WorldWideScience

Sample records for allergic airways disease

  1. Regulatory T cells and regulation of allergic airway disease

    OpenAIRE

    Martin, Helen; Taube, Christian

    2012-01-01

    Diseases like asthma have dramatically increased in the last decades. The reasons for the rising prevalence are still controversially discussed. Besides the genetic predisposition a number of different causes are thought to affect the increase of allergies. These include the hygiene hypothesis as well as changes in intestinal microbiota. Allergic airway inflammation is driven by T cells but it has become clear that tolerance and also suppression of allergic inflammation are mediated by so cal...

  2. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  3. Allergic airway disease : studies on diesel exhaust exposures, oxylipins and antioxidants

    OpenAIRE

    Larsson, Nirina

    2013-01-01

    Allergic airway disease, i.e. allergic rhinitis (AR) and asthma, is a common health problem. The prevalence is increasing in most countries of the world. Traffic-related air pollution has been found to induce and enhance allergic airway disease, but the underlying mechanisms are not known. Oxylipins are fatty acid metabolites, of which several have been linked to asthmatic airway inflammation. Oxylipin profiles have previously been investigated in bronchoalveolar lavage (BAL), mainly reflecti...

  4. Stem Cell and Biological Interventions to treat Allergic Airway Disease

    OpenAIRE

    Kavanagh, Heather

    2010-01-01

    The aim of this work was to investigate immune modulation with a particular focus on airway inflammation and allergic pathogenesis. This was probed in a model of pathogen driven immunomodulation (B. pertussis), and two models of therapeutic intervention namely immunisation (attenuated B. pertussis, BPZE1) or using a candidate cell therapy approach (mesenchymal stem cells, MSC). This work demonstrated that, in contrast to virulent B. pertussis, an attenuated, candidate vaccin...

  5. Early sensitisation and development of allergic airway disease - risk factors and predictors

    DEFF Research Database (Denmark)

    Halken, Susanne

    2003-01-01

    The development and phenotypic expression of allergic airway disease depends on a complex interaction between genetic and several environmental factors, such as exposure to food, inhalant allergens and non-specific adjuvant factors (e.g. tobacco smoke, air pollution and infections). The first...... development of allergic disease at birth. Early sensitisation, cow's milk allergy and atopic eczema are predictors for later development of allergic airway disease. Exposure to indoor allergens, especially house dust mite allergens, is a risk factor for sensitisation and development of asthma later in...

  6. Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease.

    OpenAIRE

    Marius Vital; Harkema, Jack R; Mike Rizzo; James Tiedje; Christina Brandenberger

    2015-01-01

    The gut microbiota plays an important role in the development of asthma. With advanced age the microbiome and the immune system are changing and, currently, little is known about how these two factors contribute to the development of allergic asthma in the elderly. In this study we investigated the associations between the intestinal microbiome and allergic airway disease in young and old mice that were sensitized and challenged with house dust mite (HDM). After challenge, the animals were sa...

  7. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome.

    Directory of Open Access Journals (Sweden)

    Kenneth R Eyring

    Full Text Available Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM model of allergic airway disease, we measured airway hyperresponsiveness (AHR and airway inflammation between mice exposed prenatally to cigarette smoke (CS or filtered air (FA. DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3 are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease.

  8. 25-Hydroxyvitamin D, IL-31, and IL-33 in Children with Allergic Disease of the Airways

    Directory of Open Access Journals (Sweden)

    Anna Bonanno

    2014-01-01

    Full Text Available Low vitamin D is involved in allergic asthma and rhinitis. IL-31 and IL-33 correlate with Th2-associated cytokines in allergic disease. We investigated whether low vitamin D is linked with circulating IL-31 and IL-33 in children with allergic disease of the airways. 25-Hydroxyvitamin D [25(OH Vit D], IL-31, and IL-33 plasma levels were measured in 28 controls (HC, 11 allergic rhinitis (AR patients, and 35 allergic asthma with rhinitis (AAR patients. We found significant lower levels of 25(OH Vit D in AR and in AAR than in HC. IL-31 and IL-33 plasma levels significantly increased in AAR than HC. IL-31 and IL-33 positively correlated in AR and AAR. 25(OH Vit D deficient AAR had higher levels of blood eosinophils, exacerbations, disease duration, and total IgE than patients with insufficient or sufficient 25(OH Vit D. In AAR 25(OH Vit D levels inversely correlated with total allergen sIgE score and total atopy index. IL-31 and IL-33 did not correlate with 25(OH Vit D in AR and AAR. In conclusion, low levels of 25(OH Vit D might represent a risk factor for the development of concomitant asthma and rhinitis in children with allergic disease of the airways independently of IL-31/IL-33 Th2 activity.

  9. Lipocalin2 protects against airway inflammation and hyperresponsiveness in a murine model of allergic airway disease

    DEFF Research Database (Denmark)

    Dittrich, A M; Krokowski, M; Meyer, H-A;

    2010-01-01

    Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways.......Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways....

  10. IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Christian Taube

    Full Text Available Interleukin (IL-22 is an effector cytokine, which acts primarily on epithelial cells in the skin, gut, liver and lung. Both pro- and anti-inflammatory properties have been reported for IL-22 depending on the tissue and disease model. In a murine model of allergic airway inflammation, we found that IL-22 is predominantly produced by innate lymphoid cells in the inflamed lungs, rather than TH cells. To determine the impact of IL-22 on airway inflammation, we used allergen-sensitized IL-22-deficient mice and found that they suffer from significantly higher airway hyperreactivity upon airway challenge. IL-22-deficiency led to increased eosinophil infiltration lymphocyte invasion and production of CCL17 (TARC, IL-5 and IL-13 in the lung. Mice treated with IL-22 before antigen challenge displayed reduced expression of CCL17 and IL-13 and significant amelioration of airway constriction and inflammation. We conclude that innate IL-22 limits airway inflammation, tissue damage and clinical decline in allergic lung disease.

  11. The spectrum of allergic fungal diseases of the upper and lower airways.

    Science.gov (United States)

    Rodrigues, Jonathan; Caruthers, Carrie; Azmeh, Roua; Dykewicz, Mark S; Slavin, Raymond G; Knutsen, Alan P

    2016-01-01

    Fungi cause a wide spectrum of fungal diseases of the upper and lower airways. There are three main phyla involved in allergic fungal disease: (1) Ascomycota (2) Basidiomycota (3) Zygomycota. Allergic fungal rhinosinusitis (AFRS) causes chronic rhinosinusitis symptoms and is caused predominantly by Aspergillus fumigatus in India and Bipolaris in the United States. The recommended treatment approach for AFRS is surgical intervention and systemic steroids. Allergic bronchopulmonary aspergillosis (APBA) is most commonly diagnosed in patients with asthma or cystic fibrosis. Long term systemic steroids are the mainstay treatment option for ABPA with the addition of an antifungal medication. Fungal sensitization or exposure increases a patient's risk of developing severe asthma and has been termed severe asthma associated with fungal sensitivity (SAFS). Investigating for triggers and causes of a patient's asthma should be sought to decrease worsening progression of the disease. PMID:26776889

  12. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Ricardo, Sharon D; Samuel, Chrishan S

    2015-11-01

    This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs. PMID:26426509

  13. Nasal and bronchial airway reactivity in allergic and non allergic airway inflammation

    OpenAIRE

    Kölbeck, Karl-Gustav

    2003-01-01

    In allergic or asthmatic airways disease, upper and lower airways show a uniform eosinophilic inflammation of the mucosa, and bronchial hyperreactivity is a common finding. To study the co- variation of mucosal reactivity in upper and lower airways, histamine challenges of both sites were performed in a group of patients with allergic rhinitis during non-season. Upper airways were monitored during challenge by the use of rhinostereometry, an optical technique that non-invasi...

  14. Nuclear matrix binding protein SMAR1 regulates T-cell differentiation and allergic airway disease.

    Science.gov (United States)

    Chemmannur, S V; Badhwar, A J; Mirlekar, B; Malonia, S K; Gupta, M; Wadhwa, N; Bopanna, R; Mabalirajan, U; Majumdar, S; Ghosh, B; Chattopadhyay, S

    2015-11-01

    Asthma is a complex airway allergic disease involving the interplay of various cell types, cytokines, and transcriptional factors. Though many factors contribute to disease etiology, the molecular control of disease phenotype and responsiveness is not well understood. Here we report an essential role of the matrix attachment region (MAR)-binding protein SMAR1 in regulating immune response during allergic airway disease. Conditional knockout of SMAR1 in T cells rendered the mice resistant to eosinophilic airway inflammation against ovalbumin (OVA) allergen with low immunoglobulin E (IgE) and interleukin-5 (IL-5) levels. Moreover, a lower IgE/IgG2a ratio and higher interferon-γ (IFN-γ) response suggested aberrant skewing of T-cell differentiation toward type 1 helper T cell (Th1) response. We show that SMAR1 functions as a negative regulator of Th1 and Th17 differentiation by interacting with two potential and similar MAR regions present on the promoters of T-bet and IL-17. Thus, we present SMAR1 as a regulator of T-cell differentiation that favors the establishment of Th2 cells by modulating Th1 and Th17 responses. PMID:25736456

  15. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease

    Directory of Open Access Journals (Sweden)

    Simon G. Royce

    2015-11-01

    Full Text Available This study determined if the anti-fibrotic drug, serelaxin (RLN, could augment human bone marrow-derived mesenchymal stem cell (MSC-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR associated with chronic allergic airways disease (AAD/asthma. Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9–11. Changes in airway inflammation (AI, epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p < 0.05 vs OVA group. RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p < 0.05 vs OVA group. Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p < 0.05 vs either treatment alone, and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs.

  16. Role of platelets in allergic airway inflammation.

    Science.gov (United States)

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  17. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    Science.gov (United States)

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  18. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.

    Directory of Open Access Journals (Sweden)

    Ama-Tawiah Essilfie

    2011-10-01

    Full Text Available A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR. Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD. BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate and T lymphocytes (late, adaptive in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.

  19. Silibinin attenuates allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Highlights: ► Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. ► Silibinin reduces the levels of various cytokines into the lung of allergic mice. ► Silibinin prevents the development of airway hyperresponsiveness in allergic mice. ► Silibinin suppresses NF-κB transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) pathway. Because NF-κB activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-κB activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-κB activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  20. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  1. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    Science.gov (United States)

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.

  2. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    Science.gov (United States)

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease. PMID:18160846

  3. Programmed Death Ligand 1 Promotes Early-Life Chlamydia Respiratory Infection-Induced Severe Allergic Airway Disease.

    Science.gov (United States)

    Starkey, Malcolm R; Nguyen, Duc H; Brown, Alexandra C; Essilfie, Ama-Tawiah; Kim, Richard Y; Yagita, Hideo; Horvat, Jay C; Hansbro, Philip M

    2016-04-01

    Chlamydia infections are frequent causes of respiratory illness, particularly pneumonia in infants, and are linked to permanent reductions in lung function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. In the current study, we investigated the role of programmed death (PD)-1 and its ligands PD-L1 and PD-L2 in promoting early-life Chlamydia respiratory infection, and infection-induced airway hyperresponsiveness (AHR) and severe allergic airway disease in later life. Infection increased PD-1 and PD-L1, but not PD-L2, mRNA expression in the lung. Flow cytometric analysis of whole lung homogenates identified monocytes, dendritic cells, CD4(+), and CD8(+) T cells as major sources of PD-1 and PD-L1. Inhibition of PD-1 and PD-L1, but not PD-L2, during infection ablated infection-induced AHR in later life. Given that PD-L1 was the most highly up-regulated and its targeting prevented infection-induced AHR, subsequent analyses focused on this ligand. Inhibition of PD-L1 had no effect on Chlamydia load but suppressed infection-induced pulmonary inflammation. Infection decreased the levels of the IL-13 decoy receptor in the lung, which were restored to baseline levels by inhibition of PD-L1. Finally, inhibition of PD-L1 during infection prevented subsequent infection-induced severe allergic airways disease in later life by decreasing IL-13 levels, Gob-5 expression, mucus production, and AHR. Thus, early-life Chlamydia respiratory infection-induced PD-L1 promotes severe inflammation during infection, permanent reductions in lung function, and the development of more severe allergic airway disease in later life.

  4. Animal Models of Allergic Airways Disease: Where Are We and Where to Next?

    OpenAIRE

    Chapman, David G.; Tully, Jane E.; Nolin, James D.; Jansen-Heininger, Yvonne M; Irvin, Charles G.

    2014-01-01

    In a complex inflammatory airways disease such as asthma, abnormalities in a plethora of molecular and cellular pathways ultimately culminate in characteristic impairments in respiratory function. The ability to study disease pathophysiology in the setting of a functioning immune and respiratory system therefore makes mouse models an invaluable tool in translational research. Despite the vast understanding of inflammatory airways diseases gained from mouse models to date, concern over the val...

  5. [Recent advances in DNA vaccines against allergic airway disease: a review].

    Science.gov (United States)

    Ou, Jin; Xu, Yu; Shi, Wendan

    2013-12-01

    DNA vaccine is used in infectious diseases initially, and later is applied in neoplastic diseases, allergic diseases and other fields with the further understanding of DNA vaccine and the development of genetic engineering. DNA vaccine transfers the genes encoding exogenous antigens to plasmid vector and then is introduced into organism. It controls the antigen proteins synthesis, thus induces specific humoral and cellular immune responses. So it has a broad application prospect in allergic diseases. Compared with the traditional protein vaccines used in specific immunotherapy, DNA vaccine has many advantages, including high purity and specificity, and improvement of patients' compliance etc. However, there are still two unsolved problems. First, the transfection rate of unmodified naked DNA plasmid is not high, Second, it's difficult to induce ideal immune response. In this study, we will review the progress of DNA vaccine applications in respiratory allergic diseases and its various optimization strategies.

  6. Surfactant and allergic airway inflammation.

    Science.gov (United States)

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  7. Chlorinated pool attendance, airway epithelium defects and the risks of allergic diseases in adolescents: Interrelationships revealed by circulating biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Alfred, E-mail: Alfred.bernard@uclouvain.be; Nickmilder, Marc; Dumont, Xavier

    2015-07-15

    It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor of low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19–8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28–14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11–3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22–11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17–11.0), HDM (OR 5.20, 95% CI 1.40–24.2) or pollen (OR 5.82, 95% CI 1.51–27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. - Highlights: • We conducted a cross-sectional study of 835 school adolescents. • The airway epithelium integrity was evaluated by measuring serum pneumoproteins. • The risk of allergic diseases was associated with a defective airway epithelium. • Childhood swimming in chlorinated pools can cause persistent epithelial

  8. Chlorinated pool attendance, airway epithelium defects and the risks of allergic diseases in adolescents: Interrelationships revealed by circulating biomarkers

    International Nuclear Information System (INIS)

    It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor of low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19–8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28–14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11–3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22–11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17–11.0), HDM (OR 5.20, 95% CI 1.40–24.2) or pollen (OR 5.82, 95% CI 1.51–27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. - Highlights: • We conducted a cross-sectional study of 835 school adolescents. • The airway epithelium integrity was evaluated by measuring serum pneumoproteins. • The risk of allergic diseases was associated with a defective airway epithelium. • Childhood swimming in chlorinated pools can cause persistent epithelial

  9. LF-15 & T7, synthetic peptides derived from tumstatin, attenuate aspects of airway remodelling in a murine model of chronic OVA-induced allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Karryn T Grafton

    Full Text Available BACKGROUND: Tumstatin is a segment of the collagen-IV protein that is markedly reduced in the airways of asthmatics. Tumstatin can play an important role in the development of airway remodelling associated with asthma due to its anti-angiogenic properties. This study assessed the anti-angiogenic properties of smaller peptides derived from tumstatin, which contain the interface tumstatin uses to interact with the αVβ3 integrin. METHODS: Primary human lung endothelial cells were exposed to the LF-15, T3 and T7 tumstatin-derived peptides and assessed for cell viability and tube formation in vitro. The impact of the anti-angiogenic properties on airways hyperresponsiveness (AHR was then examined using a murine model of chronic OVA-induced allergic airways disease. RESULTS: The LF-15 and T7 peptides significantly reduced endothelial cell viability and attenuated tube formation in vitro. Mice exposed to OVA+ LF-15 or OVA+T7 also had reduced total lung vascularity and AHR was attenuated compared to mice exposed to OVA alone. T3 peptides reduced cell viability but had no effect on any other parameters. CONCLUSION: The LF-15 and T7 peptides may be appropriate candidates for use as novel pharmacotherapies due to their small size and anti-angiogenic properties observed in vitro and in vivo.

  10. Amelioration of ovalbumin-induced allergic airway disease following Der p 1 peptide immunotherapy is not associated with induction of IL-35.

    Science.gov (United States)

    Moldaver, D M; Bharhani, M S; Wattie, J N; Ellis, R; Neighbour, H; Lloyd, C M; Inman, M D; Larché, M

    2014-03-01

    In the present study, we show therapeutic amelioration of established ovalbumin (OVA)-induced allergic airway disease following house dust mite (HDM) peptide therapy. Mice were sensitized and challenged with OVA and HDM protein extract (Dermatophagoides species) to induce dual allergen sensitization and allergic airway disease. Treatment of allergic mice with peptides derived from the major allergen Der p 1 suppressed OVA-induced airway hyperresponsiveness, tissue eosinophilia, and goblet cell hyperplasia upon rechallenge with allergen. Peptide treatment also suppressed OVA-specific T-cell proliferation. Resolution of airway pathophysiology was associated with a reduction in recruitment, proliferation, and effector function of T(H)2 cells and decreased interleukin (IL)-17⁺ T cells. Furthermore, peptide immunotherapy induced the regulatory cytokine IL-10 and increased the proportion of Fox p3⁺ cells among those expressing IL-10. Tolerance to OVA was not associated with increased IL-35. In conclusion, our results provide in vivo evidence for the creation of a tolerogenic environment following HDM peptide immunotherapy, leading to the therapeutic amelioration of established OVA-induced allergic airway disease.

  11. Chlorinated pool attendance, airway epithelium defects and the risks of allergic diseases in adolescents: Interrelationships revealed by circulating biomarkers.

    Science.gov (United States)

    Bernard, Alfred; Nickmilder, Marc; Dumont, Xavier

    2015-07-01

    It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor of low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19-8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28-14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11-3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22-11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17-11.0), HDM (OR 5.20, 95% CI 1.40-24.2) or pollen (OR 5.82, 95% CI 1.51-27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. PMID:25863185

  12. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis

    DEFF Research Database (Denmark)

    Chawes, Bo Lk

    2011-01-01

    nasal eosinophilia albeit less than children with allergic rhinitis. These findings suggest different pathology in allergic- and non-allergic rhinitis which may have important clinical implications for early pharmacological treatment of rhinitis in young children. In paper II, we utilized the nasal...... with allergic rhinitis without asthma suggesting sub-clinical bronchial inflammation and supporting the allergic disease process to involve both upper and lower airways. In conclusion, these observations objectively show marked differences in nasal pathology in young children with allergic- and non...... resources. Unfortunately, diagnostic specificity is hampered by nonspecific symptom history and lack of reliable diagnostic tests which may explain why the pathology behind such diagnoses is poorly understood. Improved understanding of the pathophysiology of allergic- and non-allergic rhinitis in young...

  13. Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia.

    Science.gov (United States)

    Liu, Bo; Lee, Jee-Boong; Chen, Chun-Yu; Hershey, Gurjit K Khurana; Wang, Yui-Hsi

    2015-04-15

    Type-2 innate lymphoid cells (ILC2s) and the acquired CD4(+) Th2 and Th17 cells contribute to the pathogenesis of experimental asthma; however, their roles in Ag-driven exacerbation of chronic murine allergic airway diseases remain elusive. In this study, we report that repeated intranasal rechallenges with only OVA Ag were sufficient to trigger airway hyperresponsiveness, prominent eosinophilic inflammation, and significantly increased serum OVA-specific IgG1 and IgE in rested mice that previously developed murine allergic airway diseases. The recall response to repeated OVA inoculation preferentially triggered a further increase of lung OVA-specific CD4(+) Th2 cells, whereas CD4(+) Th17 and ILC2 cell numbers remained constant. Furthermore, the acquired CD4(+) Th17 cells in Stat6(-/-)/IL-17-GFP mice, or innate ILC2s in CD4(+) T cell-ablated mice, failed to mount an allergic recall response to OVA Ag. After repeated OVA rechallenge or CD4(+) T cell ablation, the increase or loss of CD4(+) Th2 cells resulted in an enhanced or reduced IL-13 production by lung ILC2s in response to IL-25 and IL-33 stimulation, respectively. In return, ILC2s enhanced Ag-mediated proliferation of cocultured CD4(+) Th2 cells and their cytokine production, and promoted eosinophilic airway inflammation and goblet cell hyperplasia driven by adoptively transferred Ag-specific CD4(+) Th2 cells. Thus, these results suggest that an allergic recall response to recurring Ag exposures preferentially triggers an increase of Ag-specific CD4(+) Th2 cells, which facilitates the collaborative interactions between acquired CD4(+) Th2 cells and innate ILC2s to drive the exacerbation of a murine allergic airway diseases with an eosinophilic phenotype. PMID:25780046

  14. Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease

    OpenAIRE

    Essilfie, Ama-Tawiah; Simpson, Jodie L.; Horvat, Jay C.; Julie A Preston; Dunkley, Margaret L.; Paul S Foster; Gibson, Peter G; Hansbro, Philip M

    2011-01-01

    A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark featu...

  15. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.

    OpenAIRE

    Ama-Tawiah Essilfie; Simpson, Jodie L.; Horvat, Jay C.; Julie A Preston; Dunkley, Margaret L.; Paul S Foster; Gibson, Peter G; Hansbro, Philip M

    2011-01-01

    A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark featu...

  16. Eosinophils: Offenders or General Bystanders in Allergic Airway Disease and Pulmonary Immunity?

    OpenAIRE

    Akuthota, Praveen; Xenakis, Jason J.; Weller, Peter F.

    2011-01-01

    Eosinophils have long been noted to be present in asthma and other forms of pulmonary inflammation, but whether they act as true offenders or merely as bystanders has been a point of uncertainty. However, in recent years, there has been increasing evidence suggesting that eosinophils are not passive cells in the respiratory system, acting only as markers of allergic inflammation. This review discusses key evidence from animal models and human clinical trials that support the importance of eos...

  17. Anthropogenic Climate Change and Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Hueiwang Anna Jeng

    2012-02-01

    Full Text Available Climate change is expected to have an impact on various aspects of health, including mucosal areas involved in allergic inflammatory disorders that include asthma, allergic rhinitis, allergic conjunctivitis and anaphylaxis. The evidence that links climate change to the exacerbation and the development of allergic disease is increasing and appears to be linked to changes in pollen seasons (duration, onset and intensity and changes in allergen content of plants and their pollen as it relates to increased sensitization, allergenicity and exacerbations of allergic airway disease. This has significant implications for air quality and for the global food supply.

  18. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  19. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    OpenAIRE

    Kyu-Sup Cho; Mi-Kyung Park; Shin-Ae Kang; Hee-Young Park; Sung-Lyong Hong; Hye-Kyung Park; Hak-Sun Yu; Hwan-Jung Roh

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allerg...

  20. Roles of IL-22 in Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Koichi Hirose

    2013-01-01

    Full Text Available IL-23- and IL-17A-producing CD4+ T cell (Th17 cell axis plays a crucial role in the development of chronic inflammatory diseases. In addition, it has been demonstrated that Th17 cells and their cytokines such as IL-17A and IL-17F are involved in the pathogenesis of severe asthma. Recently, IL-22, an IL-10 family cytokine that is produced by Th17 cells, has been shown to be expressed at the site of allergic airway inflammation and to inhibit allergic inflammation in mice. In addition to Th17 cells, innate lymphoid cells also produce IL-22 in response to allergen challenge. Functional IL-22 receptor complex is expressed on lung epithelial cells, and IL-22 inhibits cytokine and chemokine production from lung epithelial cells. In this paper, we summarize the recent progress on the roles of IL-22 in the regulation of allergic airway inflammation and discuss its therapeutic potential in asthma.

  1. [Allergic inflamation of the lower airways in patients with allergic rhinitis].

    Science.gov (United States)

    Stefanović, Lj; Balaban, J; Stosović, R; Mitrović, N; Djurasinović, M; Tanurdzić, S

    1994-01-01

    Reporting two of our cases we wanted to point to a great dilemma related to the final diagnosis. Recently, such cases have been more frewuently seen, since in all patients with allergic rhinitis conditions of the lower airways is examined before the administration of the specific immunotherapy. Therefore, we may see patients who are still free of pulmonary sings, despite of positive specific and/or non specific bronchoprovocative tests. The presented cases with evidenced allergic rhinitis are probably in the phase of development of allergic bronchial asthma, the phase of "allergic inflammation" of the lower airways, not clinically manifested yet. PMID:18173213

  2. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Directory of Open Access Journals (Sweden)

    Mi Kyung Park

    Full Text Available Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25 in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  3. Pneumococcal components induce regulatory T cells that attenuate the development of allergic airways disease by deviating and suppressing the immune response to allergen.

    Science.gov (United States)

    Thorburn, Alison N; Brown, Alexandra C; Nair, Prema M; Chevalier, Nina; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2013-10-15

    The induction of regulatory T cells (Tregs) to suppress aberrant inflammation and immunity has potential as a therapeutic strategy for asthma. Recently, we identified key immunoregulatory components of Streptococcus pneumoniae, type 3 polysaccharide and pneumolysoid (T+P), which suppress allergic airways disease (AAD) in mouse models of asthma. To elucidate the mechanisms of suppression, we have now performed a thorough examination of the role of Tregs. BALB/c mice were sensitized to OVA (day 0) i.p. and challenged intranasal (12-15 d later) to induce AAD. T+P was administered intratracheally at the time of sensitization in three doses (0, 12, and 24 h). T+P treatment induced an early (36 h-4 d) expansion of Tregs in the mediastinal lymph nodes, and later (12-16 d) increases in these cells in the lungs, compared with untreated allergic controls. Anti-CD25 treatment showed that Treg-priming events involving CD25, CCR7, IL-2, and TGF-β were required for the suppression of AAD. During AAD, T+P-induced Tregs in the lungs displayed a highly suppressive phenotype and had an increased functional capacity. T+P also blocked the induction of IL-6 to prevent the Th17 response, attenuated the expression of the costimulatory molecule CD86 on myeloid dendritic cells (DCs), and reduced the number of DCs carrying OVA in the lung and mediastinal lymph nodes. Therefore, bacterial components (T+P) drive the differentiation of highly suppressive Tregs, which suppress the Th2 response, prevent the Th17 response and disable the DC response resulting in the effective suppression of AAD. PMID:24048894

  4. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life

    Science.gov (United States)

    Davies, Elizabeth R.; Kelly, Joanne F.C.; Howarth, Peter H.; Wilson, David I.; Holgate, Stephen T.; Davies, Donna E.; Whitsett, Jeffrey A.; Haitchi, Hans Michael

    2016-01-01

    Asthma is a chronic inflammatory airways disease that usually begins in early life and involves gene-environment interactions. Although most asthma exhibits allergic inflammation, many allergic individuals do not have asthma. Here, we report how the asthma gene a disintegrin and metalloprotease 33 (ADAM33) acts as local tissue susceptibility gene that promotes allergic asthma. We show that enzymatically active soluble ADAM33 (sADAM33) is increased in asthmatic airways and plays a role in airway remodeling, independent of inflammation. Furthermore, remodeling and inflammation are both suppressed in Adam33-null mice after allergen challenge. When induced in utero or added ex vivo, sADAM33 causes structural remodeling of the airways, which enhances postnatal airway eosinophilia and bronchial hyperresponsiveness following subthreshold challenge with an aeroallergen. This substantial gene-environment interaction helps to explain the end-organ expression of allergic asthma in genetically susceptible individuals. Finally, we show that sADAM33-induced airway remodeling is reversible, highlighting the therapeutic potential of targeting ADAM33 in asthma.

  5. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis

    DEFF Research Database (Denmark)

    Chawes, Bo

    2011-01-01

    resources. Unfortunately, diagnostic specificity is hampered by nonspecific symptom history and lack of reliable diagnostic tests which may explain why the pathology behind such diagnoses is poorly understood. Improved understanding of the pathophysiology of allergic- and non-allergic rhinitis in young...... children may contribute to the discovery of new mechanisms involved in pathogenesis and help direct future research to develop correctly timed preventive measures as well as adequate monitoring and treatment of children with rhinitis. Asthma is a common comorbidity in subjects with allergic rhinitis...... airway patencies were strongly associated and independent of body size, rhinitis and asthma. The association was consistent for both baseline values and for decongested nasal airway patency and post-β2 FEV1. Blood and nasal eosinophilia were also associated with nasal airway obstruction. This suggests...

  6. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    Science.gov (United States)

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  7. A GM-CSF/IL-33 Pathway Facilitates Allergic Airway Responses to Sub-Threshold House Dust Mite Exposure

    OpenAIRE

    Alba Llop-Guevara; Chu, Derek K.; Walker, Tina D; Susanna Goncharova; Ramzi Fattouh; Silver, Jonathan S.; Cheryl Lynn Moore; Xie, Juliana L.; Paul M O'Byrne; Anthony J. Coyle; Roland Kolbeck; Humbles, Alison A.; Martin R Stämpfli; Manel Jordana

    2014-01-01

    Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We ...

  8. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    Science.gov (United States)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  9. Mucosal exposure to cockroach extract induces allergic sensitization and allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Arizmendi Narcy G

    2011-12-01

    Full Text Available Abstract Background Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant. Methods Cockroach extract (CE was administered to mice intranasally (i.n. daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate. Results Mucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol. Conclusions Mucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.

  10. Regulatory B Cells from Hilar Lymph Nodes of Tolerant Mice in a Murine Model of Allergic Airway Disease are CD5+, Express TGF-β and Co-localize with CD4+Foxp3+ T Cells

    OpenAIRE

    Natarajan, Prabitha; Singh, Anurag; McNamara, Jeffrey T.; Secor, Eric R.; Guernsey, Linda A.; Thrall, Roger S.; Craig M. Schramm

    2012-01-01

    In a biphasic, ovalbumin (OVA)-induced murine asthma model where allergic airway disease is followed by resolution and the development of local inhalational tolerance (LIT), TGFβ-expressing CD5+ B cells were selectively expanded locally in hilar lymph nodes (HLN) of LIT mice. LIT HLN CD5+ B cells but not LIT HLN CD5− B cells induced expression of Foxp3 in CD4+ CD25− T cells in vitro. These CD5+ regulatory B cells and CD4+Foxp3+ T cells demonstrated similar increases in expression of chemokine...

  11. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Claudiney de Freitas Alves

    2013-01-01

    Full Text Available Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF, the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO activity, and P-selectin expression, but not activator protein 1 (AP-1 and nuclear factor kappa B (NF-κB pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation.

  12. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    Science.gov (United States)

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities. PMID:26667977

  13. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    Science.gov (United States)

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities.

  14. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    International Nuclear Information System (INIS)

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants

  15. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takuma, E-mail: katotaku@doc.medic.mie-u.ac.jp [Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine (Japan); Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine (Japan); Wang, Linan [Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine (Japan); Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine (Japan); Kuribayashi, Kagemasa [Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine (Japan)

    2013-11-15

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants

  16. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    OpenAIRE

    Navarro-Xavier, Roberta Araujo; Barros, Karina Vieira de; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, ...

  17. Interleukin-4 and interleukin-5 as targets for the inhibition of eosinophilic inflammation and allergic airways hyperreactivity

    Directory of Open Access Journals (Sweden)

    Foster Paul S

    1997-01-01

    Full Text Available Clinical and experimental investigations suggest that allergen-specific CD4+ T-cells, IgE and the cytokines IL-4 and IL-5 play central roles in initiating and sustaining an asthmatic response by regulating the recruitment and/or activation of airways mast cells and eosinophils. IL-5 plays a unique role in eosinophil development and activation and has been strongly implicated in the aetiology of asthma. The present paper summarizes our recent investigations on the role of these cytokines using cytokine knockout mice and a mouse aeroallergen model. Investigations in IL-5-/- mice indicate that this cytokine is critical for regulating aeroallergen-induced eosinophilia, the onset of lung damage and airways hyperreactivity during allergic airways inflammation. While IL-4 and allergen-specific IgE play important roles in the regulation of allergic disease, recent investigations in IL4-/- mice suggest that allergic airways inflammation can occur via pathways which operate independently of these molecules. Activation of these IL-4 independent pathways are also intimately associated with CD4+ T-cells, IL-5 signal transduction and eosinophilic inflammation. Such IL-5 regulated pathways may also play a substantive role in the aetiology of asthma. Thus, evidence is now emerging that allergic airways disease is regulated by humoral and cell mediated processes. The central role of IL-5 in both components of allergic disease highlights the requirements for highly specific therapeutic agents which inhibit the production or action of this cytokine.

  18. Adoptive Transfer of Induced-Treg Cells Effectively Attenuates Murine Airway Allergic Inflammation

    OpenAIRE

    Wei Xu; Qin Lan; Maogen Chen; Hui Chen; Ning Zhu; Xiaohui Zhou; Julie Wang; Huimin Fan; Chun-Song Yan; Jiu-Long Kuang; David Warburton; Dieudonnée Togbe; Bernhard Ryffel; Song-Guo Zheng; Wei Shi

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic...

  19. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  20. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Ulrike Bönisch

    Full Text Available BACKGROUND: Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. METHODS: To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC flooring, sensitized with ovalbumin (OVA and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. RESULTS: Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB. Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. CONCLUSIONS: Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases.

  1. Effects of Corni fructus on ovalbumin-induced airway inflammation and airway hyper-responsiveness in a mouse model of allergic asthma

    OpenAIRE

    Kim Seung-Hyung; Kim Bok-Kyu; Lee Young-Cheol

    2012-01-01

    Abstract Background Allergic asthma is a chronic inflammatory lung disease that is characterized by airway hyperresponsiveness (AHR) to allergens, airway oedema, increased mucus secretion, excess production of T helper-2 (Th2) cytokines, and eosinophil accumulation in the lungs. Corni fructus (CF) is a fruit of Cornus officinalis Sieb. Et. Zucc. (Cornaceae) and has been used in traditional Korean medicine as an anti-inflammatory, analgesic, and diuretic agent. To investigate the anti-asthmati...

  2. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis

    DEFF Research Database (Denmark)

    Chawes, Bo Lk

    2011-01-01

    Allergic- and non-allergic rhinitis are very common diseases in childhood in industrialized countries. Although these conditions are widely trivialized by both parents and physicians they induce a major impact on quality of life for the affected children and a substantial drainage of health care...... resources. Unfortunately, diagnostic specificity is hampered by nonspecific symptom history and lack of reliable diagnostic tests which may explain why the pathology behind such diagnoses is poorly understood. Improved understanding of the pathophysiology of allergic- and non-allergic rhinitis in young...... children may contribute to the discovery of new mechanisms involved in pathogenesis and help direct future research to develop correctly timed preventive measures as well as adequate monitoring and treatment of children with rhinitis. Asthma is a common comorbidity in subjects with allergic rhinitis...

  3. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  4. Asthma and Respiratory Allergic Disease

    Science.gov (United States)

    The pathogenesis of non-communicable diseases such as allergy is complex and poorly understood. The causes of chronic allergic diseases including asthma involve to a large extent, immunomodulation of the adaptive and particularly the innate immune systems and are markedly influen...

  5. Anticholinergic treatment in airways diseases.

    LENUS (Irish Health Repository)

    Flynn, Robert A

    2009-10-01

    The prevalence of chronic airways diseases such as chronic obstructive pulmonary disease and asthma is increasing. They lead to symptoms such as a cough and shortness of breath, partially through bronchoconstriction. Inhaled anticholinergics are one of a number of treatments designed to treat bronchoconstriction in airways disease. Both short-acting and long-acting agents are now available and this review highlights their efficacy and adverse event profile in chronic airways diseases.

  6. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Science.gov (United States)

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  7. Therapeutic expansion of CD4+FoxP3+ regulatory T cells limits allergic airway inflammation during pulmonary fungal infection.

    Science.gov (United States)

    Schulze, Bianca; Piehler, Daniel; Eschke, Maria; Heyen, Laura; Protschka, Martina; Köhler, Gabriele; Alber, Gottfried

    2016-06-01

    Allergic asthma can be frequently caused and exacerbated by sensitization to ubiquitous fungal allergens associated with pulmonary mucus production, airway hyperresponsiveness and bronchial constriction, resulting in a complex disease that is often difficult to treat. Fungal infections are frequently complicated by the development of a type 2 immune response that prevents successful elimination of the fungal pathogen. Furthermore, production of type 2 cytokines triggers allergic airway inflammation. Following intranasal infection of BALB/c mice with the fungusCryptococcus neoformans, we recently described a more pronounced type 2 immune response in the absence of regulatory T (Treg) cells. To determine whether Treg cell expansion is able to suppress type 2-related fungal allergic inflammation, we increased Treg cell numbers during pulmonaryC. neoformansinfection by administration of an interleukin (IL)-2/anti-IL-2 complex. Expansion of Treg cells resulted in reduced immunoglobulin E production and decreased allergic airway inflammation including reduced production of pulmonary mucus and type 2 cytokines as well as production of immunosuppressive cytokines such as IL-10 and transforming growth factor-β1. From our data we conclude that Treg cells and/or their suppressive mediators represent potential targets for therapeutic intervention during allergic fungal airway disease. PMID:27001975

  8. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    Science.gov (United States)

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  9. Inflammatory bowel disease and airway diseases

    Science.gov (United States)

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-01-01

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact. PMID:27678355

  10. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    2014-01-01

    Full Text Available Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13 and enhanced Th1 cytokine (IFN-γ and regulatory cytokines (IL-10 and TGF-β in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production.

  11. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma.

    Science.gov (United States)

    Cho, Kyu-Sup; Park, Mi-Kyung; Kang, Shin-Ae; Park, Hee-Young; Hong, Sung-Lyong; Park, Hye-Kyung; Yu, Hak-Sun; Roh, Hwan-Jung

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-β) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production. PMID:25246732

  12. Dual effects of vitamin D-induced alteration of TH1/TH2 cytokine expression: enhancing IgE production and decreasing airway eosinophilia in murine allergic airway disease

    DEFF Research Database (Denmark)

    Matheu, Victor; Bäck, Ove; Mondoc, Emma;

    2003-01-01

    BACKGROUND: Vitamin D, a common food additive, has been shown to prevent the induction of experimental autoimmune diseases in mice. A possible immune deviation from T(H)1 to T(H)2 responses has been postulated. Although there is no doubt about the beneficial effects of vitamin D, its role in...... allergy has not been investigated. OBJECTIVE: To define the role of vitamin D in modulating the development of a T(H)2-mediated disease, we used a murine model of pulmonary eosinophilic inflammation. METHODS: Five-week-old mice were primed on day 0 with ovalbumin intraperitoneally. Then they were nasally...... hold promising beneficial effects in airway eosinophilia....

  13. Effects of Corni fructus on ovalbumin-induced airway inflammation and airway hyper-responsiveness in a mouse model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Kim Seung-Hyung

    2012-03-01

    Full Text Available Abstract Background Allergic asthma is a chronic inflammatory lung disease that is characterized by airway hyperresponsiveness (AHR to allergens, airway oedema, increased mucus secretion, excess production of T helper-2 (Th2 cytokines, and eosinophil accumulation in the lungs. Corni fructus (CF is a fruit of Cornus officinalis Sieb. Et. Zucc. (Cornaceae and has been used in traditional Korean medicine as an anti-inflammatory, analgesic, and diuretic agent. To investigate the anti-asthmatic effects of CF and their underlying mechanism, we examined the influence of CF on the development of pulmonary eosinophilic inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Methods In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA by intraperitoneal (i.p., intratracheal (i.t. injections and intranasal (i.n. inhalation of OVA. We investigated the effect of CF on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, and OVA-specific immunoglobulin E (IgE production. Results The CF-treated groups showed suppressed eosinophil infiltration, allergic airway inflammation, and AHR via reduced production of interleuin (IL -5, IL-13, and OVA-specific IgE. Conclusions Our data suggest that the therapeutic effects of CF in asthma are mediated by reduced production of Th2 cytokines (IL-5, eotaxin, and OVA-specific IgE and reduced eosinophil infiltration.

  14. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Ignacio M Fenoy

    Full Text Available Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+FoxP3(+ cells.

  15. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro-Filho, Jaime [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Moraes de Carvalho, Katharinne Ingrid [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Mendes, Diego da [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Melo, Christianne Bandeira [Laboratório de Inflamação, Instituto Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro (Brazil); Martins, Marco Aurélio [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Dias, Celidarque da [Laboratório de Fitoquímica, Departamento de Ciências Farmacêuticas, UFPB, João Pessoa, Paraíba (Brazil); Piuvezam, Márcia Regina, E-mail: mrpiuvezam@ltf.ufpb.br [Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  16. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    International Nuclear Information System (INIS)

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca++ influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  17. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure.

    Directory of Open Access Journals (Sweden)

    Alba Llop-Guevara

    Full Text Available Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM, we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b(+ DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway.

  18. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure.

    Science.gov (United States)

    Llop-Guevara, Alba; Chu, Derek K; Walker, Tina D; Goncharova, Susanna; Fattouh, Ramzi; Silver, Jonathan S; Moore, Cheryl Lynn; Xie, Juliana L; O'Byrne, Paul M; Coyle, Anthony J; Kolbeck, Roland; Humbles, Alison A; Stämpfli, Martin R; Jordana, Manel

    2014-01-01

    Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b(+) DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway. PMID:24551140

  19. Cysteinyl leukotriene receptor antagonist regulates allergic airway inflammation in an organ- and cytokine-specific manner

    OpenAIRE

    Kawano, Tetsuya; Matsuse, Hiroto; Tsuchida, Tomoko; Fukahori, Susumu; Fukushima, Chizu; Nishino, Tomoya; Kohno, Shigeru

    2014-01-01

    Background Cysteinyl leukotrienes (cys-LTs) are very important factors in the pathophysiology of bronchial asthma. Cys-LT receptor antagonists (LTRAs) decrease allergic airway inflammation. The aim of the present study was to determine the differential effects of LTRAs and corticosteroids on allergic airway inflammation and allergen-specific cytokine production from lymphoid tissues using a murine model of asthma. Material/Methods Four groups of female BALB/c mice [control (Cont); Dermatophag...

  20. Parasitic nematode-induced CD4+Foxp3+T cells can ameliorate allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Shin Ae Kang

    2014-12-01

    Full Text Available The recruitment of CD4+CD25+Foxp3+T (Treg cells is one of the most important mechanisms by which parasites down-regulate the immune system.We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+Foxp3+] or uninfected [Inf(-Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+Foxp3+ cells [IV(inf:+(+ group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-Foxp3+ cells [IV(inf:+(- group], but the effects were less distinct than those observed in the IV(inf:+(+ group. We found that Inf(+Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9 and activation markers (Klrg1, Capg, GARP, Gzmb, OX40 than did Inf(-Foxp3+ cells.T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment of allergic airway diseases.

  1. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will ad

  2. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    DEFF Research Database (Denmark)

    Bousquet, J; Addis, A; Adcock, I;

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will...

  3. Pulmonary involvement and allergic disorders in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Nikolaos; E; Tzanakis; Ioanna; G; Tsiligianni; Nikolaos; M; Siafakas

    2010-01-01

    Inflammatory bowel disease (IBD) has been associated with either clinical or subclinical airway and parenchymal lung involvement and interstitial lung complications. Several studies have reported that atopy has a high prevalence in IBD patients. Overlapping allergic disorders seem to be present in both the respiratory and gastrointestinal systems. The purpose of this review is to update clinicians on recent available literature and to discuss the need for a highly suspicious approach by clinicians.

  4. Effects of nitrogen dioxide on airway responsiveness in allergic asthma

    OpenAIRE

    Strand, Victoria

    1998-01-01

    Asthma is one of the most common chronic diseases in the industrialized world and its prevalence is increasing. Clinical symptoms of airway obstruction and bronchial hyper responsiveness can be induced by specific agents, such as allergens and non-specific stimuli, such as cold air and irritants. In order to avoid exacerbation it is important to identify these stimuli and to study how they interact with each other and amplify inflammation in asthma. Nitrogen dioxide (NO2) is...

  5. Gut Microbiota and Allergic Disease. New Insights.

    Science.gov (United States)

    Lynch, Susan V

    2016-03-01

    The rapid rise in childhood allergies (atopy) in Westernized nations has implicated associated environmental exposures and lifestyles as primary drivers of disease development. Culture-based microbiological studies indicate that atopy has demonstrable ties to altered gut microbial colonization in very early life. Infants who exhibit more severe multisensitization to food- or aero-allergens have a significantly higher risk of subsequently developing asthma in childhood. Hence an emerging hypothesis posits that environment- or lifestyle-driven aberrancies in the early-life gut microbiome composition and by extension, microbial function, represent a key mediator of childhood allergic asthma. Animal studies support this hypothesis. Environmental microbial exposures epidemiologically associated with allergy protection in humans confer protection against airway allergy in mice. In addition, gut microbiome-derived short-chain fatty acids produced from a high-fiber diet have been shown to protect against allergy via modulation of both local and remote mucosal immunity as well as hematopoietic antigen-presenting cell populations. Here we review key data supporting the concept of a gut-airway axis and its critical role in childhood atopy. PMID:27027953

  6. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Navarro-Xavier RA

    2016-05-01

    Full Text Available Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6 or fish oil (rich in n-3 in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th-2 (interleukin [IL]-4, IL-5 and Th1 (interferon [IFN]-γ, tumor necrosis factor-α cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL or lungs. Methods: Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results: Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion: Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. Keywords: asthma, nitric oxide, n-6 fatty acids, n-3 fatty acids, cytokines

  7. Eosinophils in fungus-associated allergic pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sumit eGhosh

    2013-02-01

    Full Text Available Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease.

  8. Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus

    OpenAIRE

    McSorley, Henry J; O'Gorman, Mary T.; Blair, Natalie; Sutherland, Tara E.; Filbey, Kara J.; Maizels, Rick M.

    2012-01-01

    Allergic asthma is less prevalent in countries with parasitic helminth infections, and mice infected with parasites such as Heligmosomoides polygyrus are protected from allergic airway inflammation. To establish whether suppression of allergy could be mediated by soluble products of this helminth, we tested H. polygyrus excretory-secretory (HES) material for its ability to impair allergic inflammation. When HES was added to sensitising doses of ovalbumin, the subsequent allergic airway respon...

  9. Airways Disease: Phenotyping Heterogeneity Using Measures of Airway Inflammation

    OpenAIRE

    Siddiqui Salman; Brightling Christopher E

    2007-01-01

    Despite asthma and chronic obstructive pulmonary disease being widely regarded as heterogeneous diseases, a consensus for an accurate system of classification has not been agreed. Recent studies have suggested that the recognition of subphenotypes of airway disease based on the pattern of airway inflammation may be particularly useful in increasing our understanding of the disease. The use of non-invasive markers of airway inflammation has suggested the presence of four distinct phenotypes: ...

  10. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-03-01

    Full Text Available Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs. The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS, which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen

  11. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    Science.gov (United States)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  12. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    Science.gov (United States)

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  13. Air pollution and allergic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Ring, J.

    1987-03-13

    In the discussion on possible adverse effects of air pollution upon human health one has to distinguish between out-door and in-door environment. The most frequent pollutants in out-door air over industrialized areas are particulate substances, sulfur dioxide, nitrous oxide, carbonmonoxide, ozone and lead. Most of these substances have direct irritating effects on mucous surfaces. Hypersensitivity reactions have been described against sulfur dioxide and sulfites occurring as asthma, urticaria or anaphylactoid reactions. In-door air pollution is of much greater practical importance for a variety of diseases. Apart from physio-chemical irritants and microbial organisms leading to infections, organic allergens (e.g. house dust mites, moulds, animal epithelia) can induce a variety of allergic diseases via different pathomechanisms.

  14. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    Science.gov (United States)

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. PMID:26826245

  15. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Both nature and induced regulatory T (Treg lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+FoxP3(+ and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  16. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Science.gov (United States)

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  17. Allergic disease as an association of steroid sulphatase deficiency.

    Science.gov (United States)

    Sakura, N; Nishimura, S; Matsumoto, T; Ohsaki, M; Ogata, T

    1997-11-01

    Ten of 31 patients with steroid sulphatase (STS) deficiency were found to have an allergic disease (bronchial asthma, allergic rhinitis, or atopic dermatitis). STS deficiency may predispose patients to allergic disease.

  18. Pharmacogenetics, pharmacogenomics and airway disease

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2001-11-01

    Full Text Available Abstract The availability of a draft sequence for the human genome will revolutionise research into airway disease. This review deals with two of the most important areas impinging on the treatment of patients: pharmacogenetics and pharmacogenomics. Considerable inter-individual variation exists at the DNA level in targets for medication, and variability in response to treatment may, in part, be determined by this genetic variation. Increased knowledge about the human genome might also permit the identification of novel therapeutic targets by expression profiling at the RNA (genomics or protein (proteomics level. This review describes recent advances in pharmacogenetics and pharmacogenomics with regard to airway disease.

  19. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger;

    2013-01-01

    -dose CT for a period of 5 years (table 1). Images were reconstructed both with high contrast resolution (3 mm, kernel C) for emphysema analysis and with high spatial resolution (1 mm, kernel D) for airway analysis. Images were analysed by in-house developed software designed to segment lungs and localize...... the interior and exterior airway wall surface in three dimensions, and branches were matched in consecutive scans by image registration. Emphysema was defined as attenuation limits were set at

  20. 38 CFR 3.380 - Diseases of allergic etiology.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Diseases of allergic... Specific Diseases § 3.380 Diseases of allergic etiology. Diseases of allergic etiology, including bronchial... progress nor as due to the inherent nature of the disease. Seasonal and other acute allergic...

  1. Response of airway epithelial cells to double-stranded RNA in an allergic environment

    OpenAIRE

    Herbert, Cristan; Zeng, Qing-Xiang; Shanmugasundaram, Ramesh; Garthwaite, Linda; Oliver, Brian G.; Kumar, Rakesh K.

    2014-01-01

    Background Respiratory viral infections are the most common trigger of acute exacerbations in patients with allergic asthma. The anti-viral response of airway epithelial cells (AEC) may be impaired in asthmatics, while cytokines produced by AEC may drive the inflammatory response. We investigated whether AEC cultured in the presence of Th2 cytokines associated with an allergic environment exhibited altered responses to double-stranded RNA, a virus-like stimulus. Methods We undertook prelimina...

  2. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    Science.gov (United States)

    Habibovic, Aida; Hristova, Milena; Heppner, David E.; Danyal, Karamatullah; Ather, Jennifer L.; Janssen-Heininger, Yvonne M.W.; Irvin, Charles G.; Poynter, Matthew E.; Lundblad, Lennart K.; Dixon, Anne E.; Geiszt, Miklos

    2016-01-01

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite–induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.

  3. Airways Disease: Phenotyping Heterogeneity Using Measures of Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2007-06-01

    Full Text Available Despite asthma and chronic obstructive pulmonary disease being widely regarded as heterogeneous diseases, a consensus for an accurate system of classification has not been agreed. Recent studies have suggested that the recognition of subphenotypes of airway disease based on the pattern of airway inflammation may be particularly useful in increasing our understanding of the disease. The use of non-invasive markers of airway inflammation has suggested the presence of four distinct phenotypes: eosinophilic, neutrophilic, mixed inflammatory and paucigranulocytic asthma. Recent studies suggest that these subgroups may differ in their etiology, immunopathology and response to treatment. Importantly, novel treatment approaches targeted at specific patterns of airway inflammation are emerging, making an appreciation of subphenotypes particularly relevant. New developments in phenotyping inflammation and other facets of airway disease mean that we are entering an era where careful phenotyping will lead to targeted therapy.

  4. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives

    OpenAIRE

    Konstantinos Samitas; Vasiliki Delimpoura; Eleftherios Zervas; Mina Gaga

    2015-01-01

    Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in th...

  5. Ambient air pollution and allergic diseases in children

    Directory of Open Access Journals (Sweden)

    Byoung-Ju Kim

    2012-06-01

    Full Text Available The prevalence of allergic diseases has increased worldwide, a phenomenon that can be largely attributed to environmental effects. Among environmental factors, air pollution due to traffic is thought to be a major threat to childhood health. Residing near busy roadways is associated with increased asthma hospitalization, decreased lung function, and increased prevalence and severity of wheezing and allergic rhinitis. Recently, prospective cohort studies using more accurate measurements of individual exposure to air pollution have been conducted and have provided definitive evidence of the impact of air pollution on allergic diseases. Particulate matter and groundlevel ozone are the most frequent air pollutants that cause harmful effects, and the mechanisms underlying these effects may be related to oxidative stress. The reactive oxidative species produced in response to air pollutants can overwhelm the redox system and damage the cell wall, lipids, proteins, and DNA, leading to airway inflammation and hyper-reactivity. Pollutants may also cause harmful effects via epigenetic mechanisms, which control the expression of genes without changing the DNA sequence itself. These mechanisms are likely to be a target for the prevention of allergies. Further studies are necessary to identify children at risk and understand how these mechanisms regulate gene-environment interactions. This review provides an update of the current understanding on the impact of air pollution on allergic diseases in children and facilitates the integration of issues regarding air pollution and allergies into pediatric practices, with the goal of improving pediatric health.

  6. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    Full Text Available Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD.We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms.The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g. administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight, respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA content in fecal samples using real-time PCR.Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly.Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes

  7. Inhibition of allergic airway responses by heparin derived oligosaccharides: identification of a tetrasaccharide sequence

    Directory of Open Access Journals (Sweden)

    Ahmed Tahir

    2012-01-01

    Full Text Available Abstract Background Previous studies showed that heparin's anti-allergic activity is molecular weight dependent and resides in oligosaccharide fractions of Objective To investigate the structural sequence of heparin's anti-allergic domain, we used nitrous acid depolymerization of porcine heparin to prepare an oligosaccharide, and then fractionated it into disaccharide, tetrasaccharide, hexasaccharide, and octasaccharide fractions. The anti-allergic activity of each oligosaccharide fraction was tested in allergic sheep. Methods Allergic sheep without (acute responder and with late airway responses (LAR; dual responder were challenged with Ascaris suum antigen with and without inhaled oligosaccharide pretreatment and the effects on specific lung resistance and airway hyperresponsiveness (AHR to carbachol determined. Additional inflammatory cell recruitment studies were performed in immunized ovalbumin-challenged BALB/C mice with and without treatment. Results The inhaled tetrasaccharide fraction was the minimal effective chain length to show anti-allergic activity. This fraction showed activity in both groups of sheep; it was also effective in inhibiting LAR and AHR, when administered after the antigen challenge. Tetrasaccharide failed to modify the bronchoconstrictor responses to airway smooth muscle agonists (histamine, carbachol and LTD4, and had no effect on antigen-induced histamine release in bronchoalveolar lavage fluid in sheep. In mice, inhaled tetrasaccharide also attenuated the ovalbumin-induced peribronchial inflammatory response and eosinophil influx in the bronchoalveolar lavage fluid. Chemical analysis identified the active structure to be a pentasulfated tetrasaccharide ([IdoU2S (1→4GlcNS6S (1→4 IdoU2S (1→4 AMan-6S] which lacked anti-coagulant activity. Conclusions These results demonstrate that heparin tetrasaccharide possesses potent anti-allergic and anti-inflammatory properties, and that the domains responsible for anti-allergic

  8. Establishment of Allergic Airway Inflammation Model in Late- phase Response of Sprague- Dawley Rats

    Institute of Scientific and Technical Information of China (English)

    朱敏敏; 傅诚章; 周钦海

    2002-01-01

    Objective To establish allergic airway inflammation model in late-phase airwayreaction of Sprague-Dawley (SD) rats. Methods Thirty-six SD rats were randomly divided intothree groups: control group (Group Ⅰ),single challenge group (Group Ⅱ),consecutive challenge group(Group Ⅲ). The rats in Group Ⅱ and Group Ⅲ were sensitized twice by injection of ovalbumin (OA) to-gether with aluminum hydroxide and Bordetella pertussis as adjuvants, followed by challenge withaerosolized OA for 20 min once in Group Ⅱ or one time on each day for one week in Group Ⅲ . Therats in Group Ⅰ received 0.9 % saline by injection and inhalation. Results Conpared uith groupⅠ , there were positive symptoms observed in the group Ⅱ and group Ⅲ; the amount of total leucocytesand eosinophil percentage in brochoalveolar lauage fluid (BALF) significantly increased (P<0.05 orP <0.01 respectively) in Group Ⅱ or Ⅲ; histopathologic changes of lung showed acute allergic inflam-mation changes in Group Ⅱ : Disrupted epithelium damaged subepithelial structure and eosinophil infiltra-tion the in the airway wall. As for the Group Ⅲ , there were allergen-induced characteristic features ofchronic allergic airways inflammation: hypertrophy and hyperplasia of bronchial smooth muscle, gobletcell hyperplasia , basement membrane thickening, eosinophil infiltration, edema. Conclusion The mod-el of allergic airway inflammation in late-phase response of SD rats was successfully established by OAsensitization (twice) and consecutive challenge.

  9. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells

    Science.gov (United States)

    Marsland, Benjamin J.; Harris, Nicola L.; Camberis, Mali; Kopf, Manfred; Hook, Sarah M.; Le Gros, Graham

    2004-04-01

    CD8+ memory T cells have recently been recognized as playing a key role in natural immunity against unrelated viral infections, a phenomenon referred to as "heterologous antiviral immunity." We now provide data that the cellular immunological interactions that underlie such heterologous immunity can play an equally important role in regulating T helper 2 immune responses and protecting mucosal surfaces from allergen-induced inflammation. Our data show that CD8+ T cells, either retained in the lung after infection with influenza virus, or adoptively transferred via the intranasal route can suppress allergic airway inflammation. The suppression is mediated by IFN-, which acts to reduce the activation level, T helper 2 cytokine production, airways hyperresponsiveness, and migration of allergen-specific CD4+ T cells into the lung, whereas the systemic and draining lymph node responses remain unchanged. Of note, adoptive transfer of previously activated transgenic CD8+ T cells conferred protection against allergic airway inflammation, even in the absence of specific-antigen. Airway resident CD8+ T cells produced IFN- when directly exposed to conditioned media from activated dendritic cells or the proinflammatory cytokines IL-12 and IL-18. Taken together these data indicate that effector/memory CD8+ T cells present in the airways produce IFN- after inflammatory stimuli, independent of specific-antigen, and as a consequence play a key role in modifying the degree and frequency of allergic responses in the lung.

  10. Unmet needs in severe chronic upper airway disease (SCUAD).

    Science.gov (United States)

    Bousquet, Jean; Bachert, Claus; Canonica, Giorgio W; Casale, Thomas B; Cruz, Alvaro A; Lockey, Richard J; Zuberbier, Torsten

    2009-09-01

    Although the majority of patients with chronic upper airway diseases have controlled symptoms during treatment, many patients have severe chronic upper airway diseases (SCUADs). SCUAD defines those patients whose symptoms are inadequately controlled despite adequate (ie, effective, safe, and acceptable) pharmacologic treatment based on guidelines. These patients have impaired quality of life, social functioning, sleep, and school/work performance. Severe uncontrolled allergic rhinitis, nonallergic rhinitis, chronic rhinosinusitis, aspirin-exacerbated respiratory diseases, or occupational airway diseases are defined as SCUADs. Pediatric SCUADs are still unclear. In developing countries SCUADs exist, but risk factors can differ from those seen in developed countries. Comorbidities are common in patients with SCUADs and might increase their severity. The present document is the position of a group of experts considering that SCUADs should be considered differently from mild chronic upper airway diseases. It reviews the state of the art, highlighting gaps in our knowledge, and proposes several areas for a better understanding, prevention, and management of SCUADs. This document can also serve to optimize the pharmacoeconomic evaluation of SCUADs by means of comparison with mild chronic upper airway diseases. PMID:19660803

  11. United airway disease: current perspectives

    OpenAIRE

    Giavina-Bianchi P; Aun MV; Takejima P; Kalil J; Agondi RC

    2016-01-01

    Pedro Giavina-Bianchi,* Marcelo Vivolo Aun,* Priscila Takejima, Jorge Kalil, Rosana Câmara Agondi Clinical Immunology and Allergy Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil*These authors contributed equally to this work. Abstract: Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is str...

  12. Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Chiara Murgia

    2011-10-01

    Full Text Available The apical cytoplasm of airway epithelium (AE contains abundant labile zinc (Zn ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

  13. Suppression of Murine Allergic Airway Disease by IL-2:Anti-IL-2 Monoclonal Antibody-Induced Regulatory T Cells1

    OpenAIRE

    Wilson, Mark S; Pesce, John T; Thirumalai R Ramalingam; Thompson, Robert W.; Cheever, Allen; Wynn, Thomas A

    2008-01-01

    Regulatory T cells (Treg) play a decisive role in many diseases including asthma and allergen-induced lung inflammation. However, little progress has been made developing new therapeutic strategies for pulmonary disorders. In the current study we demonstrate that cytokine:antibody complexes of IL-2 and anti-IL-2 mAb reduce the severity of allergen-induced inflammation in the lung by expanding Tregs in vivo. Unlike rIL-2 or anti-IL-2 mAb treatment alone, IL-2:anti-IL-2 complexes dampened airwa...

  14. Airway vascular reactivity and vascularisation in human chronic airway disease

    NARCIS (Netherlands)

    Bailey, Simon R; Boustany, Sarah; Burgess, Janette K; Hirst, Stuart J; Sharma, Hari S; Simcock, David E; Suravaram, Padmini R; Weckmann, Markus

    2009-01-01

    Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular

  15. Pentraxin 3 (PTX3 expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production.

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    Full Text Available BACKGROUND: Pentraxin 3 (PTX3 is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma. OBJECTIVES AND METHODS: We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC. In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using (3H-thymidine incorporation, cell count and Boyden chamber assays. RESULTS: PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13, Th1 (IFN-γ, or Th-17 (IL-17 cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC. Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2-driven HASMC chemotactic activity. CONCLUSIONS: Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.

  16. Therapeutic Effects of DNA Vaccine on Allergen-Induced Allergic Airway Inflammation in Mouse Model

    Institute of Scientific and Technical Information of China (English)

    Guoping Li; Zhigang Liu; Nanshan Zhong; Bin Liao1; Ying Xiong

    2006-01-01

    Vaccination with DNA encoding Dermatophagoides pteronyssinus group 2 (Der p 2) allergen previously showed its effects of immunologic protection on Der p 2 allergen-induced allergic airway inflammation in mice. In present study, we investigated whether DNA vaccine encoding Der p 2 could exert therapeutic role on allergen-induced allergic airway inflammation in mouse model and explored the mechanism of DNA vaccination in asthma specific-allergen immunotherapy. After sensitized and challenged by Der p 2, the BALB/c mice were immunized with DNA vaccine. The degrees of cellular infiltration were scored. IgE levels in serum and IL-4/lL-13 levels in BALF were determined by ELISA. The lung tissues were assessed by histological examinations. Expressions of STAT6 and NF-κB in lung were determined by immunohistochemistry staining. Vaccination of mice with DNA vaccine inhibited the development of airway inflammation and the production of mucin induced by allergen, and reduced the level of Der p 2-specific IgE level. Significant reductions of eosinophii infiltration and levels of IL-4and IL-13 in BALF were observed after vaccination. Further more, DNA vaccination inhibited STAT6 and NF-κBexpression in lung tissue in Der p 2-immunized mice. These results indicated that DNA vaccine encoding Der p 2allergen could be used for therapy of allergen-induced allergic airway inflammation in our mouse model.

  17. Allergic rhinitis and asthma: inflammation in a one-airway condition

    Directory of Open Access Journals (Sweden)

    Haahtela Tari

    2006-11-01

    Full Text Available Abstract Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria. Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli. Structural alterations (that is, remodeling of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. Conclusion Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites.

  18. Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Dienger Krista

    2011-09-01

    Full Text Available Abstract Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2; however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient were sensitized using German cockroach (GC feces (frass, the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production, serum IgE levels and airway hyperresponsiveness (AHR were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice

  19. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease.

    Science.gov (United States)

    Ghosh, Sumit; Hoselton, Scott A; Dorsam, Glenn P; Schuh, Jane M

    2015-05-01

    Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung. PMID:25582403

  20. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function

    Directory of Open Access Journals (Sweden)

    Bunn Janice Y

    2010-03-01

    Full Text Available Abstract Background Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine. Objective To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease. Methods Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects. Results The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p S = 0.53, p Conclusions In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.

  1. Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells.

    Science.gov (United States)

    Ou-Yang, Hai-Feng; Huang, Yun; Hu, Xing-Bin; Wu, Chang-Gui

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant immunomodulatory effects in the development of acute lung inflammation and fibrosis. However, it is still unclear as to whether MSCs could attenuate allergic airway inflammation in a mouse model of asthma. We firstly investigated whether exogenous MSCs can relocate to lung tissues in asthmatic mice and analyzed the chemotactic mechanism. Then, we evaluated the in vivo immunomodulatory effect of exogenous MSCs in asthma. MSCs (2 × 10(6)) were administered through the tail vein to mice one day before the first airway challenge. Migration of MSCs was evaluated by flow cytometry. The immunomodulatory effect of MSCs was evaluated by cell counting in bronchoalveolar lavage fluid (BALF), histology, mast cell degranulation, airway hyperreactivity and cytokine profile in BALF. Exogenous MSCs can migrate to sites of inflammation in asthmatic mice through a stromal cell-derived factor-1α/CXCR4-dependent mechanism. MSCs can protect mice against a range of allergic airway inflammatory pathologies, including the infiltration of inflammatory cells, mast cell degranulation and airway hyperreactivity partly via shifting to a T-helper 1 (Th1) from a Th2 immune response to allergens. So, immunotherapy based on MSCs may be a feasible, efficient therapy for asthma. PMID:22114062

  2. Polyopes affinis alleviates airway inflammation in a murine model of allergic asthma

    Indian Academy of Sciences (India)

    Dae-Sung Lee; Won Sun Park; Soo-Jin Heo; Seon-Heui Cha; Daekyung Kim; You-Jin Jeon; Sae-Gwang Park; Su-Kil Seo; Jung Sik Choi; Sung-Jae Park; Eun Bo Shim; Il-Whan Choi; Won-Kyo Jung

    2011-12-01

    Marine algae have been utilized in food as well as medicine products for a variety of purposes. The purpose of this study was to determine whether an ethanol extract of Polyopes affinis (P.affinis) can inhibit the pathogenesis of T helper 2 (Th2)-mediated allergen-induced airway inflammation in a murine model of asthma. Mice that were sensitized and challenged with ovalbumin (OVA) evidenced typical asthmatic reactions such as the following: an increase in the number of eosinophils in the bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways as well as the narrowing of the airway luminal; the development of airway hyperresponsiveness (AHR); the presence of pulmonary Th2 cytokines; and the presence of allergen-specific immunoglobulin E (IgE) in the serum. The successive intraperitoneal administration of P. affinis ethanolic extracts before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These data suggest that P. affinis ethanolic extracts possess therapeutic potential for the treatment of pulmonary allergic disorders such as allergic asthma.

  3. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology.

    Science.gov (United States)

    Muraro, Antonella; Lemanske, Robert F; Hellings, Peter W; Akdis, Cezmi A; Bieber, Thomas; Casale, Thomas B; Jutel, Marek; Ong, Peck Y; Poulsen, Lars K; Schmid-Grendelmeier, Peter; Simon, Hans-Uwe; Seys, Sven F; Agache, Ioana

    2016-05-01

    In this consensus document we summarize the current knowledge on major asthma, rhinitis, and atopic dermatitis endotypes under the auspices of the PRACTALL collaboration platform. PRACTALL is an initiative of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology aiming to harmonize the European and American approaches to best allergy practice and science. Precision medicine is of broad relevance for the management of asthma, rhinitis, and atopic dermatitis in the context of a better selection of treatment responders, risk prediction, and design of disease-modifying strategies. Progress has been made in profiling the type 2 immune response-driven asthma. The endotype driven approach for non-type 2 immune response asthma, rhinitis, and atopic dermatitis is lagging behind. Validation and qualification of biomarkers are needed to facilitate their translation into pathway-specific diagnostic tests. Wide consensus between academia, governmental regulators, and industry for further development and application of precision medicine in management of allergic diseases is of utmost importance. Improved knowledge of disease pathogenesis together with defining validated and qualified biomarkers are key approaches to precision medicine.

  4. Prevention of allergic disease in childhood

    DEFF Research Database (Denmark)

    Halken, Susanne

    2004-01-01

    The development and phenotypic expression of atopic diseases depends on a complex interaction between genetic factors, environmental exposure to allergens,and non-specific adjuvant factors, such as tobacco smoke, air pollution and infections. Preventive measures may include both exposure...... for this review was to evaluate possible preventive measures as regards prevention of development of allergic disease in childhood--primary prevention--and also some aspects of the effect of specific allergy treatment as regards secondary prevention in children with allergic asthma and allergic...... manifestations e.g. CMA and atopic dermatitis can be reduced significantly by simple dietary measures for the first4 months of life. In all infants breastfeeding should beencouraged for at least 4-6 months, and exposure to tobacco smoke should be avoided during pregnancy and early childhood. In HR infants...

  5. Prostaglandin E2 and Transforming Growth Factor-β Play a Critical Role in Suppression of Allergic Airway Inflammation by Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    Full Text Available The role of soluble factors in the suppression of allergic airway inflammation by adipose-derived stem cells (ASCs remains to be elucidated. Moreover, the major soluble factors responsible for the immunomodulatory effects of ASCs in allergic airway diseases have not been well documented. We evaluated the effects of ASCs on allergic inflammation in asthmatic mice treated with a prostaglandin E2 (PGE2 inhibitor or transforming growth factor-β (TGF-β neutralizing antibodies.Asthmatic mice were injected intraperitoneally with a PGE2 inhibitor or TGF-β neutralizing antibodies at approximately the same time as ASCs injection and were compared with non-treated controls. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in the bronchoalveolar lavage fluid (BALF, eosinophilic inflammation, goblet cell hyperplasia, and serum total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL-4, IL-5, and IL-13, and enhanced the Th1 cytokine (Interferon-γ and regulatory cytokines (IL-10 and TGF-β in the BALF and lung draining lymph nodes (LLNs. ASCs engraftment caused significant increases in the regulatory T cell (Treg and IL-10+ T cell populations in LLNs. However, blocking PGE2 or TGF-β eliminated the immunosuppressive effect of ASCs in allergic airway inflammation.ASCs are capable of secreting PGE2 and TGF-β, which may play a role in inducing Treg expansion. Furthermore, treatment with a PGE2 inhibitor or TGF-β neutralizing antibodies eliminated the beneficial effect of ASCs treatment in asthmatic mice, suggesting that PGE2 and TGF-β are the major soluble factors responsible for suppressing allergic airway inflammation.

  6. Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma

    NARCIS (Netherlands)

    Maazi, H.; Shirinbak, S.; Bloksma, N.; Nawijn, M. C.; van Oosterhout, A. J. M.

    2011-01-01

    The prevalence of allergic diseases has increased dramatically during the last four decades and is paralleled by a striking increase in iron intake by infants in affluent societies. Several studies have suggested a link between increased iron intake and the marked increase in prevalence of allergic

  7. Airway epithelium in obliterative airway disease

    NARCIS (Netherlands)

    Qu, Ning

    2005-01-01

    Lung transplantation is currently the only available treatment for endstage lung disease patients. Despite the success of improved modern lung transplantation with the introduction of new surgical techniques, improved immunosuppressive agents and innovations in managing of acute rejection and infect

  8. Allergic rhinitis and asthma: inflammation in a one-airway condition

    OpenAIRE

    Haahtela Tari; Jeffery Peter K

    2006-01-01

    Abstract Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cy...

  9. Evidence that behavioral depression does not influence airway cell influx in allergic rats.

    OpenAIRE

    Marcos A. Varriano; Varriano, Ana A.; Fernanda Datti; Marcelo Datti; Edson Antunes; Nancy A. Teixeira

    2001-01-01

    This study was designated to evaluate the influence of behavioral depression on the airway leukocyte recruitment in allergic animals. To achieve this, total and differential cell counts in bronchoalveolar (BAL) fluid of ovalbumin (OVA)-sensitized and depressed rats was evaluated. Inescapable electric footshock, applied on day 0, 7 and 13 after OVA sensitization, was used as a model to induce depression. In both non-depressed and depressed groups, the number of total and differential cells (eo...

  10. Differences in airway reactivity in normal and allergic sheep after exposure to sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, W.M.; Oliver, W. Jr.; Welker, M.J.; King, M.M.; Wanner, A.; Sackner, M.A.

    1981-12-01

    The effect of breathing 5 ppm sulfur dioxide (SO/sub 2/) on airway reactivity was studied in both normal and allergic conscious sheep. Allergic sheep were defined as animals in which inhalation of Axcaris suum extract resulted in bronchospasm as evidenced by an increase in mean pulmonary flow resistance (RL), hyperinflation, and a fall in dynamic compliance. Airway reactivity was assessed by measuring the increase of RL after 18 breaths of 0.25% carbachol (c), from an initial RL value obtained after 18 breaths of buffered saline (s) (RL(c-s)). RL and RL(c-s) were determined prior to, immediately after, and 24 h after exposure to 5 ppm SO/sub 2/ for 4 h. In both groups RL remained unchanged after SO/sub 2/ exposure. Prior to exposure, RL(c-s) was not significantly different in seven normal (0.3 +/- 0.1) and seven allergic sheep (0.4 +/- 0.2 (SD) cmH/sub 2/O.l/sup -1/.s), and there was no significant change in RL (c-s) immediately after SO/sub 2/ exposure in either group. Twenty-four h later, RL(c-s) RL(c-s) increased to 0.7 +/- 0.8 (P < 0.2) in normal and to 1.8 +/- 0.9 cmH/sub 2/O.l/sup -1/.s (P < 0.01) in allergic sheep. Because the increase in RL(c-s) after 24 h was greater (P < 0.01) in allergic than in normal sheep, we conclude that SO/sub 2/ exposure increased airway reactivity more in the former than in the latter.

  11. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available BACKGROUND: The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma. METHODS AND FINDINGS: Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and

  12. Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation.

    Science.gov (United States)

    Trimble, Nancy J; Botelho, Fernando M; Bauer, Carla M T; Fattouh, Ramzi; Stämpfli, Martin R

    2009-01-01

    The impact of cigarette smoke on allergic asthma remains controversial both clinically and experimentally. The objective of this study was to investigate, in a murine model, how cigarette smoke affects immune inflammatory processes elicited by a surrogate allergen. In our experimental design, mice were concurrently exposed to cigarette smoke and ovalbumin (OVA), an innocuous antigen that, unless introduced in the context of an adjuvant, induces inhalation tolerance. We show that cigarette smoke exposure has adjuvant properties, allowing for allergic mucosal sensitization to OVA. Specifically, concurrent exposure to cigarette smoke and OVA for 2 weeks led to airway eosinophilia and goblet cell hyperplasia. In vivo OVA recall challenge 1 month after the last smoke exposure showed that concurrent exposure to OVA and cigarette smoke induced antigen-specific memory. Robust eosinophilia and OVA-specific IgG1 and IgE characterized the ensuing inflammatory response. Mechanistically, allergic sensitization was, in part, granulocyte macrophage colony-stimulating factor (GM-CSF) dependent, as a significant reduction in BAL eosinophilia was observed in mice treated with an anti-GM-CSF antibody. Of note, continuous smoke exposure attenuated the OVA recall response; decreased airway eosinophilia was observed in mice continuously exposed to cigarette smoke compared with mice that ceased the smoke exposure protocol. In conclusion, we demonstrate experimentally that while cigarette smoke acts as an adjuvant allowing for allergic sensitization, it also attenuates the ensuing eosinophilic inflammatory response. PMID:18635815

  13. Strategies of mucosal immunotherapy for allergic diseases

    Institute of Scientific and Technical Information of China (English)

    Yi-Ling Ye; Ya-Hui Chuang; Bor-Luen Chiang

    2011-01-01

    Incidences of allergic disease have recently increased worldwide.Allergen-specific immunotherapy (SIT) has long been a controversial treatment for allergic diseases.Although beneficial effects on clinically relevant outcomes have been demonstrated in clinical trials by subcutaneous immunotherapy (SCIT),there remains a risk of severe and sometimes fatal anaphylaxis.Mucosal immunotherapy is one advantageous choice because of its non-injection routes of administration and lower side-effect profile.This study reviews recent progress in mucosal immunotherapy for allergic diseases.Administration routes,antigen quality and quantity,and adjuvants used are major considerations in this field.Also,direct uses of unique probiotics,or specific cytokines,have been discussed.Furthermore,some researchers have reported new therapeutic ideas that combine two or more strategies.The most important strategy for development of mucosal therapies for allergic diseases is the improvement of antigen formulation,which includes continuous searching for efficient adjuvants,collecting more information about dominant T-cell epitopes of allergens,and having the proper combination of each.In clinics,when compared to other mucosal routes,sublingual immunotherapy (SLIT) is a preferred choice for therapeutic administration,although local and systemic side effects have been reported.Additionally,not every allergen has the same beneficial effect.Further studies are needed to determine the benefits of mucosal immunotherapy for different allergic diseases after comparison of the different administration routes in children and adults.Data collected from large,well-designed,double-blind,placebo-controlled,and randomized trials,with post-treatment follow-up,can provide robust substantiation of current evidence.

  14. Remodeling of the pulmonary circulation - a novel response to allergic airway inflammation

    OpenAIRE

    Rydell-Törmänen, Kristina

    2008-01-01

    Asthma is characterized, not only by inflammation but also by airway and vascular remodeling. Airway remodeling is established early in disease, structural alterations have been found in children, and is thought to contribute to asthma symptoms. Unfortunately, airway remodeling is considered difficult to reverse and it seldom resolves completely. Studies of vascular involvement in asthma have mainly focused on the tracheal and bronchial microcirculation, as these vessels are relatively easy t...

  15. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives

    Directory of Open Access Journals (Sweden)

    Konstantinos Samitas

    2015-12-01

    Full Text Available Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes.

  16. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives.

    Science.gov (United States)

    Samitas, Konstantinos; Delimpoura, Vasiliki; Zervas, Eleftherios; Gaga, Mina

    2015-12-01

    Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes. PMID:26621973

  17. Allergic skin diseases : Studies on mechanisms in experimental atopic dermatitis and allergic contact dermatitis

    OpenAIRE

    LehtimÀki, Sari

    2012-01-01

    Atopic dermatitis (AD) is an allergic skin disease, characterized by relapsing eczema, dry skin and chronic skin inflammation. A large proportion of AD patients develop other allergies or asthma later in life. Allergic contact dermatitis (ACD) in turn, is one of the leading occupational diseases worldwide. Therefore, allergic skin diseases not only impair the quality of life of patients but also cause a great economical burden for the society. This thesis investigates some of the mechanisms b...

  18. Inhibitory effects of Pycnogenol® (French maritime pine bark extract) on airway inflammation in ovalbumin-induced allergic asthma.

    Science.gov (United States)

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Hong, Ju-Mi; Kwon, Ok-Kyoung; Kim, Jong-Choon; Oh, Sei-Ryang; Hahn, Kyu-Woung; Ahn, Kyung-Seop

    2013-12-01

    Pycnogenol® (PYC) is a standardized extracts from the bark of the French maritime pine (Pinus maritime) and used as a herbal remedy for various diseases. In this study, we evaluated the effects of PYC on airway inflammation using a model of ovalbumin (OVA)-induced allergic asthma and RAW264.7 cells. PYC decreased nitric oxide production and reduced the interleukine (IL)-1β and IL-6 levels in LPS-stimulated RAW264.7 cells. PYC also reduced the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase (MMP)-9 and enhanced the expression of hemeoxygenase (HO)-1. In the in vivo experiment, PYC decreased the inflammatory cell count and the levels of IL-4, IL-5, IL-13, and immunoglobulin (Ig) E in BALF or serum. These results are consistent with the histological analysis findings, which showed that PYC attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, PYC enhanced the expression of HO-1. In contrast, PYC inhibited the elevated expression of iNOS and MMP-9 proteins induced by OVA challenge. In conclusion, PYC exhibits protective effects against OVA-induced asthma and LPS-stimulated RAW264.7 cells. These results suggest that PYC has potential as a therapeutic agent for the treatment of allergic asthma. PMID:24120901

  19. Airway function indicators and blood indicators in children with dust mite allergic rhinitis after sublingual immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Hua Xiang

    2016-01-01

    Objective:To evaluate the airway function indicators and blood indicators in children with dust mite allergic rhinitis after sublingual immunotherapy.Methods:A total of 68 children with dust mite allergic rhinitis treated in our hospital from November, 2012 to October, 2015 were selected as the research subjects and randomly divided into observation group 34 cases and control group 34 cases. The control group received clinical routine therapy for allergic rhinitis, the observation group received sublingual immunotherapy, and then differences in basic lung function indicator values, small airway function indicator values and levels of serum inflammatory factors as well as serum ECP, TARC, Eotaxin-2 and VCAM were compared between two groups after treatment.Results:The FVC, FEV1, PEF and FEV1/FVC values of the observation group after treatment were higher than those of the control group (P<0.05); the MMEF, MEF50% and MEF25% values of the observation group were higher than those of the control group, and the proportion of AHR was lower than that of the control group (P<0.05); the serum IL-4, IL-9, IL-12, IL-13 and IL-16 levels of the observation group after treatment were lower than those of the control group, and the IL-10 and IL-12 levels are higher than those of the control group (P<0.05); the serum ECP, TARC, Eotaxin-2 and VCAM levels of the observation group children after treatment were lower than those of the control group (P<0.05). Conclusions:Sublingual immunotherapy for children with dust mite allergic rhinitis can optimize the airway function, reduce the systemic inflammatory response and eventually improve the children’s overall state, and it’s has positive clinical significance.

  20. Inhibition of allergic airway inflammation by antisense-induced blockade of STAT6 expression

    Institute of Scientific and Technical Information of China (English)

    TIAN Xin-rui; TIAN Xin-li; BO Jian-ping; LI Shao-gang; LIU Zhuo-la; NIU Bo

    2011-01-01

    Background The signal transducer and activator of transcription 6 (STAT6) expression in lung epithelial cells plays a pivotal role in asthma pathogenesis. Activation of STAT6 expression results in T helper cell type 2 (Th2) cell differentiation leading to Th2-mediated IgE production, development of allergic airway inflammation and hyperreactivity. Therefore,antagonizing the expression and/or the function of STAT6 could be used as a mode of therapy for allergic airway inflammation.Methods In this study, we synthesized a 20-mer phosphorothioate antisense oligonucleotide (ASODN) overlapping the translation starting site of STAT6 and constructed STAT6 antisense RNA (pANTI-STAT6), then transfected them into murine spleen lymphocytes and analyzed the effects of antagonizing STAT6 function in vitro and in a murine model of asthma.Results In vitro, we showed suppression of STAT6 expression and interleukin (IL)-4 production of lymphocytes by STAT6 ASODN. This effect was more prominent when cells were cultured with pANTI-STAT6. In a murine model of asthma associated with allergic pulmonary inflammation in ovalbumin (OVA)-sensitized mice, local intranasal administration of fluorescein isothiocyanate (FITC)-labeled STAT6 ASODN to DNA uptake in lung cells was accompanied by a reduction of intracellular STAT6 expression. Such intrapulmonary blockade of STAT6 expression abrogated signs of lung inflammation, infiltration of eosinophils and Th2 cytokine production.Conclusion These data suggest a critical role of STAT6 in the pathogenesis of asthma and the use of local delivery of STAT6 ASODN as a novel approach for the treatment of allergic airway inflammation such as in asthma.

  1. Abietic acid attenuates allergic airway inflammation in a mouse allergic asthma model.

    Science.gov (United States)

    Gao, Yi; Zhaoyu, Liu; Xiangming, Fang; Chunyi, Lin; Jiayu, Pan; Lu, Shen; Jitao, Chen; Liangcai, Chen; Jifang, Liu

    2016-09-01

    Abietic acid (AA), one of the terpenoids isolated from Pimenta racemosa var. grissea, has been reported to have anti-inflammatory and immunomodulatory effects. However, the anti-allergic effects of AA remain unclear. The aim of this study was to investigate the anti-allergic effects of AA in an ovalbumin (OVA)-induced asthma murine model. The model of mouse asthma was established by induction of OVA. AA (10, 20, 40mg/kg) was administered by oral gavage 1h after the OVA treatment on days 21 to 23. At 24h after the last challenge, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to assess pathological changes, cytokines production, and NF-κB expression. The results showed that AA attenuated lung histopathologic changes, inflammatory cells infiltration, and bronchial hyper-responsiveness. AA also inhibited OVA-induced the nitric oxide (NO), IL-4, IL-5, IL-13, and OVA-specific IgE production, as well as NF-κB activation. In conclusion, the current study demonstrated that AA exhibited protective effects against OVA-induced allergic asthma in mice and the possible mechanism was involved in inhibiting NF-κB activation. PMID:27318791

  2. Preventing atopy and allergic disease.

    Science.gov (United States)

    Heine, Ralf G

    2014-01-01

    Due to the recent exponential increase in food allergies and atopic disorders, effective allergy prevention has become a public health priority in many developed regions. Important preventive strategies include the promotion of breastfeeding and vaginal deliveries, judicious use of perinatal antibiotics, as well as the avoidance of maternal tobacco smoking. Breastfeeding for at least 6 months and introduction of complementary solids from 4-6 months are generally recommended. Complex oligosaccharides in breast milk support the establishment of bifidobacteria in the neonatal gut which stimulate regulatory T lymphocyte responses and enhance tolerance development. Maternal elimination diets during pregnancy or lactation are not effective in preventing allergies. If exclusive breastfeeding is not possible, (supplemental) feeding with a partially hydrolyzed whey-based formula or extensively hydrolyzed casein-based formula may reduce the risk of cow's milk allergy and atopic dermatitis in infants with a family history of atopy. By contrast, asthma and allergic rhinitis at 4-6 years of age are not prevented by this approach. Soy formula and amino acid-based formula have no proven role in allergy prevention. Perinatal supplementation with probiotics and/or prebiotics may reduce the risk of atopic dermatitis, but no reliable effect on the prevention of food allergy or respiratory allergies has so far been found. A randomized trial on maternal fish oil supplementation during pregnancy found that atopic dermatitis and egg sensitization in the first year of life were significantly reduced, but no preventive effect for food allergies was demonstrated. The role of vitamin D deficiency or excess as a risk factor for food allergy and atopic disorders requires further study. PMID:24504215

  3. Preventing atopy and allergic disease.

    Science.gov (United States)

    Heine, Ralf G

    2014-01-01

    Due to the recent exponential increase in food allergies and atopic disorders, effective allergy prevention has become a public health priority in many developed regions. Important preventive strategies include the promotion of breastfeeding and vaginal deliveries, judicious use of perinatal antibiotics, as well as the avoidance of maternal tobacco smoking. Breastfeeding for at least 6 months and introduction of complementary solids from 4-6 months are generally recommended. Complex oligosaccharides in breast milk support the establishment of bifidobacteria in the neonatal gut which stimulate regulatory T lymphocyte responses and enhance tolerance development. Maternal elimination diets during pregnancy or lactation are not effective in preventing allergies. If exclusive breastfeeding is not possible, (supplemental) feeding with a partially hydrolyzed whey-based formula or extensively hydrolyzed casein-based formula may reduce the risk of cow's milk allergy and atopic dermatitis in infants with a family history of atopy. By contrast, asthma and allergic rhinitis at 4-6 years of age are not prevented by this approach. Soy formula and amino acid-based formula have no proven role in allergy prevention. Perinatal supplementation with probiotics and/or prebiotics may reduce the risk of atopic dermatitis, but no reliable effect on the prevention of food allergy or respiratory allergies has so far been found. A randomized trial on maternal fish oil supplementation during pregnancy found that atopic dermatitis and egg sensitization in the first year of life were significantly reduced, but no preventive effect for food allergies was demonstrated. The role of vitamin D deficiency or excess as a risk factor for food allergy and atopic disorders requires further study.

  4. Intelectin is required for IL-13-induced monocyte chemotactic protein-1 and -3 expression in lung epithelial cells and promotes allergic airway inflammation

    OpenAIRE

    Gu, Naibing; Kang, Guannan; Jin, Chang'E; Xu, Yongjian; ZHANG, ZHENXIANG; Erle, David J.; Zhen, Guohua

    2009-01-01

    Asthma is characterized by airway inflammation, mucus overproduction, airway hyperreactivity, and peribronchial fibrosis. Intelectin has been shown to be increased in airway epithelium of asthmatics. However, the role of intelectin in the pathogenesis of asthma is unknown. Airway epithelial cells can secrete chemokines such as monocyte chemotactic protein (MCP)-1 and -3 that play crucial roles in asthmatic airway inflammation. We hypothesized that intelectin plays a role in allergic airway in...

  5. Severe chronic allergic (and related) diseases

    DEFF Research Database (Denmark)

    Bousquet, J; Anto, J M; Demoly, P;

    2012-01-01

    and associated factors such as comorbidities and risk factors. This uniform definition will allow a better definition of the phenotypes of severe allergic (and related) diseases for clinical practice, research (including epidemiology), public health purposes, education and the discovery of novel therapies.......-up. Control is the degree to which therapy goals are currently met. These concepts have evolved over time for asthma in guidelines, task forces or consensus meetings. The aim of this paper is to generalize the approach of the uniform definition of severe asthma presented to WHO for chronic allergic...... and associated diseases (rhinitis, chronic rhinosinusitis, chronic urticaria and atopic dermatitis) in order to have a uniform definition of severity, control and risk, usable in most situations. It is based on the appropriate diagnosis, availability and accessibility of treatments, treatment responsiveness...

  6. Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs.

    Directory of Open Access Journals (Sweden)

    Xiaowei Yang

    Full Text Available Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.

  7. Acupuncture Treatment in Asthma and Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Ozgur Kartal

    2011-02-01

    Full Text Available Acupuncture has an historical significance and currently its’ use and esteem are growing in modern medicine. Acupuncture points, or acu points are specific foci along lineer meridians or channels on skin surface. Recently, they are stimulated with needles, ultrasound, palpation, light and electric resistance. Acupuncture is based on influencing of acu points. However there is no standard definition or clinical approach to acupuncture. Needling techniques and forms of stimulation vary widely across patients and practitioners. During the last 50 years, acupuncture techniques have been put into practice in different regions of the world by most medical specialties, including allergic diseases. In this review, effects of acupuncture on immune system, and the possible mechanisms in allergic diseases are discussed. According to published data, effectiveness of acupuncture in allergic diseases seems to be related with the activation of hypothalamic-pituitary-adrenal axis, which is resulted in increased steroid production. Evidence from large randomised trials, including follow-up measurements of markers of inflammation, could be obtained to prove the immunologic effects of acupuncture. [TAF Prev Med Bull 2011; 10(1.000: 107-114

  8. Eosinophil: central mediator of allergic asthma?

    Institute of Scientific and Technical Information of China (English)

    SHEN Hua-hao

    2005-01-01

    @@ Allergic asthma is a chronic disorder characterized by chronic airway inflammation, airway hyperresponsiveness, reversible airway obstruction, airway remodelling and mucus hypersecretion. It has been widely recognized that the infiltration of the lung with increased number of eosinophils is a hallmark of this disease.1

  9. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    Science.gov (United States)

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers). PMID:24925919

  10. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation.

    Science.gov (United States)

    Joskova, M; Sutovska, M; Durdik, P; Koniar, D; Hargas, L; Banovcin, P; Hrianka, M; Khazaei, V; Pappova, L; Franova, S

    2016-01-01

    Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma. PMID:27369295

  11. Effect of Respiratory Syncytial Virus Infection on Plasmacytoid Dendritic Cell Regulation of Allergic Airway Inflammation.

    OpenAIRE

    Tsuchida, Tomoko; Matsuse, Hiroto; Fukahori, Susumu; Kawano, Tetsuya; Tomari, Shinya; Fukushima, Chizu; Kohno, Shigeru

    2011-01-01

    Background: Respiratory syncytial virus (RSV) can infect myeloid dendritic cells (mDCs) and regulate their function in the development of allergy. It has been widely reported that plasmacytoid DCs (pDCs) play a critical role in antiviral innate immunity. In contrast, not much is known about the role of pDCs in the interaction between allergy and viral infection. The purpose of the present study was to investigate the effect of RSV infection on pDC function in the regulation of allergic airway...

  12. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation.

    Directory of Open Access Journals (Sweden)

    Nicholas J Kenyon

    Full Text Available Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex alone. We found that ovalbumin (Ova-exposed mice treated with Dex-NP had significantly fewer total cells (2.78 ± 0.44 × 10(5 (n = 18 vs. 5.98 ± 1.3 × 10(5 (n = 13, P<0.05 and eosinophils (1.09 ± 0.28 × 10(5 (n = 18 vs. 2.94 ± 0.6 × 10(5 (n = 12, p<0.05 in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43 ± 1.2 (n = 11 vs. 8.56 ± 2.1 (n = 8 pg/ml, p<0.05 and MCP-1 (13.1 ± 3.6 (n = 8 vs. 28.8 ± 8.7 (n = 10 pg/ml, p<0.05 were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma.

  13. Environmental epigenetics and allergic diseases: Recent advances

    OpenAIRE

    Kuriakose, Julie S; Miller, Rachel L.

    2010-01-01

    Significant strides in the understanding of the role of epigenetic regulation in asthma and allergy using both epidemiological approaches as well as experimental ones have been made. This review focuses on new research within the last two years. These include advances in determining how environmental agents implicated in airway disease can induce epigenetic changes, how epigenetic regulation can influence T helper cell (Th) differentiation and T regulatory (Treg) cell production, and new disc...

  14. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    Science.gov (United States)

    Crother, Timothy R; Schröder, Nicolas W J; Karlin, Justin; Chen, Shuang; Shimada, Kenichi; Slepenkin, Anatoly; Alsabeh, Randa; Peterson, Ellena; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate), but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs. PMID:21695198

  15. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Timothy R Crother

    Full Text Available Chlamydia pneumoniae (CP is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate, but not a high dose (severe CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n. with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs.

  16. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.

    Science.gov (United States)

    Sun, Yue-Qi; Deng, Meng-Xia; He, Jia; Zeng, Qing-Xiang; Wen, Weiping; Wong, David S H; Tse, Hung-Fat; Xu, Geng; Lian, Qizhou; Shi, Jianbo; Fu, Qing-Ling

    2012-12-01

    We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. PMID:22987325

  17. A comparison between intratracheal and inhalation delivery of Aspergillus fumigatus conidia in the development of fungal allergic asthma in C57BL/6 mice

    OpenAIRE

    Samarasinghe, Amali E.; Hoselton, Scott A; Schuh, Jane M

    2010-01-01

    Allergic asthma is a debilitating disease of the airways characterized by airway hyperresponsiveness, eosinophilic inflammation, goblet cell metaplasia with associated mucus hypersecretion, and airway wall remodelling events, particularly subepithelial fibrosis and smooth muscle cell hyperplasia. Animal models that accurately mimic these hallmarks of allergic airways disease are critical for studying mechanisms associated with the cellular and structural changes that lead to disease pathogene...

  18. Polygonum multiflorum Decreases Airway Allergic Symptoms in a Murine Model of Asthma.

    Science.gov (United States)

    Lee, Chen-Chen; Lee, Yueh-Lun; Wang, Chien-N; Tsai, Hsing-Chuan; Chiu, Chun-Lung; Liu, Leroy F; Lin, Hung-Yun; Wu, Reen

    2016-01-01

    The root of Polygonum multiflorum (also called He-Shou-Wu in Chinese) is a common herb and medicinal food in Asia used for its anti-aging properties. Our study investigated the therapeutic potential of an extract of the root of Polygonum multiflorum (PME) in allergic asthma by using a mouse model. Feeding of 0.5 and 1 mg/mouse PME inhibited ovalbumin (OVA)-induced allergic asthma symptoms, including airway inflammation, mucus production, and airway hyper-responsiveness (AHR), in a dose-dependent manner. To discern PME's mechanism of action, we examined the profile and cytokine production of inflammatory cells in bronchial alveolar lavage fluid (BALF). We found that eosinophils, the main inflammatory cell infiltrate in the lung of OVA-immunized mice, significantly decreased after PME treatment. Th2 cytokine levels, including interleukin (IL)-4, IL-5, IL-13, eotaxin, and the proinflammatory cytokine tumor necrosis factor (TNF)-[Formula: see text], decreased in PME-treated mice. Elevated mRNA expression of Th2 transcription factor GATA-3 in the lung tissue was also inhibited after oral feeding of PME in OVA-immunized mice. Thus, we conclude that PME produces anti-asthma activity through the inhibition of Th2 cell activation. PMID:26916919

  19. Oscar Wilde's skin disease: allergic contact dermatitis?

    Science.gov (United States)

    Nater, J P

    1992-07-01

    During the last years of his life, Oscar Wilde (1856-1900) suffered from a suppurating otitis media as well as from an unidentified skin disease. The eruption was localized to his face, arms, chest and back and itched severely. A new theory is suggested, based on the fact that Wilde almost certainly used a dye to conceal his rapidly graying hair. He sensitized himself to p-phenylenediamine and developed a stubborn allergic contact dermatitis. Patch testing, the only proof of such a diagnosis, had not yet been devised.

  20. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    Science.gov (United States)

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated.

  1. Effects of airway exposure to di-(2-ethylhexyl) phthalate on allergic rhinitis.

    Science.gov (United States)

    He, Miao; Inoue, Ken-Ichiro; Yoshida, Seiichi; Tanaka, Michitaka; Takano, Hirohisa; Sun, Guifan; Ichinose, Takamichi

    2013-06-01

    Recent epidemiological studies have suggested a positive link between atopy morbidity and exposure to phthalate esters, which are environmental chemicals mainly involved in house dust. Nevertheless, experimental studies applying several allergic in vivo models (in addition to epidemiological studies) are needed to prove the precise correlation between phthalates and facilitation of the allergic response/pathophysiology. Among the phthalate esters, di-(2-ethylhexyl) phthalate (DEHP) has been widely used in flexible polyvinyl chloride products, including vinyl flooring and wall covering, and has been widely suggested to have immunomodulating potential. In the present study, we examined the effects of airway exposure to DEHP on allergen (ovalbumin: OVA)-induced rhinitis in mice. The repeated administration of OVA via an intranasal route induced nasal inflammation characterized by the infiltration of granulocytes (neutrophils and eosinophils) into the nasal cavity. In this experimental setting, DEHP did not exaggerate OVA-related inflammatory pathology. However, local (nasal) IL-13 levels were significantly higher in mice treated with allergen plus DEHP than with allergen alone. Taken together, phthalate esters including DEHP have the potential to exacerbate the allergic milieu in the nasal system, as well as dermal and respiratory systems. PMID:23672524

  2. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Norazren; Jambari, Nuzul Nurahya [Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah [Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zamri-Saad, Mohamad [Department of Veterinary Pathology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Tham, Chau Ling; Sulaiman, Mohd Roslan [Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Lajis, Nordin Hj [Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Israf, Daud Ahmad, E-mail: daud.israf@gmail.com [Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2012-03-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  3. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    International Nuclear Information System (INIS)

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  4. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway.

    Directory of Open Access Journals (Sweden)

    Yun Ho Choi

    Full Text Available Vascular endothelial growth factor (VEGF is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α. Recently, inhibition of the mammalian target of rapamycin (mTOR has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K/Akt or protein kinase C-delta (PKC δ in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.

  5. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    OpenAIRE

    CHEN, HONGXIA; Xia, Qingqing; FENG, XIAOQIAN; CAO, FANGYUAN; Yu, Hang; SONG, YINLI; NI, XIUQIN

    2015-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects ...

  6. T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice.

    Science.gov (United States)

    Li, Bobby W S; de Bruijn, Marjolein J W; Tindemans, Irma; Lukkes, Melanie; KleinJan, Alex; Hoogsteden, Henk C; Hendriks, Rudi W

    2016-06-01

    Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL-5 and IL-13. Here, we used a house dust mite (HDM)-driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. In BALF, lungs, and lymph nodes, ILC2 activation is critically dependent on prior sensitization with HDM. Importantly, T cells are required for ILC2 induction, whereby T-cell activation precedes ILC2 induction. During HDM-driven allergic airway inflammation the accumulation of ILC2s in BALF is IL-33 independent, although infiltrating ILC2s produce less cytokines in Il33(-/-) mice. Transfer of in vitro polarized OVA-specific OT-II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T-cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM-mediated allergic airway inflammation in mice critically depends on activation of T cells. PMID:27062360

  7. Th17 Responses in Chronic Allergic Airway Inflammation Abrogate Regulatory T cell-mediated Tolerance and Contribute to Airway Remodeling

    OpenAIRE

    Zhao, Jingyue; Lloyd, Clare M.; Noble, Alistair

    2012-01-01

    The role of Th17 responses in airway remodeling in asthma is currently unknown. We demonstrate that both parenteral and mucosal allergen sensitization followed by allergen inhalation leads to Th17-biased lung immune responses. Unlike Th17 cells generated in vitro, lung Th17 cells did not produce TNF-α or IL-22. Eosinophilia predominated in acute inflammation while neutrophilia and IL-17 increased in chronic disease. Allergen-induced tolerance involved Foxp3, Helios and GARP expressing regulat...

  8. Assessment of disease control in allergic rhinitis.

    Science.gov (United States)

    Demoly, Pascal; Calderon, Moises A; Casale, Thomas; Scadding, Glenis; Annesi-Maesano, Isabella; Braun, Jean-Jacques; Delaisi, Bertrand; Haddad, Thierry; Malard, Olivier; Trébuchon, Florence; Serrano, Elie

    2013-01-01

    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative has had a significant impact, by raising awareness of allergic rhinitis (AR) and improving the diagnosis and treatment of AR sufferers. ARIA classifies the severity of AR as "mild" or "moderate/severe" on the basis of "yes"/"no" answers to four questions. This two-point classification has been criticized as providing little guidance on patient management; patients with "mild" AR are unlikely to consult a physician, whereas the group of patients with "moderate/severe" seen by specialists is heterogeneous. These perceived shortcomings have prompted attempts to improve the ARIA classification or, by analogy with the Global Initiative for Asthma (GINA), adopt approaches based on "disease control" in AR. Even though "disease severity", "disease control" and "responsiveness to treatment" are different (albeit related) metrics, they are not mutually exclusive. Currently, there is no single, accepted definition, but we propose that "disease control" in AR can combine (i) measurements of the severity and/or frequency of daily or nocturnal symptoms, (ii) impairments in social, physical, professional and educational activities, (iii) respiratory function monitoring and (iv) exacerbations (e.g. unscheduled medical consultations and rescue medication use). Although control-based classifications have a number of limitations (e.g. their dependence on treatment compliance and the patient's psychological status), these instruments could be used as an adjunct to the ARIA severity classification and regional practice parameters. Here, we assess the strengths and weaknesses of the current two-level ARIA classification, analyze published proposals for its modification and review the literature on instruments that measure AR control. We conclude that there is a need for research in which severity is compared with control in terms of their effects on patient management. PMID:23419058

  9. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    Science.gov (United States)

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young

    2015-06-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  10. Inhibitory effect of acetamide-45 on airway inflammation and phosphodiesterase 4 in allergic rats

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Hua-hao SHEN; Jun-chun CHEN; Zhong CHEN

    2005-01-01

    Aim: To determine the effects of acetamide-45 on respiratory function, airway inflammation, and the activity of phosphodiesterase 4 (PDE4) in allergic rats.Methods: Rats were sensitized by a single intramuscular injection with ovalbumin (OVA) and were challenged with ovalbumin applied by using an aerosol repeatedly for 7 d after 2 weeks. Acetamide-45 at concentrations of 5, 10, or 30 mg/kg was then administered by intraperitoneal injection. Changes in dynamic lung compliance and lung resistance, the accumulation of inflammatory cells in bronchoalveolar lavage, PDE4 activity, and the concentration of interleukin-4 in rat lung tissue were determined. Results: Seven days of treatment with acetamide-45 prevented eosinophil accumulation in allergic rats. At doses of 5, 10, and 30 mg/kg, acetamide-45 decreased lung resistance to 0.20±0.04, 0.25±0.07, and 0.22±0.05compliance to 0.41±0.07, 0.39±0.06, and 0.42±0.09 mL/cmH2O (P<0.05 vs OVA).After being treated with different doses of acetamide-45, the PDE4 activities in the concentrations of interleukin-4 in lung tissue were 6.22± 1.13, 5.95± 1.20,and 5.68±2.20 μg/g protein (P<0.05 vs OVA). Conclusions: Acetamide-45 was found to improve respiratory function and inhibit airway inflammation in this animal model, and the PDE4 activity of lung tissue was obviously inhibited.Acetamide-45 was an effective anti-inflammatory agent in respiratory inflammation,and the mechanism of its action might depend on inhibition of PDE4.

  11. Aggravation of Allergic Airway Inflammation by Cigarette Smoke in Mice Is CD44-Dependent.

    Directory of Open Access Journals (Sweden)

    Smitha Kumar

    Full Text Available Although epidemiological studies reveal that cigarette smoke (CS facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation.Wild type (WT and CD44 knock-out (KO mice were exposed simultaneously to house dust mite (HDM extract and CS. Inflammatory cells, hyaluronic acid (HA and osteopontin (OPN levels were measured in bronchoalveolar lavage fluid (BALF. Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures.In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice.We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics.

  12. Measurement of airway function using invasive and non-invasive methods in mild and severe models for allergic airway inflammation in mice

    OpenAIRE

    Verheijden, Kim A T; Henricks, Paul A.J.; Redegeld, Frank A.; Garssen, Johan; Folkerts, Gert

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intranas...

  13. Measurement of airway function using invasive and non-invasive methodsin mild and severe models for allergic airway inflammation in mice

    OpenAIRE

    Kim eVerheijden; Paul eHenricks; Redegeld, Frank A.; Johan eGarssen; Gert eFolkerts

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anaesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intrana...

  14. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    OpenAIRE

    Silveira, Vera

    2016-01-01

    Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets r...

  15. Occupational Exposure to Urban Air Pollution and Allergic Diseases

    OpenAIRE

    Luigi Vimercati; Maria Franca Gatti; Antonio Baldassarre; Eustachio Nettis; Nicola Favia; Marco Palma; Gabriella Lucia Maria Martina; Elisabetta Di Leo; Marina Musti

    2015-01-01

    Exposure to air pollution is associated with increased morbidity from cardiovascular diseases, lung cancer, respiratory and allergic diseases. The aim of this study was to investigate allergic diseases in 111 traffic wardens compared to a control group of 101 administrative employees. All participating subjects underwent a physical examination, in which a complete medical history was taken and a dedicated allergological questionnaire administered. Spirometry, Specific IgE dosage (RAST) and sk...

  16. Maternal Disononyl Phthalate Exposure Activates Allergic Airway Inflammation via Stimulatingthe Phosphoinositide 3-kinase/Akt Pathway in Rat Pups

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Jiao; XIE ChangMing; ZHAO Yan; WANG Xiu; andZHANG YunHui

    2015-01-01

    ObjectiveTo evaluate the effectof diisononyl phthalate (DINP) exposure during gestation and lacta-tion on allergic response in pups and to explore the role of phosphoinositide 3-kinase/Akt pathway on it. MethodsFemale Wistar rats were treated with DINP at different dosages (0, 5, 50,and 500 mg/kg of body weight per day). The pups were sensitized and challenged by ovalbumin (OVA). The airway response was assessed; the airway histological studies were performed by hematoxylin and eosin (HE) staining; and the relative cytokines in phosphoinositide 3-kinase (PI3K)/Akt pathway were measured by enzyme-linked immunosorbent assay (ELISA) and western blot analysis. ResultsThere was no significant difference in DINP’s effect on airway hyperresponsiveness (AHR) between male pups and female pups. In the 50 mg/(kg·d) DINP-treated group, airway response to OVA significantly increased and pups showed dramatically enhanced pulmonary resistance (RI) compared with those from controls (P<0.05). Enhanced Akt phosphorylation and NF-κB translocation, and Th2 cytokines expression were observed in pups of 50 mg/(kg·d) DINP-treated group. However, in the 5 and 500 mg/(kg·d) DINP-treated pups, no significant effects were observed. ConclusionTherewas an adjuvant effect of DINP on allergic airway inflammation in pups. Maternal DINP exposure could promote OVA-induced allergic airway response in pups in part by upregulation of PI3K/Akt pathway.

  17. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    Directory of Open Access Journals (Sweden)

    Koga Hikari

    2013-01-01

    Full Text Available Abstract Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary with ovalbumin (OVA. Six weeks later, a single OVA aerosol (secondary challenge was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the

  18. Essential Role of Nuclear Factor κB in the Induction of Eosinophilia in Allergic Airway Inflammation

    OpenAIRE

    Yang, Liyan; Cohn, Lauren; Zhang, Dong-Hong; Homer, Robert; Ray, Anuradha; Ray, Prabir

    1998-01-01

    The molecular mechanisms that contribute to an eosinophil-rich airway inflammation in asthma are unclear. A predominantly T helper 2 (Th2)-type cell response has been documented in allergic asthma. Here we show that mice deficient in the p50 subunit of nuclear factor (NF)- κB are incapable of mounting eosinophilic airway inflammation compared with wild-type mice. This deficiency was not due to a block in T cell priming or proliferation in the p50−/− mice, nor was it due to a defect in the exp...

  19. Novel delivery systems for anti-allergic agents: allergic disease and innovative treatments.

    Science.gov (United States)

    Lopes, Carla M; Coelho, Pedro B; Oliveira, Rita

    2015-01-01

    Anti-allergic agents are used to treat a great variety of diseases which usually involve an inflammation reaction. These compounds act by inhibiting the release and the effects of inflammatory mediators (e.g. histamine) in the target tissue. The purpose of anti-allergy therapy is to deliver the drug to its local of action in a therapeutic concentration, minimizing the undesired side effects. In order to solve some of the anti-allergic agents' physicochemical drawbacks and the limitations associated to conventional pharmaceutical formulations (e.g. poor solubility and absorption, skin permeation, stability), novel drug delivery systems, such as cyclodextrins, liposomes, micelles, microemulsions, nano and microparticles, have been developed. Depending on the allergic condition, several administration routes are used to deliver anti-allergic agents, each with its own disadvantages to overcome. In the literature, there are a vast number of papers concerning novel delivery systems for anti-allergic agents, making it difficult to evaluate the information and the promising outcomes. The aim of the present review article is to compile the recent (i.e. in the new millennium) improvements of novel drug delivery technology focusing on the achievement of anti-allergic therapeutic delivery. The potential intrinsic benefits of these systems will reflect an increased therapeutic adherence and better patients' life quality. A critical prospect of future clinical trial directions will also be discussed. PMID:25895551

  20. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation.

    Science.gov (United States)

    Markus, M Andrea; Napp, Joanna; Behnke, Thomas; Mitkovski, Miso; Monecke, Sebastian; Dullin, Christian; Kilfeather, Stephen; Dressel, Ralf; Resch-Genger, Ute; Alves, Frauke

    2015-12-22

    Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.

  1. Assessment of disease control in allergic rhinitis.

    OpenAIRE

    Demoly, Pascal; Calderon, Moises; Casale, Thomas; Scadding, Glenis; Annesi-Maesano, Isabella; Braun, Jean-Jacques; Delaisi, Bertrand; Haddad, Thierry; Malard, Olivier; Trébuchon, Florence; Serrano, Elie

    2013-01-01

    International audience The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative has had a significant impact, by raising awareness of allergic rhinitis (AR) and improving the diagnosis and treatment of AR sufferers. ARIA classifies the severity of AR as "mild" or "moderate/severe" on the basis of "yes"/"no" answers to four questions. This two-point classification has been criticized as providing little guidance on patient management; patients with "mild" AR are unlikely to consult ...

  2. TGF-beta, eosinophils and IL-13 in allergic airway remodeling: a critical appraisal with therapeutic considerations.

    Science.gov (United States)

    Fattouh, Ramzi; Jordana, Manel

    2008-12-01

    Airway remodeling is a characteristic feature of allergic asthma that is now thought to contribute to airway dysfunction and, ultimately, to clinical symptoms. A prevalent hypothesis holds that eosinophil-derived transforming growth factor-beta (TGF-beta) is a predominant underlying mechanism driving the development of remodeling and thus, represent promising targets for therapeutic intervention. This notion is supported by in vivo evidence from loss of function experiments conducted in animal models employing the surrogate allergen ovalbumin (OVA), and by indirect evidence from studies in human asthmatics. However, it is important to note that various studies in OVA systems have reported disconnects between eosinophils, TGF-beta and allergic remodeling. Moreover, recent investigations in a mouse model induced by respiratory exposure to a house dust mite extract have shown that remodeling can develop independently of TGF-beta. These findings challenge the above hypothesis and suggest that the mechanisms governing remodeling may be context specific. In addition to TGF-beta and eosinophils, several other factors have been implicated in the development of airway remodeling. Among these, interleukin (IL)-13 may be of particular importance given its role in type-2 immunity and in the tissue repair/fibrotic response. This review will appraise the evidence pertaining to the roles of TGF-beta, eosinophils and IL-13 in allergic remodeling, and will suggest that identifying robust targets for therapeutic intervention might benefit from a reconsideration of our approach to understanding remodeling. PMID:19075788

  3. Schistosoma mansoni-mediated suppression of allergic airway inflammation requires patency and Foxp3+ Treg cells.

    Directory of Open Access Journals (Sweden)

    Laura E Layland

    Full Text Available The continual rise of asthma in industrialised countries stands in strong contrast to the situation in developing lands. According to the modified Hygiene Hypothesis, helminths play a major role in suppressing bystander immune responses to allergens, and both epidemiological and experimental studies suggest that the tropical parasitic trematode Schistosoma mansoni elicits such effects. The focus of this study was to investigate which developmental stages of schistosome infection confer suppression of allergic airway inflammation (AAI using ovalbumin (OVA as a model allergen. Moreover, we assessed the functional role and localization of infection-induced CD4(+Foxp3(+ regulatory T cells (Treg in mediating such suppressive effects. Therefore, AAI was elicited using OVA/adjuvant sensitizations with subsequent OVA aerosolic challenge and was induced during various stages of infection, as well as after successful anti-helminthic treatment with praziquantel. The role of Treg was determined by specifically depleting Treg in a genetically modified mouse model (DEREG during schistosome infection. Alterations in AAI were determined by cell infiltration levels into the bronchial system, OVA-specific IgE and Th2 type responses, airway hyper-sensitivity and lung pathology. Our results demonstrate that schistosome infection leads to a suppression of OVA-induced AAI when mice are challenged during the patent phase of infection: production of eggs by fecund female worms. Moreover, this ameliorating effect does not persist after anti-helminthic treatment, and depletion of Treg reverts suppression, resulting in aggravated AAI responses. This is most likely due to a delayed reconstitution of Treg in infected-depleted animals which have strong ongoing immune responses. In summary, we conclude that schistosome-mediated suppression of AAI requires the presence of viable eggs and infection-driven Treg cells. These data provide evidence that helminth derived products

  4. Weighted road density and allergic disease in children at high risk of developing asthma.

    Directory of Open Access Journals (Sweden)

    Anna L Hansell

    Full Text Available BACKGROUND: Evidence for an association between traffic-related air pollution and allergic disease is inconsistent, possibly because the adverse effects may be limited to susceptible subgroups and these have not been identified. This study examined children in the Childhood Asthma Prevention Study (CAPS, potentially susceptible to air pollution effects because of a family history of asthma. METHODS: We examined cross-sectional associations at age eight years between road density within 75 m and 50 m of home address weighted by road type (traffic density, as a proxy for traffic-related air pollution, on the following allergic and respiratory outcomes: skin prick tests (SPTs, total and specific serum IgE, pre- and post-bronchodilator lung function, airway hyperresponsiveness, exhaled NO, and reported asthma and rhinitis. RESULTS: Weighted road density was positively associated with allergic sensitisation and allergic rhinitis. Adjusted relative risk (RR for house dust mite (HDM positive SPT was 1.25 (95% CI: 1.06-1.48, for detectable house dust mite-specific IgE was 1.19 (95% CI: 1.01-1.41 and for allergic rhinitis was 1.30 (95% CI: 1.03-1.63 per 100 m local road or 33.3 m motorway within 50 m of home. Associations were also seen with small decrements of peak and mid-expiratory flows and increased risk of asthma, current wheeze and rhinitis in atopic children. CONCLUSION: Associations between road density and allergic disease were found in a potentially susceptible subgroup of children at high risk of developing atopy and asthma.

  5. Mode of Glucocorticoid Actions in Airway Disease

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ito

    2006-01-01

    Full Text Available Synthetic glucocorticoids are the most potent anti-inflammatory agents used to treat chronic inflammatory disease, such as asthma. However, a small number (<5% of asthmatic patients and almost all patients with chronic obstructive pulmonary disease (COPD do not respond well, or at all, to glucocorticoid therapy. If the molecular mechanism of glucocorticoid insensitivity is uncovered, it may in turn provide insight into the key mechanism of glucocorticoid action and allow a rational way to implement treatment regimens that restore glucocorticoid sensitivity. Glucocorticoids exert their effects by binding to a cytoplasmic glucocorticoid receptor (GR, which is subjected to post-translational modifications. Receptor phosphorylation, acetylation, nitrosylation, ubiquitinylation, and other modifications influence hormone binding, nuclear translocation, and protein half-life. Analysis of GR interactions to other molecules, such as coactivators or corepressors, may explain the genetic specificity of GR action. Priming with inflammatory cytokine or oxidative/nitrative stress is a mechanism for the glucocorticoid resistance observed in chronic inflammatory airway disease via reduction of corepressors or GR modification. Therapies targeting these aspects of the GR activation pathway may reverse glucocorticoid resistance in patients with glucocorticoid-insensitive airway disease and some patients with other inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease.

  6. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    OpenAIRE

    Navarro-Xavier RA; Barros KV; Andrade IS; Palomino Z; Casarini, DE; Flor Silveira VL

    2016-01-01

    Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty...

  7. Mucoactive agents for airway mucus hypersecretory diseases.

    Science.gov (United States)

    Rogers, Duncan F

    2007-09-01

    Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. Nevertheless, mucoactive drugs are a longstanding and popular therapeutic option, and numerous compounds (eg, N-acetylcysteine, erdosteine, and ambroxol) are available for clinical use worldwide. However, rational recommendation of these drugs in guidelines for management of asthma, COPD, or CF has been hampered by lack of information from well-designed clinical trials. In addition, the mechanism of action of most of these drugs is unknown. Consequently, although it is possible to categorize them according to putative mechanisms of action, as expectorants (aid and/or induce cough), mucolytics (thin mucus), mucokinetics (facilitate cough transportability), and mucoregulators (suppress mechanisms underlying chronic mucus hypersecretion, such as glucocorticosteroids), it is likely that any beneficial effects are due to activities other than, or in addition to, effects on mucus. It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the

  8. Mucoactive agents for airway mucus hypersecretory diseases.

    Science.gov (United States)

    Rogers, Duncan F

    2007-09-01

    Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. Nevertheless, mucoactive drugs are a longstanding and popular therapeutic option, and numerous compounds (eg, N-acetylcysteine, erdosteine, and ambroxol) are available for clinical use worldwide. However, rational recommendation of these drugs in guidelines for management of asthma, COPD, or CF has been hampered by lack of information from well-designed clinical trials. In addition, the mechanism of action of most of these drugs is unknown. Consequently, although it is possible to categorize them according to putative mechanisms of action, as expectorants (aid and/or induce cough), mucolytics (thin mucus), mucokinetics (facilitate cough transportability), and mucoregulators (suppress mechanisms underlying chronic mucus hypersecretion, such as glucocorticosteroids), it is likely that any beneficial effects are due to activities other than, or in addition to, effects on mucus. It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the

  9. Phenotyping airways disease: an A to E approach.

    Science.gov (United States)

    Gonem, S; Raj, V; Wardlaw, A J; Pavord, I D; Green, R; Siddiqui, S

    2012-12-01

    The airway diseases asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous conditions with overlapping pathophysiological and clinical features. It has previously been proposed that this heterogeneity may be characterized in terms of five relatively independent domains labelled from A to E, namely airway hyperresponsiveness (AHR), bronchitis, cough reflex hypersensitivity, damage to the airways and surrounding lung parenchyma, and extrapulmonary factors. Airway hyperresponsiveness occurs in both asthma and COPD, accounting for variable day to day symptoms, although the mechanisms most likely differ between the two conditions. Bronchitis, or airway inflammation, may be predominantly eosinophilic or neutrophilic, with different treatments required for each. Cough reflex hypersensitivity is thought to underlie the chronic dry cough out of proportion to other symptoms that can occur in association with airways disease. Structural changes associated with airway disease (damage) include bronchial wall thickening, airway smooth muscle hypertrophy, bronchiectasis and emphysema. Finally, a variety of extrapulmonary factors may impact upon airway disease, including rhinosinusitis, gastroesophageal reflux disease, obesity and dysfunctional breathing. This article discusses the A to E concept in detail and describes how this framework may be used to assess and treat patients with airway diseases in the clinic. PMID:23181785

  10. Absence of Foxp3+ regulatory T cells during allergen provocation does not exacerbate murine allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Abdul Mannan Baru

    Full Text Available Regulatory T cells (Tregs play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC-transgenic Foxp3-DTR (DEREG mice we demonstrate that the absence of Foxp3(+ Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3(+ Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics.

  11. Probiotic therapy as a novel approach for allergic disease

    Directory of Open Access Journals (Sweden)

    Zheng Quan eToh

    2012-09-01

    Full Text Available The prevalence of allergic disease has increased dramatically in Western countries over the past few decades. The hygiene hypothesis, whereby reduced exposure to microbial stimuli in early life programs the immune system towards a Th2-type allergic response, is suggested to be a major mechanism to explain this phenomenon in developed populations. Such microbial exposures are recognised to be critical regulators of intestinal microbiota development. Furthermore, intestinal microbiota has an important role in signalling to the developing mucosal immune system. Intestinal dysbiosis has been shown to precede the onset of clinical allergy, possibly through altered immune regulation. Existing treatments for allergic diseases such as eczema, asthma and food allergy are limited and so the focus has been to identify alternative treatment or preventive strategies. Over the past 10 years, a number of clinical studies have investigated the potential of probiotic bacteria to ameliorate the pathological features of allergic disease. This novel approach has stemmed from numerous data reporting the pleiotropic effects of probiotics that include immunomodulation, restoration of intestinal dysbiosis as well as maintaining epithelial barrier integrity. In this mini-review, the emerging role of probiotics in the prevention and/or treatment of allergic disease are discussed with a focus on the evidence from animal and human studies.

  12. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation.

    Science.gov (United States)

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N; Benharroch, D Aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel; Mizrachi Nebenzahl, Yaffa; Porgador, Angel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  13. 基于GenMAPP的气道变应性疾病基因芯片实验差异基因的功能路径分析%Pathway analysis of the differential expression genes of oligonucleotide microarray of airway allergic diseases using GenMAPP

    Institute of Scientific and Technical Information of China (English)

    薛金梅; 赵长青; 梁爱华

    2011-01-01

    Objective: To detected the mechanism of allergic rhinitis associated with asthma with bioinformatics methods. Method:GenMAPP software was used to analyze the expression profile of nasal mucosa of seasonal allergic rhinitis(SAR) and SAR associated with asthma of oligonucleotide microarray(Affymetrix HGU133-plus2).One the first step,of differentially expressed genes screening were done, then differential gene database retrieval was established , at last pathway analysis was performed. Result: 689 genes out of 47 000 analyzed transcripts of nasal mucosa of SAR associated with asthma were differentially expressed at least 4-fold,in which 233 genes were up regulated and 456 genes were down regulated. These differential expression genes participate in 69 bio-pathways, in which the interaction pathway between cytokine and cytokine receptor was most. Chemotatic factor CXCL12 and its receptor CXCR4 expressed in SAR associated with asthma patients were up-regulated predominantly,compared with that in SAR patients. Conclusion: Mutiple pathways were involved in the development of SAR and SAR complicated with asthma. The CXCL12/CXCR4 axis might play a main role in the allergic airway diseases.%目的:利用生物信息学方法对变应性鼻炎并发哮喘机制进行初步探讨.方法:利用GenMAPP软件对季节性变应性鼻炎(SAR)与SAR并发哮喘患者鼻黏膜组织Affymetrix寡核苷酸芯片表达谱结果进行分析.首先筛查差异表达基因,然后对差异基因做数据库检索,并对其生物路径进行分析.结果:在38500多个基因中(47000个转录本中),SAR并发哮喘者,其鼻黏膜发生4倍以上差异表达的基因共有689个,其中有233个基因表达上调,456个基因表达下调.MAPPfindder分析示这些差异表达基因参与了69条生物路径.其中细胞因子与细胞因子受体间作用路径中差异表达基因最多,且在此路径中趋化因子CXCL12及其受体CXCR4在变应性鼻炎并发哮喘患者中较单纯变

  14. Allergen immunotherapy for the prevention of allergic disease

    DEFF Research Database (Denmark)

    Dhami, Sangeeta; Nurmatov, Ulugbek; Halken, Susanne;

    2016-01-01

    in the prevention of allergic disease. METHODS: We will undertake a systematic review, which will involve searching international biomedical databases for published, in progress and unpublished evidence. Studies will be independently screened against pre-defined eligibility criteria and critically appraised using......BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Prevention of Allergic Disease. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT...

  15. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA and World Allergy Organization (WAO document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA and Global Allergy and Asthma European Network (GA2LEN

    Directory of Open Access Journals (Sweden)

    F. Braido

    2016-10-01

    Full Text Available Abstract Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD has led INTERASMA (Global Asthma Association and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled

  16. Trichosanthin functions as Th2-type adjuvant in induction of allergic airway inflammation

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Kairui Mao; Shuhui Sun; Guomei Lin; Xiaodong Wu; Gang Yao; Bing Sun

    2009-01-01

    It is important to understand the pathogenesis of asthma induced by natural allergens, which could exclude the interference of artificial adjuvant and provide insights of natural immune response in the disease. In the present study, we show that Trichosanthin (TCS) could induce airway inflammation even without the help of alum. Further-more, TCS appeared capable of replacing alum to promote OVA-specific airway inflammation. TCS induced accu-mulation of IL-4-producing eosinophiis in peritoneum at an early stage and the adjuvant function of TCS was elimi-nated by blockage of IL-4 at this stage. Finally, the eosinophils triggered by TCS from WT mice, but not from IL-4-deficient mice were shown to function as adjuvant for the induction of OVA-specific Th2 responses. Our data indicate that TCS is not only an allergen, but also a Th2-type adjuvant modulating the switching of immune responses to a Th2 pathway. This chain of events results from IL-4 production by eosinophils at an early stage of TCS-priming. In conclusion, TCS may be useful as a Th2 adjuvant, and innate immune cells, such as eosinophils, may be a good target to study the initiation of Th2 response.

  17. Incense smoke: clinical, structural and molecular effects on airway disease

    Directory of Open Access Journals (Sweden)

    Krishnaswamy Guha

    2008-04-01

    Full Text Available Abstract In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes contains particulate matter (PM, gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs. The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home.

  18. Incense smoke: clinical, structural and molecular effects on airway disease.

    Science.gov (United States)

    Lin, Ta-Chang; Krishnaswamy, Guha; Chi, David S

    2008-04-25

    In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home.

  19. Incense smoke: clinical, structural and molecular effects on airway disease.

    Science.gov (United States)

    Lin, Ta-Chang; Krishnaswamy, Guha; Chi, David S

    2008-01-01

    In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home. PMID:18439280

  20. The Relation of Asthma and Allergic Diseases Diagnosed by Doctor with Fast Foods in Schoolchildren

    OpenAIRE

    Betül Battaloğlu İnanç

    2014-01-01

    Objective: It would not be right to link the reasons for the worldwide increase in incidents of childhood obesity and those of allergic diseases only to genetics. Obesity, asthma and allergic diseases can be prevented through the consumption of healthy food. In this study, children’s eating habits, obesity, asthma and other allergic diseases were intended to determine their relationship with each other. Methods: In a high socioeconomic level school in Mardin , asthma and allergic disease...

  1. New frontiers in CT imaging of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Philippe A.; Beigelman-Aubry, Catherine [Department of Radiology, University Pierre et Marie Curie, Paris (France); Fetita, Catalin; Preteux, Francoise [Institut National des Telecommunications, Department ARTEMIS, Evry (France); Brauner, Michel W. [Avicenne Hospital, UFR SMBH Paris XIII, Bobigny (France); Lenoir, Stephane [Institut Mutualiste Montsouris, Paris (France)

    2002-05-01

    Combining helical volumetric CT acquisition and thin-slice thickness during breath hold provides an accurate assessment of both focal and diffuse airway diseases. With multiple detector rows, compared with single-slice helical CT, multislice CT can cover a greater volume, during a simple breath hold, and with better longitudinal and in-plane spatial resolution and improved temporal resolution. The result in data set allows the generation of superior multiplanar and 3D images of the airways, including those obtained from techniques developed specifically for airway imaging, such as virtual bronchography and virtual bronchoscopy. Complementary CT evaluation at suspended or continuous full expiration is mandatory to detect air trapping that is a key finding for depicting an obstruction on the small airways. Indications for CT evaluation of the airways include: (a) detection of endobronchial lesions in patients with an unexplained hemoptysis; (b) evaluation of extent of tracheobronchial stenosis for planning treatment and follow-up; (c) detection of congenital airway anomalies revealed by hemoptysis or recurrent infection; (d) detection of postinfectious or postoperative airway fistula or dehiscence; and (e) diagnosis and assessment of extent of bronchiectasis and small airway disease. Improvement in image analysis technique and the use of spirometrically control of lung volume acquisition have made possible accurate and reproducible quantitative assessment of airway wall and lumen areas and lung density. This contributes to better insights in physiopathology of obstructive lung disease, particularly in chronic obstructive pulmonary disease and asthma. (orig.)

  2. Current management of allergic rhinitis in children

    NARCIS (Netherlands)

    C. Georgalas; I. Terreehorst; W. Fokkens

    2010-01-01

    Over the last 20 years, there has been significant progress in our understanding of the pathophysiology of allergic rhinitis, including the discovery of new inflammatory mediators, the link between asthma and allergic rhinitis ('one airway-one disease' concept) and the introduction of novel therapeu

  3. Allergic diseases among children: nutritional prevention and intervention.

    Science.gov (United States)

    Hendaus, Mohamed A; Jomha, Fatima A; Ehlayel, Mohammad

    2016-01-01

    Allergic diseases comprise a genetically heterogeneous group of chronic, immunomediated diseases. It has been clearly reported that the prevalence of these diseases has been on the rise for the last few decades, but at different rates, in various areas of the world. This paper discusses the epidemiology of allergic diseases among children and their negative impact on affected patients, their families, and societies. These effects include the adverse effects on quality of life and economic costs. Medical interest has shifted from tertiary or secondary prevention to primary prevention of these chronic diseases among high-risk infants in early life. Being simple, practical, and cost-effective are mandatory features for any candidate methods delivering these strategies. Dietary therapy fits this model well, as it is simple, practical, and cost-effective, and involves diverse methods. The highest priority strategy is feeding these infants breast milk. For those who are not breast-fed, there should be a strategy to maintain beneficial gut flora that positively influences intestinal immunity. We review the current use of probiotics, prebiotics, and synbiotics, and safety and adverse effects. Other dietary modalities of possible potential in achieving this primary prevention, such as a Mediterranean diet, use of milk formula with modified (hydrolyzed) proteins, and the role of micronutrients, are also explored. Breast-feeding is effective in reducing the risk of asthma, allergic rhinitis, and atopic eczema among children. In addition, breast milk constitutes a major source of support for gut microbe colonization, due to its bifidobacteria and galactooligosaccharide content. The literature lacks consensus in recommending the addition of probiotics to foods for prevention and treatment of allergic diseases, while prebiotics may prove to be effective in reducing atopy in healthy children. There is insufficient evidence to support soy formulas or amino acid formulas for

  4. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    Directory of Open Access Journals (Sweden)

    Abbas Pishdadian

    2012-01-01

    Full Text Available Innate-like lymphocytes (ILLs and innate lymphoid cells (ILCs are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2 are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13 in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma.

  5. Neutralization of TSLP Inhibits Airway Remodeling in a Murine Model of Allergic Asthma Induced by Chronic Exposure to House Dust Mite

    OpenAIRE

    Chen, Zhuang-Gui; Zhang, Tian-Tuo; Li, Hong-Tao; Chen, Fen-Hua; Zou, Xiao-Ling; Ji, Jing-Zhi; Chen, Hong

    2013-01-01

    Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP), an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs) through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of ai...

  6. The Protease Allergen Pen c 13 Induces Allergic Airway Inflammation and Changes in Epithelial Barrier Integrity and Function in a Murine Model*

    OpenAIRE

    Chen, Jui-Chieh; Chuang, Jiing-Guang; Su, Yu-Yi; Chiang, Bor-Luen; Lin, You-Shuei; Chow, Lu-Ping

    2011-01-01

    Fungal allergens are associated with the development of asthma, and some have been characterized as proteases. Here, we established an animal model of allergic airway inflammation in response to continuous exposure to proteolytically active Pen c 13, a major allergen secreted by Penicillium citrinum. In functional analyses, Pen c 13 exposure led to increased airway hyperresponsiveness, significant inflammatory cell infiltration, mucus overproduction, and collagen deposition in the lung, drama...

  7. Epidemiology and disease burden from allergic disease in Scotland:analyses of national databases

    OpenAIRE

    Anandan, C; R. Gupta; Simpson, C.R.; Fischbacher, C; Sheikh, A.

    2009-01-01

    There are ongoing concerns about the quality of care provided to patients with allergic disorders in Scotland, but there are relatively few reliable data on the overall disease burden. We sought to: (1) describe the incidence, prevalence and outcome of allergic disorders; (2) estimate healthcare burden and costs; and (3) investigate ethnic variations in the epidemiology and outcomes from allergic disorders in Scotland.Methods Data sources: national surveys; primary care data; prescribing and ...

  8. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  9. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway.

    Science.gov (United States)

    Lathrop, Melissa J; Brooks, Elice M; Bonenfant, Nick R; Sokocevic, Dino; Borg, Zachary D; Goodwin, Meagan; Loi, Roberto; Cruz, Fernanda; Dunaway, Chad W; Steele, Chad; Weiss, Daniel J

    2014-02-01

    Systemic administration of mesenchymal stromal cells (MSCs) suppresses airway inflammation and methacholine-induced airway hyper-responsiveness (AHR) in mouse models of T helper cell (Th) type 2-mediated eosinophilic allergic airway inflammation (AAI); however, the efficacy of MSCs in mouse models of severe Th17-mediated neutrophilic AAI has not yet been demonstrated. We assessed MSC effects in a mouse model of mixed Th2/Th17 AAI produced by mucosal exposure to Aspergillus fumigatus hyphal extract (AHE). Following sensitization produced by oropharyngeal AHE administration, systemic (tail vein) administration of syngeneic MSCs on the first day of challenge significantly reduced acute AHR predominantly through reduction of Th17-mediated airway inflammation. In parallel experiments, MSCs also mitigated AHR when administered during recurrent challenge 10 weeks after initial sensitization and challenge through reduction in systemic Th17-mediated inflammation. Investigation into potential mechanistic actions of MSCs in this model demonstrated that although T regulatory cells were increased in all AHE-treated mice, MSC administration did not alter T regulatory cell numbers in either the acute or recurrent model. Differential induction of interleukin-17a secretion was observed in ex vivo restimulation of mediastinal lymph node mixed-cell cytokine analyses. Although the mechanisms by which MSCs act to decrease inflammation and AHR in this model are not yet fully elucidated, decrease in Th17-mediated airway inflammation appears to play a significant role. These results provide a basis for further investigations of MSC administration as a potential therapeutic approach for severe refractory neutrophilic asthma. PMID:24436442

  10. Indoor air pollution and airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Viegi, G.; Simoni, M.; Scognamiglio, A.; Baldacci, S.; Pistelli, F.; Carrozzi, L.; Annesi-Maesano, I. [CNR, Pisa (Italy). Inst. of Clinical Physiology

    2004-12-15

    Growing scientific evidence has shown that because people generally spend the majority of their time indoors, indoor pollution plays a significant role in affecting health and is thus an important health issue. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. In developing countries, relevant sources of indoor pollution include biomass and coal burning for cooking and heating. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Approximately 1 million of these deaths occur in children aged under 5 years due to acute respiratory infections and significant proportions of deaths occur due to chronic obstructive pulmonary disease and lung cancer in women. Today, indoor air pollution ranks tenth among preventable risk factors contributing to the global burden of disease. Further research is necessary to better evaluate the respiratory health effects of indoor pollution and to implement protective programmes for public health.

  11. Has the airway microbiome been overlooked in respiratory disease?

    OpenAIRE

    Salami, Olawale; Marsland, Benjamin J

    2015-01-01

    Editorial summary The respiratory disease field is changing because of recent advances in our understanding of the airway microbiome. Central to this is dysbiosis, an imbalance of microbial communities that can lead to and flag inflammation in the airways. The increasing momentum of research in this area holds promise for novel treatment strategies.

  12. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice.

    Science.gov (United States)

    Chan, Cheng-Chi; Lai, Chin-Wen; Wu, Chia-Jen; Chen, Li-Chen; Tao, Mi-Hua; Kuo, Ming-Ling

    2016-08-01

    Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma. PMID:27178525

  13. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite.

    Directory of Open Access Journals (Sweden)

    Zhuang-Gui Chen

    Full Text Available Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP, an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1 were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.

  14. Characteristics of hormonal profile of children with allergic diseases

    Directory of Open Access Journals (Sweden)

    Shumna T.Ye.

    2013-03-01

    Full Text Available With the purpose to determine features of hormonal type in children with allergic diseases, the levels of adrenocorticotropic hormone (ACTH, thyroid-stimulating hormone (TSH and cortisol were investigated in 110 children in the age from 6 to 17 years. Of them 79 children with allergic diseases (40 children from Zaporozhye and 39 children – from eco¬friendly clean Primorsk and Berdyansk districts of the Zaporozhye area and 31 healthy children (16 children - from Zaporozhye and 15 - with conventionally ecofriendly clean districts of the Zaporozhye area. Levels of hormones (ACTH (pg/ml, TSH (mkIU/ml, cortisol (ng/ml were determined through diagnostic test systems by a standard method in laboratories of the Zaporozhуe state medical university. By research results it is set, that in the conditions of large industrial city Zaporozhуe, forming of allergic pathology in children took place during activating of the hypophysis-adrenal system with the increase of TSH, cortisol, ACTH secretion with a high risk of exhaustion of immunoreactions and persistence of antigens; this was confir¬med by increase of values of their medians in relation to healthy children. In children with allergic diseases, habitants of ecologically favourable Primorsk and Berdyansk districts of the Zaporozhye area, vice versa, lower indexes of medians of ACTH, TSH and cortisol were registered; this testifies to sup¬pression of hypothalamus function and hypophysis system with violation of protective reaction and adaptation mechanisms in response to forming of allergic inflammation. Thus, adjusting of hormonal activity by principle of ne¬gative reverse link in children with allergic diseases was not executed, regardless of place of residence. In addition, indexes of median of ACTH, TSH, cortisol in children with different clinical forms of allergic diseases (bronchial asthma, allergic rhinitis, atopic dermatitis in comparison to healthy ones, testified that for children with

  15. Characterization of inflammatory cell infiltration in feline allergic skin disease.

    Science.gov (United States)

    Taglinger, K; Day, M J; Foster, A P

    2007-11-01

    Sixteen cats with allergic dermatitis and six control cats with no skin disease were examined. Lymphoid and histiocytic cells in skin sections were examined immunohistochemically and mast cells were identified by toluidine blue staining. The 16 allergic cats showed one or more of several features (alopecia, eosinophilic plaques or granulomas, papulocrusting lesions), and histopathological findings were diverse. In control cats there were no cells that expressed IgM or MAC387, a few that were immunolabelled for IgG, IgA or CD3, and moderate numbers of mast cells. In allergic cats, positively labelled inflammatory cells were generally more numerous in lesional than in non-lesional skin sections, and were particularly associated with the superficial dermis and perifollicular areas. There were low numbers of plasma cells expressing cytoplasmic immunoglobulin; moderate numbers of MHC II-, MAC387- and CD3-positive cells; and moderate to numerous mast cells. MHC class II expression was associated with inflammatory cells morphologically consistent with dermal dendritic cells and macrophages, and epidermal Langerhans cells. Dendritic cells expressing MHC class II were usually associated with an infiltrate of CD3 lymphocytes, suggesting that these cells participate in maintenance of the local immune response by presenting antigen to T lymphocytes. These findings confirm that feline allergic skin disease is characterized by infiltration of activated antigen-presenting cells and T lymphocytes in addition to increased numbers of dermal mast cells. This pattern mimics the dermal inflammation that occurs in the chronic phase of both canine and human atopic dermatitis.

  16. The Coordinated Action of CC Chemokines in the Lung Orchestrates Allergic Inflammation and Airway Hyperresponsiveness

    OpenAIRE

    Gonzalo, Jose-Angel; Lloyd, Clare M.; Wen, Danyi; Albar, Juan P.; Wells, Timothy N.C.; Proudfoot, Amanda; Martinez-A, C.; Dorf, Martin; Bjerke, Torbjörn; Coyle, Anthony J.; Gutierrez-Ramos, Jose-Carlos

    1998-01-01

    The complex pathophysiology of lung allergic inflammation and bronchial hyperresponsiveness (BHR) that characterize asthma is achieved by the regulated accumulation and activation of different leukocyte subsets in the lung. The development and maintenance of these processes correlate with the coordinated production of chemokines. Here, we have assessed the role that different chemokines play in lung allergic inflammation and BHR by blocking their activities in vivo. Our results show that bloc...

  17. Necessary and sufficient role for T helper cells to prevent fungal dissemination in allergic lung disease.

    Science.gov (United States)

    Porter, Paul C; Roberts, Luz; Fields, Anna; Knight, Morgan; Qian, Yuping; Delclos, George L; Han, Shuhua; Kheradmand, Farrah; Corry, David B

    2011-11-01

    Mucosal immune responses to fungal infection range from T helper type 2 (Th2) cell-directed allergic inflammation to Th1-predominant neutrophilic inflammation, but the mechanisms directing these divergent mucosal immune outcomes and the role of T cells in host defense against mucosal fungal infections are not known. Here we examined the mouse mucosal immune responses to 12 filamentous environmental fungal species over a broad range of exposure doses and determined the requirement of T cells for host defense. For all tested fungi, low-grade conidium exposures induced Th2- and eosinophil-predominant allergic lung disease, whereas higher exposures led to rapid conversion to neutrophil- and Th1 cell-predominant inflammation, a phenomenon we term immune phenotype switching. All fungal exposure doses were further linked to the secretion of interleukin-17A (IL-17A). Fungal infections with Curvularia lunata and Aspergillus fumigatus were typically confined to the airway during allergic inflammation but became locally invasive and disseminated to the brain at higher conidium challenge doses, in association with predominant Th1 responses. Fungal dissemination occurred at relatively low challenge doses with the conidia of Aspergillus fumigatus administered to recombinase activating gene 1 (Rag-1)-deficient mice, which lack B and T cells, but B cell-deficient μMT mice and T helper cell-reconstituted Rag-1-deficient mice were comparable to wild-type mice in preventing fungal dissemination. Our findings demonstrate that Th2 cell-predominant allergic responses followed by immune phenotype switching and fungal dissemination are highly predictable outcomes with progressive fungal infectious burdens and that T helper cell responses are protective against lethal fungal dissemination.

  18. Classification of pulmonary airway disease based on mucosal color analysis

    Science.gov (United States)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  19. Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.

    Science.gov (United States)

    Eskandari, Mona; Kuschner, Ware G; Kuhl, Ellen

    2015-10-01

    Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure. PMID:25821112

  20. Enforced expression of Gata3 in T cells and group 2 innate lymphoid cells increases susceptibility to allergic airway inflammation in mice

    NARCIS (Netherlands)

    A. Kleinjan (Alex); R.G.J. Klein Wolterink (Roel); Y. Levani (Yelvi); M.J.W. de Bruijn (Marjolein); H.C. Hoogsteden (Henk); M. van Nimwegen (Menno); R.W. Hendriks (Rudi)

    2014-01-01

    textabstractAirway inflammation in allergic asthma reflects a threshold response of the innate immune system, including group 2 innate lymphoid cells (ILC2), followed by an adaptive Th2 cell-mediated response. Transcription factor Gata3 is essential for differentiation of both Th2 cells and ILC2. We

  1. The Gastrointestinal Tract Microbiota and Allergic Diseases.

    Science.gov (United States)

    Kyburz, Andreas; Müller, Anne

    2016-01-01

    The gastrointestinal (GI) tract microbiota is required for optimal digestion of foods, for the development of resistance against pathogens (termed colonization resistance), for the development of mucosa-associated lymphoid tissue, and for local as well as systemic immune homeostasis. Certain constituents of the GI tract microbiota are widely recognized as critical regulators and modulators of their host's immune response. These include bacterial members of the microbiota as well as parasitic nematodes. Immune regulation by immunomodulatory members of the GI microbiota primarily serves to subvert host antimicrobial immune defenses and promote persistent colonization, but as a side effect may prevent or suppress immunological disorders resulting from inappropriate responses to harmless antigens, such as allergy, colitis or autoimmunity. Many of the best understood GI-resident immunomodulatory species have co-evolved with their mammalian hosts for tens of thousands of years and masterfully manipulate host immune responses. In this review, we discuss the epidemiological evidence for the role of the GI tract microbiota as a whole, and of specific members, in protection against allergic and other immunological disorders. We then focus on the mechanistic basis of microbial immunomodulation, which is presented using several well-understood paradigmatic examples, that is, helminths, Helicobacter pylori, Bifidobacteria and Lactobacilli. In a final chapter, we highlight past and ongoing attempts at harnessing the immunomodulatory properties of GI microbiota species and their secreted products for intervention studies and describe the promises and limitations of these experimental approaches. The effects of pro- and prebiotics, bacterial lysates, as well as of fecal microbiota transplantation are presented and compared. PMID:27028536

  2. [The role of immunotherapy in the prevention of allergic diseases].

    Science.gov (United States)

    Lugović-Mihić, Liborija; Duvancić, Tomislav

    2011-01-01

    Immunotherapy through repeated administration of allergens and augmentation of doses (hyposensibilization) with the purpose of decreasing the severity of type I allergic reactions or even its complete elimination is known already for a longer period of time. This type of therapy is especially beneficial in allergies to Hymenoptera venom, allergic rhinoconjunctivitis, allergic asthma and is implemented in patients with previously proven allergy to appropriate allergens (insects, pollen, house dust mite, pet dander and other). The most common form of therapy is subcutaneous immunotherapy which includes a series of injections containing specific allergens (allergy vaccines) with increasingly larger doses administered subcutaneously during a period of 3-5 years. There are also other forms of immunotherapy (for instance sublingual immunotherapy) although these are less effective. Repetition of the hyposensibilization procedure leads to further reduction in severity of allergy disease in the majority of patients. The efficacy of immunotherapy is also proven by a lower risk of allergic rhinitis patients developing asthma as well as by prevention of new sensibilizations.

  3. AEROSOL DEPOSITION AS A FUNCTION OF AIRWAY DISEASE: CYSTIC FIBROSIS

    Science.gov (United States)

    Progressive lung disease associated with cystic fibrosis (CF) is a continuous interaction of the processes of airway obstruction, infection and inflammation. ecent literature has suggested that the manifestation of CF could compromise the successful administration of pharmacologi...

  4. Can Airway Tolerance be Promoted Immunopharmacologically with Aspirin in Aspirin-insensitive Allergic Bonchial Asthmatics by T Regulatory Cells (Tregs-directed Immunoregulatory Therapy?

    Directory of Open Access Journals (Sweden)

    Muzammal Hussain

    2012-07-01

    Full Text Available The pathobiology of allergic bronchial asthma is mediated by over-expressed T helper type 2 (Th2-biased immune responses to harmless environmental antigens, leading to airway inflammation and hyper-responsiveness. These Th2 responses are normally suppressed by functional T regulatory cells (Tregs, which maintain the airway tolerance. However, the Tregs activity is conceived to be compromised in allergic asthmatics. The curative therapy to counteract this immune dysregulation is not available so far, and to devise such a remedy is the current research impetus in allergic asthma therapeutics. One of the novel insights is to consider a Tregs-directed immunoregulatory therapy that could harness endogenous Tregs to redress the Th2/Tregs imbalance, thus enhancing the airway tolerance. Aspirin or acetylsalicylic acid (ASA is a prototype non-steroidal anti-inflammatory drug that possesses intriguing immunopharmacological attributes. For example, it can enhance the number or the frequency of functional Tregs, especially natural CD4+ CD25+ FoxP3+ Tregs, either directly or by inducing tolerogenic activity in dendritic cells (DCs. It is also considered to be beneficial for the induction of immunological tolerance in autoimmunity and graft rejection. This raises the question whether ASA, if exploited optimally, may be used to induce and harness endogenous Tregs activity for redressing Th2/Tregs imbalance in allergic asthma. In this paper, we hypothesise that ASA may help to counteract the underlying immune dysregulation in allergic asthma by promoting airway tolerance. Nevertheless, the future research in this regard will selectively need to be targeted to allergic asthma models, which are ASA insensitive, as ASA has some adverse background and is contraindicated in asthmatics who are sensitive to it.

  5. Can Lactobacillus Reuteri Prevent Allergic Disease in Early Childhood?

    OpenAIRE

    Abrahamsson, Thomas

    2009-01-01

    Background: An altered microbial exposure may be partly responsible for the increase of allergic diseases in populations with a western lifestyle. Activation of the immune system by microbes early in life is probably required for an accurate maturation of the immune system. Probiotics, live bacteria which are considered to confer health when ingested, have been suggested to prevent eczema and sensitisation infants. Aim: The general aim of this thesis was to assess the effect of oral supplemen...

  6. Air pollution and respiratory allergic diseases in schoolchildren

    OpenAIRE

    Nicolussi, Francine Heloisa; dos Santos, Ana Paula Milla; André, Sílvia Carla da Silva; Veiga, Tatiane Bonametti; Takayanagui, Angela Maria Magosso

    2014-01-01

    Study on the prevalence of allergic respiratory diseases in schoolchildren between six and seven years old, associated with indicators of air pollution. A questionnaire based on the International Study of Asthma and Allergies in Childhood was administered to parents of students from public schools, located in urban areas with differing vehicle flows. There was a positive correlation between monthly frequency of rhinitis and concentration of pollutants, and negative with relative air humidity....

  7. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    OpenAIRE

    2014-01-01

    An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underly...

  8. Role of Treg in immune regulation of allergic diseases.

    Science.gov (United States)

    Palomares, Oscar; Yaman, Görkem; Azkur, Ahmet K; Akkoc, Tunc; Akdis, Mübeccel; Akdis, Cezmi A

    2010-05-01

    Allergy is a Th2-mediated disease that involves the formation of specific IgE antibodies against innocuous environmental substances. The prevalence of allergic diseases has dramatically increased over the past decades, affecting up to 30% of the population in industrialized countries. The understanding of mechanisms underlying allergic diseases as well as those operating in non-allergic healthy responses and allergen-specific immunotherapy has experienced exciting advances over the past 15 years. Studies in healthy non-atopic individuals and several clinical trials of allergen-specific immunotherapy have demonstrated that the induction of a tolerant state in peripheral T cells represent a key step in healthy immune responses to allergens. Both naturally occurring thymus-derived CD4+CD25+FOXP3+ Treg and inducible type 1 Treg inhibit the development of allergy via several mechanisms, including suppression of other effector Th1, Th2, Th17 cells; suppression of eosinophils, mast cells and basophils; Ab isotype change from IgE to IgG4; suppression of inflammatory DC; and suppression of inflammatory cell migration to tissues. The identification of the molecules involved in these processes will contribute to the development of more efficient and safer treatment modalities. PMID:20148422

  9. Occupational Exposure to Urban Air Pollution and Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Luigi Vimercati

    2015-10-01

    Full Text Available Exposure to air pollution is associated with increased morbidity from cardiovascular diseases, lung cancer, respiratory and allergic diseases. The aim of this study was to investigate allergic diseases in 111 traffic wardens compared to a control group of 101 administrative employees. All participating subjects underwent a physical examination, in which a complete medical history was taken and a dedicated allergological questionnaire administered. Spirometry, Specific IgE dosage (RAST and skin prick tests (SPT were done. Diagnostic investigations such as the nasal cytology, a specific nasal provocation test and rhinomanometry were also performed. Statistical analyses were performed using STATA version 11. The percentage of subjects with a diagnosis of allergy was higher in the exposed workers than in the controls. As regards the clinical tests, the positivity was higher for the group of exposed subjects. Among the exposed workers, those who worked on foot or motorcycle had a higher positivity in clinical trials compared to the traffic wardens who used the car. Our study showed a higher percentage of allergic subjects in the group of workers exposed to outdoor pollutants than in the controls. These results suggest that allergological tests should be included in the health surveillance protocols for workers exposed to outdoor pollutants.

  10. Occupational Exposure to Urban Air Pollution and Allergic Diseases.

    Science.gov (United States)

    Vimercati, Luigi; Gatti, Maria Franca; Baldassarre, Antonio; Nettis, Eustachio; Favia, Nicola; Palma, Marco; Martina, Gabriella Lucia Maria; Di Leo, Elisabetta; Musti, Marina

    2015-10-01

    Exposure to air pollution is associated with increased morbidity from cardiovascular diseases, lung cancer, respiratory and allergic diseases. The aim of this study was to investigate allergic diseases in 111 traffic wardens compared to a control group of 101 administrative employees. All participating subjects underwent a physical examination, in which a complete medical history was taken and a dedicated allergological questionnaire administered. Spirometry, Specific IgE dosage (RAST) and skin prick tests (SPT) were done. Diagnostic investigations such as the nasal cytology, a specific nasal provocation test and rhinomanometry were also performed. Statistical analyses were performed using STATA version 11. The percentage of subjects with a diagnosis of allergy was higher in the exposed workers than in the controls. As regards the clinical tests, the positivity was higher for the group of exposed subjects. Among the exposed workers, those who worked on foot or motorcycle had a higher positivity in clinical trials compared to the traffic wardens who used the car. Our study showed a higher percentage of allergic subjects in the group of workers exposed to outdoor pollutants than in the controls. These results suggest that allergological tests should be included in the health surveillance protocols for workers exposed to outdoor pollutants. PMID:26501303

  11. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases.

    Science.gov (United States)

    Miyata, Jun; Arita, Makoto

    2015-01-01

    Omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are found naturally in fish oil and are commonly thought to be anti-inflammatory nutrients, with protective effects in inflammatory diseases including asthma and allergies. The mechanisms of these effects remain mostly unknown but are of great interest for their potential therapeutic applications. Large numbers of epidemiological and observational studies investigating the effect of fish intake or omega-3 fatty acid supplementation during pregnancy, lactation, infancy, childhood, and adulthood on asthmatic and allergic outcomes have been conducted. They mostly indicate protective effects and suggest a causal relationship between decreased intake of fish oil in modernized diets and an increasing number of individuals with asthma or other allergic diseases. Specialized pro-resolving mediators (SPM: protectins, resolvins, and maresins) are generated from omega-3 fatty acids such as EPA and DHA via several enzymatic reactions. These mediators counter-regulate airway eosinophilic inflammation and promote the resolution of inflammation in vivo. Several reports have indicated that the biosynthesis of SPM is impaired, especially in severe asthma, which suggests that chronic inflammation in the lung might result from a resolution defect. This article focuses on the beneficial aspects of omega-3 fatty acids and offers recent insights into their bioactive metabolites including resolvins and protectins.

  12. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases

    Directory of Open Access Journals (Sweden)

    Jun Miyata

    2015-01-01

    Full Text Available Omega-3 fatty acids, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, are found naturally in fish oil and are commonly thought to be anti-inflammatory nutrients, with protective effects in inflammatory diseases including asthma and allergies. The mechanisms of these effects remain mostly unknown but are of great interest for their potential therapeutic applications. Large numbers of epidemiological and observational studies investigating the effect of fish intake or omega-3 fatty acid supplementation during pregnancy, lactation, infancy, childhood, and adulthood on asthmatic and allergic outcomes have been conducted. They mostly indicate protective effects and suggest a causal relationship between decreased intake of fish oil in modernized diets and an increasing number of individuals with asthma or other allergic diseases. Specialized pro-resolving mediators (SPM: protectins, resolvins, and maresins are generated from omega-3 fatty acids such as EPA and DHA via several enzymatic reactions. These mediators counter-regulate airway eosinophilic inflammation and promote the resolution of inflammation in vivo. Several reports have indicated that the biosynthesis of SPM is impaired, especially in severe asthma, which suggests that chronic inflammation in the lung might result from a resolution defect. This article focuses on the beneficial aspects of omega-3 fatty acids and offers recent insights into their bioactive metabolites including resolvins and protectins.

  13. The Relation of Asthma and Allergic Diseases Diagnosed by Doctor with Fast Foods in Schoolchildren

    Directory of Open Access Journals (Sweden)

    Betül Battaloğlu İnanç

    2014-06-01

    Full Text Available Objective: It would not be right to link the reasons for the worldwide increase in incidents of childhood obesity and those of allergic diseases only to genetics. Obesity, asthma and allergic diseases can be prevented through the consumption of healthy food. In this study, children’s eating habits, obesity, asthma and other allergic diseases were intended to determine their relationship with each other. Methods: In a high socioeconomic level school in Mardin , asthma and allergic diseases of children aged between 7-15 were diagnosed by a doctor, and their eating habits between meals, food types they buy from the school canteen and their family data were determined by survey. Results: Obesity and overweight was higher with the boys than the girls. 21.7% of the girls , 13.4% of the boys had allergic diseases. Allergic diseases were remarkably frequent with girls (p<0.0001. 1.6% of the girls and 2.3% of the boys had asthma. Allergic diseases was higher with the overweight and obese groups. Children who had breakfast regularly had significantly less tendency to be overweight or obese (p<0.00001. Conclusion: Genetic predisposition is the most important factor in emerging obesity and allergic diseases. However, it is not possible to explain the worldwide increase of obesity, allergic diseases and asthma only by genetics. The part played by complex dietary factors should be explained for obesity, asthma and other allergic diseases and understood through a multidisciplinary approach.

  14. Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives

    OpenAIRE

    Maarsingh, Harm; Zaagsma, Johan; Meurs, Herman

    2009-01-01

    Allergic asthma is a chronic inflammatory airways' disease, characterized by allergen-induced early and late bronchial obstructive reactions, airway hyperresponsiveness (AHR), airway inflammation and airway remodelling. Recent ex vivo and in vivo studies in animal models and asthmatic patients have indicated that arginase may play a central role in all these features. Thus, increased arginase activity in the airways induces reduced bioavailability of L-arginine to constitutive (cNOS) and indu...

  15. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism.

    Science.gov (United States)

    Cates, Elizabeth C; Fattouh, Ramzi; Wattie, Jennifer; Inman, Mark D; Goncharova, Susanna; Coyle, Anthony J; Gutierrez-Ramos, José-Carlos; Jordana, Manel

    2004-11-15

    It is now well established that passive exposure to inhaled OVA leads to a state of immunological tolerance. Therefore, to elicit allergic sensitization, researchers have been compelled to devise alternative strategies, such as the systemic delivery of OVA in the context of powerful adjuvants, which are alien to the way humans are exposed and sensitized to allergens. The objectives of these studies were to investigate immune-inflammatory responses to intranasal delivery of a purified house dust mite (HDM) extract and to evaluate the role of GM-CSF in this process. HDM was delivered to BALB/c mice daily for 10 days. After the last exposure, mice were killed, bronchoalveolar lavage was performed, and samples were obtained. Expression/production of Th2-associated molecules in the lymph nodes, lung, and spleen were evaluated by real-time quantitative PCR and ELISA, respectively. Using this exposure protocol, exposure to HDM alone generated Th2 sensitization based on the expression/production of Th2 effector molecules and airway eosinophilic inflammation. Flow cytometric analysis demonstrated expansion and activation of APCs in the lung and an influx of activated Th2 effector cells. Moreover, this inflammation was accompanied by airways hyper-responsiveness and a robust memory-driven immune response. Finally, administration of anti-GM-CSF-neutralizing Abs markedly reduced immune-inflammatory responses in both lung and spleen. Thus, intranasal delivery of HDM results in Th2 sensitization and airway eosinophilic inflammation that appear to be mediated, at least in part, by endogenous GM-CSF production. PMID:15528378

  16. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases

    OpenAIRE

    Zehethofer, Nicole; Bermbach, Saskia; Hagner, Stefanie; Garn, Holger; Müller, Julia; Goldmann, Torsten; Lindner, Buko; Schwudke, Dominik; König, Peter

    2014-01-01

    Airway epithelial cells play an important role in the pathogenesis of inflammatory lung diseases such as asthma, cystic fibrosis and COPD. Studies concerning the function of the lipid metabolism of the airway epithelium are so far based only on the detection of lipids by immunohistochemistry but quantitative analyses have not been performed. Although recent advances in mass spectrometry have allowed to identify a variety of lipid classes simultaneously in isolated tissue samples, up until now...

  17. The Role of CLCA Proteins in Inflammatory Airway Disease

    Science.gov (United States)

    Patel, Anand C.; Brett, Tom J.; Holtzman, Michael J.

    2014-01-01

    Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. Based on this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function, but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions. PMID:18954282

  18. The Relationship Between Psychosocial Stress and Allergic Disease Among Children and Adolescents in Gwangyang Bay, Korea

    OpenAIRE

    Lee, Mee-Ri; Son, Bu-Soon; Park, Yoo-Ri; Kim, Hye-Mi; Moon, Jong-Youn; Lee, Yong-Jin; Kim, Yong-Bae

    2012-01-01

    Objectives Stress is considered a causal factor in many diseases, allergic disease being one of them. The prevalence of allergic disease is increasing in Korea, but the relationship between allergic symptoms and stress is not empirically well known. We aimed to evaluate the relationship between allergy-related symptoms and stress in children and adolescents. Methods We investigated 698 children and adolescents living in Gwangyang Bay, Korea, using a multi-stage cluster sampling method. Using ...

  19. Is allergic rhinitis a trivial disease?

    Directory of Open Access Journals (Sweden)

    Dirceu Solé

    2011-01-01

    Full Text Available BACKGROUND: Asthma and rhinitis often coexist, which potentially increases the disease severity and can negatively impact a patients' quality of life. However, there are few reports based on data obtained from the International Study of Asthma and Allergies in Childhood examining asthma severity in combination with rhinitisrelated symptoms. OBJECTIVE: To demonstrate whether current rhinitis and current rhinoconjunctivitis are associated with the development of asthma or its increasing severity in Brazilian adolescents. METHODS: The prevalence of current asthma was correlated with the prevalence of current rhinitis and current rhinoconjunctivitis in adolescents (13 to 14 year olds from 16 Brazilian centers (based on Spearman's rank correlation index. The influence of current rhinitis and current rhinoconjunctivitis on asthma presentation was also evaluated using the chi-squared test and was expressed as odds ratios with 95% confidence intervals (95%CI. RESULTS: A significant positive correlation was observed between the prevalence of current asthma and current rhinitis (rs = 0.82; 95%CI: 0.60-0.93, p< 0.0001 and between the prevalence of current asthma and current rhinoconjunctivitis (rs = 0.75; 95%CI: 0.47-0.89, p < 0.0001. Current rhinitis was associated with a significantly increased risk of current asthma and of more severe asthma. Similar results were observed for current rhinoconjunctivitis. CONCLUSION: In this epidemiologic study of Brazilian adolescents, the presence of current rhinitis and current rhinoconjunctivitis was associated with a high risk of developing asthma and increased asthma severity. The mutual evaluation of rhinitis and asthma is necessary to establish an adequate treatment plan.

  20. Hu.4-1BB-Fc fusion protein inhibits allergic inflammation and airway hyperresponsiveness in a murine model of asthma

    Directory of Open Access Journals (Sweden)

    Byoung-Ju Kim

    2011-09-01

    Full Text Available Purpose : 4-1BB (CD 137 is a costimulatory molecule expressed on activated T-cells. Repression by 4-1BB is thought to attenuate Th2-mediated allergic reactions. The aim of this study was to investigate the effect of 4-1BB on allergic airway inflammation in a murine asthma model. Methods : BALB/c mice were sensitized to and challenged with ovalbumin (OVA. Hu.4-1BB-Fc was administered 1 day before the first OVA sensitization or 1 day after the second OVA sensitization. Following antigen challenge, airway responsiveness to methacholine was assessed and bronchoalveolar lavage (BAL fluid was analyzed. Total immunoglobulin (Ig E, OVA-specific IgE, IgG1, and IgG2a levels in sera were measured by enzyme-linked immunosorbent assay. Lung pathology was also evaluated. Results : In mice treated with Hu.4-1BB-Fc before the first OVA sensitization, there was a marked decrease in airway hyperresponsiveness, total cell count, and eosinophil count in the BAL fluid. In addition, Hu.4-1BB-Fc treatment decreased serum OVA-specific IgG1 levels and increased serum IgG2a level significantly compared with the corresponding levels in mice sensitized to and challenged with OVA. Hu.4-1BB-Fc-treated mice also showed suppressed peribronchial and perivascular inflammatory cell infiltration. In contrast, treatment with Hu.4-1BB-Fc 1 day after sensitization had no effect on airway hyperresponsiveness and showed less suppression of inflammation in lung tissue. Conclusion : Administration of Hu.4-1BB-Fc can attenuate airway inflammation and hyperreactivity in a mouse model of allergic airway inflammation. In addition, administration before sensitization may be more effective. These findings suggest that 4-1BB may be a useful therapeutic molecule against asthma.

  1. Impact on allergic immune response after treatment with vitamin A

    DEFF Research Database (Denmark)

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise;

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease...

  2. The extracellular matrix: Friend or foe in airway disease?

    NARCIS (Netherlands)

    Burgess, J.K.

    2010-01-01

    Airway remodelling includes thickening of the basement membrane and alterations in the extracellular matrix (ECM) composition. These changes play a key role in the pathogenesis of a number of pulmonary fibrotic diseases including asthma and chronic obstructive pulmonary disease. Insight into the mec

  3. Lung-homing of endothelial progenitor cells and airway vascularization is only partially dependant on eosinophils in a house dust mite-exposed mouse model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nirooya Sivapalan

    Full Text Available Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1, a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.Wild-type (WT BALB/c and eosinophil deficient (PHIL mice were sensitized to house dust mite (HDM using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD and airway methacholine responsiveness (AHR.Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.

  4. Airway disease: similarities and differences between asthma, COPD and bronchiectasis

    Directory of Open Access Journals (Sweden)

    Rodrigo Athanazio

    2012-11-01

    Full Text Available Airway diseases are highly prevalent worldwide; however, the prevalence of these diseases is underestimated. Although these diseases present several common characteristics, they have different clinical outcomes. The differentiation between asthma, chronic obstructive pulmonary disease and bronchiectasis in the early stage of disease is extremely important for the adoption of appropriate therapeutic measures. However, because of the high prevalence of these diseases and the common pathophysiological pathways, some patients with different diseases may present with similar symptoms. The objective of this review is to highlight the similarities and differences between these diseases in terms of the risk factors, pathophysiology, symptoms, diagnosis and treatment.

  5. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    Directory of Open Access Journals (Sweden)

    Luukkainen Annika

    2011-12-01

    Full Text Available Abstract Background Indoleamine 2,3-dioxygenase (IDO is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically evaluated from nasal specimens obtained in- and off-season from otherwise healthy non-smoking volunteers both allergic to birch pollen (having mild or moderate allergic rhinoconjunctivitis and non-allergic controls. Results: The IDO expression levels were low in healthy controls and remained low also in patients allergic to birch pollen. There were no differences in the expression of IDO in- and off-season in either healthy or allergic subjects. Conclusions There is a controversy in the role of IDO in upper and lower airways during allergic airway disease. It seems that IDO is associated to allergic inflammations of the lower airways, but does not have a local role in the nasal cavity at least in mild or moderate forms of allergic rhinitis.

  6. The microbiome in chronic inflammatory airway disease: A threatened species.

    Science.gov (United States)

    Green, Robin John; Van Niekerk, Andre; Jeevarathnum, Ashley C; Feldman, Charles; Richards On Behalf Of The South African Allergic Rhinitis Working Group, Guy A

    2016-08-01

    The human body is exposed to a multitude of microbes and infectious organisms throughout life. Many of these organisms colonise the skin, gastrointestinal tract (GIT) and airway. We now recognise that this colonisation includes the lower airway, previously thought to be sterile. These colonising organisms play an important role in disease prevention, including an array of chronic inflammatory conditions that are unrelated to infectious diseases. However, new evidence of immune dysregulation suggests that early colonisation, especially of the GITand airway, by pathogenic micro-organisms, has deleterious effects that may contribute to the potential to induce chronic inflammation in young children, which may only express itself in adult life. PMID:27499401

  7. [Oxidation phenotype as a risk factor for development of allergic diseases].

    Science.gov (United States)

    Niewiński, P; Orzechowska-Juzwenko, K; Patkowski, J; Wolańczyk-Medrala, A; Nittner-Marszalska, M; Rzemisławska, Z

    1999-01-01

    The relationship between genetically determined polymorphic metabolism and susceptibility to allergic diseases has aroused much interest. The aim of our study was to evaluate whether patients with allergic diseases, like atopic asthma and allergic rhinitis differ from healthy persons in their ability to oxidize sparteine as a model drug. The study was completed by 200 persons, 40 patients with allergic diseases--20 with atopic asthma and 20 with allergic rhinitis and 160 healthy volunteers as a control group. The results of our study revealed a predominance of very extensive metabolizers of sparteine among patients with allergic diseases in comparison with healthy volunteers. The difference in the oxidation metabolic ratio (MR) frequency distribution between patients with allergic diseases and healthy persons was statistically significant. Relative risk (odds ratio) of development of atopic asthma was 3.29 times higher, and that of allergic rhinitis 2.94 times higher for persons with very extensive oxidation phenotype. Our results represent some evidence for a possible relationship between extensive, rapid oxidation phenotype and the higher susceptibility to development of atopic asthma and allergic rhinitis. PMID:10592724

  8. INFLUENCE OF A POSITIVE FAMILY HISTORY AND ASSOCIATED ALLERGIC DISEASES ON THE NATURAL COURSE OF ASTHMA

    NARCIS (Netherlands)

    ROORDA, RJ; GERRITSEN, J; VANAALDEREN, WMC; KNOL, K

    1992-01-01

    The outcome of childhood asthma was studied in a cohort of 406 asthmatic children, with emphasis on the influence of family history for allergic disease, as well as the influence of associated allergic diseases on prognosis. Sixty-two per cent had a positive family history for atopy. In young adulth

  9. The natural course of sensitization and allergic diseases from childhood to adulthood

    DEFF Research Database (Denmark)

    Nissen, Susanne P.; Kjaer, Henrik F; Høst, Arne;

    2013-01-01

    Longitudinal prospective population-based birth cohort studies of the natural history of sensitization and allergic diseases from childhood to adulthood are few. The aim of the present prospective study was to investigate the natural course of sensitization and allergic diseases in a random...

  10. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime

    2011-04-01

    allergic airway inflammation via FcγRIIB on DCs.

  11. The IL-33 receptor (ST2) regulates early IL-13 production in fungus-induced allergic airway inflammation.

    Science.gov (United States)

    Piehler, D; Eschke, M; Schulze, B; Protschka, M; Müller, U; Grahnert, A; Richter, T; Heyen, L; Köhler, G; Brombacher, F; Alber, G

    2016-07-01

    Allergic airway inflammation (AAI) in response to environmental antigens is an increasing medical problem, especially in the Western world. Type 2 interleukins (IL) are central in the pathological response but their importance and cellular source(s) often rely on the particular allergen. Here, we highlight the cellular sources and regulation of the prototypic type 2 cytokine, IL-13, during the establishment of AAI in a fungal infection model using Cryptococcus neoformans. IL-13 reporter mice revealed a rapid onset of IL-13 competence within innate lymphoid cells type 2 (ILC2) and IL-33R(+) T helper (Th) cells. ILC2 showed IL-33-dependent proliferation upon infection and significant IL-13 production. Th cells essentially required IL-33 to become either GATA3(+) or GATA3(+)/Foxp3(+) hybrids. GATA3(+) Th cells almost exclusively contributed to IL-13 production but hybrid GATA3(+)/Foxp3(+) Th cells did not. In addition, alveolar macrophages upregulated the IL-33R and subsequently acquired a phenotype of alternative activation (Ym1(+), FIZZ1(+), and arginase-1(+)) linked to type 2 immunity. Absence of adaptive immunity in rag2(-/-) mice resulted in attenuated AAI, revealing the need for Th2 cells for full AAI development. Taken together, in pulmonary cryptococcosis ILC2 and GATA3(+) Th2 cells produce early IL-13 largely IL-33R-dependent, thereby promoting goblet cell metaplasia, pulmonary eosinophilia, and alternative activation of alveolar macrophages. PMID:26555705

  12. The association between phthalates in dust and allergic diseases among Bulgarian children

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Naydenov, Kiril Georgiev; Larsson, Martin;

    2008-01-01

    BACKGROUND: Recent studies have identified associations between the concentration of phthalates in indoor dust and allergic symptoms in the airways, nose, and skin. OBJECTIVES: Our goal was to investigate the associations between allergic symptoms in children and the concentration of phthalate...... (controls). The dust samples were analyzed for their content of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP). RESULTS: A higher concentration of DEHP was found in homes...

  13. Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease

    NARCIS (Netherlands)

    Qu, N; de Haan, A; Harmsen, MC; Kroese, FGM; de Leij, LFMH; Prop, J

    2003-01-01

    Background. Immune injury to airway epithelium is suggested to play a central role in the pathogenesis of obliterative bronchiolitis (OB) after clinical lung transplantation. In several studies, a rejection model of murine trachea transplants is used, resulting in obliterative airway disease (OAD) w

  14. Scientists find link between allergic and autoimmune diseases in mouse study

    Science.gov (United States)

    Scientists at the National Institutes of Health, and their colleagues, have discovered that a gene called BACH2 may play a central role in the development of diverse allergic and autoimmune diseases, such as multiple sclerosis, asthma, Crohn's disease, ce

  15. Impact of perinatal environmental tobacco smoke on the development of childhood allergic diseases

    Science.gov (United States)

    2016-01-01

    Allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergy, are most common chronic, noncommunicable diseases in childhood. In the past few decades, the prevalence has increased abruptly worldwide. There are 2 possible explanations for the rising prevalence of allergic diseases worldwide, that an increased disease-awareness of physician, patient, or caregivers, and an abrupt exposure to unknown hazards. Unfortunately, the underlying mechanisms remain largely unknown. Despite the continuing efforts worldwide, the etiologies and rising prevalence remain unclear. Thus, it is important to identify and control risk factors in the susceptible individual for the best prevention and management. Genetic susceptibility or environments may be a potential background for the development of allergic disease, however they alone cannot explain the rising prevalence worldwide. There is growing evidence that epigenetic change depends on the gene, environment, and their interactions, may induce a long-lasting altered gene expression and the consequent development of allergic diseases. In epigenetic mechanisms, environmental tobacco smoke (ETS) exposure during critical period (i.e., during pregnancy and early life) are considered as a potential cause of the development of childhood allergic diseases. However, the causal relationship is still unclear. This review aimed to highlight the impact of ETS exposure during the perinatal period on the development of childhood allergic diseases and to propose a future research direction.

  16. Impact of perinatal environmental tobacco smoke on the development of childhood allergic diseases.

    Science.gov (United States)

    Yang, Hyeon-Jong

    2016-08-01

    Allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergy, are most common chronic, noncommunicable diseases in childhood. In the past few decades, the prevalence has increased abruptly worldwide. There are 2 possible explanations for the rising prevalence of allergic diseases worldwide, that an increased disease-awareness of physician, patient, or caregivers, and an abrupt exposure to unknown hazards. Unfortunately, the underlying mechanisms remain largely unknown. Despite the continuing efforts worldwide, the etiologies and rising prevalence remain unclear. Thus, it is important to identify and control risk factors in the susceptible individual for the best prevention and management. Genetic susceptibility or environments may be a potential background for the development of allergic disease, however they alone cannot explain the rising prevalence worldwide. There is growing evidence that epigenetic change depends on the gene, environment, and their interactions, may induce a long-lasting altered gene expression and the consequent development of allergic diseases. In epigenetic mechanisms, environmental tobacco smoke (ETS) exposure during critical period (i.e., during pregnancy and early life) are considered as a potential cause of the development of childhood allergic diseases. However, the causal relationship is still unclear. This review aimed to highlight the impact of ETS exposure during the perinatal period on the development of childhood allergic diseases and to propose a future research direction. PMID:27610180

  17. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice.

    Science.gov (United States)

    André, Diana Majolli; Calixto, Marina Ciarallo; Sollon, Carolina; Alexandre, Eduardo Costa; Leiria, Luiz O; Tobar, Natalia; Anhê, Gabriel Forato; Antunes, Edson

    2016-09-01

    Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property. PMID:27344038

  18. European symposium on precision medicine in allergy and airways diseases

    DEFF Research Database (Denmark)

    Muraro, A; Fokkens, W J; Pietikainen, S;

    2015-01-01

    On 14 October 2015, the European Academy of Allergy and Clinical Immunology (EAACI), the European Rhinologic Society (ERS) and the European Medical Association (EMA) organized a symposium in the European Parliament in Brussels on Precision Medicine in Allergy and Airways Diseases, hosted by MEP...... suffering from allergies and asthma, more than half of these patients are deprived from adequate diagnosis and treatment. Precision Medicine represents a novel approach in medicine, embracing 4 key features: personalized care based on molecular, immunologic and functional endotyping of the disease......, with participation of the patient in the decision making process of therapeutic actions, and taking into account predictive and preventive aspects of the treatment. Implementation of Precision Medicine into clinical practice may help to achieve the arrest of the Epidemic of Allergies and Chronic Airways Diseases...

  19. European symposium on precision medicine in allergy and airways diseases

    DEFF Research Database (Denmark)

    Muraro, A; Fokkens, W J; Pietikainen, S;

    2015-01-01

    On 14 October 2015, the European Academy of Allergy and Clinical Immunology (EAACI), the European Rhinologic Society (ERS) and the European Medical Association (EMA) organized a symposium in the European Parliament in Brussels on Precision Medicine in Allergy and Airways Diseases, hosted by MEP...... Effectiveness Group (REG). MEP Sirpa Pietikainen, Chair of the European Parliament Interest Group on Allergy and Asthma, underlined the importance of the need for a better diagnostic and therapeutic approach for patients with Allergies and Chronic Airways Diseases, and encouraged a joint initiative to control....... This report summarizes the key messages delivered during the symposium by the speakers, including the EU Commissioner for Health and Food Safety Vitenys Andriukaitis. The Commissioner underscored the need for optimal patient care in Europe, supporting joint action plans for disease prevention, patient...

  20. Patterns of airway involvement in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Ilias; Papanikolaou; Konstantinos; Kagouridis; Spyros; A; Papiris

    2014-01-01

    Extraintestinal manifestations occur commonly in inflammatory bowel diseases(IBD). Pulmonary manifestations(PM) of IBD may be divided in airway disorders, interstitial lung disorders, serositis, pulmonary vasculitis, necrobiotic nodules, drug-induced lung disease, thromboembolic lung disease and enteropulmonary fistulas. Pulmonary involvement may often be asymptomatic and detected solely on the basis of abnormal screening tests. The common embryonic origin of the intestine and the lungs from the primitive foregut, the co-existence of mucosa associated lymphoid tissue in both organs, autoimmunity, smoking and bacterial translocation from the colon to the lungs may all be involved in the pathogenesis of PM in IBD. PM are mainly detected by pulmonary function tests and highresolution computed tomography. This review will focus on the involvement of the airways in the context of IBD, especially stenoses of the large airways, tracheo-bronchitis, bronchiectasis, bronchitis, mucoid impaction, bronchial granulomas, bronchiolitis, bronchiolitis obliterans syndrome and the co-existence of IBD with asthma, chronic obstructive pulmonary disease, sarcoidosis and a1-antitrypsin deficiency.

  1. Allergen specific immunotherapy: The future cure for allergic asthma. Mechanisms and improvement in a mouse model

    NARCIS (Netherlands)

    Taher, Y.A.

    2007-01-01

    Allergic asthma is a disease characterized by persistent allergen-driven airway inflammation, remodeling and airway hyperresponsiveness (AHR). CD4+ T-cells, in particular T-helper type 2 (Th2) cells, play a critical role in orchestrating the disease process through the release of cytokines like IL-4

  2. Allergen-specific subcutaneous immunotherapy in allergic asthma : immunologic mechanisms and improvement

    NARCIS (Netherlands)

    Taher, Yousef A.; Henricks, Paul A. J.; van Oosterhout, Antoon J. M.

    2010-01-01

    Allergic asthma is a disease characterized by persistent allergen-driven airway inflammation, remodeling, and airway hyperresponsiveness. CD4(+) T-cells, especially T-helper type 2 cells, play a critical role in orchestrating the disease process through the release of the cytokines IL-4, IL-5, and I

  3. The IL-6R α chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo

    OpenAIRE

    Doganci, Aysefa; Eigenbrod, Tatjana; Krug, Norbert; De Sanctis, George T.; Hausding, Michael; Erpenbeck, Veit J.; Haddad, El-Bdaoui; Schmitt, Edgar; Bopp, Tobias; Kallen, Karl-J.; Herz, Udo; Schmitt, Steffen; Luft, Cornelia; Hecht, Olaf; Jens M Hohlfeld

    2005-01-01

    The cytokine IL-6 acts via a specific receptor complex that consists of the membrane-bound IL-6 receptor (mIL-6R) or the soluble IL-6 receptor (sIL-6R) and glycoprotein 130 (gp130). In this study, we investigated the role of IL-6R components in asthma. We observed increased levels of sIL-6R in the airways of patients with allergic asthma as compared to those in controls. In addition, local blockade of the sIL-6R in a murine model of late-phase asthma after OVA sensitization by gp130–fraction ...

  4. Inflammatory Signalings Involved in Airway and Pulmonary Diseases

    Directory of Open Access Journals (Sweden)

    I-Ta Lee

    2013-01-01

    Full Text Available In respiratory diseases, there is an increased expression of multiple inflammatory proteins in the respiratory tract, including cytokines, chemokines, and adhesion molecules. Chemokines have been shown to regulate inflammation and immune cell differentiation. Moreover, many of the known inflammatory target proteins, such as matrix metalloproteinase-9 (MMP-9, intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, cyclooxygenase-2 (COX-2, and cytosolic phospholipase A2 (cPLA2, are associated with airway and lung inflammation in response to various stimuli. Injuriously environmental stimuli can access the lung through either the airways or the pulmonary and systemic circulations. The time course and intensity of responses by resident and circulating cells may be regulated by various inflammatory signalings, including Src family kinases (SFKs, protein kinase C (PKC, growth factor tyrosine kinase receptors, nicotinamide adenine dinucleotide phosphate (NADPH/reactive oxygen species (ROS, PI3K/Akt, MAPKs, nuclear factor-kappa B (NF-κB, activator protein-1 (AP-1, and other signaling molecules. These signaling molecules regulate both key inflammatory signaling transduction pathways and target proteins involved in airway and lung inflammation. Here, we discuss the mechanisms involved in the expression of inflammatory target proteins associated with the respiratory diseases. Knowledge of the mechanisms of inflammation regulation could lead to the pharmacological manipulation of anti-inflammatory drugs in the respiratory diseases.

  5. Fabry disease, respiratory symptoms, and airway limitation

    DEFF Research Database (Denmark)

    Svensson, Camilla Kara; Feldt-Rasmussen, Ulla; Backer, Vibeke

    2015-01-01

    . The remaining 27 articles were relevant for this review. RESULTS: The current literature concerning lung manifestations describes various respiratory symptoms such as dyspnoea or shortness of breath, wheezing, and dry cough. These symptoms are often related to cardiac involvement in Fabry disease as respiratory...

  6. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Schlosser, Anders; Wulf-Johansson, Helle;

    2015-01-01

    BACKGROUND: Recently, several proteins of the extracellular matrix have been characterised as active contributors to allergic airway disease. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein abundant in the lung, whose biological functions remain poorly understood...

  7. The Treatment of Allergic Respiratory Disease During Pregnancy.

    Science.gov (United States)

    Namazy, Jai; Schatz, M

    2016-01-01

    Pregnancy may be complicated by new-onset or preexisting asthma and allergic rhinitis.This article reviews the recognition and management of asthma and allergic rhinitis during pregnancy, paying close attention to the general principles of allergy and use of asthma medication during pregnancy. Both allergic rhinitis and asthma can adversely affect both maternal quality of life and, in the case of maternal asthma, perinatal outcomes. Optimal management is thus important for both mother and baby. This article reviews the safety of asthma and allergy medications commonly used during pregnancy.

  8. Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-beta knock-out mice

    DEFF Research Database (Denmark)

    Matheu, Victor; Treschow, Alexandra; Teige, Ingrid;

    2005-01-01

    of CpG-ODN is not known. OBJECTIVE: Here, we aimed to elucidate the role of IFN-beta in the anti-allergic effect of CpG motifs. METHODS: We assessed the immune response in OVA-primed/OVA-challenged IFN-beta knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment...... with synthetic CpG motifs. RESULTS: Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-beta-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-beta-/- mice. Other inflammatory cells, such as lymphocytes...... and macrophages were enhanced in airways by CpG treatment in IFN-beta-/- mice. The ratio of IFN-gamma/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-beta-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T...

  9. Impact of viruses on airway diseases

    Directory of Open Access Journals (Sweden)

    S. L. Johnston

    2005-12-01

    Full Text Available There is strong epidemiological evidence that respiratory viral infections are associated with 80–85% of asthma exacerbations in children. There is less evidence in adults, but the available data suggest viruses are associated with around two-thirds to three-quarters of exacerbations in adults. These associations include severe exacerbations requiring hospitalisation. The most common viruses detected in these studies were rhinoviruses, accounting for two-thirds of viruses detected. Asthmatics have increased susceptibility to respiratory virus infection and have recently been shown to have profoundly defective interferon-beta responses to virus infection, resulting in increased virus replication. Atypical bacterial infections are also associated with chronic asthma and asthma exacerbations and a recent study indicates antibiotic therapy active against atypical bacteria is effective in treatment of exacerbations. Recent data also indicates asthmatics are at increased risk of invasive pneumococcal disease, suggesting they may also have impaired antibacterial immunity. Research is urgently required to determine whether augmenting anti-infective immunity is beneficial in the treatment/prevention of asthma exacerbations. More recent data also implicates viruses in the majority of exacerbations of chronic obstructive pulmonary disease. Studies are also required investigating anti-infective host defence in chronic obstructive pulmonary disease.

  10. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  11. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Huang, Yvonne J; Sethi, Sanjay; Murphy, Timothy; Nariya, Snehal; Boushey, Homer A; Lynch, Susan V

    2014-08-01

    Specific bacterial species are implicated in the pathogenesis of exacerbations of chronic obstructive pulmonary disease (COPD). However, recent studies of clinically stable COPD patients have demonstrated a greater diversity of airway microbiota, whose role in acute exacerbations is unclear. In this study, temporal changes in the airway microbiome before, at the onset of, and after an acute exacerbation were examined in 60 sputum samples collected from subjects enrolled in a longitudinal study of bacterial infection in COPD. Microbiome composition and predicted functions were examined using 16S rRNA-based culture-independent profiling methods. Shifts in the abundance (≥ 2-fold, P microbiome could be useful indicators of exacerbation development or outcome.

  12. Use of inhaled anticholinergic agents in obstructive airway disease.

    Science.gov (United States)

    Restrepo, Ruben D

    2007-07-01

    In the last 2 decades, anticholinergic agents have been generally regarded as the first-choice bronchodilator therapy in the routine management of stable chronic obstructive pulmonary disease (COPD) and, to a lesser extent, asthma. Anticholinergics are particularly important bronchodilators in COPD, because the vagal tone appears to be the only reversible component of airflow limitation in COPD. The inhaled anticholinergics approved for clinical use are synthetic quaternary ammonium congeners of atropine, and include ipratropium bromide, oxitropium bromide, and tiotropium bromide. This article reviews the most current evidence for inhaled anticholinergics in obstructive airway disease and summarizes outcomes reported in randomized controlled trials.

  13. Research update on the eosinophils and allergic disease%嗜酸粒细胞与变态反应性疾病的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘轲; 刘月辉

    2012-01-01

    The incidence of allergic diseases(asthma. allergic rhinitis, atopic dermatitis and food allergy) increased gradually over recent decades, and an increasing number of patients are suffering from allergic diseases. thus the rise in allergic disease incidence warrants concern. Researchers have already had a deeper understanding of the pathogenesis of allergic diseases. Mounting evidence has shown that the eosinophils play an important role in the pathogenesis of allergic diseases. Many systematic studies have been conducted about eosinophils, therefore, this review will provide a summary on recent progress in eosinophils and allergic diseases.

  14. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model.

    Science.gov (United States)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan

    2016-09-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2weeks. 48h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. PMID:27343405

  15. Effect of the Velvet Antler of Formosan Sambar Deer (Cervus unicolor swinhoei on the Prevention of an Allergic Airway Response in Mice

    Directory of Open Access Journals (Sweden)

    Ching-Yun Kuo

    2012-01-01

    Full Text Available Two mouse models were used to assay the antiallergic effects of the velvet antler (VA of Formosan sambar deer (Cervus unicolor swinhoei in this study. The results using the ovalbumin- (OVA- sensitized mouse model showed that the levels of total IgE and OVA-specific IgE were reduced after VA powder was administrated for 4 weeks. In addition, the ex vivo results indicated that the secretion of T helper cell 1 (Th1, regulatory T (Treg, and Th17 cytokines by splenocytes was significantly increased (P<0.05 when VA powder was administered to the mice. Furthermore, OVA-allergic asthma mice that have been orally administrated with VA powder showed a strong inhibition of Th2 cytokine and proinflammatory cytokine production in bronchoalveolar fluid compared to control mice. An increase in the regulatory T-cell population of splenocytes in the allergic asthma mice after oral administration of VA was also observed. All the features of the asthmatic phenotype, including airway inflammation and the development of airway hyperresponsiveness, were reduced by treatment with VA. These findings support the hypothesis that oral feeding of VA may be an effective way of alleviating asthmatic symptoms in humans.

  16. Self-reported prevalence of childhood allergic diseases in three cities of China: a multicenter study

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2010-09-01

    Full Text Available Abstract Background Several studies conducted during the 1990s indicated that childhood allergic diseases were increasing worldwide, but more recent investigations in some Western countries have suggested that the trend is stabilizing or may even be reversing. However, few data are available on the current status of allergic disease prevalence in Chinese children. The aim of the present study was to investigate the prevalence rates of asthma, allergic rhinitis, and eczema in children of three major cities of China, to determine the status of allergic diseases among Chinese children generally, and to evaluate the prevalence of allergic diseases in children of different ages. Methods We conducted a cross-sectional survey between October 2008 and May 2009 in three major cities of China (Beijing, Chongqing, and Guangzhou to evaluate the prevalence rates of childhood allergic diseases including asthma, allergic rhinitis, and eczema, using a questionnaire of the International Study of Asthma and Allergies in Childhood (ISAAC group. A total of 24,290 children aged 0-14 years were interviewed, using a multi-stage sampling method. To acquire data on children aged 3-14 years, we visited schools and kindergartens. To access children too young to attend school or kindergarten, we extended our survey to community health service centers. Each questionnaire was completed by a parent or guardian of a child after an informed consent form was signed. Results Of the 24,290 children in our study, 12,908 (53.14% were males and 11,382 (46.86% females; 10,372 (42.70% were from Beijing, 9,846 (40.53% from Chongqing, and 4,072 (16.77% from Guangzhou. Our survey indicated that in Beijing, Chongqing, and Guangzhou, the prevalence rates of asthma were 3.15%, 7.45%, and 2.09%, respectively; the rates of allergic rhinitis were 14.46%, 20.42%, and 7.83%; and the rates of eczema were 20.64%, 10.02%, and 7.22%. The prevalence of allergic diseases varied with age. Asthma was

  17. Candida soluble cell wall β-glucan facilitates ovalbumin-induced allergic airway inflammation in mice: Possible role of antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Tamura Hiroshi

    2009-07-01

    Full Text Available Abstract Background Although fungi have been implicated as initiating/deteriorating factors for allergic asthma, their contributing components have not been fully elucidated. We previously isolated soluble β-glucan from Candida albicans (CSBG (Ohno et al., 2007. In the present study, the effects of CSBG exposure on airway immunopathology in the presence or absence of other immunogenic allergen was investigated in vivo, and their cellular mechanisms were analyzed both in vivo and in vitro. Methods In vivo, ICR mice were divided into 4 experimental groups: vehicle, CSBG (25 μg/animal, ovalbumin (OVA: 2 μg/animal, and CSBG + OVA were repeatedly administered intratracheally. The bronchoalveolar lavage cellular profile, lung histology, levels of cytokines and chemokines in the lung homogenates, the expression pattern of antigen-presenting cell (APC-related molecules in the lung digests, and serum immunoglobulin values were studied. In vitro, the impacts of CSBG (0–12.5 μg/ml on the phenotype and function of immune cells such as splenocytes and bone marrow-derived dendritic cells (BMDCs were evaluated in terms of cell proliferation, the surface expression of APC-related molecules, and OVA-mediated T-cell proliferating activity. Results In vivo, repeated pulmonary exposure to CSBG induced neutrophilic airway inflammation in the absence of OVA, and markedly exacerbated OVA-related eosinophilic airway inflammation with mucus metaplasia in mice, which was concomitant with the amplified lung expression of Th2 cytokines and IL-17A and chemokines related to allergic response. Exposure to CSBG plus OVA increased the number of cells bearing MHC class II with or without CD80 in the lung compared to that of others. In vitro, CSBG significantly augmented splenocyte proliferation in the presence or absence of OVA. Further, CSBG increased the expression of APC-related molecules such as CD80, CD86, and DEC205 on BMDCs and amplified OVA-mediated T

  18. [Clinical diagnosis and treatment of allergic pharyngitis].

    Science.gov (United States)

    Liu, Jinfeng; Yan, Zhanfeng; Zhang, Mingxia

    2015-08-01

    Although the concept of united airway disease has been widely accepted, most scholars emphasize only the effect of rhino-sinusitis while ignoring the pharyngeal factors to the lower airway, especially to the allergic pharyngitis (AP), which still lacks enough awareness. First of all, absence of unified diagnostic standard leads to the lack of epidemiological data, which, results in doctors' personal experience but no guideline in treatments. In addition, it is still not clear that the role of AP in the allergic airway diseases and its relationship with asthma. However, the number of patients with AP has been increasing obviously in daily clinic practice. Combined with the previous observation, this paper does a systematic review about the clinical problems of AP, expecting to give a hand to the clinical diagnosis and treatment of AP. PMID:26685417

  19. Novel treatment strategies and regulation of IgE-mediated allergic disease.

    OpenAIRE

    Thunberg, Sarah

    2008-01-01

    Allergic symptoms such as rhinoconjunctivitis, asthma or gastrointestinal symptoms, triggered by inhaled or ingested allergens cross-linking allergen-specific IgE on mast cells or basophils, are defined as IgE-mediated allergy. The major allergens from birch pollen (Bet v 1) and cat dander (Fel d 1) are two common allergens eliciting allergic disease. Allergen-specific immunotherapy (SIT) is the only curative treatment for IgE-mediated allergy. It is long-lasting and involve...

  20. Haemodynamic effects of terbutaline in chronic obstructive airways disease.

    OpenAIRE

    Teule, G. J.; Majid, P A

    1980-01-01

    Terbutaline, a cardioselective beta-adrenoceptor agonist, administered intravenously (250 micrograms) to seven patients with chronic obstructive airways disease (mean FEV1 0.99 l) resulted in reduction of mean pulmonary artery pressure (resting 23 +/- 2 to 19 +/- 2 mmHg, p < 0.05; exercise 43 +/- 3 to 35 +/- 3 mmHg, p < 0.05) and calculated pulmonary vascular resistance (resting 168 +/- 27 to 109 +/- 17 dyne s cm-5, p < 0.01; exercise 170 +/- 30 to 119 +/- 18 dyne s cm-5, p < 0.01) accompanie...

  1. Development process and cognitive testing of CARATkids - Control of Allergic Rhinitis and Asthma Test for children

    OpenAIRE

    Borrego, LM; fonseca, ja; Pereira, AM; Reimão Pinto, V; LINHARES D.; Morais-Almeida, M

    2014-01-01

    Background: Allergic rhinitis and asthma (ARA) are chronic inflammatory diseases of the airways that often coexist in children. The only tool to assess the ARA control, the Control of Allergic Rhinitis and Asthma Test (CARAT) is to be used by adults. We aimed to develop the Pediatric version of Control of Allergic Rhinitis and Asthma Test (CARATkids) and to test its comprehensibility in children with 4 to 12 years of age. Methods: The questionnaire development included a literature revi...

  2. Airborne pollutant ROFA enhances the allergic airway inflammation through direct modulation of dendritic cells in an uptake-dependent mechanism.

    Science.gov (United States)

    Arantes-Costa, Fernanda Magalhaes; Grund, Lidiane Zito; Martins, Milton Arruda; Lima, Carla

    2014-09-01

    Studies suggest that airborne pollutants are important cofactors in the exacerbation of lung diseases. The role of DC on the exacerbation of lung inflammation induced by particulate matter pollutants is unclear. We evaluated the effects of residual oil fly ash (ROFA) on the phenotype and function of bone marrow-derived dendritic cells (BMDCs) in vitro and lung dendritic cells (DCs) in vivo, and the subsequent T-cell response. In a model of asthma, exposure to ROFA exacerbated pulmonary inflammation, which was attributed to the increase of eosinophils, IL-5- and IFN-γ-producing T cells, and goblet cells as well as decreased number of Treg and pDC. However, the ROFA showed no ability to modulate the production of anaphylactic IgE. In vitro studies showed that ROFA directly induced the maturation of DCs up-regulating the expression of co-stimulatory molecules and cytokines and MMP production in an uptake-dependent and oxidative stress-dependent manner. Furthermore, ROFA-pulsed BMDC transferred to allergic mice exacerbated eosinophilic inflammation as well as promoted increased epithelial and goblet cells changes. Thus, pollutants may constitute an important and risk factor in the exacerbation of asthma with inhibition of the negative regulatory signals in the lung, with enhanced mDC activation that sustains the recruitment of effector T lymphocytes and eosinophil. PMID:24975839

  3. European Symposium on Precision Medicine in Allergy and Airways Diseases

    DEFF Research Database (Denmark)

    Muraro, A; Fokkens, W J; Pietikainen, S;

    2016-01-01

    The European Academy of Allergy and Clinical Immunology (EAACI), the European Rhinologic Society (ERS), and the European Medical Association (EMA) organized, on October 14, 2015, a symposium in the European Parliament in Brussels on Precision Medicine in Allergy and Airways Diseases, hosted by MEP...... the most frequently diagnosed chronic noncommunicable diseases in the EU; 30% of the total European population is suffering from allergies and asthma, and more than half are deprived from adequate diagnosis and treatment. Precision medicine represents a novel approach, embracing four key features......: personalized care based on molecular, immunologic, and functional endotyping of the disease, with participation of the patient in the decision-making process of therapeutic actions, and considering predictive and preventive aspects of the treatment. Implementation of precision medicine into clinical practice...

  4. How changes in nutrition have influenced the development of allergic diseases in childhood

    Science.gov (United States)

    2012-01-01

    The increasing prevalence of allergic diseases in childhood in the last decades could be linked to concomitant dietary changes, especially with the modified and lower consumption of fruit, vegetables and minerals. The consumption of these foods by pregnant women and children in the first years of life seems to be associated with a reduced risk of asthma and related symptoms. Foods that can prevent the development of wheezing through their antioxidant effects contain vitamin C and selenium; blood levels of these elements correlate negatively with the risk of wheezing. Intake of vitamin E during pregnancy also appears to be correlated with a reduced risk of wheezing for the unborn child. Similarly, low intake of zinc and carotenoids by pregnant women is associated with an increased risk of wheezing and asthma in childhood. Fiber also has anti-inflammatory properties and protective effects against allergic diseases such as atopic dermatitis and asthma. The consumption of fat influences the development of the airways. Populations in Western countries have increased their consumption of n-6 PUFAs and, in parallel, reduced n-3 PUFAs. This has led to decreased production of PGE2, which is believed to have a protective effect against inflammation of the airways. Conflicting hypotheses also concern vitamin D; both an excess and a deficiency of vitamin D, in fact, have been associated with an increased risk of asthma. Further studies on the role of these substances are necessary before any conclusions can be drawn on a clinical level. Astratto La crescente prevalenza negli ultimi decenni delle malattie allergiche in età pediatrica potrebbe essere legata a concomitanti cambiamenti nella dieta, in particolare alla minore e modificata introduzione di frutta, verdura e minerali. Il consumo di questi alimenti da parte delle donne in gravidanza e dei bambini nei primi anni di vita sembra essere associato ad un ridotto rischio di asma e di sintomi correlati. Gli alimenti che

  5. How changes in nutrition have influenced the development of allergic diseases in childhood

    Directory of Open Access Journals (Sweden)

    Peroni Diego G

    2012-05-01

    Full Text Available Abstract The increasing prevalence of allergic diseases in childhood in the last decades could be linked to concomitant dietary changes, especially with the modified and lower consumption of fruit, vegetables and minerals. The consumption of these foods by pregnant women and children in the first years of life seems to be associated with a reduced risk of asthma and related symptoms. Foods that can prevent the development of wheezing through their antioxidant effects contain vitamin C and selenium; blood levels of these elements correlate negatively with the risk of wheezing. Intake of vitamin E during pregnancy also appears to be correlated with a reduced risk of wheezing for the unborn child. Similarly, low intake of zinc and carotenoids by pregnant women is associated with an increased risk of wheezing and asthma in childhood. Fiber also has anti-inflammatory properties and protective effects against allergic diseases such as atopic dermatitis and asthma. The consumption of fat influences the development of the airways. Populations in Western countries have increased their consumption of n-6 PUFAs and, in parallel, reduced n-3 PUFAs. This has led to decreased production of PGE2, which is believed to have a protective effect against inflammation of the airways. Conflicting hypotheses also concern vitamin D; both an excess and a deficiency of vitamin D, in fact, have been associated with an increased risk of asthma. Further studies on the role of these substances are necessary before any conclusions can be drawn on a clinical level. Astratto La crescente prevalenza negli ultimi decenni delle malattie allergiche in età pediatrica potrebbe essere legata a concomitanti cambiamenti nella dieta, in particolare alla minore e modificata introduzione di frutta, verdura e minerali. Il consumo di questi alimenti da parte delle donne in gravidanza e dei bambini nei primi anni di vita sembra essere associato ad un ridotto rischio di asma e di sintomi

  6. Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sync.monash.edu.au; Morgan, K.S.; Paganin, D.M. [School of Physics, Monash University, Victoria 3800 (Australia); Boucher, R. [CF Research and Treatment Center, University of North Carolina at Chapel Hill (United States); Uesugi, K.; Yagi, N. [SPring-8/JASRI, Hyogo 679-5198 (Japan); Parsons, D.W. [Department of Pulmonary Medicine, Women' s and Children' s Hospital, South Australia 5006 (Australia); Department of Paediatrics, University of Adelaide, South Australia, 5006 (Australia); Women' s and Children' s Health Research Institute, South Australia, 5006 (Australia)

    2008-12-15

    We seek to establish non-invasive imaging able to detect and measure aspects of the biology and physiology of surface fluids present on airways, in order to develop novel outcome measures able to validate the success of proposed genetic or pharmaceutical therapies for cystic fibrosis (CF) airway disease. Reduction of the thin airway surface liquid (ASL) is thought to be a central pathophysiological process in CF, causing reduced mucociliary clearance that supports ongoing infection and destruction of lung and airways. Current outcome measures in animal models, or humans, are insensitive to the small changes in ASL depth that ought to accompany successful airway therapies. Using phase contrast X-ray imaging (PCXI), we have directly examined the airway surfaces in the nasal airways and tracheas of anaesthetised mice, currently to a resolution of {approx}2 {mu}m. We have also achieved high resolution three-dimensional (3D) imaging of the small airways in mice using phase-contrast enhanced computed tomography (PC-CT) to elucidate the structure-function relationships produced by airway disease. As the resolution of these techniques improves they may permit non-invasive monitoring of changes in ASL depth with therapeutic intervention, and the use of 3D airway and imaging in monitoring of lung health and disease. Phase contrast imaging of airway surfaces has promise for diagnostic and monitoring options in animal models of CF, and the potential for future human airway imaging methodologies is also apparent.

  7. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    Science.gov (United States)

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A

    2015-05-01

    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk.

  8. Predicted vitamin D status in mid-pregnancy and child allergic disease

    DEFF Research Database (Denmark)

    Maslova, Ekaterina; Hansen, Susanne; Thorne-Lyman, Andrew L;

    2014-01-01

    BACKGROUND: Vitamin D deficiency in pregnancy may be a risk factor for child allergic disease. However, less is known about disease risk across different levels of vitamin D. OBJECTIVE: We aimed to examine the relation between a maternal vitamin D prediction score and child allergic disease....... METHODS: A total of 32,456 pregnant women were enrolled in the Danish National Birth Cohort (1996-2003) and had data on a validated vitamin D prediction score based on 1497 mid-pregnancy plasma 25(OH)D samples. Child allergic disease was assessed at 18 months and at 7 years using questionnaire data...... prediction score examined in quintiles or by restricted categories (≥75 nmol/l and asthma at 18 months (RR: 1.36, 95% CI: 1...

  9. What caused the increase of autoimmune and allergic diseases: A decreased or an increased exposure to luminal microbial components?

    Institute of Scientific and Technical Information of China (English)

    Xiaofa Qin

    2007-01-01

    @@ TO THE EDITOR The dramatic increase of allergic and autoimmune diseases such as asthma, atopic dermatitis (eczema), allergic rhinitis, inflammatory bowel disease (IBD, including both Crohn's disease and ulcerative colitis), multiple sclerosis,and insulin-dependent diabetes mellitus (type Ⅰ diabetes)in the developed countries in the last century[1-3] is a big puzle.

  10. Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation

    OpenAIRE

    McAlees, Jaclyn W.; Whitehead, Gregory S.; Harley, Isaac T. W.; Cappelletti, Monica; Rewerts, Cheryl L.; Holdcroft, A. Maria; Divanovic, Senad; Wills-Karp, Marsha; Finkelman, Fred D.; Karp, Christopher L.; Cook, Donald N.

    2014-01-01

    Allergic asthma is a chronic, inflammatory lung disease. Some forms of allergic asthma are characterized by Th2-driven eosinophilia while others are distinguished by Th17-driven neutrophilia. Stimulation of Toll-like receptor 4 (TLR4) on hematopoietic and airway epithelial cells (AECs) contributes to the inflammatory response to lipopolysaccharide (LPS) and allergens, but the specific contribution of TLR4 in these cell compartments to airway inflammatory responses remains poorly understood. W...

  11. Eosinophilic inflammation in allergic asthma

    Directory of Open Access Journals (Sweden)

    Samantha Souza Possa

    2013-04-01

    Full Text Available Eosinophils are circulating granulocytes involved in pathogenesis of asthma. A cascade of processes directed by Th2 cytokine producing T-cells influence the recruitment of eosinophils into the lungs. Furthermore, multiple elements including interleukin (IL-5, IL-13, chemoattractants such as eotaxin, Clara cells, and CC chemokine receptor (CCR3 are already directly involved in recruiting eosinophils to the lung during allergic inflammation. Once recruited, eosinophils participate in the modulation of immune response, induction of airway hyperresponsiveness and remodeling, characteristic features of asthma. Various types of promising treatments for reducing asthmatic response are related to reduction in eosinophil counts both in human and experimental models of pulmonary allergic inflammation, showing that the recruitment of these cells really plays an important role in the pathophysiology of allergic diseases such asthma.

  12. Proallergic cytokines and group 2 innate lymphoid cells in allergic nasal diseases

    Directory of Open Access Journals (Sweden)

    Kazufumi Matsushita

    2015-07-01

    Full Text Available Recent advances in our understanding of proallergic cytokines and group 2 innate lymphoid cells (ILC2s indicate their critical roles in type 2 immunity-mediated disorders. Proallergic cytokines, interleukin (IL-25, IL-33, and thymic stromal lymphopoietin, are released from epithelial cells in inflamed tissues and drive type 2 inflammation by acting on innate and acquired immune systems. ILC2s are an innate immune population that responds to proallergic cytokines by producing type 2 cytokines. In line with allergic disorders in the lung, skin, and intestine, emerging evidence suggests the involvement of proallergic cytokines and ILC2s in allergic nasal diseases such as chronic rhinosinusitis with polyps (CRSwNP, allergic fungal rhinosinusitis, and allergic rhinitis (AR. In CRSwNP patients, both proallergic cytokine levels and ILC2s frequency are increased in the nasal mucosa. Increased proallergic cytokine levels correlate with poorer disease outcomes in CRSwNP. Levels of nasal proallergic cytokines are also elevated in AR patients. In addition, animal studies demonstrate that cytokines are essential for the development of AR. It is becoming clear that the proallergic cytokine/ILC2s axis participates in allergic diseases by multiple mechanisms dependent upon the inflammatory context. Thus, a thorough understanding of these cytokines and ILC2s including their tissue- and disease-specific roles is essential for targeting the pathways to achieve therapeutic applications.

  13. Nonallergic rhinitis and its association with smoking and lower airway disease: A general population study

    DEFF Research Database (Denmark)

    Håkansson, Kåre; von Buchwald, Christian; Thomsen, Simon F;

    2011-01-01

    The cause of nonallergic rhinitis (NAR) and its relation to lower airway disease remains unclear. The purpose of this study was to perform a descriptive analysis of the occurrence of rhinitis in a Danish general population with focus on NAR and its association with smoking and lower airway disease....

  14. Volumetric capnography for the evaluation of chronic airways diseases

    Directory of Open Access Journals (Sweden)

    Veronez L

    2014-09-01

    Full Text Available Liliani de Fátima Veronez,1 Monica Corso Pereira,2 Silvia Maria Doria da Silva,2 Luisa Affi Barcaui,2 Eduardo Mello De Capitani,2 Marcos Mello Moreira,2 Ilma Aparecida Paschoalz2 1Department of Physical Therapy, University of Votuporanga (Educational Foundation of Votuporanga, Votuporanga, 2Department of Internal Medicine, School of Medical Sciences, State University of Campinas (UNICAMP, Campinas, Sao Paulo, BrazilBackground: Obstructive lung diseases of different etiologies present with progressive peripheral airway involvement. The peripheral airways, known as the silent lung zone, are not adequately evaluated with conventional function tests. The principle of gas washout has been used to detect pulmonary ventilation inhomogeneity and to estimate the location of the underlying disease process. Volumetric capnography (VC analyzes the pattern of CO2 elimination as a function of expired volume.Objective: To measure normalized phase 3 slopes with VC in patients with non-cystic fibrosis bronchiectasis (NCB and in bronchitic patients with chronic obstructive pulmonary disease (COPD in order to compare the slopes obtained for the groups.Methods: NCB and severe COPD were enrolled sequentially from an outpatient clinic (Hospital of the State University of Campinas. A control group was established for the NCB group, paired by sex and age. All subjects performed spirometry, VC, and the 6-Minute Walk Test (6MWT. Two comparisons were made: NCB group versus its control group, and NCB group versus COPD group. The project was approved by the ethical committee of the institution. Statistical tests used were Wilcoxon or Student’s t-test; P<0.05 was considered to be a statistically significant difference.Results: Concerning the NCB group (N=20 versus the control group (N=20, significant differences were found in body mass index and in several functional variables (spirometric, VC, 6MWT with worse results observed in the NCB group. In the comparison between

  15. Systems physiology of the airways in health and obstructive pulmonary disease.

    Science.gov (United States)

    Bates, Jason H T

    2016-09-01

    Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website. PMID:27340818

  16. Exposure to cats: update on risks for sensitization and allergic diseases.

    Science.gov (United States)

    Dharmage, Shyamali C; Lodge, Caroline L; Matheson, Melanie C; Campbell, Brittany; Lowe, Adrian J

    2012-10-01

    Cats are the pets most commonly implicated in the etiology of asthma and allergic disease. However, systematic reviews have concluded that there is a lack of evidence to support the idea that cat exposure in early life increases the risk of allergic disease. Indeed, it appears most likely that cat exposure is protective against allergic diseases. Recent large prospective studies have shown that living with a cat during childhood, especially during the first year of a child's life, could be protective. However, any advice given to the parents should also incorporate how new acquisition of cats can affect other family members, especially those who are already sensitized. Research is urgently needed to determine whether the suggested impact of acquisition of cats in adult life is modified by the person's childhood pet ownership, to help parents who seek advice on whether or not to get a cat. PMID:22878928

  17. The Relationship between Vitamin D Status and Allergic Diseases in New Zealand Preschool Children

    Science.gov (United States)

    Cairncross, Carolyn; Grant, Cameron; Stonehouse, Welma; Conlon, Cath; McDonald, Barry; Houghton, Lisa; Eyles, Darryl; Camargo, Carlos A.; Coad, Jane; von Hurst, Pamela

    2016-01-01

    Recent research on vitamin D in young children has expanded from bone development to exploring immunomodulatory effects. Our aim was to investigate the relationship of vitamin D status and allergic diseases in preschool-aged children in New Zealand. Dried capillary blood spots were collected from 1329 children during late-winter to early-spring for 25(OH)D measurement by LC-MS/MS. Caregivers completed a questionnaire about their child’s recent medical history. Analysis was by multivariable logistic regression. Mean 25(OH)D concentration was 52(SD19) nmol/L, with 7% of children Vitamin D deficiency was not associated with several allergic diseases in these New Zealand preschool children. In contrast, high 25(OH)D concentrations were associated with a two-fold increased risk of parental-report food allergy. This increase supports further research into the association between vitamin D status and allergic disease in preschool children. PMID:27258306

  18. Analysis of food allergy in atopic dermatitis patients - association with concomitant allergic diseases

    Directory of Open Access Journals (Sweden)

    Jarmila Celakovská

    2014-01-01

    Full Text Available Background: A few reports demonstrate the comorbidity of food allergy and allergic march in adult patients. Aims and Objectives: To evaluate, if there is some relation in atopic dermatitis patients at the age 14 years and older who suffer from food allergy to common food allergens to other allergic diseases and parameters as bronchial asthma, allergic rhinitis, duration of atopic dermatitis, family history and onset of atopic dermatitis. Materials and Methods: Complete dermatological and allergological examination was performed; these parameters were examined: food allergy (to wheat flour, cow milk, egg, peanuts and soy, the occurrence of bronchial asthma, allergic rhinitis, duration of atopic dermatitis, family history and onset of atopic dermatitis. The statistical evaluation of the relations among individual parameters monitored was performed. Results: Food allergy was altogether confirmed in 65 patients (29% and these patients suffer significantly more often from bronchial asthma and allergic rhinitis. Persistent atopic dermatitis lesions and positive data in family history about atopy are recorded significantly more often in patients with confirmed food allergy to examined foods as well. On the other hand, the onset of atopic dermatitis under 5 year of age is not recorded significantly more often in patients suffering from allergy to examined foods. Conclusion: Atopic dermatitis patients suffering from food allergy suffer significantly more often from allergic rhinitis, bronchial asthma, persistent eczematous lesions and have positive data about atopy in their family history.

  19. Gut Microbiome and the Development of Food Allergy and Allergic Disease.

    Science.gov (United States)

    Prince, Benjamin T; Mandel, Mark J; Nadeau, Kari; Singh, Anne Marie

    2015-12-01

    The impact of gut microbiome on human development, nutritional needs, and disease has become evident with advances in the ability to study these complex communities of microorganisms, and there is growing appreciation for the role of the microbiome in immune regulation. Several studies have examined associations between changes in the commensal microbiota and the development of asthma, allergic rhinitis, and asthma, but far less have evaluated the impact of the microbiome on the development of food allergy. This article reviews the human gastrointestinal microbiome, focusing on the theory and evidence for its role in the development of IgE-mediated food allergy and other allergic diseases.

  20. Neutrophil Inhibitory Factor Selectively Inhibits the Endothelium-Driven Transmigration of Eosinophils In Vitro and Airway Eosinophilia in OVA-Induced Allergic Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Silvia Schnyder-Candrian

    2012-01-01

    Full Text Available Leukocyte adhesion molecules are involved in cell recruitment in an allergic airway response and therefore provide a target for pharmaceutical intervention. Neutrophil inhibitory factor (NIF, derived from canine hookworm (Ancylostoma caninum, binds selectively and competes with the A-domain of CD11b for binding to ICAM-1. The effect of recombinant NIF was investigated. Intranasal administration of rNIF reduced pulmonary eosinophilic infiltration, goblet cell hyperplasia, and Th2 cytokine production in OVA-sensitized mice. In vitro, transendothelial migration of human blood eosinophils across IL-4-activated umbilical vein endothelial cell (HUVEC monolayers was inhibited by rNIF (IC50: 4.6±2.6 nM; mean ± SEM, but not across TNF or IL-1-activated HUVEC monolayers. Treatment of eosinophils with rNIF together with mAb 60.1 directed against CD11b or mAb 107 directed against the metal ion-dependent adhesion site (MIDAS of the CD11b A-domain resulted in no further inhibition of transendothelial migration suggesting shared functional epitopes. In contrast, rNIF increased the inhibitory effect of blocking mAbs against CD18, CD11a, and VLA-4. Together, we show that rNIF, a selective antagonist of the A-domain of CD11b, has a prominent inhibitory effect on eosinophil transendothelial migration in vitro, which is congruent to the in vivo inhibition of OVA-induced allergic lung inflammation.

  1. Health-related quality of life of food allergic patients measured with generic and disease-specific questionnaires

    NARCIS (Netherlands)

    Flokstra-de Blok, B. M. J.; van der Velde, J. L.; Vlieg-Boerstra, B. J.; Oude Elberink, J. N. G.; DunnGalvin, A.; Hourihane, J. O'B.; Duiverman, E. J.; Dubois, A. E. J.

    2010-01-01

    P>Background: Health-related quality of life (HRQL) has never been measured with both generic and disease-specific questionnaires in the same group of food allergic patients. The aim of this study was to compare HRQL of food allergic patients as measured with generic and disease-specific questionnai

  2. Advances in Surgical Treatment of Congenital Airway Disease.

    Science.gov (United States)

    Ragalie, William S; Mitchell, Michael E

    2016-01-01

    Tracheobronchomalacia (TBM) is frequently present in infants and children with congenital heart disease (CHD). Infants with CHD and TBM appear to do worse than those without TBM. The principle of operative intervention for TBM is to improve function of the airway and clinical status. When indicated, conventional surgical options include tracheostomy, aortopexy, tracheoplasty, and anterior tracheal suspension. There is no consensus on the optimal treatment of severe tracheobonchomalacia, which can be associated with a mortality rate as high as 80%. Congenital tracheal stenosis is also frequently associated with CHD (vascular rings, atrioventricular canal defects, and septal defects) and may require concomitant repair. Repair of tracheal stenosis is often associated with distal TBM. This article addresses new techniques that can be performed in corrective surgery for both TBM and congenital tracheal stenosis. PMID:27568138

  3. Airways disorders and the swimming pool.

    Science.gov (United States)

    Bougault, Valérie; Boulet, Louis-Philippe

    2013-08-01

    Concerns have been expressed about the possible detrimental effects of chlorine derivatives in indoor swimming pool environments. Indeed, a controversy has arisen regarding the possibility that chlorine commonly used worldwide as a disinfectant favors the development of asthma and allergic diseases. The effects of swimming in indoor chlorinated pools on the airways in recreational and elite swimmers are presented. Recent studies on the influence of swimming on airway inflammation and remodeling in competitive swimmers, and the phenotypic characteristics of asthma in this population are reviewed. Preventative measures that could potentially reduce the untoward effects of pool environment on airways of swimmers are discussed. PMID:23830132

  4. Influence of Chronic Sinusitis and Nasal Polyp on the Lower Airway of Subjects Without Lower Airway Diseases

    OpenAIRE

    Lee, Suh-Young; Yoon, Soon Ho; Song, Woo-Jung; Lee, So-Hee; Kang, Hye-Ryun; Kim, Sun-Sin; Cho, Sang-Heon

    2014-01-01

    Purpose Upper and lower respiratory tract pathologies are believed to be interrelated; however, the impact of upper airway inflammation on lung function in subjects without lung disease has not been evaluated. This study investigated the association of CT finding suggesting chronic sinusitis and lung function in healthy subjects without lung disease. Methods This was a retrospective study of prospectively collected data from 284 subjects who underwent a pulmonary function test, bronchial prov...

  5. Links between allergic rhinitis and asthma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Allergic diseases of the airway, which include seasonal rhinitis, chronic perennial rhinitis and asthma, are recognized as inflammatory disorders of the airway mucosa,1-3 but differ in the location of the inflammatory reaction and clinical manifestations of the disease. Asthma and allergic rhinitis frequently coexist in the same patient and are thought to share common predisposing genetic factors which interact with the environmental influences. Both diseases have increased in prevalence over recent decades4,5 particularly in westernized countries. This increase has been largely attributed to environmental factors such as exposure to aerial pollutants,4,6 and early life events, including the degree of exposure to infectious agents which might affect IgE production,5,7 since there has been insufficient time for a significant change in the gene pool.

  6. Incidentally detected Castleman disease in a patient with allergic rhinosinu sitis

    Directory of Open Access Journals (Sweden)

    Stojšić Jelena

    2008-01-01

    Full Text Available INTRODUCTION Castleman disease was for the first time described in 1956 as a mediastinal tumour mass. Etiology of this disease is still unknown. The disease can be solitary and multicentric or rarely of a mixed type. The former is often of hyaline vascular type, while the latter is of plasma cell type. CASE REPORT Castleman disease was diagnosed in a 26-year old male patient when a well defined shadow was incidentally detected in the middle lobe of the right lung. A year before, he was diagnosed with allergic rhinitis to Ambrosia. Two years after surgery the patient was feeling well, and was without any recurrence, however, allergic rhinitis still persisted. CONCLUSION Castleman disease can occur in any organ containing lymph tissues. Most frequently the disease is described as mediastinal, rarely as an intrapulmonary tumorous mass, and it is most frequently seen in younger persons. The solitary type of Castleman disease is surgical treatable with a prospect of good prognosis, while the multicentric and mixed types recur despite treatment with cortisone, irradiation and cytostatics. As the association between Castleman disease and allergic diseases has not been confirmed up-tonow, it could be concluded that this patient suffered from two separated diseases.

  7. Take the Wnt out of the inflammatory sails: modulatory effects of Wnt in airway diseases.

    Science.gov (United States)

    Reuter, Sebastian; Beckert, Hendrik; Taube, Christian

    2016-02-01

    Bronchial asthma and chronic obstructive pulmonary disease (COPD) are chronic diseases that are associated with inflammation and structural changes in the airways and lungs. Recent findings have implicated Wnt pathways in critically regulating inflammatory responses, especially in asthma. Furthermore, canonical and noncanonical Wnt pathways are involved in structural changes such as airway remodeling, goblet cell metaplasia, and airway smooth muscle (ASM) proliferation. In COPD, Wnt pathways are not only associated with structural changes in the airways but also involved in the development of emphysema. The present review summarizes the role and function of the canonical and noncanonical Wnt pathway with regard to airway inflammation and structural changes in asthma and COPD. Further identification of the role and function of different Wnt molecules and pathways could help to develop novel therapeutic options for these diseases. PMID:26595171

  8. A mouse model of airway disease: oncostatin M-induced pulmonary eosinophilia, goblet cell hyperplasia, and airway hyperresponsiveness are STAT6 dependent, and interstitial pulmonary fibrosis is STAT6 independent.

    Science.gov (United States)

    Fritz, Dominik K; Kerr, Christine; Fattouh, Ramzi; Llop-Guevara, Alba; Khan, Waliul I; Jordana, Manel; Richards, Carl D

    2011-01-15

    Oncostatin M (OSM), a pleiotropic cytokine of the gp130 cytokine family, has been implicated in chronic allergic inflammatory and fibrotic disease states associated with tissue eosinophilia. Mouse (m)OSM induces airway eosinophilic inflammation and interstitial pulmonary fibrosis in vivo and regulates STAT6 activation in vitro. To determine the requirement of STAT6 in OSM-induced effects in vivo, we examined wild-type (WT) and STAT6-knockout (STAT6(-/-)) C57BL/6 mouse lung responses to transient ectopic overexpression of mOSM using an adenoviral vector (AdmOSM). Intratracheal AdmOSM elicited persistent eosinophilic lung inflammation that was abolished in STAT6(-/-) mice. AdmOSM also induced pronounced pulmonary remodeling characterized by goblet cell hyperplasia and parenchymal interstitial fibrosis. Goblet cell hyperplasia was STAT6 dependent; however, parenchymal interstitial fibrosis was not. OSM also induced airway hyperresponsiveness in WT mice that was abolished in STAT6(-/-) mice. OSM stimulated an inflammatory signature in the lungs of WT mice that demonstrated STAT6-dependent regulation of Th2 cytokines (IL-4, IL-13), chemokines (eotaxin-1/2, MCP-1, keratinocyte chemoattractant), and extracellular matrix modulators (tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-13), but STAT6-independent regulation of IL-4Rα, total lung collagen, collagen-1A1, -1A2 mRNA, and parenchymal collagen and α smooth muscle actin accumulation. Thus, overexpression of mOSM induces STAT6-dependent pulmonary eosinophilia, mucous/goblet cell hyperplasia, and airway hyperresponsiveness but STAT6-independent mechanisms of lung tissue extracellular matrix accumulation. These results also suggest that eosinophil or neutrophil accumulation in mouse lungs is not required for OSM-induced lung parenchymal collagen deposition and that OSM may have unique roles in the pathogenesis of allergic and fibrotic lung disease. PMID:21160052

  9. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin;

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single ...

  10. Mechanisms of allergic disease - environmental and genetic determinants for the development of allergy.

    Science.gov (United States)

    Campbell, D E; Boyle, R J; Thornton, C A; Prescott, S L

    2015-05-01

    Allergic disease can be viewed as an early manifestation of immune dysregulation. Environmental exposures including maternal inflammation, diet, nutrient balance, microbial colonization and toxin exposures can directly and indirectly influence immune programming in both pregnancy and the postnatal period. The intrauterine microclimate is critical for maternal and fetal immunological tolerance to sustain viable pregnancy, but appears susceptible to environmental conditions. Targeting aspects of the modern environment that promote aberrant patterns of immune response is logical for interventions aimed at primary prevention of allergic disease. Defining the mechanisms that underpin both natural and therapeutic acquisition of immunological tolerance in childhood will provide insights into the drivers of persistent immune dysregulation. In this review, we summarize evidence that allergy is a consequence of intrauterine and early life immune dysregulation, with specific focus on contributing environmental risk factors occurring preconception, in utero and in the early postnatal period. We explore the immunological mechanisms which underpin tolerance and persistence of allergic disease during childhood. It is likely that future investigations within these two domains will ultimately provide a road map for the primary prevention of allergic disease.

  11. Variation in examination and treatment offers to patients with allergic diseases in general practice

    DEFF Research Database (Denmark)

    Hansen, Dorte Gilså; Jarbøl, Dorte Ejg; Munck, Anders Peter

    2010-01-01

    recommendations for preparedness for anaphylactic shock in connection with allergy vaccine therapy were not fully implemented. CONCLUSION: General practice is substantially involved in the examination and treatment of patients with allergic diseases. There is room for further involvement of staff members...

  12. Strategies for targeting T-cells in allergic diseases and asthma

    NARCIS (Netherlands)

    Heijink, I. H.; Van Oosterhout, A. J. M.

    2006-01-01

    T helper (Th) 2 lymphocytes play a crucial role in the initiation, progression and persistence of allergic diseases, including asthma. Drugs that interfere with the activation of T-cells or more selectively Th2-specific signaling molecules and drugs that prevent the selective migration into lung tis

  13. Allergic disease and atopic sensitization in children in relation to measles vaccination and measles infection.

    NARCIS (Netherlands)

    Rosenlund, H.; Bergstrom, A.; Alm, J.; Swartz, J.; Scheynius, A.; van Hage, M.; Johansen, K.; Brunekreef, B.; von Mutius, E.; Ege, M.; Riedler, J.; Braun-Fahrlander, C.; Waser, M.; Pershagen, G.

    2009-01-01

    OBJECTIVE: Our aim was to investigate the role of measles vaccination and measles infection in the development of allergic disease and atopic sensitization. METHODS: A total of 14 893 children were included from the cross-sectional, multicenter Prevention of Allergy-Risk Factors for Sensitization in

  14. Allergic Disease and Atopic Sensitization in Children in Relation to Measles Vaccination and Measles Infection

    NARCIS (Netherlands)

    Rosenlund, Helen; Bergstrom, Anna; Alm, Johan S.; Swartz, Jackie; Scheynius, Annika; van Hage, Marianne; Johansen, Kari; Brunekreef, Bert; von Mutius, Erika; Ege, Markus J.; Riedler, Josef; Braun-Fahrlaender, Charlotte; Waser, Marco; Pershagen, Goran

    2009-01-01

    OBJECTIVE. Our aim was to investigate the role of measles vaccination and measles infection in the development of allergic disease and atopic sensitization. METHODS. A total of 14 893 children were included from the cross-sectional, multicenter Prevention of Allergy-Risk Factors for Sensitization in

  15. Allergic diseases among very preterm infants according to nutrition after hospital discharge

    DEFF Research Database (Denmark)

    Zachariassen, Gitte; Faerk, Jan; Kjær, Birgitte Esberg Boysen;

    2011-01-01

    To determine whether a cow's milk-based human milk fortifier (HMF) added to mother's milk while breastfeeding or a cow's milk-based preterm formula compared to exclusively mother's milk after hospital discharge, increases the incidence of developing allergic diseases among very preterm infants (V...... between nutrition groups. None developed food allergy. Compared to exclusively breastfed, VPI supplemented with HMF or fed exclusively a preterm formula for 4 months did not have an increased risk of developing allergic diseases during the first year of life.......To determine whether a cow's milk-based human milk fortifier (HMF) added to mother's milk while breastfeeding or a cow's milk-based preterm formula compared to exclusively mother's milk after hospital discharge, increases the incidence of developing allergic diseases among very preterm infants (VPI.......0% and 12.1%, respectively. Predisposition to allergic disease increased the risk of developing AD (p=0.04) [OR 2.6 (95% CI 1.0-6.4)] and the risk of developing RW (p=0.02) [OR 2.7 (95% CI 1.2-6.3)]. Boys had an increased risk of developing RW (p=0.003) [OR 3.1 (95% CI 1.5-6.5)]. No difference was found...

  16. Associations between multiple indoor environmental factors and clinically confirmed allergic disease in early childhood

    DEFF Research Database (Denmark)

    Callesen, Mette Buhl; Bekö, Gabriel; Weschler, Charles J.;

    2012-01-01

    Background: Previous studies, mainly questionnaires have reported associations between some indoor environmental factors and allergic diseases. Our aim was to investigate the possible association between objectively assessed indoor environmental factors and clinically confirmed asthma.......05) in sensitized children with asthma. Concentrations of nicotine and house dust mite allergens were higher (P environmental factors...... rhinoconjunctivitis or atopic dermatitis). The same physician conducted a clinical examination of all the 500 children including structured interview on allergic heredity, clinical and medical history. Specific s-IgE against inhalant and food allergens was determined. The homes were investigated by inspectors...

  17. Sinobronchial allergic aspergillosis with allergic bronchopulmonary aspergillosis: a less common co-existence

    Science.gov (United States)

    Upadhyay, Rashmi; Kant, Surya; Prakash, Ved; Saheer, S

    2014-01-01

    Allergic bronchopulmonary aspergillosis (ABPA) is an immunological pulmonary disorder that is characterised by a hyper-responsiveness of the airways to Aspergillus fumigatus. Although several other fungi may also present with similar clinical conditions, Aspergillus remains the most common fungal pathogen causing airway infections. Co-existence of ABPA with allergic Aspergillus sinusitis (AAS) is an uncommon presentation. The concept of one airway/one disease justifies the co-existence of ABPA with AAS, but it does not always hold true. We report a case of a 35-year-old woman who presented with symptoms suggestive of bronchial asthma. On further investigation, the radiological pattern showed fleeting shadows and CT scan showed central cystic bronchiectatic changes characteristic of ABPA. The nasal secretions were investigated for the presence of Aspergillus and were found to be positive. Hence a diagnosis of ABPA with AAS was established. The patient was treated with oral steroids and antifungal drugs. PMID:25371437

  18. Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease.

    Science.gov (United States)

    Yazdanbakhsh, M; van den Biggelaar, A; Maizels, R M

    2001-07-01

    The immune response to helminth infections has long been known to share key features with the allergic response. In particular, both are typified by enhanced T helper 2 (Th2) responses with high levels of interleukin-4 (IL-4), IL-5 and IL-13, accompanied by eosinophilia and abundant IgE production. Paradoxically, the geographical distribution of helminth parasitism and allergic disease is complementary rather than coincident. Thus, the question arises does the Th2 response to parasites protect or pre-empt the host from developing Th2-linked allergic manifestations? It is suggested that downregulatory immune mechanisms, which dampen the anti-parasite response, might benefit the host by blocking progression to atopic reactions. This is of relevance in explaining how the "hygiene hypothesis" might operate immunologically and in the design of therapeutics. PMID:11429321

  19. Allergen specific immunotherapy: The future cure for allergic asthma. Mechanisms and improvement in a mouse model

    OpenAIRE

    Taher, Y.A.

    2007-01-01

    Allergic asthma is a disease characterized by persistent allergen-driven airway inflammation, remodeling and airway hyperresponsiveness (AHR). CD4+ T-cells, in particular T-helper type 2 (Th2) cells, play a critical role in orchestrating the disease process through the release of cytokines like IL-4, IL-5 and IL-13. Allergen-specific immunotherapy (IT) is currently the only disease-modifying treatment with long-term suppression of allergen-induced complaints. However, although IT is effective...

  20. Allergic diseases, immunoglobulin E, and autoimmune pancreatitis: a retrospective study of 22 patients

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Guo Limei; Huang Yonghui; Wang Tianli; Shi Xueying; Chang Hong; Yao Wei

    2014-01-01

    Background Autoimmune pancreatitis (ALP) is a chronic inflammatory disease of pancreas.We evaluated the clinical manifestations,imaging,and histological presentations of AlP in Chinese patients,and investigated the roles of immunoglobulin E (IgE) and allergic diseases in the diagnosis and pathogenesis of AIP.Methods The clinical records of 22 patients diagnosed with AlP were reviewed and analyzed.All patients with AlP fulfilled the 2006 revised diagnostic criteria proposed by Japan Pancreas Society or the Korean Criteria for AIP.Results Half (11/22) of AlP patients had allergic diseases.Twenty-one patients had elevated serum IgE levels,and 14 patients had IgE levels more than 3 times that of normal.There were no significant differences between the patients with higher or lower IgE,with or without allergic disease,in clinical features,laboratory tests,diffuse or focal lesions,or the choice of treatment methods; however,more complaints of body weight loss were observed in patients with higher IgE levels.Patients with higher IgE levels and with allergic diseases were more likely to have onset in March,April,May,August,September,or October.IgE levels decreased after therapy,but increased again during recurrence.Increased number of mast cells was found in the pancreatic tissue in AIP.Conclusions IgE maybe a useful marker for monitoring therapeutic response and recurrence of AlP.Allergic processes may play an important role in the pathogenesis of AIP.

  1. Occupational rhinitis and occupational asthma; one airway two diseases?

    International Nuclear Information System (INIS)

    The concept of 'one airway, one disease' refers to the frequent comorbidity of asthma and rhinitis. However, only limited research has been done on this association for the diverse range of occupational respiratory sensitisers. The relative frequency of rhinitis was determined for the 15 respiratory sensitisers reported to cause at least 10 cases of rhinitis or asthma to The Health and Occupation Reporting (THOR) network between 1997 and 2006. Of 1408 cases, 1190 were sole diagnoses of asthma, 138 sole diagnoses of rhinitis and in 80 cases asthma coexisted with rhinitis. The six sensitisers for which rhinitis featured in over 15% of cases were all particulates and known to cause release of mast cell mediators, either directly or through IgE antibodies. Four of the other nine sensitisers often exist as vapours and only two have been consistently associated with IgE-mediated disease mechanisms. Particle size did not appear to correlate with the relative frequency of rhinitis. Despite its limitations this study would support the hypothesis that there are at least two mechanistic categories of respiratory sensitisation with rhinitis being relatively more common where the mechanism is IgE-mediated. Particulate nature may be another important factor to consider in future studies.

  2. The Relationship between Vitamin D Status and Allergic Diseases in New Zealand Preschool Children.

    Science.gov (United States)

    Cairncross, Carolyn; Grant, Cameron; Stonehouse, Welma; Conlon, Cath; McDonald, Barry; Houghton, Lisa; Eyles, Darryl; Camargo, Carlos A; Coad, Jane; von Hurst, Pamela

    2016-06-01

    Recent research on vitamin D in young children has expanded from bone development to exploring immunomodulatory effects. Our aim was to investigate the relationship of vitamin D status and allergic diseases in preschool-aged children in New Zealand. Dried capillary blood spots were collected from 1329 children during late-winter to early-spring for 25(OH)D measurement by LC-MS/MS. Caregivers completed a questionnaire about their child's recent medical history. Analysis was by multivariable logistic regression. Mean 25(OH)D concentration was 52(SD19) nmol/L, with 7% of children D concentrations ≥75 nmol/L (n = 29) had a two-fold increased risk for parent-report of doctor-diagnosed food allergy compared to children with 25(OH)D 50-74.9 nmol/L (OR = 2.21, 1.33-3.68, p = 0.002). No associations were present between 25(OH)D concentration and presence of parent-reported eczema, allergic rhinoconjunctivitis or atopic asthma. Vitamin D deficiency was not associated with several allergic diseases in these New Zealand preschool children. In contrast, high 25(OH)D concentrations were associated with a two-fold increased risk of parental-report food allergy. This increase supports further research into the association between vitamin D status and allergic disease in preschool children.

  3. THE ROLE OF VITAMIN D IN THE IMMUNE RESPONSE AND ALLERGIC DISEASES

    Directory of Open Access Journals (Sweden)

    Meza-Torres Catherine

    2015-12-01

    Full Text Available Introduction: vitamin D is one of the most pleiotropic molecules. It is very important in calcium metabolism, pulmonary health and in the immune system. Epidemiological studies have linked vitamin D deficiency with asthma and atopic dermatitis. In addition, some genetic studies including genome scan report association between vitamin D receptor (VDR and asthma. Objective: to identify the role of vitamin D in immune responses and allergic diseases. Methods: electronic search was carried out in the databases, PubMed, Science Direct, Protein Data Bank, NCBI, Blackwell Synergy Wiley Online Library. Results: 120 articles were selected for full review and 77 and 2 abstracts of them were chosen. Conclusion: epidemiological and genetics studies have linked vitamin D and its receptor (VDR with the development of allergic diseases. This evidence is extensive and sometimes contradictory. The apparent contradiction may be explained by the differential recruitment of coactivators RV-VDR-RXR complex. However, experimental studies in vitro and in vivo show that vitamin D has a modulatory effect on various types of cells of the innate and adaptive immune system, as well as the cells involved in the immune response Th1, Th2, Treg and Th17 , concluding that this vitamin plays a key role on innate and adaptive immune system and in the development of allergic diseases. Rev.cienc.biomed. 2015;6(2:319-332 KEYWORDS Vitamin D; Allergy; Asthma; Allergic rhinitis; Atopic dermatitis.

  4. [An increase in allergic diseases in childhood--current hypotheses and possible prevention].

    Science.gov (United States)

    Kurz, Herbert; Riedler, Jose

    2003-01-01

    During the last few decades there has ben a significant rise in the prevalence of allergic diseases such as asthma, hay fever and atopic dermatitis. Epidemiological studies strongly suggest that this increase is real and not due to changes in diagnostic labelling. It has become increasingly clear that a complex interplay between genetic and environmental factors account for this phenomenon. Genetically predisposed individuals are at an increased susceptibility to develop asthma or other allergic diseases when exposed to certain environmental or lifestyle factors. Particularly passive smoking has been shown to increase the risk for asthma in many studies and for atopy at least in some studies. This association is less clear for the exposure to sulfur dioxide, particulate matter, diesel exhaust and ozone. Lifestyle factors like socioeconomic status, sib-ship size, early childhood infections, dietary habits, growing up in antroposophic families or on a farm are more and more realised to be of great relevance for the development of allergic conditions. At the moment, there is a lot of uncertainty about which recommendations should be given for primary prevention. Recent studies have challenged the old paradigma that avoidance of early allergen contact could prevent the development of allergic disease. However, there is consensus that avoidance of smoking during pregnancy and avoidance of passive smoking during childhood should be recommended for primary prevention of asthma. PMID:12658963

  5. [An increase in allergic diseases in childhood--current hypotheses and possible prevention].

    Science.gov (United States)

    Kurz, Herbert; Riedler, Jose

    2003-01-01

    During the last few decades there has ben a significant rise in the prevalence of allergic diseases such as asthma, hay fever and atopic dermatitis. Epidemiological studies strongly suggest that this increase is real and not due to changes in diagnostic labelling. It has become increasingly clear that a complex interplay between genetic and environmental factors account for this phenomenon. Genetically predisposed individuals are at an increased susceptibility to develop asthma or other allergic diseases when exposed to certain environmental or lifestyle factors. Particularly passive smoking has been shown to increase the risk for asthma in many studies and for atopy at least in some studies. This association is less clear for the exposure to sulfur dioxide, particulate matter, diesel exhaust and ozone. Lifestyle factors like socioeconomic status, sib-ship size, early childhood infections, dietary habits, growing up in antroposophic families or on a farm are more and more realised to be of great relevance for the development of allergic conditions. At the moment, there is a lot of uncertainty about which recommendations should be given for primary prevention. Recent studies have challenged the old paradigma that avoidance of early allergen contact could prevent the development of allergic disease. However, there is consensus that avoidance of smoking during pregnancy and avoidance of passive smoking during childhood should be recommended for primary prevention of asthma.

  6. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Patel, Bipen D; Coxson, Harvey O; Pillai, Sreekumar G;

    2008-01-01

    RATIONALE: It is unclear whether airway wall thickening and emphysema make independent contributions to airflow limitation in chronic obstructive pulmonary disease (COPD) and whether these phenotypes cluster within families. OBJECTIVES: To determine whether airway wall thickening and emphysema (1...... severity of airway wall thickening and emphysema. MEASUREMENTS AND MAIN RESULTS: A total of 3,096 individuals were recruited to the study, of whom 1,159 (519 probands and 640 siblings) had technically adequate high-resolution computed tomography scans without significant non-COPD-related thoracic disease....... Airway wall thickness correlated with pack-years smoked (P < or = 0.001) and symptoms of chronic bronchitis (P < 0.001). FEV(1) (expressed as % predicted) was independently associated with airway wall thickness at a lumen perimeter of 10 mm (P = 0.0001) and 20 mm (P = 0.0013) and emphysema at -950...

  7. Analysis of Allergens in 5473 Patients with Allergic Diseases in Harbin, China

    Institute of Scientific and Technical Information of China (English)

    CHANG Man Li; SHAO Bing; LIU Yan Hong; LI Lu Lu; PEI Li Chun; WANG Bin You

    2013-01-01

    Objective To analyze the allergic status to common inhalant allergens and food allergens in clinical patients in Harbin in northeastern China and provide evidence to develop the prevention strategy of allergic disease. Methods The data were collected from 5 473 patients with clinical suspected allergic diseases seeking medical care in the Second Affiliated Hospital of Harbin Medical University. Among these patients, 2 530 (46.2%) were males aged 0-86 years, the youngest was only 1 month old and 2 579 (47.1%) were young children and teenagers. The serum specific Immunoglobulin E (sIgE) to 14 kinds of common allergens and serum total IgE were detected by using AllergyScreen test (Mediwiss Analytic GmbH, Moers, Germany). Results In 5 473 subjects the positive rate of sIgE was 33.1%(n=1 813). Cow milk (6.9%) and wheat (3.1%) were the most common food allergens, followed by house dust mite mix (12.5%) and mould mix (9.4%) and the age and gender specific differences in the positive rate were significant. For the children aged Conclusion The results from this study showed that the food allergens in Harbin had geographic characteristics, which support the viewpoint that the environment factors play an important role in the incidence of allergic diseases. Also, the detection of sIgE and total IgE are essential to identify relevant allergens for the purpose of early diagnosis, management and prevention of allergic disease.

  8. TGFβ Receptor Mutations Impose a Strong Predisposition for Human Allergic Disease

    OpenAIRE

    Frischmeyer-Guerrerio, Pamela A.; Guerrerio, Anthony L.; Oswald, Gretchen; Chichester, Kristin; Myers, Loretha; Halushka, Marc K.; Oliva-Hemker, Maria; Robert A. Wood; Dietz, Harry C.

    2013-01-01

    Transforming growth factor–β (TGFβ) is a multifunctional cytokine that plays diverse roles in physiologic processes as well as human disease, including cancer, heart disease, and fibrotic disorders. In the immune system, TGFβ regulates regulatory T cell (Treg) maturation and immune homeostasis. Although genetic manipulation of the TGFβ pathway modulates immune tolerance in mouse models, the contribution of this pathway to human allergic phenotypes is not well understood. We demonstrate that p...

  9. IMD-4690, a Novel Specific Inhibitor for Plasminogen Activator Inhibitor-1, Reduces Allergic Airway Remodeling in a Mouse Model of Chronic Asthma via Regulating Angiogenesis and Remodeling-Related Mediators

    OpenAIRE

    Tezuka, Toshifumi; Ogawa, Hirohisa; AZUMA, MASAHIKO; GOTO, HISATSUGU; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen...

  10. FcgammaRIIb inhibits allergic lung inflammation in a murine model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nilesh Dharajiya

    Full Text Available Allergic asthma is characterized by airway eosinophilia, increased mucin production and allergen-specific IgE. Fc gamma receptor IIb (FcgammaRIIb, an inhibitory IgG receptor, has recently emerged as a negative regulator of allergic diseases like anaphylaxis and allergic rhinitis. However, no studies to date have evaluated its role in allergic asthma. Our main objective was to study the role of FcgammaRIIb in allergic lung inflammation. We used a murine model of allergic airway inflammation. Inflammation was quantified by BAL inflammatory cells and airway mucin production. FcgammaRIIb expression was measured by qPCR and flow cytometry and the cytokines were quantified by ELISA. Compared to wild type animals, FcgammaRIIb deficient mice mount a vigorous allergic lung inflammation characterized by increased bronchoalveolar lavage fluid cellularity, eosinophilia and mucin content upon ragweed extract (RWE challenge. RWE challenge in sensitized mice upregulated FcgammaRIIb in the lungs. Disruption of IFN-gamma gene abrogated this upregulation. Treatment of naïve mice with the Th1-inducing agent CpG DNA increased FcgammaRIIb expression in the lungs. Furthermore, treatment of sensitized mice with CpG DNA prior to RWE challenge induced greater upregulation of FcgammaRIIb than RWE challenge alone. These observations indicated that RWE challenge upregulated FcgammaRIIb in the lungs by IFN-gamma- and Th1-dependent mechanisms. RWE challenge upregulated FcgammaRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells. FcgammaRIIb deficient mice also exhibited an exaggerated RWE-specific IgE response upon sensitization when compared to wild type mice. We propose that FcgammaRIIb physiologically regulates allergic airway inflammation by two mechanisms: 1 allergen challenge mediates upregulation of FcgammaRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells by an IFN-gamma dependent mechanism; and 2 by attenuating the allergen specific Ig

  11. High resolution CT in obstructive and air-ways lung disease

    International Nuclear Information System (INIS)

    The topics briefly discussed i.e. emphysema, its diagnosis, bronchiectasis etc. HRTC (high resolution computerized tomography) in diagnosing both disease and small airways abnormalities also discussed. (33 refs.)

  12. Omalizumab: an anti-immunoglobulin E antibody for the treatment of allergic respiratory diseases

    Directory of Open Access Journals (Sweden)

    J. Bousquet

    2008-04-01

    Full Text Available Immunoglobulin E (IgE is central to the development of allergic diseases. Cross-linking of cell-bound IgE by the allergen leads to the initiation of the inflammatory cascade. Omalizumab, an anti-IgE antibody, forms complexes with free IgE, thereby inhibiting the allergic reaction before its commencement. A survey of the clinical trials performed on omalizumab indicated that this anti-IgE antibody is efficacious and well tolerated in the treatment of separate and concomitant asthma and rhinitis. In patients with poorly controlled asthma, omalizumab reduced the asthma exacerbation and emergency visit rate, along with improving the quality of life. The improvement in asthma control was associated with a reduction of inhaled and oral corticosteroids. Improved nasal symptom scores and a reduced need for antihistamines were observed in patients with allergic rhinitis. Omalizumab was also proven to be effective as an add-on therapy for concomitant asthma and rhinitis. In conclusion, omalizumab provides an integrated approach for the treatment and management of allergic respiratory diseases.

  13. DNA vaccine encoding Der p2 allergen down-regulates STAT6 expression in mouse model of allergen-induced allergic airway inflammation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Activation of signal transducer and activator of transcription 6 (STAT6 ) plays a critical role in the late phase of Th2-dependent allergy induction. STAT6 is essential to Th2 cell differentiation, recruitment, and effector function. Our previous study confirmed that DNA vaccination inhibited STAT6 expression of spleen cells induced by allergen. In the present study, we determined whether DNA vaccine encoding Dermatophagoides pteronyssinus group 2 (Der p2 ) could down-regulate the expression and activation of STAT6 in lung tissue from asthmatic mice.Methods After DNA vaccine immunization, BALB/c mice were sensitized by intraperitoneal injection and challenged by intranasal instillation of rDer p2. The levels of the cytokines IL-4 and IL-13 in BAL fluid were measured by enzyme-linked immunosorbent assay. The lung tissue was assessed by immunohistochemical staining with anti-STAT6. The protein expression of STAT6 was determined by Western blot. The activation of STAT6 binding ability was analyzed with electrophoretic mobility shift assay.Results DNA vaccine encoding Der p2 allergen effectively decreased the levels of IL-4 and IL-13 in the asthmatic mice. Histological evidence and Western blot showed that the expression of STAT6 in the DNA treated mice was markedly attenuated. STAT6 binding to specific DNA motif in lung tissue from the gene vaccinated mice was inhibited.Conclusion DNA vaccine encoding Der p2 prevents allergic pulmonary inflammation probably by inhibiting the STAT6 signaling pathway in mice with Der p2 allergen-induced allergic airway inflammation.

  14. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-κB pathway in murine model of asthma.

    Science.gov (United States)

    Mishra, Vani; Baranwal, Vikas; Mishra, Rohit K; Sharma, Shivesh; Paul, Bholanath; Pandey, Avinash C

    2016-06-01

    Titanium dioxide nanoparticles (nTiO2) previously considered to possess relatively low toxicity both in vitro and in vivo, although classified as possibly carcinogenic to humans. Also, their adjuvant potential has been reported to promote allergic sensitization and modulate immune responses. Previously, in OVA induced mouse model of asthma we found high expression of Socs3 and low expression of Stat3 and IL-6. However, a clear understanding regarding the signaling pathways associated with nTiO2 adjuvant effect in mouse model of asthma is lacking. In the present study we investigated the status of Stat3/IL-6 and Socs3 and their relationship with NF-κB, with nTiO2 as an adjuvant in mouse model of asthma. nTiO2 when administered with ovalbumin (OVA) during sensitization phase augmented airway hyper-responsiveness (AHR), biochemical markers of lung damage and a mixed Th2/Th1 dependent immune response. At the same time, we observed significant elevation in the levels of Stat3, Socs3, NF-κB, IL-6 and TNF-α. Furthermore, transient in vivo blocking of NF-κB by NF-κB p65 siRNA, downregulated the expression of Socs3, IL-6 and TNF-α. Our study, thus, shows that nTiO2 exacerbate the inflammatory responses in lungs of pre-sensitized allergic individuals and that these changes are regulated via NF-κB pathway. PMID:27057692

  15. Studies on neuroimmune interactions in allergic inflammation with focus on neurotrophins

    OpenAIRE

    Kemi, Cecilia

    2006-01-01

    Allergic asthma is a chronic airway disease characterized by an eosinophilic inflammation, bronchoconstriction, increased mucus production and bronchial hyperreactivity. The disease involves several mediators and cell types and is associated with a Th2-mediated immune response. Stress is a factor reported to deteriorate the allergic inflammation. Stress can influence the immune system by activating the HPA axis, resulting in release of glucocorticoids which could effects...

  16. Effect of mesenchymal stem cells on allergic asthma in mouse model

    OpenAIRE

    Reza Habibian; Nowruz Delirezh; Amir Abbas Farshid

    2015-01-01

    Background: Allergic Asthma is an inflammatory disease of the respiratory system that is well known by increased inflammatory cells in the airways and causes difficulty in respiration. The prevalence of allergic asthma is increasing worldwide, and it has become a significant cause of health challenge especially in developed countries. Inhaled β2-agonists and Inhaled or oral corticosteroids are common medications for treating the disease, but they cannot be used for long periods of time becaus...

  17. Mucosal immunization application to allergic disease: sublingual immunotherapy.

    Science.gov (United States)

    Frati, Franco; Moingeon, Philippe; Marcucci, Francesco; Puccinelli, Paola; Sensi, Laura; Di Cara, Giuseppe; Incorvaia, Cristoforo

    2007-01-01

    Sublingual immunotherapy (SLIT) is an effective and safe treatment for respiratory allergy, and its mechanism of action currently is investigated with increasing attention. Studies of pharmacokinetics showed that allergen extracts administered via the sublingual route are not directly absorbed by the oral mucosa but are long retained at mucosal level, where the allergen molecules are captured by dendritic cells and, following their migration in the draining lymph nodes, presented to T cells. This seems to be the pivotal factor underlying the mechanisms of action of SLIT, at least for the long-term effects, and for the short-term efficacy, observed with ultrarush or coseasonal treatment, a down-regulation of mast cells resulting in hyporeactivity at the peak of the pollen season may be suggested. Regarding the clinically established long-lasting effects, the core mechanism is likely to consist of T regulatory (Treg) cell activation. In particular, Treg cells differentiate from naive T cells after application of soluble antigens to the mucosae, a crucial factor being the tolerogenic function of dendritic cells, and exert a suppressive effect on both Th1 and Th2 responses. Moreover, at least for the type 1 cells (Treg1), a production of IL-10 with consequent down-modulation of the immune response has been reported. Another characteristic of sublingual immunization is the absence of effectors cells, viz., mast cells, basophils, and eosinophils, in the oral mucosa of allergic subjects, which account for the excellent tolerability of SLIT. PMID:17390755

  18. Synthesized OVA323-339MAP octamers mitigate OVA-induced airway inflammation by regulating Foxp3 T regulatory cells

    OpenAIRE

    Su Wen; Zhong Wenwei; Zhang Yanjie; Xia Zhenwei

    2012-01-01

    Abstract Background Antigen-specific immunotherapy (SIT) has been widely practiced in treating allergic diseases such as asthma. However, this therapy may induce a series of allergic adverse events during treatment. Peptide immunotherapy (PIT) was explored to overcome these disadvantages. We confirmed that multiple antigen peptides (MAPs) do not cause autoimmune responses, which led to the presumption that MAPs intervention could alleviate allergic airway inflammation without inducing adverse...

  19. Nutrition, growth, and allergic diseases among very preterm infants after hospital discharge

    DEFF Research Database (Denmark)

    Zachariassen, Gitte

    2013-01-01

    with breastfeeding among very preterm infants at hospital discharge. 3. To describe possible feeding-problems during the intervention-period, and allergic diseases during the first year of life, among very preterm infants related to their nutrition after hospital discharge. 4. To describe the content...... until August 2008 of whom 157 were excluded due to diseases or circumstances influencing nutrition. Further 156 refused participation in the interventional part of the study, but data on breastfeeding, weight, and some epidemiological data until discharge were available. Results on breastfeeding rate at...... fortification (group B) until 4 months CA. Infants (n = 113) who were bottle-fed at discharge (group C) were given a preterm formula (PF) until 4 months CA. Infants were examined at the outpatient clinics at term, and at 2, 4, 6, and 12 months CA, where parameters on growth, allergic diseases, possible feeding...

  20. Interleukin-4 and interleukin-5 as targets for the inhibition of eosinophilic inflammation and allergic airways hyperreactivity

    OpenAIRE

    Paul S Foster; Hogan, Simon P.; Matthaei, Klaus I.; Young, Ian G.

    1997-01-01

    Clinical and experimental investigations suggest that allergen-specific CD4+ T-cells, IgE and the cytokines IL-4 and IL-5 play central roles in initiating and sustaining an asthmatic response by regulating the recruitment and/or activation of airways mast cells and eosinophils. IL-5 plays a unique role in eosinophil development and activation and has been strongly implicated in the aetiology of asthma. The present paper summarizes our recent investigations on the role of these cytokines using...

  1. Solid fuel smoke exposure and risk of obstructive airways disease

    Directory of Open Access Journals (Sweden)

    Qorbani Mostafa

    2012-10-01

    Full Text Available Abstract This study was designed to investigate whether there is an association between Obstructive Airways Disease (OAD and indoor exposure to baking home-made bread smoke (BHBS in ground oven at home. In this hospital-based case–control study, 83 patients with OAD (cases were compared with 72 patients without any known pulmonary diseases from the surgical ward (controls who were frequently matched with cases on age. The interview was performed using the modified questionnaire recommended by the "American Thoracic Society". The questionnaire comprised of demographic information, occupational history, cigarette smoking and indoor exposure to BHBS in ground oven at home. The exposure to BHBS was considered both as a dichotomous and quantitative variable (number of years being exposed to smoke and the population attributable fraction (PAF was estimated due to BHBS exposure. The percentage of indoor exposure to BHBS was measured as 51.8% and 30.6% in the cases and the controls, respectively. The average years of exposure to BHBS was 20.46 years (SD: 11.60 for the cases and 15.38 years (SD: 13.20 for the controls. The univariate analysis comparing the cases and the controls showed that exposure to BHBS (as a binary variable and occupational exposure to dust was significantly associated with OAD. In the multivariate model, only exposure to BHBS was associated with OAD (OR=2.22, 95%CI = 1.14-4.35. Duration of exposure to BHBS (as a quantitative variable was significantly associated with OAD in the univariate model. In the multivariate model, only the duration of exposure to BHBS (years showed a significant association with OAD (OR=1.04, 95% CI=1.01-1.08. Population attributable risk due to BHBS exposure was equal to 28.5%.

  2. Italian Multicenter Cross-Sectional Study (AISAG) on light smoking and allergic diseases in adults.

    Science.gov (United States)

    Lombardi, C; Passalacqua, G

    2016-03-01

    Allergic rhinitis, allergic dermatitis, and food allergy are extremely common diseases and are frequently associated to each other and to asthma. Smoking is a potential risk factor for these conditions, but so far, results from individual studies have been conflicting. On the basis of these contradictory data in the literature we have carried out a multicenter cross-sectional study to evaluate the relationship between some allergic conditions and exposure or not to active light smoking. The study was carried out between May 2013 and November 2013 in 22 different Italian hospitals. Patients with respiratory and/or food allergy, and aged 18 years and over, visited at Allergy Outpatient Clinics, were invited to participate. A total of 1586 allergic patients (21.6% smokers) with a mean age of 39.2 years (standard deviation, SD = 15.1) were included. We demonstrated that the prevalence of tobacco smoking was higher in patients with food allergy and in asthmatic patients in stage III-IV. But no other statistical differences were found at univariate analysis. The sensitization patterns of non-smokers and smokers were similar. Furthermore, tobacco smoking was associated with higher risk of food allergy and lower risk of asthma. Moreover, tobacco smoking was an independent risk factor for persistent respect to intermittent rhinitis, and for asthma GINA stage III-IV with respect to stage I-II.

  3. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable.

  4. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells

    OpenAIRE

    Arnold, I C; Dehzad, N; Reuter, S; Martin, H.; Becher, B; Taube, C.; Müller, A.

    2011-01-01

    Atopic asthma is a chronic disease of the airways that has taken on epidemic proportions in the industrialized world. The increase in asthma rates has been linked epidemiologically to the rapid disappearance of Helicobacter pylori, a bacterial pathogen that persistently colonizes the human stomach, from Western societies. In this study, we have utilized mouse models of allergic airway disease induced by ovalbumin or house dust mite allergen to experimentally examine a possible inverse correla...

  5. How Can 1+1=3? beta(2)-Adrenergic and Glucocorticoid Receptor Agonist Synergism in Obstructive Airway Diseases

    NARCIS (Netherlands)

    Schmidt, Martina; Michel, Martin C.

    2011-01-01

    For a long time it was believed that beta(2)-adrenergic receptor agonists used in the treatment of obstructive airway diseases worked primarily on airway smooth muscle cells, causing relaxation, whereas glucocorticoids primarily improved airway function via their anti-inflammatory action, indicating

  6. Roles of histamine and its receptors in allergic and inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Hua Xie; Shao-Heng He

    2005-01-01

    Mast cell has a long history of being recognized as an important mediator-secreting cell in allergic diseases, and has been discovered to be involved in IBD in last two decades. Histamine is a major mediator in allergic diseases, and has multiple effects that are mediated by specific surface receptors on target cells. Four types of histamine receptors have now been recognized pharmacologically and the first three are located in the gut. The ability of histamine receptor antagonists to inhibit mast cell degranulation suggests that they might be developed as a group of mast cell stabilizers. Recently, a series of experiments with dispersed colon mast cells suggested that there should be at least two pathways in man for mast cells to amplify their own activation-degranulation signals in an autocrine or paracrine manner. In a word, histamine is an important mediator in allergic diseases and IBD, its antagonists may be developed as a group of mast cell stabilizers to treat these diseases.

  7. Epidemiology of allergic diseases of the respiratory passages in the Kazakh SSR

    Energy Technology Data Exchange (ETDEWEB)

    Moshkevich, V.S.

    1985-01-01

    Over a period of 20 years, the authors have been studying the distribution, aetiology and causes of increasing incidence of allergic respiratory diseases in various climatogeographic zones of the Kazakh SSR. Large groups of people living in towns and in the country were examined by various methods. The number of patients seeking advice in health service establishments because of allergic rhinitis and bronchial asthma was found to increase every year. A number of factors influencing the incidence of disease were pointed out, such as the character of diet, duration of the person's stay, vaccination against brucellosis, pollution of the atmosphere, local flora, climate, and other factors. Morbidity also depended on the methods of studying the epidemiology of respiratory allergoses. The obtained results will help health service authorities in taking specific measures to reduce morbidity from the mentioned pathological condition.

  8. A study of eosinophil count in nasal and blood smear in allergic respiratory diseases in a rural setup

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2012-01-01

    Full Text Available Allergic respiratory disorders are fairly common visiting cases in pediatrics outpatient department (OPD. With an appropriate history and detailed examination, diagnosis may not be problematic. Routine investigation may not contribute much to the final diagnosis but may help in ruling out other possibilities. This study was done to evaluate sensitivity and specificity of blood or nasal eosinophilia in subjects suffering from allergic respiratory disorders and also to assess the feasibility of nasal cytogram which is a simple, economical and reliable investigation in allergic respiratory disorders. This is a prospective clinical correlation study of patients attending outpatient department. 100 subjects aged between 2-18 years of either sex were selected for the estimation of eosinophil count in nasal and peripheral smear in allergic respiratory disorders. All allergic respiratory cases based on eosinophillia. The nasal and blood eosinophilia were compared with each other and clinical findings of allergic rhinitis with or without asthma were studied. In this study peak age incidence was seen between 11-18 years and it was more common in males. Rhinorrhoea, pale mucosa and nasal obstruction were common findings in allergic rhinitis with bronchial asthma. Nasal eosinophilia was seen in 52.4% and 64.9% of cases of allergic rhinitis and allergic rhinitis with asthma respectively. Blood eosinophilia was seen in 54% and 56.8% of cases of allergic rhinitis with asthma respectively. Nasal cytogram which is a simple, economical and non- invasive procedure can be used as an alternative to invasive peripheral smear eosinophilia as both are equally efficacious in diagnosing allergic respiratory diseases.

  9. Neurology of allergic inflammation and rhinitis.

    Science.gov (United States)

    Canning, Brendan J

    2002-05-01

    Afferent nerves, derived from the trigeminal ganglion, and postganglionic autonomic nerves, derived from sympathetic and parasympathetic ganglia expressing many different neurotransmitters, innervate the nose. Reflexes that serve to optimize the air-conditioning function of the nose by altering sinus blood flow, or serve to protect the nasal mucosal surface by mucus secretion, vasodilatation, and sneezing, can be initiated by a variety of stimuli, including allergen, cold air, and chemical irritation. Activation of nasal afferent nerves can also have profound effects on respiration, heart rate, blood pressure, and airway caliber (the diving response). Dysregulation of the nerves in the nose plays an integral role in the pathogenesis of allergic rhinitis. Axon reflexes can precipitate inflammatory responses in the nose, resulting in plasma extravasation and inflammatory cell recruitment, while allergic inflammation can produce neuronal hyper-responsiveness. Targeting the neuronal dysregulation in the nose may be beneficial in treating upper airway disease. PMID:11918862

  10. GIS-based Association Between PM10 and Allergic Diseases in Seoul: Implications for Health and Environmental Policy

    OpenAIRE

    Seo, SungChul; Kim, Dohyeong; Min, Soojin; Paul, Christopher; Yoo, Young; Choung, Ji Tae

    2015-01-01

    Purpose The role of PM10 in the development of allergic diseases remains controversial among epidemiological studies, partly due to the inability to control for spatial variations in large-scale risk factors. This study aims to investigate spatial correspondence between the level of PM10 and allergic diseases at the sub-district level in Seoul, Korea, in order to evaluate whether the impact of PM10 is observable and spatially varies across the subdistricts. Methods PM10 measurements at 25 mon...

  11. Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma

    Directory of Open Access Journals (Sweden)

    Chun Jerold

    2009-11-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA1-3. We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation. Methods Wild type, LPA1 heterozygous knockout mice (LPA1+/-, and LPA2 heterozygous knockout mice (LPA2+/- were sensitized with inactivated Schistosoma mansoni eggs and local antigenic challenge with Schistosoma mansoni soluble egg Ag (SEA in the lungs. Bronchoalveolar larvage (BAL fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA. Results BAL fluids from Schistosoma mansoni egg-sensitized and challenged wild type mice (4 days of challenge showed increase of LPA level (~2.8 fold, compared to control mice. LPA2+/- mice, but not LPA1+/- mice, exposed to Schistosoma mansoni egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA2+/- and LPA1+/- mice showed decreases in bronchial goblet cells. LPA2+/- mice, but not LPA1+/- mice showed the decreases in prostaglandin E2 (PGE2 and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA2+/- mice. These results suggest that LPA and LPA receptors are involved in Schistosoma mansoni egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.

  12. Uncontrolled airway inflammation in lung disease represents a defect in counter-regulatory signaling

    OpenAIRE

    Planaguma, Anna; Levy, Bruce D.

    2008-01-01

    Counter-regulatory lipid mediators are generated during airway inflammation to promote resolution. Defects in the production of these lipid mediators have now been associated with several diseases of persistent airway inflammation. Lipoxins are the lead members of this class of anti-inflammatory and proresolving chemical mediators. Recently, several new families of fatty acid-derived counter-regulatory mediators have been discovered, including the resolvins and protectins. Diminished formatio...

  13. Relationship between airway inflammation and remodeling in patients with asthma and chronic obstructive pulmonary disease

    OpenAIRE

    Górska K; Krenke R; Kosciuch J; Korczynski P; Zukowska M; Domagala-Kulawik J; Maskey-Warzechowska M; Chazan R

    2009-01-01

    Abstract Despite a number of important differences in the pathogenesis, course and prognosis of asthma and chronic obstructive pulmonary disease (COPD), these two entities also have common features with airway inflammation being one of them. Airway remodeling is a characteristic feature of asthma, but data on the bronchial wall thickening in COPD patients are still scarce. Aim To assess the relation between the inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and thickness o...

  14. Impact of psychosocial stress on airway inflammation and its mechanism in a murine model of allergic asthma

    Institute of Scientific and Technical Information of China (English)

    LI Bei; DUAN Xiao-hong; WU Jin-feng; LIU Bao-jun; LUO Qing-li; JIN Hua-liang; DU Yi-jie

    2013-01-01

    Background It has already been recognized that psychosocial stress evokes asthma exacerbation; however,the mechanism of how stress gets inside the body is not clear.This study aimed to observe the impact of psychosocial stress on airway inflammation and its mechanism in the ovalbumin-induced asthmatic mice combined with social disruption stress.Methods Thirty-six male BALB/c mice were randomly divided into:control group,asthma group (ovalbumin-induced),asthma plus social disruption stress group (SDR),and SDR group.The open field video tracking system was used to assess animal behaviors.The invasive pulmonary resistance (RL) and dynamic lung compliance (cdyn) test system from Buxco was applied to detect pulmonary function.The enzyme-linked immunosorbent assay (ELISA) was utilized to determine OVA-IgE,T-helper type 2 (Th2) cytokines (IL-4,IL-5,IL-13) and corticosterone in mouse serum,the Th2 cytokines (IL-4,IL-5,IL-13,IL-6,TNF-α) in bronchoalveolar lavage fluid (BALF),and IL-6 and TNF-α levels in the supernatant of splenocytes cultured in vitro.Hematoxylin-eosin (H&E) staining was used to assess airway inflammation in lung histology.The cell count kit-8 assay (CCK-8) was applied to evaluate the inhibitory effect of corticosterone on splenocyte proliferation induced by lipopolysacchadde (LPS).Real time-PCR and Western blotting were utilized to determine glucocorticoid receptor (GR) mRNA and GR protein expression in lungs.Results The open field test showed that combined allergen exposure and repeated stress significantly shortened the time the mice spent in the center of the open field (P <0.01),increased ambulatory activity (P <0.01) and the count of fecal boli (P <0.01),but deceased vertical activity (P <0.01).Results from pulmonary function demonstrated that airway hyperresponsiveness (AHR) was enhanced by psychosocial stress compared with allergy exposure alone.The ELISA results showed that cytokines in serum and BALF were significantly increased (P <0

  15. WILDE,OSCAR SKIN-DISEASE - ALLERGIC CONTACT-DERMATITIS

    NARCIS (Netherlands)

    NATER, JP

    1992-01-01

    During the last years of his life, Oscar Wilde (1856-1900) suffered from a suppurating otitis media as well as from an unidentified skin disease. The eruption was localized to his face, arms, chest and back and itched severely. A new theory is suggested, based on the fact that Wilde almost certainly

  16. Immunomodulation by food: promising concept for mitigating allergic disease?

    NARCIS (Netherlands)

    Wichers, H.J.

    2009-01-01

    The importance of a properly functioning and well-balanced immune system for maintaining health has become strikingly evident over the past decades. Roughly since World War II, there has been an apparent decrease in the prevalence of “traditional” infectious diseases, with a concomitant increase in

  17. TREATMENT OF ALLERGIC DISEASES MAINLY WITH OTOPOINT PELLET PRESSING THERAPY

    Institute of Scientific and Technical Information of China (English)

    LI Guilan; HAN Yu

    2002-01-01

    In the present paper, the authors report a few of typical cases of alergic diseases including potlinosis,asthma, red eyes and swelling face and dermatitis treated with otopoints and some back shu-points according to the symptoms. The result showed that the curative effect was satisfactory. It indicates that otopoints have a good antlanaphylactic effect.

  18. TREATMENT OF ALLERGIC DISEASES MAINLY WITH OTOPOINT PELLET PRESSING THERAPY

    Institute of Scientific and Technical Information of China (English)

    李桂兰; 韩煜

    2002-01-01

    In the present paper,the authors reort a few of typical cases of alergic diseases including pollinosis,asthma,red eyes and swelling face and dermatitis treated with otopoints and some back shu-points acccrding to the symptoms.The result showed that the curative effect was satisfactory.It indicates that otopoints have a good antianaphylactic effect.

  19. Distinct PKA and Epac compartmentalization in airway function and plasticity

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Racke, Kurt; Schmidt, Martina

    2013-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibro

  20. History of allergic disease and epilepsy and risk of glioma and meningioma (INTERPHONE study group, Germany)

    DEFF Research Database (Denmark)

    Berg-Beckhoff, Gabriele; Schüz, Joachim; Blettner, Maria;

    2009-01-01

    The aim of the present analysis was to examine the association of a medical history of asthma, hay fever, eczema, or epilepsy with the risk of glioma and meningioma. Data of a German population-based case-control study included 381 meningioma cases, 366 glioma cases, and 1,494 controls....... Participants' histories of asthma, hay fever, eczema, and epilepsy and the respective ages at onset were asked during a personal interview. A small inverse association between allergic condition and both glioma (odds ratio: 0.92; 95% CI: 0.70-1.22) and meningioma (odd ratio: 0.87; 95% CI: 0.66-1.14) was found....... For glioma, this inverse association was more pronounced in persons reporting to have asthma compared to other allergic conditions. The positive association between epilepsy and particularly glioma suggests that epilepsy is an early symptom of the disease. As the association was seen also for epilepsies...

  1. Probiotics for treatment and primary prevention of allergic diseases and asthma: looking back and moving forward.

    Science.gov (United States)

    West, Christina E; Jenmalm, Maria C; Kozyrskyj, Anita L; Prescott, Susan L

    2016-06-01

    Microbial ecosystems cover the surface of the human body and it is becoming increasingly clear that our modern environment has profound effects on microbial composition and diversity. A dysbiotic gut microbiota has been associated with allergic diseases and asthma in cross-sectional and observational studies. In an attempt to restore this dysbiosis, probiotics have been evaluated in randomized controlled trials. Here, we review treatment and primary prevention studies, recent meta-analyses, and discuss the current understanding of the role of probiotics in this context. Many meta-analyses have shown a moderate benefit of probiotics for eczema prevention, whereas there is less evidence of a benefit for other allergic manifestations. Because of very low quality evidence and heterogeneity between studies, specific advice on the most effective regimens cannot yet be given - not even for eczema prevention. To be able to adopt results into specific recommendations, international expert organizations stress the need for well-designed studies. PMID:26821735

  2. Sex differences in emphysema and airway disease in smokers

    DEFF Research Database (Denmark)

    Camp, Pat G; Coxson, Harvey O; Levy, Robert D;

    2009-01-01

    BACKGROUND: The authors of previous reports have suggested that women are more susceptible to cigarette smoke and to an airway-predominant COPD phenotype rather than an emphysema-predominant COPD phenotype. The purpose of this study was to test for sex differences in COPD phenotypes by using high...

  3. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency.

    Directory of Open Access Journals (Sweden)

    Ran Fu

    Full Text Available BACKGROUND: Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA-induced asthmatic mice models. METHOD: Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. RESULTS: We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. CONCLUSION: Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells.

  4. Exploiting the potential of routine data to better understand the disease burden posed by allergic disorders.

    Science.gov (United States)

    Anandan, C; Simpson, C R; Fischbacher, C; Sheikh, A

    2006-07-01

    The Department of Health and Scottish Executive are currently undertaking independent reviews of allergy services in England (and Wales) and Scotland. Each review will assess the disease burden posed by allergic problems, involving secondary analyses of routine National Health Service (NHS) datasets. Major suggestions for re-structuring and/or re-focusing the NHS efforts to better deal with allergic disease are anticipated. The UK has some of the best datasets of routine health data in the world, but despite their strengths, they have important limitations. These include gaps in data collection, particularly in relation to monitoring of Accident & Emergency and out-patient consultations, and in-patient prescribing, thereby resulting in considerable under-estimates of hospital workload. The current gaps in service monitoring are likely to under-estimate the burden and workload associated with allergic problems, particularly in secondary care. One major limitation of existing data sources is the general inability to link individual patient level data between different datasets. By unlocking this potential there are very considerable potential gains to be made. Data linkage techniques currently being developed in the UK offer exciting new possibilities of looking across the primary-, secondary- and tertiary-care interfaces and also assessing short-and long-term social and educational outcomes in relation to allergic disorders. The current reviews of allergy services being undertaken need to be cognisant of these inherent limitations of existing data sources and would do well to recommend strategic initiatives that could enhance the availability, accessibility and quality of these datasets. Ideally, this should include investment in central data repositories staffed by teams with the necessary technical and statistical expertise, which would also take responsibility for progressing data linkage capabilities. PMID:16839400

  5. Toward precision medicine and health: Opportunities and challenges in allergic diseases.

    Science.gov (United States)

    Galli, Stephen Joseph

    2016-05-01

    Precision medicine (also called personalized, stratified, or P4 medicine) can be defined as the tailoring of preventive measures and medical treatments to the characteristics of each patient to obtain the best clinical outcome for each person while ideally also enhancing the cost-effectiveness of such interventions for patients and society. Clearly, the best clinical outcome for allergic diseases is not to get them in the first place. To emphasize the importance of disease prevention, a critical component of precision medicine can be referred to as precision health, which is defined herein as the use of all available information pertaining to specific subjects (including family history, individual genetic and other biometric information, and exposures to risk factors for developing or exacerbating disease), as well as features of their environments, to sustain and enhance health and prevent the development of disease. In this article I will provide a personal perspective on how the precision health-precision medicine approach can be applied to the related goals of preventing the development of allergic disorders and providing the most effective diagnosis, disease monitoring, and care for those with these prevalent diseases. I will also mention some of the existing and potential challenges to achieving these ambitious goals. PMID:27155026

  6. [The application of "preventive treatment theory" in chronic airway inflammatory disease].

    Science.gov (United States)

    Dong, Jing-Cheng; Liu, Bao-Jun; Zhang, Hong-Ying

    2013-07-01

    Bronchial asthma and chronic obstructive pulmonary disease (COPD), as chronic airway inflammatory diseases, seriously threaten the health of human beings. Chinese medicine has obvious advantages in prevention and treatment of them. "Preventive treatment theory" is a sort summarization of preventive medicine in Chinese medicine. The theory is not only reflected at the disease prevention levels, also embodied in the active treatment and the rehabilitation process. It was especially deep and colorfully embodied in the prevention and treatment of chronic airway inflammatory diseases such as asthma and COPD. In this paper,clarified were the prevention and treatment targets, ways of thinking and methods in different stages of asthma and COPD from various viewpoints including prevention before disease occurrence, treating disease at disease onset, preventing the aggravation once disease occurs, and consolidation after disease occurs. We hope to improve ways of thinking and prevention and treatment levels of bronchial asthma and COPD by Chinese medicine. PMID:24063226

  7. Constructing a classification of hypersensitivity/allergic diseases for ICD-11 by crowdsourcing the allergist community.

    Science.gov (United States)

    Tanno, L K; Calderon, M A; Goldberg, B J; Gayraud, J; Bircher, A J; Casale, T; Li, J; Sanchez-Borges, M; Rosenwasser, L J; Pawankar, R; Papadopoulos, N G; Demoly, P

    2015-06-01

    The global allergy community strongly believes that the 11th revision of the International Classification of Diseases (ICD-11) offers a unique opportunity to improve the classification and coding of hypersensitivity/allergic diseases via inclusion of a specific chapter dedicated to this disease area to facilitate epidemiological studies, as well as to evaluate the true size of the allergy epidemic. In this context, an international collaboration has decided to revise the classification of hypersensitivity/allergic diseases and to validate it for ICD-11 by crowdsourcing the allergist community. After careful comparison between ICD-10 and 11 beta phase linearization codes, we identified gaps and trade-offs allowing us to construct a classification proposal, which was sent to the European Academy of Allergy and Clinical Immunology (EAACI) sections, interest groups, executive committee as well as the World Allergy Organization (WAO), and American Academy of Allergy Asthma and Immunology (AAAAI) leaderships. The crowdsourcing process produced comments from 50 of 171 members contacted by e-mail. The classification proposal has also been discussed at face-to-face meetings with experts of EAACI sections and interest groups and presented in a number of business meetings during the 2014 EAACI annual congress in Copenhagen. As a result, a high-level complex structure of classification for hypersensitivity/allergic diseases has been constructed. The model proposed has been presented to the WHO groups in charge of the ICD revision. The international collaboration of allergy experts appreciates bilateral discussion and aims to get endorsement of their proposals for the final ICD-11. PMID:25736171

  8. Constructing a classification of hypersensitivity/allergic diseases for ICD-11 by crowdsourcing the allergist community.

    Science.gov (United States)

    Tanno, L K; Calderon, M A; Goldberg, B J; Gayraud, J; Bircher, A J; Casale, T; Li, J; Sanchez-Borges, M; Rosenwasser, L J; Pawankar, R; Papadopoulos, N G; Demoly, P

    2015-06-01

    The global allergy community strongly believes that the 11th revision of the International Classification of Diseases (ICD-11) offers a unique opportunity to improve the classification and coding of hypersensitivity/allergic diseases via inclusion of a specific chapter dedicated to this disease area to facilitate epidemiological studies, as well as to evaluate the true size of the allergy epidemic. In this context, an international collaboration has decided to revise the classification of hypersensitivity/allergic diseases and to validate it for ICD-11 by crowdsourcing the allergist community. After careful comparison between ICD-10 and 11 beta phase linearization codes, we identified gaps and trade-offs allowing us to construct a classification proposal, which was sent to the European Academy of Allergy and Clinical Immunology (EAACI) sections, interest groups, executive committee as well as the World Allergy Organization (WAO), and American Academy of Allergy Asthma and Immunology (AAAAI) leaderships. The crowdsourcing process produced comments from 50 of 171 members contacted by e-mail. The classification proposal has also been discussed at face-to-face meetings with experts of EAACI sections and interest groups and presented in a number of business meetings during the 2014 EAACI annual congress in Copenhagen. As a result, a high-level complex structure of classification for hypersensitivity/allergic diseases has been constructed. The model proposed has been presented to the WHO groups in charge of the ICD revision. The international collaboration of allergy experts appreciates bilateral discussion and aims to get endorsement of their proposals for the final ICD-11.

  9. Association of ADAM33 gene polymorphisms with adult allergic asthma and rhinitis in a Chinese Han population

    OpenAIRE

    Jin Lianhong; Lü Fuzhen; Sui Hong; Zhang Ximei; Su Dongju; Zhang Jing

    2008-01-01

    Abstract Background Rhinitis and asthma are very common diseases involving genetic and environmental factors. Most patients with asthma also have rhinitis, which suggests the concept of 'one airway, one disease.' A disintegrin and metalloproteinase 33 (ADAM33) is the first asthma-susceptible gene to be discovered by positional cloning. To evaluate the potential influence of ADAM33 gene polymorphisms on allergic rhinitis (AR) and allergic asthma (AS), a case-control study was conducted on the ...

  10. Primary mechanism of the role of dual oxidase-1 causing airway allergic diseases in human bronchial epithelium%双重氧化酶1引起变应性疾病发生机制的初步研究

    Institute of Scientific and Technical Information of China (English)

    王丽芬; 黄志纯; 吴修法; 王海飞

    2013-01-01

    能依赖于脂筏来源的神经酰胺.%Objective To investigate the role of dual oxidase-1 (DUOX-1) inducing airway hyperresponsiveness in human bronchial epithelium.Methods The human bronchial epithelial cells were divided into several groups:control group,tumor necrosis factor-α (TNF-α) group,methyl-β-cyclodextrin (M-β-CD) + TNF-α group,desipramine (DES) + TNF-α group,diphenylene iodonium (DPI) + TNF-α group and apocynin (APO) + TNF-α group.Fractionation was performed by sucrose gradient centrifugation and the protein DUOX-1 was measured by western blotting.The lipid raft clusters and its colocalization with DUOX-1 were confocal analysed.The intracellular reactive oxygen species (ROS) accumulation was measured by fluorescence of reactive oxygen probe of intracellular measurement.Sigmastat 3.02 software was used to analyze the data.Results (1) Detection of ROS,control group:1.00± 0.00 ; TNF-α group:1.95± 0.16 ; M-β-CD + TNF-α group:0.91 ± 0.16 ; DES + TNF-α group:1.49± 0.20 ; DPI + TNF-α group:1.03 ± 0.16 ; APO + TNF-α group:1.47 ± 0.26.The difference was statistically significant (F =3.83,P <0.05).(2) Extracts in rafts to lipid rafts region represents the ratio of total protein,protein content DUOX-1each group,control group:0.21 ± 0.02; TNF-α group:0.49 ± 0.04; M-β-CD + TNF-α group:0.08 ±0.02 ; DES + TNF-α group:0.09 ± 0.03 ; the difference was statistically significant (F =3.96,P < 0.05).(3) DUOX-1 protein fluorescence values,control group:1.72 ± 0.21; TNF-α group:8.11 ± 1.23; M-β-CD + TNF-α group:1.51 ± 0.32; DES + TNF-α group:1.43 ± 0.11 ; the difference was statistically significant (F =4.87,P < 0.05).(4) DUOX-1 gene detection,control group:1.00 ± 0.00 ScrRNA +TNF-α group:1.75 ± 0.04; DUOX-1siRNA + TNF-αgroup:1.15 ± 0.02; the difference was statistically significant (F =4.19,P < 0.05).Conclusion TNF-α can induce DUOX-1 expression increasing in lipid raft,then the DUOX-1 can be activated to increase reactive

  11. Potential of Immunoglobulin A to Prevent Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Anouk K. Gloudemans

    2013-01-01

    Full Text Available Allergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contrast, in healthy individuals, allergen-specific IgA and IgG4 molecules are found but no IgE, and their T cells fail to proliferate in response to allergens, probably because of the development of regulatory processes that actively suppress responses to allergens. The presence of allergen-specific secretory IgA has drawn little attention so far, although a few epidemiological studies point at a reverse association between IgA levels and the incidence of allergic airway disease. This review highlights the latest literature on the role of mucosal IgA in protection against allergic airway disease, the mechanisms described to induce secretory IgA, and the role of (mucosal dendritic cells in this process. Finally, we discuss how this information can be used to translate into the development of new therapies for allergic diseases based on, or supplemented with, IgA boosting strategies.

  12. Potential of immunoglobulin A to prevent allergic asthma.

    Science.gov (United States)

    Gloudemans, Anouk K; Lambrecht, Bart N; Smits, Hermelijn H

    2013-01-01

    Allergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contrast, in healthy individuals, allergen-specific IgA and IgG4 molecules are found but no IgE, and their T cells fail to proliferate in response to allergens, probably because of the development of regulatory processes that actively suppress responses to allergens. The presence of allergen-specific secretory IgA has drawn little attention so far, although a few epidemiological studies point at a reverse association between IgA levels and the incidence of allergic airway disease. This review highlights the latest literature on the role of mucosal IgA in protection against allergic airway disease, the mechanisms described to induce secretory IgA, and the role of (mucosal) dendritic cells in this process. Finally, we discuss how this information can be used to translate into the development of new therapies for allergic diseases based on, or supplemented with, IgA boosting strategies. PMID:23690823

  13. Risks of allergic sensitization and diseases associated with tap and recreational water findings in epidemiological studies among young schoolchildren

    OpenAIRE

    Voisin, Catherine

    2013-01-01

    Over the past three decades, most developed countries have witnessed a dramatic increase in the prevalence of allergic diseases, including eczema, asthma, allergic rhinitis or food allergies. More than a simple progression, the temporal pattern and the development of the “atopic march” are strongly influenced by genetic, environmental and lifestyle factors. These disorders may develop sequentially along an atopic pathway or there may be a causal link between eczema and these later-onset atopi...

  14. [The immunological mechanisms contributing to the clinical efficacy of allergen specific immunotherapy (SIT) in allergic diseases].

    Science.gov (United States)

    Asher, Ilan; Mahlab-Guri, Keren; Sthoeger, Zev

    2013-09-01

    The prevalence of allergic diseases has increased dramatically in the western world. In the last 2 decades, the frequency of asthma and allergic rhinitis has doubled. Allergen specific immunotherapy [SIT] has been used successfully for more than 100 years for the treatment of allergic disorders. Allergen SIT provides not only symptomatic relief, but it is potentially curative. The immunologic mechanisms of allergen SIT include all parts of the immune system. Regulatory T cells (TR1, Treg), have a major pivotal role in the success of immunotherapy. Along with the regulatory T cells, elevated suppressor cytokines (IL-10), suppression of TH2 cells, increasing titer of specific IgG4 and gradual decline in the number and function of basophils and mast cells also contribute to the success of the treatment (SIT). The above immune mechanisms are connected and related to each other acting at different times with the treatment with SIT. In this review we focused on the current knowledge and understanding of the different immune mechanisms which are involved in the success of SIT. PMID:24364093

  15. Subtropical grass pollen allergens are important for allergic respiratory diseases in subtropical regions

    Directory of Open Access Journals (Sweden)

    Davies Janet

    2012-03-01

    Full Text Available Abstract Background Grass pollen allergens are a major cause of allergic respiratory disease but traditionally prescribing practice for grass pollen allergen-specific immunotherapy has favoured pollen extracts of temperate grasses. Here we aim to compare allergy to subtropical and temperate grass pollens in patients with allergic rhinitis from a subtropical region of Australia. Methods Sensitization to pollen extracts of the subtropical Bahia grass (Paspalum notatum, Johnson grass (Sorghum halepense and Bermuda grass (Cynodon dactylon as well as the temperate Ryegrass (Lolium perenne were measured by skin prick in 233 subjects from Brisbane. Grass pollen-specific IgE reactivity was tested by ELISA and cross-inhibition ELISA. Results Patients with grass pollen allergy from a subtropical region showed higher skin prick diameters with subtropical Bahia grass and Bermuda grass pollens than with Johnson grass and Ryegrass pollens. IgE reactivity was higher with pollen of Bahia grass than Bermuda grass, Johnson grass and Ryegrass. Patients showed asymmetric cross-inhibition of IgE reactivity with subtropical grass pollens that was not blocked by temperate grass pollen allergens indicating the presence of species-specific IgE binding sites of subtropical grass pollen allergens that are not represented in temperate grass pollens. Conclusions Subtropical grass pollens are more important allergen sources than temperate grass pollens for patients from a subtropical region. Targeting allergen-specific immunotherapy to subtropical grass pollen allergens in patients with allergic rhinitis in subtropical regions could improve treatment efficacy thereby reducing the burden of allergic rhinitis and asthma.

  16. Allergen-specific immunotherapy: towards combination vaccines for allergic and infectious diseases.

    Science.gov (United States)

    Edlmayr, Johanna; Niespodziana, Katarzyna; Focke-Tejkl, Margarete; Linhart, Birgit; Valenta, Rudolf

    2011-01-01

    IgE-mediated allergies affect more than 25% of the population. Allergen-specific immunotherapy (SIT) is an antigen-specific and disease-modifying form of treatment. It is based on the therapeutic administration of the disease-causing allergens to allergic patients. However, the fact that only allergen extracts of insufficient quality are currently available and the possible occurrence of side effects during treatment limit the broad use of SIT and prophylactic vaccination is has not yet been performed. In the last 20 years the DNA sequences of the most common allergens have been isolated and the corresponding allergens have been produced as recombinant allergens. Based on the progress made in the field of allergen characterization it is possible to improve the quality and safety of allergy vaccines and to develop new, more effective strategies for a broad application of SIT and even for prophylactic treatment. Here we discuss the development of combination vaccines for allergy and infectious diseases. This approach is based on the selection of allergen-derived peptides with reduced IgE- and T cell reactivity in order to minimize IgE- and T cell-mediated side effects as well as the potential of the vaccine to induce allergic sensitization. These peptides are fused by recombinant technology onto a viral carrier protein to obtain a combination vaccine which induces protective immunity against allergy and viral infections. The application of such combination vaccines for therapy and prophylaxis of allergy and infectious diseases is discussed.

  17. Inhibition of NF-κB Expression and Allergen-induced Airway Inflammation in a Mouse Allergic Asthma Model by Andrographolide

    OpenAIRE

    Li, Jing; Luo, Li; Wang, Xiaoyun; Liao, Bin; Li, Guoping

    2009-01-01

    Andrographolide from traditional Chinese herbal medicines previously showed it possesses a strong anti-inflammatory activity. In present study, we investigated whether Andrographolide could inhibit allergen-induced airway inflammation and airways hyper-responsiveness and explored the mechanism of Andrographolide on allergen-induced airway inflammation and airways hyper-responsiveness. After sensitized and challenged by ovalbumin, the BALB/c mice were administered intraperitoneally with Androg...

  18. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Science.gov (United States)

    Tezuka, Toshifumi; Ogawa, Hirohisa; Azuma, Masahiko; Goto, Hisatsugu; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling. PMID:25785861

  19. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Directory of Open Access Journals (Sweden)

    Toshifumi Tezuka

    Full Text Available Plasminogen activator inhibitor (PAI-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp. IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.

  20. Within-breath respiratory impedance and airway obstruction in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Karla Kristine Dames da Silva

    2015-07-01

    Full Text Available OBJECTIVE: Recent work has suggested that within-breath respiratory impedance measurements performed using the forced oscillation technique may help to noninvasively evaluate respiratory mechanics. We investigated the influence of airway obstruction on the within-breath forced oscillation technique in smokers and chronic obstructive pulmonary disease patients and evaluated the contribution of this analysis to the diagnosis of chronic obstructive pulmonary disease. METHODS: Twenty healthy individuals and 20 smokers were assessed. The study also included 74 patients with stable chronic obstructive pulmonary disease. We evaluated the mean respiratory impedance (Zm as well as values for the inspiration (Zi and expiration cycles (Ze at the beginning of inspiration (Zbi and expiration (Zbe, respectively. The peak-to-peak impedance (Zpp=Zbe-Zbi and the respiratory cycle dependence (ΔZrs=Ze-Zi were also analyzed. The diagnostic utility was evaluated by investigating the sensitivity, the specificity and the area under the receiver operating characteristic curve. ClinicalTrials.gov: NCT01888705. RESULTS: Airway obstruction increased the within-breath respiratory impedance parameters that were significantly correlated with the spirometric indices of airway obstruction (R=−0.65, p90%. CONCLUSIONS: We conclude the following: (1 chronic obstructive pulmonary disease introduces higher respiratory cycle dependence, (2 this increase is proportional to airway obstruction, and (3 the within-breath forced oscillation technique may provide novel parameters that facilitate the diagnosis of respiratory abnormalities in chronic obstructive pulmonary disease.

  1. Nutritional approaches for the primary prevention of allergic disease: An update.

    Science.gov (United States)

    Rueter, Kristina; Prescott, Susan L; Palmer, Debra J

    2015-10-01

    The dramatic rise in early childhood allergic diseases indicates the specific vulnerability of the immune system to early life environmental changes. Dietary changes are at the centre of lifestyle changes that underpin many modern inflammatory and metabolic diseases, and therefore are an essential element of prevention strategies. Although modern dietary changes are complex and involve changing patterns of many nutrients, there is also an interest in the early life effects of specific nutrients including polyunsaturated fatty acids, oligosaccharides (soluble fibre), antioxidants, folate and other vitamins that have documented effects on immune function as well as metabolism. A better understanding of nutritional programming of immune health, nutritional epigenetics and the biological processes sensitive to nutritional exposures in early life may lead to dietary strategies that provide more tolerogenic conditions during early immune programming and reduce the burden of many inflammatory diseases, not just allergy. PMID:26135523

  2. Genetics Home Reference: allergic asthma

    Science.gov (United States)

    ... another allergic disorder, such as hay fever (allergic rhinitis) or food allergies. Asthma is sometimes part of ... the Symptoms of an Allergy? Centers for Disease Control and Prevention Disease InfoSearch: Asthma Johns Hopkins Medicine: ...

  3. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway.

    Science.gov (United States)

    Shalaby, Karim H; Allard-Coutu, Alexandra; O'Sullivan, Michael J; Nakada, Emily; Qureshi, Salman T; Day, Brian J; Martin, James G

    2013-07-15

    Oxidative stress in allergic asthma may result from oxidase activity or proinflammatory molecules in pollens. Signaling via TLR4 and its adaptor Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF) has been implicated in reactive oxygen species-mediated acute lung injury and in Th2 immune responses. We investigated the contributions of oxidative stress and TLR4/TRIF signaling to experimental asthma induced by birch pollen exposure exclusively via the airways. Mice were exposed to native or heat-inactivated white birch pollen extract (BPEx) intratracheally and injected with the antioxidants, N-acetyl-L-cysteine or dimethylthiourea, prior to sensitization, challenge, or all allergen exposures, to assess the role of oxidative stress and pollen-intrinsic NADPH oxidase activity in allergic sensitization, inflammation, and airway hyperresponsiveness (AHR). Additionally, TLR4 signaling was antagonized concomitantly with allergen exposure, or the development of allergic airway disease was evaluated in TLR4 or TRIF knockout mice. N-acetyl-L-cysteine inhibited BPEx-induced eosinophilic airway inflammation and AHR except when given exclusively during sensitization, whereas dimethylthiourea was inhibitory even when administered with the sensitization alone. Heat inactivation of BPEx had no effect on the development of allergic airway disease. Oxidative stress-mediated AHR was also TLR4 and TRIF independent; however, TLR4 deficiency decreased, whereas TRIF deficiency increased BPEx-induced airway inflammation. In conclusion, oxidative stress plays a significant role in allergic sensitization to pollen via the airway mucosa, but the pollen-intrinsic NADPH oxidase activity and TLR4 or TRIF signaling are unnecessary for the induction of allergic airway disease and AHR. Pollen extract does, however, activate TLR4, thereby enhancing airway inflammation, which is restrained by the TRIF-dependent pathway.

  4. FEV 6 as screening tool in spirometric diagnosis of obstructive airway disease

    Directory of Open Access Journals (Sweden)

    Malolan P

    2010-01-01

    Full Text Available Context: The use of spirometry is currently limited to the diagnosis of obstructive airway disease for tertiary centers mainly because of the unmet need for technical expertise and funding. Use in primary care asks for a simpler and cost-effective screening tool for obstructive airway disease. Aim: To estimate the efficacy of FEV 6 against the current standard of FVC in the spirometric diagnosis of obstructive airway disease. Setting and Design: The Pulmonary Function Laboratory of a tertiary care hospital in Coastal South India. It was a descriptive study. Materials and Methods: We analyzed 150 serial patients on ATS standardized spirometers. The patients were classified into normal subjects and those with airway obstruction, further categorized as mild, moderate and severe and those with mixed defect. Those with obstruction were also classified as having reversible and irreversible defects. Statistical Analysis: Data was analyzed using SPSS Software (v.11.5, statistical test ANOVA and Pearson correlation was done and P less than 0.05 considered statistically significant. Results: FVC and FEV 6 showed a linear correlation in all subjects. The difference in means was statistically significant in all subjects. The sensitivity and specificity of FEV 1 /FEV 6 in comparison to FEV 1 /FVC were both found to be 100%. Conclusion: FEV 6 is an excellent screening tool in the diagnosis of airway obstruction but, there is a necessity for further research to confirm our findings. There is also a need for reference values in an Indian setting to find out the efficiency of this new parameter. Our sample size is relatively small and comprises of a very high proportion (70% of subjects with airway obstruction and so our results may not be applicable for use in general population.

  5. Association between airway obstruction and peripheral arterial stiffness in elderly patients with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    付志方

    2014-01-01

    Objective To evaluate the relationship between se-verity of airway obstruction and peripheral arterial stiffness in patients with chronic obstructive pulmonary disease(COPD).Methods 81 COPD patients[aged(78.32±6.98)yrs,73 males,8 females]from Jan2008 to Oct 2012 were enrolled in Geriatric Department

  6. Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease

    OpenAIRE

    Molyneaux, Philip L; Patrick Mallia; Cox, Michael J.; Joseph Footitt; Willis-Owen, Saffron A.G.; Daniel Homola; Maria-Belen Trujillo-Torralbo; Sarah Elkin; Onn Min Kon; Cookson, William O. C.; Moffatt, Miriam F.; Johnston, Sebastian L.

    2013-01-01

    Rationale: Rhinovirus infection is followed by significantly increased frequencies of positive, potentially pathogenic sputum cultures in chronic obstructive pulmonary disease (COPD). However, it remains unclear whether these represent de novo infections or an increased load of organisms from the complex microbial communities (microbiome) in the lower airways.

  7. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells.

    Science.gov (United States)

    Akdis, Cezmi A; Akdis, Mübeccel

    2009-04-01

    Various populations of regulatory T (Treg) cells have been shown to play a central role in the maintenance of peripheral homeostasis and the establishment of controlled immune responses. Their identification as key regulators of immunologic processes in peripheral tolerance to allergens has opened an important era in the prevention and treatment of allergic diseases. Both naturally occurring CD4+CD25+ Treg cells and inducible populations of allergen-specific, IL-10-secreting Treg type 1 (T(R)1) cells inhibit allergen-specific effector cells in experimental models. Skewing of allergen-specific effector T cells to a regulatory phenotype appears to be a key event in the development of healthy immune response to allergens and successful outcome in allergen-specific immunotherapy. Forkhead box protein 3-positive CD4+CD25+ Treg cells and T(R)1 cells contribute to the control of allergen-specific immune responses in several major ways, which can be summarized as suppression of dendritic cells that support the generation of effector T cells; suppression of effector T(H)1, T(H)2, and T(H)17 cells; suppression of allergen-specific IgE and induction of IgG4; suppression of mast cells, basophils, and eosinophils; interaction with resident tissue cells and remodeling; and suppression of effector T-cell migration to tissues. Current strategies for drug development and allergen-specific immunotherapy exploit these observations, with the potential for preventive therapies and cure for allergic diseases. PMID:19348912

  8. The involvement of glycosaminoglycans in airway disease associated with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    Individuals with cystic fibrosis (CF) present with severe airway destruction and extensive bronchiectasis. It has been assumed that these structural airway changes have occurred secondary to infection and inflammation, but recent studies suggest that glycosaminoglycan (GAG) remodelling may be an important independent parallel process. Evidence is accumulating that not only the concentration, but also sulphation of GAGs is markedly increased in CF bronchial cells and tissues. Increased expression of GAGs and, in particular, heparan sulphate, has been linked to a sustained inflammatory response and neutrophil recruitment to the CF airways. This present review discusses the biological role of GAGs in the lung, as well as their involvement in CF respiratory disease, and their potential as therapeutic targets.

  9. Control of allergic rhinitis and asthma test – a formal approach to the development of a measuring tool

    OpenAIRE

    Fonseca Joao A; Vaz Marianela; Costa-Pereira Altamiro; Bugalho-Almeida António; Morais-Almeida Mario; Azevedo Luis F; Cruz-Correia Ricardo; Martins Sonia V; Nogueira-Silva Luis

    2009-01-01

    Abstract Background The concurrent management of allergic rhinitis and asthma (ARA) has been recommended by Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines. However, a tool capable of assessing simultaneously the control of upper and lower airways diseases is lacking. Aim To describe the studies conducted to design the control of ARA test (CARAT) questionnaire. Methods We performed a literature review to generate a list of potentially important items for the assessment of control...

  10. Environmental risk factors and allergic bronchial asthma.

    Science.gov (United States)

    D'Amato, G; Liccardi, G; D'Amato, M; Holgate, S

    2005-09-01

    The prevalence of allergic respiratory diseases such as bronchial asthma has increased in recent years, especially in industrialized countries. A change in the genetic predisposition is an unlikely cause of the increase in allergic diseases because genetic changes in a population require several generations. Consequently, this increase may be explained by changes in environmental factors, including indoor and outdoor air pollution. Over the past two decades, there has been increasing interest in studies of air pollution and its effects on human health. Although the role played by outdoor pollutants in allergic sensitization of the airways has yet to be clarified, a body of evidence suggests that urbanization, with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases observed in most industrialized countries, and there is considerable evidence that asthmatic persons are at increased risk of developing asthma exacerbations with exposure to ozone, nitrogen dioxide, sulphur dioxide and inhalable particulate matter. However, it is not easy to evaluate the impact of air pollution on the timing of asthma exacerbations and on the prevalence of asthma in general. As concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory allergy and bronchial asthma. Pollinosis is frequently used to study the interrelationship between air pollution and respiratory allergy. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. By attaching to the surface of pollen grains and of plant-derived particles of paucimicronic size, pollutants could modify not only the morphology of these antigen-carrying agents but also their allergenic

  11. Relationship between airway inflammation and remodeling in patients with asthma and chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Górska K

    2009-12-01

    Full Text Available Abstract Despite a number of important differences in the pathogenesis, course and prognosis of asthma and chronic obstructive pulmonary disease (COPD, these two entities also have common features with airway inflammation being one of them. Airway remodeling is a characteristic feature of asthma, but data on the bronchial wall thickening in COPD patients are still scarce. Aim To assess the relation between the inflammatory cell count in the bronchoalveolar lavage fluid (BALF and thickness of bronchial walls assessed by high resolution computed tomography (HRCT in asthma and COPD patients. Material and methods The study was conducted in 9 patients with mild-to-moderate asthma (M/F 4/5, mean age 35 ± 10 years and 11 patients with mild-to-moderate COPD (M/F 7/4, mean age 57 ± 9 years. In all subjects lung function tests and HRCT scanning of the chest were performed. External (D and internal (L diameters of the airways were assessed at five selected lung levels. The lumen area (AL, wall area (WA, wall thickness (WT and bronchial wall thickness (WT/D ratio were calculated. Eight patients with asthma and 8 patients with COPD underwent fiberoptic bronchoscopy and bronchoalveolar lavage (BAL. Total and differential cell counts were assessed in the BAL fluid. Results Mean FEV1% pred was 80 ± 19%, and 73 ± 20% in asthma and COPD patients, respectively (NS. No significant differences in the total and differential cell counts in BALF were found in patients with asthma and COPD. There were no significant differences in the airway diameter or airway wall thickness. The mean inner airway diameter was 1.4 ± 0.3 and 1.2 ± 0.3 mm and the mean lumen area was 1.8 ± 0.7 and 1.6 ± 0.7 mm2 in asthma and COPD, respectively (NS. Negative correlations between the eosinophil count in BALF and inner airway diameter (r = -0.7, P Conclusions In mild-to-moderate asthma and COPD the airway diameter and thickness are similar. In asthmatics, the airway diameter might be

  12. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    OpenAIRE

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a...

  13. Utility of radionuclide studies in patients with pulmonary vascular and airways diseases

    International Nuclear Information System (INIS)

    Radionuclide studies aid the diagnosis of pulmonary diseases by providing information about regional pulmonary ventilation, perfusion and ventilation-perfusion (V-P) relationships which cannot be obtained by other methods. Ventilation-perfusion lung studies are used to evaluate regional lung function in patients prior to pulmonary surgery, to detect obstructive airways disease and to aid management of patients with suspected pulmonary embolism. The following sections will discuss each of these subjects in detail. (orig.)

  14. Screening older patients for obstructive airways disease in a semi-rural practice

    OpenAIRE

    Dickinson, J.; Meaker, M; Searle, M.; Ratcliffe, G

    1999-01-01

    BACKGROUND—Obstructive airways disease in older patients is reported to be not only common, but frequently overlooked and untreated by general practitioners. This study examines the value of screening elderly patients in a large semi-rural general practice for potentially treatable asthma and chronic obstructive pulmonary disease (COPD).
METHODS—A random sample of 353 patients aged 60-75 years attended a nurse run screening clinic for pulmonary function testing, serial pe...

  15. Within-breath respiratory impedance and airway obstruction in patients with chronic obstructive pulmonary disease

    OpenAIRE

    Karla Kristine Dames da Silva; Alvaro Camilo Dias Faria; Agnaldo José Lopes; Pedro Lopes de Melo

    2015-01-01

    OBJECTIVE: Recent work has suggested that within-breath respiratory impedance measurements performed using the forced oscillation technique may help to noninvasively evaluate respiratory mechanics. We investigated the influence of airway obstruction on the within-breath forced oscillation technique in smokers and chronic obstructive pulmonary disease patients and evaluated the contribution of this analysis to the diagnosis of chronic obstructive pulmonary disease. METHODS: Twenty healthy indi...

  16. Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice.

    Science.gov (United States)

    McCann, Jessica R; Mason, Stanley N; Auten, Richard L; St Geme, Joseph W; Seed, Patrick C

    2016-07-01

    Accumulating evidence suggests a connection between asthma development and colonization with nontypeable Haemophilus influenzae (NTHi). Specifically, nasopharyngeal colonization of human infants with NTHi within 4 weeks of birth is associated with an increased risk of asthma development later in childhood. Monocytes derived from these infants have aberrant inflammatory responses to common upper respiratory bacterial antigens compared to those of cells derived from infants who were not colonized and do not go on to develop asthma symptoms in childhood. In this study, we hypothesized that early-life colonization with NTHi promotes immune system reprogramming and the development of atypical inflammatory responses. To address this hypothesis in a highly controlled model, we tested whether colonization of mice with NTHi on day of life 3 induced or exacerbated juvenile airway disease using an ovalbumin (OVA) allergy model of asthma. We found that animals that were colonized on day of life 3 and subjected to induction of allergy had exacerbated airway disease as juveniles, in which exacerbated airway disease was defined as increased cellular infiltration into the lung, increased amounts of inflammatory cytokines interleukin-5 (IL-5) and IL-13 in lung lavage fluid, decreased regulatory T cell-associated FOXP3 gene expression, and increased mucus production. We also found that colonization with NTHi amplified airway resistance in response to increasing doses of a bronchoconstrictor following OVA immunization and challenge. Together, the murine model provides evidence for early-life immune programming that precedes the development of juvenile airway disease and corroborates observations that have been made in human children. PMID:27113355

  17. Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice.

    Science.gov (United States)

    McCann, Jessica R; Mason, Stanley N; Auten, Richard L; St Geme, Joseph W; Seed, Patrick C

    2016-07-01

    Accumulating evidence suggests a connection between asthma development and colonization with nontypeable Haemophilus influenzae (NTHi). Specifically, nasopharyngeal colonization of human infants with NTHi within 4 weeks of birth is associated with an increased risk of asthma development later in childhood. Monocytes derived from these infants have aberrant inflammatory responses to common upper respiratory bacterial antigens compared to those of cells derived from infants who were not colonized and do not go on to develop asthma symptoms in childhood. In this study, we hypothesized that early-life colonization with NTHi promotes immune system reprogramming and the development of atypical inflammatory responses. To address this hypothesis in a highly controlled model, we tested whether colonization of mice with NTHi on day of life 3 induced or exacerbated juvenile airway disease using an ovalbumin (OVA) allergy model of asthma. We found that animals that were colonized on day of life 3 and subjected to induction of allergy had exacerbated airway disease as juveniles, in which exacerbated airway disease was defined as increased cellular infiltration into the lung, increased amounts of inflammatory cytokines interleukin-5 (IL-5) and IL-13 in lung lavage fluid, decreased regulatory T cell-associated FOXP3 gene expression, and increased mucus production. We also found that colonization with NTHi amplified airway resistance in response to increasing doses of a bronchoconstrictor following OVA immunization and challenge. Together, the murine model provides evidence for early-life immune programming that precedes the development of juvenile airway disease and corroborates observations that have been made in human children.

  18. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells.

    Science.gov (United States)

    Park, Soojin; Baek, Hyunjung; Jung, Kyung-Hwa; Lee, Gihyun; Lee, Hyeonhoon; Kang, Geun-Hyung; Lee, Gyeseok; Bae, Hyunsu

    2015-12-01

    Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA-induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA-challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206-dependence of bvPLA2-treated suppression of airway inflammation was evaluated in OVA-challenged CD206(-/-) mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA-challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2-treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg-depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2-mediated immune tolerance in OVA-induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2-treated OVA-induced mice but not in bvPLA2-treated OVA-induced CD206(-/-) mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA-induced asthma model. PMID:26734460

  19. Genome-Wide Association Study Identification of Novel Loci Associated with Airway Responsiveness in Chronic Obstructive Pulmonary Disease

    NARCIS (Netherlands)

    Hansel, Nadia N.; Pare, Peter D.; Rafaels, Nicholas; Sin, Don D.; Sandford, Andrew; Daley, Denise; Vergara, Candelaria; Huang, Lili; Elliott, W. Mark; Pascoe, Chris D.; Arsenault, Bryna A.; Postma, Dirkje S.; Boezen, Marieke H.; Bosse, Yohan; van den Berge, Maarten; Hiemstra, Pieter S.; Cho, Michael H.; Litonjua, Augusto A.; Sparrow, David; Ober, Carole; Wise, Robert A.; Connett, John; Neptune, Enid R.; Beaty, Terri H.; Ruczinski, Ingo; Mathias, Rasika A.; Barnes, Kathleen C.

    2015-01-01

    Increased airway responsiveness is linked to lung function decline and mortality in subjects with chronic obstructive pulmonary disease (COPD); however, the genetic contribution to airway responsiveness remains largely unknown. A genome-wide association study (GWAS) was performed using the Illumina

  20. Airway hyperresponsiveness in chronic obstructive pulmonary disease : A marker of asthma-chronic obstructive pulmonary disease overlap syndrome?

    NARCIS (Netherlands)

    Tkacova, Ruzena; Dai, Darlene L Y; Vonk, Judith M; Leung, Janice M; Hiemstra, Pieter S; van den Berge, Maarten; Kunz, Lisette; Hollander, Zsuzsanna; Tashkin, Donald; Wise, Robert; Connett, John; Ng, Raymond; McManus, Bruce; Paul Man, S F; Postma, Dirkje S; Sin, Don D

    2016-01-01

    BACKGROUND: The impact of airway hyperreactivity (AHR) on respiratory mortality and systemic inflammation among patients with chronic obstructive pulmonary disease (COPD) is largely unknown. We used data from 2 large studies to determine the relationship between AHR and FEV1 decline, respiratory mor

  1. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma

    OpenAIRE

    Krishnamoorthy, Nandini; Khare, Anupriya; Oriss, Timothy B.; Raundhal, Mahesh; Morse, Christina; Yarlagadda, Manohar; Wenzel, Sally E.; Moore, Martin L.; Peebles, R. Stokes; Ray, Anuradha; Ray, Prabir

    2012-01-01

    Immune tolerance is instituted early in life, during which time regulatory T (Treg) cells have an important role. Recurrent infections with respiratory syncytial virus (RSV) in early life increase the risk for asthma in adult life. Repeated infection of infant mice tolerized to ovalbumin (OVA) through their mother’s milk with RSV induced allergic airway disease in response to OVA sensitization and challenge, including airway inflammation, hyper-reactivity and higher OVA-specific IgE, as compa...

  2. Pediatric allergic conjunctivitis and allergic rhinitis

    Institute of Scientific and Technical Information of China (English)

    Tong Qiao; Yizhen Hu; Zhinan Wang

    2008-01-01

    Objective: To assess the relationship between allergic conjunctivitis(AC) and allergic rhinitis(AR) in pediatric ophthalmology and E.N.T outpatient clinic. Methods:Eight hundred and ninety two patients were enrolled in survey during Mar. 2005~Jan. 2007, 407 allergic conjunctivitis cases were placed in the ophthalmology clinic group and 485 allergic rhinitis cases were from the E.N.T clinic.The comorbid disorders, histories, symptoms, signs of patients were recorded. Type 1 allergy was tested in 479 cases by a specific IgE antibody blood test. Eosinophils were detected in superficial conjunctival scrapings of the superior tarsal conjunctiva and mucosa surface scrapings of middle nasal meatus in 88 cases with both diseases. Results:302(74%), 374(92%), 116(29%) in 407 cases with allergic conjunctivitis had concomitant eczema, rhinitis and asthma, respectively; 334(69%), 430(89%), 145(30%) in 485 cases with allergic rhinitis had concomitant eczema, allergic conjunctivitis and asthma, respectively. The prevalence of allergic conjunctivitis concomitant allergic rhinitis and allergic rhinitis concomitant allergic conjunctivitis had no significant difference(x2=2.6, P>0.05). The prevalence of allergic conjunctivitis and allergic rhinitis concomitant eczema and asthma also had no significant difference (x2=3.08; x2=0.21, P>0.05). The degree of severity of two kinds of disease symptoms is not parallel, in the patients with seasonal allergic conjuctivitis(SAC) and perennial allergic conjunctivitis(PAC), the clinical signs of AR were always severer(x2=258.2, P<0.05)than those of AC. However, the results coincided with the cases with vernal keratoconjuctivitis(VKC)(x2=66.5, P<0.05); Eosinophils were revealed in 50(57%) conjunctival scrapings and nasal mucosa scrapings(x2=1.5, P>0.05), 47(53%) cases had positive results in both scrapings. The main aeroallergens were house dust mites, house dust and fungi, and the main food-allergens were fish, crab and shrimp

  3. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    OpenAIRE

    Girolamo Pelaia; Alessandro Vatrella; Maria Teresa Busceti; Luca Gallelli; Cecilia Calabrese; Rosa Terracciano; Rosario Maselli

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes un...

  4. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma.

    Science.gov (United States)

    Van der Velden, Joanne; Harkness, Louise M; Barker, Donna M; Barcham, Garry J; Ugalde, Cathryn L; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A; Tokanovic, Ana; Burgess, Janette K; Snibson, Kenneth J

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10(+)-20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  5. High prevalence of sensitization to aeroallergens in children 4 yrs of age or younger with symptoms of allergic disease

    NARCIS (Netherlands)

    de Jong, Adriana Baatenburg; Dikkeschei, Lambert D.; Brand, Paul L. P.

    2009-01-01

    The assumption that sensitization to aeroallergens is rare in preschool children is based on population studies in which most subjects have little or no symptoms of atopic disease. We assessed the prevalence of atopic sensitization in children 0 to 4 yr of age presenting with symptoms of allergic di

  6. Mechanisms of pollution-induced airway disease: in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Peden, D.B. [Univ. of North Carolina School of Medicine, Center for Environmental Medicine and Lung Biology, North Carolina (United States)

    1997-12-31

    Several studies have investigated the effects of ozone, sulphur dioxide (SO{sub 2}), and nitrogen dioxide (NO{sub 2}) on lung function in normal and asthmatic subjects. Decreased lung function has been observed with ozone levels as low as 0.15 ppm - this effect is concentration dependent and is exacerbated by exercise. A number of lines of evidence suggest that the effect on lung function is mediated, at lest in part, by neural mechanisms. In both normals and asthmatics, ozone has been shown to induce neutrophilic inflammation, with increased levels of several inflammatory mediators, including prostaglandin E{sub 2}. However, in normal subjects, none of the markers of inflammation correlate with changes in lung function. The lung function changes in asthmatics may be associated with inflammatory effects; alternatively, ozone may prime the airways for an increased response to subsequently inhaled allergen. Indeed, an influx of both polymorphonucleocytes and eosinophils has been observed in asthmatic patients after ozone exposure. It has been suggested that the effect of ozone on classic allergen-induced bronchoconstriction may be more significant than any direct effect of this pollutant in asthmatics. SO{sub 2} does not appear to affect lung function in normal subjects, but may induce bronchoconstriction in asthmatics. Nasal breathing, which is often impaired in asthmatics, reduces the pulmonary effects of SO{sub 2}, since this water-soluble gas is absorbed by the nasal mucosa. NO{sub 2} may also influence lung function in asthmatics, but further research is warranted. SO{sub 2} and NO{sub 2} alone do not seem to have a priming effect in asthmatics, but a combination of these two gases has resulted in a heightened sensitivity to subsequently inhaled allergen. (au)

  7. [Choice of an antihistamine administration route in the treatment of allergic diseases].

    Science.gov (United States)

    Luss, L V

    2016-01-01

    Allergic diseases (AD) are an interdisciplinary problem in practical health care and characterized by high prevalence, severity, and huge financial costs of their treatment, prevention, and rehabilitation in patients. In this connection, control of allergy symptoms attracts the meticulous attention of physicians of all specialties. The efficiency of pharmacotherapy in clinical practice frequently depends not only on what medication, but also what mode of its delivery (administration) is used. Clinicians are well aware of the fact that oral administration of some drugs, antihistamines in particular, may be lowly effective or ineffective and their parenteral route gives rise to their sufficient clinical effect. This communication presents for general practitioners a pathogenetic rationale for prescribing histamines and indications for their parenteral administration in AD. PMID:27030338

  8. The gut microbiota and its role in the development of allergic disease: a wider perspective.

    Science.gov (United States)

    West, C E; Jenmalm, M C; Prescott, S L

    2015-01-01

    The gut microbiota are critical in the homoeostasis of multiple interconnected host metabolic and immune networks. If early microbial colonization is delayed, the gut-associated lymphoid tissues (GALT) fail to develop, leading to persistent immune dysregulation in mice. Microbial colonization has also been proposed as a major driver for the normal age-related maturation of both Th1 and T regulatory (Treg) pathways that appear important in suppressing early propensity for Th2 allergic responses. There is emerging evidence that resident symbionts induce tolerogenic gut-associated Treg cells and dendritic cells that ensure the preferential growth of symbionts; keeping pathogenic strains in check and constraining proinflammatory Th1, Th2, and Th17 clones. Some effects of symbionts are mediated by short-chain fatty acids, which play a critical role in mucosal integrity and local and systemic metabolic function and stimulate the regulatory immune responses. The homoeostatic IL-10/TGF-β dominated tolerogenic response within the GALT also signals the production of secretory IgA, which have a regulating role in mucosal integrity. Contrary to the 'sterile womb' paradigm, recent studies suggest that maternal microbial transfer to the offspring begins during pregnancy, providing a pioneer microbiome. It is likely that appropriate microbial stimulation both pre- and postnatally is required for optimal Th1 and Treg development to avoid the pathophysiological processes leading to allergy. Disturbed gut colonization patterns have been associated with allergic disease, but whether microbial variation is the cause or effect of these diseases is still under investigation. We are far from understanding what constitutes a 'healthy gut microbiome' that promotes tolerance. This remains a major limitation and might explain some of the inconsistency in human intervention studies with prebiotics and probiotics. Multidisciplinary integrative approaches with researchers working in networks

  9. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2009.

    Science.gov (United States)

    Sicherer, Scott H; Leung, Donald Y M

    2010-01-01

    This review highlights some of the research advances in anaphylaxis and hypersensitivity reactions to foods, drugs, and insects, as well as advances in allergic skin disease that were reported in the Journal in 2009. Among key epidemiologic observations, several westernized countries report that more than 1% of children have peanut allergy, and there is some evidence that environmental exposure to peanut is a risk factor. The role of regulatory T cells, complement, platelet-activating factor, and effector cells in the development and expression of food allergy were explored in several murine models and human studies. Delayed anaphylaxis to mammalian meats appears to be related to IgE binding to the carbohydrate moiety galactose-alpha-1,3-galactose, which also has implications for hypersensitivity to murine mAb therapeutics containing this oligosaccharide. Oral immunotherapy studies continue to show promise for the treatment of food allergy, but determining whether the treatment causes tolerance (cure) or temporary desensitization remains to be explored. Increased baseline serum tryptase levels might inform the risk of venom anaphylaxis and might indicate a risk for mast cell disorders in persons who have experienced such episodes. Reduced structural and immune barrier function contribute to local and systemic allergen sensitization in patients with atopic dermatitis, as well as increased propensity of skin infections in these patients. The use of increased doses of nonsedating antihistamines and potential usefulness of omalizumab for chronic urticaria was highlighted. These exciting advances reported in the Journal can improve patient care today and provide insights on how we can improve the diagnosis and treatment of these allergic diseases in the future. PMID:20109740

  10. Selective targeting of TGF-β activation to treat fibroinflammatory airway disease.

    Science.gov (United States)

    Minagawa, Shunsuke; Lou, Jianlong; Seed, Robert I; Cormier, Anthony; Wu, Shenping; Cheng, Yifan; Murray, Lynne; Tsui, Ping; Connor, Jane; Herbst, Ronald; Govaerts, Cedric; Barker, Tyren; Cambier, Stephanie; Yanagisawa, Haruhiko; Goodsell, Amanda; Hashimoto, Mitsuo; Brand, Oliver J; Cheng, Ran; Ma, Royce; McKnelly, Kate J; Wen, Weihua; Hill, Arthur; Jablons, David; Wolters, Paul; Kitamura, Hideya; Araya, Jun; Barczak, Andrea J; Erle, David J; Reichardt, Louis F; Marks, James D; Baron, Jody L; Nishimura, Stephen L

    2014-06-18

    Airway remodeling, caused by inflammation and fibrosis, is a major component of chronic obstructive pulmonary disease (COPD) and currently has no effective treatment. Transforming growth factor-β (TGF-β) has been widely implicated in the pathogenesis of airway remodeling in COPD. TGF-β is expressed in a latent form that requires activation. The integrin αvβ8 (encoded by the itgb8 gene) is a receptor for latent TGF-β and is essential for its activation. Expression of integrin αvβ8 is increased in airway fibroblasts in COPD and thus is an attractive therapeutic target for the treatment of airway remodeling in COPD. We demonstrate that an engineered optimized antibody to human αvβ8 (B5) inhibited TGF-β activation in transgenic mice expressing only human and not mouse ITGB8. The B5 engineered antibody blocked fibroinflammatory responses induced by tobacco smoke, cytokines, and allergens by inhibiting TGF-β activation. To clarify the mechanism of action of B5, we used hydrodynamic, mutational, and electron microscopic methods to demonstrate that αvβ8 predominantly adopts a constitutively active, extended-closed headpiece conformation. Epitope mapping and functional characterization of B5 revealed an allosteric mechanism of action due to locking-in of a low-affinity αvβ8 conformation. Collectively, these data demonstrate a new model for integrin function and present a strategy to selectively target the TGF-β pathway to treat fibroinflammatory airway diseases. PMID:24944194

  11. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Directory of Open Access Journals (Sweden)

    Abigail Morris

    Full Text Available Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/- mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  12. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Science.gov (United States)

    Morris, Abigail; Wang, Bo; Waern, Ida; Venkatasamy, Radhakrishnan; Page, Clive; Schmidt, Eric P; Wernersson, Sara; Li, Jin-Ping; Spina, Domenico

    2015-01-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  13. Inhibition of NF-κB Expression and Allergen-induced Airway Inflammation in a Mouse Allergic Asthma Model by Andrographolide

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Li Luo; Xiaoyun Wang; Bin Liao; Guoping Li

    2009-01-01

    Andrographolide from traditional Chinese herbal medicines previously showed it possesses a strong anti-inflammatory activity. In present study, we investigated whether Andrographolide could inhibit allergen-induced airway inflammation and airways hyper-responsiveness and explored the mechanism of Andrographolide on allergen-induced airway inflammation and airways hyper-responsiveness. After sensitized and challenged by ovalbumin, the BALB/c mice were administered intraperitoneally with Andrographolide. Hyper-responsiveness was recorded. The lung tissues were assessed by histological examinations. NF-κB in lung was determined by immunofluorescence staining and Western blotting. Treatment of mice with Androqrapholide displayed lower Penh in response to asthma group mice. After treatment with Andrographolide, the extent of inflammation and cellular infltrafion in the airway were reduced. Andrographolide interrupted NF-κB to express in cell nucleus. The level of NF-κB expression was inhibited by Andrographolide. The data indicate that Andrographolide from traditional Chinese herbal medicines could inhibit extensive infiltration of inflammatory cells in lung and decrease airway hyperreactivity. Andrographolide could inhibit NF-κB expression in lung and suppress NF-κB expressed in the nucleus of airway epithelial cells. Cellular & Molecular Immunology. 2009;6(5):381-385.

  14. The effects of emphysema on airway disease: Correlations between multi-detector CT and pulmonary function tests in smokers

    Energy Technology Data Exchange (ETDEWEB)

    Yahaba, Misuzu, E-mail: mis_misuzu@yahoo.co.jp; Kawata, Naoko, E-mail: chumito_03@yahoo.co.jp; Iesato, Ken, E-mail: iesato_k@yahoo.co.jp; Matsuura, Yukiko, E-mail: matsuyuki_future@yahoo.co.jp; Sugiura, Toshihiko, E-mail: sugiura@js3.so-net.ne.jp; Kasai, Hajime, E-mail: daikasai6075@yahoo.co.jp; Sakurai, Yoriko, E-mail: yoliri@nifty.com; Terada, Jiro, E-mail: jirotera@chiba-u.jp; Sakao, Seiichiro, E-mail: sakao@faculty.chiba-u.jp; Tada, Yuji, E-mail: ytada@faculty.chiba-u.jp; Tanabe, Nobuhiro, E-mail: ntanabe@faculty.chiba-u.jp; Tatsumi, Koichiro, E-mail: tatsumi@faculty.chiba-u.jp

    2014-06-15

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation caused by emphysema and small airway narrowing. Quantitative evaluation of airway dimensions by multi-detector computed tomography (MDCT) has revealed a correlation between airway dimension and airflow limitation. However, the effect of emphysema on this correlation is unclear. Objective: The goal of this study was to determine whether emphysematous changes alter the relationships between airflow limitation and airway dimensions as measured by inspiratory and expiratory MDCT. Methods: Ninety-one subjects underwent inspiratory and expiratory MDCT. Images were evaluated for mean airway luminal area (Ai), wall area percentage (WA%) from the third to the fifth generation of three bronchi (B1, B5, B8) in the right lung, and low attenuation volume percent (LAV%). Correlations between each airway index and airflow limitation were determined for each patient and compared between patients with and without evidence of emphysema. Results: In patients without emphysema, Ai and WA% from both the inspiratory and expiratory scans were significantly correlated with FEV{sub 1.} No correlation was detected in patients with emphysema. In addition, emphysematous COPD patients with GOLD stage 1 or 2 disease had significantly lower changes in B8 Ai than non-emphysematous patients. Conclusions: A significant correlation exists between airway parameters and FEV{sub 1} in patients without emphysema. Emphysema may influence airway dimensions even in patients with mild to moderate COPD.

  15. The effects of emphysema on airway disease: Correlations between multi-detector CT and pulmonary function tests in smokers

    International Nuclear Information System (INIS)

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation caused by emphysema and small airway narrowing. Quantitative evaluation of airway dimensions by multi-detector computed tomography (MDCT) has revealed a correlation between airway dimension and airflow limitation. However, the effect of emphysema on this correlation is unclear. Objective: The goal of this study was to determine whether emphysematous changes alter the relationships between airflow limitation and airway dimensions as measured by inspiratory and expiratory MDCT. Methods: Ninety-one subjects underwent inspiratory and expiratory MDCT. Images were evaluated for mean airway luminal area (Ai), wall area percentage (WA%) from the third to the fifth generation of three bronchi (B1, B5, B8) in the right lung, and low attenuation volume percent (LAV%). Correlations between each airway index and airflow limitation were determined for each patient and compared between patients with and without evidence of emphysema. Results: In patients without emphysema, Ai and WA% from both the inspiratory and expiratory scans were significantly correlated with FEV1. No correlation was detected in patients with emphysema. In addition, emphysematous COPD patients with GOLD stage 1 or 2 disease had significantly lower changes in B8 Ai than non-emphysematous patients. Conclusions: A significant correlation exists between airway parameters and FEV1 in patients without emphysema. Emphysema may influence airway dimensions even in patients with mild to moderate COPD

  16. [The role of Toll-like receptors in the pathogenesis of allergic diseases - where is the truth?].

    Science.gov (United States)

    Dębińska, Anna; Boznański, Andrzej

    2014-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors crucial for the innate and adaptive immune response to pathogen-associated molecular patterns (PAMPs). TLR stimulation via microbial products activates antigen-presenting cells, influences the function of T regulatory cells (Treg), determines the Th1/Th2 balance and Th17 cell differentiation, and controls cytokine production in mast cells and activation of eosinophils. The role of TLR receptors in pathogenesis of allergic diseases results from the biological function that they play in activation and regulation of the immune response. However, the exact role still remains a controversial area. Whereas numerous epidemiological studies mainly indicate a protective effect of microbial exposure, experiments show that innate immune stimulation via TLRs may be involved in both development of and protection against allergic diseases. Timing, dose, site and intensity of exposure to environmental factors and host genetic predisposition are clearly crucial to understanding the interaction between innate immune stimulation and allergy development.Furthermore, extensive clinical trials suggest that ligands for TLRs provide new therapeutic targets for protection against and treatment of asthma and allergic rhinitis. The aim of this review is to summarize the current knowledge about the role of TLRs in pathogenesis of allergic diseases. We will further discuss how we can reconcile inconsistencies in the results of existing studies and review information on the potential use of ligands for TLRs in allergy prevention and therapy. PMID:24662791

  17. The role of Toll-like receptors in the pathogenesis of allergic diseases – where is the truth?

    Directory of Open Access Journals (Sweden)

    Anna Dębińska

    2014-03-01

    Full Text Available Toll-like receptors (TLRs are pattern recognition receptors crucial for the innate and adaptive immune response to pathogen-associated molecular patterns (PAMPs. TLR stimulation via microbial products activates antigen-presenting cells, influences the function of T regulatory cells (Treg, determines the Th1/Th2 balance and Th17 cell differentiation, and controls cytokine production in mast cells and activation of eosinophils. The role of TLR receptors in pathogenesis of allergic diseases results from the biological function that they play in activation and regulation of the immune response. However, the exact role still remains a controversial area. Whereas numerous epidemiological studies mainly indicate a protective effect of microbial exposure, experiments show that innate immune stimulation via TLRs may be involved in both development of and protection against allergic diseases. Timing, dose, site and intensity of exposure to environmental factors and host genetic predisposition are clearly crucial to understanding the interaction between innate immune stimulation and allergy development.Furthermore, extensive clinical trials suggest that ligands for TLRs provide new therapeutic targets for protection against and treatment of asthma and allergic rhinitis. The aim of this review is to summarize the current knowledge about the role of TLRs in pathogenesis of allergic diseases. We will further discuss how we can reconcile inconsistencies in the results of existing studies and review information on the potential use of ligands for TLRs in allergy prevention and therapy.

  18. Critical Role of Airway Macrophages in Modulating Disease Severity during Influenza Virus Infection of Mice ▿

    OpenAIRE

    Tate, M.D.; Pickett, D L; Rooijen, van, J.; Brooks, A G; Reading, P C

    2010-01-01

    Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus str...

  19. Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine

    Directory of Open Access Journals (Sweden)

    Ioana Agache

    2016-07-01

    Full Text Available Discoveries from basic science research in the last decade have brought significant progress in knowledge of pathophysiologic processes of allergic diseases, with a compelling impact on understanding of the natural history, risk prediction, treatment selection or mechanism-specific prevention strategies. The view of the pathophysiology of allergic diseases developed from a mechanistic approach, with a focus on symptoms and organ function, to the recognition of a complex network of immunological pathways. Several subtypes of inflammation and complex immune-regulatory networks and the reasons for their failure are now described, that open the way for the development of new diagnostic tools and innovative targeted-treatments. An endotype is a subtype of a disease condition, which is defined by a distinct pathophysiological mechanism, whereas a disease phenotype defines any observable characteristic of a disease without any implication of a mechanism. Another key word linked to disease endotyping is biomarker that is measured and evaluated to examine any biological or pathogenic processes, including response to a therapeutic intervention. These three keywords will be discussed more and more in the future with the upcoming efforts to revolutionize patient care in the direction of precision medicine and precision health. The understanding of disease endotypes based on pathophysiological principles and their validation across clinically meaningful outcomes in asthma, allergic rhinitis, chronic rhinosinusitis, atopic dermatitis and food allergy will be crucial for the success of precision medicine as a new approach to patient management.

  20. Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine.

    Science.gov (United States)

    Agache, Ioana; Akdis, Cezmi A

    2016-07-01

    Discoveries from basic science research in the last decade have brought significant progress in knowledge of pathophysiologic processes of allergic diseases, with a compelling impact on understanding of the natural history, risk prediction, treatment selection or mechanism-specific prevention strategies. The view of the pathophysiology of allergic diseases developed from a mechanistic approach, with a focus on symptoms and organ function, to the recognition of a complex network of immunological pathways. Several subtypes of inflammation and complex immune-regulatory networks and the reasons for their failure are now described, that open the way for the development of new diagnostic tools and innovative targeted-treatments. An endotype is a subtype of a disease condition, which is defined by a distinct pathophysiological mechanism, whereas a disease phenotype defines any observable characteristic of a disease without any implication of a mechanism. Another key word linked to disease endotyping is biomarker that is measured and evaluated to examine any biological or pathogenic processes, including response to a therapeutic intervention. These three keywords will be discussed more and more in the future with the upcoming efforts to revolutionize patient care in the direction of precision medicine and precision health. The understanding of disease endotypes based on pathophysiological principles and their validation across clinically meaningful outcomes in asthma, allergic rhinitis, chronic rhinosinusitis, atopic dermatitis and food allergy will be crucial for the success of precision medicine as a new approach to patient management. PMID:27282212

  1. Severe upper airway obstruction during sleep.

    Science.gov (United States)

    Bonekat, H William; Hardin, Kimberly A

    2003-10-01

    Few disorders may manifest with predominantly sleep-related obstructive breathing. Obstructive sleep apnea (OSA) is a common disorder, varies in severity and is associated with significant cardiovascular and neurocognitive morbidity. It is estimated that between 8 and 18 million people in the United States have at least mild OSA. Although the exact mechanism of OSA is not well-delineated, multiple factors contribute to the development of upper airway obstruction and include anatomic, mechanical, neurologic, and inflammatory changes in the pharynx. OSA may occur concomitantly with asthma. Approximately 74% of asthmatics experience nocturnal symptoms of airflow obstruction secondary to reactive airways disease. Similar cytokine, chemokine, and histologic changes are seen in both disorders. Sleep deprivation, chronic upper airway edema, and inflammation associated with OSA may further exacerbate nocturnal asthma symptoms. Allergic rhinitis may contribute to both OSA and asthma. Continuous positive airway pressure (CPAP) is the gold standard treatment for OSA. Treatment with CPAP therapy has also been shown to improve both daytime and nighttime peak expiratory flow rates in patients with concomitant OSA and asthma. It is important for allergists to be aware of how OSA may complicate diagnosis and treatment of asthma and allergic rhinitis. A thorough sleep history and high clinical suspicion for OSA is indicated, particularly in asthma patients who are refractory to standard medication treatments.

  2. Does improvement management of atopic dermatitis influence the appearance of respiratory allergic diseases? A follow-up study

    Directory of Open Access Journals (Sweden)

    Dondi Arianna

    2010-06-01

    Full Text Available Abstract Background Atopic dermatitis (AD is often the prelude to allergic diseases. The aim of this study was 1 to evaluate if an integrated management regime could bring about a change in the evolution of the disease in comparison to the results of a previous study; 2 to determine whether the refinement of allergic investigations allowed to identify more promptly the risk factors of evolution into respiratory allergic diseases. Methods The study included 176 children affected by AD and previously evaluated between 1993 and 2002 at the age of 9-16 months, who underwent a telephonic interview by means of a semi-structured, pre-formed questionnaire after a mean follow-up time of 8 years. According to the SCORAD, at first evaluation children had mild AD in 23% of cases, moderate in 62%, severe in 15%. Results AD disappeared in 92 cases (52%, asthma appeared in 30 (17% and rhinoconjunctivitis in 48 (27%. The factors significantly related to the appearance of asthma were: sensitization to food allergens with sIgE > 2 KU/L (cow's milk and hen's egg; P 0.35 KU/L (P P = 0.002, and the incidence of rhinoconjunctivitis from 35% to 24% (P = 0.02. Conclusion Comparing the results with those of the previous study, integrated management of AD does not seem to influence its natural course. Nevertheless, the decrease in the percentage of children evolving towards respiratory allergic disease stresses the importance of early diagnosis and improvement management carried out by specialist centers. The presence of allergic sensitization at one year of age might predict the development of respiratory allergy.

  3. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    George, Leena; Brightling, Christopher E

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10-40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  4. Porous antioxidant polymer microparticles as therapeutic systems for the airway inflammatory diseases.

    Science.gov (United States)

    Jeong, Dahee; Kang, Changsun; Jung, Eunkyeong; Yoo, Donghyuck; Wu, Dongmei; Lee, Dongwon

    2016-07-10

    Inhaling steroidal anti-inflammatory drugs is the most common treatment for airway inflammatory diseases such as asthma. However, frequent steroid administration causes adverse side effects. Therefore, the successful clinical translation of numerous steroidal drugs greatly needs pulmonary drug delivery systems which are formulated from biocompatible and non-immunogenic polymers. We have recently developed a new family of biodegradable polymer, vanillyl alcohol-containing copolyoxalate (PVAX) which is able to scavenge hydrogen peroxide and exert potent antioxidant and anti-inflammatory activity. In this work, we report the therapeutic potential of porous PVAX microparticles which encapsulate dexamethasone (DEX) as a therapeutic system for airway inflammatory diseases. PVAX microparticles themselves reduced oxidative stress and suppressed the expression of pro-inflammatory tumor necrosis factor-alpha and inducible nitric oxide synthase in the lung of ovalbumin-challenged asthmatic mice. However, DEX-loaded porous PVAX microparticles showed significantly enhanced therapeutic effects than PVAX microparticles, suggesting the synergistic effects of PVAX with DEX. In addition, PVAX microparticles showed no inflammatory responses to lung tissues. Given their excellent biocompatibility and intrinsic antioxidant and anti-inflammatory activity, PVAX microparticles hold tremendous potential as therapeutic systems for the treatment of airway inflammatory diseases such as asthma. PMID:27151077

  5. Interactions between inhalant allergen extracts and airway epithelial cells : Effect on cytokine production and cell detachment

    NARCIS (Netherlands)

    Tomee, JFC; van Weissenbruch, R; de Monchy, JGR; Kauffman, HF

    1998-01-01

    Background: The factors responsible for inducing or maintaining airway inflammation are poorly understood. Various studies have focussed on the mechanisms leading to allergic airway inflammation in patients with asthma and rhinitis. The observation of local airway inflammation in nonallergic patient

  6. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease.

    Science.gov (United States)

    Lebold, Katie M; Jacoby, David B; Drake, Matthew G

    2016-03-01

    Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases. PMID:27226793

  7. Occupational allergic respiratory diseases in garbage workers: relevance of molds and actinomycetes.

    Science.gov (United States)

    Hagemeyer, O; Bünger, J; van Kampen, V; Raulf-Heimsoth, M; Drath, C; Merget, R; Brüning, Th; Broding, H C

    2013-01-01

    Exposures to molds and bacteria (especially actinomycetes) at workplaces are common in garbage workers, but allergic respiratory diseases due to these microorganisms have been described rarely. The aim of our study was a detailed analysis of mold or bacteria-associated occupational respiratory diseases in garbage workers. From 2002 to 2011 four cases of occupational respiratory diseases related to garbage handling were identified in our institute (IPA). Hypersensitivity pneumonitis (HP) was diagnosed in three subjects (cases 1-3, one smoker, two non-smokers), occupational asthma (OA) was diagnosed in one subject (case 4, smoker), but could not be excluded completely in case 2. Cases 1 and 2 worked in composting sites, while cases 3 and 4 worked in packaging recycling plants. Exposure periods were 2-4 years. Molds and actinomycetes were identified as allergens in all cases. Specific IgE antibodies to Aspergillus fumigatus were detected exclusively in case 4. Diagnoses of HP were essentially based on symptoms and the detection of specific IgG serum antibodies to molds and actinomycetes. OA was confirmed by bronchial provocation test with Aspergillus fumigatus in case 4. In conclusion, occupational HP and OA due to molds occur rarely in garbage workers. Technical prevention measures are insufficient and the diagnosis of HP is often inconclusive. Therefore, it is recommended to implement the full repertoire of diagnostic tools including bronchoalveolar lavage and high resolution computed tomography in the baseline examination. PMID:23835992

  8. Aspergillus-Related Lung Disease

    Directory of Open Access Journals (Sweden)

    Alia Al-Alawi

    2005-01-01

    Full Text Available Aspergillus is a ubiquitous dimorphic fungus that causes a variety of human diseases ranging in severity from trivial to life-threatening, depending on the host response. An intact host defence is important to prevent disease, but individuals with pre-existing structural lung disease, atopy, occupational exposure or impaired immunity are susceptible. Three distinctive patterns of aspergillus-related lung disease are recognized: saprophytic infestation of airways, cavities and necrotic tissue; allergic disease including extrinsic allergic alveolitis, asthma, allergic bronchopulmonary aspergillosis, bronchocentric granulomatosis and chronic eosinophilic pneumonia; and airway and tissue invasive disease -- pseudomembranous tracheobronchitis, acute bronchopneumonia, angioinvasive aspergillosis, chronic necrotizing aspergillosis and invasive pleural disease. A broad knowledge of these clinical presentations and a high index of suspicion are required to ensure timely diagnosis and treatment of the potentially lethal manifestations of aspergillus-related pulmonary disease. In the present report, the clinical, radiographic and pathological aspects of the various aspergillus-related lung diseases are briefly reviewed.

  9. Airway malacia in chronic obstructive pulmonary disease: prevalence, morphology and relationship with emphysema, bronchiectasis and bronchial wall thickening

    Energy Technology Data Exchange (ETDEWEB)

    Sverzellati, Nicola; Rastelli, Andrea; Schembri, Valentina; Filippo, Massimo de [University of Parma, Department of Clinical Sciences, Section of Radiology, Parma (Italy); Chetta, Alfredo [University of Parma, Department of Clinical Sciences, Section of Respiratory Diseases, Parma (Italy); Fasano, Luca; Pacilli, Angela Maria [Policlinico Sant' Orsola-Malpighi, Unita Operativa di Fisiopatologia Respiratoria, Bologna (Italy); Di Scioscio, Valerio; Bartalena, Tommaso; Zompatori, Maurizio [University of Bologna, Department of Radiology, Cardiothoracic Institute, Policlinico S.Orsola-Malpighi, Bologna (Italy)

    2009-07-15

    The aim of this study was to determine the prevalence of airway malacia and its relationship with ancillary morphologic features in patients with chronic obstructive pulmonary disease (COPD). A retrospective review was performed of a consecutive series of patients with COPD who were imaged with inspiratory and dynamic expiratory multidetector computed tomography (MDCT). Airway malacia was defined as {>=}50% expiratory reduction of the airway lumen. Both distribution and morphology of airway malacia were assessed. The extent of emphysema, extent of bronchiectasis and severity of bronchial wall thickness were quantified. The final study cohort was comprised of 71 patients. Airway malacia was seen in 38 of 71 patients (53%), and such proportion was roughly maintained in each stage of COPD severity. Almost all tracheomalacia cases (23/25, 92%) were characterised by an expiratory anterior bowing of the posterior membranous wall. Both emphysema and bronchiectasis extent did not differ between patients with and without airway malacia (p > 0.05). Bronchial wall thickness severity was significantly higher in patients with airway malacia and correlated with the degree of maximal bronchial collapse (p < 0.05). In conclusion, we demonstrated a strong association between airway malacia and COPD, disclosing a significant relationship with bronchial wall thickening. (orig.)

  10. Airway malacia in chronic obstructive pulmonary disease: prevalence, morphology and relationship with emphysema, bronchiectasis and bronchial wall thickening

    International Nuclear Information System (INIS)

    The aim of this study was to determine the prevalence of airway malacia and its relationship with ancillary morphologic features in patients with chronic obstructive pulmonary disease (COPD). A retrospective review was performed of a consecutive series of patients with COPD who were imaged with inspiratory and dynamic expiratory multidetector computed tomography (MDCT). Airway malacia was defined as ≥50% expiratory reduction of the airway lumen. Both distribution and morphology of airway malacia were assessed. The extent of emphysema, extent of bronchiectasis and severity of bronchial wall thickness were quantified. The final study cohort was comprised of 71 patients. Airway malacia was seen in 38 of 71 patients (53%), and such proportion was roughly maintained in each stage of COPD severity. Almost all tracheomalacia cases (23/25, 92%) were characterised by an expiratory anterior bowing of the posterior membranous wall. Both emphysema and bronchiectasis extent did not differ between patients with and without airway malacia (p > 0.05). Bronchial wall thickness severity was significantly higher in patients with airway malacia and correlated with the degree of maximal bronchial collapse (p < 0.05). In conclusion, we demonstrated a strong association between airway malacia and COPD, disclosing a significant relationship with bronchial wall thickening. (orig.)

  11. 过敏性哮喘动物模型在致敏、哮喘发作和气道高反应性等方面的应用研究%Sensitization, Airway Challenge and Airway Hyperresponsiveness in Animal Models of Allergic Asthma

    Institute of Scientific and Technical Information of China (English)

    张星东

    2012-01-01

    过敏性哮喘的发病率呈上升趋势.使用了几十年的主要治疗药物肾上腺糖皮质激素副作用较大,因此发现好的预防和治疗方法成为迫切要解决的问题.动物模型是研究人类疾病的重要手段,但不少疑难病的发病机理不明确,因而制备的动物模型和人类疾病的相似度有差异.但Ⅰ型变态反应作为过敏性哮喘的发病机理是比较明确的,据此制备的动物模型和人类的哮喘就有很高的相近度,结果的可信度就较高.本文回顾了哮喘动物模型制备的基本方法和某些重要的细节.着重讨论了当今最常用的气道高反应性模型的优劣.如果综合运用不同特点的模型尤其是能观察记录哮喘发作全过程包括速发和迟发反应的模型,将可以更直接地探索哮喘发病过程和治疗药物.对气道重塑及基因敲除和转基因技术在动物模型中的研究和使用也做了一般性论述.动物模型将是一个有力的工具为最后有效地预防和治疗过敏性哮喘找到突破口.%Allergic asthma is an important disease. The interflow of asthma between animal models and human is that the former is also established on type I hypersensitivity. Sensitization is the first step for animal models of asthma. The characteristics and reactivity of complete allergens and haptens may lead to different outcomes. Airway challenge is a useful tool to study asthmatic responses. The new methods enabled successful observation of early-phase and late-phase asthmatic responses. Work on the pathogenesis and therapy of asthma should be conducted with different models besides the one of airway hyperresponsiveness used popularly nowadays. Other applications using animal models including airway remodeling, gene knock-out, transgenesis and therapeutic drugs were also reviewed briefly.

  12. Treatment of allergic rhinitis during pregnancy.

    Science.gov (United States)

    Demoly, Pascal; Piette, Vincent; Daures, Jean-Pierre

    2003-01-01

    Allergic rhinitis is a frequent problem during pregnancy. In addition, physiological changes associated with pregnancy can affect the upper airways. Evidence-based guidelines on the management of allergic rhinitis have recently been published, the most recent being the Allergic Rhinitis and its Impact on Asthma (ARIA)--World Health Organization consensus. Many pregnant women experience allergic rhinitis and particular attention is required when prescribing drugs to these patients. Medication can be prescribed during pregnancy when the apparent benefit of the drug is greater than the apparent risk. Usually, there is at least one drug from each major class that can be safely utilised to control symptoms. All glucocorticosteroids are teratogenic in animals but, when the indication is clear (for diseases possibly associated, such as severe asthma exacerbation), the benefit of the drug is far greater than the risk. Inhaled glucocorticosteroids (e.g. beclomethasone or budesonide) have not been incriminated as teratogens in humans and are used by pregnant women who have asthma. A few histamine H(1)-receptor antagonists (H(1)-antihistamines) can safely be used as well. Most oral decongestants (except pseudoephedrine) are teratogenic in animals. There are no such data available for intra-nasal decongestants. Finally, pregnancy is not considered as a contraindication for the continuation of allergen specific immunotherapy.

  13. Volumetric capnography for the evaluation of chronic airways diseases

    OpenAIRE

    Veronez L; Pereira MC; Doria da Silva SM; Barcaui LA; De Capitani EM; Moreira MM; Paschoal IA

    2014-01-01

    Liliani de Fátima Veronez,1 Monica Corso Pereira,2 Silvia Maria Doria da Silva,2 Luisa Affi Barcaui,2 Eduardo Mello De Capitani,2 Marcos Mello Moreira,2 Ilma Aparecida Paschoalz2 1Department of Physical Therapy, University of Votuporanga (Educational Foundation of Votuporanga), Votuporanga, 2Department of Internal Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, BrazilBackground: Obstructive lung diseases of different etiologies pre...

  14. Quantitative evaluation of inhaled radioactive aerosol deposition patterns in the lungs in obstructive airways disease

    International Nuclear Information System (INIS)

    Uneven distribution of inhaled aerosol in the lungs is the characteristics of obstructive airways disease such as chronic bronchitis and pulmonary emphysema, and has been classified typically into peripheral and central deposition patterns, respectively by visual inspection, whereas in the normal the distribution is homogeneous throughout the lungs. The purpose of the present study was to analyse the distribution of inhaled radioactivity in the lungs by way of matrixes by a computer. The seemingly homogeneous distribution pattern in normal subjects has been found to indicate a gradual change in count profile between the neighboring matrixes. The peripheral pattern indicates the patchy presence of small number of matrixes with excessive radioactivity throughout the lungs, and the central pattern, the presence of matrixes of excessive radioactivity along the major central airways forming a comma-like configuration superimposed on the peripheral pattern. Our computer analysis has a potentiality to characterize obstructive airways disease for a better understanding of their pathophysiology, which is not feasible by a simple visual inspection of images on a polaroid picture. (author)

  15. Halting the allergic march.

    Science.gov (United States)

    Van Bever, Hugo P; Samuel, Sudesh T; Lee, Bee Wah

    2008-04-01

    The prevalence of childhood allergic diseases, such as allergic asthma, allergic rhinitis, and atopic dermatitis, has increased exponentially. In Singapore, the prevalence of asthma at all ages exceeds 20%, and around 50% of Singaporean children show features of an underlying allergy. The exact environmental causes for the increase of allergic diseases have not yet been identified, but most researchers agree that a decreased bacterial load in young children may be one of the reasons for the increase. However, the causes of allergy are multiple, and the development of an allergic disease is the result of complex interactions between genetic constitution and environmental factors. In this review article, different aspects of allergic sensitization are covered, including prenatal and postnatal sensitization. The phenomenon of the "allergic march" (switching from one clinical expression of allergy to another) and its underlying mechanisms are discussed. The last part of this review article is on prevention and treatment of allergic diseases, including the role of bacterial products (probiotics, prebiotics, and synbiotics) and the role of immunotherapy, including sublingual immunotherapy. PMID:23283392

  16. THE ROLE OF MICROBIAL COMMUNITIES OF AIRWAYS IN PATHOGENESIS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    OpenAIRE

    S. V. Fedosenko; L. M. Ogorodova; M. A. Karnaushkina; Ye. S. Kulikov; I. A. Deyev; N. A. Kirillova

    2015-01-01

    This review summarizes the results of studies on the composition of microbial communities in the airways of healthy subjects and in patients with chronic obstructive pulmonary disease. Modern technologies of molecular-genetic identification methods of microorganisms allow to perform a deep analysis  of  the  respiratory  microbiom.  It  is  of  considerable  interest  to  determine  the  role  of  the microbiome in the development of human diseases of the bronchopulmonary system, and to under...

  17. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma.

    Science.gov (United States)

    Caceres, Ana I; Brackmann, Marian; Elia, Maxwell D; Bessac, Bret F; del Camino, Donato; D'Amours, Marc; Witek, JoAnn S; Fanger, Chistopher M; Chong, Jayhong A; Hayward, Neil J; Homer, Robert J; Cohn, Lauren; Huang, Xiaozhu; Moran, Magdalene M; Jordt, Sven-Eric

    2009-06-01

    Asthma is an inflammatory disorder caused by airway exposures to allergens and chemical irritants. Studies focusing on immune, smooth muscle, and airway epithelial function revealed many aspects of the disease mechanism of asthma. However, the limited efficacies of immune-directed therapies suggest the involvement of additional mechanisms in asthmatic airway inflammation. TRPA1 is an irritant-sensing ion channel expressed in airway chemosensory nerves. TRPA1-activating stimuli such as cigarette smoke, chlorine, aldehydes, and scents are among the most prevalent triggers of asthma. Endogenous TRPA1 agonists, including reactive oxygen species and lipid peroxidation products, are potent drivers of allergen-induced airway inflammation in asthma. Here, we examined the role of TRPA1 in allergic asthma in the murine ovalbumin model. Strikingly, genetic ablation of TRPA1 inhibited allergen-induced leukocyte infiltration in the airways, reduced cytokine and mucus production, and almost completely abolished airway hyperreactivity to contractile stimuli. This phenotype is recapitulated by treatment of wild-type mice with HC-030031, a TRPA1 antagonist. HC-030031, when administered during airway allergen challenge, inhibited eosinophil infiltration and prevented the development of airway hyperreactivity. Trpa1(-/-) mice displayed deficiencies in chemically and allergen-induced neuropeptide release in the airways, providing a potential explanation for the impaired inflammatory response. Our data suggest that TRPA1 is a key integrator of interactions between the immune and nervous systems in the airways, driving asthmatic airway inflammation following inhaled allergen challenge. TRPA1 may represent a promising pharmacological target for the treatment of asthma and other allergic inflammatory conditions. PMID:19458046

  18. Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma

    Directory of Open Access Journals (Sweden)

    Adam Collison

    2013-07-01

    Development of asthma in childhood is linked to viral infections of the lower respiratory tract in early life, with subsequent chronic exposure to allergens. Progression to persistent asthma is associated with a Th2-biased immunological response and structural remodelling of the airways. The underlying mechanisms are unclear, but could involve epigenetic changes. To investigate this, we employed a recently developed mouse model in which self-limited neonatal infection with a pneumovirus, followed by sensitisation to ovalbumin via the respiratory tract and low-level chronic challenge with aerosolised antigen, leads to development of an asthmatic phenotype. We assessed expression of microRNA by cells in the proximal airways, comparing changes over the period of disease progression, and used target prediction databases to identify genes likely to be up- or downregulated as a consequence of altered regulation of microRNA. In parallel, we assessed DNA methylation in pulmonary CD4+ T cells. We found that a limited number of microRNAs exhibited marked up- or downregulation following early-life infection and sensitisation, for many of which the levels of expression were further changed following chronic challenge with the sensitizing antigen. Targets of these microRNAs included genes involved in immune or inflammatory responses (e.g. Gata3, Kitl and in tissue remodelling (e.g. Igf1, Tgfbr1, as well as genes for various transcription factors and signalling proteins. In pulmonary CD4+ T cells, there was significant demethylation at promoter sites for interleukin-4 and interferon-γ, the latter increasing following chronic challenge. We conclude that, in this model, progression to an asthmatic phenotype is linked to epigenetic regulation of genes associated with inflammation and structural remodelling, and with T-cell commitment to a Th2 immunological response. Epigenetic changes associated with this pattern of gene activation might play a role in the development of childhood

  19. Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma.

    Science.gov (United States)

    Collison, Adam; Siegle, Jessica S; Hansbro, Nicole G; Kwok, Chau-To; Herbert, Cristan; Mattes, Joerg; Hitchins, Megan; Foster, Paul S; Kumar, Rakesh K

    2013-07-01

    Development of asthma in childhood is linked to viral infections of the lower respiratory tract in early life, with subsequent chronic exposure to allergens. Progression to persistent asthma is associated with a Th2-biased immunological response and structural remodelling of the airways. The underlying mechanisms are unclear, but could involve epigenetic changes. To investigate this, we employed a recently developed mouse model in which self-limited neonatal infection with a pneumovirus, followed by sensitisation to ovalbumin via the respiratory tract and low-level chronic challenge with aerosolised antigen, leads to development of an asthmatic phenotype. We assessed expression of microRNA by cells in the proximal airways, comparing changes over the period of disease progression, and used target prediction databases to identify genes likely to be up- or downregulated as a consequence of altered regulation of microRNA. In parallel, we assessed DNA methylation in pulmonary CD4(+) T cells. We found that a limited number of microRNAs exhibited marked up- or downregulation following early-life infection and sensitisation, for many of which the levels of expression were further changed following chronic challenge with the sensitizing antigen. Targets of these microRNAs included genes involved in immune or inflammatory responses (e.g. Gata3, Kitl) and in tissue remodelling (e.g. Igf1, Tgfbr1), as well as genes for various transcription factors and signalling proteins. In pulmonary CD4(+) T cells, there was significant demethylation at promoter sites for interleukin-4 and interferon-γ, the latter increasing following chronic challenge. We conclude that, in this model, progression to an asthmatic phenotype is linked to epigenetic regulation of genes associated with inflammation and structural remodelling, and with T-cell commitment to a Th2 immunological response. Epigenetic changes associated with this pattern of gene activation might play a role in the development of

  20. Sesquiterpene lactone mix patch testing supplemented with dandelion extract in patients with allergic contact dermatitis, atopic dermatitis and non-allergic chronic inflammatory skin diseases.

    Science.gov (United States)

    Jovanović, M; Poljacki, M; Mimica-Dukić, N; Boza, P; Vujanović, Lj; Duran, V; Stojanović, S

    2004-09-01

    We investigated the value of patch testing with dandelion (Compositae) extract in addition to sesquiterpene lactone (SL) mix in selected patients. After we detected a case of contact erythema multiforme after patch testing with dandelion and common chickweed (Caryophyllaceae), additional testing with common chickweed extract was performed. A total of 235 adults with a mean age of 52.3 years were tested. There were 66 men and 169 women: 53 consecutive patients with allergic contact dermatitis (ACD); 43 with atopic dermatitis (AD); 90 non-atopics suffering from non-allergic chronic inflammatory skin diseases; 49 healthy volunteers. All were tested with SL mix 0.1% petrolatum (pet.) and diethyl ether extracts from Taraxacum officinale (dandelion) 0.1 and 3.0% pet. and from Stellaria media (common chickweed) 0.1 and 3% pet. A total of 14 individuals (5.9%) showed allergic reaction (AR) to at least 1 of the plant allergens, 4 (28.6%) to common chickweed extract, and 11 (78.6%) to Compositae allergens. These 11 persons made the overall prevalence of 4.7%: 8 (3.4%) were SL-positive and 3 (1.3%) reacted to dandelion extract. 5 persons (45.5%) had AD, 2 had ACD, 2 had psoriasis and 2 were healthy controls. The Compositae allergy was relevant in 8 cases (72.7%). The highest frequency of SL mix sensitivity (9.3%) was among those with AD. Half the SL mix-sensitive individuals had AD. ARs to dandelion extract were obtained only among patients with eczema. A total of 9 irritant reactions (IRs) in 9 individuals (3.8%) were recorded, 8 to SL mix and 1 to common chickweed extract 3.0% pet. No IR was recorded to dandelion extract (P = 0.007). Among those with relevant Compositae allergy, 50.0% had AR to fragrance mix and balsam of Peru (Myroxylon pereirae resin) and colophonium. SLs were detected in dandelion but not in common chickweed. Our study confirmed the importance of 1 positive reaction for emerging, not fully established, Compositae allergy. In conclusion, the overall

  1. [Non-allergic gluten sensitivity. A controversial disease - or not yet sufficiently explored?].

    Science.gov (United States)

    Raithel, Martin; Kluger, Anna Katharina; Dietz, Birgit; Hetterich, Urban

    2016-07-01

    The avoidance of wheat, gluten and other cereal products is a growing phenomenon in industrialized countries. The diagnostic criteria of celiac disease and of food allergy to wheat flour and/or other cereals are clearly defined. Only about 0.5-25 % of the population are affected from both of these immunological diseases.Nevertheless, there exists a significantly greater proportion of people reporting at least subjectively significant complaints and quality of life improvements after switching to a wheat- or gluten-free diet. Celiac disease or wheat allergy cannot be detected in these individuals on the basis of established criteria. The absence of clear diagnostic autoimmune or allergic criteria in these wheat sensitive patients has resulted in the description of non-celiac gluten sensitivity.It is clinically detectable in only very few individuals and may manifest with either intestinal, extra-intestinal or neurovegetative and psychosomatic symptoms, respectively. However, non-celiac disease gluten sensitivity has to be differentiated critically from irritable bowel syndrome, carbohydrate malassimilation, postinfectious conditions and psychosomatic diseases.Pathophysiologically, non-celiac disease gluten sensitivity is still poorly characterized; several non-immunological mechanisms are discussed to contribute to non-celiac gluten sensitivity. These include the effects of fructo- and galacto-oligosaccharides, of trypsin inhibitors of amylase, and wheat lectin agglutinins, which may influence or modulate intestinal permeability and/or a non-specific immune or effector cell degranulation within the gastrointestinal tract. In addition, further metabolic effects with direct or indirect influence on the intestinal flora are currently discussed.In addition to subjectively reported changes in symptoms that may affect variably intestinal, as well as extra-intestinal and/or neuropsychiatric symptoms, some studies suggest that there is little reproducibility of

  2. The role of Toll-like receptors in the pathogenesis of allergic diseases – where is the truth?

    OpenAIRE

    Anna Dębińska; Andrzej Boznański

    2014-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors crucial for the innate and adaptive immune response to pathogen-associated molecular patterns (PAMPs). TLR stimulation via microbial products activates antigen-presenting cells, influences the function of T regulatory cells (Treg), determines the Th1/Th2 balance and Th17 cell differentiation, and controls cytokine production in mast cells and activation of eosinophils. The role of TLR receptors in pathogenesis of allergic diseases r...

  3. IgE in the diagnosis and treatment of allergic disease.

    Science.gov (United States)

    Platts-Mills, Thomas A E; Schuyler, Alexander J; Erwin, Elizabeth A; Commins, Scott P; Woodfolk, Judith A

    2016-06-01

    Traditionally, the concept of allergy implied an abnormal response to an otherwise benign agent (eg, pollen or food), with an easily identifiable relationship between exposure and disease. However, there are syndromes in which the relationship between exposure to the relevant allergen and the "allergic" disease is not clear. In these cases the presence of specific IgE antibodies can play an important role in identifying the relevant allergen and provide a guide to therapy. Good examples include chronic asthma and exposure to perennial indoor allergens and asthma related to fungal infection. Finally, we are increasingly aware of forms of food allergy in which the relationship between exposure and the disease is delayed by 3 to 6 hours or longer. Three forms of food allergy with distinct clinical features are now well recognized. These are (1) anaphylactic sensitivity to peanut, (2) eosinophilic esophagitis related to cow's milk, and (3) delayed anaphylaxis to red meat. In these syndromes the immunology of the response is dramatically different. Peanut and galactose α-1,3-galactose (alpha-gal) are characterized by high- or very high-titer IgE antibodies for Ara h 2 and alpha-gal, respectively. By contrast, eosinophilic esophagitis is characterized by low levels of IgE specific for milk proteins with high- or very high-titer IgG4 to the same proteins. The recent finding is that patients with alpha-gal syndrome do not have detectable IgG4 to the oligosaccharide. Thus the serum results not only identify relevant antigens but also provide a guide to the nature of the immune response. PMID:27264001

  4. Home Dampness Signs in Association with Asthma and Allergic Diseases in 4618 Preschool Children in Urumqi, China-The Influence of Ventilation/Cleaning Habits

    OpenAIRE

    Zhijing Lin; Zhuohui Zhao; Huihui Xu; Xin Zhang; Tingting Wang; Haidong Kan; Dan Norback

    2015-01-01

    There is an increasing prevalence of childhood asthma and allergic diseases in mainland of China. Few studies investigated the indoor dampness, ventilation and cleaning habits and their interrelationship with childhood asthma and allergic diseases. A large-scale cross-sectional study was performed in preschool children in Urumqi, China. Questionnaire was used to collect information on children's health, home dampness and ventilation/cleaning (V/C) habits. Multiple logistic regressions were ap...

  5. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity.

    Science.gov (United States)

    Clayton, Gina M; Wang, Yang; Crawford, Frances; Novikov, Andrey; Wimberly, Brian T; Kieft, Jeffrey S; Falta, Michael T; Bowerman, Natalie A; Marrack, Philippa; Fontenot, Andrew P; Dai, Shaodong; Kappler, John W

    2014-07-01

    T-cell-mediated hypersensitivity to metal cations is common in humans. How the T cell antigen receptor (TCR) recognizes these cations bound to a major histocompatibility complex (MHC) protein and self-peptide is unknown. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung condition caused by the reaction of CD4 T cells to inhaled beryllium. Here, we show that the T cell ligand is created when a Be(2+) cation becomes buried in an HLA-DP2/peptide complex, where it is coordinated by both MHC and peptide acidic amino acids. Surprisingly, the TCR does not interact with the Be(2+) itself, but rather with surface changes induced by the firmly bound Be(2+) and an accompanying Na(+) cation. Thus, CBD, by creating a new antigen by indirectly modifying the structure of preexisting self MHC-peptide complex, lies on the border between allergic hypersensitivity and autoimmunity. PMID:24995984

  6. Selective PDE4 inhibitors as potent anti-inflammatory drugs for the treatment of airway diseases

    Directory of Open Access Journals (Sweden)

    Vincent Lagente

    2005-03-01

    Full Text Available Phosphodiesterases (PDEs are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.

  7. [The efficacy of treating patients with allergic diseases at a health resort with a gastroenterologic profile].

    Science.gov (United States)

    Avdeeva, E V; Pavlushchenko, E V; Vaganova, V S; Paniushkina, O N

    1998-01-01

    45 allergic patients were treated in gastrointestinal sanatorium. Balneological and speleo modalities were employed. The clinical symptoms and humoral immunity indicated high efficacy of such treatment. The complex is recommended for introduction in gastrointestinal sanatoria. PMID:9987974

  8. Airway oxidative stress causes vascular and hepatic inflammation via upregulation of IL-17A in a murine model of allergic asthma.

    Science.gov (United States)

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Ansari, Mushtaq A; AlSharari, Shakir D; Bahashwan, Saleh A; Attia, Sabry M; Al-Hosaini, Khaled A; Al Hoshani, Ali R; Ahmad, Sheikh F

    2016-05-01

    Oxidants are generated in asthmatic airways due to infiltration of inflammatory leukocytes and resident cells in the lung. Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide radical may leak into systemic circulation when generated in uncontrolled manner and may impact vasculature. Our previous studies have shown an association between airway inflammation and systemic inflammation; however so far none has investigated the impact of airway oxidative inflammation on hepatic oxidative stress and Th1/Th2/Th17 cytokine markers in liver/vasculature in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of systemic/hepatic Th1/Th2/Th17 cytokines balance and hepatic oxidative stress. Mice were sensitized intraperitoneally with cockroach extract (CE) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with CE. Mice were then assessed for systemic/hepatic inflammation through assessment of Th1/Th2/Th17 cytokines and oxidative stress (iNOS, protein nitrotyrosine, lipid peroxides and myeloperoxidase activity). Challenge with CE led to increased Th2/Th17 cytokines in blood/liver and hepatic oxidative stress. However, only Th17 related pro-inflammatory markers were upregulated by hydrogen peroxide (H2O2) inhalation in vasculature and liver, whereas antioxidant treatment, N-acetyl cysteine (NAC) downregulated them. Hepatic oxidative stress was also upregulated by H2O2 inhalation, whereas NAC attenuated it. Therefore, our study shows that airway oxidative inflammation may contribute to systemic inflammation through upregulation of Th17 immune responses in blood/liver and hepatic oxidative stress. This might predispose these patients to increased risk for the development of cardiovascular disorders.

  9. Comparison of airway responses in sheep of different age in precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Verena A Lambermont

    Full Text Available Animal models should display important characteristics of the human disease. Sheep have been considered particularly useful to study allergic airway responses to common natural antigens causing human asthma. A rationale of this study was to establish a model of ovine precision-cut lung slices (PCLS for the in vitro measurement of airway responses in newborn and adult animals. We hypothesized that differences in airway reactivity in sheep are present at different ages.Lambs were delivered spontaneously at term (147d and adult sheep lived till 18 months. Viability of PCLS was confirmed by the MTT-test. To study airway provocations cumulative concentration-response curves were performed with different allergic response mediators and biogenic amines. In addition, electric field stimulation, passive sensitization with house dust mite (HDM and mast cells staining were evaluated.PCLS from sheep were viable for at least three days. PCLS of newborn and adult sheep responded equally strong to methacholine and endothelin-1. The responses to serotonin, leukotriene D4 and U46619 differed with age. No airway contraction was evoked by histamine, except after cimetidine pretreatment. In response to EFS, airways in PCLS from adult and newborn sheep strongly contracted and these contractions were atropine sensitive. Passive sensitization with HDM evoked a weak early allergic response in PCLS from adult and newborn sheep, which notably was prolonged in airways from adult sheep. Only few mast cells were found in the lungs of non-sensitized sheep at both ages.PCLS from sheep lungs represent a useful tool to study pharmacological airway responses for at least three days. Sheep seem well suited to study mechanisms of cholinergic airway contraction. The notable differences between newborn and adult sheep demonstrate the importance of age in such studies.

  10. Treating allergic rhinitis in pregnancy.

    Science.gov (United States)

    Piette, Vincent; Daures, Jean-Pierre; Demoly, Pascal

    2006-05-01

    Numerous pregnant women suffer from allergic rhinitis, and particular attention is required when prescribing drugs to these patients. In addition, physiologic changes associated with pregnancy could affect the upper airways. Evidence-based guidelines on the management of allergic rhinitis have been published. Medication can be prescribed during pregnancy when the apparent benefit of the drug is greater than the apparent risk. Usually, there is at least one "safe" drug from each major class used to control symptoms. All glucocorticosteroids are teratogenic in animals but, when the indication is clear (for diseases possibly associated, such as severe asthma exacerbation), the benefit of the drug is far greater than the risk. Inhaled glucocorticosteroids (eg, beclomethasone or budesonide) have not been incriminated as teratogens in humans and are used by pregnant women who have asthma. A few H1-antihistamines can safely be used as well. Most oral decongestants (except pseudoephedrine) are teratogenic in animals. There are no such data available for intranasal decongestants. Finally, pregnancy is not considered to be a contraindication for the continuation of immunotherapy.

  11. Respiratory syncytial virus (RSV) and asthma : a study on the impact of RSV infection on allergic airway inflammation in a mouse model

    OpenAIRE

    Barends, Marion

    2004-01-01

    textabstractFor many years animal studies are performed to investigate the immunity induced by an RSV infection and the immune regulatory role of RSV infections on the development and exacerbation of respiratory allergies. Since different strategies of allergen sensitisation and challenge, moments of virus infection during allergen-sensitisation and -challenge, and timing of analysis after challenge are chosen, the precise role of RSV infection in allergic inflammation is still not clear. The...

  12. Inflammatory airway features and hypothalamic-pituitary adrenal axis function in asthmatic rats combined with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    CAI Cui; CAO Yu-xue; ZHANG Hong-ying; LE Jing-jing; DONG Jing-cheng; CUI Yan; XU Chang-qing; LIU Bao-jun; WU Jin-feng; DUAN Xiao-hong

    2010-01-01

    Background Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are both inflammatory airway diseases with different characteristics. However, there are many patients who suffer from both BA and COPD. This study was to evaluate changes of inflammatory airway features and hypothalamic-pituitary-adrenal (HPA) axis function in asthmatic rats combined with COPD.Methods Brown Norway (BN) rats were used to model the inflammatory airway diseases of BA, COPD and COPD+BA.These three models were compared and evaluated with respect to clinical symptoms, pulmonary histopathology, airway hyperresponsiveness (AHR), inflammatory cytokines and HPA axis function.Results The inflammatory airway features and HPA axis function in rats in the COPD+BA model group were greatly influenced. Rats in this model group showed features of the inflammatory diseases BA and COPD. The expression of inflammatory cytokines in this model group might be up or downregulated when both disease processes are present. The levels of corticotrophin releasing hormone mRNA and corticosterone in this model group were both significantly decreased than those in the control group (P <0.05).Conclusions BN rat can be used as an animal model of COPD+BA. By evaluating this animal model we found that the features of inflammation in rats in this model group seem to be exaggerated. The HPA axis functions in rats in this model group have been disturbed or impaired, which is prominent at the hypothalamic level.

  13. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    Science.gov (United States)

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF. PMID:24561284

  14. Tracheobronchomalacia/excessive dynamic airway collapse in patients with chronic obstructive pulmonary disease with persistent expiratory wheeze: A pilot study

    Science.gov (United States)

    Sindhwani, Girish; Sodhi, Rakhee; Saini, Manju; Jethani, Varuna; Khanduri, Sushant; Singh, Baltej

    2016-01-01

    Background: Tracheobronchomalacia (TBM) refers to a condition in which structural integrity of cartilaginous wall of trachea is lost. Excessive dynamic airway collapse (EDAC) is characterized by excessive invagination of posterior wall of trachea. In both these conditions, airway lumen gets compromised, especially during expiration, which can lead to symptoms such as breathlessness, cough, and wheezing. Both these conditions can be present in obstructive lung diseases; TBM due to chronic airway inflammation and EDAC due to dynamic compressive forces during expiration. The present study was planned with the hypothesis that TBM/EDAC could also produce expiratory wheeze in patients with obstructive airway disorders. Hence, prevalence and factors affecting presence of this entity in patients with obstructive airway diseases were the aims and objectives of this study. Materials and Methods: Twenty-five patients with obstructive airway disorders (chronic obstructive pulmonary disease [COPD] or bronchial asthma), who were stable on medical management, but having persistent expiratory wheezing, were included in the study. They were evaluated for TBM/EDAC by bronchoscopy and computed tomographic scan of chest. The presence of TBM/EDAC was correlated with variables including age, sex, body mass index (BMI), smoking index, level of dyspnea, and severity of disease. Results: Mean age of the patients was 62.7 ± 7.81 years. Out of 25 patients, 14 were males. TBM/EDAC was found in 40% of study subjects. Age, sex, BMI, severity of disease, frequency of exacerbations and radiological findings etc., were not found to have any association with presence of TBM/EDAC. Conclusion: TBM/EDAC is common in patients with obstructive airway disorders and should be evaluated in these patients, especially with persistent expiratory wheezing as diagnosis of this entity could provide another treatment option in these patients with persistent symptoms despite medical management.

  15. Hyperpolarized 3He Functional Magnetic Resonance Imaging of Bronchoscopic Airway Bypass in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Lindsay Mathew

    2012-01-01

    Full Text Available A 73-year-old exsmoker with Global initiative for chronic Obstructive Lung Disease stage III chronic obstructive pulmonary disease underwent airway bypass (AB as part of the Exhale Airway Stents for Emphysema (EASE trial, and was the only EASE subject to undergo hyperpolarized 3He magnetic resonance imaging for evaluation of lung function pre- and post-AB. 3He magnetic resonance imaging was acquired twice previously (32 and eight months pre-AB and twice post-AB (six and 12 months post-AB. Six months post-AB, his increase in forced vital capacity was <12% predicted, and he was classified as an AB nonresponder. However, post-AB, he also demonstrated improvements in quality of life scores, 6 min walk distance and improvements in 3He gas distribution in the regions of stent placement. Given the complex relationship between well-established pulmonary function and quality of life measurements, the present case provides evidence of the value-added information functional imaging may provide in chronic obstructive pulmonary disease interventional studies.

  16. No adjuvant effect of Bacillus thuringiensis-maize on allergic responses in mice.

    Directory of Open Access Journals (Sweden)

    Daniela Reiner

    Full Text Available Genetically modified (GM foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt-maize (MON810 on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma.

  17. Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs.

    Directory of Open Access Journals (Sweden)

    Julie G Ledford

    Full Text Available Surfactant protein-A (SP-A has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT and SP-A(-/- allergic mice challenged with the model antigen ovalbumin (Ova that were concurrently infected with Mp (Ova+Mp to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO, which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/- mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation

  18. Overexpression of mclca3 in airway epithelium of asthmatic murine models with airway inflammation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-lan; HE Li

    2010-01-01

    Asthma is a worldwide prevalent disease that is a considerable health burden in many countries.1 In recent years, the airway epithelium is increasingly recognized as a central contributor to the pathogenesis of asthma.2 One of the most highly induced genes in epithelial cells in experimental allergic airway disease is the third murine calcium-activated chloride channel homologue (mclca3, alias gob-5). Its human homology protein is hCLCA1,3,4 which has been identified as clinically relevant molecules in diseases with secretory dysfunctions including asthma and cystic fibrosis. In initial studies, mclca3 was thought to be a member of calcium-activated chloride channel (CaCCs) family,whereas some new interesting reports suggest that the two mclca3 cleavage products cannot form an anion channel on their own but may instead act as extracellular signaling molecules with as yet unknown functions and interacting partners.5

  19. Can family history and cord blood IgE predict sensitization and allergic diseases up to adulthood?

    DEFF Research Database (Denmark)

    Borrits Pagh Nissen, Susanne; Fomsgaard Kjær, Henrik; Høst, Arne;

    2015-01-01

    BACKGROUND: Long-term studies of the predictive value of family history and cord blood IgE level until adulthood are few, and their conclusions have been contradictory. METHODS: Screening of total IgE in 1617 cord blood samples was performed in a Danish birth cohort. All infants with cord blood Ig......E (CB-IgE) ≥0.5 kU/l and a corresponding randomly chosen group with CB-IgE physical examination, specific IgE testing, and from 10 yr also spirometry, were carried out at 1½, 5, 10, 15, and 26 yr. Predefined diagnostic criteria were...... used. RESULTS: A total of 455 infants were included, 188 with CB-IgE ≥0.5 kU/l and 267 with CB-IgE history and elevated CB-IgE were significantly associated to allergic disease until 26 yr. Concerning any allergic...

  20. 5-grass pollen tablets achieve disease control in patients with seasonal allergic rhinitis unresponsive to drugs: a real-life study

    Directory of Open Access Journals (Sweden)

    Pastorello EA

    2013-12-01

    Full Text Available Elide Anna Pastorello,1 Laura Losappio,1 Stefania Milani,2 Giuseppina Manzotti,3 Valentina Fanelli,4 Valerio Pravettoni,5 Fabio Agostinis,6 Alberto Flores D’Arcais,7 Ilaria Dell'Albani,8 Paola Puccinelli,9 Cristoforo Incorvaia,10 Franco Frati81Allergy and Immunology Department, Niguarda Hospital, Milan, 2Allergy Department, San Marco General Hospital, Bergamo, 3Allergy Department, Treviglio Hospital, Bergamo, 4Allergy Department, Italian Institute for Auxology, Milan, 5Clinical Allergy and Immunology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 6Department of Pediatrics, Riuniti Hospital, Bergamo, 7Department of Pediatrics, Legnano Hospital, Milan, 8Medical and Scientific Department, Stallergenes Italy, Milan, 9Regulatory Department, Stallergenes Italy, Milan, 10Allergy/Pulmonary Rehabilitation, ICP Hospital, Milan, ItalyBackground: An important subpopulation in allergic rhinitis is represented by patients with severe form of disease that is not responsive to drug treatment. It has been reported that grass pollen subcutaneous immunotherapy is effective in drug-resistant patients. In a real-life study, we evaluated the efficacy of 5-grass pollen tablets in patients with grass pollen-induced allergic rhinitis not responsive to drug therapy.Methods: We carried out this multicenter observational study in adults and adolescents with grass-induced allergic rhinitis not responsive to drug therapy who were treated for a year with 5-grass pollen tablets. Clinical data collected before and after sublingual immunotherapy (SLIT included Allergic Rhinitis and its Impact on Asthma (ARIA classification of allergic rhinitis, response to therapy, and patient satisfaction.Results: Forty-seven patients entered the study. By ARIA classification, three patients had moderate to severe intermittent allergic rhinitis, ten had mild persistent allergic rhinitis, and 34 had moderate to severe persistent allergic rhinitis. There were no cases

  1. Vitronectin expression in the airways of subjects with asthma and chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Lina M Salazar-Peláez

    Full Text Available Vitronectin, a multifunctional glycoprotein, is involved in coagulation, inhibition of the formation of the membrane attack complex (MAC, cell adhesion and migration, wound healing, and tissue remodeling. The primary cellular source of vitronectin is hepatocytes; it is not known whether resident cells of airways produce vitronectin, even though the glycoprotein has been found in exhaled breath condensate and bronchoalveolar lavage from healthy subjects and patients with interstitial lung disease. It is also not known whether vitronectin expression is altered in subjects with asthma and COPD. In this study, bronchial tissue from 7 asthmatic, 10 COPD and 14 control subjects was obtained at autopsy and analyzed by immunohistochemistry to determine the percent area of submucosal glands occupied by vitronectin. In a separate set of experiments, quantitative colocalization analysis was performed on tracheobronchial tissue sections obtained from donor lungs (6 asthmatics, 4 COPD and 7 controls. Vitronectin RNA and protein expressions in bronchial surface epithelium were examined in 12 subjects who undertook diagnostic bronchoscopy. Vitronectin was found in the tracheobronchial epithelium from asthmatic, COPD, and control subjects, although its expression was significantly lower in the asthmatic group. Colocalization analysis of 3D confocal images indicates that vitronectin is expressed in the glandular serous epithelial cells and in respiratory surface epithelial cells other than goblet cells. Expression of the 65-kDa vitronectin isoform was lower in bronchial surface epithelium from the diseased subjects. The cause for the decreased vitronectin expression in asthma is not clear, however, the reduced concentration of vitronectin in the epithelial/submucosal layer of airways may be linked to airway remodeling.

  2. Vitronectin expression in the airways of subjects with asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Salazar-Peláez, Lina M; Abraham, Thomas; Herrera, Ana M; Correa, Mario A; Ortega, Jorge E; Paré, Peter D; Seow, Chun Y

    2015-01-01

    Vitronectin, a multifunctional glycoprotein, is involved in coagulation, inhibition of the formation of the membrane attack complex (MAC), cell adhesion and migration, wound healing, and tissue remodeling. The primary cellular source of vitronectin is hepatocytes; it is not known whether resident cells of airways produce vitronectin, even though the glycoprotein has been found in exhaled breath condensate and bronchoalveolar lavage from healthy subjects and patients with interstitial lung disease. It is also not known whether vitronectin expression is altered in subjects with asthma and COPD. In this study, bronchial tissue from 7 asthmatic, 10 COPD and 14 control subjects was obtained at autopsy and analyzed by immunohistochemistry to determine the percent area of submucosal glands occupied by vitronectin. In a separate set of experiments, quantitative colocalization analysis was performed on tracheobronchial tissue sections obtained from donor lungs (6 asthmatics, 4 COPD and 7 controls). Vitronectin RNA and protein expressions in bronchial surface epithelium were examined in 12 subjects who undertook diagnostic bronchoscopy. Vitronectin was found in the tracheobronchial epithelium from asthmatic, COPD, and control subjects, although its expression was significantly lower in the asthmatic group. Colocalization analysis of 3D confocal images indicates that vitronectin is expressed in the glandular serous epithelial cells and in respiratory surface epithelial cells other than goblet cells. Expression of the 65-kDa vitronectin isoform was lower in bronchial surface epithelium from the diseased subjects. The cause for the decreased vitronectin expression in asthma is not clear, however, the reduced concentration of vitronectin in the epithelial/submucosal layer of airways may be linked to airway remodeling. PMID:25768308

  3. Thin-section CT imaging that correlates with pulmonary function tests in obstructive airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hiroaki, E-mail: arakawa@dokkyomed.ac.jp [Department of Radiology, Dokkyo Medical University, 880 Kita-Kobayashi, Mibu, Tochigi 321-0293 (Japan); Fujimoto, Kiminori [Department of Radiology, Kurume University School of Medicine (Japan); Fukushima, Yasutugu [Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University (Japan); Kaji, Yasushi [Department of Radiology, Dokkyo Medical University, 880 Kita-Kobayashi, Mibu, Tochigi 321-0293 (Japan)

    2011-11-15

    Purpose: The purpose of this study was to identify independent CT findings that correlated with pulmonary function tests (PFTs) in patients with obstructive airway diseases. Materials and methods: Sixty-eight patients with obstructive airway disease and 29 normal subjects (mean age, 52 years; 36 men and 61 women) underwent inspiratory and expiratory thin-section CT and PFTs. Patient with obvious emphysema was excluded. Two radiologists independently reviewed the images and semi-quantitatively evaluated lung attenuation (mosaic perfusion, air trapping) and airway abnormalities (extent and severity of bronchial wall thickening and bronchiectasis, bronchiolectasis or centrilobular nodules, mucous plugging). Univariate, multivariate and receiver operating characteristic (ROC) analyses were performed with CT findings and PFTs. Results: Forty-two patients showed obstructive PFTs, 26 symptomatic patients showed near-normal PFTs. On univariate analysis, air trapping and bronchial wall thickening showed highest correlation with obstructive PFTs such as FEV1.0/FVC, MMEF and FEF75 (r ranged from -0.712 to -0.782; p < 0.001), while mosaic perfusion and mucous plugging showed moderate correlation, and bronchiectasis, bronchiolectasis and nodules showed the least, but significant, correlation. Multiple logistic analyses revealed air trapping and bronchial wall thickening as the only significant independent determinants of obstructive PFTs. ROC analysis revealed the cut-off value of air trapping for obstructive PFTs to be one-third of whole lung (area under curve, 0.847). Conclusions: Our study confirmed air trapping and bronchial wall thickening are the most important observations when imaging obstructive PFTs. The cut-off value of air trapping for identifying obstructive PFTs was one-third of lung irrespective of inspiratory CT findings.

  4. Small airway disease after mycoplasma pneumonia in children: HRCT findings and correlation with radiographic findings

    International Nuclear Information System (INIS)

    To assess the high-resolution CT (HRCT) findings of small airway abnormalities after mycoplasma pneumonia and correlate them with the findings of chest radiography performed during the acute and follow-up phases of the condition. We retrospectively evaluated HRCT and chest radiographic findings of 18 patients with clinical diagnosis of small airway disease after mycoplasma pneumonia (M:F=8:10, mean age: 8.3 years, mean time interval after the initial infection; 26 menths). We evaluated the lung parenchymal and bronchial abnormalities on HRCT (n=18). In addition, presence of air-trapping was assessed on expiratory scans (n=13). The findings of HRCT were correlated with those of chest radiography performed during the acute phase of initial infection (n=15) and at the time of CT examination (n=18), respectively. HRCT revealed lung parenchymal abnormalities in 13 patients (72%). A mosaic pattern of lung attenuation was noted in ten patients (10/18, 56%) and air-trapping on expiratory scans was observed in nine (9/13), 69%). In nine of 14 (64%) with negative findings at follow-up chest radiography, one or both of the above parenchymal abnormalities was observed at HRCT. In four patients (27%), parenchymal abnormalities were seen at HRCT in areas considered normal at acute-phase chest radiography. Bronchiectasis or ateclectasis was observed in eight (44%) and four (22%) patients, respectively, at HRCT. The CT features of Swyer-James syndrome such as a unilateral hyperlucent lung with reduced lung volume and attenuated vessels were noted in two patients(11%). HRCT can clearly demonstrate lung parenchymal and bronchial abnormalities of small airway disease after mycoplasma pneumonia in children

  5. THE ROLE OF MICROBIAL COMMUNITIES OF AIRWAYS IN PATHOGENESIS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    Directory of Open Access Journals (Sweden)

    S. V. Fedosenko

    2014-01-01

    Full Text Available This review summarizes the results of studies on the composition of microbial communities in the airways of healthy subjects and in patients with chronic obstructive pulmonary disease. Modern technologies of molecular-genetic identification methods of microorganisms allow to perform a deep analysis  of  the  respiratory  microbiom.  It  is  of  considerable  interest  to  determine  the  role  of  the microbiome in the development of human diseases of the bronchopulmonary system, and to understand the impact of the microbes communities as a course of disease and the important factor for the efficacy of current therapy.

  6. [Acute airway obstruction during chemotherapy-induced agranulocytosis with fever].

    Science.gov (United States)

    Vandenbos, F; Deswardt, Ph; Hyvernat, H; Burel-Vandenbos, F; Bernardin, G

    2006-02-01

    Acute airway obstruction caused by mucoid impaction can cause sometimes life-threatening respiratory distress. Bronchial plugging is usually observed in subjects with chronic diseases such as asthma, allergic bronchopulmonary aspergillosis, or cystic fibrosis. In children, it can be related to heart failure. Acute airway obstruction in a patient without a chronic respiratory disease is exceptional. We report the case of a patient who developed bronchial plugs obstructing the bronchi during a period of agranulocytosis induced by chemotherapy. The patient experienced acute respiratory distress with asphyxia. The plugs were composed of fibrin and required several fibroscopic procedures for clearance. To our knowledge, this is the first case report of acute airway obstruction by plugging during a period of agranulocytosis. PMID:16604039

  7. Analysis of the Airway Microbiota of Healthy Individuals and Patients with Chronic Obstructive Pulmonary Disease by T-RFLP and Clone Sequencing

    DEFF Research Database (Denmark)

    Zakharkina, Tetyana; Heinzel, Elke; Koczulla, Rembert A;

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory lung disease that affects a large number of patients and has significant impact. One hallmark of the disease is the presence of bacteria in the lower airways....

  8. Inhibition of Release of Vasoactive and Inflammatory Mediators in Airway and Vascular Tissues and Macrophages by a Chinese Herbal Medicine Formula for Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    George Binh Lenon

    2007-01-01

    Full Text Available Herbal therapies are being used increasingly for the treatment of allergic rhinitis. The aim of this study was to investigate the possible pharmacological actions and cellular targets of a Chinese herbal formula (RCM-101, which was previously shown to be effective in reducing seasonal allergic rhinitis symptoms in a randomized, placebo-controlled clinical trial. Rat and guinea pig isolated tissues (trachea and aorta were used to study the effects of RCM-101 on responses to various mediators. Production of leukotriene B4 in porcine neutrophils and of prostaglandin E2 and nitric oxide (NO in Raw 264.7 cells were also measured. In rat and guinea pig tracheal preparations, RCM-101 inhibited contractile responses to compound 48/80 but not those to histamine (guinea pig preparations or serotonin (rat preparations. Contractile responses of guinea pig tracheal preparations to carbachol and leukotriene C4, and relaxant responses to substance P and prostaglandin E2 were not affected by RCM-101. In rat aortic preparations, precontracted with phenylephrine, endothelium-dependent relaxant responses to acetylcholine and endothelium-independent relaxant responses to sodium nitroprusside were not affected by RCM-101. However, RCM-101 inhibited relaxations to l-arginine in endothelium-denuded rat aortic preparations, which had been pre-incubated with lipopolysaccharide. RCM-101 did not affect leukotriene B4 formation in isolated porcine neutrophils, induced by the calcium ionophore A23187; however, it inhibited prostaglandin E2 and NO production in lipopolysaccharide-stimulated murine macrophages (Raw 264.7 cells.The findings indicate that RCM-101 may have multiple inhibitory actions on the release and/or synthesis of inflammatory mediators involved in allergic rhinitis.

  9. Investigation of the relation between airborne allergic pollen and respiratory allergical diseases in Lanzhou area%兰州市吸入性变态反应病与气传花粉关系的初步调查

    Institute of Scientific and Technical Information of China (English)

    陈琳; 贾战生; 林允信; 朱庆琳

    2001-01-01

    Objective:To investigate the characteristics of airborne allergic pollen in distribution,density and to change of season in Lanzhou,and analyse the relation between airborne allergic pollen and respiratory allergical diseases.Methods:By exposed-glass-in-air method,the continuous 24 h samplings of atmospheric particles were colorated and counted in 2 years.Statistical data of pernenial allergic rhinitis,bronchial asthma,patients of skin-test-positive in the mean time were analysed.Results:A close correlation between airborne allergic pollen in distribution,density,change of season and respiratory allergical diseases has been found.Conclusion:The morbidity of allergical diseases caused by airborne allergic pollen may decrease by using per-seasonal Specific Allergy Vaccination(SAV).%目的:调查兰州市气传花粉的分布、密度、季节性规律等,分析与此有关的变态反应性疾病的关系。方法:用空气暴片法,每24 h计数玻片上花粉粒数进行统计,同时统计这一时期过敏性鼻炎、支气管哮喘、花粉症患者过敏原皮试结果。结果:兰州市气传花粉的分布、密度、季节特点与这一时期的呼吸道变态反应病有密切关系。致敏花粉量最多的季节也是呼吸道变态反应发病最高的季节。结论:了解兰州市气传花粉的分布、密度、季节性规律对患者进行发病前季节性特异性变态反应疫苗治疗(SAV),将减少或减轻气传花粉所致变态反应性疾病的发生率。

  10. Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring

    DEFF Research Database (Denmark)

    Hansen, Susanne; Strøm, Marin; Maslova, Ekaterina;

    2016-01-01

    randomly assigned to receive fish oil during the third trimester of pregnancy, olive oil, or no oil in the ratio 2:1:1. The offspring were followed in a mandatory national prescription register, with complete follow-up for prescriptions related to the treatment of asthma and allergic rhinitis as primary...... in the fish oil group compared with the olive oil group (hazard ratio, 0.54, 95% CI, 0.32-0.90; P = .02). The probability of having had allergic rhinitis medication prescribed was also reduced in the fish oil group compared with the olive oil group (hazard ratio, 0.70, 95% CI, 0.47-1.05; P = .09......), but the difference was not statistically significant. Self-reported information collected at age 18 to 19 years supported these findings. No associations were detected with respect to lung function outcomes or allergic sensitization at 18 to 19 years of age. Conclusion Maternal supplementation with fish oil might...

  11. [Epidemiology of allergic diseases in the Tampico-Ciudad Madero- Altamira metropolitan area].

    Science.gov (United States)

    Vázquez Nava, F; Govea Gómez, C

    1992-01-01

    There is a need to know the epidemiology behavior of health problem, with the purpose of creating the supporting basis for all action to its concern. In the cities Tampico, Madero and Altamira, a systematic exploration of the prevalent situation of allergic disorders did not exist: now, there is a study of 730 people selected at random, by means of questionnaire including 55 items applied to the population as a whole that live in the different zones of this area. It has been found that 54% show an allergic illness, it must be observed that in 66% of them a familial allergic history existed, whereas 45% has seasoning crisis environmental-related. PMID:1514011

  12. Allergic predisposition modifies the effects of pet exposure on respiratory disease in boys and girls: the seven northeast cities of china (snecc study

    Directory of Open Access Journals (Sweden)

    Dong Guang-Hui

    2012-07-01

    Full Text Available Abstract Background The relationship between pet exposure and the respiratory disease in childhood has been a controversial topic, much is still unknown about the nature of the associations between pet exposure and children’s respiratory health stratified by gender and allergic predisposition. The objective of the present study was to assess the relationship between pet exposure and respiratory symptoms in Chinese children, and to investigate the modified effects of gender and allergic predisposition on such relationship. Methods 31,049 children were selected from 25 districts of 7 cities in Northeast China in 2009. Information on respiratory health and exposure to home environmental factors was obtained via a standard questionnaire designed by the American Thoracic Society. Results Children with an allergic predisposition were found to have more frequent exposure to pets than those without an allergic predisposition (18.5% vs. 15.4%. In children without an allergic predisposition, pet exposure was associated with increased susceptibility to respiratory symptoms/diseases, with girls being more susceptible than boys. No association was found between pet exposure and respiratory symptoms/diseases in boys with an allergic predisposition. In girls with an allergic predisposition, association was found between doctor-diagnosed asthma and pet exposure of their mother during pregnancy (adjusted odds ratio (ORs = 2.03; 95% confidence interval (CI: 1.01-4.33, and their current pet exposure (ORs = 1.37; 95%CI: 1.00-1.88. Conclusions Pet exposure in children without an allergic predisposition was associated with increased susceptibility to respiratory disease, with girls being more susceptible than boys.

  13. Increased volume of conducting airways in idiopathic pulmonary fibrosis is independent of disease severity: a volumetric capnography study.

    Science.gov (United States)

    Plantier, Laurent; Debray, Marie-Pierre; Estellat, Candice; Flamant, Martin; Roy, Carine; Bancal, Catherine; Borie, Raphaël; Israël-Biet, Dominique; Mal, Hervé; Crestani, Bruno; Delclaux, Christophe

    2016-03-01

    Bronchiectasis, bronchiolectasis, and bronchiolisation of alveolar regions are salient features of idiopathic pulmonary fibrosis (IPF). We asked whether IPF was associated with physiological changes consistent with increases in the volume of conducting airways, and whether airway volume was related to the severity of lung fibrosis. Patients with IPF (N  =  57, vital capacity-VC: 73  ±  20%), patients with non-IPF interstitial lung disease (non-IPF ILD, N  =  24, VC  =  78  ±  18%) and controls without lung disease (N  =  51, VC  =  112  ±  21%) underwent volumetric capnography for the determination of conducting airway volume using Fletcher's equal area method, reported to predicted total lung capacity to control for the effect of lung size (VDaw/TLCp, mL/L). VDaw/TLCp was higher in patients with IPF (45.3  ±  12.8 ml L(-1)) in comparison with controls (34.2  ±  11.0 ml L(-1), p  capnography showed higher conducting airway volume in IPF patients in comparison with controls and non-IPF ILDs, independent of disease severity. This result is consistent with either anatomical predisposition or dilation/longitudinal growth of conducting airways in IPF. PMID:26828240

  14. [The incidence of occupationally-induced allergic skin diseases in a large flower market].

    Science.gov (United States)

    Hausen, B M; Oestmann, G

    1988-01-01

    150 questionnaires as well as epicutaneous tests in 56 individuals from a total of 675 persons cultivating and selling ornamental plants at the largest German flower market revealed that half of those investigated were suffering from allergic contact dermatitis. The leading plant species with sensitizing properties was found to be the chrysanthemum, followed by tulips and Alstroemeria cultivars. Allergic reactions to daffodils and primulas were rarely observed. Most of the reactions obtained with other Compositae species such as arnica, marguerite, sunflower, tansy and yarrow must be interpreted as cross-reactions due to the fact that cross-reactivity predominates within the sesquiterpene lactone constituents of the various Compositae species. PMID:2971519

  15. Occupational obstructive airway diseases in Germany: Frequency and causes in an international comparison

    Energy Technology Data Exchange (ETDEWEB)

    Latza, U.; Baur, X. [University of Hamburg, Hamburg (Germany)

    2005-08-01

    Occupational inhalative exposures contribute to a significant proportion of obstructive airway diseases (OAD), namely chronic obstructive pulmonary disease (COPD) and asthma. The number of occupational OAD in the German industrial sector for the year 2003 are presented. Other analyses of surveillance data were retrieved from Medline. Most confirmed reports of OAD are cases of sensitizer induced occupational asthma (625 confirmed cases) followed by COPD in coal miners (414 cases), irritant induced occupational asthma (156 cases), and isocyanate asthma (54 cases). Main causes of occupational asthma in Germany comprise flour/flour constituents (35.9%), food/feed dust (9.0%), and isocyanates (6.5%). Flour and grain dust is a frequent cause of occupational asthma in most European countries and South Africa. Isocyanates are still a problem worldwide. Although wide differences in the estimated incidences between countries exist due to deficits in the coverage of occupational OAD, the high numbers necessitate improvement of preventive measures.

  16. Relationship between surfactant alterations and severity of disease in horses with recurrent airway obstruction (RAO).

    OpenAIRE

    Christmann, Undine

    2008-01-01

    Pulmonary surfactant is synthesized in the alveoli and lines the respiratory epithelium of the airways. Phospholipids, the main component of surfactant, confer it its ability to lower surface tension and to prevent alveolar collapse. Airway surfactant helps maintain smaller airway patency, improves muco-ciliary clearance, decreases bronchoconstriction, and modulates pulmonary immunity. Surfactant alterations in human asthma are therefore believed to contribute to the severity of airway obstr...

  17. Histamine airway hyper-responsiveness and mortality from chronic obstructive pulmonary disease : a cohort study

    NARCIS (Netherlands)

    Hospers, JJ; Postma, DS; Rijcken, B; Weiss, ST; Schouten, JP

    2000-01-01

    Background Smoking and airway lability, which is expressed by histamine airway hyper-responsiveness, are known risk factors for development of respiratory symptoms. Smoking is also associated with increased mortality risks. We studied whether airway hyper-responsiveness is associated with increased

  18. Prevalence and risk factors of asthma and allergic diseases in primary schoolchildren living in Bushehr, Iran: phase I, III ISAAC protocol.

    Directory of Open Access Journals (Sweden)

    Shokrollah Farrokhi

    2014-10-01

    Full Text Available Asthma and allergic diseases present a major health burden. Information on the prevalence of these diseases indicates that these diseases are increasing in various parts of the world. It was hoped that this study would be helpful to health system policy-makers in planning allergy prevention programs in the region.The prevalence of asthma and allergic diseases and relation between the various risk factors involved were assessed among schoolchildren in the city of Bushehr, Iran. The ISAAC Phase I and III questionnaires were completed by parents of 1280 children aged 6-7 years and self-completed by 1115 students aged 13-14 years.The prevalence of atopic eczema, allergic rhinitis and asthma among 6-7 year-old students were 12.1%, 11.8% and 6.7%, respectively. While, the prevalence of these diseases among 13-14 year-old students were found to be 19%, 30% and 7.6%, respectively. There was an association between asthma and allergic rhinitis as well as eczema (p<0.05. Consumption of fast food as a risk factor was significantly associated with asthma (p=0.03.The prevalence of asthma and allergic diseases was high among schoolchildren in the city of Bushehr, Iran. Also an association was observed between the fast food consumption and asthma.

  19. Do early childhood immunizations influence the development of atopy and do they cause allergic reactions?

    Science.gov (United States)

    Grüber, C; Nilsson, L; Björkstén, B

    2001-12-01

    Concerns about allergic side-effects of vaccines and about a possible promotion of allergic diseases contribute to incomplete vaccination rates in childhood. This article reviews the current understanding of these issues. There is evidence that pertussis and diphtheria/tetanus antigens elicit immunoglobulin E (IgE) antibody formation as part of the immune response. In murine models, pertussis toxin is an effective adjuvant for IgE formation against simultaneously administered antigens. In children, however, sensitization to unrelated antigens or development of allergic diseases do not seem to be augmented. In contrast, bacille Calmette-Guérin (BCG) and measles vaccination have been proposed as suppressors of allergy because of their T helper 1 (Th1)-fostering properties. In the murine system, BCG inhibits allergic sensitization and airway hyper-reactivity. Some epidemiological studies in humans suggest an inhibitory effect of tuberculosis on allergy. BCG vaccination in children, however, has no or merely a marginal suppressive effect on atopy. Other vaccine components such as egg proteins, gelatin, and antibiotics are a potential hazard to children with severe clinical reactions to these allergens. These rare children should be vaccinated under special precautions. In conclusion, vaccination programs do not explain the increasing prevalence of allergic diseases, but individual children may uncommonly develop an allergic reaction to a vaccine. The risks of not vaccinating children, however, far outweigh the risk for allergy. Therefore, childhood vaccination remains an essential part of child health programs and should not be withheld, even from children predisposed for allergy.

  20. The Danish urban-rural gradient of allergic sensitization and disease in adults

    DEFF Research Database (Denmark)

    Elholm, G; Linneberg, A; Husemoen, L L N;

    2016-01-01

    allergens also decreased with decreasing degree of urbanized upbringing measured by sIgE to 4 common allergens as odds ratio with 95% confidence intervals with city as reference; town 0.60 (0.39-0.92), rural area 0.34 (0.22-0.52) and farm 0.31 (0.21-0.46). Furthermore, it was measured by SPT to 10 common...... allergens; town 0.52 (0.33-0.84), rural area 0.34 (0.21-0.53) and farm 0.29 (0.19-0.45). This urban-rural association was also seen for the risk of sensitization to specific allergens, rhinitis and allergic asthma. CONCLUSION: This is the first study to show an urban-rural gradient of overall allergic......BACKGROUND: The reported prevalence of allergic sensitization among children is lower in rural areas than in urban areas of the world. The aim was to investigate the urban-rural differences of allergic sensitization to inhalant allergens in adults depending on childhood exposure living...

  1. Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells

    OpenAIRE

    Secor, Eric R.; Szczepanek, Steven M.; Castater, Christine A.; Adami, Alexander J.; Matson, Adam P.; Rafti, Ektor T.; Linda Guernsey; Prabitha Natarajan; McNamara, Jeffrey T.; Craig M. Schramm; Thrall, Roger S.; Silbart, Lawrence K.

    2013-01-01

    The incidence of atopic conditions has increased in industrialized countries. Persisting symptoms and concern for drug side-effects lead patients toward adjunctive treatments such as phytotherapy. Previously, we have shown that Bromelain (sBr), a mixture of cysteine proteases from pineapple, Ananas comosus, inhibits ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). However, sBr's effect on development of AAD when treatment is administered throughout OVA-alum sensitization...

  2. [The prevention of allergic diseases with a hypoallergenic formula: a follow-up at 24 months. The preliminary results].

    Science.gov (United States)

    de Seta, L; Siani, P; Cirillo, G; Di Gruttola, M; Cimaduomo, L; Coletta, S

    1994-01-01

    One hundred-eight infants from atopic families were admitted to the study. Each had at least one first-degree relative affected by asthma or rhinitis, conjunctivitis, eczema, cow's milk protein intolerance. All infants not breast fed were hypoallergenic formula. 46 infants were breast fed, 39 were bottle fed by the ordinary formula and 23 received the hypoallergenic one. No other food was introduced up to 6 months. Cow's milk proteins, egg, poultry and fish were introduced after 6 months. All infants were followed up to 24 months. Incidence of allergic diseases up to 24 months was not significantly different among the 3 groups.

  3. [Therapy of allergic rhinitis].

    Science.gov (United States)

    Klimek, Ludger; Sperl, Annette

    2016-03-01

    If the avoidance of the provoking allergen is insufficient or not possible, medical treatment can be tried. Therapeutics of the first choice for the treatment of the seasonal and persistent allergic rhinitis are antihistamines and topical glucocorticoids. Chromones are less effective so they should only be used for adults with a special indication, for example during pregnancy. Beside the avoidance of the allergen the immunotherapy is the only causal treatment of allergic diseases. PMID:27120870

  4. [GA(2)LEN (Global Allergy and Asthma European Network): European network of excellence for asthma and allergic diseases].

    Science.gov (United States)

    Gjomarkaj, M; Pace, E; Canonica, G W; Bonini, S; Ricci, G; Burney, P; Zuberbier, T; Van Cauwenberge, P; Bousquet, J

    2009-12-01

    Allergic diseases represent some of the main health problems in Europe. These are increasing in prevalence, seriousness and social cost. The Global Allergy and Asthma European Network (GA(2)LEN), a network of excellence of the 6 degrees management program, was created in the 2005 with the aim to gather the European leader institutions of the research and clinical assistance fields, in order to guarantee the excellence and avoid the fragmentation of the energy spent in fighting allergy diseases in general. The GA(2)LEN has drawn a great advantage from the personal efforts of every single researcher who have proved their strong motivation in carrying on this "pan-European" model of collaboration. The network has been organized in order to increase the team work in scientific research projects in allergic and asthma disease field, making the GA(2)LEN the worldwide leader in this area. On these basis research projects have been carried on about which first data have been already published. The activities of the GA(2)LEN include in general the establishment of a lasting organization of the planning phase, the activity linked to every single project and to the improving on the existing projects, as well as the draft of new guidelines. This review reports the main achieved goals. PMID:20010485

  5. The potassium channel KCa3.1 as new therapeutic target for the prevention of obliterative airway disease

    DEFF Research Database (Denmark)

    Hua, Xiaoqin; Deuse, Tobias; Chen, Yi-Je;

    2013-01-01

    The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout or p...

  6. Relationship among bacterial colonization, airway inflam- mation, and bronchodilator response in patients with stable chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Bronchodilator reversibility, a response of airway to bronchodilator, occurred in 64% of stable patients with chronic obstructive pulmonary disease (COPD).1 In patients with COPD who have a significant response to bronchodilators, a clinical and functional response to inhaled corticosteroids is similar to that in asthmatics.2

  7. Chenodeoxycholic acid attenuates ovalbumin-induced airway inflammation in murine model of asthma by inhibiting the T(H)2 cytokines.

    Science.gov (United States)

    Shaik, Firdose Begum; Panati, Kalpana; Narasimha, Vydyanath R; Narala, Venkata Ramireddy

    2015-08-01

    Asthma is a complex highly prevalent airway disease that is a major public health problem for which current treatment options are inadequate. Recently, farnesoid X receptor (FXR) has been shown to exert anti-inflammatory actions in various disease conditions, but there have been no reported investigations of Chenodeoxycholic acid (CDCA), a natural FXR agonist, in allergic airway inflammation. To test the CDCA effectiveness in airway inflammation, ovalbumin (OVA)-induced acute murine asthma model was established. We found that lung tissue express FXR and CDCA administration reduced the severity of the murine allergic airway disease as assessed by pathological and molecular markers associated with the disease. CDCA treatment resulted in fewer infiltrations of cells into the airspace and peribronchial areas, and decreased goblet cell hyperplasia, mucus secretion and serum IgE levels which was increased in mice with OVA-induced allergic asthma. The CDCA treatment further blocked the secretion of TH2 cytokines (IL-4, IL-5 and IL-13) and proinflammatory cytokine TNF-α indicate that the FXR and its agonists may have potential for treating allergic asthma. PMID:26067554

  8. Asthma characteristics and biomarkers from the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) longitudinal profiling study

    DEFF Research Database (Denmark)

    Silkoff, P E; Strambu, I; Laviolette, M;

    2015-01-01

    ). This report presents for the first time the study design, and characteristics of the recruited subjects. METHODS: Patients with a range of asthma severity and healthy non-atopic controls were enrolled. The asthmatic subjects were followed for 12 months. Assessments included history, patient questionnaires......BACKGROUND: Asthma is a heterogeneous disease and development of novel therapeutics requires an understanding of pathophysiologic phenotypes. The purpose of the ADEPT study was to correlate clinical features and biomarkers with molecular characteristics, by profiling asthma (NCT01274507...... = 51) asthma cohorts and 30 healthy controls were enrolled from North America and Western Europe. Airflow obstruction, bronchodilator response and airways hyperresponsiveness increased with asthma severity, and severe asthma subjects had reduced forced vital capacity. Asthma control questionnaire-7...

  9. Suppression of GATA-3 nuclear import and phosphorylation: a novel mechanism of corticosteroid action in allergic disease.

    Directory of Open Access Journals (Sweden)

    Kittipong Maneechotesuwan

    2009-05-01

    Full Text Available BACKGROUND: GATA-3 plays a critical role in regulating the expression of the cytokines interleukin (IL-4, IL-5, and IL-13 from T helper-2 (Th2 cells and therefore is a key mediator of allergic diseases. Corticosteroids are highly effective in suppressing allergic inflammation, but their effects on GATA-3 are unknown. We investigated the effect of the corticosteroid fluticasone propionate on GATA-3 regulation in human T-lymphocytes in vitro and in vivo. METHODS AND FINDINGS: In a T lymphocyte cell line (HuT-78 and peripheral blood mononuclear cells stimulated by anti-CD3 and anti-CD28 in vitro we demonstrated that fluticasone inhibits nuclear translocation of GATA-3 and expression of Th2 cytokines via a mechanism independent of nuclear factor-kappaB and is due, in part, to competition between GATA-3 and the ligand-activated glucocorticoid receptor for nuclear transport through the nuclear importer importin-alpha. In addition, fluticasone induces the expression of mitogen-activated protein kinase (MAPK phosphatase-1 (MKP-1, the endogenous inhibitor of p38 MAPK, which is necessary for GATA-3 nuclear translocation. These inhibitory effects of fluticasone are rapid, potent, and prolonged. We also demonstrated that inhaled fluticasone inhibits GATA-3 nuclear translocation in peripheral blood lymphocytes of patients with asthma in vivo. CONCLUSIONS: Corticosteroids have a potent inhibitory effect on GATA-3 via two interacting mechanisms that potently suppress Th2 cytokine expression. This novel mechanism of action of corticosteroids may account for the striking clinical efficacy of corticosteroids in the treatment of allergic diseases.

  10. Clinical surveys on the incidence of asthma and airway hyper responsiveness in allergic rhinitis%变应性鼻炎患者潜在哮喘和下气道高反应的筛查研究

    Institute of Scientific and Technical Information of China (English)

    刘晓芳; 王向东; 王杨; 赵岩; 孙永昌; 张罗

    2012-01-01

    OBJECTIVE Allergic rhinitis and its impact on asthma (ARIA) questionnaire combined with indices in spirometric test may facilitate early diagnosis for asthma complicating in allergic rhinitis (AR) and for airway hyperresponsiveness (AHR) . METHODS A total of 306 AR patients without diagnosis of asthma received ARIA questionnaire, spirometric test and methacholine challenge test (MCT) to determine the incidence of asthma or AHR. The values corresponding to FEVi% and FEF25-75% were compared and ROC curves were plotted. RESULTS There were 127 cases with more than one positive response in the questionnaire, of which 24 cases showed positive response in pulmonary function diastole test, and 32 cases positive response in MCT. The omission diagnose rate of asthma was 18%, and the incidence of asthma in the cases with positive response was 44.1%. There were 179 cases with no positive response in the questionnaire, of which 41 cases were diagnosed as AHR with the incidence of 13%. The values of FEV1% and FEF25-75% in the different groups with MCT positive responses were significantly lower than those in the group with negative responses. Moreover, the ROC curves demonstrated the diagnostic accuracy of FEF25-75% was slightly higher than that of FEVi% for asthma or AHR. CONCLUSION ARIA questionnaire may help screen the combined asthma in AR. Some AR patients affiliated AHR. Damage in small airway function may prompt occurrence of asthma or AHR, and the related cases should receive MCT.%目的 探讨问卷调查结合肺功能发现变应性鼻炎(AR)合并哮喘和气道高反应性(airway hyperresponsiveness,AHR)的意义.方法 306例无哮喘的AR患者行问卷调查、肺功能乙酰甲胆碱激发试验(methacholine challenge test,MCT),诊断哮喘或AHR.比较第一秒用力呼气容积占预计值的百分比(FEV1%)和用力呼气中段流速(FEF25-75%)值,绘制ROC曲线.结果 127例有哮喘症状,24例肺功能舒张试验阳性,32

  11. Small airway dysfunction and flow and volume bronchodilator responsiveness in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Pisi R

    2015-06-01

    Full Text Available Roberta Pisi,1 Marina Aiello,1 Andrea Zanini,2 Panagiota Tzani,1 Davide Paleari,3 Emilio Marangio,1 Antonio Spanevello,2,4 Gabriele Nicolini,5 Alfredo Chetta1 1Department of Clinical and Experimental Medicine, University of Parma, Parma, 2Division of Pneumology, IRCCS Rehabilitation Institute of Tradate, Salvatore Maugeri Foundation, Tradate, 3Medical Department, Chiesi Farmaceutici SpA, Parma, 4Department of Clinical and Experimental Medicine, University of Insubria, Varese, 5Corporate Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy Background: We investigated whether a relationship between small airways dysfunction and bronchodilator responsiveness exists in patients with chronic obstructive pulmonary disease (COPD.Methods: We studied 100 (20 female; mean age: 68±10 years patients with COPD (forced expiratory volume in 1 second [FEV1]: 55% pred ±21%; FEV1/forced vital capacity [FVC]: 53%±10% by impulse oscillometry system. Resistance at 5 Hz and 20 Hz (R5 and R20, in kPa·s·L-1 and the fall in resistance from 5 Hz to 20 Hz (R5 – R20 were used as indices of total, proximal, and peripheral airway resistance; reactance at 5 Hz (X5, in kPa·s·L-1 was also measured. Significant response to bronchodilator (salbutamol 400 µg was expressed as absolute (≥0.2 L and percentage (≥12% change relative to the prebronchodilator value of FEV1 (flow responders, FRs and FVC (volume responders, VRs.Results: Eighty out of 100 participants had R5 – R20 >0.03 kPa·s·L-1 (> upper normal limit and, compared to patients with R5 – R20 ≤0.030 kPa·s·L-1, showed a poorer health status, lower values of FEV1, FVC, FEV1/FVC, and X5, along with higher values of residual volume/total lung capacity and R5 (P<0.05 for all comparisons. Compared to the 69 nonresponders and the 8 FRs, the 16 VRs had significantly higher R5 and R5 – R20 values (P<0.05, lower X5 values (P<0.05, and greater airflow obstruction and lung

  12. Diesel effects in allergic diseases: modulation of chemokines synthesis and development of an in vivo allergic model; Effets du diesel dans les maladies allergiques: modulation de la synthese de chimiokines et developpement d'un modele allergique in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Senechal, St.

    2003-09-01

    Allergic diseases are characterized by an immunoglobulin E (IgE)-dependent inflammatory reaction, presenting a type 2 cytokines profile (IL-4 and IL-5), and by the presence of eosinophils. The particulate pollution in urban areas comes mainly from diesel engines. Diesel particulates and their associated hydrocarbons, are probably involved in the recent increase of allergic pathologies thanks to their capability to induce a type-2 immune response. In this work, the effect of organic extracts of diesel particulates on the development of a Th2-type inflammatory response are analyzed, in particular by the evaluation of the synthesis modulation of chemokines, molecules known for their attraction capacities with respect to inflammatory cells, and of Th1 or Th2-type lymphocytes. It is shown that the exposure of mono-nucleated cells and alveolar macrophages from people allergic to diesel particulates induces a diminution of IP-10 production (pro-Th1), and in conjunction with the allergen, an increase of MDC (pro-Th2), mediated by the CD28 route. The functional consequence is an increased capability to attract human Th2 clones, non-completely inhibited by an anti-MDC neutralizing Ac, suggesting the participation of some other chemokines. Other analyses have shown that the diesel alone induces an I-309 production (pro-Th2) and that the diesel/allergen combination leads to a production of PARC (pro-Th2) but also of MIG (pro-Th1), the functional result being an attraction of Th2 cells again. In parallel and surprisingly, an increase of the expression of chemokine receptors expressed on Th1 cells has been evidenced, in particular the CXCR3, combined to a loss of its chemo-attractive power. These properties have been linked to a clearance function of the receptors with respect to their ligands. These results suggest that diesel can amplify a type-2 noxious response to allergic patients, firstly by inducing pro-Th2 chemokines, and secondly by facilitating the clearance of pro-Th1

  13. Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation.

    Science.gov (United States)

    McAlees, J W; Whitehead, G S; Harley, I T W; Cappelletti, M; Rewerts, C L; Holdcroft, A M; Divanovic, S; Wills-Karp, M; Finkelman, F D; Karp, C L; Cook, D N

    2015-07-01

    Allergic asthma is a chronic, inflammatory lung disease. Some forms of allergic asthma are characterized by T helper type 2 (Th2)-driven eosinophilia, whereas others are distinguished by Th17-driven neutrophilia. Stimulation of Toll-like receptor 4 (TLR4) on hematopoietic and airway epithelial cells (AECs) contributes to the inflammatory response to lipopolysaccharide (LPS) and allergens, but the specific contribution of TLR4 in these cell compartments to airway inflammatory responses remains poorly understood. We used novel, conditionally mutant Tlr4(fl/fl) mice to define the relative contributions of AEC and hematopoietic cell Tlr4 expression to LPS- and allergen-induced airway inflammation. We found that Tlr4 expression by hematopoietic cells is critical for neutrophilic airway inflammation following LPS exposure and for Th17-driven neutrophilic responses to the house dust mite (HDM) lysates and ovalbumin (OVA). Conversely, Tlr4 expression by AECs was found to be important for robust eosinophilic airway inflammation following sensitization and challenge with these same allergens. Thus, Tlr4 expression by hematopoietic and airway epithelial cells controls distinct arms of the immune response to inhaled allergens. PMID:25465099

  14. Intestinal microflora and allergic diseases in children%肠道菌群与儿童过敏性疾病

    Institute of Scientific and Technical Information of China (English)

    王超颖

    2015-01-01

    肠道菌群在调节机体免疫功能、维持肠道黏膜屏障、抑制外源性致病菌定植等方面具有重要作用.近年来流行病学调查和实验研究提示生命早期肠道菌群的紊乱与过敏性疾病的发生发展有密切关系.关于益生菌对过敏性疾病的预防和治疗作用,近年来已有多项研究,但尚无确切结论.%Intestinal microflora play a significant role in regulating systemic immune function,maintaining the intestinal barrier,and preventing the invasion of external pathogenic bacteria.Recent epidemiological studies and experimental research suggest that the occurrence and development of allergic diseases is associated with the disturbances in the intestinal microflora during early life.Research has been taken to evaluate the prevention and treatment effects in allergic disease of probiotics,which is currently unestablished.

  15. Component resolved testing for allergic sensitization

    DEFF Research Database (Denmark)

    Skamstrup Hansen, Kirsten; Poulsen, Lars K

    2010-01-01

    Component resolved diagnostics introduces new possibilities regarding diagnosis of allergic diseases and individualized, allergen-specific treatment. Furthermore, refinement of IgE-based testing may help elucidate the correlation or lack of correlation between allergenic sensitization and allergic...

  16. Temperature effects on outpatient visits of respiratory diseases, asthma, and chronic airway obstruction in Taiwan

    Science.gov (United States)

    Wang, Yu-Chun; Lin, Yu-Kai

    2015-07-01

    This study evaluated the risk of outpatient visits for respiratory diseases, asthma, and chronic airway obstruction not elsewhere classified (CAO) associated with ambient temperatures and extreme temperature events from 2000 to 2008 in Taiwan. Based on geographical and socioeconomics characteristics, this study divided the whole island into seven areas. A distributed lag non-linear model was used to estimate the area-disease-specific cumulative relative risk (RR), and random-effect meta-analysis was used to estimate the pooled RR of outpatient visits, from lag 0 to lag 7 days, associated with daily temperature, and added effects of prolonged extreme heat and cold for population of all ages, the elderly and younger than 65 years. Pooled analyses showed that younger population had higher outpatient visits for exposing to low temperature of 18 °C, with cumulative 8-day RRs of 1.36 (95 % confidence interval (CI) 1.31-1.42) for respiratory diseases, 1.10 (95 % CI 1.03-1.18) for asthma, and 1.12 (95 % CI 1.02-1.22) for CAO. The elderly was more vulnerable to high temperature of 30 °C with the cumulative 8-day RR of 1.08 (95 % CI 1.03-1.13) for CAO. Elevated outpatient visits for all respiratory diseases and asthma were associated with extreme heat lasting for 6 to 8 days. On the contrary, the extreme cold