Lions, F-13007 Marseille (France); Warnau, M. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco)]. E-mail: m.warnau@iaea.org
2006-07-31
Although metal contamination is a problem of major concern in the lagoon of New Caledonia due to intense mining activities conducted on land, very little is known on the metal ecotoxicology of local marine organisms. The clam Gafrarium tumidum was investigated to assess its usefulness as a bioindicator species of metal contamination in this lagoon. More particularly, allometric relationships between metal accumulation and clam size were determined for five common metals in New Caledonian lagoon waters (Cd, Cr, Co, Zn and Ag) using a highly sensitive radiotracer technique. Experimental results showed that allometric relationships were dependent on the element and on the body compartment considered. As a rule, allometric relationships of metal concentration factor were more pronounced in shell than in soft parts. Significant relationships with clam size for Cd, Cr, Co and Zn followed inverse power functions. In contrast, the degree of Ag bioaccumulation was positively correlated with size. In view of the literature on Ag in bivalves, the latter observation suggests the occurrence of a specific detoxification mechanism (sequestration) that would be more efficient in old individuals. Overall, the experimental results indicate that the use of G. tumidum as a bioindicator in monitoring programmes requires selecting individuals of a specific size range in order to obtain comparable information about ambient metal levels. Since the size effect is greatest among smaller individuals, it is recommended to select clams with a shell width greater than 35 mm.
Directory of Open Access Journals (Sweden)
Vu Thanh Nam
Full Text Available Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB and root biomass (RB based on 300 (of 45 species and 40 (of 25 species sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH and tree height (H, wood density (WD was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.
Polonium-210 and lead-210 in marine organisms: allometric relationships and their significance
International Nuclear Information System (INIS)
Cherry, R.D.; Heyraud, M.
1991-01-01
Allometric relationships which indicate that Po-210 concentrations in marine organisms decrease with increasing organism mass have been reported previously in a few taxa. We report here the results of a study of nearly 400 data covering nine taxa of marine organisms. The data for each taxon are fitted to the allometric equation log Q = log a + b log M, where Q is the Po-210 concentration (mBq/g dry mass) and M is the dry mass per individual (g). The weighted mean of the nine Po-210 slopes is -0.24 ± 0.05, and of the eight Pb-210 slopes is -0.22 ± 0.05. These values are close to the slope of -0.25 frequently found in mass-specific allometric relationships in biology; an association between radionuclide concentration and food ingestion rate is indicated. The intertaxon variations in the intercept log a are large, nearly two orders of magnitude for Po-210, a fact which almost certainly reflects intertaxon differences in diet and/or assimilation. Within taxa, sub-groupings of the Po-210 data are found; these are discussed and an attempt is made to classify them statistically for the data as a whole. (Author)
Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran
Directory of Open Access Journals (Sweden)
Akbar Ghasemi
2016-07-01
Full Text Available Today, it is important to use of ecological indicators, such as biomass for recognizing the special status of ecosystems, such as mangrove forests and also monitoring and evaluating changes through a specific period. Because using the direct method of evaluating biomass would be destructive, it is common in all similar area to use determine exact Allometric equations by using the statistical relationship between the structural characteristics of trees and their biomass and use these equations to estimate the biomass of trees. The aim of this study is estimate the aboveground biomass of mangroves and determine Allometric models for Nayband area in Bushehr, located in southern Iran. A number of mangrove trees were randomly selected. Collar diameter, crown diameter and tree height of standing trees were measured. After logging and weighing fresh weight, dry weight, trunk and branches were obtained in laboratory and biomass of components was calculated. The relationship between quantities feature of trees and biomass for determination of allometric equation was studied by using linear, power and exponential regression. The equations were compared with each other based on the different modeling parameters. The highest significant correlation was found between crown diameters and dry weight (R > 0.90. The best equations were obtained by means of an exponential and power regression models (R2adj> 0.90. The models were obtained from explained factor, suggests that there might be a relationship between the characteristics of mangrove trees and biomass.
van den Putte, B.; Saris, W.E.; Hoogstraten, J.
1995-01-01
Two experiments were carried out to test the theory of reasoned action of Fishbein and Ajzen. The measurements were done using two category scales and two psychophysical scales. No consistent difference in results was found between the four modalities. However, if the latter were used as multiple
Item Response Theory Analyses of the Parent and Teacher Ratings of the DSM-IV ADHD Rating Scale
Gomez, Rapson
2008-01-01
The graded response model (GRM), which is based on item response theory (IRT), was used to evaluate the psychometric properties of the inattention and hyperactivity/impulsivity symptoms in an ADHD rating scale. To accomplish this, parents and teachers completed the DSM-IV ADHD Rating Scale (DARS; Gomez et al., "Journal of Child Psychology and…
Toward city-scale water quality control: building a theory for smart stormwater systems
Kerkez, B.; Mullapudi, A. M.; Wong, B. P.
2016-12-01
Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.
Theory and evidence of economies of scale in the development of waste management systems
International Nuclear Information System (INIS)
Chang, Shoou-Yuh; Rivera, A.L.
1989-01-01
Waste is a cost of doing business. This cost can be considered in terms of the potential adverse health and environmental impacts, or the waste management costs associated with avoiding, minimizing, and controlling those impacts. There is an anticipated increase in the cost of waste management as a result of the increasing requirements for regulatory compliance. To meet the total waste management capacity needs of the organization and the compliance requirements, low-level radioactive, hazardous, and mixed waste management will need demonstrated technologies strategically managed as a technology portfolio. The role of the decision maker is to select the optimum mix of technologies and facilities to provide the waste management capacity needed for the next twenty years. The waste management system resulting from this mix includes multiple small-scale fixed facilities, large-scale centralized facilities, and waste management subcontracts. This study was conducted to examine the theory and evidence of economies of scale in the development of waste management systems as as exploratory research on the economic considerations in the process of technology selection and implementation. 25 refs., 24 figs., 11 tabs
Grigg, Kaine; Manderson, Lenore
2016-03-17
Racism and associated discrimination are pervasive and persistent challenges with multiple cumulative deleterious effects contributing to inequities in various health outcomes. Globally, research over the past decade has shown consistent associations between racism and negative health concerns. Such research confirms that race endures as one of the strongest predictors of poor health. Due to the lack of validated Australian measures of racist attitudes, RACES (Racism, Acceptance, and Cultural-Ethnocentrism Scale) was developed. Here, we examine RACES' psychometric properties, including the latent structure, utilising Item Response Theory (IRT). Unidimensional and Multidimensional Rating Scale Model (RSM) Rasch analyses were utilised with 296 Victorian primary school students and 182 adolescents and 220 adults from the Australian community. RACES was demonstrated to be a robust 24-item three-dimensional scale of Accepting Attitudes (12 items), Racist Attitudes (8 items), and Ethnocentric Attitudes (4 items). RSM Rasch analyses provide strong support for the instrument as a robust measure of racist attitudes in the Australian context, and for the overall factorial and construct validity of RACES across primary school children, adolescents, and adults. RACES provides a reliable and valid measure that can be utilised across the lifespan to evaluate attitudes towards all racial, ethnic, cultural, and religious groups. A core function of RACES is to assess the effectiveness of interventions to reduce community levels of racism and in turn inequities in health outcomes within Australia.
Lawton IADL scale in dementia: can item response theory make it more informative?
McGrory, Sarah; Shenkin, Susan D; Austin, Elizabeth J; Starr, John M
2014-07-01
impairment of functional abilities represents a crucial component of dementia diagnosis. Current functional measures rely on the traditional aggregate method of summing raw scores. While this summary score provides a quick representation of a person's ability, it disregards useful information on the item level. to use item response theory (IRT) methods to increase the interpretive power of the Lawton Instrumental Activities of Daily Living (IADL) scale by establishing a hierarchy of item 'difficulty' and 'discrimination'. this cross-sectional study applied IRT methods to the analysis of IADL outcomes. Participants were 202 members of the Scottish Dementia Research Interest Register (mean age = 76.39, range = 56-93, SD = 7.89 years) with complete itemised data available. a Mokken scale with good reliability (Molenaar Sijtsama statistic 0.79) was obtained, satisfying the IRT assumption that the items comprise a single unidimensional scale. The eight items in the scale could be placed on a hierarchy of 'difficulty' (H coefficient = 0.55), with 'Shopping' being the most 'difficult' item and 'Telephone use' being the least 'difficult' item. 'Shopping' was the most discriminatory item differentiating well between patients of different levels of ability. IRT methods are capable of providing more information about functional impairment than a summed score. 'Shopping' and 'Telephone use' were identified as items that reveal key information about a patient's level of ability, and could be useful screening questions for clinicians. © The Author 2013. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@ oup.com.
Mean field theory of EM algorithm for Bayesian grey scale image restoration
International Nuclear Information System (INIS)
Inoue, Jun-ichi; Tanaka, Kazuyuki
2003-01-01
The EM algorithm for the Bayesian grey scale image restoration is investigated in the framework of the mean field theory. Our model system is identical to the infinite range random field Q-Ising model. The maximum marginal likelihood method is applied to the determination of hyper-parameters. We calculate both the data-averaged mean square error between the original image and its maximizer of posterior marginal estimate, and the data-averaged marginal likelihood function exactly. After evaluating the hyper-parameter dependence of the data-averaged marginal likelihood function, we derive the EM algorithm which updates the hyper-parameters to obtain the maximum likelihood estimate analytically. The time evolutions of the hyper-parameters and so-called Q function are obtained. The relation between the speed of convergence of the hyper-parameters and the shape of the Q function is explained from the viewpoint of dynamics
Energy Technology Data Exchange (ETDEWEB)
Corsini, Niccolò R. C., E-mail: niccolo.corsini@imperial.ac.uk; Greco, Andrea; Haynes, Peter D. [Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Hine, Nicholas D. M. [Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Molteni, Carla [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)
2013-08-28
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
Universality in quantum chaos and the one-parameter scaling theory.
García-García, Antonio M; Wang, Jiao
2008-02-22
The one-parameter scaling theory is adapted to the context of quantum chaos. We define a generalized dimensionless conductance, g, semiclassically and then study Anderson localization corrections by renormalization group techniques. This analysis permits a characterization of the universality classes associated to a metal (g-->infinity), an insulator (g-->0), and the metal-insulator transition (g-->g(c)) in quantum chaos provided that the classical phase space is not mixed. According to our results the universality class related to the metallic limit includes all the systems in which the Bohigas-Giannoni-Schmit conjecture holds but automatically excludes those in which dynamical localization effects are important. The universality class related to the metal-insulator transition is characterized by classical superdiffusion or a fractal spectrum in low dimensions (d < or = 2). Several examples are discussed in detail.
Levine, Stephen Z; Rabinowitz, Jonathan; Rizopoulos, Dimitris
2011-08-15
The adequacy of the Positive and Negative Syndrome Scale (PANSS) items in measuring symptom severity in schizophrenia was examined using Item Response Theory (IRT). Baseline PANSS assessments were analyzed from two multi-center clinical trials of antipsychotic medication in chronic schizophrenia (n=1872). Generally, the results showed that the PANSS (a) item ratings discriminated symptom severity best for the negative symptoms; (b) has an excess of "Severe" and "Extremely severe" rating options; and (c) assessments are more reliable at medium than very low or high levels of symptom severity. Analysis also showed that the detection of statistically and non-statistically significant differences in treatment were highly similar for the original and IRT-modified PANSS. In clinical trials of chronic schizophrenia, the PANSS appears to require the following modifications: fewer rating options, adjustment of 'Lack of judgment and insight', and improved severe symptom assessment. 2011 Elsevier Ltd. All rights reserved.
Ghanbarian, Behzad; Berg, Carl F.
2017-09-01
Accurate quantification of formation resistivity factor F (also called formation factor) provides useful insight into connectivity and pore space topology in fully saturated porous media. In particular the formation factor has been extensively used to estimate permeability in reservoir rocks. One of the widely applied models to estimate F is Archie's law (F = ϕ- m in which ϕ is total porosity and m is cementation exponent) that is known to be valid in rocks with negligible clay content, such as clean sandstones. In this study we compare formation factors determined by percolation and effective-medium theories as well as Archie's law with numerical simulations of electrical resistivity on digital rock models. These digital models represent Bentheimer and Fontainebleau sandstones and are derived either by reconstruction or directly from micro-tomographic images. Results show that the universal quadratic power law from percolation theory accurately estimates the calculated formation factor values in network models over the entire range of porosity. However, it crosses over to the linear scaling from the effective-medium approximation at the porosity of 0.75 in grid models. We also show that the effect of critical porosity, disregarded in Archie's law, is nontrivial, and the Archie model inaccurately estimates the formation factor in low-porosity homogeneous sandstones.
Kleeorin, N.
2018-06-01
We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
Van Strien, Jan W.; Isbell, Lynne A.
2017-01-01
Studies of event-related potentials in humans have established larger early posterior negativity (EPN) in response to pictures depicting snakes than to pictures depicting other creatures. Ethological research has recently shown that macaques and wild vervet monkeys respond strongly to partially exposed snake models and scale patterns on the snake skin. Here, we examined whether snake skin patterns and partially exposed snakes elicit a larger EPN in humans. In Task 1, we employed pictures with close-ups of snake skins, lizard skins, and bird plumage. In task 2, we employed pictures of partially exposed snakes, lizards, and birds. Participants watched a random rapid serial visual presentation of these pictures. The EPN was scored as the mean activity (225–300 ms after picture onset) at occipital and parieto-occipital electrodes. Consistent with previous studies, and with the Snake Detection Theory, the EPN was significantly larger for snake skin pictures than for lizard skin and bird plumage pictures, and for lizard skin pictures than for bird plumage pictures. Likewise, the EPN was larger for partially exposed snakes than for partially exposed lizards and birds. The results suggest that the EPN snake effect is partly driven by snake skin scale patterns which are otherwise rare in nature. PMID:28387376
DGDFT: A massively parallel method for large scale density functional theory calculations.
Hu, Wei; Lin, Lin; Yang, Chao
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10(-4) Hartree/atom in terms of the error of energy and 6.2 × 10(-4) Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.
Duan, Fei; He, Bin; Wei, Tao
2015-04-01
The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.
DGDFT: A massively parallel method for large scale density functional theory calculations
Energy Technology Data Exchange (ETDEWEB)
Hu, Wei, E-mail: whu@lbl.gov; Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States)
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10{sup −4} Hartree/atom in terms of the error of energy and 6.2 × 10{sup −4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
DGDFT: A massively parallel method for large scale density functional theory calculations
International Nuclear Information System (INIS)
Hu, Wei; Yang, Chao; Lin, Lin
2015-01-01
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10 −4 Hartree/atom in terms of the error of energy and 6.2 × 10 −4 Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail
Gas production in the Barnett Shale obeys a simple scaling theory.
Patzek, Tad W; Male, Frank; Marder, Michael
2013-12-03
Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States' oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.
A compact to revitalise large-scale irrigation systems: A ‘theory of change’ approach
Directory of Open Access Journals (Sweden)
Bruce A. Lankford
2016-02-01
Full Text Available In countries with transitional economies such as those found in South Asia, large-scale irrigation systems (LSIS with a history of public ownership account for about 115 million ha (Mha or approximately 45% of their total area under irrigation. In terms of the global area of irrigation (320 Mha for all countries, LSIS are estimated at 130 Mha or 40% of irrigated land. These systems can potentially deliver significant local, regional and global benefits in terms of food, water and energy security, employment, economic growth and ecosystem services. For example, primary crop production is conservatively valued at about US$355 billion. However, efforts to enhance these benefits and reform the sector have been costly and outcomes have been underwhelming and short-lived. We propose the application of a 'theory of change' (ToC as a foundation for promoting transformational change in large-scale irrigation centred upon a 'global irrigation compact' that promotes new forms of leadership, partnership and ownership (LPO. The compact argues that LSIS can change by switching away from the current channelling of aid finances controlled by government irrigation agencies. Instead it is for irrigators, closely partnered by private, public and NGO advisory and regulatory services, to develop strong leadership models and to find new compensatory partnerships with cities and other river basin neighbours. The paper summarises key assumptions for change in the LSIS sector including the need to initially test this change via a handful of volunteer systems. Our other key purpose is to demonstrate a ToC template by which large-scale irrigation policy can be better elaborated and discussed.
Improving Measurement Efficiency of the Inner EAR Scale with Item Response Theory.
Jessen, Annika; Ho, Andrew D; Corrales, C Eduardo; Yueh, Bevan; Shin, Jennifer J
2018-02-01
Objectives (1) To assess the 11-item Inner Effectiveness of Auditory Rehabilitation (Inner EAR) instrument with item response theory (IRT). (2) To determine whether the underlying latent ability could also be accurately represented by a subset of the items for use in high-volume clinical scenarios. (3) To determine whether the Inner EAR instrument correlates with pure tone thresholds and word recognition scores. Design IRT evaluation of prospective cohort data. Setting Tertiary care academic ambulatory otolaryngology clinic. Subjects and Methods Modern psychometric methods, including factor analysis and IRT, were used to assess unidimensionality and item properties. Regression methods were used to assess prediction of word recognition and pure tone audiometry scores. Results The Inner EAR scale is unidimensional, and items varied in their location and information. Information parameter estimates ranged from 1.63 to 4.52, with higher values indicating more useful items. The IRT model provided a basis for identifying 2 sets of items with relatively lower information parameters. Item information functions demonstrated which items added insubstantial value over and above other items and were removed in stages, creating a 8- and 3-item Inner EAR scale for more efficient assessment. The 8-item version accurately reflected the underlying construct. All versions correlated moderately with word recognition scores and pure tone averages. Conclusion The 11-, 8-, and 3-item versions of the Inner EAR scale have strong psychometric properties, and there is correlational validity evidence for the observed scores. Modern psychometric methods can help streamline care delivery by maximizing relevant information per item administered.
Item response theory analysis applied to the Spanish version of the Personal Outcomes Scale.
Guàrdia-Olmos, J; Carbó-Carreté, M; Peró-Cebollero, M; Giné, C
2017-11-01
The study of measurements of quality of life (QoL) is one of the great challenges of modern psychology and psychometric approaches. This issue has greater importance when examining QoL in populations that were historically treated on the basis of their deficiency, and recently, the focus has shifted to what each person values and desires in their life, as in cases of people with intellectual disability (ID). Many studies of QoL scales applied in this area have attempted to improve the validity and reliability of their components by incorporating various sources of information to achieve consistency in the data obtained. The adaptation of the Personal Outcomes Scale (POS) in Spanish has shown excellent psychometric attributes, and its administration has three sources of information: self-assessment, practitioner and family. The study of possible congruence or incongruence of observed distributions of each item between sources is therefore essential to ensure a correct interpretation of the measure. The aim of this paper was to analyse the observed distribution of items and dimensions from the three Spanish POS information sources cited earlier, using the item response theory. We studied a sample of 529 people with ID and their respective practitioners and family member, and in each case, we analysed items and factors using Samejima's model of polytomic ordinal scales. The results indicated an important number of items with differential effects regarding sources, and in some cases, they indicated significant differences in the distribution of items, factors and sources of information. As a result of this analysis, we must affirm that the administration of the POS, considering three sources of information, was adequate overall, but a correct interpretation of the results requires that it obtain much more information to consider, as well as some specific items in specific dimensions. The overall ratings, if these comments are considered, could result in bias. © 2017
Development and validation of an item response theory-based Social Responsiveness Scale short form.
Sturm, Alexandra; Kuhfeld, Megan; Kasari, Connie; McCracken, James T
2017-09-01
Research and practice in autism spectrum disorder (ASD) rely on quantitative measures, such as the Social Responsiveness Scale (SRS), for characterization and diagnosis. Like many ASD diagnostic measures, SRS scores are influenced by factors unrelated to ASD core features. This study further interrogates the psychometric properties of the SRS using item response theory (IRT), and demonstrates a strategy to create a psychometrically sound short form by applying IRT results. Social Responsiveness Scale analyses were conducted on a large sample (N = 21,426) of youth from four ASD databases. Items were subjected to item factor analyses and evaluation of item bias by gender, age, expressive language level, behavior problems, and nonverbal IQ. Item selection based on item psychometric properties, DIF analyses, and substantive validity produced a reduced item SRS short form that was unidimensional in structure, highly reliable (α = .96), and free of gender, age, expressive language, behavior problems, and nonverbal IQ influence. The short form also showed strong relationships with established measures of autism symptom severity (ADOS, ADI-R, Vineland). Degree of association between all measures varied as a function of expressive language. Results identified specific SRS items that are more vulnerable to non-ASD-related traits. The resultant 16-item SRS short form may possess superior psychometric properties compared to the original scale and emerge as a more precise measure of ASD core symptom severity, facilitating research and practice. Future research using IRT is needed to further refine existing measures of autism symptomatology. © 2017 Association for Child and Adolescent Mental Health.
The avian egg exhibits general allometric invariances in mechanical design.
Juang, Jia-Yang; Chen, Pin-Yi; Yang, Da-Chang; Wu, Shang-Ping; Yen, An; Hsieh, Hsin-I
2017-10-27
The avian egg exhibits extraordinary diversity in size, shape and color, and has a key role in avian adaptive radiations. Despite extensive work, our understanding of the underlying principles that guide the "design" of the egg as a load-bearing structure remains incomplete, especially over broad taxonomic scales. Here we define a dimensionless number C, a function of egg weight, stiffness and dimensions, to quantify how stiff an egg is with respect to its weight after removing geometry-induced rigidity. We analyze eggs of 463 bird species in 36 orders across five orders of magnitude in body mass, and find that C number is nearly invariant for most species, including tiny hummingbirds and giant elephant birds. This invariance or "design guideline" dictates that evolutionary changes in shell thickness and Young's modulus, both contributing to shell stiffness, are constrained by changes in egg weight. Our analysis illuminates unique reproductive strategies of brood parasites, kiwis, and megapodes, and quantifies the loss of safety margin for contact incubation due to artificial selection and environmental toxins. Our approach provides a mechanistic framework for a better understanding of the mechanical design of the avian egg, and may provide clues to the evolutionary origin of contact incubation of amniote eggs.
Lundstrom, Christopher John; Biltz, George R.; Snyder, Eric M.; Ingraham, Stacy Jean
2017-01-01
The purpose of this study was to compare metabolic variables during submaximal running as predictors of marathon performance. Running economy (RE) and respiratory exchange ratio (RER) data were gathered during a 30 min incremental treadmill run completed within 2 weeks prior to running a 42.2-km marathon. Paces during the treadmill run progressed every 5 min from 75-100% of 10-km race velocity. Variables at each stage were analyzed as predictors of relative marathon performance (RMP) in compe...
Directory of Open Access Journals (Sweden)
Fernando Da Silva
2015-02-01
Full Text Available Allometric models to estimate biomass components such as stem mass Ms, foliage mass Ml, root mass Mr and aboveground mass Ma, were developed for the palm species Euterpe precatoria Mart., which is the most abundant tree species in the Amazon. We harvested twenty palms including above- and below-ground parts in an old growth Amazonian forest in Brazil. The diameter at breast height D ranged from 3.9–12.7 cm, and the stem height H ranged from 2.3–16.4 m. The D, diameter at ground basis D0, crown diameter CD, H, stem specific gravity ρ, and number of fronds Nf were considered as independent variables and incorporated into a power function model. The best predictors were D2Hρ for Ms and Ma, D2HNf for Ml, and D for Mr. Slender index (H/D ranged from 0.56–1.46 m·cm−1, and the D-H relationship suggested that the stem shape becomes more slender with increasing D. On the other hand, ρ increased with D implying a stiffening of stem tissue. The average root/shoot ratio was estimated as 0.29 which was higher than that reported for the non-palm tree species in the Amazon. Comparisons of several models to estimate Ma of different palm species, suggested that the variations of the D-H relationship and ρ should be considered to develop allometric models for estimating biomass in palm species. In particular the ρ largely varied depending on individual size, which should be important to consider, when developing the allometric models for palms.
Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat
2018-01-01
We applied a new approach to Generalizability theory (G-theory) involving parallel splits and repeated measures to evaluate common uses of the Paulhus Deception Scales based on polytomous and four types of dichotomous scoring. G-theory indices of reliability and validity accounting for specific-factor, transient, and random-response measurement error supported use of polytomous over dichotomous scores as contamination checks; as control, explanatory, and outcome variables; as aspects of construct validation; and as indexes of environmental effects on socially desirable responding. Polytomous scoring also provided results for flagging faking as dependable as those when using dichotomous scoring methods. These findings argue strongly against the nearly exclusive use of dichotomous scoring for the Paulhus Deception Scales in practice and underscore the value of G-theory in demonstrating this. We provide guidelines for applying our G-theory techniques to other objectively scored clinical assessments, for using G-theory to estimate how changes to a measure might improve reliability, and for obtaining software to conduct G-theory analyses free of charge.
Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.
Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom
2015-07-01
Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved
Generalized allometric regression to estimate biomass of Populus in short-rotation coppice
Energy Technology Data Exchange (ETDEWEB)
Ben Brahim, Mohammed; Gavaland, Andre; Cabanettes, Alain [INRA Centre de Toulouse, Castanet-Tolosane Cedex (France). Unite Agroforesterie et Foret Paysanne
2000-07-01
Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.
Allometric equations for estimating aboveground biomass for common shrubs in northeastern California
Steve Huff; Martin Ritchie; H. Temesgen
2017-01-01
Selected allometric equations and fitting strategies were evaluated for their predictive abilities for estimating above ground biomass for seven species of shrubs common to northeastern California. Size classes for woody biomass were categorized as 1-h fuels (0.1â0.6 cm), 10-h fuels (0.6â2.5 cm), 100-h fuels (2.5â7.6 cm), and 1000-h fuels (greater than 7.7 cm in...
Pedersen, Eric R; Huang, Wenjing; Dvorak, Robert D; Prince, Mark A; Hummer, Justin F
2017-08-01
Given recent state legislation legalizing marijuana for recreational purposes and majority popular opinion favoring these laws, we developed the Protective Behavioral Strategies for Marijuana scale (PBSM) to identify strategies that may mitigate the harms related to marijuana use among those young people who choose to use the drug. In the current study, we expand on the initial exploratory study of the PBSM to further validate the measure with a large and geographically diverse sample (N = 2,117; 60% women, 30% non-White) of college students from 11 different universities across the United States. We sought to develop a psychometrically sound item bank for the PBSM and to create a short assessment form that minimizes respondent burden and time. Quantitative item analyses, including exploratory and confirmatory factor analyses with item response theory (IRT) and evaluation of differential item functioning (DIF), revealed an item bank of 36 items that was examined for unidimensionality and good content coverage, as well as a short form of 17 items that is free of bias in terms of gender (men vs. women), race (White vs. non-White), ethnicity (Hispanic vs. non-Hispanic), and recreational marijuana use legal status (state recreational marijuana was legal for 25.5% of participants). We also provide a scoring table for easy transformation from sum scores to IRT scale scores. The PBSM item bank and short form associated strongly and negatively with past month marijuana use and consequences. The measure may be useful to researchers and clinicians conducting intervention and prevention programs with young adults. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
Single-polymer dynamics under constraints: scaling theory and computer experiment
International Nuclear Information System (INIS)
Milchev, Andrey
2011-01-01
The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces-a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations. (topical review)
Vollant, A.; Balarac, G.; Corre, C.
2017-09-01
New procedures are explored for the development of models in the context of large eddy simulation (LES) of a passive scalar. They rely on the combination of the optimal estimator theory with machine-learning algorithms. The concept of optimal estimator allows to identify the most accurate set of parameters to be used when deriving a model. The model itself can then be defined by training an artificial neural network (ANN) on a database derived from the filtering of direct numerical simulation (DNS) results. This procedure leads to a subgrid scale model displaying good structural performance, which allows to perform LESs very close to the filtered DNS results. However, this first procedure does not control the functional performance so that the model can fail when the flow configuration differs from the training database. Another procedure is then proposed, where the model functional form is imposed and the ANN used only to define the model coefficients. The training step is a bi-objective optimisation in order to control both structural and functional performances. The model derived from this second procedure proves to be more robust. It also provides stable LESs for a turbulent plane jet flow configuration very far from the training database but over-estimates the mixing process in that case.
Salting out of methane by sodium chloride: A scaled particle theory study.
Graziano, Giuseppe
2008-08-28
The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.
Principal shapes and squeezed limits in the effective field theory of large scale structure
Energy Technology Data Exchange (ETDEWEB)
Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov [Berkeley Center for Theoretical Physics, University of California, South Hall Road, Berkeley, CA, 94720 (United States)
2016-11-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of the principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.
Huang, Yueng-Hsiang; Lee, Jin; Chen, Zhuo; Perry, MacKenna; Cheung, Janelle H; Wang, Mo
2017-06-01
Zohar and Luria's (2005) safety climate (SC) scale, measuring organization- and group- level SC each with 16 items, is widely used in research and practice. To improve the utility of the SC scale, we shortened the original full-length SC scales. Item response theory (IRT) analysis was conducted using a sample of 29,179 frontline workers from various industries. Based on graded response models, we shortened the original scales in two ways: (1) selecting items with above-average discriminating ability (i.e. offering more than 6.25% of the original total scale information), resulting in 8-item organization-level and 11-item group-level SC scales; and (2) selecting the most informative items that together retain at least 30% of original scale information, resulting in 4-item organization-level and 4-item group-level SC scales. All four shortened scales had acceptable reliability (≥0.89) and high correlations (≥0.95) with the original scale scores. The shortened scales will be valuable for academic research and practical survey implementation in improving occupational safety. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
El Naschie's ε (∞) space-time and scale relativity theory in the topological dimension D = 4
International Nuclear Information System (INIS)
Agop, M.; Murgulet, C.
2007-01-01
In the topological dimension D = 4 of the scale relativity theory, the self-structuring of a coherent quantum fluid implies the Golden mean renormalization group. Then, the transfinite set of El Naschie's ε (∞) space-time becomes the background of a new physics (the transfinite physics)
Özenç, Emine Gül; Dogan, M. Cihangir
2014-01-01
This study aims to perform a validity-reliability test by developing the Functional Literacy Experience Scale based upon Ecological Theory (FLESBUET) for primary education students. The study group includes 209 fifth grade students at Sabri Taskin Primary School in the Kartal District of Istanbul, Turkey during the 2010-2011 academic year.…
Awang-Hashim, Rosna; Thaliah, Rajaletchumi; Kaur, Amrita
2017-01-01
Purpose: The cross-cultural significance of autonomy within self-determination theory is divisive on universal significance. This paper aims to report a sequential exploratory mixed methods study conducted to construct and validate a scale to investigate how, in Malaysian context, the construct of autonomy is conceptualized in comparison with the…
Sussman, Joshua; Beaujean, A. Alexander; Worrell, Frank C.; Watson, Stevie
2013-01-01
Item response models (IRMs) were used to analyze Cross Racial Identity Scale (CRIS) scores. Rasch analysis scores were compared with classical test theory (CTT) scores. The partial credit model demonstrated a high goodness of fit and correlations between Rasch and CTT scores ranged from 0.91 to 0.99. CRIS scores are supported by both methods.…
Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia
2016-01-01
The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.
Allometric models for estimating the aboveground biomass of the mangrove Rhizophora mangle
Directory of Open Access Journals (Sweden)
Heide Vanessa Souza Santos
Full Text Available Abstract The development of species-specific allometric models is critical to the improvement of aboveground biomass estimates, as well as to the estimation of carbon stock and sequestration in mangrove forests. This study developed allometric equations for estimating aboveground biomass of Rhizophora mangle in the mangroves of the estuary of the São Francisco River, in northeastern Brazil. Using a sample of 74 trees, simple linear regression analysis was used to test the dependence of biomass (total and per plant part on size, considering both transformed (ln and not-transformed data. Best equations were considered as those with the lowest standard error of estimation (SEE and highest adjusted coefficient of determination (R2a. The ln-transformed equations showed better results, with R2a near 0.99 in most cases. The equations for reproductive parts presented low R2a values, probably attributed to the seasonal nature of this compartment. "Basal Area2 × Height" showed to be the best predictor, present in most of the best-fitted equations. The models presented here can be considered reliable predictors of the aboveground biomass of R. mangle in the NE-Brazilian mangroves as well as in any site were this widely distributed species present similar architecture to the trees used in the present study.
Kaitaniemi, Pekka
2008-04-09
Allometric equations are widely used in many branches of biological science. The potential information content of the normalization constant b in allometric equations of the form Y = bX(a) has, however, remained largely neglected. To demonstrate the potential for utilizing this information, I generated a large number of artificial datasets that resembled those that are frequently encountered in biological studies, i.e., relatively small samples including measurement error or uncontrolled variation. The value of X was allowed to vary randomly within the limits describing different data ranges, and a was set to a fixed theoretical value. The constant b was set to a range of values describing the effect of a continuous environmental variable. In addition, a normally distributed random error was added to the values of both X and Y. Two different approaches were then used to model the data. The traditional approach estimated both a and b using a regression model, whereas an alternative approach set the exponent a at its theoretical value and only estimated the value of b. Both approaches produced virtually the same model fit with less than 0.3% difference in the coefficient of determination. Only the alternative approach was able to precisely reproduce the effect of the environmental variable, which was largely lost among noise variation when using the traditional approach. The results show how the value of b can be used as a source of valuable biological information if an appropriate regression model is selected.
Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O
2016-06-01
The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.
Directory of Open Access Journals (Sweden)
Shem Kuyah
2016-02-01
Full Text Available The miombo woodland is the most extensive dry forest in the world, with the potential to store substantial amounts of biomass carbon. Efforts to obtain accurate estimates of carbon stocks in the miombo woodlands are limited by a general lack of biomass estimation models (BEMs. This study aimed to evaluate the accuracy of most commonly employed allometric models for estimating aboveground biomass (AGB in miombo woodlands, and to develop new models that enable more accurate estimation of biomass in the miombo woodlands. A generalizable mixed-species allometric model was developed from 88 trees belonging to 33 species ranging in diameter at breast height (DBH from 5 to 105 cm using Bayesian estimation. A power law model with DBH alone performed better than both a polynomial model with DBH and the square of DBH, and models including height and crown area as additional variables along with DBH. The accuracy of estimates from published models varied across different sites and trees of different diameter classes, and was lower than estimates from our model. The model developed in this study can be used to establish conservative carbon stocks required to determine avoided emissions in performance-based payment schemes, for example in afforestation and reforestation activities.
International Nuclear Information System (INIS)
Warner, Nicholas A.; Nøst, Therese H.; Andrade, Hector; Christensen, Guttorm
2014-01-01
Spatial distribution and relationship of allometric measurements (length, weight and age) to liver concentrations of cyclic volatile methyl siloxanes (cVMS) including octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclosiloxane (D6) in Atlantic cod (Gadus morhua) collected near the community of Tromsø in Northern Norway were assessed. These congeners were benchmarked against known persistent polychlorinated biphenyls (PCBs 153 and 180) to assess accumulation behavior of cVMS. D5 was the dominate cVMS detected in all fish livers with lipid normalized concentrations up to 10 times or greater than those observed for PCB 153 and 180. D4 and D6 concentration were negatively correlated with fish length and weight, indicating a greater elimination capacity compared to uptake processes with increasing fish size for these chemicals. These results indicate relationships between allometric measurements and cVMS concentrations may account for concentration variations observed within fish and should be assessed in future studies evaluating cVMS bioaccumulation potential. - Highlights: • cVMS spatial distribution investigated within cod surrounding an Arctic community. • Highest cVMS concentrations detected in biota collected near human settlements. • Cod liver concentrations of D5 were higher compared to PCBs. • D4 and D6 liver concentrations were negatively correlated with fish length/weight. - Liver concentrations of cVMS congeners decreased with increasing fish length and weight in Atlantic cod collected near emission sources of cVMS
Directory of Open Access Journals (Sweden)
Norman W.H. Mason
2014-02-01
Full Text Available Many studies have quantified uncertainty in forest carbon (C storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1 allometric biomass equations; (2 measurement errors of shrubs harvested for the allometry; and (3 measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage. Mean C sequestration (1.73 Mg C ha–1 year–1 exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage.
Directory of Open Access Journals (Sweden)
Soheil Eagderi
2017-06-01
Full Text Available Morphological development and allometric growth patterns of reared Persian sturgeon, Acipenser persicus, were studied from hatching to 50 days post-hatching (dph. The larvae were sampled, their left sides photographed and seven morphometric characters, including total length, head length, tail length, trunk length, snout length, caudal peduncle and predorsal length were measured. Allometric growth patterns were calculated as a power function of total length and described using the growth coefficient to find important steps in early life history. The total length of the newly hatched larvae and fry were 10.59±0.8 and 38.8±2.9 mm at 1 and 50 dph, respectively. Morphogenesis and differentiation were the highest rates during the first 11 days of early development, i.e. endogenous feeding period. There were higher growth rate of head, snout and tail regions compared with those of other organs from the hatch up to yolk sac absorption, followed by positive or almost isometric patterns, after the begin of exogenous feeding, showing priority to enhance the feeding and swimming capabilities. This study confirmed that most of morphological changes of this species are occurred from hatching until the onset of exogenous feeding i.e. during the lecithotrophic phase.
Allometric Equations for Estimating Carbon Stocks in Natural Forest in New Zealand
Directory of Open Access Journals (Sweden)
Andrea Brandon
2012-09-01
Full Text Available Species-specific and mixed-species volume and above ground biomass allometric equations were developed for 15 indigenous tree species and four tree fern species in New Zealand. A mixed-species tree equation based on breast height diameter (DBH and tree height (H provided acceptable estimates of stem plus branch (>10 cm in diameter over bark volume, which was multiplied by live tree density to estimate dry matter. For dead standing spars, DBH, estimated original height, actual spar height and compatible volume/taper functions provided estimates of dead stem volume, which was multiplied by live tree density and a density modifier based on log decay class from field assessments to estimate dry matter. Live tree density was estimated using ratio estimators. Ratio estimators were based on biomass sample trees, and utilized density data from outerwood basic density surveys which were available for 35 tree species sampled throughout New Zealand. Foliage and branch ( < 10 cm in diameter over bark dry matter were estimated directly from tree DBH. Tree fern above ground dry matter was estimated using allometric equations based on DBH and H. Due to insufficient data, below ground carbon for trees was estimated using the default IPCC root/shoot ratio of 25%, but for tree ferns it was estimated using measured root/shoot ratios which averaged 20%.
Sunderland, Matthew; Batterham, Philip; Calear, Alison; Carragher, Natacha; Baillie, Andrew; Slade, Tim
2018-04-10
There is no standardized approach to the measurement of social anxiety. Researchers and clinicians are faced with numerous self-report scales with varying strengths, weaknesses, and psychometric properties. The lack of standardization makes it difficult to compare scores across populations that utilise different scales. Item response theory offers one solution to this problem via equating different scales using an anchor scale to set a standardized metric. This study is the first to equate several scales for social anxiety disorder. Data from two samples (n=3,175 and n=1,052), recruited from the Australian community using online advertisements, were utilised to equate a network of 11 self-report social anxiety scales via a fixed parameter item calibration method. Comparisons between actual and equated scores for most of the scales indicted a high level of agreement with mean differences <0.10 (equivalent to a mean difference of less than one point on the standardized metric). This study demonstrates that scores from multiple scales that measure social anxiety can be converted to a common scale. Re-scoring observed scores to a common scale provides opportunities to combine research from multiple studies and ultimately better assess social anxiety in treatment and research settings. Copyright © 2018. Published by Elsevier Inc.
Directory of Open Access Journals (Sweden)
Painter Page R
2005-08-01
Full Text Available Abstract Background A prominent theoretical explanation for 3/4-power allometric scaling of metabolism proposes that the nutrient exchange surface of capillaries has properties of a space-filling fractal. The theory assumes that nutrient exchange surface area has a fractal dimension equal to or greater than 2 and less than or equal to 3 and that the volume filled by the exchange surface area has a fractal dimension equal to or greater than 3 and less than or equal to 4. Results It is shown that contradicting predictions can be derived from the assumptions of the model. When errors in the model are corrected, it is shown to predict that metabolic rate is proportional to body mass (proportional scaling. Conclusion The presence of space-filling fractal nutrient exchange surfaces does not provide a satisfactory explanation for 3/4-power metabolic rate scaling.
Sakhavand, Navid
Many natural and biomimetic composites - such as nacre, silk and clay-polymer - exhibit a remarkable balance of strength, toughness, and/or stiffness, which call for a universal measure to quantify this outstanding feature given the platelet-matrix structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures, which are composed of strong in-plane bonding networks but weak interplanar bonding matrices. In this regard, development of a universal composition-structure-property map for natural platelet-matrix composites, and stacked heterostructures opens up new doors for designing materials with superior mechanical performance. In this dissertation, a multiscale bottom-up approach is adopted to analyze and predict the mechanical properties of platelet-matrix composites. Design guidelines are provided by developing universally valid (across different length scales) diagrams for science-based engineering of numerous natural and synthetic platelet-matrix composites and stacked heterostructures while significantly broadening the spectrum of strategies for fabricating new composites with specific and optimized mechanical properties. First, molecular dynamics simulations are utilized to unravel the fundamental underlying physics and chemistry of the binding nature at the atomic-level interface of organic-inorganic composites. Polymer-cementitious composites are considered as case studies to understand bonding mechanism at the nanoscale and open up new venues for potential mechanical enhancement at the macro-scale. Next, sophisticated mathematical derivations based on elasticity and plasticity theories are presented to describe pre-crack (intrinsic) mechanical performance of platelet-matrix composites at the microscale. These derivations lead to developing a unified framework to construct series of universal composition
Statistical theory and transition in multiple-scale-lengths turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-06-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)
The e-MSWS-12: improving the multiple sclerosis walking scale using item response theory.
Engelhard, Matthew M; Schmidt, Karen M; Engel, Casey E; Brenton, J Nicholas; Patek, Stephen D; Goldman, Myla D
2016-12-01
The Multiple Sclerosis Walking Scale (MSWS-12) is the predominant patient-reported measure of multiple sclerosis (MS) -elated walking ability, yet it had not been analyzed using item response theory (IRT), the emerging standard for patient-reported outcome (PRO) validation. This study aims to reduce MSWS-12 measurement error and facilitate computerized adaptive testing by creating an IRT model of the MSWS-12 and distributing it online. MSWS-12 responses from 284 subjects with MS were collected by mail and used to fit and compare several IRT models. Following model selection and assessment, subpopulations based on age and sex were tested for differential item functioning (DIF). Model comparison favored a one-dimensional graded response model (GRM). This model met fit criteria and explained 87 % of response variance. The performance of each MSWS-12 item was characterized using category response curves (CRCs) and item information. IRT-based MSWS-12 scores correlated with traditional MSWS-12 scores (r = 0.99) and timed 25-foot walk (T25FW) speed (r = -0.70). Item 2 showed DIF based on age (χ 2 = 19.02, df = 5, p Item 11 showed DIF based on sex (χ 2 = 13.76, df = 5, p = 0.02). MSWS-12 measurement error depends on walking ability, but could be lowered by improving or replacing items with low information or DIF. The e-MSWS-12 includes IRT-based scoring, error checking, and an estimated T25FW derived from MSWS-12 responses. It is available at https://ms-irt.shinyapps.io/e-MSWS-12 .
Pilcher, June J; Switzer, Fred S; Munc, Alec; Donnelly, Janet; Jellen, Julia C; Lamm, Claus
2018-04-01
The purpose of this study is to examine the psychometric properties of the Epworth Sleepiness Scale (ESS) in two languages, German and English. Students from a university in Austria (N = 292; 55 males; mean age = 18.71 ± 1.71 years; 237 females; mean age = 18.24 ± 0.88 years) and a university in the US (N = 329; 128 males; mean age = 18.71 ± 0.88 years; 201 females; mean age = 21.59 ± 2.27 years) completed the ESS. An exploratory-factor analysis was completed to examine dimensionality of the ESS. Item response theory (IRT) analyses were used to provide information about the response rates on the items on the ESS and provide differential item functioning (DIF) analyses to examine whether the items were interpreted differently between the two languages. The factor analyses suggest that the ESS measures two distinct sleepiness constructs. These constructs indicate that the ESS is probing sleepiness in settings requiring active versus passive responding. The IRT analyses found that overall, the items on the ESS perform well as a measure of sleepiness. However, Item 8 and to a lesser extent Item 6 were being interpreted differently by respondents in comparison to the other items. In addition, the DIF analyses showed that the responses between German and English were very similar indicating that there are only minor measurement differences between the two language versions of the ESS. These findings suggest that the ESS provides a reliable measure of propensity to sleepiness; however, it does convey a two-factor approach to sleepiness. Researchers and clinicians can use the German and English versions of the ESS but may wish to exclude Item 8 when calculating a total sleepiness score.
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
Energy Technology Data Exchange (ETDEWEB)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.
1996-10-01
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of
A Scale Elasticity Measure for Directional Distance Function and its Dual: Theory and DEA Estimation
Valentin Zelenyuk
2012-01-01
In this paper we focus on scale elasticity measure based on directional distance function for multi-output-multi-input technologies, explore its fundamental properties and show its equivalence with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional distance function with scale elasticity measure based on the profit function. Finally, we discuss the estimation issues of the scale...
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.
Clark, S. K.; Dodge, R. N.; Nybakken, G. H.
1972-01-01
The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.
M.R. McHale; I.C. Burke; M.A. Lefsky; P.J. Peper; E.G. McPherson
2009-01-01
Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban trees. These studies have been limited by a lack of research on urban tree biomass, such that estimates of carbon storage in urban systems have relied upon allometric relationships developed in traditional forests. As urbanization increases globally, it is becoming...
Esquerré, Damien; Sherratt, Emma; Keogh, J Scott
2017-12-01
Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species-rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well-adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
KLAASSEN, M; DRENT, R
From data in the literature, an allometric equation is compiled for hatchling resting metabolic rate and an attempt is made to explain residual variation in terms of hatchling type, yolk and water content, embryonic and postnatal growth rate, and environmental circumstances (latitudinal
An allometric approach to quantify the extinction vulnerability of birds and mammals.
Hilbers, J P; Schipper, A M; Hendriks, A J; Verones, F; Pereira, H M; Huijbregts, M A J
2016-03-01
Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species
An Institutional Theory Analysis of Charter Schools: Addressing Institutional Challenges to Scale
Huerta, Luis A.; Zuckerman, Andrew
2009-01-01
This article presents a conceptual framework derived from institutional theory in sociology that offers two competing policy contexts in which charter schools operate--a bureaucratic frame versus a decentralized frame. An analysis of evolving charter school types based on three underlying theories of action is considered. As charter school leaders…
Scaling laws and triviality bounds in the lattice Φ4 theory. Pt. 1
International Nuclear Information System (INIS)
Luescher, M.; Weisz, P.
1987-01-01
The lattice Φ 4 theory in four space-time dimensions is most likely 'trivial', i.e. its continuum limit is a free field theory. However, for small but positive lattice spacing a and at energies well below the cutoff mass Λ=1/a, the theory effectively behaves like a continuum theory with particle interactions, which may be appreciable. By a combination of known analytical methods, we here determine the maximal value of the renormalized coupling at zero momentum as a function of Λ/m, where m denotes the mass of the scalar particle in the theory. Moreover, a complete solution of the model is obtained in the sense that all low energy amplitudes can be computed with reasonable estimated accuracy for arbitrarily chosen bare coupling and mass in the symmetric phase region. (orig.)
Development of a Scale to Assess Knowledge about Suicide Postvention Using Item Response Theory
Nader, Ingo W.; Niederkrotenthaler, Thomas; Schild, Anne H. E.; Koller, Ingrid; Tran, Ulrich S.; Kapusta, Nestor D.; Sonneck, Gernot; Voracek, Martin
2013-01-01
Knowledge about suicide postvention (KSPV) is an important distal outcome in the evaluation of suicide prevention programs that focus on the bereaved. However, most scales are specifically tailored to the evaluation study in question and psychometric properties are often unsatisfactory. Therefore, we developed the KSPV scale. Scale properties were…
San Liang, X.; Robinson, Allan R.
2007-12-01
A novel localized finite-amplitude hydrodynamic stability analysis is established in a unified treatment for the study of real oceanic and atmospheric processes, which are in general highly nonlinear, and intermittent in space and time. We first re-state the classical definition using the multi-scale energy and vorticity analysis (MS-EVA) developed in Liang and Robinson [Liang, X.S., Robinson, A.R., 2005. Localized multiscale energy and vorticity analysis. I. Fundamentals. Dyn. Atmos. Oceans 38, 195-230], and then manipulate certain global operators to achieve the temporal and spatial localization. The key of the spatial localization is transfer-transport separation, which is made precise with the concept of perfect transfer, while relaxation of marginalization leads to the localization of time. In doing so the information of transfer lost in the averages is retrieved and an easy-to-use instability metric is obtained. The resulting metric is field-like (Eulerian), conceptually generalizing the classical formalism, a bulk notion over the whole system. In this framework, an instability has a structure, which is of particular use for open flow processes. We check the structure of baroclinic instability with the benchmark Eady model solution, and the Iceland-Faeroe Frontal (IFF) intrusion, a highly localized and nonlinear process occurring frequently in the region between Iceland and Faeroe Islands. A clear isolated baroclinic instability is identified around the intrusion, which is further found to be characterized by the transition from a spatially growing mode to a temporally growing mode. We also check the consistency of the MS-EVA dynamics with the barotropic Kuo model. An observation is that a local perturbation burst does not necessarily imply an instability: the perturbation energy could be transported from other processes occurring elsewhere. We find that our analysis yields a Kuo theorem-consistent mean-eddy interaction, which is not seen in a conventional
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
Rosas, Antonio; Bastir, Markus
2004-06-01
Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.
Razdan, Neil K; Koshy, David M; Prausnitz, John M
2017-11-07
A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.
Wu, Jianlan; Silbey, Robert J; Cao, Jianshu
2013-05-17
An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy transfer in light-harvesting systems. A quantum state orthogonal to the trap will exhibit noise-assisted transfer, clarifying the significance of initial preparation. For such an initial state, the efficiency is enhanced in the weak damping limit (⟨t⟩ ∼ 1/Γ), and suppressed in the strong damping limit (⟨t⟩ ∼ Γ), analogous to Kramers turnover in classical rate theory. An interpolating expression ⟨t⟩ = A/Γ + B + CΓ quantitatively describes the trapping time over the entire range of the dissipation strength, and predicts the optimal efficiency at Γ(opt) ∼ J for homogenous systems. In the presence of static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker dependence on the environment. The prediction of the scaling theory is verified in a symmetric dendrimer system by numerically exact quantum calculations. Though formulated in the context of excitation energy transfer, the analysis and conclusions apply in general to open quantum processes, including electron transfer, fluorescence emission, and heat conduction.
On the cooperativity of association and reference energy scales in thermodynamic perturbation theory
Marshall, Bennett D.
2016-11-01
Equations of state for hydrogen bonding fluids are typically described by two energy scales. A short range highly directional hydrogen bonding energy scale as well as a reference energy scale which accounts for dispersion and orientationally averaged multi-pole attractions. These energy scales are always treated independently. In recent years, extensive first principles quantum mechanics calculations on small water clusters have shown that both hydrogen bond and reference energy scales depend on the number of incident hydrogen bonds of the water molecule. In this work, we propose a new methodology to couple the reference energy scale to the degree of hydrogen bonding in the fluid. We demonstrate the utility of the new approach by showing that it gives improved predictions of water-hydrocarbon mutual solubilities.
Scaling Factor Estimation Using an Optimized Mass Change Strategy, Part 1: Theory
DEFF Research Database (Denmark)
Aenlle, Manuel López; Fernández, Pelayo Fernández; Brincker, Rune
2007-01-01
In natural input modal analysis, only un-scaled mode shapes can be obtained. The mass change method is, in many cases, the simplest way to estimate the scaling factors, which involves repeated modal testing after changing the mass in different points of the structure where the mode shapes are known....... The scaling factors are determined using the natural frequencies and mode shapes of both the modified and the unmodified structure. However, the uncertainty on the scaling factor estimation depends on the modal analysis and the mass change strategy (number, magnitude and location of the masses) used to modify...
Energy Technology Data Exchange (ETDEWEB)
Kuhn, William L.; Rector, David R.; Rassat, Scot D.; Enderlin, Carl W.; Minette, Michael J.; Bamberger, Judith A.; Josephson, Gary B.; Wells, Beric E.; Berglin, Eric J.
2013-09-27
This document is a previously unpublished work based on a draft report prepared by Pacific Northwest National Laboratory (PNNL) for the Hanford Waste Treatment and Immobilization Plant (WTP) in 2012. Work on the report stopped when WTP’s approach to testing changed. PNNL is issuing a modified version of the document a year later to preserve and disseminate the valuable technical work that was completed. This document establishes technical bases for evaluating the mixing performance of Waste Treatment Plant (WTP) pretreatment process tanks based on data from less-than-full-scale testing, relative to specified mixing requirements. The technical bases include the fluid mechanics affecting mixing for specified vessel configurations, operating parameters, and simulant properties. They address scaling vessel physical performance, simulant physical performance, and “scaling down” the operating conditions at full scale to define test conditions at reduced scale and “scaling up” the test results at reduced scale to predict the performance at full scale. Essentially, this document addresses the following questions: • Why and how can the mixing behaviors in a smaller vessel represent those in a larger vessel? • What information is needed to address the first question? • How should the information be used to predict mixing performance in WTP? The design of Large Scale Integrated Testing (LSIT) is being addressed in other, complementary documents.
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are
Kapuza, A. V.; Tyumeneva, Yu. A.
2017-01-01
One of the ways of controlling for the influence of social expectations on the answers given by survey respondents is to use a social desirability scale together with the main questions. The social desirability scale, which was included in the Teaching and Learning International Survey (TALIS) international comparative study for this purpose, was…
Directory of Open Access Journals (Sweden)
Vashishta P.
2011-05-01
Full Text Available A linear-scaling algorithm based on a divide-and-conquer (DC scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT. This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations
Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...
Peterson, Candida C.; Wellman, Henry M.
2009-01-01
We examined deaf and hearing children's progression of steps in theory of mind (ToM) development including their understanding of social pretending. Ninety-three children (33 deaf; 60 hearing) aged 3-13 years were tested on a set of six closely matched ToM tasks. Results showed that deaf children were delayed substantially behind hearing children…
Novakovic, A.M.; Krekels, E.H.; Munafo, A.; Ueckert, S.; Karlsson, M.O.
2016-01-01
In this study, we report the development of the first item response theory (IRT) model within a pharmacometrics framework to characterize the disease progression in multiple sclerosis (MS), as measured by Expanded Disability Status Score (EDSS). Data were collected quarterly from a 96-week phase III
Teaching a lay theory before college narrows achievement gaps at scale.
Yeager, David S; Walton, Gregory M; Brady, Shannon T; Akcinar, Ezgi N; Paunesku, David; Keane, Laura; Kamentz, Donald; Ritter, Gretchen; Duckworth, Angela Lee; Urstein, Robert; Gomez, Eric M; Markus, Hazel Rose; Cohen, Geoffrey L; Dweck, Carol S
2016-06-14
Previous experiments have shown that college students benefit when they understand that challenges in the transition to college are common and improvable and, thus, that early struggles need not portend a permanent lack of belonging or potential. Could such an approach-called a lay theory intervention-be effective before college matriculation? Could this strategy reduce a portion of racial, ethnic, and socioeconomic achievement gaps for entire institutions? Three double-blind experiments tested this possibility. Ninety percent of first-year college students from three institutions were randomly assigned to complete single-session, online lay theory or control materials before matriculation (n > 9,500). The lay theory interventions raised first-year full-time college enrollment among students from socially and economically disadvantaged backgrounds exiting a high-performing charter high school network or entering a public flagship university (experiments 1 and 2) and, at a selective private university, raised disadvantaged students' cumulative first-year grade point average (experiment 3). These gains correspond to 31-40% reductions of the raw (unadjusted) institutional achievement gaps between students from disadvantaged and nondisadvantaged backgrounds at those institutions. Further, follow-up surveys suggest that the interventions improved disadvantaged students' overall college experiences, promoting use of student support services and the development of friendship networks and mentor relationships. This research therefore provides a basis for further tests of the generalizability of preparatory lay theories interventions and of their potential to reduce social inequality and improve other major life transitions.
Enforced Scale Selection in Field Theories of Mechanical and Biological Systems
DEFF Research Database (Denmark)
Tarp, Jens Magelund
The collective motion of driven or self-propelled interacting units is in many natural systems known to produce complex patterns. This thesis considers two continuum field theories commonly used in describing pattern formation and dynamics: The first one, the phase field crystal model, which...
Paas, L.J.; Sijtsma, K.
2008-01-01
Assessing scale dimensionality is an important issue in the marketing literature. In an exploratory context, principal axis factoring and principal components analysis receive emphasis, while other fields apply suitable alternatives. This article introduces a promising procedure known as Mokken
Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow
Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.
2014-01-01
An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.
Directory of Open Access Journals (Sweden)
Tyson L Swetnam
Full Text Available A significant concern about Metabolic Scaling Theory (MST in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1 tree condition and physical form, (2 the level of inter-tree competition (e.g. open vs closed stand structure, (3 increasing tree age, and (4 differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381 were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926. Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058, as did recently dead standing trees (n = 375. Exponent value of the mean-tree model that disregarded tree condition (n = 3,740 was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST.
Swetnam, Tyson L; O'Connor, Christopher D; Lynch, Ann M
2016-01-01
A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST.
International Nuclear Information System (INIS)
Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank; Valeev, Edward F.
2016-01-01
Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate
Zhou, Shiqi
2006-06-01
A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.
Energy Technology Data Exchange (ETDEWEB)
Dai, J.C. [College of Mechanical and Electrical Engineering, Central South University, Changsha (China); School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Hu, Y.P.; Liu, D.S. [School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Long, X. [Hara XEMC Windpower Co., Ltd., Xiangtan (China)
2011-03-15
The aerodynamic loads for MW scale horizontal-axis wind turbines are calculated and analyzed in the established coordinate systems which are used to describe the wind turbine. In this paper, the blade element momentum (BEM) theory is employed and some corrections, such as Prandtl and Buhl models, are carried out. Based on the B-L semi-empirical dynamic stall (DS) model, a new modified DS model for NACA63-4xx airfoil is adopted. Then, by combing BEM modified theory with DS model, a set of calculation method of aerodynamic loads for large scale wind turbines is proposed, in which some influence factors such as wind shear, tower, tower and blade vibration are considered. The research results show that the presented dynamic stall model is good enough for engineering purpose; the aerodynamic loads are influenced by many factors such as tower shadow, wind shear, dynamic stall, tower and blade vibration, etc, with different degree; the single blade endures periodical changing loads but the variations of the rotor shaft power caused by the total aerodynamic torque in edgewise direction are very small. The presented study approach of aerodynamic loads calculation and analysis is of the university, and helpful for thorough research of loads reduction on large scale wind turbines. (author)
Jordan, Pascal; Shedden-Mora, Meike C; Löwe, Bernd
2017-01-01
The Generalized Anxiety Disorder scale (GAD-7) is one of the most frequently used diagnostic self-report scales for screening, diagnosis and severity assessment of anxiety disorder. Its psychometric properties from the view of the Item Response Theory paradigm have rarely been investigated. We aimed to close this gap by analyzing the GAD-7 within a large sample of primary care patients with respect to its psychometric properties and its implications for scoring using Item Response Theory. Robust, nonparametric statistics were used to check unidimensionality of the GAD-7. A graded response model was fitted using a Bayesian approach. The model fit was evaluated using posterior predictive p-values, item information functions were derived and optimal predictions of anxiety were calculated. The sample included N = 3404 primary care patients (60% female; mean age, 52,2; standard deviation 19.2) The analysis indicated no deviations of the GAD-7 scale from unidimensionality and a decent fit of a graded response model. The commonly suggested ultra-brief measure consisting of the first two items, the GAD-2, was supported by item information analysis. The first four items discriminated better than the last three items with respect to latent anxiety. The information provided by the first four items should be weighted more heavily. Moreover, estimates corresponding to low to moderate levels of anxiety show greater variability. The psychometric validity of the GAD-2 was supported by our analysis.
International Nuclear Information System (INIS)
Edenstrasser, J.W.
1995-01-01
A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics
Lohmann, Julia; Souares, Aurélia; Tiendrebéogo, Justin; Houlfort, Nathalie; Robyn, Paul Jacob; Somda, Serge M A; De Allegri, Manuela
2017-05-22
Although motivation of health workers in low- and middle-income countries (LMICs) has become a topic of increasing interest by policy makers and researchers in recent years, many aspects are not well understood to date. This is partly due to a lack of appropriate measurement instruments. This article presents evidence on the construct validity of a psychometric scale developed to measure motivation composition, i.e., the extent to which motivation of different origin within and outside of a person contributes to their overall work motivation. It is theoretically grounded in Self-Determination Theory (SDT). We conducted a cross-sectional survey of 1142 nurses in 522 government health facilities in 24 districts of Burkina Faso. We assessed the scale's validity in a confirmatory factor analysis framework, investigating whether the scale measures what it was intended to measure (content, structural, and convergent/discriminant validity) and whether it does so equally well across health worker subgroups (measurement invariance). Our results show that the scale measures a slightly modified version of the SDT continuum of motivation well. Measurements were overall comparable between subgroups, but results indicate that caution is warranted if a comparison of motivation scores between groups is the focus of analysis. The scale is a valuable addition to the repository of measurement tools for health worker motivation in LMICs. We expect it to prove useful in the quest for a more comprehensive understanding of motivation as well as of the effects and potential side effects of interventions intended to enhance motivation.
Ren, Jie
2017-12-01
The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.
Guo, L; Han, S S; Liu, X; Cheng, Y; Xu, Z Z; Fan, J; Chen, J; Chen, S G; Becker, W; Blaga, C I; DiChiara, A D; Sistrunk, E; Agostini, P; DiMauro, L F
2013-01-04
A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold ionization is presented for the case when the binding potential is the unscreened Coulomb potential. Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the theory by considering the depletion of the atomic ground state due to the applied laser field, which is well defined and does not require the introduction of a screening constant. We focus on the low-energy structure, which was observed in recent experiments with a midinfrared wavelength laser field. Both the spectra and, in particular, the observed scaling versus the Keldysh parameter and the ponderomotive energy are reproduced. The theory provides evidence that the origin of the structure lies in the long-range Coulomb interaction.
A dual theory of price and value in a meso-scale economic model with stochastic profit rate
Greenblatt, R. E.
2014-12-01
The problem of commodity price determination in a market-based, capitalist economy has a long and contentious history. Neoclassical microeconomic theories are based typically on marginal utility assumptions, while classical macroeconomic theories tend to be value-based. In the current work, I study a simplified meso-scale model of a commodity capitalist economy. The production/exchange model is represented by a network whose nodes are firms, workers, capitalists, and markets, and whose directed edges represent physical or monetary flows. A pair of multivariate linear equations with stochastic input parameters represent physical (supply/demand) and monetary (income/expense) balance. The input parameters yield a non-degenerate profit rate distribution across firms. Labor time and price are found to be eigenvector solutions to the respective balance equations. A simple relation is derived relating the expected value of commodity price to commodity labor content. Results of Monte Carlo simulations are consistent with the stochastic price/labor content relation.
DEFF Research Database (Denmark)
Qin, Xiao-liang; Weiner, Jacob; Qi, Lin
2013-01-01
allocation should be analyzed and interpreted allometrically because ratios or fractions such as Reproductive Effort or Harvest Index are size dependent. We investigated reproductive allocation of individuals in 6 varieties of Triticum (wheat) grown at a wide range of densities. We harvested leaves, stems...... size. There were significant differences among the varieties in the allometric exponent (slope of log–log relationship) of grain versus vegetative mass, such that some varieties produced higher yield (and therefore had a higher Harvest Index) than others when plants were small, while others had higher...... yield at larger sizes. Thus, the Harvest Index and its rank among varieties changed with plant size, which puts into question the practice of selecting for Harvest Index when crop performance varies greatly among individuals, years or environments. Selection for a high Harvest Index when individuals...
Bruner, Emiliano; de la Cuétara, José Manuel; Colom, Roberto; Martin-Loeches, Manuel
2012-01-01
The corpus callosum displays considerable morphological variability between individuals. Although some characteristics are thought to differ between male and female brains, there is no agreement regarding the source of this variation. Biomedical imaging and geometric morphometrics have provided tools to investigate shape and size variation in terms of integration and correlation. Here we analyze variations at the midsagittal outline of the corpus callosum in a sample of 102 young adults in order to describe and quantify the pattern of covariation associated with its morphology. Our results suggest that the shape of the corpus callosum is characterized by low levels of morphological integration, which explains the large variability. In larger brains, a minor allometric component involves a relative reduction of the splenium. Small differences between males and?females are associated with this allometric pattern, induced primarily by size variation rather than gender-specific characteristics. PMID:22296183
Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.
Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N
2015-10-30
A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes.
Psychological Trait Resilience Within Ecological Systems Theory: The Resilient Systems Scales.
Maltby, John; Day, Liz; Flowe, Heather D; Vostanis, Panos; Chivers, Sally
2017-07-14
This project describes the development of the Resilient Systems Scales, created to address conceptual and methodological ambiguities in assessing the ecological systems model of resilience. Across a number of samples (total N = 986), our findings suggest that the Resilient Systems Scales show equivalence to a previously reported assessment (Maltby, Day, & Hall, 2015 ) in demonstrating the same factor structure, adequate intercorrelation between the 2 measures of resilience, and equivalent associations with personality and well-being. The findings also suggest that the Resilient Systems Scales demonstrate adequate test-retest reliability, compare well with other extant measures of resilience in predicting well-being, and map, to varying degrees, onto positive expression of several cognitive, social, and emotional traits. The findings suggest that the new measure can be used alongside existing measures of resilience, or singly, to assess positive life outcomes within psychology research.
A note on finite-scale Navier–Stokes theory: The case of constant viscosity, strictly adiabatic flow
International Nuclear Information System (INIS)
Jordan, P.M.; Keiffer, R.S.
2015-01-01
We investigate the “piston problem” for the case of a viscous, but non-thermally conducting, gas with constant transport coefficients under the recently introduced generalization of the Navier–Stokes (NS) equations known as the finite-scale Navier–Stokes (FSNS) equations. Along with determining and analyzing the integral curves of the resulting kink-type traveling wave solutions (TWS)s, the present study also reveals the importance of the bulk viscosity vis-a-vis this special case of FSNS theory and highlights the impact that averaging has on the structure of the shock profile
Directory of Open Access Journals (Sweden)
Slaviša M. Ilić
2011-10-01
Full Text Available This paper analyzes the effectiveness of possible models for queuing at gas stations, using a mathematical model of the large-scale queuing theory. Based on actual data collected and the statistical analysis of the expected intensity of vehicle arrivals and queuing at gas stations, the mathematical modeling of the real process of queuing was carried out and certain parameters quantified, in terms of perception of the weaknesses of the existing models and the possible benefits of an automated queuing model.
Directory of Open Access Journals (Sweden)
M.F. Holovko
2017-12-01
Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.
Exact form factors for the scaling ZN-Ising and the affine AN-1-Toda quantum field theories
International Nuclear Information System (INIS)
Babujian, H.; Karowski, M.
2003-01-01
Previous results on form factors for the scaling Ising and the sinh-Gordon models are extended to general Z N -Ising and affine A N-1 -Toda quantum field theories. In particular result for order, disorder parameters and para-Fermi fields σ Q (x), μ Q-tilde (x) and ψ Q (x) are presented for the Z N -model. For the A N-1 -Toda model form factors for exponentials of the Toda fields are proposed. The quantum field equation of motion is proved and the mass and wave function renormalization are calculated exactly
Peterson, Candida C.; Wellman, Henry M.
2009-01-01
We examined deaf and hearing children’s progression of steps in theory-of-mind (ToM) development including their understanding of social pretending. Ninety-three children (33 deaf; 60 hearing) aged 3 to 13 years were tested on a set of six closely-matched ToM tasks. Results showed that deaf children were delayed substantially behind hearing children in understanding pretending, false belief and other ToM concepts, in line with their delayed uptake of social pretend play. By using a scaling me...
Santiago, Hildemberg Agostinho Rocha de; De Pierro, Lucas Rodolfo; Reis, Rafael Menezes; Caluz, Antônio Gabriel Ricardo Engracia; Ribeiro, Victor Barbosa; Volpon, José Batista
2015-11-01
To investigate allometric relationships among body mass (BM), muzzle-tail length (MTL), and tibia length (TL) in Wistar rats and establish their growth rate change parameters. Eighteen male and 18 female Wistar rats were studied from the 3rd to the 21st week of age. BM, MTL, and TL were measured daily, and relative growth was compared using allometry. A positive correlation between BM and MTL (p<0.05) and BM and TL (p<0.05) was observed. Males and females showed comparable curves; however, females had turning points at a younger age. The allometric relationship between BM and MTL presented a regular increase until reaching a mass of 351 g (males) and 405 g (females). BM and TL showed an initial increase until 185 g (males) and 182 g (females), and then reached a plateau that finished at 412 g (males) and 334 g (females), to display another increase. The allometric relationship of body mass with animal length and tibia length was comparable for male and female rats, with female rats maturing earlier. Animal longitudinal growth occurred in a single stage. In contrast, tibia length depicted two stages of accelerated growth with an intermediate period of deceleration.
Directory of Open Access Journals (Sweden)
Shaghayegh Hasanpour
2016-10-01
Full Text Available Fish larvae have several sensory systems that are functional at or soon after hatching and then are developed further during larval and juvenile stages. This study was conducted to investigate development of the eye in Rutilus kutum, based on histological and allometric growth analysis during early developmental stages up to 35 day post hatching with emphasis on retinal morphology. For this purpose, the histological sections were prepared and allometric growth pattern of the eye was calculated. The results showed that the most eye’s structures along with the retina of the newly hatched larvae, as the inner sensory (photosensitive tissue were completely differentiated. Allometric growth pattern of the eye diameter up to the inflexion point (7 dph was somewhat positive and then it became negative. The results revealed that the Caspian kutum is dependence on visual capability as visual feeder during their larval period which itself explains completion of eye structures and the high growth rate of eye before 3 dph i.e. beginning of mixed feeding.
Using Item Response Theory Methods with the Brazilian Temperament Scale for Students
Primi, Ricardo; Wechsler, Solange Muglia; de Cassia Nakano, Tatiana; Oakland, Thomas; Guzzo, Raquel Souza Lobo
2014-01-01
The development and validation of the Brazilian Temperament Scale for Students (BTSS) are examined through the use of data from 1,258 children and adolescents, ages 10 through 21 (M = 15.0, SD = 2.1, 56% females). Three psychometric properties of BTSS are reported: its internal structure (e.g., validity), its reliability, and cut points to best…
Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads
We describe a model called Regional Hydrologic Modeling for Environmental Evaluation 16 (RHyME2) for quantifying annual nutrient loads in stream networks and watersheds. RHyME2 is 17 a cross-scale statistical and process-based water-quality model. The model ...
Work Adjustment Theory: An Empirical Test Using a Fuzzy Rating Scale.
Hesketh, Beryl; And Others
1992-01-01
A fuzzy graphic rating scale elicited work preferences and job perceptions of 166 (of 170) Australian bank employees. Correspondence between preferences and perceptions correlated significantly with job satisfaction. Satisfaction and performance related to tenure intentions; this relation was higher for poorer performers. (SK)
Reise, Steven P.; Ventura, Joseph; Keefe, Richard S. E.; Baade, Lyle E.; Gold, James M.; Green, Michael F.; Kern, Robert S.; Mesholam-Gately, Raquelle; Nuechterlein, Keith H.; Seidman, Larry J.; Bilder, Robert
2011-01-01
A psychometric analysis of 2 interview-based measures of cognitive deficits was conducted: the 21-item Clinical Global Impression of Cognition in Schizophrenia (CGI-CogS; Ventura et al., 2008), and the 20-item Schizophrenia Cognition Rating Scale (SCoRS; Keefe et al., 2006), which were administered on 2 occasions to a sample of people with…
Topological charge and cooling scales in pure SU(2) lattice gauge theory
Berg, Bernd A.; Clarke, David A.
2018-01-01
Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β=2.928, size 604, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1/4/Tc=0.643(12), where Tc is the SU(2) deconfinement temperature. Differences between ...
Directory of Open Access Journals (Sweden)
Martin Hernani Merino
2014-12-01
Full Text Available There has been growing recognition of the importance of creating performance measurement tools for the economic, social and environmental management of micro and small enterprise (MSE. In this context, this study aims to validate an instrument to assess perceptions of sustainable development practices by MSEs by means of a Graded Response Model (GRM with a Bayesian approach to Item Response Theory (IRT. The results based on a sample of 506 university students in Peru, suggest that a valid measurement instrument was achieved. At the end of the paper, methodological and managerial contributions are presented.
Zheligovsky, Vladislav
2011-01-01
New developments for hydrodynamical dynamo theory have been spurred by recent evidence of self-sustained dynamo activity in laboratory experiments with liquid metals. The emphasis in the present volume is on the introduction of powerful mathematical techniques required to tackle modern multiscale analysis of continous systems and there application to a number of realistic model geometries of increasing complexity. This introductory and self-contained research monograph summarizes the theoretical state-of-the-art to which the author has made pioneering contributions.
Zhang, Dengke; Pang, Yanxia; Cai, Weixiong; Fazio, Rachel L; Ge, Jianrong; Su, Qiaorong; Xu, Shuiqin; Pan, Yinan; Chen, Sanmei; Zhang, Hongwei
2016-08-01
Impairment of theory of mind (ToM) is a common phenomenon following traumatic brain injury (TBI) that has clear effects on patients' social functioning. A growing body of research has focused on this area, and several methods have been developed to assess ToM deficiency. Although an informant assessment scale would be useful for examining individuals with TBI, very few studies have adopted this approach. The purpose of the present study was to develop an informant assessment scale of ToM for adults with traumatic brain injury (IASToM-aTBI) and to test its reliability and validity with 196 adults with TBI and 80 normal adults. A 44-item scale was developed following a literature review, interviews with patient informants, consultations with experts, item analysis, and exploratory factor analysis (EFA). The following three common factors were extracted: social interaction, understanding of beliefs, and understanding of emotions. The psychometric analyses indicate that the scale has good internal consistency reliability, split-half reliability, test-retest reliability, inter-rater reliability, structural validity, discriminate validity and criterion validity. These results provide preliminary evidence that supports the reliability and validity of the IASToM-aTBI as a ToM assessment tool for adults with TBI.
Directory of Open Access Journals (Sweden)
Shanshan Zhang
2017-09-01
Full Text Available In spite of the growing interest in the methods of evaluating the classification consistency (CC indices, only few researches are available in the field of applying these methods in the practice of large-scale educational assessment. In addition, only few studies considered the influence of practical factors, for example, the examinee ability distribution, the cut score location and the score scale, on the performance of CC indices. Using the newly developed Lee's procedure based on the item response theory (IRT, the main purpose of this study is to investigate the performance of CC indices when practical factors are taken into consideration. A simulation study and an empirical study were conducted under comprehensive conditions. Results suggested that with negatively skewed distribution, the CC indices were larger than with other distributions. Interactions occurred among ability distribution, cut score location, and score scale. Consequently, Lee's IRT procedure is reliable to be used in the field of large-scale educational assessment, and when reporting the indices, it should be treated with caution as testing conditions may vary a lot.
Prondvai, Edina; Godefroit, Pascal; Adriaens, Dominique; Hu, Dong-Yu
2018-01-10
With their elongated forelimbs and variable aerial skills, paravian dinosaurs, a clade also comprising modern birds, are in the hotspot of vertebrate evolutionary research. Inferences on the early evolution of flight largely rely on bone and feather morphology, while osteohistological traits are usually studied to explore life-history characteristics. By sampling and comparing multiple homologous fore- and hind limb elements, we integrate for the first time qualitative and quantitative osteohistological approaches to get insight into the intraskeletal growth dynamics and their functional implications in five paravian dinosaur taxa, Anchiornis, Aurornis, Eosinopteryx, Serikornis, and Jeholornis. Our qualitative assessment implies a considerable diversity in allometric/isometric growth patterns among these paravians. Quantitative analyses show that neither taxa nor homologous elements have characteristic histology, and that ontogenetic stage, element size and the newly introduced relative element precocity only partially explain the diaphyseal histovariability. Still, Jeholornis, the only avialan studied here, is histologically distinct from all other specimens in the multivariate visualizations raising the hypothesis that its bone tissue characteristics may be related to its superior aerial capabilities compared to the non-avialan paravians. Our results warrant further research on the osteohistological correlates of flight and developmental strategies in birds and bird-like dinosaurs.
Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment
Energy Technology Data Exchange (ETDEWEB)
Mark E. Kubiske
2013-04-15
The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.
The effect of allometric growth on morphometric traits of wolf (Canis lupus using geometric truss
Directory of Open Access Journals (Sweden)
Rasoul Khosravi
2012-12-01
Full Text Available Iranian wolf is found in different habitats of Iran and possesses different morphological characteristics with respect to its cranium shape based on its distribution. This study was conducted to investigate the allometric growth and geometric changes of cranium in relation to its growth .A total of 35 skulls were collected from different regions and divided into two groups (adult and subadult. Seventeen angles that were drown by joining the measuring points on the whole, neurocranium, and viscerocranium. The correlation between skull index and angle measurements were analyzed in three categories. The decreasing of angles among dorsal face point on the external occipital crest, junction on the median plane of the right and left nasofrontal sutures, the most lateral point of the zygomatic arch and anterior end of the interincisive suture located between the roots of the upper central incisor teeth showed width of the skull increased more than the skull length with age, therefore, skull index increased with age. Results of geometry surveys showed that cranial width did not increase as much compared to the length of neurocranium length. Therefore, the angles of this section increased with age. Also, viscerocranium width increased more than viscerocranium length and the skull became widened with age.
Directory of Open Access Journals (Sweden)
Breno Barros
Full Text Available Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes.
Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay
Bachiller, Eneko
2012-11-21
The body size of fish is an important factor in determining their biology and ecology, as predators eat prey smaller than themselves. Predator mouth size restricts the availability of possible prey. In this paper we provide the allometric relationships of eight common, small pelagic fish species in the Bay of Biscay. In addition, we describe the predator-prey size ratios for different species, and we determine changes in their ratio-based trophic-niche breadth with increasing body size. Results suggest that gape size does not totally determine the predator-prey size ratio distribution, but predators use the entire available prey size range, including the smallest. As they grow they simply incorporate larger prey as their increased gape size permits. Accordingly, a large degree of overlap was found in the diet composition in terms of size and predator-prey ratios, even between fish of different sizes. Of the species studied, only horse mackerels seem to be clearly specialized in relatively large prey. © 2012 International Council for the Exploration of the Sea.
Plasmon mass scale in two-dimensional classical nonequilibrium gauge theory
Lappi, T.; Peuron, J.
2018-02-01
We study the plasmon mass scale in classical gluodynamics in a two-dimensional configuration that mimics the boost-invariant initial color fields in a heavy-ion collision. We numerically measure the plasmon mass scale using three different methods: a hard thermal loop (HTL) expression involving the quasiparticle spectrum constructed from Coulomb gauge field correlators, an effective dispersion relation, and the measurement of oscillations between electric and magnetic energies after introducing a spatially uniform perturbation to the electric field. We find that the HTL expression and the uniform electric field measurement are in rough agreement. The effective dispersion relation agrees with other methods within a factor of 2. We also study the dependence on time and occupation number, observing similar trends as in three spatial dimensions, where a power-law dependence sets in after an occupation-number-dependent transient time. We observe a decrease of the plasmon mass squared as t-1 / 3 at late times.
Self-consistent field theory based molecular dynamics with linear system-size scaling
Energy Technology Data Exchange (ETDEWEB)
Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Gas production in the Barnett Shale obeys a simple scaling theory
Patzek, Tad W.; Male, Frank; Marder, Michael
2013-01-01
Ten years ago, US natural gas cost 50% more than that from Russia. Now, it is threefold less. US gas prices plummeted because of the shale gas revolution. However, a key question remains: At what rate will the new hydrofractured horizontal wells in shales continue to produce gas? We analyze the simplest model of gas production consistent with basic physics of the extraction process. Its exact solution produces a nearly universal scaling law for gas wells in each shale play, where production f...
International Nuclear Information System (INIS)
Tatano, F.
1996-01-01
The wastewater treatments plants localized in the Ruhr River (Germany), generally present a typical wastewater temperature variation curve during the winter period. These temperature changes produce specific effects on the nitrogen removal efficiencies in the activated sludge systems. The so called 'hysteresis' phenomenon is responsible for these effects. The paper deals with some simplified theoretical considerations and with a full scale experimental evaluations of the effects caused by the hysteresis phenomenon in the biological nitrogen removal
International Nuclear Information System (INIS)
Gulov, A.V.; Skalozub, V.V.
2000-01-01
In the Yukawa model with two different mass scales the renormalization group equation is used to obtain relations between scattering amplitudes at low energies. Considering fermion-fermion scattering as an example, a basic one-loop renormalization group relation is derived which gives possibility to reduce the problem to the scattering of light particles on the external field substituting a heavy virtual state. Applications of the results to problem of searching new physics beyond the Standard Model are discussed [ru
Nonlinear power spectrum from resummed perturbation theory: a leap beyond the BAO scale
International Nuclear Information System (INIS)
Anselmi, Stefano; Pietroni, Massimo
2012-01-01
A new computational scheme for the nonlinear cosmological matter power spectrum (PS) is presented. Our method is based on evolution equations in time, which can be cast in a form extremely convenient for fast numerical evaluations. A nonlinear PS is obtained in a time comparable to that needed for a simple 1-loop computation, and the numerical implementation is very simple. Our results agree with N-body simulations at the percent level in the BAO range of scales, and at the few-percent level up to k ≅ 1 h/Mpc at z∼>0.5, thereby opening the possibility of applying this tool to scales interesting for weak lensing. We clarify the approximations inherent to this approach as well as its relations to previous ones, such as the Time Renormalization Group, and the multi-point propagator expansion. We discuss possible lines of improvements of the method and its intrinsic limitations by multi streaming at small scales and low redshifts
Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina
Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
International Nuclear Information System (INIS)
Maggiore, Michele; Riotto, Antonio
2010-01-01
A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside 'Markovian' terms, we find 'memory' terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the
Toth, Laszlo Daniel
2013-05-07
Disordered photonics is the study of light in random media. In a disordered photonic medium, multiple scattering of light and coherence, together with the fundamental principle of reciprocity, produce a wide range of interesting phenomena, such as enhanced backscattering and Anderson localization of light. They are also responsible for the existence of modes in these random systems. It is known that analogous processes to Bose-Einstein condensation can occur in classical wave systems, too. Classical condensation has been studied in several contexts in photonics: pulse formation in lasers, mode-locking theory and coherent emission of disordered lasers. All these systems have the common theme of possessing a large ensemble of waves or modes, together with nonlinearity, dispersion or gain. In this work, we study light condensation and its connection with light localization in a disordered, passive dielectric medium. We develop a theory for the modes inside the disordered resonator, which combines the Feshbach projection technique with spin-glass theory and statistical physics. In particular, starting from the Maxwell’s equations, we map the system to a spherical p-spin model with p = 2. The spins are replaced by modes and the temperature is related to the fluctuations in the environment. We study the equilibrium thermodynamics of the system in a general framework and show that two distinct phases exist: a paramagnetic phase, where all the modes are randomly oscillating and a condensed phase, where the energy condensates on a single mode. The thermodynamic quantities can be explicitly interpreted and can also be computed from the disorder-averaged time domain correlation function. We launch an ab initio simulation campaign using our own code and the Shaheen supercomputer to test the theoretical predictions. We construct photonic samples of varying disorder and find computationally relevant ways to obtain the thermodynamic quantities. We observe the phase transition
Critical dynamics a field theory approach to equilibrium and non-equilibrium scaling behavior
Täuber, Uwe C
2014-01-01
Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems. Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critic...
Iyigun, Emine; Tastan, Sevinc; Ayhan, Hatice; Kose, Gulsah; Acikel, Cengizhan
2016-06-01
This study aimed to determine the validity and reliability levels of the Planned Behavior Theory Scale as related to a testicular self-examination. The study was carried out in a health-profession higher-education school in Ankara, Turkey, from April to June 2012. The study participants comprised 215 male students. Study data were collected by using a questionnaire, a planned behavior theory scale related to testicular self-examination, and Champion's Health Belief Model Scale (CHBMS). The sub-dimensions of the planned behavior theory scale, namely those of intention, attitude, subjective norms and self-efficacy, were found to have Cronbach's alpha values of between 0.81 and 0.89. Exploratory factor analysis showed that items of the scale had five factors that accounted for 75% of the variance. Of these, the sub-dimension of intention was found to have the highest level of contribution. A significant correlation was found between the sub-dimensions of the testicular self-examination planned behavior theory scale and those of CHBMS (p Planned Behavior Theory Scale is a valid and reliable measurement for Turkish society.
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r matter is clumpy on the smallest scales relevant for galaxy formation.
The method of arbitrarily large moments to calculate single scale processes in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)
2017-01-15
We device a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.
The method of arbitrarily large moments to calculate single scale processes in quantum field theory
Directory of Open Access Journals (Sweden)
Johannes Blümlein
2017-08-01
Full Text Available We devise a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.
Managing common resources in local and global systems. Applying theory across scales
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Sylvia [ed.
1997-12-31
The main point brought forward in this publication is the productiveness of applying theoretical elements, developed within common property resource (CPR) literature, to a broader field of cases on different scales. The common framework for the contributions is a series of seminars held at the Department of Water and Environmental Studies in the spring of 1996, covering expanding work during the last decade on common property resource (CPR) management. It is obvious that there were a broad range of definitions of the concept CPR in the literature. The common pool/property resource concepts are both used, often depending on the resource studied, and authors in this volume have used both terms accordingly. Certain points are raised from empirical cases presented in this volume that are partly missing or not thoroughly stressed in other work in the area of CPR management and which crystallized much clearer when contrasting the situation for cases from different scales. Separate abstracts have been performed for five of the seven contributions
Scaling theory of tunneling diffusion of a heavy particle interacting with phonons
Itai, K.
1988-05-01
The author discusses motion of a heavy particle in a d-dimensional lattice interacting with phonons by different couplings. The models discussed are characterized by the dimension (d) and the set of two indices (λ,ν) which specify the momentum dependence of the dispersion of phonon energy (ω~kν) and of the particle-phonon coupling (~kλ). Scaling equations are derived by eliminating the short-time behavior in a renormalization-group scheme using Feynman's path-integral method, and the technique developed by Anderson, Yuval, and Hamann for the Kondo problem. The scaling equations show that the particle is localized in the strict sense when (2λ+d+2)/ν2. In the marginal case, i.e., (2λ+d+2)/ν=2, localization occurs for couplings larger than a critical value. This marginal case shows Ohmic dissipation and is a close analogy to the Caldeira-Leggett model for macroscopic quantum tunneling and the hopping models of Schmid's type. For large-enough (2λ+d+2)/ν, the particle is considered practically localized, but the origin of the localization is quite different from that for (2λ+d+2)/ν<=2. .AE
Managing common resources in local and global systems. Applying theory across scales
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Sylvia [ed.
1998-12-31
The main point brought forward in this publication is the productiveness of applying theoretical elements, developed within common property resource (CPR) literature, to a broader field of cases on different scales. The common framework for the contributions is a series of seminars held at the Department of Water and Environmental Studies in the spring of 1996, covering expanding work during the last decade on common property resource (CPR) management. It is obvious that there were a broad range of definitions of the concept CPR in the literature. The common pool/property resource concepts are both used, often depending on the resource studied, and authors in this volume have used both terms accordingly. Certain points are raised from empirical cases presented in this volume that are partly missing or not thoroughly stressed in other work in the area of CPR management and which crystallized much clearer when contrasting the situation for cases from different scales. Separate abstracts have been performed for five of the seven contributions
Cut-off scaling and multiplicative reformalization in the theory of critical phenomena
International Nuclear Information System (INIS)
Forgacs, G.; Solyom, J.; Zawadowski, A.
1976-03-01
In the paper a new method to study the critical fluctuations in systems of 4-epsilon dimensions around the phase transition point is developed. This method unifies the Kadanoff scaling hypothesis as formulated by Wilson by help of his renormalization group technique and the simple mathematical structure of the Lie equations of the Gell-Mann-Low multiplicative renormalization. The basic idea of the new method is that a change in the physical cut-off can be compensated by an effective coupling in such a way that the Green's function and vertex in the original and transformed system differ only by a multiplicative factor. The critical indices, the anomalous dimensions and the critical exponent describing the correction to scaling are determined to second order in epsilon. The specific heat exponent is also calculated, in four dimensions the effect of fluctuations appears in the form of logarithmic corrections. In the last sections the new method is compared to other ones and the differences are discussed. (Sz.N.Z.)
Shimazu, Akihito; Schaufeli, Wilmar B; Miyanaka, Daisuke; Iwata, Noboru
2010-11-05
With the globalization of occupational health psychology, more and more researchers are interested in applying employee well-being like work engagement (i.e., a positive, fulfilling, work-related state of mind that is characterized by vigor, dedication, and absorption) to diverse populations. Accurate measurement contributes to our further understanding and to the generalizability of the concept of work engagement across different cultures. The present study investigated the measurement accuracy of the Japanese and the original Dutch versions of the Utrecht Work Engagement Scale (9-item version, UWES-9) and the comparability of this scale between both countries. Item Response Theory (IRT) was applied to the data from Japan (N = 2,339) and the Netherlands (N = 13,406). Reliability of the scale was evaluated at various levels of the latent trait (i.e., work engagement) based the test information function (TIF) and the standard error of measurement (SEM). The Japanese version had difficulty in differentiating respondents with extremely low work engagement, whereas the original Dutch version had difficulty in differentiating respondents with high work engagement. The measurement accuracy of both versions was not similar. Suppression of positive affect among Japanese people and self-enhancement (the general sensitivity to positive self-relevant information) among Dutch people may have caused decreased measurement accuracy. Hence, we should be cautious when interpreting low engagement scores among Japanese as well as high engagement scores among western employees.
Directory of Open Access Journals (Sweden)
Iwata Noboru
2010-11-01
Full Text Available Abstract With the globalization of occupational health psychology, more and more researchers are interested in applying employee well-being like work engagement (i.e., a positive, fulfilling, work-related state of mind that is characterized by vigor, dedication, and absorption to diverse populations. Accurate measurement contributes to our further understanding and to the generalizability of the concept of work engagement across different cultures. The present study investigated the measurement accuracy of the Japanese and the original Dutch versions of the Utrecht Work Engagement Scale (9-item version, UWES-9 and the comparability of this scale between both countries. Item Response Theory (IRT was applied to the data from Japan (N = 2,339 and the Netherlands (N = 13,406. Reliability of the scale was evaluated at various levels of the latent trait (i.e., work engagement based the test information function (TIF and the standard error of measurement (SEM. The Japanese version had difficulty in differentiating respondents with extremely low work engagement, whereas the original Dutch version had difficulty in differentiating respondents with high work engagement. The measurement accuracy of both versions was not similar. Suppression of positive affect among Japanese people and self-enhancement (the general sensitivity to positive self-relevant information among Dutch people may have caused decreased measurement accuracy. Hence, we should be cautious when interpreting low engagement scores among Japanese as well as high engagement scores among western employees.
Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.
2016-07-01
Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.
Sibley, Chris G; Houkamau, Carla A
2013-01-01
We argue that there is a need for culture-specific measures of identity that delineate the factors that most make sense for specific cultural groups. One such measure, recently developed specifically for Māori peoples, is the Multi-Dimensional Model of Māori Identity and Cultural Engagement (MMM-ICE). Māori are the indigenous peoples of New Zealand. The MMM-ICE is a 6-factor measure that assesses the following aspects of identity and cultural engagement as Māori: (a) group membership evaluation, (b) socio-political consciousness, (c) cultural efficacy and active identity engagement, (d) spirituality, (e) interdependent self-concept, and (f) authenticity beliefs. This article examines the scale properties of the MMM-ICE using item response theory (IRT) analysis in a sample of 492 Māori. The MMM-ICE subscales showed reasonably even levels of measurement precision across the latent trait range. Analysis of age (cohort) effects further indicated that most aspects of Māori identification tended to be higher among older Māori, and these cohort effects were similar for both men and women. This study provides novel support for the reliability and measurement precision of the MMM-ICE. The study also provides a first step in exploring change and stability in Māori identity across the life span. A copy of the scale, along with recommendations for scale scoring, is included.
Mokkink, Lidwine Brigitta; Galindo-Garre, Francisca; Uitdehaag, Bernard Mj
2016-12-01
The Multiple Sclerosis Walking Scale-12 (MSWS-12) measures walking ability from the patients' perspective. We examined the quality of the MSWS-12 using an item response theory model, the graded response model (GRM). A total of 625 unique Dutch multiple sclerosis (MS) patients were included. After testing for unidimensionality, monotonicity, and absence of local dependence, a GRM was fit and item characteristics were assessed. Differential item functioning (DIF) for the variables gender, age, duration of MS, type of MS and severity of MS, reliability, total test information, and standard error of the trait level (θ) were investigated. Confirmatory factor analysis showed a unidimensional structure of the 12 items of the scale, explaining 88% of the variance. Item 2 did not fit into the GRM model. Reliability was 0.93. Items 8 and 9 (of the 11 and 12 item version respectively) showed DIF on the variable severity, based on the Expanded Disability Status Scale (EDSS). However, the EDSS is strongly related to the content of both items. Our results confirm the good quality of the MSWS-12. The trait level (θ) scores and item parameters of both the 12- and 11-item versions were highly comparable, although we do not suggest to change the content of the MSWS-12. © The Author(s), 2016.
Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.
2011-07-01
Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on
Universal scaling of the logarithmic negativity in massive quantum field theory
Blondeau-Fournier, Olivier; Castro-Alvaredo, Olalla A.; Doyon, Benjamin
2016-03-01
We consider the logarithmic negativity, a measure of bipartite entanglement, in a general unitary 1 + 1-dimensional massive quantum field theory, not necessarily integrable. We compute the negativity between a finite region of length r and an adjacent semi-infinite region, and that between two semi-infinite regions separated by a distance r. We show that the former saturates to a finite value, and that the latter tends to zero, as r\\to ∞ . We show that in both cases, the leading corrections are exponential decays in r (described by modified Bessel functions) that are solely controlled by the mass spectrum of the model, independently of its scattering matrix. This implies that, like the entanglement entropy (EE), the logarithmic negativity displays a very high level of universality, allowing one to extract information about the mass spectrum. Further, a study of sub-leading terms shows that, unlike the EE, a large-r analysis of the negativity allows for the detection of bound states.
Thermalization time scales for WIMP capture by the Sun in effective theories
Energy Technology Data Exchange (ETDEWEB)
Widmark, A., E-mail: axel.widmark@fysik.su.se [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden)
2017-05-01
I study the process of dark matter capture by the Sun, under the assumption of a Weakly Interacting Massive Particle (WIMP), in the framework of non-relativistic effective field theory. Hypothetically, WIMPs from the galactic halo can scatter against atomic nuclei in the solar interior, settle to thermal equilibrium with the solar core and annihilate to produce an observable flux of neutrinos. In particular, I examine the thermalization process using Monte-Carlo integration of WIMP trajectories. I consider WIMPs in a mass range of 10–1000 GeV and WIMP-nucleon interaction operators with different dependence on spin and transferred momentum. I find that the density profiles of captured WIMPs are in accordance with a thermal profile described by the Sun's gravitational potential and core temperature. Depending on the operator that governs the interaction, the majority of the thermalization time is spent in either the solar interior or exterior. If normalizing the WIMP-nuclei interaction strength to a specific capture rate, I find that the thermalization time differs at most by 3 orders of magnitude between operators. In most cases of interest, the thermalization time is many orders of magnitude shorter than the age of the solar system.
Theory of wire number scaling in wire-array Z pinches
International Nuclear Information System (INIS)
Desjarlais, M.P.; Marder, B.M.
1999-01-01
Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics
An evolutionary theory of large-scale human warfare: Group-structured cultural selection.
Zefferman, Matthew R; Mathew, Sarah
2015-01-01
When humans wage war, it is not unusual for battlefields to be strewn with dead warriors. These warriors typically were men in their reproductive prime who, had they not died in battle, might have gone on to father more children. Typically, they are also genetically unrelated to one another. We know of no other animal species in which reproductively capable, genetically unrelated individuals risk their lives in this manner. Because the immense private costs borne by individual warriors create benefits that are shared widely by others in their group, warfare is a stark evolutionary puzzle that is difficult to explain. Although several scholars have posited models of the evolution of human warfare, these models do not adequately explain how humans solve the problem of collective action in warfare at the evolutionarily novel scale of hundreds of genetically unrelated individuals. We propose that group-structured cultural selection explains this phenomenon. © 2015 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
McMurray, Robert; Hosick , Peter; Bugge, Anna
2011-01-01
. VO(2max) was estimated in mL/min from cycle ergometry and scaled to body mass (kg), fat free mass (kg(FFM)), body surface area (m(2)), height (cm) and allometric (mL/kg(0.67)/min). RESULTS: Unadjusted correlations between CMRF and many of the scaled VO(2max) units were significant (p
Novakovic, A M; Krekels, E H J; Munafo, A; Ueckert, S; Karlsson, M O
2017-01-01
In this study, we report the development of the first item response theory (IRT) model within a pharmacometrics framework to characterize the disease progression in multiple sclerosis (MS), as measured by Expanded Disability Status Score (EDSS). Data were collected quarterly from a 96-week phase III clinical study by a blinder rater, involving 104,206 item-level observations from 1319 patients with relapsing-remitting MS (RRMS), treated with placebo or cladribine. Observed scores for each EDSS item were modeled describing the probability of a given score as a function of patients' (unobserved) disability using a logistic model. Longitudinal data from placebo arms were used to describe the disease progression over time, and the model was then extended to cladribine arms to characterize the drug effect. Sensitivity with respect to patient disability was calculated as Fisher information for each EDSS item, which were ranked according to the amount of information they contained. The IRT model was able to describe baseline and longitudinal EDSS data on item and total level. The final model suggested that cladribine treatment significantly slows disease-progression rate, with a 20% decrease in disease-progression rate compared to placebo, irrespective of exposure, and effects an additional exposure-dependent reduction in disability progression. Four out of eight items contained 80% of information for the given range of disabilities. This study has illustrated that IRT modeling is specifically suitable for accurate quantification of disease status and description and prediction of disease progression in phase 3 studies on RRMS, by integrating EDSS item-level data in a meaningful manner.
Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian
2015-02-01
Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.
Directory of Open Access Journals (Sweden)
Crystal Kelehear
Full Text Available Taxonomic studies of parasites can be severely compromised if the host species affects parasite morphology; an uncritical analysis might recognize multiple taxa simply because of phenotypically plastic responses of parasite morphology to host physiology. Pentastomids of the genus Raillietiella are endoparasitic crustaceans primarily infecting the respiratory system of carnivorous reptiles, but also recorded from bufonid anurans. The delineation of pentastomids at the generic level is clear, but the taxonomic status of many species is not. We collected raillietiellids from lungs of the invasive cane toad (Rhinella marina, the invasive Asian house gecko (Hemidactylus frenatus, and a native tree frog (Litoria caerulea in tropical Australia, and employed a combination of genetic analyses, and traditional and novel morphological methods to clarify their identity. Conventional analyses of parasite morphology (which focus on raw values of morphological traits revealed two discrete clusters in terms of pentastome hook size, implying two different species of pentastomes: one from toads and a tree frog (Raillietiella indica and another from lizards (Raillietiella frenatus. However, these clusters disappeared in allometric analyses that took pentastome body size into account, suggesting that only a single pentastome taxon may be involved. Our molecular data revealed no genetic differences between parasites in toads versus lizards, confirming that there was only one species: R. frenatus. This pentastome (previously known only from lizards clearly is also capable of maturing in anurans. Our analyses show that the morphological features used in pentastomid taxonomy change as the parasite transitions through developmental stages in the definitive host. To facilitate valid descriptions of new species of pentastomes, future taxonomic work should include both morphological measurements (incorporating quantitative measures of body size and hook bluntness and
Beaty, Lynne E; Salice, Christopher J
2013-10-01
Invasive species are costly and difficult to control. In order to gain a mechanistic understanding of potential control measures, individual-based models uniquely parameterized to reflect the salient life-history characteristics of invasive species are useful. Using invasive Australian Rhinella marina as a case study, we constructed a cohort- and individual-based population simulation that incorporates growth and body size of terrestrial stages. We used this allometric approach to examine the efficacy of nontraditional control methods (i.e., tadpole alarm chemicals and native meat ants) that may have indirect effects on population dynamics mediated by effects on body size. We compared population estimates resulting from these control methods with traditional hand removal. We also conducted a sensitivity analysis to investigate the effect that model parameters, specifically those associated with growth and body size, had on adult population estimates. Incremental increases in hand removal of adults and juveniles caused nonlinear decreases in adult population estimates, suggesting less return with increased investment in hand-removal efforts. Applying tadpole alarm chemicals or meat ants decreased adult population estimates on the same level as removing 15-25% of adults and juveniles by hand. The combined application of tadpole alarm chemicals and meat ants resulted in approximately 80% decrease in adult abundance, the largest of any applied control method. In further support of the nontraditional control methods, which greatly affected the metamorph stage, our model was most sensitive to changes in metamorph survival, juvenile survival, metamorph growth rate, and adult survival. Our results highlight the use and insights that can be gained from individual-based models that incorporate growth and body size and the potential success that nontraditional control methods could have in controlling established, invasive Rhinella marina populations.
Item Response Theory analysis of the Autonomy over Tobacco Scale (AUTOS).
Wellman, Robert J; Edelen, Maria Orlando; DiFranza, Joseph R
2015-06-01
The Autonomy over Tobacco Scale (AUTOS) is composed of 12-symptoms of nicotine dependence. While it has demonstrated excellent reliability and validity, several psychometric properties have yet to be investigated. We aimed to determine (1) whether items functioned differently across demographic groups, (2) the likelihood that individual symptoms would be endorsed by smokers at different levels of diminished autonomy, and (3) the degree of information provided by each item and the reliability of the full AUTOS across the range of diminished autonomy. Data for this study come from two convenience samples of American adult current smokers (n=777; 69% female; 88% white; Mage=34 years, range: 18-78), of whom 66% were daily smokers (Mcigarettes/smoking day=10.1, range: AUTOS online as part of "a research study about the experiences people have when they smoke." After p value correction, items remained invariant across sex and minority status, while two items functioned differently according to age, with minimal impact on the total AUTOS score. Discriminative power of the items was high. The greatest amount of information is provided at just under one-half SD above the mean and the least at the extremes of diminished autonomy. The AUTOS maintains acceptable reliability (>0.70) across the range of diminished autonomy within which more than 95% of smokers' scores could be anticipated to fall. The AUTOS is a versatile and psychometrically sound instrument for measuring the loss of autonomy over tobacco use. Copyright © 2015 Elsevier Ltd. All rights reserved.
Graziano, Giuseppe
2006-04-07
The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.
Gifford, Wendy; Graham, Ian D; Ehrhart, Mark G; Davies, Barbara L; Aarons, Gregory A
2017-01-01
Leadership in health care is instrumental to creating a supportive organizational environment and positive staff attitudes for implementing evidence-based practices to improve patient care and outcomes. The purpose of this study is to demonstrate the alignment of the Ottawa Model of Implementation Leadership (O-MILe), a theoretical model for developing implementation leadership, with the Implementation Leadership Scale (ILS), an empirically validated tool for measuring implementation leadership. A secondary objective is to describe the methodological process for aligning concepts of a theoretical model with an independently established measurement tool for evaluating theory-based interventions. Modified template analysis was conducted to deductively map items of the ILS onto concepts of the O-MILe. An iterative process was used in which the model and scale developers (n=5) appraised the relevance, conceptual clarity, and fit of each ILS items with the O-MILe concepts through individual feedback and group discussions until consensus was reached. All 12 items of the ILS correspond to at least one O-MILe concept, demonstrating compatibility of the ILS as a measurement tool for the O-MILe theoretical constructs. The O-MILe provides a theoretical basis for developing implementation leadership, and the ILS is a compatible tool for measuring leadership based on the O-MILe. Used together, the O-MILe and ILS provide an evidence- and theory-based approach for developing and measuring leadership for implementing evidence-based practices in health care. Template analysis offers a convenient approach for determining the compatibility of independently developed evaluation tools to test theoretical models.
Dell, Zachary E.; Schweizer, Kenneth S.
2017-04-01
We develop a segment-scale, force-based theory for the breakdown of the unentangled Rouse model and subsequent emergence of isotropic mesoscopic localization and entropic elasticity in chain polymer liquids in the absence of ergodicity-restoring anisotropic reptation or activated hopping motion. The theory is formulated in terms of a conformational N-dynamic-order-parameter generalized Langevin equation approach. It is implemented using a universal field-theoretic Gaussian thread model of polymer structure and closed at the level of the chain dynamic second moment matrix. The physical idea is that the isotropic Rouse model fails due to the dynamical emergence, with increasing chain length, of time-persistent intermolecular contacts determined by the combined influence of local uncrossability, long range polymer connectivity, and a self-consistent treatment of chain motion and the dynamic forces that hinder it. For long chain melts, the mesoscopic localization length (identified as the tube diameter) and emergent entropic elasticity predictions are in near quantitative agreement with experiment. Moreover, the onset chain length scales with the semi-dilute crossover concentration with a realistic numerical prefactor. Distinctive novel predictions are made for various off-diagonal correlation functions that quantify the full spatial structure of the dynamically localized polymer conformation. As the local excluded volume constraint and/or intrachain bonding spring are softened to allow chain crossability, the tube diameter is predicted to swell until it reaches the radius-of-gyration at which point mesoscopic localization vanishes in a discontinuous manner. A dynamic phase diagram for such a delocalization transition is constructed, which is qualitatively consistent with simulations and the classical concept of a critical entanglement degree of polymerization.
Gifford, Wendy; Graham, Ian D; Ehrhart, Mark G; Davies, Barbara L; Aarons, Gregory A
2017-01-01
Purpose Leadership in health care is instrumental to creating a supportive organizational environment and positive staff attitudes for implementing evidence-based practices to improve patient care and outcomes. The purpose of this study is to demonstrate the alignment of the Ottawa Model of Implementation Leadership (O-MILe), a theoretical model for developing implementation leadership, with the Implementation Leadership Scale (ILS), an empirically validated tool for measuring implementation leadership. A secondary objective is to describe the methodological process for aligning concepts of a theoretical model with an independently established measurement tool for evaluating theory-based interventions. Methods Modified template analysis was conducted to deductively map items of the ILS onto concepts of the O-MILe. An iterative process was used in which the model and scale developers (n=5) appraised the relevance, conceptual clarity, and fit of each ILS items with the O-MILe concepts through individual feedback and group discussions until consensus was reached. Results All 12 items of the ILS correspond to at least one O-MILe concept, demonstrating compatibility of the ILS as a measurement tool for the O-MILe theoretical constructs. Conclusion The O-MILe provides a theoretical basis for developing implementation leadership, and the ILS is a compatible tool for measuring leadership based on the O-MILe. Used together, the O-MILe and ILS provide an evidence- and theory-based approach for developing and measuring leadership for implementing evidence-based practices in health care. Template analysis offers a convenient approach for determining the compatibility of independently developed evaluation tools to test theoretical models. PMID:29355212
Trimpi, Robert L
1956-01-01
From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)
Ye, Zeng Jie; Liang, Mu Zi; Zhang, Hao Wei; Li, Peng Fei; Ouyang, Xue Ren; Yu, Yuan Liang; Liu, Mei Ling; Qiu, Hong Zhong
2018-06-01
Classic theory test has been used to develop and validate the 25-item Resilience Scale Specific to Cancer (RS-SC) in Chinese patients with cancer. This study was designed to provide additional information about the discriminative value of the individual items tested with an item response theory analysis. A two-parameter graded response model was performed to examine whether any of the items of the RS-SC exhibited problems with the ordering and steps of thresholds, as well as the ability of items to discriminate patients with different resilience levels using item characteristic curves. A sample of 214 Chinese patients with cancer diagnosis was analyzed. The established three-dimension structure of the RS-SC was confirmed. Several items showed problematic thresholds or discrimination ability and require further revision. Some problematic items should be refined and a short-form of RS-SC maybe feasible in clinical settings in order to reduce burden on patients. However, the generalizability of these findings warrants further investigations.
Theory and modeling of spin-transport on the microscopic and the mesoscopic scale
International Nuclear Information System (INIS)
Stickler, B.
2013-01-01
It is the aim of this thesis to contribute to the description of spin dynamics in solid state systems. In the first part of this work we present a full quantum treatment of spin-coherent transport in halfmetal / semiconductor CrAs / GaAs heterostructures. The theoretical approach is based on the ab-initio determination of the electronic structures of the materials involved and on the calculation of the band offset. These ingredients are in the second step cast into an effective nearest-neighbor tight-binding Hamiltonian. Finally, in the third step, we investigate by means of the non-equilibrium Green's function technique the current which flows through such a heterostructure if a finite bias is applied. With the help of this strategy it is possible to identify CrAs / GaAs heterostructures as probable candidates for all-semiconductor room-temperature spin-filtering devices, which operate without externally applied magnetic fields. In the second part of this thesis we derive a linear semiclassical spinorial Boltzmann equation. For many (mesoscopic) device geometries a full quantum treatment of transport dynamics may not be necessary and may not be feasible with state-of-the-art techniques. The derivation is based on the quantum mechanical description of a composite quantum system by means of von Neumann's equation. The Born-Markov limit allows us to derive a Lindblad master equation for the reduced system plus non-Markovian corrections. Finally, we perform a Wigner transformation and take the semiclassical limit in order to obtain a spinorial Boltzmann equation, suitable for the description of spin transport on the mesoscopic scale. It has to be emphasized that the spinorial Boltzmann equation constitutes the missing link between a full quantum treatment and heuristically introduced mesoscopic models for spin transport in solid state systems. (author) [de
Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C
2014-12-04
Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial
Smith, T. J.; Whelan, K.R.T.
2006-01-01
Mathematical relations that use easily measured variables to predict difficult-to-measure variables are important to resource managers. In this paper we develop allometric relations to predict total aboveground biomass and individual components of biomass (e.g., leaves, stems, branches) for three species of mangroves for Everglades National Park, Florida, USA. The Greater Everglades Ecosystem is currently the subject of a 7.8-billion-dollar restoration program sponsored by federal, state, and local agencies. Biomass and production of mangroves are being used as a measure of restoration success. A technique for rapid determination of biomass over large areas is required. We felled 32 mangrove trees and separated each plant into leaves, stems, branches, and for Rhizophora mangle L., prop roots. Wet weights were measured in the field and subsamples returned to the laboratory for determination of wet-to-dry weight conversion factors. The diameter at breast height (DBH) and stem height were also measured. Allometric equations were developed for each species for total biomass and components of biomass. We compared our equations with those from the same, or similar, species from elsewhere in the world. Our equations explained ???93% of the variance in total dry weight using DBH. DBH is a better predictor of dry weight than is stem height and DBH is much easier to measure. Furthermore, our results indicate that there are biogeographic differences in allometric relations between regions. For a given DBH, stems of all three species have less mass in Florida than stems from elsewhere in the world. ?? Springer 2006.
International Nuclear Information System (INIS)
Horvat, R.; Kekez, D.; Krecak, Z.; Ljubicic, A.
2008-01-01
In this experiment we aim to detect Kaluza-Klein (KK) excitations of the bulk gauge field, emitted in a bremsstrahlung process on solar plasma constituents, by looking at a process analogous to the photoelectric effect inside the HPGe detector. Using a generic feature of the underlying effective theory that the unknown four-dimensional gauge coupling is independent of the number of extra large dimensions δ, we show that the expected number of events in the detector is insensitive to the true scale of quantum gravity for δ=2. With the entire data collection time of 202 days in the energy interval 1.7-3.8 keV, the number of events detected was as low as 1.1x10 6 , compared to 2.7x10 6 from the expected high multiplicity of the solar KK excitations for δ=2. Hence, our bound from the presumed existence of new forces associated with additional gauge bosons actually conforms with very stringent bounds set from various astrophysical considerations. Baring any modifications of the infrared part of the KK spectrum, this bound would therefore rule out the possibility of observing any signal at the LHC for δ=2. Although a dependence on the fundamental scale referring to (4+δ)-dimensional gravity turns on again for δ=3, the experimental sensitivity of the present setup proves insufficient to draw any constraint for δ>2.
Peterson, Alexander C; Sutherland, Jason M; Liu, Guiping; Crump, R Trafford; Karimuddin, Ahmer A
2018-06-01
The Fecal Incontinence Quality of Life Scale (FIQL) is a commonly used patient-reported outcome measure for fecal incontinence, often used in clinical trials, yet has not been validated in English since its initial development. This study uses modern methods to thoroughly evaluate the psychometric characteristics of the FIQL and its potential for differential functioning by gender. This study analyzed prospectively collected patient-reported outcome data from a sample of patients prior to colorectal surgery. Patients were recruited from 14 general and colorectal surgeons in Vancouver Coastal Health hospitals in Vancouver, Canada. Confirmatory factor analysis was used to assess construct validity. Item response theory was used to evaluate test reliability, describe item-level characteristics, identify local item dependence, and test for differential functioning by gender. 236 patients were included for analysis, with mean age 58 and approximately half female. Factor analysis failed to identify the lifestyle, coping, depression, and embarrassment domains, suggesting lack of construct validity. Items demonstrated low difficulty, indicating that the test has the highest reliability among individuals who have low quality of life. Five items are suggested for removal or replacement. Differential test functioning was minimal. This study has identified specific improvements that can be made to each domain of the Fecal Incontinence Quality of Life Scale and to the instrument overall. Formatting, scoring, and instructions may be simplified, and items with higher difficulty developed. The lifestyle domain can be used as is. The embarrassment domain should be significantly revised before use.
A new look at the psychometrics of the parenting scale through the lens of item response theory.
Lorber, Michael F; Xu, Shu; Slep, Amy M Smith; Bulling, Lisanne; O'Leary, Susan G
2014-01-01
The psychometrics of the Parenting Scale's Overreactivity and Laxness subscales were evaluated using item response theory (IRT) techniques. The IRT analyses were based on 2 community samples of cohabiting parents of 3- to 8-year-old children, combined to yield a total sample size of 852 families. The results supported the utility of the Overreactivity and Laxness subscales, particularly in discriminating among parents in the mid to upper reaches of each construct. The original versions of the Overreactivity and Laxness subscales were more reliable than alternative, shorter versions identified in replicated factor analyses from previously published research and in IRT analyses in the present research. Moreover, in several cases, the original versions of these subscales, in comparison with the shortened versions, exhibited greater 6-month stabilities and correlations with child externalizing behavior and couple relationship satisfaction. Reliability was greater for the Laxness than for the Overreactivity subscale. Item performance on each subscale was highly variable. Together, the present findings are generally supportive of the psychometrics of the Parenting Scale, particularly for clinical research and practice. They also suggest areas for further development.
International Nuclear Information System (INIS)
Samatova, N F; Schmidt, M C; Hendrix, W; Breimyer, P; Thomas, K; Park, B-H
2008-01-01
Data-driven construction of predictive models for biological systems faces challenges from data intensity, uncertainty, and computational complexity. Data-driven model inference is often considered a combinatorial graph problem where an enumeration of all feasible models is sought. The data-intensive and the NP-hard nature of such problems, however, challenges existing methods to meet the required scale of data size and uncertainty, even on modern supercomputers. Maximal clique enumeration (MCE) in a graph derived from such biological data is often a rate-limiting step in detecting protein complexes in protein interaction data, finding clusters of co-expressed genes in microarray data, or identifying clusters of orthologous genes in protein sequence data. We report two key advances that address this challenge. We designed and implemented the first (to the best of our knowledge) parallel MCE algorithm that scales linearly on thousands of processors running MCE on real-world biological networks with thousands and hundreds of thousands of vertices. In addition, we proposed and developed the Graph Perturbation Theory (GPT) that establishes a foundation for efficiently solving the MCE problem in perturbed graphs, which model the uncertainty in the data. GPT formulates necessary and sufficient conditions for detecting the differences between the sets of maximal cliques in the original and perturbed graphs and reduces the enumeration time by more than 80% compared to complete recomputation
Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove
2018-01-01
A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.
Tang, Huadong; Hussain, Azher; Leal, Mauricio; Fluhler, Eric; Mayersohn, Michael
2011-02-01
This commentary is a reply to a recent article by Mahmood commenting on the authors' article on the use of fixed-exponent allometry in predicting human clearance. The commentary discusses eight issues that are related to criticisms made in Mahmood's article and examines the controversies (fixed-exponent vs. varying-exponent allometry) from the perspective of statistics and mathematics. The key conclusion is that any allometric method, which is to establish a power function based on a limited number of animal species and to extrapolate the resulting power function to human values (varying-exponent allometry), is infused with fundamental statistical errors. Copyright © 2010 Wiley-Liss, Inc.
International Nuclear Information System (INIS)
Razakamanarivo, Ramarson H.; Razakavololona, Ando; Razafindrakoto, Marie-Antoinette; Vieilledent, Ghislain; Albrecht, Alain
2012-01-01
Short rotations of Eucalyptus plantations under coppice regime are extensively managed for wood production in Madagascar. Nevertheless, little is known about their biomass production and partitioning and their potential in terms of carbon sequestration. If above-ground biomass (AGB) can be estimated based on established allometric relations, below-ground (BGB) estimates are much less common. The aim of this work was to develop allometric equations to estimate biomass of these plantations, mainly for the root components. Data from 9 Eucalyptus robusta stands (47–87 years of plantation age, 3–5 years of coppice-shoot age) were collected and analyzed. Biomass of 3 sampled trees per stand was determined destructively. Dry weight of AGB components (leaves, branches and stems) were estimated as a function of basal area of all shoots per stump and dry weight for BGB components (mainly stump, coarse root (CR) and medium root (MR)) were estimated as a function of stump circumference. Biomass was then computed using allometric equations from stand inventory data. Stand biomass ranged from 102 to 130 Mg ha −1 with more than 77% contained in the BGB components. The highest dry weight was allocated in the stump and in the CR (51% and 42% respectively) for BGB parts and in the stem (69%) for AGB part. Allometric relationships developed herein could be applied to other Eucalyptus plantations which present similar stand density and growing conditions; anyhow, more is needed to be investigated in understanding biomass production and partitioning over time for this kind of forest ecosystem. -- Highlights: ► We studied the potential of old eucalyptus coppices in Madagascar to mitigate global warming. ► Biomass measurement, mainly for below-ground BGB (stump, coarse-medium-and fine roots) was provided. ► BGB allometry relationships for short rotation forestry under coppice were established. ► BGB were found to be important with their 102-130MgC ha -1 (<77% of the C in
International Nuclear Information System (INIS)
Ottonello, Giulio; Richet, Pascal
2014-01-01
The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ε) of the investigated silicate melts and its optical counterpart (ε ∞ ) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σ s , along the guidelines already used in the past for simple media such as water or benzene. The σ s obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at the core of
Energy Technology Data Exchange (ETDEWEB)
Ottonello, Giulio, E-mail: giotto@dipteris.unige.it [DISTAV, Università di Genova, Corso Europa 26, 16132 Genova (Italy); Richet, Pascal [Institut de Physique du Globe, Rue Jussieu 2, 75005 Paris (France)
2014-01-28
The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ε) of the investigated silicate melts and its optical counterpart (ε{sup ∞}) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σ{sub s}, along the guidelines already used in the past for simple media such as water or benzene. The σ{sub s} obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great
Ottonello, Giulio; Richet, Pascal
2014-01-28
The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ɛ) of the investigated silicate melts and its optical counterpart (ɛ(∞)) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σs, along the guidelines already used in the past for simple media such as water or benzene. The σs obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at the core of
Smith, Laramie R.; Earnshaw, Valerie A.; Copenhaver, Michael M.; Cunningham, Chinazo O.
2016-01-01
Background Substance use disorders consistently rank among the most stigmatized conditions worldwide. Thus, substance use stigma fosters health inequities among persons with substance use disorders and remains a key barrier to successful screening and treatment efforts. Current efforts to measure substance use stigma are limited. This study aims to advance measurement efforts by drawing on stigma theory to develop and evaluate the Substance Use Stigma Mechanisms Scale (SU-SMS). The SU-SMS was designed to capture enacted, anticipated, and internalized substance use stigma mechanisms among persons with current and past substance use disorders, and distinguish between key stigma sources most likely to impact this target population. Methods This study was a cross-sectional evaluation of the validity, reliability, and generalizability of the SU-SMS across two independent samples with diverse substance use and treatment histories. Results Findings support the structural and construct validity of the SU-SMS, suggesting the scale was able to capture enacted, anticipated, and internalized stigma as distinct stigma experiences. It also further differentiated between two distinct stigma sources (family and healthcare providers). Analysis of these mechanisms and psychosocial metrics suggests that the scale is also associated with other health-related outcomes. Furthermore, the SU-SMS demonstrated high levels of internal reliability and generalizability across two independent samples of persons with diverse substance use disorders and treatment histories. Conclusion The SU-SMS may serve as a valuable tool for better understanding the processes through which substance use stigma serves to undermine key health behaviors and outcomes among persons with substance use disorders. PMID:26972790
Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio
2018-02-01
We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.
Adding constraints to predation through allometric relation of scats to consumption.
Chakrabarti, Stotra; Jhala, Yadvendradev V; Dutta, Sutirtha; Qureshi, Qamar; Kadivar, Riaz F; Rana, Vishwadipsinh J
2016-05-01
A thorough understanding of mechanisms of prey consumption by carnivores and the constraints on predation help us in evaluating the role of carnivores in an ecosystem. This is crucial in developing appropriate management strategies for their conservation and mitigating human-carnivore conflict. Current models on optimal foraging suggest that mammalian carnivores would profit most from killing the largest prey that they can subdue with minimal risk of injury to themselves. Wild carnivore diets are primarily estimated through analysis of their scats. Using extensive feeding experiments (n = 68) on a wide size range (4·5-130 kg) of obligate carnivores - lion, leopard, jungle cat and domestic cat, we parameterize biomass models that best relate consumption to scat production. We evaluate additional constraints of gut fill, prey digestibility and carcass utilization on carnivory that were hereto not considered in optimal foraging studies. Our results show that patterns of consumption to scat production against prey size are similar and asymptotic, contrary to established linear models, across these carnivores after accounting for the effect of carnivore size. This asymptotic, allometric relationship allowed us to develop a generalized model: biomass consumed per collectable scat/predator weight = 0·033-0·025exp(-4·284(prey weight/predator weight)) , which is applicable to all obligate carnivores to compute prey biomass consumed from scats. Our results also depict a relationship for prey digestibility which saturates at about 90% for prey larger than predator size. Carcass utilization declines exponentially with prey size. These mechanisms result in digestible biomass saturating at prey weights approximately equal to predator weight. Published literature on consumption by tropical carnivores that has relied on linear biomass models is substantially biased. We demonstrate the nature of these biases by correcting diets of tiger, lion and leopard in recent
Yu, C. W.; Hodges, B. R.; Liu, F.
2017-12-01
Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement
de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende
2015-01-01
Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Directory of Open Access Journals (Sweden)
Gifford W
2017-03-01
Full Text Available Wendy Gifford,1 Ian D Graham,2,3 Mark G Ehrhart,4 Barbara L Davies,5,6 Gregory A Aarons7 1School of Nursing, Faculty of Health Sciences, University of Ottawa, ON, Canada; 2Centre for Practice-Changing Research, Ottawa Hospital Research Institute, 3School of Epidemiology, Public Health and Preventive Medicine, Facility of Medicine, University of Ottawa, Ottawa, ON, Canada; 4Department of Psychology, San Diego State University, San Diego, CA, USA; 5Nursing Best Practice Research Center, University of Ottawa, Ottawa, ON, Canada; 6Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; 7Child and Adolescent Services Research Center, University of California, San Diego, CA, USA Purpose: Leadership in health care is instrumental to creating a supportive organizational environment and positive staff attitudes for implementing evidence-based practices to improve patient care and outcomes. The purpose of this study is to demonstrate the alignment of the Ottawa Model of Implementation Leadership (O-MILe, a theoretical model for developing implementation leadership, with the Implementation Leadership Scale (ILS, an empirically validated tool for measuring implementation leadership. A secondary objective is to describe the methodological process for aligning concepts of a theoretical model with an independently established measurement tool for evaluating theory-based interventions.Methods: Modified template analysis was conducted to deductively map items of the ILS onto concepts of the O-MILe. An iterative process was used in which the model and scale developers (n=5 appraised the relevance, conceptual clarity, and fit of each ILS items with the O-MILe concepts through individual feedback and group discussions until consensus was reached.Results: All 12 items of the ILS correspond to at least one O-MILe concept, demonstrating compatibility of the ILS as a measurement tool for the O-MILe theoretical constructs.Conclusion: The O
Peterson, Candida C.; Wellman, Henry M.; Slaughter, Virginia
2012-01-01
Children aged 3-2 years (n = 184) with typical development, deafness, autism, or Asperger syndrome took a series of theory-of-mind (ToM) tasks to confirm and extend previous developmental scaling evidence. A new sarcasm task, in the format of H. M. Wellman and D. Liu's (2004) 5-step ToM Scale, added a statistically reliable 6th step to the scale…
Wu, Jiayuan; Hu, Liren; Zhang, Gaohua; Liang, Qilian; Meng, Qiong; Wan, Chonghua
2016-08-01
This research was designed to develop a nasopharyngeal cancer (NPC) scale based on quality of life (QOL) instruments for cancer patients (QLICP-NA). This scale was developed by using a modular approach and was evaluated by classical test and generalizability theories. Programmed decision procedures and theories on instrument development were applied to create QLICP-NA V2.0. A total of 121 NPC inpatients were assessed using QLICP-NA V2.0 to measure their QOL data from hospital admission until discharge. Scale validity, reliability, and responsiveness were evaluated by correlation, factor, parallel, multi-trait scaling, and t test analyses, as well as by generalizability (G) and decision (D) studies of the generalizability theory. Results of multi-trait scaling, correlation, factor, and parallel analyses indicated that QLICP-NA V2.0 exhibited good construct validity. The significant difference of QOL between the treated and untreated NPC patients indicated a good clinical validity of the questionnaire. The internal consistency (α) and test-retest reliability coefficients (intra-class correlations) of each domain, as well as the overall scale, were all >0.70. Ceiling effects were not found in all domains and most facets, except for common side effects (24.8 %) in the domain of common symptoms and side effects, tumor early symptoms (27.3 %) and therapeutic side effects (23.2 %) in specific domain, whereas floor effects did not exist in each domain/facet. The overall changes in the physical and social domains were significantly different between pre- and post-treatments with a moderate effective size (standard response mean) ranging from 0.21 to 0.27 (p theory. QLICP-NA V2.0 exhibited reasonable degrees of validity, reliability, and responsiveness. However, this scale must be further improved before it can be used as a practical instrument to evaluate the QOL of NPC patients in China.
Directory of Open Access Journals (Sweden)
Majid Barati
2015-03-01
Full Text Available Background: At present, there are no comprehensive validated instruments for measuring adolescents’ beliefs regarding tobacco smoking in the Iranian society. This study aimed to evaluate the validity, reliability and feasibility of the belief-based tobacco smoking scale using the Theory of Planned Behavior’s (TPB constructs as a theoretical framework.Methods: This cross-sectional validation study was carried out on 410 male adolescents of Hamadan, west of Iran, recruited through multi-stage random sampling method. Reliability was assessed by internal consistency and Intraclass Correlation Coefficient (ICC. In addition, Confirmatory Factor Analyses (CFA and Exploratory Factor Analyses (EFA were performed to test construct valid-ity. Content validity was examined using Content Validity Index (CVI and Con-tent Validity Ratio (CVR.Results: Results obtained from factor analysis showed that the data was fit to the model (X2=391.43, P<0.001 and TPB consisted of 22 items measuring sev-en components which explaining 69.7% of the common variance. The mean scores for the CVI and CVR were 0.89 and 0.80; respectively. Additional anal-yses indicated acceptable results for internal consistency reliability values ranging from 0.55 to 0.92.Conclusion: The belief-based tobacco smoking questionnaire is a reliable and valid instrument and now is acceptable and suitable and can be used in future studies.
Hine, Nicholas D M; Dziedzic, Jacek; Haynes, Peter D; Skylaris, Chris-Kriton
2011-11-28
We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.
Peterson, Candida C.; Wellman, Henry M.
2011-01-01
We examined deaf and hearing children’s progression of steps in theory-of-mind (ToM) development including their understanding of social pretending. Ninety-three children (33 deaf; 60 hearing) aged 3 to 13 years were tested on a set of six closely-matched ToM tasks. Results showed that deaf children were delayed substantially behind hearing children in understanding pretending, false belief and other ToM concepts, in line with their delayed uptake of social pretend play. By using a scaling methodology, we confirmed previous evidence of a consistent five-step developmental progression for both groups. Moreover, by including social pretence understanding, both deaf and hearing children’s ToM sequences were shown to extend reliably to six sequential developmental steps. Finally and focally, even though both groups’ sequences were six steps long, the placement of pretence relative to other ToM milestones varied with hearing status. Deaf children understood social pretending at an earlier step in the ToM sequence than hearing children, albeit at a later chronological age. Theoretically, the findings are relevant to questions about how universal developmental progressions come together along with culturally-distinctive inputs and biological factors (such as hearing loss) to set the pace for ToM development. PMID:19998533
Thibodeau, Michel A; Leonard, Rachel C; Abramowitz, Jonathan S; Riemann, Bradley C
2015-12-01
The Dimensional Obsessive-Compulsive Scale (DOCS) is a promising measure of obsessive-compulsive disorder (OCD) symptoms but has received minimal psychometric attention. We evaluated the utility and reliability of DOCS scores. The study included 832 students and 300 patients with OCD. Confirmatory factor analysis supported the originally proposed four-factor structure. DOCS total and subscale scores exhibited good to excellent internal consistency in both samples (α = .82 to α = .96). Patient DOCS total scores reduced substantially during treatment (t = 16.01, d = 1.02). DOCS total scores discriminated between students and patients (sensitivity = 0.76, 1 - specificity = 0.23). The measure did not exhibit gender-based differential item functioning as tested by Mantel-Haenszel chi-square tests. Expected response options for each item were plotted as a function of item response theory and demonstrated that DOCS scores incrementally discriminate OCD symptoms ranging from low to extremely high severity. Incremental differences in DOCS scores appear to represent unbiased and reliable differences in true OCD symptom severity. © The Author(s) 2014.
Cohen, Joel E; Xu, Meng; Schuster, William S F
2012-09-25
Two widely tested empirical patterns in ecology are combined here to predict how the variation of population density relates to the average body size of organisms. Taylor's law (TL) asserts that the variance of the population density of a set of populations is a power-law function of the mean population density. Density-mass allometry (DMA) asserts that the mean population density of a set of populations is a power-law function of the mean individual body mass. Combined, DMA and TL predict that the variance of the population density is a power-law function of mean individual body mass. We call this relationship "variance-mass allometry" (VMA). We confirmed the theoretically predicted power-law form and the theoretically predicted parameters of VMA, using detailed data on individual oak trees (Quercus spp.) of Black Rock Forest, Cornwall, New York. These results connect the variability of population density to the mean body mass of individuals.
Shepard, L. A.; Penuel, W. R.; Pellegrino, J. W.
2018-01-01
To support equitable and ambitious teaching practices, classroom assessment design must be grounded in a research-based theory of learning. Compared to other theories, sociocultural theory offers a more powerful, integrative account of how motivational aspects of learning--such as self-regulation, self-efficacy, sense of belonging, and…
Roch, Loïc M; Baldridge, Kim K
2018-02-07
Correction for 'General optimization procedure towards the design of a new family of minimal parameter spin-component-scaled double-hybrid density functional theory' by Loïc M. Roch and Kim K. Baldridge, Phys. Chem. Chem. Phys., 2017, 19, 26191-26200.
International Nuclear Information System (INIS)
Frohlich, J.
1983-01-01
The author describes some recent techniques for constructing the continuum (= scaling) limit of lattice field theories, including the one- and two- component lambda/less than or equal to→/phi// 4 theories and the Ising and rotator models in a space (- imaginary time) of dimension d >greater than or equal to 4. These techniques should have applications to other related models, like the selfavoiding random walk in five or more dimensions and bond percolation in seven or more dimensions. Some plausible conjectures concerning the Gaussian nature of the scaling limit of the d greater than or equal to 2 dimensional rotator model and the d greater than or equal to 4 dimensional U(1) lattice gauge theory in the low temperature (weak coupling) phase are described
Peterson, Candida C.; Wellman, Henry M.; Slaughter, Virginia
2012-01-01
Children aged 3 to 12 years (n=184) with typical development, deafness, autism or Asperger Syndrome took a series of theory-of-mind (ToM) tasks to confirm and extend previous developmental scaling evidence. A new sarcasm task, in the format of Wellman and Liu’s (2004) 5-step ToM scale, added a statistically reliable sixth step to the scale for all diagnostic groups. A key previous finding, divergence in task sequencing for children with autism, was confirmed. Comparisons among diagnostic grou...
Ruijter, J. M.; Wendelaar Bonga, S. E.
1987-01-01
An analysis of the allometric relations of the total volumes occupied by prolactin (PRL) and corticotropic (ACTH) cells (PRL volume and ACTH volume, respectively) to body length and a study of the immunocytochemical staining intensity of PRL and ACTH cells were used to determine the differences in
Peterson, Candida C.; Wellman, Henry M.; Slaughter, Virginia
2013-01-01
Children aged 3 to 12 years (n=184) with typical development, deafness, autism or Asperger Syndrome took a series of theory-of-mind (ToM) tasks to confirm and extend previous developmental scaling evidence. A new sarcasm task, in the format of Wellman and Liu’s (2004) 5-step ToM scale, added a statistically reliable sixth step to the scale for all diagnostic groups. A key previous finding, divergence in task sequencing for children with autism, was confirmed. Comparisons among diagnostic groups, controlling age and language ability, showed that typical developers mastered the six ToM steps ahead of each of the three disabled groups, with implications for ToM theories. The final (sarcasm) task challenged even nondisabled 9-year-olds, demonstrating the new scale’s sensitivity to post-preschool ToM growth. PMID:22304467
Egberink, Iris J L; Meijer, Rob R
2011-06-01
The authors investigated the psychometric properties of the subscales of the Self-Perception Profile for Children with item response theory (IRT) models using a sample of 611 children. Results from a nonparametric Mokken analysis and a parametric IRT approach for boys (n = 268) and girls (n = 343) were compared. The authors found that most scales formed weak scales and that measurement precision was relatively low and only present for latent trait values indicating low self-perception. The subscales Physical Appearance and Global Self-Worth formed one strong scale. Children seem to interpret Global Self-Worth items as if they measure Physical Appearance. Furthermore, the authors found that strong Mokken scales (such as Global Self-Worth) consisted mostly of items that repeat the same item content. They conclude that researchers should be very careful in interpreting the total scores on the different Self-Perception Profile for Children scales. Finally, implications for further research are discussed.
Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
2010-12-01
Orbital-free density functional theory (OFDFT) is a first principles quantum mechanics method to find the ground-state energy of a system by variationally minimizing with respect to the electron density. No orbitals are used in the evaluation of the kinetic energy (unlike Kohn-Sham DFT), and the method scales nearly linearly with the size of the system. The PRinceton Orbital-Free Electronic Structure Software (PROFESS) uses OFDFT to model materials from the atomic scale to the mesoscale. This new version of PROFESS allows the study of larger systems with two significant changes: PROFESS is now parallelized, and the ion-electron and ion-ion terms scale quasilinearly, instead of quadratically as in PROFESS v1 (L. Hung and E.A. Carter, Chem. Phys. Lett. 475 (2009) 163). At the start of a run, PROFESS reads the various input files that describe the geometry of the system (ion positions and cell dimensions), the type of elements (defined by electron-ion pseudopotentials), the actions you want it to perform (minimize with respect to electron density and/or ion positions and/or cell lattice vectors), and the various options for the computation (such as which functionals you want it to use). Based on these inputs, PROFESS sets up a computation and performs the appropriate optimizations. Energies, forces, stresses, material geometries, and electron density configurations are some of the values that can be output throughout the optimization. New version program summaryProgram Title: PROFESS Catalogue identifier: AEBN_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 68 721 No. of bytes in distributed program, including test data, etc.: 1 708 547 Distribution format: tar.gz Programming language: Fortran 90 Computer
Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.
2013-12-01
In terrestrial ecosystems, plant photosynthesis occurs at the expense of water losses through stomata, thus creating an inherent hydrologic constrain to carbon (C) gains and productivity. While such a constraint cannot be overcome, evolution has led to a number of adaptations that allow plants to thrive under highly variable and often limiting water availability. It may be hypothesized that these adaptations are optimal and allow maximum C gain for a given water availability. A corollary hypothesis is that these adaptations manifest themselves as coordination between the leaf photosynthetic machinery and the plant hydraulic system. This coordination leads to functional relations between the mean hydrologic state, plant hydraulic traits, and photosynthetic parameters that can be used as bridge across temporal scales. Here, optimality theories describing the behavior of stomata and plant morphological features in a fluctuating soil moisture environment are proposed. The overarching goal is to explain observed global patterns of plant water use and their ecological and biogeochemical consequences. The problem is initially framed as an optimal control problem of stomatal closure during drought of a given duration, where maximizing the total photosynthesis under limited and diminishing water availability is the objective function. Analytical solutions show that commonly used transpiration models (in which stomatal conductance is assumed to depend on soil moisture) are particular solutions emerging from the optimal control problem. Relations between stomatal conductance, vapor pressure deficit, and atmospheric CO2 are also obtained without any a priori assumptions under this framework. Second, the temporal scales of the model are expanded by explicitly considering the stochasticity of rainfall. In this context, the optimal control problem becomes a maximization problem for the mean photosynthetic rate. Results show that to achieve maximum C gains under these
Wu, Chenglin
Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.
Ayis, Salma A; Ayerbe, Luis; Ashworth, Mark; DA Wolfe, Charles
2018-03-01
Variations have been reported in the number of underlying constructs and choice of thresholds that determine caseness of anxiety and /or depression using the Hospital Anxiety and Depression scale (HADS). This study examined the properties of each item of HADS as perceived by stroke patients, and assessed the information these items convey about anxiety and depression between 3 months to 5 years after stroke. The study included 1443 stroke patients from the South London Stroke Register (SLSR). The dimensionality of HADS was examined using factor analysis methods, and items' properties up to 5 years after stroke were tested using Item Response Theory (IRT) methods, including graded response models (GRMs). The presence of two dimensions of HADS (anxiety and depression) for stroke patients was confirmed. Items that accurately inferred about the severity of anxiety and depression, and offered good discrimination of caseness were identified as "I can laugh and see the funny side of things" (Q4) and "I get sudden feelings of panic" (Q13), discrimination 2.44 (se = 0.26), and 3.34 (se = 0.35), respectively. Items that shared properties, hence replicate inference were: "I get a sort of frightened feeling as if something awful is about to happen" (Q3), "I get a sort of frightened feeling like butterflies in my stomach" (Q6), and "Worrying thoughts go through my mind" (Q9). Item properties were maintained over time. Approximately 20% of patients were lost to follow up. A more concise selection of items based on their properties, would provide a precise approach for screening patients and for an optimal allocation of patients into clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.
Nambiar, P; Bridges, T E; Brown, K A
1991-06-01
As a result of a systematic morphometric study of shark dentitions, a system of notation for describing the location of shark teeth has been developed and is proposed as a standard to be adopted for use in similar studies in the future. The macroscopic morphology of White Shark teeth has been characterised in order to gain quantitative data which might assist in identification of these sharks from bite marks on victims or objects or from shark carcasses. Using these data, a nomogram has been developed which can be used to estimate the body length of a White Shark from measurements of tooth or bite mark morphology. An example of the forensic application of such allometric data is provided as it applied to a recent fatal attack on a diver by a White Shark.
Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.
2014-01-01
Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.
Directory of Open Access Journals (Sweden)
Pedro Krainovic
2017-09-01
Full Text Available Rosewood (Aniba rosaeodora Ducke is an endangered Amazonian tree species which produces one of the most valuable essential oils in the world. The species is used in silvicultural systems which are seen as a means to reducing the pressure of exploitation of natural rosewood populations. There are no specific equations for rosewood plantations, and therefore generalized equations are inappropriate for the species in commercial systems. This study presents allometric equations from 144 trees sampled in different rosewood plantations of Central Amazonia. The equations generated were compared with an equation used in forest management to estimate wood volume and another one recommended by law for rosewood biomass. The equation suggested by current legislation underestimates the actual values by more than 70% making the viable use of this equation impossible in commercial plantations. The equations generated to estimate the volume and biomass serve as an alternative to the need to develop specific equations for each area and age of the plant. The generic equation for the species is consistent for fresh mass management, with a generalized R2 of 0.80 and an underestimation of 0.33%. The equation for crown fresh mass estimation presented a generalized R2 of 0.32 and an underestimation of 0.24%. The underestimation of the mass production by rosewood plantations represents a serious impediment to this forest activity. The allometric equations developed are highly applicable under different conditions and management options and should be suggested by the legal provisions regulating rosewood-related activity in Central Amazonia.
Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S
2014-01-01
Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.
International Nuclear Information System (INIS)
Ares, A.; Boniche, Y.; Quesada, J.P.; Yost, R.; Molina, E.; Smyth, T.J.
2002-01-01
Peach palm (Bactris gasipaes) agroecosystems constitute a productive and sustainable land use for the humid tropics. Allometric methods allow to predict biomass non-destructively at any time and, subsequently, to determine the span of growth phases, biomass and nutrient pools, and economic yields. The overall goals of this study were to obtain and validate predictive functions of aboveground dry biomass, and to relate standing biomass with heart-of-palm yields as well. Towards this purpose, peach palm shoots were harvested and separated into components: foliage, petiole and stem, in the Atlantic region of Costa Rica. A non-linear seemingly unrelated regression (NSUR) procedure, which simultaneously fits the component equations that predict leaf, petiole and stem in order to assure biomass additivity, was used to generate the allometric equations. Basal diameter (BD) was a more effective predictor of biomass than height to the fork between the spear leaf and the first fully expanded leaf, total height and number of leaves. Regression models explained 70-89% of the variance in biomass components (foliage, petiole and stem) or total shoot biomass. Three growth stages were identified: establishment (0-1 years), fast growth (1-3 or 1-8 years depending on plant density) and maturity (> 8 years). Nutrient contents associated to above- and below-ground biomass were measured. For above-ground biomass nutrient contents were N (up to 150 kg ha-1)>K (up to 119 kg ha-1)>Ca (up to 45 kg ha-1)>Mg=S=P (between 15-17 kg ha-1). The below-ground biomass: above-ground biomass ratio increased with the plantation age [es
Directory of Open Access Journals (Sweden)
Christian Böhm
2013-12-01
Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.
Directory of Open Access Journals (Sweden)
Michael J Osland
Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.
Napolitano, Christopher M; Job, Veronika
2018-05-21
Why do some people struggle with self-control (colloquially called willpower) whereas others are able to sustain it during challenging circumstances? Recent research showed that a person's implicit theories of willpower-whether they think self-control capacity is a limited or nonlimited resource-predict sustained self-control on laboratory tasks and on goal-related outcomes in everyday life. The present research tests the Implicit Theory of Willpower for Strenuous Mental Activities Scale (or ITW-M) Scale for measurement invariance across samples and gender within each culture, and two cultural contexts (the U.S. and Switzerland/Germany). Across a series of multigroup confirmatory factor analyses, we found support for the measurement invariance of the ITW-M scale across samples within and across two cultures, as well as across men and women. Further, the analyses showed expected patterns of convergent (with life-satisfaction and trait-self-control) and discriminant validity (with implicit theory of intelligence). These results provide guidelines for future research and clinical practice using the ITW-M scale for the investigation of latent group differences, for example, between gender or cultures. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-05-10
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.
Lei, Pingguang; Lei, Guanghe; Tian, Jianjun; Zhou, Zengfen; Zhao, Miao; Wan, Chonghua
2014-10-01
This paper is aimed to develop the irritable bowel syndrome (IBS) scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-IBS) by the modular approach and validate it by both classical test theory and generalizability theory. The QLICD-IBS was developed based on programmed decision procedures with multiple nominal and focus group discussions, in-depth interview, and quantitative statistical procedures. One hundred twelve inpatients with IBS were used to provide the data measuring QOL three times before and after treatments. The psychometric properties of the scale were evaluated with respect to validity, reliability, and responsiveness employing correlation analysis, factor analyses, multi-trait scaling analysis, t tests and also G studies and D studies of generalizability theory analysis. Multi-trait scaling analysis, correlation, and factor analyses confirmed good construct validity and criterion-related validity when using SF-36 as a criterion. Test-retest reliability coefficients (Pearson r and intra-class correlation (ICC)) for the overall score and all domains were higher than 0.80; the internal consistency α for all domains at two measurements were higher than 0.70 except for the social domain (0.55 and 0.67, respectively). The overall score and scores for all domains/facets had statistically significant changes after treatments with moderate or higher effect size standardized response mean (SRM) ranging from 0.72 to 1.02 at domain levels. G coefficients and index of dependability (Ф coefficients) confirmed the reliability of the scale further with more exact variance components. The QLICD-IBS has good validity, reliability, responsiveness, and some highlights and can be used as the quality of life instrument for patients with IBS.
Wan, Chonghua; Li, Hezhan; Fan, Xuejin; Yang, Ruixue; Pan, Jiahua; Chen, Wenru; Zhao, Rong
2014-06-04
Quality of life (QOL) for patients with coronary heart disease (CHD) is now concerned worldwide with the specific instruments being seldom and no one developed by the modular approach. This paper is aimed to develop the CHD scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-CHD) by the modular approach and validate it by both classical test theory and Generalizability Theory. The QLICD-CHD was developed based on programmed decision procedures with multiple nominal and focus group discussions, in-depth interview, pre-testing and quantitative statistical procedures. 146 inpatients with CHD were used to provide the data measuring QOL three times before and after treatments. The psychometric properties of the scale were evaluated with respect to validity, reliability and responsiveness employing correlation analysis, factor analyses, multi-trait scaling analysis, t-tests and also G studies and D studies of Genralizability Theory analysis. Multi-trait scaling analysis, correlation and factor analyses confirmed good construct validity and criterion-related validity when using SF-36 as a criterion. The internal consistency α and test-retest reliability coefficients (Pearson r and Intra-class correlations ICC) for the overall instrument and all domains were higher than 0.70 and 0.80 respectively; The overall and all domains except for social domain had statistically significant changes after treatments with moderate effect size SRM (standardized response mea) ranging from 0.32 to 0.67. G-coefficients and index of dependability (Ф coefficients) confirmed the reliability of the scale further with more exact variance components. The QLICD-CHD has good validity, reliability, and moderate responsiveness and some highlights, and can be used as the quality of life instrument for patients with CHD. However, in order to obtain better reliability, the numbers of items for social domain should be increased or the items' quality, not quantity, should be
A new double-scaling limit of N = 4 super-Yang-Mills theory and pp-wave strings
DEFF Research Database (Denmark)
Kristjansen, C.; Plefka, J.; Semenoff, G. W.
2002-01-01
. In this paper we shall show that, contrary to widespread expectation, non-planar diagrams survive this limiting procedure in the gauge theory. Using matrix model techniques as well as combinatorial reasoning it is demonstrated that a subset of diagrams of arbitrary genus survives and that a non-trivial double......The metric of a spacetime with a parallel plane (pp)-wave can be obtained in a certain limit of the space AdS5 × S5. According to the AdS/CFT correspondence, the holographic dual of superstring theory on that background should be the analogous limit of N = 4 supersymmetric Yang-Mills theory...
DEFF Research Database (Denmark)
Lindh, Markus V.; Sjöstedt, Johanna; Ekstam, Börje
2017-01-01
Metapopulation theory developed in terrestrial ecology provides applicable frameworks for interpreting the role of local and regional processes in shaping species distribution patterns. Yet, empirical testing of metapopulation models on microbial communities is essentially lacking. We determined ...