WorldWideScience

Sample records for allegheny river

  1. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  2. Allegheny County Watershed Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  3. Fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers and selected tributaries, Allegheny County, Pennsylvania, 2001-2005

    Science.gov (United States)

    Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.

    2006-01-01

    Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal

  4. Hydraulic modeling of mussel habitat at a bridge-replacement site, Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    Fulton, John W.; Wagner, Chad R.; Rogers, Megan E.; Zimmerman, Gregory F.

    2010-01-01

    The Allegheny River in Pennsylvania supports a large and diverse freshwater-mussel community, including two federally listed endangered species, Pleurobema clava(Clubshell) and Epioblasma torulosa rangiana (Northern Riffleshell). It is recognized that river hydraulics and morphology play important roles in mussel distribution. To assess the hydraulic influences of bridge replacement on mussel habitat, metrics such as depth, velocity, and their derivatives (shear stress, Froude number) were collected or computed.

  5. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  6. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  7. Allegheny County Greenways

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Greenways data was compiled by the Allegheny Land Trust as a planning effort in the development of Allegheny Places, the Allegheny County Comprehensive Plan. The...

  8. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  9. Allegheny County Plumbers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All master plumbers must be registered with the Allegheny County Health Department. Only Registered Master Plumbers who possess a current plumbing license or...

  10. Allegheny County Supermarkets & Convenience Stores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Location information for all Supermarkets and Convenience Stores in Allegheny County was produced using the Allegheny County Fee and Permit Data for 2016.

  11. Allegheny County Hospitals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  12. Allegheny County Blazed Trails Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the location of blazed trails in all Allegheny County parks. This is the same data used in the Allegheny County Parks Trails Mobile App, available for Apple...

  13. Allegheny County Property Assessments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Real Property parcel characteristics for Allegheny County, PA. Includes information pertaining to land, values, sales, abatements, and building characteristics (if...

  14. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  15. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  16. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  17. Allegheny County Anxiety Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  18. Allegheny County Depression Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  19. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2016. Fields include injury severity,...

  20. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2017. Fields include injury severity,...

  1. Allegheny County Beltway System Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Authoritative dataset of the beltway system in Allegheny County. The system was developed to help motorists navigate through Allegheny County on low-traffic roads....

  2. Allegheny County Tobacco Vendors

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The tobacco vendor information provides the location of all tobacco vendors in Allegheny County in 2015. Data was compiled from administrative records managed by...

  3. Allegheny County Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of the street centerlines for vehicular and foot traffic in Allegheny County. Street Centerlines are classified as Primary Road,...

  4. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  5. Allegheny County Council Districts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays the boundaries of the County Council Districts in Allegheny County. The dataset is based on municipal boundaries and City of Pittsburgh ward...

  6. Allegheny County Obesity Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Obesity rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  7. Allegheny County Smoking Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Smoking rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  8. Allegheny County Dam Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the point locations of dams in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  9. Allegheny County Parks Outlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the size and shape of the nine Allegheny County parks. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  10. Allegheny County Property Viewer

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Webmap of Allegheny municipalities and parcel data. Zoom for a clickable parcel map with owner name, property photograph, and link to the County Real Estate website...

  11. Allegheny County Snow Route Centerlines (2017-2018)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows snow route responsibilities of Allegheny County-owned roads.Category: TransportationOrganization: Allegheny CountyDepartment: Geographic...

  12. ACED Allegheny Home Improvement Loan Program (AHILP)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Allegheny Home Improvement Loan Program (AHILP) is the most affordable way for eligible Allegheny County residents to rehabilitate and improve their homes....

  13. Allegheny County Land Use Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Allegheny County land use as ascribed to areas of land. The Land Use Feature Dataset contains photogrammetrically compiled information concerning vegetation and...

  14. Allegheny County School District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  15. Allegheny County-Owned Roads Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the roads owned by Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  16. Allegheny County Fast Food Establishments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Allegheny County Health Department has generated this list of fast food restaurants by exporting all chain restaurants without an alcohol permit from the...

  17. Allegheny County Cell Tower Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays cell tower locations as points in Allegheny County. The dataset is based on outbuilding codes in the Property Assessment Parcel Database used...

  18. Allegheny County Fatal Accidental Overdoses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Fatal accidental overdose incidents in Allegheny County, denoting age, gender, race, drugs present, zip code of incident and zip code of residence. Zip code of...

  19. Allegheny County Zip Code Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  20. Allegheny County-Owned Bridges Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the location of bridges owned by Allegheny County as centroids. If viewing this description on the Western Pennsylvania Regional Data Center’s...

  1. Allegheny County Mortgage Foreclosure Records

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data includes filings related to mortgage foreclosure in Allegheny County. The foreclosure process enables a lender to take possession of a property due to an...

  2. Allegheny County Poor Housing Conditions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This estimate of the percent of distressed housing units in each Census Tract was prepared using data from the American Community Survey and the Allegheny County...

  3. Allegheny County Summer Food Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set shows the Summer Food Sites located within Allegheny County for children (18 years and younger) for breakfast and lunch during summer recess. OPEN...

  4. Allegheny County Primary Care Access

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  5. Allegheny County Property Sale Transactions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA. Before doing any market analysis on property sales, check...

  6. Allegheny County Park Rangers Outreach

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Launched in June 2015, the Allegheny County Park Rangers program reached over 48,000 people in its first year. Park Rangers interact with residents of all ages and...

  7. Allegheny County Jail Daily Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A daily census of the inmates at the Allegheny County Jail (ACJ). Includes gender, race, age at booking, and current age. The records for each month contain a...

  8. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  9. Allegheny County Weights and Measures Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Inspections conducted by the Allegheny County Bureau of Weights and Measures. The Bureau inspects weighing and timing devices such as gas pumps, laundromat timers,...

  10. Allegheny County Magisterial Districts Outlines (2015)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the magisterial districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  11. Allegheny County Farmers Markets Locations (2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the locations of farmers markets in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  12. Allegheny County Median Age at Death

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The median age at death is calculated for each municipality in Allegheny County. Data is based on the decedent's residence at the time of death, not the location...

  13. The Impact of Commercially Treated Oil and Gas Produced Water Discharges on Bromide Concentrations and Modeled Brominated Trihalomethane Disinfection Byproducts at two Downstream Municipal Drinking Water Plants in the Upper Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species were observed in finished water at several Western Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in br...

  14. Port Authority of Allegheny County Transit Stops

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All transit stops within the Port Authority of Allegheny County's service area for the November 20, 2016 - March (TBD) 2017 schedule period.

  15. Allegheny County Restaurant/Food Facility Inspection Violations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Facilities located within Allegheny County that produce, distribute and sell food products are subject to mandatory, routine inspection by one of the health...

  16. Allegheny County Voting District (2016) Web Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This webmap demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  17. Allegheny County Voting District (2015) Web Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This webmap demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  18. Allegheny County Polling Place Locations (November 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  19. Allegheny County Polling Place Locations (May 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  20. Allegheny County Polling Place Locations (November 2015)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  1. Allegheny County Voting District Boundaries (Spring 2017 - present)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates municipal voting districts in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  2. Port Authority of Allegheny County Park and Rides

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset includes the GIS shapefile for Port Authority of Allegheny County's Park and Ride facilities. This layer is updated annually or on an as-needed basis...

  3. Allegheny County Voting District Boundaries (Spring 2015 - Spring 2016)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  4. Allegheny County Voting District Boundaries (Fall 2016 - Spring 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  5. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  6. Allegheny County Housing Tenure

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Home ownership provides a number of financial, social, and health benefits to American families. Especially in areas with housing price appreciation, home ownership...

  7. Allegheny County Dog Licenses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A list of dog license dates, dog breeds, and dog name by zip code. Currently this dataset does not include City of Pittsburgh dogs.

  8. Allegheny County Sheriff Sales

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List of properties up for auction at a Sheriff Sale. Datasets labeled "Current" contain this month's postings, while those labeled "Archive" contain a running list...

  9. Allegheny County Older Housing

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Older housing can impact the quality of the occupant's health in a number of ways, including lead exposure, housing quality, and factors that may exacerbate...

  10. Allegheny County Walk Scores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...

  11. Allegheny County Vacant Properties

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Mail carriers routinely collect data on address no longer receiving mail due to vacancy. This vacancy data is reported quarterly at census tract geographies in the...

  12. Allegheny County Employee Salaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Employee salaries are a regular Right to Know request the County receives. Here is the disclaimer language that is included with the dataset from the Open Records...

  13. Allegheny County Asbestos Permits

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Current asbestos permit data issued by the County for commercial building demolitions and renovations as required by the EPA. This file is updated daily and can be...

  14. Allegheny County Block Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset overlays a grid on the County to assist in locating a parcel. The grid squares are 3,500 by 4,500 square feet. The data was derived from original...

  15. Allegheny County Certified MWDBE Businesses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — According to the Federal Department of Transportation, Disadvantaged Business Enterprises (DBE) are for-profit small business concerns where socially and...

  16. Allegheny County Soil Type Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm;...

  17. Allegheny County Environmental Justice Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Environmental Justice areas in this guide have been defined by the Pennsylvania Department of Environmental Protection. The Department defines an environmental...

  18. Allegheny County Basin Outlines Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This basins dataset was created to initiate regional watershed approaches with respect to sewer rehabilitation. If viewing this description on the Western...

  19. Allegheny County Toxics Release Inventory

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Toxics Release Inventory (TRI) data provides information about toxic substances released into the environment or managed through recycling, energy recovery, and...

  20. Allegheny County Building Footprint Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains photogrammetrically compiled roof outlines of buildings. All near orthogonal corners are square. Buildings that are less than 400 square feet...

  1. Allegheny County WIC Vendor Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of Women, Infants, and Children (WIC) program vendors. If viewing this description on the Western Pennsylvania Regional Data...

  2. Allegheny County Land Cover Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  3. Allegheny County Wooded Area Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates stands of trees (coniferous and deciduous) too numerous to plot as individual trees. The area is delineated following a generalized line...

  4. Allegheny County Property Assessment Appeals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Lists property assessment appeals filed and heard with the Board of Property Assessment Appeals and Review (BPAAR) and the hearing results, for tax years 2015 to...

  5. Allegheny County Illegal Dump Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Illegal Dump Site dataset includes information on illegal dump sites, their type of trash, and the estimate tons of trash at each site. The information was...

  6. Allegheny County Map Index Grid

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid...

  7. Field testing a soil site field guide for Allegheny hardwoods

    Science.gov (United States)

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  8. Allegheny woodrat (Neotoma magister) use of rock drainage channels on reclaimed mines in southern West Virginia

    Science.gov (United States)

    Chamblin, H.D.; Wood, P.B.; Edwards, J.W.

    2004-01-01

    Allegheny woodrats (Neotoma magister) currently receive protected status throughout their range due to population declines. Threats associated with habitat fragmentation (e.g., introduced predators, disease, loss of connectivity among subpopulations and habitat loss) may explain why Allegheny woodrats are no longer found in many areas where they existed just 25 y ago. In southern West Virginia, surface coal mining is a major cause of forest fragmentation. Furthermore, mountaintop mining, the prevalent method in the region, results in a loss of rock outcrops and cliffs within forested areas, typical habitat of the Allegheny woodrat To determine the extent that Allegheny woodrats make use of reclaimed mine land, particularly rock drainages built during reclamation, we sampled 24 drainage channels on reclaimed surface mines in southern West Virginia, collected habitat data at each site and used logistic regression to identify habitat variables related to Allegheny woodrat presence. During 187 trap nights, 13 adult, 2 subadult and 8 juvenile Allegheny woodrats were captured at 13 of the 24 sites. Percent of rock as a groundcover and density of stems >15 cm diameter-at-breast-height (DBH) were related to Allegheny woodrat presence and were significantly greater at sites where Allegheny woodrats were present than absent. Sites where Allegheny woodrats were present differed substantially from other described habitats in West Virginia, though they may simulate boulder piles that occur naturally. Our findings suggest the need for additional research to examine the dynamics between Allegheny woodrat populations inhabiting rock outcrops in forests adjacent to mines and populations inhabiting constructed drainage channels on reclaimed mines. However, if Allegheny woodrats can use human-created habitat, our results will be useful to surface mine reclamation and to other mitigation efforts where rocky habitats are lost or disturbed.

  9. Allegheny County Municipal Land Use Ordinances

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Many municipalities have their own land use ordinances and establish standards and requirements for land use and development in that municipality. This dataset is...

  10. Allegheny County Kane Regional Center Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Total number of residents in each Kane Regional Center facility by race and gender. The Kane Regional Centers are skilled nursing and rehabilitation centers run by...

  11. Port Authority of Allegheny County Transit Routes

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shapefile of Transit Routes - Please refer to each resource for active dates of the route information. Routes change over time,

  12. Allegheny County Housing and Community Environment Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Residential housing inspections and inspections in response to complaints for community environment problems, such as open vacant structures, vacant lots with...

  13. State of Aging in Allegheny County Survey

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — For more than three decades UCSUR has documented the status of older adults in the County along multiple life domains. Every decade we issue a comprehensive report...

  14. 75 FR 81555 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Allegheny County's...

    Science.gov (United States)

    2010-12-28

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Allegheny County's Adoption of Control... amendments to the Allegheny County Health Department (ACHD) Rules and Regulations, Article XXI, Air Pollution Control, and meets the requirement to adopt Reasonably Available Control Technology (RACT) for sources...

  15. Allegheny County Clean Indoor Air Act Exemptions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List and location of all the businesses and social clubs who have received an exemption from the Pennsylvania Clean Indoor Air Act. “The Clean Indoor Air Act, Act...

  16. A Stocking Guide for Allegheny Hardwoods and Its Use in Controlling Intermediate Cuttings

    Science.gov (United States)

    Benjamin A. Roach

    1977-01-01

    A stocking guide for stands of Allegheny hardwoods (sugar maple or sugar maple-beech with varying admixtures of black cherry, red maple, white ash, sweet birch, and other species) on the Allegheny Plateau in northwestern Pennsylvania. Included are procedures for evaluating stocking and stand conditions, thinning even-aged stands, determining minimum residual stocking,...

  17. Persistence of Allegheny woodrats Neotoma magister across the mid-Atlantic Appalachian Highlands landscape, USA

    Science.gov (United States)

    W. Mark Ford; Steven B. Castleberry; Michael T. Mengak; Jane L. Rodrigue; Daniel J. Feller; Kevin R. Russell

    2006-01-01

    We examined a suite of macro-habitat and landscape variables around active and inactive Allegheny woodrat Neotoma magister colony sites in the Appalachian Mountains of the mid-Atlantic Highlands of Maryland, Virginia, and West Virginia using an information-theoretic modeling approach. Logistic regression analyses suggested that Allegheny woodrat presence was related...

  18. Allegheny County Municipal Building Energy and Water Use

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains energy and water use information from 2010 to 2014 for 144 County-operated buildings. Metrics include: kBtu (thousand British thermal units),...

  19. Allegheny County Tax Liens (Filings, Satisfactions, and Current Status)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Tax liens are a method the government uses to secure an interest in unpaid tax debt. This dataset represents information about county, municipal, school district,...

  20. Project monitor. Final report. [Allegheny County, PA

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, P.Y.; Beck, P.; Doctors, S.I.

    1979-04-27

    Results are reported of a study of consumers' energy attitudes and behavior. Household consumers and small business consumers (both retail and manufacturing) responded to the survey, but only the household results are reported. The study sought to understand energy-related behavior at the level where the various components of energy policy intersect. Attempts are made to attain this goal by determining the extent to which various properties of the individuals and firms are associated with various amounts of conservation. A representative sample of the adult population in Allegheny County, Pennsylvania was interviewed. Part I introduces the measures of household conservation to be used in the survey. Part II analyzes each of the types of energy conservation - general, winterization, heating, cooling, appliance, transportation, and electricity reductions - and relates them to demographic, situation, attitudinal, and perceptual variables in the household sample. Part III deals with the impacts of Project Pacesetter and the United Mine Workers' strike against the coal operators - particularly, the impact of the coal strike on household residents of Allegheny County. Part IV summarizes the findings and uses them for recommendations regarding energy conservation policy. Additional data are presented in 4 appendices. (MCW)

  1. Environmental geology, Allegheny County and vicinity, Pennsylvania; description of a program and its results

    Science.gov (United States)

    Briggs, Reginald Peter

    1977-01-01

    Past land-use practices, including mining, in Allegheny County, Pa., have resulted in three principal environmental problems, exclusive of air and water contamination. They are flooding, landsliding, and subsidence over underground mines. In 1973, information was most complete relative to flooding and least complete relative to landsliding. Accordingly, in July 1973, the U.S. Geological Survey (USGS) and The Appalachian Regional Commission (ARC) entered into an agreement by which the USGS undertook studies chiefly aimed at increasing knowledge of landsliding and mine subsidence relative to land use, but having other ramifications as well, as part of a larger ARC 'Land-use and physical-resource analysis' (LUPRA) program. The chief geographic focus was Allegheny County, but adjacent areas were included in some investigations. Resulting products, exclusive of this report, are: 1. Forty-three provisional maps of landslide, distribution and susceptibility and of land modified by man in Allegheny County, 1:24,000 scale, 7? -minute quadrangle format, released to open files. 2. Four USGS Miscellaneous Field Studies (MF) maps of Allegheny County showing (a) bedrock, MF685A; (b) susceptibility to landsliding, MF-685B ; (c) coal-mining features, MF-685C; and (d) zones that can be affected by flooding, landsliding and undermining, MF-685D; all at the scale of 1:50,000. 3. Two MF maps showing coal-mining activity and related information and sites of recorded mine-subsidence events, and one MF map classifying land surface by relative potentiality of mine subsidence, in Allegheny, Washington, and Westmoreland Counties, Pa., at a scale of 1:125,000--MF-693A through MF-693C. 4. A companion report to the Allegheny County map of susceptibility to landsliding--USGS Circular 728. 5. Five MF maps, largely in chart form, describing interaction of the shallow ground-water regime with mining-related problems, landsliding, heavy storm precipitation, and other features and processes, largely

  2. Allegheny County Public Swimming Pool, Hot Tub, and Spa Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Public swimming pool, hot tub, and spa facilities are licensed and inspected once each year to assure proper water quality, sanitation, lifeguard coverage and...

  3. Defending the Pittsburgh Waterways Against Catastrophic Disruption

    Science.gov (United States)

    2012-06-01

    by the Hannibal L/D. Along the Allegheny River our AOI is bounded by the Allegheny L/D 5. Along the Monongahela River our AOI is bounded by the...22  Figure 9.  Dams segment the river into pools, which are numbered. Locks enable transit between pools. The Hannibal L/D and the Pike Island...AOI, listed in the table to the right. Along the Ohio River our AOI is bounded by the Hannibal L/D. Along the Allegheny River our AOI is bounded by

  4. Allegheny Portage Railroad: Developing Transportation Technology. Teaching with Historic Places.

    Science.gov (United States)

    Eick, Brian; Wallner, Rick

    1999-01-01

    Presents a lesson that will help students discover the innovative technologies of the Allegheny Portage Railroad that can be used when teaching about early 19th-century expansion and industrialization. Expounds that students' skills in geography and history will be strengthened through map reading, examination of pictures, and analysis of…

  5. Communicating old-growth forest management on the Allegheny National Forest

    Science.gov (United States)

    Brad Nelson; Chris Nowak; Dave deCalesta; Steve Wingate

    1997-01-01

    Successful communication of old-growth management, including the role of silviculture, is achieved by integrating as a working whole the topics addressed in this workshop. We have used research, technology transfer and adaptive management to achieve this integration on the Allegheny National Forest. Program success depends on scientists and practitioners working...

  6. Academic Achievement of GED Graduates of the Community College of Allegheny County.

    Science.gov (United States)

    Clark, Renee Smith

    The tests of General Education Development (GED) provide adults with opportunities to attend and graduate from postsecondary institutions. A study investigated the academic achievement of GED recipients compared to that of high school diploma (HSD) students graduating from the Community College of Allegheny County (Pennsylvania) between June 1985…

  7. Relationships between trip motivations and selected variables among Allegheny National forest visitors

    Science.gov (United States)

    Alan R. Graefe; Brijesh Thapa; John J. Confer; James D. Absher

    2000-01-01

    To meet visitors’ needs, managers must understand the motivations driving visitors to wilderness areas. This paper compares the motivations of different segments of Allegheny National Forest users. Factor analysis identified 5 motivation factors (social, escape, fun, nature and learning), with two items retained as single item dimensions (close to home and challenge)....

  8. Analysis of forest health monitoring surveys on the Allegheny National Forest (1998-2001)

    Science.gov (United States)

    Randall S. Morin; Andrew M Liebhold; K.W. Gottschalk; Chris W. Woodall; Daniel B. Twardus; Robert L. White; Stephen B. Horsley; Todd E. Ristau

    2006-01-01

    Describes forest vegetation and health conditions on the Allegheny National Forest (ANF). During the past 20 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical aerial surveys (1984-98...

  9. Listening to old beech and young cherry trees - long-term research in the Alleghenies

    Science.gov (United States)

    Susan L. Stout; Coeli M. Hoover; Todd E. Ristau

    2006-01-01

    Long-term research results have been a foundation of forestry practice on the Allegheny Plateau since the 1970s. This includes results from monitoring reference conditions in areas set aside for this purpose and from long-running manipulative studies, some dating back to the 1920s. The success of long-term research in this region reflects the commitment of a handful of...

  10. Forest health conditions on the Allegheny National Forest (1989-1999): Analysis of forest health monitoring surveys

    Science.gov (United States)

    R.S. Morin; A.M. Liebhold; K.W. Gottschalk; D.B. Twardus; R.E. Acciavatti; R.L. White; S.B. Horsley; W.D. Smith; E.R. Luzader

    2001-01-01

    This publication describes the forest vegetation and health conditions of the Allegheny National Forest (ANF). During the past 15 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical...

  11. 77 FR 9225 - Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM...

    Science.gov (United States)

    2012-02-16

    ...-58-010] Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM States, Inc., et al. v. PJM Interconnection, L.L.C.; Notice of Filing Take notice that on February... by section 18.17.4 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. and...

  12. Stream water quality in coal mined areas of the lower Cheat River Basin, West Virginia and Pennsylvania, during low-flow conditions, July 1997

    Science.gov (United States)

    Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.

    1999-01-01

    IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and

  13. Materials and Manufacturing Research and Development Capability Assessment of the Southwest Ohio Region

    Science.gov (United States)

    2011-09-01

    ISO / IEC 17025 :2005, NADCAP Acuren...River Road Brackenridge, PA 250 (724) 224-1000 $4.8B 11,000 ISO -9001, AS- 9100, NADCAP, ISO / IEC 17025 ATI – Allegheny Ludlum (Houston, PA) 501...Western Ave Houston, PA 233 (724) 745-2000 $4.8B 11,000 ISO -9001, AS- 9100, NADCAP, ISO / IEC 17025 ATI – Allegheny Ludlum (Louisville, OH)

  14. Landscape consequences of natural gas extraction in Allegheny and Susquehanna Counties, Pennsylvania, 2004--2010

    Science.gov (United States)

    Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is commonly located in the same general area as the Marcellus Shale and is frequently developed in clusters of wells across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Allegheny County and Susquehanna County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  15. The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix G. Demonstration Projects on Other Streams, Nationwide. Volume 1.

    Science.gov (United States)

    1981-12-01

    CC + I& CY STCNE FILL PROTECTION SCHEME 3 ALLEGHENY RIVER FLOW NOT TO SCALE -. -2𔃺’ kofnimuim Width At Top of dank LEevatlon (Variable) - StonO F111...exposed to various types of pollution which tend to affect aquatic life and generally detract from the aesthetic value of the river. Organic matter

  16. Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

    2011-01-01

    Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

  17. FIS STUDY FOR CLARION COUNTY, PA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is a revised preliminary to case 11-03-1438S, adding 11.3 miles of new Zone AE study on Allegheny River and updating a 2.75 mile Zone AE detailed study on...

  18. A Blend of Ethanol and (-)-α-Pinene were Highly Attractive to Native Siricid Woodwasps (Siricidae, Siricinae) Infesting Conifers of the Sierra Nevada and the Allegheny Mountains.

    Science.gov (United States)

    Erbilgin, Nadir; Stein, Jack D; Acciavatti, Robert E; Gillette, Nancy E; Mori, Sylvia R; Bischel, Kristi; Cale, Jonathan A; Carvalho, Carline R; Wood, David L

    2017-02-01

    Woodwasps in Sirex and related genera are well-represented in North American conifer forests, but the chemical ecology of native woodwasps is limited to a few studies demonstrating their attraction to volatile host tree compounds, primarily monoterpene hydrocarbons and monoterpene alcohols. Thus, we systematically investigated woodwasp-host chemical interactions in California's Sierra Nevada and West Virginia's Allegheny Mountains. We first tested common conifer monoterpene hydrocarbons and found that (-)-α-pinene, (+)-3-carene, and (-)-β-pinene were the three most attractive compounds. Based on these results and those of earlier studies, we further tested three monoterpene hydrocarbons and four monoterpene alcohols along with ethanol in California: monoterpene hydrocarbons caught 72.3% of all woodwasps. Among monoterpene hydrocarbons, (+)-3-carene was the most attractive followed by (-)-β-pinene and (-)-α-pinene. Among alcohols, ethanol was the most attractive, catching 41.4% of woodwasps trapped. Subsequent tests were done with fewer selected compounds, including ethanol, 3-carene, and ethanol plus (-)-α-pinene in both Sierra Nevada and Allegheny Mountains. In both locations, ethanol plus (-)-α-pinene caught more woodwasps than other treatments. We discussed the implications of these results for understanding the chemical ecology of native woodwasps and invasive Sirex noctilio in North America. In California, 749 woodwasps were caught, representing five species: Sirex areolatus Cresson, Sirex behrensii Cresson, Sirex cyaneus Fabricius, Sirex longicauda Middlekauff, and Urocerus californicus Norton. In West Virginia 411 woodwasps were caught representing four species: Sirex edwardsii Brullé, Tremex columba Linnaeus, Sirex nigricornis F., and Urocerus cressoni Norton.

  19. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    Science.gov (United States)

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  20. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  1. ALLEGHENY RIVER AND REDBANK CREEK HYDRAULICS, CLARION COUNTY, PA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  2. ALLEGHENY RIVER AND REDBANK CREEK HYDRAULICS, CLARION COUNTY, PA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  3. Atmospheric acidity measurements on allegheny mountain and the origins of ambient acidity in the Northeastern United States

    Science.gov (United States)

    Pierson, William R.; Brachaczek, Wanda W.; Gorse, Robert A.; Japar, Steven M.; Norbeck, Joseph M.; Keeler, Gerald J.

    Atmospheric acidity as HNO 3(g), SO 2(g), and aerosol H + was measured on Allegheny Mountain and Laurel Hill in southwest Pennsylvania in August 1983. The aerosol H + appeared to represent the net after H 2SO 4 reaction with NH 3(g). The resulting H +/SO 42- ratio depended on SO 42- concentration, approaching that of H 2SO 4 at the highest SO 42- concentrations. The atmosphere was acidic; the average concentrations of HNO 3 (78 nmole m -3) and aerosol H + (205 nmole m -3), NH 4+ (172 nmole m -3) and SO 42- (201 nmole m -3), and the dearth of NH 3( 2, with one 10-h period averaging 263 and 844 nmolem -3 for HNO 3 and aerosol H +, respectively. SO 2 added another 900 nmole m -3 (average) of potential H + acidity. HNO 3 and aerosol H + episodes were concurrent, on 7-8 day cycles, unrelated to SO 2 which existed more in short-lived bursts of apparently more local origin. NOx was sporadic like SO 2. Laurel and Allegheny, separated by 35.5 km, were essentially identical in aerosol SO 42-, and in aerosol H +, less so in HNO 3 and especially less so in SO 2; apparently, chemistry involving HNO 3 and aerosol H + or SO 42- was slow compared to inter-site transport times (1-2 h). From growth of bscat and decline of SO 2 during one instance of inter-site transport, daytime rate coefficients for SO 2 oxidation and SO 2 dry deposition were inferred to have been, respectively, ~ 0.05 and ⩽ 0.1 h -1. HNO 3 declined at night. Aerosol H + and SO 42- showed no significant diurnal variation, and O 3 showed very little; these observations, together with high PAN/NO x ratios, indicate that regional transport rather than local chemistry is governing. The O 3 concentration (average 56 ppb or 2178 nmolem -3) connotes an oxidizing atmosphere conducive to acid formation. Highest atmospheric acidity was associated with (1) slow westerly winds traversing westward SO 2 source areas, (2) local stagnation, or (3) regional transport around to the back side of a high pressure system. Low acidity

  4. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  5. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus Province, little of the land is flat, and most of the flat land is in the flood plains and terraces of streams; this has caused most development in this part of the basin to be near streams. The Blue Ridge Province is composed of crystalline rocks, and the Valley and Ridge and Appalachian Plateaus Provinces contain both carbonate and clastic rocks. Annual precipitation ranges from about 36 in. to more than 60 in., and is orographically affected, both locally and regionally. Average annual air temperature ranges from about 43?F to about 55?F, and varies with altitude but not physiographic province. Precipitation is greatest in the summer and least in the winter, and has the least seasonal variation in the Blue Ridge Province. In 1990, the population of the basin was about 870,000, of whom about 25 percent lived in the Charleston, W. Va. metropolitan area. About 75 million tons of coal were mined in the Kanawha River Basin in 1998. This figure represents about 45 percent of the coal mined in West Virginia, and about seven percent of the coal mined in the United States. Dominant forest types in the basin are Northern Hardwood, Oak-Pine, and Mixed Mesophytic. Agricultural land use is more common in the Valley and Ridge and Blue Ridge Provinces than in the Appalachian Plateaus Province. Cattle are the principal agricultural products of the basin. Streams in the Blue Ridge Province and Allegheny Highlands have the most runoff in the basin, and streams in the Valley and Ridge Province and the southwestern Appalachian Plateaus have the least runoff. Streamflow is greatest in the

  6. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  7. Appendix C: A comparative study of small scale remotely sensed data for monitoring clearcutting in hardwood forests. M.S. Thesis; [Allegheny National Forest, Pennsylvania and the Adirondacks, New York

    Science.gov (United States)

    Hafker, W. R.

    1980-01-01

    Manual photointerpretation techniques were used to analyze images acquired by high altitude aircraft, the Skylab multispectral and Earth terrain camera (ETC), the LANDSAT multispectral scanner, and the LANDSAT-3 return beam vidicon camera. A color-additive viewer, and digital image analysis were also used on the LANDSAT MSS imagery. The value of each type of remotely sensed data was judged by the ease and accuracy of clearcut identification, and by the amount of detail discernible, especially regarding revegetation. Results of a site study in the Allegheny National Forest, Pennsylvania indicate that high altitude aerial photography, especially color infrared photography acquired during the growing season, is well suited for identifying clearcuts and assessing revegetation. Although photographs acquired with Skylab's ETC also yielded good results, only incomplete inventories of clearcuts could be made using LANDSAT imagery. Results for the Adirondack region of New York State were similar for the aircraft and satellite photography, but even less satisfactory for the LANDSAT imagery.

  8. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  9. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  10. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ...-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone during the ``NAS Patuxent River... held over certain waters of the Patuxent River adjacent to Patuxent River, Maryland from September 1...

  11. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2. Docket Nos. 50-387 and 50-388, Pennsylvania Power and Light Company and Allegheny Electric Cooperative, Inc

    International Nuclear Information System (INIS)

    1982-11-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the licensee) and the Allegheny Electric Cooperative, Inc. (co-licensee) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. Supplement 1, issued in June 1981, addressed outstanding issues. Supplement 2, issued in September 1981, contains the ACRS Report and responses. Supplement 3, issued in July 1982, contains the resolution to five items previously identified as open and closes them out. On July 17, 1982, License NPF-14 was issued to allow Unit 1 operation at power levels not to exceed 5% of rated power. This supplement discusses the resolution of several license conditions that have been met

  12. 78 FR 49403 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Determination of...

    Science.gov (United States)

    2013-08-14

    ... Federation and National Pork Producers Council, et al. v. EPA, 559 F.3d 512 (D.C. Cir. 2009). As a result of...-0067 S. Fayette 29 31 18 26 Yes. Allegheny 42-003-0093 North Park 27 26 16 23 Yes (Max Quarter). Allegheny 42-003-1008 Harrison 34 30 21 28 Yes (Max Quarter). Allegheny 42-003-1301 N. Braddock 37 34 27 33...

  13. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  14. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.

    2007-01-01

    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  15. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  16. Operation of river systems. The Otra river

    International Nuclear Information System (INIS)

    Harby, A.; Vaskinn, K.A.; Wathne, M.; Heggenes, J.; Saltveit, S.J.

    1993-12-01

    The purpose of the project described in this report was to prepare an operative tool for making decisions about the operation of the power system on the river Otra (Norway) with regard to how this operation might affect the various users of the river system. Above all this affects fish, outdoor life and esthetic values. The connection between water quality and volume of discharge has been examined in a sub project. How suitable parts of the river are as habitats for trout has been simulated on a computer. From field investigation it is concluded that near the Steinfoss power station the physical conditions for trout depend on the operation of the river system. Outdoor life is not much affected downstream Vikeland. 11 refs., 22 figs., 2 tabs

  17. 33 CFR 165.150 - New Haven Harbor, Quinnipiac River, Mill River.

    Science.gov (United States)

    2010-07-01

    ... River, Mill River. 165.150 Section 165.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... New Haven Harbor, Quinnipiac River, Mill River. (a) The following is a regulated navigation area: The... 303°T to point D at the west bank of the mouth of the Mill River 41°18′05″ N, 72°54′23″ W thence south...

  18. Diabetes + Hypertension (comorbidity)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set provides de-identified population data for diabetes and hypertension comorbidity prevalence in Allegheny County.

  19. Many rivers to cross. Cross border co-operation in river management

    NARCIS (Netherlands)

    Verwijmeren, J.A.; Wiering, M.A.

    2007-01-01

    River basin management is a key concept in contemporary water policy. Since the management of rivers is best designed and implemented at the scale of the river basin, it seems obvious that we should not confine ourselves to administrative or geographical borders. In other words, river basin

  20. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    Science.gov (United States)

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  1. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  2. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  3. RiverCare: towards self-sustaining multifunctional rivers

    Science.gov (United States)

    Augustijn, Denie; Schielen, Ralph; Hulscher, Suzanne

    2014-05-01

    Rivers are inherently dynamic water systems involving complex interactions among hydrodynamics, morphology and ecology. In many deltas around the world lowland rivers are intensively managed to meet objectives like safety, navigation, hydropower and water supply. With the increasing pressure of growing population and climate change it will become even more challenging to reach or maintain these objectives and probably also more demanding from a management point of view. In the meantime there is a growing awareness that rivers are natural systems and that, rather than further regulation works, the dynamic natural processes should be better utilized (or restored) to reach the multifunctional objectives. Currently many integrated river management projects are initiated all over the world, in large rivers as well as streams. Examples of large scale projects in the Netherlands are 'Room for the River' (Rhine), the 'Maaswerken' (Meuse), the Deltaprogramme and projects originating from the European Water Framework Directive (WFD). These projects include innovative measures executed never before on this scale and include for example longitudinal training dams, side channels, removal of bank protection, remeandering of streams, dredging/nourishment and floodplain rehabilitation. Although estimates have been made on the effects of these measures for many of the individual projects, the overall effects on the various management objectives remains uncertain, especially if all projects are considered in connection. For all stakeholders with vested interests in the river system it is important to know how that system evolves at intermediate and longer time scales (10 to 100 years) and what the consequences will be for the various river functions. If the total, integrated response of the system can be predicted, the system may be managed in a more effective way, making optimum use of natural processes. In this way, maintenance costs may be reduced, the system remains more natural

  4. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    Science.gov (United States)

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  5. Classification of Tropical River Using Chemometrics Technique: Case Study in Pahang River, Malaysia

    International Nuclear Information System (INIS)

    Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Nur Hishaam Sulaiman

    2015-01-01

    River classification is very important to know the river characteristic in study areas, where this database can help to understand the behaviour of the river. This article discusses about river classification using Chemometrics techniques in mainstream of Pahang River. Based on river survey, GIS and Remote Sensing database, the chemometric analysis techniques have been used to identify the cluster on the Pahang River using Hierarchical Agglomerative Cluster Analysis (HACA). Calibration and validation process using Discriminant Analysis (DA) has been used to confirm the HACA result. Principal Component Analysis (PCA) study to see the strong coefficient where the Pahang River has been classed. The results indicated the main of Pahang River has been classed to three main clusters as upstream, middle stream and downstream. Base on DA analysis, the calibration and validation model shows 100 % convinced. While the PCA indicates there are three variables that have a significant correlation, domination slope with R"2 0.796, L/D ratio with R"2 -0868 and sinuosity with R"2 0.557. Map of the river classification with moving class also was produced. Where the green colour considered in valley erosion zone, yellow in a low terrace of land near the channels and red colour class in flood plain and valley deposition zone. From this result, the basic information can be produced to understand the characteristics of the main Pahang River. This result is important to local authorities to make decisions according to the cluster or guidelines for future study in Pahang River, Malaysia specifically and for Tropical River generally. The research findings are important to local authorities by providing basic data as a guidelines to the integrated river management at Pahang River, and Tropical River in general. (author)

  6. Hypertension

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These datasets provide de-identified insurance data for hypertension hyperlipidemia. The data is provided by three managed care organizations in Allegheny County...

  7. River Corridor Easements

    Data.gov (United States)

    Vermont Center for Geographic Information — A River Corridor Easement (RCE) is an area of conserved land adjacent to a river or stream that was conserved to permanently protect the lateral area the river needs...

  8. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    Directory of Open Access Journals (Sweden)

    Ellen Wohl

    2005-12-01

    Full Text Available A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restoration as well as the decision about what type of restoration should be attempted. Determining the degree to which a river has been altered from its reference condition requires a knowledge of historical land use and the associated effects on rivers. Rivers of the Front Range of the Colorado Rocky Mountains in the United States are used to illustrate how historical land uses such as beaver trapping, placer mining, tie drives, flow regulation, and the construction of transportation corridors continue to affect contemporary river characteristics. Ignorance of regional land use and river history can lead to restoration that sets unrealistic goals because it is based on incorrect assumptions about a river's reference condition or about the influence of persistent land-use effects.

  9. Hyperlipidemia

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These datasets provide de-identified insurance data for hyperlipidemia. The data is provided by three managed care organizations in Allegheny County (Gateway Health...

  10. Geomorphology and river dynamics of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  11. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  12. Diabetes

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These datasets provide de-identified insurance data for diabetes. The data is provided by three managed care organizations in Allegheny County (Gateway Health Plan,...

  13. BigBurgh Social Service Listings

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Information on social services in the City of Pittsburgh and Allegheny County for individuals experiencing homeless and for those in dire need, including crisis...

  14. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Lijun, Zhou [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jianliang, Zhao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jifeng, Yang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Li, Wang; Bin, Yang; Shan, Liu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  15. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  16. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    International Nuclear Information System (INIS)

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary, and the Amazon River estuary were studied to elucidate some of the processes which control river water chemistry and the flux of elements to the sea. The approach taken was to identify inputs to the Connecticut River and to investigate geochemical processes which modify the dissolved load. The form and quantity of nuclides which are in turn supplied to the estuary are altered by processes unique to that transition zone to the ocean. The Connecticut River estuary was sampled on a seasonal basis to investigate the role of the estuary in controlling the flux of elements to the sea. The knowledge gained from the Connecticut River study was applied to the quantitatively more significant Amazon River estuary. There a variety of samples were analyzed to understand the processes controlling the single greatest flux of elements to the Atlantic Ocean. The results indicate that estimates of the total flux of nuclides to the oceans can best be calculated based on groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is that which will eventually be delivered to the ocean despite the reactions which were shown to occur in both rivers and estuaries. 153 references, 63 figures, 28 tables

  17. Contribution of River Mouth Reach to Sediment Load of the Yangtze River

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-01-01

    Full Text Available This paper examined the sediment gain and loss in the river mouth reach of the Yangtze River by considering sediment load from the local tributaries, erosion/accretion of the river course, impacts of sand mining, and water extraction. A quantitative estimation of the contribution of the river mouth reach to the sediment load of the Yangtze River was conducted before and after impoundment of the Three Gorges Dam (TGD in 2003. The results showed that a net sediment load loss of 1.78 million ton/yr (Mt/yr occurred from 1965 to 2002 in the study area. The contribution of this reach to the sediment discharge into the sea is not as high as what was expected before the TGD. With impoundment of the TGD, channel deposition (29.90 Mt/yr and a net sediment loss of 30.89 Mt/yr occurred in the river mouth reach from 2003 to 2012. The river mouth reach has acted as a sink but not a source of sediment since impoundment of the TGD, which has exacerbated the decrease in sediment load. Technologies should be advanced to measure changes in river channel morphology, as well as in water and sediment discharges at the river mouth reach.

  18. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  19. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  20. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  1. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland

    Directory of Open Access Journals (Sweden)

    Przybyłek Jan

    2017-12-01

    Full Text Available River bank filtration (RBF is a system that enriches groundwater resources by induced infiltration of river water to an aquifer. Problematic during operation of RBF systems is the deterioration of infiltration effectiveness caused by river bed clogging. This situation was observed in the Krajkowo well field which supplies fresh water to the city of Poznań (Poland during and after the long hydrological drought between the years 1989 and 1992. The present note discusses results of specific hydrogeological research which included drilling of a net of boreholes to a depth of 10 m below river bottom (for sediment sampling as well as for hydrogeological measurements, analyses of grain size distribution and relative density studies. The results obtained have allowed the recognition of the origin of the clogging processes, as well as the documentation of the clogged parts of the river bottom designated for unclogging activities.

  2. Investing in river health.

    Science.gov (United States)

    Bennett, J

    2002-01-01

    Rivers provide society with numerous returns. These relate to both the passive and extractive uses of the resources embodied in river environments. Some returns are manifest in the form of financial gains whilst others are non-monetary. For instance, rivers are a source of monetary income for those who harvest their fish. The water flowing in rivers is extracted for drinking and to water crops and livestock that in turn yield monetary profits. However, rivers are also the source of non-monetary values arising from biological diversity. People who use them for recreation (picnicking, swimming, boating) also receive non-monetary returns. The use of rivers to yield these returns has had negative consequences. With extraction for financial return has come diminished water quantity and quality. The result has been a diminished capacity of rivers to yield (non-extractive) environmental returns and to continue to provide extractive values. A river is like any other asset. With use, the value of an asset depreciates because its productivity declines. In order to maintain the productive capacity of their assets, managers put aside from their profits depreciation reserves that can be invested in the repair or replacement of those assets. Society now faces a situation in which its river assets have depreciated in terms of their capacity to provide monetary and non-monetary returns. An investment in river "repair" is required. But, investment means that society gives up something now in order to achieve some benefit in the future. Society thus has to grapple wih the choice between investing in river health and other investments--such as in hospitals, schools, defence etc. - as well as between investing in river health and current consumption--such as on clothes, food, cars etc. A commonly used aid for investment decision making in the public sector is benefit cost analysis. However, its usefulness in tackling the river investment problem is restricted because it requires all

  3. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  4. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  5. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  6. 78 FR 41689 - Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA

    Science.gov (United States)

    2013-07-11

    ... submerged automobiles and floating bridge debris in the Skagit River. Following the initial response and...-AA00 Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone around the Skagit River Bridge...

  7. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    Full Text Available Introduction: Drought from the hydrological viewpoint is a continuation of the meteorological drought that cause of the lack of surface water such as rivers, lakes, reservoirs and groundwater resources. This analysis, which is generally on the surface streams, reservoirs, lakes and groundwater, takes place as hydrological drought considered and studied. So the data on the quantity of flow of the rivers in this study is of fundamental importance. This data are included, level, flow, river flow is no term (5. Overall the hydrological drought studies are focused on annual discharges, maximum annual discharge or minimum discharge period. The most importance of this analysis is periodically during the course of the analysis remains a certain threshold and subthresholdrunoff volume fraction has created. In situations where water for irrigation or water of a river without any reservoir, is not adequate, the minimum flow analysis, the most important factor to be considered (4. The aim of this study is evaluatingthe statistical distributions of drought volume rivers data from the Urmia Lake’s rivers and its return period. Materials and Methods: Urmia Lake is a biggest and saltiest continued lake in Iran. The Lake Urmia basin is one of the most important basins in Iran region which is located in the North West of Iran. With an extent of 52700 square kilometers and an area equivalent to 3.21% of the total area of the country, This basin is located between the circuit of 35 degrees 40 minutes to 38 degrees 29 minutes north latitude and the meridian of 44 degrees 13 minutes to 47 degrees 53 minutes east longitude. In this study used the daily discharge data (m3s-1 of Urmia Lake Rivers. Extraction of river drought volume The drought durations were extracted from the daily discharge of 13 studied stations. The first mean year was calculated for each 365 days using the Eq 1 (14. (1 (For i=1,2,3,…,365 That Ki is aith mean year, Yijis ith day discharge in jth

  8. 75 FR 51945 - Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD

    Science.gov (United States)

    2010-08-24

    ...-AA00 Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD AGENCY: Coast Guard, DHS. ACTION... of the St. Mary's River, a tributary of the Potomac River. This action is necessary to provide for.... Navy helicopter located near St. Inigoes, Maryland. This safety zone is intended to protect the...

  9. Denitrification in the Mississippi River network controlled by flow through river bedforms

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering. 

  10. 78 FR 28492 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Science.gov (United States)

    2013-05-15

    ...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... establishing a special local regulation on the waters of the Wando River, Cooper River, and Charleston Harbor... rulemaking (NPRM) entitled, ``Special Local Regulation; Low Country Splash, Wando River, Cooper River, and...

  11. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Science.gov (United States)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  12. 76 FR 71342 - Proposed CERCLA Administrative Cost Recovery Settlement; River Forest Dry Cleaners Site, River...

    Science.gov (United States)

    2011-11-17

    ... Settlement; River Forest Dry Cleaners Site, River Forest, Cook County, IL AGENCY: Environmental Protection... response costs concerning the River Forest Dry Cleaners site in River Forest, Cook County, Illinois with... code: C-14J, Chicago, Illinois 60604. Comments should reference the River Forest Dry Cleaners Site...

  13. Rivers running deep : complex flow and morphology in the Mahakam River, Indonesia

    NARCIS (Netherlands)

    Vermeulen, B.

    2014-01-01

    Rivers in tropical regions often challenge our geomorphological understanding of fluvial systems. Hairpin bends, natural scours, bifurcate meander bends, tie channels and embayments in the river bank are a few examples of features ubiquitous in tropical rivers. Existing observation techniques

  14. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    Science.gov (United States)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  15. River restoration - Malaysian/DID perspective

    International Nuclear Information System (INIS)

    Ahmad Darus

    2006-01-01

    Initially the river improvement works in Malaysia was weighted on flood control to convey a certain design flood with the lined and channelized rivers. But in late 2003 did has makes the approaches that conservation and improvement of natural function of river, i.e. river environment and eco-system should be incorporated inside the planning and design process. Generally, river restoration will focus on four approaches that will improve water quality, which is improving the quality of stormwater entering the river, maximizing the quantity of the urban river riparian corridor, stabilizing the riverbank, and improving the habitat within the river. This paper outlined the appropriate method of enhancing impairment of water quality from human activities effluent and others effluent. (Author)

  16. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    Science.gov (United States)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all

  17. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  18. 78 FR 18277 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Science.gov (United States)

    2013-03-26

    ...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... proposes to issue a special local regulation on the waters of the Wando River, Cooper River, and Charleston... Country Splash is scheduled to take place on the waters of the Wando River, Cooper River, and Charleston...

  19. Measuring river from the cloud - River width algorithm development on Google Earth Engine

    Science.gov (United States)

    Yang, X.; Pavelsky, T.; Allen, G. H.; Donchyts, G.

    2017-12-01

    Rivers are some of the most dynamic features of the terrestrial land surface. They help distribute freshwater, nutrients, sediment, and they are also responsible for some of the greatest natural hazards. Despite their importance, our understanding of river behavior is limited at the global scale, in part because we do not have a river observational dataset that spans both time and space. Remote sensing data represent a rich, largely untapped resource for observing river dynamics. In particular, publicly accessible archives of satellite optical imagery, which date back to the 1970s, can be used to study the planview morphodynamics of rivers at the global scale. Here we present an image processing algorithm developed using the Google Earth Engine cloud-based platform, that can automatically extracts river centerlines and widths from Landsat 5, 7, and 8 scenes at 30 m resolution. Our algorithm makes use of the latest monthly global surface water history dataset and an existing Global River Width from Landsat (GRWL) dataset to efficiently extract river masks from each Landsat scene. Then a combination of distance transform and skeletonization techniques are used to extract river centerlines. Finally, our algorithm calculates wetted river width at each centerline pixel perpendicular to its local centerline direction. We validated this algorithm using in situ data estimated from 16 USGS gauge stations (N=1781). We find that 92% of the width differences are within 60 m (i.e. the minimum length of 2 Landsat pixels). Leveraging Earth Engine's infrastructure of collocated data and processing power, our goal is to use this algorithm to reconstruct the morphodynamic history of rivers globally by processing over 100,000 Landsat 5 scenes, covering from 1984 to 2013.

  20. 78 FR 17087 - Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL

    Science.gov (United States)

    2013-03-20

    ...-AA08 Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL AGENCY: Coast Guard... on the New River in Fort Lauderdale, Florida during the Rotary Club of Fort Lauderdale New River Raft... States during the Rotary Club of Fort Lauderdale New River Raft Race. On March 23, 2013, Fort Lauderdale...

  1. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  2. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    Science.gov (United States)

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  3. An Evaluation of River Health for the Weihe River in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Jinxi Song

    2015-01-01

    Full Text Available Excessive socioeconomic activities in the Weihe River region have caused severe ecosystem degradation, and the call for the recovery and maintenance of the river health has drawn great attention. Based on the connotation of river health, previous research findings, and status quo of the Weihe River ecosystem, in this study, we developed a novel health evaluation index system to quantitatively determine the health of the Weihe River in Shaanxi Province. The river in the study area was divided into five reaches based on the five hydrological gauging stations, and appropriate evaluation indices for each river section were selected according to the ecological environmental functions of that section. A hybrid approach integrating analytic hierarchy process (AHP and a fuzzy synthetic evaluation method was applied to measure the river health. The results show that Linjiancun-Weijiabao reach and Weijiabao-Xianyang reach are in the “moderate” level of health and Lintong-Huaxian reach and downstream of Huaxian reach are in the “poor” health rating, whereas Xianyang-Lintong reach is in the “sick” rating. Moreover, the most sensitive factors were determined, respectively, for each reach from upper stream to lower stream in the study area.

  4. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    sail on the Niger River between Nigeria and Mali. Crossing villages, borders and cultures, they stop only to rest by setting up camp on riverbanks or host villages. In River Nomads, we join the nomadic Kebbawa fishermen on one of their yearly crossing, experiencing their relatively adventurous...

  5. River Piracy

    Indian Academy of Sciences (India)

    There was this highly venerated river Saraswati flowing through. Haryana, Marwar and Bahawalpur in Uttarapath and emptying itself in the Gulf ofKachchh, which has been described in glowing terms by the Rigveda. "Breaking through the mountain barrier", this "swift-flowing tempestuous river surpasses in majesty and.

  6. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  7. 77 FR 67563 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-11-13

    ... 1625-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT... Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the operation of tugs...) entitled Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

  8. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Science.gov (United States)

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... establishing special local regulations on the waters of the Wando River and Cooper River in Mount Pleasant... River and Cooper River along the shoreline of Mount Pleasant, South Carolina. The Lowcountry Splash...

  9. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    International Nuclear Information System (INIS)

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary and the Amazon River plume were studied to elucidate processes which control the flux of nuclides to the sea. Major ions (Ca, Mg, Na, Cl, Bicarbonate) and selected trace elements (Ra, Ba, Cu, Si) are introduced to the Connecticut River in proportion to the total dissolved load of various groundwaters. Si, Ra, and Ba are subject to removal from solution by seasonal diatom productivity; whereas the other groundwater-derived elements are found in proportion to TDS both time and space. These nuclides are released in the estuary when a portion of the Ra, Ba, and Si in riverine biogenic detritus is trapped in salt marshes and coves bordering the estuary where it redissolves and is exported to the main river channel at ebb tide. In the Amazon River estuary, the Ra and Ba are released in mid-salinity waters. Ra and Ba together with Si are subsequently removed by diatom productivity as reflected in increased Ra and Ba in the suspended particles and depleted dissolved nuclide concentrations in samples from the high productivity zone. In both the Connecticut River system and the Amazon River plume, Cu behaves conservatively; whereas the fates of Fe and Al are linked to soil-derived humic acids. Trace elements in Amazon plume sediments are found simply in proportion to the percentage of fine-grained size materials, despite low Th-228/Ra-228 mean residence times in the plume and the presence of Cs-137 in the sediment column. Estimates of the total flux of nuclides to the oceans can best be calculated on a mass balance basis using groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is net flux to the ocean despite the reactions which occur in both rivers and estuaries

  10. Managing River Resources: A Case Study Of The Damodar River, India

    Science.gov (United States)

    Bhattacharyya, K.

    2008-12-01

    The Damodar River, a subsystem of the Ganga has always been a flood-prone river. Recorded flood history of the endemic flood prone river can be traced from 1730 onwards. People as well as governments through out the centuries have dealt with the caprices of this vital water resource using different strategies. At one level, the river has been controlled using structures such as embankments, weir, dams and barrage. In the post-independent period, a high powered organization known as the Damodar Valley Corporation (DVC), modeled on the Tennessee Valley Authority (TVA) came into existence on 7th July 1948. Since the completion of the reservoirs the Lower Damodar has become a 'reservoir channel' and is now identified by control structures or cultural features or man made indicators. Man-induced hydrographs below control points during post-dam period (1959-2007) show decreased monsoon discharge, and reduced peak discharge. In pre-dam period (1933-1956) return period of floods of bankfull stage of 7080 m3/s had a recurrence interval of 2 years. In post-dam period the return period for the bankfull stage has been increased to 14 years. The Damodar River peak discharge during pre-dam period for various return periods are much greater than the post-dam flows for the same return periods. Despite flood moderation by the DVC dams, floods visited the river demonstrating that the lower valley is still vulnerable to sudden floods. Contemporary riverbed consists of series of alluvial bars or islands, locally known as mana or char lands which are used as a resource base mostly by Bengali refugees. At another level, people have shown great resourcefulness in living with and adjusting to the floods and dams while living on the alluvial bars. People previously used river resources in the form of silt only but now the semi-fluid or flexible resource has been exploited into a permanent resource in the form of productive sandbars. Valuable long-term data from multiple sources has been

  11. 77 FR 47331 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-08-08

    ...-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl... navigable waters of New Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the..., Quinnipiac River, and Mill River RNA. The proposed amendment would give the Captain of the Port Sector Long...

  12. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    Science.gov (United States)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  13. River and river-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L. [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  14. River and river-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    Blomqvist, P.; Brunberg, A.K.; Brydsten, L.

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  15. 78 FR 22423 - Drawbridge Operation Regulations; Taunton River, Fall River and Somerset, MA

    Science.gov (United States)

    2013-04-16

    ... Operation Regulations; Taunton River, Fall River and Somerset, MA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulation. SUMMARY: The Coast Guard is issuing a temporary deviation from the regulation governing the operation of the Brightman Street Bridge across the Taunton River...

  16. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    Science.gov (United States)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  17. Urban river design and aesthetics: A river restoration case study from the UK

    OpenAIRE

    Prior, Jonathan

    2016-01-01

    This paper analyses the restoration of an urbanized section of the River Skerne where it flows through a suburb of Darlington, England; a project which was one of the first comprehensive urban river restorations undertaken in the UK. It is shown how aesthetic values were central to the identification of the River Skerne as a site for restoration, the production of restoration objectives, and a design vision of urban river renewal via restoration. Secondly, the means by which these aesthetic v...

  18. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    Science.gov (United States)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  19. 76 FR 25545 - Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC

    Science.gov (United States)

    2011-05-05

    ...-AA00 Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC AGENCY: Coast... zone on the waters of Little River in Little River, South Carolina during the Blue Crab Festival... this rule because the Coast Guard did not receive notice of the Blue Crab Festival Fireworks Display...

  20. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.; Appel, David H.

    1989-01-01

    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  1. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    Paller, M.

    1992-01-01

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70 degrees C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams ampersand Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS

  2. Down to the River

    DEFF Research Database (Denmark)

    Wessels, Josepha Ivanka

    2015-01-01

    Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from the persp......Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from...

  3. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran

    NARCIS (Netherlands)

    Yousefi, Saleh; Moradi, Hamid Reza; Keesstra, Saskia; Pourghasemi, Hamid Reza; Navratil, Oldrich; Hooke, Janet

    2017-01-01

    In the present study, we investigate the effects of urbanization growth on river morphology in the downstream part of Talar River, east of Mazandaran Province, Iran. Morphological and morphometric parameters in 10 equal sub-reaches were defined along a 11.5 km reach of the Talar River after land

  4. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  5. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    Science.gov (United States)

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  6. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...

  7. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  8. Landuse Types within Channel Corridor and River Channel Morphology of River Ona, Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Olutoyin Fashae

    2017-12-01

    Full Text Available The importance of river a corridor warrants a well thought out and balanced management approach because it helps in improving or maintaining water quality, protecting wetlands, etc. Hence, this study seeks to identify major landuse types within the River Ona Corridor; examine the impact of these landuse types within the River Ona corridor on its channel morphology and understand the risk being posed by these landuse types. The study is designed by selecting two reaches of six times the average width from each of the four major landuse types that exist along the river corridor. This study revealed that along the downstream section of Eleyele Dam of River Ona, natural forest stabilizes river channel banks, thereby presenting a narrow and shallow width and depth respectively but the widest of all is found at the agricultural zones.

  9. History of river regulation of the Noce River (NE Italy) and related bio-morphodynamic responses

    Science.gov (United States)

    Serlet, Alyssa; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zen, Simone; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Prà, Elena Dai; Surian, Nicola; Gurnell, Angela

    2016-04-01

    The Noce River is a hydropower-regulated Alpine stream in Northern-East Italy and a major tributary of the Adige River, the second longest Italian river. The objective of the research is to investigate the response of the lower course of the Noce to two main stages of hydromorphological regulation; channelization/ diversion and, one century later, hydropower regulation. This research uses a historical reconstruction to link the geomorphic response with natural and human-induced factors by identifying morphological and vegetation features from historical maps and airborne photogrammetry and implementing a quantitative analysis of the river response to channelization and flow / sediment supply regulation related to hydropower development. A descriptive overview is presented. The concept of evolutionary trajectory is integrated with predictions from morphodynamic theories for river bars that allow increased insight to investigate the river response to a complex sequence of regulatory events such as development of bars, islands and riparian vegetation. Until the mid-19th century the river had a multi-thread channel pattern. Thereafter (1852) the river was straightened and diverted. Upstream of Mezzolombardo village the river was constrained between embankments of approximately 100 m width while downstream they are of approximately 50 m width. Since channelization some interesting geomorphic changes have appeared in the river e.g. the appearance of alternate bars in the channel. In 1926 there was a breach in the right bank of the downstream part that resulted in a multi-thread river reach which can be viewed as a recovery to the earlier multi-thread pattern. After the 1950's the flow and sediment supply became strongly regulated by hydropower development. The analysis of aerial images reveals that the multi-thread reach became progressively stabilized by vegetation development over the bars, though signs of some dynamics can still be recognizable today, despite the

  10. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    Science.gov (United States)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  11. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Science.gov (United States)

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  12. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R. A.

    1982-04-01

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  13. River Corridors (Jan 2, 2015)

    Data.gov (United States)

    Vermont Center for Geographic Information — River corridors are delineated to provide for the least erosive meandering and floodplain geometry toward which a river will evolve over time. River corridor maps...

  14. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system

    Science.gov (United States)

    Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.

    2016-04-01

    The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor

  15. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  16. Global relationships in river hydromorphology

    Science.gov (United States)

    Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.

    2017-12-01

    Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.

  17. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  18. On geo-basis of river regulation——A case study for the middle reaches of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    From the point of view that people have to obey the river’s geo-attributes in the river regulation, the definition and the meaning of the geo-attributes of a river are discussed. The geo-basis of the river regulation of the middle reaches of the Yangtze River is expounded in five aspects, including the structural geomorphology environment of flood storage and discharge, the distribution characteristics of subsidence and the sedimentation areas of Dongting Basin, the history evolution of Jianghan Basin, the function of Jianghan Basin and Dongting Basin as the flood water detention areas of Jingjiang River reach in ancient time, and the geological characteristic of Jingjiang River reach. Based on the geo-attributes of the middle reaches of the Yangtze River, some ideas about the middle reach regulation of the Yangtze River are put forward: to process the interchange between the lakes and diked marsh areas in Dongting Basin, to canal the new river route as the flood diversion channel of Jingjiang River reach with the paleo river, to recover the function of Jianghan Basin as flood detention area of the middle reaches. And we should take into consideration the geo-environment of the whole Yangtze River in the river regulation of middle reaches.

  19. Climatic control of Mississippi River flood hazard amplified by river engineering

    Science.gov (United States)

    Munoz, Samuel E.; Giosan, Liviu; Therrell, Matthew D.; Remo, Jonathan W. F.; Shen, Zhixiong; Sullivan, Richard M.; Wiman, Charlotte; O’Donnell, Michelle; Donnelly, Jeffrey P.

    2018-04-01

    Over the past century, many of the world’s major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river’s sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.

  20. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  1. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  2. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    Science.gov (United States)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river

  3. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  4. Restoration strategies for river floodplains along large lowland rivers in Europe

    NARCIS (Netherlands)

    Buijse, A.D.; Coops, H.; Staras, M.; Jans, L.H.; Van Geest, G.J.; Grift, R.E.; Ibelings, B.W.; Oosterberg, W.; Roozen, F.C.J.M.

    2002-01-01

    1. Most temperate rivers are heavily regulated and characterised by incised channels, aggradated floodplains and modified hydroperiods. As a consequence, former extensive aquatic /terrestrial transition zones lack most of their basic ecological functions. 2. Along large rivers in Europe and North

  5. Restoration strategies for river floodplains along large lowland rivers in Europe

    NARCIS (Netherlands)

    Buijse, A.D.; Coops, H.; Staras, M.; Jans, L.H.; Geest, van G.; Grift, R.E.; Ibelings, B.W.; Oosterberg, W.; Roozen, F.C.J.M.

    2002-01-01

    1. Most temperate rivers are heavily regulated and characterised by incised channels, aggradated floodplains and modified hydroperiods. As a consequence, former extensive aquatic/terrestrial transition zones lack most of their basic ecological functions. 2. Along large rivers in Europe and North

  6. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  7. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    International Nuclear Information System (INIS)

    K. Payette; D. Tillman

    2001-01-01

    During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker

  8. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    Science.gov (United States)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  9. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    Present day river valleys and rivers are not as dynamic and variable as they used to be. We will here describe the development and characteristics of rivers and their valleys and explain the background to the physical changes in river networks and channel forms from spring to the sea. We seek...... to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  10. Concentrations, loads, and sources of polychlorinated biphenyls, Neponset River and Neponset River Estuary, eastern Massachusetts

    Science.gov (United States)

    Breault, Robert F.

    2011-01-01

    Polychlorinated biphenyls (PCBs) are known to contaminate the Neponset River, which flows through parts of Boston, Massachusetts, and empties into the Neponset River Estuary, an important fish-spawning area. The river is dammed and impassable to fish. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Fish and Game, Division of Ecological Restoration, Riverways Program, collected, analyzed, and interpreted PCB data from bottom-sediment, water, and (or) fish-tissue samples in 2002, 2004-2006. Samples from the Neponset River and Neponset River Estuary were analyzed for 209 PCB congeners, PCB homologs, and Aroclors. In order to better assess the overall health quality of river-bottom sediments, sediment samples were also tested for concentrations of 31 elements. PCB concentrations measured in the top layers of bottom sediment ranged from 28 nanograms per gram (ng/g) just upstream of the Mother Brook confluence to 24,900 ng/g measured in Mother Brook. Concentrations of elements in bottom sediment were generally higher than background concentrations and higher than levels considered toxic to benthic organisms according to freshwater sediment-quality guidelines defined by the U.S. Environmental Protection Agency. Concentrations of dissolved PCBs in water samples collected from the Neponset River (May 13, 2005 to April 28, 2006) averaged about 9.2 nanograms per liter (ng/L) (annual average of monthly values); however, during the months of August (about 16.5 ng/L) and September (about 15.6 ng/L), dissolved PCB concentrations were greater than 14 ng/L, the U.S. Environmental Protection Agency's freshwater continuous chronic criterion for aquatic organisms. Concentrations of PCBs in white sucker (fillets and whole fish) were all greater than 2,000 ng/g wet wt, the U.S. Environmental Protection Agency's guideline for safe consumption of fish: PCB concentrations measured in fish-tissue samples collected from the Tileston and Hollingsworth and

  11. River-tide dynamics : Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, J.A.; He, Q.

    2015-01-01

    River-tide dynamics remain poorly understood, in part because conventional harmonic analysis (HA) does not cope effectively with nonstationary signals. To explore nonstationary behavior of river tides and the modulation effects of river discharge, this work analyzes tidal signals in the Yangtze

  12. 77 FR 23658 - Six Rivers National Forest, Gasquet Ranger District, California, The Smith River National...

    Science.gov (United States)

    2012-04-20

    ... National Forest, Gasquet Ranger District, California, The Smith River National Recreation Area [email protected] . Please insure that ``Smith River NRA Restoration and Motorized Travel Management'' occurs... UARs totaling 80 miles. The project encompasses the Smith River NRA and Gasquet Ranger District...

  13. River Diversions and Shoaling

    National Research Council Canada - National Science Library

    Letter, Jr., Joseph V; Pinkard, Jr., C. F; Raphelt, Nolan K

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note describes the current knowledge of the potential impacts of river diversions on channel morphology, especially induced sedimentation in the river channel...

  14. Bank retreat of a meandering river reach case study : River Irwell

    NARCIS (Netherlands)

    Duran, R.; Beevers, L.; Crosato, A.; Wright, N.G.

    2009-01-01

    Lack of data is often considered a limitation when undertaking morphological studies. This research deals with the morphological study of a small river experiencing bank erosion for which only limited data are available. A reach of the meandering gravel-bed river Irwell (United Kingdom) is taken as

  15. Evaluating the Effects of Dam Construction on the Morphological Changes of Downstream Meandering Rivers (Case Study: Karkheh River

    Directory of Open Access Journals (Sweden)

    A. Liaghat

    2017-04-01

    Full Text Available The establishment of stability in rivers is dependent on a variety of factors, and yet the established stability can be interrupted at any moment or time. One factor that can strongly disrupt the stability of rivers is the construction of dams. For this study, the identification and evaluation of morphological changes occurring to the Karkheh River, before and after the construction of the Karkheh Dam, along with determining the degree of changes to the width and length of the downstream meanders of the river, have been performed with the assistance of satellite images and by applying the CCHE2D hydrodynamic model. Results show that under natural circumstances the width of the riverbed increases downstream parallel to the decrease in the slope angle of the river. The average width of the river was reduced from 273 meters to 60 meters after dam construction. This 78% decrease in river width has made available 21 hectares of land across the river bank per kilometer length of the river. In the studied area, the average thalweg migration of the river is approximately 340 meters, while the minimum and maximum of river migration measured 53 and 768 meters, respectively. Evaluations reveal that nearly 56% of the migrations pertain to the western side of the river, while over 59% of these migrations take place outside the previous riverbed. By average, each year, the lateral migration rate of the river is 34 meters in the studied area which signifies the relevant instability of the region.

  16. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    Science.gov (United States)

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between

  17. The Gediz River fluvial archive

    NARCIS (Netherlands)

    Maddy, D.; Veldkamp, A.; Demir, T.; Gorp, van W.; Wijbrans, J.R.; Hinsbergen, van D.J.J.; Dekkers, M.J.; Schreve, D.; Schoorl, J.M.; Scaife, R.

    2017-01-01

    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River

  18. Columbia River System Operation Review final environmental impact statement. Appendix A: River Operation Simulation (ROSE)

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The River Operation Simulation Experts (ROSE) work group is comprised of representatives of the Corps, BPA, Reclamation, NMFS, Pacific Northwest Utilities Conference Committee (PNUCC), and Northwest Power Planning Council (NPPC). ROSE was responsible for using computer hydroregulation models to simulate the operation of the river system for all of the alternatives evaluated in screening and full scale analysis in SOR. These models are complex computer programs which sequentially route streamflows through each dam in the system, calculating the streamflows, reservoir elevations, spill, power generation and other information at each project and pertinent locations on the river system. ROSE first reviewed specifications of proposed alternatives to determine whether such alternatives were formulated adequately to be run on hydroregulation models

  19. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  20. Intermittent ephemeral river-breaching

    Science.gov (United States)

    Reniers, A. J.; MacMahan, J. H.; Gallagher, E. L.; Shanks, A.; Morgan, S.; Jarvis, M.; Thornton, E. B.; Brown, J.; Fujimura, A.

    2012-12-01

    In the summer of 2011 we performed a field experiment in Carmel River State Beach, CA, at a time when the intermittent natural breaching of the ephemeral Carmel River occurred due to an unusually rainy period prior to the experiment associated with El Nino. At this time the river would fill the lagoon over the period of a number of days after which a breach would occur. This allowed us to document a number of breaches with unique pre- and post-breach topographic surveys, accompanying ocean and lagoon water elevations as well as extremely high flow (4m/s) velocities in the river mouth during the breaching event. The topographic surveys were obtained with a GPS-equipped backpack mounted on a walking human and show the evolution of the river breaching with a gradually widening and deepening river channel that cuts through the pre-existing beach and berm. The beach face is qualified as a steep with an average beach slope of 1:10 with significant reflection of the incident waves (MacMahan et al., 2012). The wave directions are generally shore normal as the waves refract over the deep canyon that is located offshore of the beach. The tide is mixed semi-diurnal with a range on the order of one meter. Breaching typically occurred during the low-low tide. Grain size is highly variable along the beach with layers of alternating fine and coarse material that could clearly be observed as the river exit channel was cutting through the beach. Large rocky outcroppings buried under the beach sand are also present along certain stretches of the beach controlling the depth of the breaching channel. The changes in the water level measured within the lagoon and the ocean side allows for an estimate of the volume flux associated with the breach as function of morphology, tidal elevation and wave conditions as well as an assessment of the conditions and mechanisms of breach closure, which occurred on the time scale of O(0.5 days). Exploratory model simulations will be presented at the

  1. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  2. Suitability Evaluation of River Bank Filtration along the Second Songhua River, China

    Directory of Open Access Journals (Sweden)

    Lixue Wang

    2016-04-01

    Full Text Available The Second Songhua River is the biggest river system in Jilin Province, China. In recent years, the rapid economic development in this area has increased the prominence of water resources and water-related environmental problems; these include surface water pollution and the overexploitation of groundwater resources. Bank infiltration on the floodplains of the Second Songhua River is an important process of groundwater-surface water exchange under exploitation conditions. Understanding this process can help in the development of water resource management plans and strategies for the region. In this research, a multi-criteria evaluation index system was developed with which to evaluate the suitability of bank filtration along the Second Songhua River. The system was comprised of main suitability indexes for water quantity, water quality, the interaction intensity between surface water and groundwater, and the exploitation condition of groundwater resources. The index system was integrated into GIS (Geographic Information System to complete the evaluation of the various indicators. According to the weighted sum of each index, the suitability of river bank filtration (RBF in the study area was divided into five grades. Although the evaluation index system and evaluation method are applicable only to the Second Songhua River basin, the underlying principle and techniques it embodies can be applied elsewhere. For future generalization of the evaluation index system, the specific evaluation index and its scoring criteria should be modified appropriately based on local conditions.

  3. 78 FR 36658 - Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ

    Science.gov (United States)

    2013-06-19

    ... portion of the Delaware River from operating while a fireworks event is taking place. This temporary...-AA00 Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary...

  4. Hydrology of the Po River: looking for changing patterns in river discharge

    Directory of Open Access Journals (Sweden)

    A. Montanari

    2012-10-01

    Full Text Available Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long-term fluctuations. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and persistence properties, to gain a better understanding of natural patterns, and in particular long-term changes, which may affect the future flood risk and availability of water resources.

  5. Hydrology of the Po River: looking for changing patterns in river discharge

    Science.gov (United States)

    Montanari, A.

    2012-05-01

    Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long term cycles. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and memory properties to better understand natural patterns and in particular long term changes, which may affect the future flood risk and availability of water resources.

  6. Designing the RiverCare knowledge base and web-collaborative platform to exchange knowledge in river management

    Science.gov (United States)

    Cortes Arevalo, Juliette; den Haan, Robert-Jan; van der Voort, Mascha; Hulscher, Suzanne

    2016-04-01

    Effective communication strategies are necessary between different scientific disciplines, practitioners and non-experts for a shared understanding and better implementation of river management measures. In that context, the RiverCare program aims to get a better understanding of riverine measures that are being implemented towards self-sustaining multifunctional rivers in the Netherlands. During the RiverCare program, user committees are organized between the researchers and practitioners to discuss the aim and value of RiverCare outputs, related assumptions and uncertainties behind scientific results. Beyond the RiverCare program end, knowledge about river interventions, integrated effects, management and self-sustaining applications will be available to experts and non-experts by means of River Care communication tools: A web-collaborative platform and a serious gaming environment. As part of the communication project of RiverCare, we are designing the RiverCare web-collaborative platform and the knowledge-base behind that platform. We aim at promoting collaborative efforts and knowledge exchange in river management. However, knowledge exchange does not magically happen. Consultation and discussion of RiverCare outputs as well as elicitation of perspectives and preferences from different actors about the effects of riverine measures has to be facilitated. During the RiverCare research activities, the platform will support the user committees or collaborative sessions that are regularly held with the organizations directly benefiting from our research, at project level or in study areas. The design process of the collaborative platform follows an user centred approach to identify user requirements, co-create a conceptual design and iterative develop and evaluate prototypes of the platform. The envisioned web-collaborative platform opens with an explanation and visualisation of the RiverCare outputs that are available in the knowledge base. Collaborative sessions

  7. The Amazon, measuring a mighty river

    Science.gov (United States)

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  8. The social connectivity of urban rivers

    Science.gov (United States)

    Kondolf, G. Mathias; Pinto, Pedro J.

    2017-01-01

    By social connectivity we refer to the communication and movement of people, goods, ideas, and culture along and across rivers, recognizing longitudinal, lateral, and vertical connectivity, much as has been described for other rivers for hydrology and ecology. We focus on rivers as they pass through cities, and the relationships between these rivers and city dwellers. Historically, the most important longitudinal connectivity function of rivers was their role as major transport routes and the simplification of formerly complex, irregular banks and beds, into straight, uniform shipping channels has resulted in a loss of lateral and vertical connectivity, notably the quotidian uses such as fishing, washing clothes, water supply, swimming and other recreation. The scale of the river itself, and its scale in comparison to the scale of the city, largely determine the river's social function and the degree to which it influences city form. River width affects the perception of 'closeness' of the other bank, ease of bridging the river, influence of the river on the city's street pattern, and type of waterfront uses that occur. Up to 15 m wide, people can converse, whereas across rivers 50 to 200 m wide, people are not recognizable but still clearly visible, instilling the banks with a 'lively' atmosphere. At widths over 200 m, people blur, yet moving vehicles and trees branches shaking in wind may still provide some dynamic elements to an otherwise static landscape composed of building facades. In exceptionally wide rivers, the city on the opposite bank is little more than a skyline, which often becomes a signature and symbol of regional identity. In contemplating how people use rivers, we can define a range of human activities in relation to height above the water (i.e., instream to banktop), a vertical dimension of human connectivity with rivers. Many uses occur on the top of the bank, such as quiet contemplation, walking, or cycling along a riverside trail, while

  9. Comparative analysis of the shape of the perch from Techa river and Miass river

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, D.; Pryakhin, E. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority (NRPA) and University of Tromsoe (Norway); Yegoreichenkov, E. [Urals Research Center for Radiation Medicine (Russian Federation)

    2014-07-01

    The adaptation to environmental conditions can be accompanied by morphological changes. Description of morphological differences in animal populations could reveal differences habitat, both abiotic and biotic factors. In our study we examined if fish habituating river with different activity concentration of radionuclides differ in geometric morphometry. Geometric morphometry makes it possible to identify morphological differences between objects on the basis of the form, without influence of the 'size factor'. The approach is based on a multivariate analysis of the coordinates of marks, placed on the surface of the morphological object in accordance with certain rules. We used perch (Perca fluviatilis Linnaeus, 1758) as a study species as it is a common, and widespread species of freshwater fish in moderate and subarctic latitudes of Eurasia and North America. Perch is characterized by high flexibility of morphology in relation to environmental differences. We investigated body shape and its changes with the growth in perch that live in Techa River under chronic radiation exposure and perch in the control river Miass. The alignment of digital image tags that characterize the shape of the fish's body, was implemented in the program TPSdig. Further analysis was performed using the package geomorph for R statistical software. The study showed statistically significant (F{sub 1,95}=12.69, p=0.01) differences in body shape of perch from Techa river and Miass river. Perch living in the Techa River are relatively shorter and higher. Further, perch in Techa is characterized by a smaller size of the eyes. For both populations the contribution of allometric component to shape change was observed: smaller animals have a shape similar to the Miass river perch population. With increase of body size, shape of the perch becomes similar to that of the Techa's perch population. Significant differences were observed only for young animals from the two rivers

  10. Naturalness and Place in River Rehabilitation

    Directory of Open Access Journals (Sweden)

    Kirstie Fryirs

    2009-06-01

    Full Text Available An authentic approach to river rehabilitation emphasizes concerns for the natural values of a given place. As landscape considerations fashion the physical template upon which biotic associations take place, various geomorphic issues must be addressed in framing rehabilitation activities that strive to improve river health. An open-ended approach to river classification promotes applications that appreciate the values of a given river, rather than pigeonholing reality. As the geomorphic structure of some rivers is naturally simple, promoting heterogeneity as a basis for management may not always be appropriate. Efforts to protect unique attributes of river systems must be balanced with procedures that look after common features. Concerns for ecosystem functionality must relate to the behavioral regime of a given river, remembering that some rivers are inherently sensitive to disturbance. Responses to human disturbance must be viewed in relation to natural variability, recognizing how spatial relationships in a catchment, and responses to past disturbances, fashion the operation of contemporary fluxes. These fluxes, in turn, influence what is achievable in the rehabilitation of a given reach. Given the inherently adjusting and evolutionary nature of river systems, notional endpoints do not provide an appropriate basis upon which to promote concepts of naturalness and place in the rehabilitation process. These themes are drawn together to promote rehabilitation practices that relate to the natural values of each river system, in preference to applications of "cookbook" measures that build upon textbook geomorphology.

  11. The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.

    2005-05-01

    Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through such channels. A similar percentage of the 37 ORWB located between Baton Rouge and Memphis on the lower Mississippi River at one time were linked to the river by tie or batture (as they are locally known) channels. Levee construction and other alterations aimed at flood control or navigation on the Mississippi have left only a handful of lakes connected to the river, of these, most are heavily altered by dredging or other modifications. Tie channels were also once common along major tributaries to the Mississippi, such as the Red River. In the much less disturbed Alaskan environment, tie channels are still common, especially along Birch Creek and the Koyukuk and Black rivers. Our studies on the Mississippi River, in Alaska and in Papua New Guinea indicate that tie channels possess a common channel form that is stable and self-maintaining for hundreds to possibly a thousand years. Tie channels exhibit narrow width to depth ratios (~ 5.5) and consistently scale in cross-sectional dimensions to the size of the lake into which they flow. Variations in river and lake stage drive flow bi-directionally through tie channels. A local high or sill in the bed of tie channels controls the degree and duration of connection between the river and ORWB, with many lakes becoming isolated during periods of low stage. The life-span of a tie channel depends on the rate of sediment loading to the ORWB. Our research indicates that this rate directly corresponds to the sediment loading in the main stem river. Along the Fly River, for example, a 5 to 7 fold increase in the river sediment load has resulted increases of 6 to 17

  12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  13. Priority River Metrics for Urban Residents of the Santa Cruz River Watershed

    Science.gov (United States)

    Indicator selection is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to urban residents recruited from the general public in the Santa Cruz watershed. Interviews ...

  14. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Science.gov (United States)

    2010-07-01

    ... go adrift. Immediately after completion of the emergency mooring, the lockmaster of the first lock... of approach to unattended, normally open automatic, movable span bridges, the factor of river flow...

  15. Transport of plutonium by the Mississippi River system and other rivers in the southern United States

    International Nuclear Information System (INIS)

    Scott, M.R.; Salter, P.F.

    1987-01-01

    The distribution of fallout Pu has been studied in the sediments and water of the Mississippi River and eight other rivers. Plutonium content of the sediments is related to grain size and Fe and Mn content. Rivers in human climates show relatively high organic carbon (3 to 4%) and high /sup 239,240)Pu content (36 to 131 dpm/kg) in their suspended sediments. Dissolved Pu is very low in all the rivers; distribution coefficients vary from 10 4 to 10 5 . The 238 Pu//sup 239,240/Pu ratios are low in all the river sediments (∼.06) except the Miami River in Ohio, where ratios as high as 99 were measured. The high ratios originate from the Mound Laboratory Pu processing plant at Miamisburg, Ohio, and can be traced downstream to the junction with the Ohio River. Mississippi River suspended sediment shows a continual decrease of /sup 239,240/Pu content over a 7 year time period. An exponential curve best-fit through the data predicts a half time of decrease equal to 4.3 years. The decrease in Pu content of river sediment results from several factors: cessation of atmospheric weapons testing; transport of Pu to deeper levels of soil profiles; storage of sediment in flood plains and behind dams; and dilution by erosion by older, prebomb soil material. The amount of fallout Pu now removed from the Mississippi River drainage basin to the ocean is 11% as a maximum estimate. Most the fallout Pu in the Mississippi drainage basin will remain on the continent unless there are major changes in erosion and sediment transport patterns in the basin itself. 56 references, 7 figures, 2 tables

  16. Range extension of Moenkhausia oligolepis (Günther,1864 to the Pindaré river drainage, of Mearim river basin, and Itapecuru river basin of northeastern Brazil (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Erick Cristofore Guimarães

    2016-08-01

    Full Text Available The present study reports range extansion of Moenkhausia oligolepis to the Pindaré river drainage, of the Mearim river basin, and Itapecuru river basin, Maranhão state, northeastern Brazil. This species was previously known only from Venezuela, Guianas, and the Amazon River basins. In addition, we present some meristic and morphometric data of the specimens herein examined and discuss on its diagnostic characters.

  17. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    Science.gov (United States)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  18. Alligator Rivers Region

    International Nuclear Information System (INIS)

    1992-01-01

    An introduction to the Alligator Rivers Region is presented. It contains general information regarding the physiography, climate, hydrology and mining of the region. The Alligator Rivers Region is within an ancient basin, the Pine Creek Geosyncline, which has an area of approximately 66000 km 2 . The Geosyncline has a history of mineral exploitation dating back to 1865, during which time 16 metals have been extracted (silver, arsenic, gold, bismuth, cadmium, cobalt, copper, iron, manganese, molybdenum, lead, tin, tantalum, uranium, tungsten, zinc). Uranium exploration in the Pine Creek Geosyncline was stimulated by the discovery in 1949 of secondary uranium mineralisation near Rum June, 70 km south-east of Darwin. This was followed by a decade of intense exploration activity resulting in the discoveries of economic uranium ore bodies at Rum Jungle and in the upper reaches of the South Alligator River Valley. All the known major uranium deposits of the East Alligator River uranium field have been discovered since 1969. The present known resources of the Geosyncline are approximately 360 000 tonnes of contained U 3 O 8 . 2 refs., 2 figs., 1 tab

  19. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  20. PCB concentrations in Pere Marquette River and Muskegon River watersheds, 2002

    Science.gov (United States)

    Fogarty, Lisa R.

    2005-01-01

    the child. Rule 323.1057 (Toxic Substances) of the Part 4. Water Quality Standards gives procedure for calculating water-quality values to protect human, wildlife and aquatic life. For total PCB, the applicable Rule 57 water-quality value is the human cancer value (HCV=0.26 ng/L),In 2002, U. S. Geological Survey (USGS) and Michigan Department of Environmental Quality (MDEQ) cooperatively planned and executed a monitoring program for PCBs in water and sediment from the Pere Marquette River and Muskegon River watersheds. The Pere Marquette and Muskegon River are in the west central part of Michigan's Lower Peninsula (fig. 1). The Pere Marquette River watershed is about 750 square miles, and the Muskegon River is about 2700 square miles. Both rivers are popular recreational waters, and the Pere Marquette River is a Michigan designated Natural River (Part 305 of the Natural Rivers and Environmental Protection Act 451 of 1994).

  1. Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)

    OpenAIRE

    Rosmina Bustami; Charles Bong; Darrien Mah; Afnie Hamzah; Marina Patrick

    2009-01-01

    The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information S...

  2. Evaluation of Environmental Flows in Rivers Using Hydrological Methods (Case study: The Barandozchi River- Urmia Lake Basin

    Directory of Open Access Journals (Sweden)

    S. Mostafavi

    2017-01-01

    Full Text Available Introduction Development of water resources projects are accompanied by several environmental impacts, among them, the changes in the natural flow regime and the reduction of downstream water flows. With respect to the water shortages and non-uniform distribution of rainfall, sustainable management of water resources would be inevitable. In order to prevent negative effects on long-term river ecosystems, it is necessary to preserve the ecological requirements of the river systems. The assessment of environmental flow requirements in a river ecosystem is a challenging practice all over the world, and in particular, in developing countries such as Iran. Environmental requirements of rivers are often defined as a suite of flow discharges of certain magnitude, timing, frequency and duration. These flows ensure a flow regime capable of sustaining a complex set of aquatic habitats and ecosystem processes and are referred to as "environmental flows". There are several methods for determining environmental flows. The majority of these methods can be grouped into four reasonably distinct categories, namely as: hydrological, hydraulic rating, habitat simulation (or rating, and holistic methodologies. However, the current knowledge of river ecology and existing data on the needs of aquatic habitats for water quantity and quality is very limited. It is considered that there is no unique and universal method to adapt to different rivers and/or different reaches in a river. The main aim of the present study was to provide with a framework to determine environmental flow requirements of a typical perennial river using eco-hydrological methods. The Barandozchi River was selected as an important water body in the Urmia Lake Basin, Iran. The preservation of the river lives, the restoration of the internationally recognized Urmia Lake, and the elimination of negative impact from the construction of the Barandoz dam on this river were the main concerns in this

  3. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Michael C., E-mail: newman@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Xu Xiaoyu, E-mail: xiaoyu@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Condon, Anne, E-mail: anne_condon@fws.gov [U.S. Fish and Wildlife, 6669 Short Lane, Gloucester, VA 23061 (United States); Liang Lian, E-mail: liang@cebam.net [Cebam Analytical, Inc., 18804 North Creek Parkway, Suite 110, Bothell, WA 98011 (United States)

    2011-10-15

    Mercury biomagnification on the South River floodplain (Virginia, USA) was modeled at two locations along a river reach previously modeled for methylmercury movement through the aquatic trophic web. This provided an opportunity to compare biomagnification in adjoining trophic webs. Like the aquatic modeling results, methylmercury-based models provided better prediction than those for total mercury. Total mercury Food Web Magnification Factors (FWMF, fold per trophic level) for the two locations were 4.9 and 9.5. Methylmercury FWMF for the floodplain locations were higher (9.3 and 25.1) than that of the adjacent river (4.6). Previous speculation was not resolved regarding whether the high mercury concentrations observed in floodplain birds was materially influenced by river prey consumption by riparian spiders and subsequent spider movement into the trophic web of the adjacent floodplains. Results were consistent with a gradual methylmercury concentration increase from contaminated floodplain soil, to arthropod prey, and finally, to avian predators. - Highlights: > First comparison of methylmercury biomagnification in adjacent river/land food webs. > Methylmercury increased more rapidly in the terrestrial, than the aquatic, food web. > Methylmercury increased gradually from soil, to prey, and, to avian predators. - Higher methylmercury biomagnification on South River floodplain than the associated river likely explain high mercury in floodplain birds.

  4. Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Directory of Open Access Journals (Sweden)

    P. Schneider

    2011-08-01

    Full Text Available River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland, which is partly restored and has been mainly channelized for more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network has been adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initiated before and continued after restoration – as a fundamental step towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets.

  5. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  6. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    Science.gov (United States)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  7. Application of MIKE21 Software in Flood Routing of Tidal Rivers: A Case Study of the Zohre River

    Directory of Open Access Journals (Sweden)

    Ali Karami Khaniki

    2007-01-01

    Full Text Available Flood routing is of special importance from different aspects of river engineering such as flood zoning, flood forecasting, etc. There are two methods employed in river flood routing, hydraulic and hydrological. Hydrological methods are used when the river is at low tide and, hence, cannot be employed to analyze floods caused by the tide. Hydraulic methods must be employed in tidal rivers when the direction of the current reverses at high tide. In this research,MIKE21 modeling software was used for the flood routing of the Zohreh tidal river. The model was calibrated by surveying the river, taking samples form the river bed, measuring sea water level and the velocity of the river flow. Analyzing the sensitivity of the model showed that the coefficient of determination, root mean square error and relative error were 0.95, 0.032, and 0.27, respectively, all indicating the efficacy of the model in simulating different parameters such as velocity, flow rate, and water surface profile. The flood routing results of the tidal currents showed that the hydrograph of the influent and effluent to the reach at high tide (when the current direction is from sea to the river was similar to the normal flood routing of the river, but at low tide (when the current direction is from the sea to the river influent and effluent hydrograph would not follow the laws of normal flood routing.

  8. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  9. 76 FR 24914 - Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers...

    Science.gov (United States)

    2011-05-03

    ... Digital River Education Services acquired Journey Education Marketing (JEM) in August 2010. Some workers... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,975] Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers Whose Unemployment Insurance (UI...

  10. Bank retreat study of a meandering river reach case study : River Irwell

    NARCIS (Netherlands)

    Duran, R.; Beevers, L.; Crosato, A.; Wright, N.

    2010-01-01

    Lack of data is often considered a limitation when undertaking morphological studies. This research deals with morphological studies of small rivers experiencing bank erosion processes when only limited data are available. A reach of the meandering gravel-bed river Irwell (United Kingdom) is taken

  11. FLOOD MODELING OF THE VUKA RIVER SECTION UPSTREAM OF ITS CONFLUENCE WITH THE DANUBE RIVER

    Directory of Open Access Journals (Sweden)

    Dario Marić

    2016-12-01

    Full Text Available In this paper, a section of the Vuka River from its confluence with the Danube River in Vukovar to 3 + 630 rkm was modeled. The possibility and size of floods in the surrounding area were analyzed for different return periods (2, 5, 10, 50, and 100 yrs. Although the high-water levels of the Danube River are lower than the terrain elevation of Vukovar, they cause backwater in the Vuka River and in its tributary, the Bobotski canal. In that indirect way, the surrounding area is endangered and the efficiency of drainage systems is reduced. The existing riverbed of the analyzed Vuka River section was digitalized based on a digital terrain model using the geographic information system (GIS software ArcGIS and the HEC-GeoRAS toolbar. A mathematical model of the steady-state flow of the Vuka river section using the digitized riverbed was executed in the HEC-RAS software using different return periods. The obtained velocities and water levels were analyzed using HEC-RAS, and the sizes of the flooded areas were calculated and observed in ArcGIS.

  12. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration - the Thur River case study

    Science.gov (United States)

    Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E. A. D.; Barry, D. A.; Hollender, J.; Cirpka, O. A.; Schneider, P.; Vogt, T.; Radny, D.; Durisch-Kaiser, E.

    2014-06-01

    River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground- and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics

  13. INFLUENCE OF RIVER BED ELEVATION SURVEY CONFIGURATIONS AND INTERPOLATION METHODS ON THE ACCURACY OF LIDAR DTM-BASED RIVER FLOW SIMULATIONS

    Directory of Open Access Journals (Sweden)

    J. R. Santillan

    2016-09-01

    Full Text Available In this paper, we investigated how survey configuration and the type of interpolation method can affect the accuracy of river flow simulations that utilize LIDAR DTM integrated with interpolated river bed as its main source of topographic information. Aside from determining the accuracy of the individually-generated river bed topographies, we also assessed the overall accuracy of the river flow simulations in terms of maximum flood depth and extent. Four survey configurations consisting of river bed elevation data points arranged as cross-section (XS, zig-zag (ZZ, river banks-centerline (RBCL, and river banks-centerline-zig-zag (RBCLZZ, and two interpolation methods (Inverse Distance-Weighted and Ordinary Kriging were considered. Major results show that the choice of survey configuration, rather than the interpolation method, has significant effect on the accuracy of interpolated river bed surfaces, and subsequently on the accuracy of river flow simulations. The RMSEs of the interpolated surfaces and the model results vary from one configuration to another, and depends on how each configuration evenly collects river bed elevation data points. The large RMSEs for the RBCL configuration and the low RMSEs for the XS configuration confirm that as the data points become evenly spaced and cover more portions of the river, the resulting interpolated surface and the river flow simulation where it was used also become more accurate. The XS configuration with Ordinary Kriging (OK as interpolation method provided the best river bed interpolation and river flow simulation results. The RBCL configuration, regardless of the interpolation algorithm used, resulted to least accurate river bed surfaces and simulation results. Based on the accuracy analysis, the use of XS configuration to collect river bed data points and applying the OK method to interpolate the river bed topography are the best methods to use to produce satisfactory river flow simulation outputs

  14. Preliminary checklists for applying SERCON (System for Evaluating Rivers for Conservation to rivers in Serbia

    Directory of Open Access Journals (Sweden)

    Teodorović Ivana

    2012-01-01

    Full Text Available This paper describes the first steps in gathering biological data to assess the conservation value of rivers in Serbia, using SERCON (System for Evaluating Rivers for Conservation. SERCON was developed in the UK to improve consistency in assessments of river ‘quality’ by using a scoring system to evaluate habitat features and species groups, catchment characteristics, and the potential impacts to which river systems may be subjected. This paper provides checklists for aquatic, semiaquatic and marginal plants, macroinvertebrates, fish and birds associated with rivers in Serbia, collated from a wide range of published and unpublished sources. These lists should be regarded as provisional because few wide-ranging biological surveys have been carried out specifically on Serbian rivers; further revisions are likely as more information becomes available in future. Ultimately, the work will benefit regulators and decision-makers with responsibility for river management under the new Water Law, and contribute to river protection and conservation in Serbia. [Acknowledgments. The hydromorphology dataset was prepared for the project ‘Biosensing Technologies and Global System for Long-Term Research and Integrated Management of Ecosystems’ (Biosensing tehnologije i globalni sistem za kontinuirana istraživanja i integrisano upravljanje ekosistema III 043002 grant, while the biodiversity dataset was prepared the project Plant biodiversity of Serbia and the Balkans – assessment, sustainable use and protection (Biodiverzitet biljnog sveta Srbije i Balkanskog poluostrva – procena, održivo korišćenje i zaštita 173030 Grant, supported by Ministry of Education and Science, Republic of Serbia

  15. Weak Learner Method for Estimating River Discharges using Remotely Sensed Data: Central Congo River as a Testbed

    Science.gov (United States)

    Kim, D.; Lee, H.; Yu, H.; Beighley, E.; Durand, M. T.; Alsdorf, D. E.; Hwang, E.

    2017-12-01

    River discharge is a prerequisite for an understanding of flood hazard and water resource management, yet we have poor knowledge of it, especially over remote basins. Previous studies have successfully used a classic hydraulic geometry, at-many-stations hydraulic geometry (AMHG), and Manning's equation to estimate the river discharge. Theoretical bases of these empirical methods were introduced by Leopold and Maddock (1953) and Manning (1889), and those have been long used in the field of hydrology, water resources, and geomorphology. However, the methods to estimate the river discharge from remotely sensed data essentially require bathymetric information of the river or are not applicable to braided rivers. Furthermore, the methods used in the previous studies adopted assumptions of river conditions to be steady and uniform. Consequently, those methods have limitations in estimating the river discharge in complex and unsteady flow in nature. In this study, we developed a novel approach to estimating river discharges by applying the weak learner method (here termed WLQ), which is one of the ensemble methods using multiple classifiers, to the remotely sensed measurements of water levels from Envisat altimetry, effective river widths from PALSAR images, and multi-temporal surface water slopes over a part of the mainstem Congo. Compared with the methods used in the previous studies, the root mean square error (RMSE) decreased from 5,089 m3s-1 to 3,701 m3s-1, and the relative RMSE (RRMSE) improved from 12% to 8%. It is expected that our method can provide improved estimates of river discharges in complex and unsteady flow conditions based on the data-driven prediction model by machine learning (i.e. WLQ), even when the bathymetric data is not available or in case of the braided rivers. Moreover, it is also expected that the WLQ can be applied to the measurements of river levels, slopes and widths from the future Surface Water Ocean Topography (SWOT) mission to be

  16. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  17. River as a part of ground battlefield

    Science.gov (United States)

    Vračar, Miodrag S.; Pokrajac, Ivan; Okiljević, Predrag

    2013-05-01

    The rivers are in some circumstances part of the ground battlefield. Microseisms induced at the riverbed or ground at the river surrounding might be consequence of military activities (military ground transports, explosions, troop's activities, etc). Vibrations of those fluid-solid structures are modeled in terms of solid displacement and change of fluid pressure. This time varying fluid pressure in river, which originates from ground microseisms, is possible to detect with hydrophones. Therefore, hydroacoustic measurements in rivers enables detecting, identification and localization various types of military noisy activities at the ground as and those, which origin is in the river water (hydrodynamics of water flow, wind, waves, river vessels, etc). In this paper are presented river ambient noise measurements of the three great rivers: the Danube, the Sava and the Tisa, which flows in north part of Serbia in purpose to establish limits in detection of the ground vibrations in relatively wide frequency range from zero to 20 kHz. To confirm statement that the river is a part of ground battlefield, and that hydroacoustic noise is possible to use in detecting and analyzing ground microseisms induced by civil or military activities, some previous collected data of hydroacoustic noise measurement in the rivers are used. The data of the river ambient noise include noise induced by civil engineering activities, that ordinary take place in large cities, noise that produced ships and ambient noise of the river when human activities are significantly reduced. The poly spectral method was used in analysis such events.

  18. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    Science.gov (United States)

    Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin

    2018-03-01

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome

  19. Flood characteristics for the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.; Cunningham, M.K.

    1994-01-01

    The frequency and magnitude of flooding of the New River in the New River Gorge National River was studied. A steady-state, one-dimensional flow model was applied to the study reach. Rating curves, cross sections, and Manning's roughness coefficients that were used are presented in this report. Manning's roughness coefficients were evaluated by comparing computed elevations (from application of the steady-state, one-dimensional flow model) to rated elevations at U.S. Geological Survey (USGS) streamflow-gaging stations and miscellaneous-rating sites. Manning's roughness coefficients ranged from 0.030 to 0.075 and varied with hydraulic depth. The 2-, 25-, and 100-year flood discharges were esti- mated on the basis of information from flood- insurance studies of Summers County, Fayette County, and the city of Hinton, and flood-frequency analysis of discharge records for the USGS streamflow-gaging stations at Hinton and Thurmond. The 100-year discharge ranged from 107,000 cubic feet per second at Hinton to 150,000 cubic feet per second at Fayette.

  20. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  1. RiverHeath: Neighborhood Loop Geothermal Exchange System

    Energy Technology Data Exchange (ETDEWEB)

    Geall, Mark [RiverHeath LLC, Appleton, WI (United States)

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  2. 78 FR 21839 - Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0041] RIN 1625-AA09 Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA... drawbridge operation regulation for the drawbridges across Green River, mile 79.6, Small- house, KY and Black...

  3. Functional groups of macro-benthos of selected sites of upstream of Hron River and Hnilec River

    International Nuclear Information System (INIS)

    Rufusova, A.

    2011-01-01

    The author used six functional groups of macro-benthos based on 'species traits', which are indicated with the Greek letters α to ζ. In the work authors applied this method to the macroinvertebrate communities of selected sites of upstream of the Hron River and the Hnilec River. The method appropriately captured increasing gradient of anthropogenic changes in the direction of the river continuum. Although the method was used for Slovak rivers for the first time, it seems to be promising for use in the future. (author)

  4. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    Science.gov (United States)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  5. Flood-inundation Maps for the Deerfield River, Franklin County, Massachusetts, from the Confluence with the Cold River Tributary to the Connecticut River

    Science.gov (United States)

    Lombard, Pamela J.; Bent, Gardner C.

    2015-09-02

    The U.S. Geological Survey developed flood elevations in cooperation with the Federal Emergency Management Agency for a 30-mile reach of the Deerfield River from the confluence of the Cold River tributary to the Connecticut River in the towns of Charlemont, Buckland, Shelburne, Conway, Deerfield, and Greenfield in Franklin County, Massachusetts to assist land owners, and emergency management workers prepare for and recover from floods. Peak flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities were computed for the reach from updated flood-frequency analyses. These peak flows were routed through a one-dimensional step-backwater hydraulic model to obtain the corresponding peak water-surface elevations and to place the tropical storm Irene flood of August 28, 2011 into historical context. The hydraulic model was calibrated by using current [2015] stage-discharge relations at two U.S. Geological Survey streamgages in the study reach—Deerfield River at Charlemont, MA (01168500) and Deerfield River near West Deerfield, MA (01170000)—and from documented high-water marks from the tropical storm Irene flood, which had between a 1- and 0.2-percent AEP.

  6. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  7. Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

    Science.gov (United States)

    Haefner, Ralph J.; Simonson, Laura A.

    2010-01-01

    The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute

  8. DAMPAK LINGKUNGAN PEMANFAATAN ALUR SUNGAI DI KALI BOYONG, KALI KUNING DAN KALI GENDOL (Environmental Impact of Utulization River Courses in Boyong River, Kuning River and Gendol River

    Directory of Open Access Journals (Sweden)

    Darmakusuma Darmanto

    2011-07-01

    penambangan material sedimen pasir dan batu serta pemanfaatan lembah alur sungai untuk kegiatan pertanian, kedua hal tersebut menimbulkan dampak negatif yang menghambat pengaliran air sungai dari hulu ke hilir akan tetapi juga mendapatkan dampak positif dari kedua kegiatan tersebut paling tidak untuk tambahan PAD dan untuk kesejahteraan masyarakat sekitar lokasi kegiatan.   ABSTRACT This study is a part of the Doctoral Program (S3, the location is in Boyong, Kuning and Gendol River, where periodically are used to transport the sediment material from Merapi volcano.The problems of study are: (a there will be impact of the Merapi eruption to the fuction of the river channels or courses in storage and delivery for the water in the river, (b the usage of river channels/courses from or sediment material minings, and water and land usages by the people for agriculture so that needed to developed a model to manage the river channel in an active volcano to keep the function of the channel optimal. The methodology are field surveying and laboratory analysis by measuring, observation, taking sediment samples, interviewing respondents in the surrounding area and taking field photoes from the profiling sections of the river. Data are used to analyze the result by using ecology and spatial approach. The result and evaluation conclusions are: (a by using ecological and spatial approach the physical and the biological factors are seems to be similar at Boyong River and Gendol/Opak River compared to Kuning River this was due to an interrivercourse area, and (b the usage of river channel by surroundings people and government makes negative impacts of the water storage and flow of water to downstream, but the mining activity of sand and boulders and agriculture will produce positive impacts to the government and surroundings people

  9. Preface to the volume Large Rivers

    Science.gov (United States)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  10. Flood discharge measurement of a mountain river – Nanshih River in Taiwan

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2013-05-01

    Full Text Available This study proposes a more efficient method of flood discharge measurement in mountain rivers that accounts for personal safety, accuracy, and reliability. Because it is based on the relationships between mean and maximum velocities and between cross-sectional area and gauge height, the proposed method utilizes a flood discharge measurement system composed of an acoustic Doppler profiler and crane system to measure velocity distributions, cross-sectional area, and water depths. The flood discharge measurement system can be used to accurately and quickly measure flood data that is difficult to be collected by the conventional instruments. The measured data is then used to calibrate the parameters of the proposed method for estimating mean velocity and cross-sectional area. Then these observed discharge and gauge height can be used to establish the water stage–discharge rating curve. Therefor continuous and real-time estimations of flood discharge of a mountain river can become possible. The measurement method and system is applied to the Nanshih River at the Lansheng Bridge. Once the method is established, flood discharge of the Nanshih River could be efficiently estimated using maximum velocity and the water stage. Results of measured and estimated discharges of the Nanshih River at the Lansheng Bridge differed only slightly from each other, demonstrating the efficiency and accuracy of the proposed method.

  11. Combining integrated river modelling and agent based social simulation for river management; The case study of the Grensmaas project

    NARCIS (Netherlands)

    Valkering, P.; Krywkow, Jorg; Rotmans, J.; van der Veen, A.; Douben, N.; van Os, A.G.

    2003-01-01

    In this paper we present a coupled Integrated River Model – Agent Based Social Simulation model (IRM-ABSS) for river management. The models represent the case of the ongoing river engineering project “Grensmaas”. In the ABSS model stakeholders are represented as computer agents negotiating a river

  12. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  13. Composition patterns of waterbirds from La Vieja River, Geographic Valley of Cauca River, Colombia

    International Nuclear Information System (INIS)

    Ramirez Urrea, Laura Milena; Arbelaez Cortes, Enrique; Marin Gomez, Oscar Humberto; Duque Montoya, Diego

    2014-01-01

    We compiled and analyzed data gathered from observations during the period 2001-2013 in three sectors along La Vieja River, located in the Cauca River Valley, Colombia. We describe spatial and temporal aspects of such dataset, focusing in indentify patterns of species' composition and abundance. We recorded 28 waterbird species in 33 transects, being 22 species observed in more than 50 % of these transects. The species richness among transects did not shows significant differences. However, two cluster analyses, considering both presence/absence and abundance data, showed that there is spatial structure in the species composition along the river. In contrast, although observations were conducted during more than ten years there is no evidence of temporal changes in species composition. Still, some species showed increase or decrease trends in their frequency. We present a new record for one species (Chloroceryle aenea) for the region. Despite that the landscape surrounding La Vieja River has faced a high anthropogenic impact; the river still presents a significant diversity of waterbirds, which could add value to the conservation plans in the zone.

  14. 75 FR 33690 - Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA

    Science.gov (United States)

    2010-06-15

    ... scenario with potential for loss of life and property. Basis and Purpose The New Hope Chamber of Commerce... to protect life and property operating on the navigable waterways of the Delaware River in New Hope...-AA00 Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA AGENCY: Coast...

  15. Real-Time River Channel-Bed Monitoring at the Chariton and Mississippi Rivers in Missouri, 2007-09

    Science.gov (United States)

    Rydlund, Jr., Paul H.

    2009-01-01

    Scour and depositional responses to hydrologic events have been important to the scientific community studying sediment transport as well as potential effects on bridges and other hydraulic structures within riverine systems. A river channel-bed monitor composed of a single-beam transducer was installed on a bridge crossing the Chariton River near Prairie Hill, Missouri (structure L-344) as a pilot study to evaluate channel-bed change in response to the hydrologic condition disseminated from an existing streamgage. Initial results at this location led to additional installations in cooperation with the Missouri Department of Transportation at an upstream Chariton River streamgage location at Novinger, Missouri (structure L-534) and a Mississippi River streamgage location near Mehlville, Missouri (structures A-1850 and A-4936). In addition to stage, channel-bed elevation was collected at all locations every 15 minutes and transmitted hourly to a U.S. Geological Survey database. Bed elevation data for the Chariton River location at Novinger and the Mississippi River location near Mehlville were provided to the World Wide Web for real-time monitoring. Channel-bed data from the three locations indicated responses to hydrologic events depicted in the stage record; however, notable bedforms apparent during inter-event flows also may have affected the relation of scour and deposition to known hydrologic events. Throughout data collection periods, Chariton River locations near Prairie Hill and Novinger reflected bed changes as much as 13 feet and 5 feet. Nearly all of the bed changes correlated well with the hydrographic record at these locations. The location at the Mississippi River near Mehlville indicated a much more stable channel bed throughout the data collection period. Despite missing data resulting from damage to one of the river channel-bed monitors from ice accumulation at the upstream nose of the bridge pier early in the record, the record from the downstream

  16. Radiocesium dynamics in the Hirose River basin

    Science.gov (United States)

    Kuramoto, T.; Taniguchi, K.; Arai, H.; Onuma, S.; Onishi, Y.

    2017-12-01

    A significant amount of radiocesium was deposited in Fukushima Prefecture during the accident of Fukushima Daiichi Nuclear Power Plant. In river systems, radiocesium is transported to downstream in rivers. For the safe use of river and its water, it is needed to clarify the dynamics of radiocesium in river systems. We started the monitoring of the Hirose River from December 2015. The Hirose River is a tributary of the Abukuma River flowing into the Pacific Ocean, and its catchment is close to areas where a large amount of radiocesium was deposited. We set up nine monitoring points in the Hirose River watershed. The Water level and turbidity data are continuously observed at each monitoring point. We regularly collected about 100 liters of water at each monitoring point. Radiocesium in water samples was separated into two forms; the one is the dissolved form, and the other is the suspended particulate form. Radionuclide concentrations of radiocesium in both forms were measured by a germanium semiconductor detector. Furthermore, we applied the TODAM (Time-dependent One-dimensional Degradation And Migration) code to the Hirose River basin using the monitoring data. The objectives of the modeling are to understand a redistribution pattern of radiocesium adsorbed by sediments during flooding events and to determine the amount of radiocesium flux into the Abukuma River.

  17. Simulated and observed 2010 floodwater elevations in selected river reaches in the Pawtuxet River Basin, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to

  18. Phytoplankton Regulation in a Eutrophic Tidal River (San Joaquin River, California

    Directory of Open Access Journals (Sweden)

    Alan D. Jassby

    2005-03-01

    Full Text Available As in many U.S. estuaries, the tidal San Joaquin River exhibits elevated organic matter production that interferes with beneficial uses of the river, including fish spawning and migration. High phytoplankton biomass in the tidal river is consequently a focus of management strategies. An unusually long and comprehensive monitoring dataset enabled identification of the determinants of phytoplankton biomass. Phytoplankton carrying capacity may be set by nitrogen or phosphorus during extreme drought years but, in most years, growth rate is light-limited. The size of the annual phytoplankton bloom depends primarily on river discharge during late spring and early summer, which determines the cumulative light exposure in transit downstream. The biomass-discharge relationship has shifted over the years, for reasons as yet unknown. Water diversions from the tidal San Joaquin River also affect residence time during passage downstream and may have resulted in more than a doubling of peak concentration in some years. Dam construction and accompanying changes in storage-and-release patterns from upstream reservoirs have caused a long-term decrease in the frequency of large blooms since the early 1980s, but projected climate change favors a future increase. Only large decreases in nonpoint nutrient sources will limit phytoplankton biomass reliably. Growth rate and concentration could increase if nonpoint source management decreases mineral suspensoid load but does not decrease nutrient load sufficiently. Small changes in water storage and release patterns due to dam operation have a major influence on peak phytoplankton biomass, and offer a near-term approach for management of nuisance algal blooms.

  19. 27 CFR 9.47 - Hudson River Region.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Hudson River Region. 9.47... Hudson River Region. (a) Name. The name of the viticultural area described in this section is “Hudson River Region.” (b) Approved maps. The approved maps for determining the boundaries of Hudson River...

  20. A geomorphological characterisation of river systems in South Africa: A case study of the Sabie River

    Science.gov (United States)

    Eze, Peter N.; Knight, Jasper

    2018-06-01

    Fluvial geomorphology affects river character, behaviour, evolution, trajectory of change and recovery potential, and as such affects biophysical interactions within a catchment. Water bodies in South Africa, in common with many other water-stressed parts of the world, are generally under threat due to increasing natural and anthropogenic influences including aridity, siltation and pollution, as well as climate and environmental change. This study reports on a case study to characterise the geomorphology of different river systems in South Africa, with the aim of better understanding their properties, controls, and implications for biophysical interactions including water quality, biodiversity (aquatic and riparian), and human activity within the catchment. The approach adopted is based on the River Styles® framework (RSF), a geomorphology-based approach developed for rivers in New Zealand and Australia, but applied here for the first time to South Africa. Based on analysis of remote sensing imagery, SRTM-2 digital topographic data and field observations on sites through the entire river system, six geomorphic elements were identified along the Sabie River, northeast South Africa (gorge, bedrock-forced meander, low-moderate sinuosity planform controlled sand bed, meandering sand bed, low sinuosity fine grained sand bed, and floodouts), using the RSF classification scheme and based on the RSF procedural tree of Brierley and Fryirs (2005). Previous geomorphological studies along the Sabie River have shown that different reaches respond differently to episodic floods; we use these data to link river geomorphological character (as defined by the RSF) to the hydrodynamic conditions and processes giving rise to such character. This RSF approach can be used to develop a new management approach for river systems that considers their functional biophysical behaviour within individual reaches, rather than considering them as homogeneous and uniform systems.

  1. RiverCare communication strategy for reaching beyond

    Science.gov (United States)

    Cortes Arevalo, Juliette; den Haan, Robert Jan; Berends, Koen; Leung, Nick; Augustijn, Denie; Hulscher, Suzanne J. M. H.

    2017-04-01

    Effectively communicating river research to water professionals and researchers working in multiple disciplines or organizations is challenging. RiverCare studies the mid-term effects of innovative river interventions in the Netherlands to improve river governance and sustainable management. A total of 21 researchers working at 5 universities are part of the consortium, which also includes research institutes, consultancies, and water management authorities. RiverCare results do not only benefit Dutch river management, but can also provide useful insights to challenges abroad. Dutch partner organizations actively involved in RiverCare are our direct users. However, we want to reach water professionals from the Netherlands and beyond. To communicate with and disseminate to these users, we set up a communication strategy that includes the following approaches : (1) Netherlands Centre of River studies (NCR) website to announce activities post news, not limited to RiverCare; (2) A RiverCare newsletter that is published twice per year to update about our progress and activities; (3) A multimedia promotional providing a 'first glance' of RiverCare. It consists of four video episodes and an interactive menu; (4) An interactive knowledge platform to provide access, explain RiverCare results and gather feedback about the added value and potential use of these results; and (5) A serious gaming environment titled Virtual River where actors can play out flood scaling intervention and monitoring strategies to assess maintenance scenarios. The communication strategy and related approaches are being designed and developed during the project. We use participatory methods and systematic evaluation to understand communication needs and to identify needs for improvement. As a first step, RiverCare information is provided via the NCR website. The active collaboration with the NCR is important to extend communication efforts beyond the RiverCare consortium and after the program ends

  2. As long as the rivers flow: Athabasca River knowledge, use and change

    International Nuclear Information System (INIS)

    Candler, C.; Olson, R.; Deroy, S.

    2010-11-01

    This document is a report supported by specific information gathered by the Athabasca Chipewyan First Nation (ACFN) and the Mikisew Cree First Nation (MCFN), and takes part in an Athabasca River Use and Traditional Ecological Knowledge (TEK) study conducted in 2010. The main objective was to provide a written submission, based on evidence, in order to effectively notify the crown about plans for managing industrial water withdrawals from the lower Athabasca River. The First Nations used the same methods, wrote their community reports as distinguished stand-alone documents and made the choice to present the ACFN and MCFN data in parallel with each other within the same document. The study provides information on the knowledge and uses of the Athabasca River by the community members. Context and background for the study can be found in the part A. It comprises a short discussion of the Treaty No.8 of 1899, the latter confirming the rights of First Nation people. The importance of boat transportation for the community members is mentioned, and a summary of the methods is given. The results of the ACFN and MCFN studies are given in part B and C. The reduction of the quantity and quality of the river has affected the practice of ACFN and MCFN aboriginal and treaty rights. The community perceptions of the changes of the river and how it has influenced their lifestyle is discussed. Some uses of the Athabasca river have been lost because of concerns regarding contamination associated with oil sands operations. The last part of the document provides an analysis of results and suggests two thresholds that define the ability of ACFN and MCFN members to practice their rights and access their territories. This document ends with recommendations for implementation of these thresholds. 22 refs., 12 maps.

  3. As long as the rivers flow: Athabasca River knowledge, use and change

    Energy Technology Data Exchange (ETDEWEB)

    Candler, C.; Olson, R.; Deroy, S. [Firelight Group Research Cooperative, Victoria, BC (Canada)

    2010-11-15

    This document is a report supported by specific information gathered by the Athabasca Chipewyan First Nation (ACFN) and the Mikisew Cree First Nation (MCFN), and takes part in an Athabasca River Use and Traditional Ecological Knowledge (TEK) study conducted in 2010. The main objective was to provide a written submission, based on evidence, in order to effectively notify the crown about plans for managing industrial water withdrawals from the lower Athabasca River. The First Nations used the same methods, wrote their community reports as distinguished stand-alone documents and made the choice to present the ACFN and MCFN data in parallel with each other within the same document. The study provides information on the knowledge and uses of the Athabasca River by the community members. Context and background for the study can be found in the part A. It comprises a short discussion of the Treaty No.8 of 1899, the latter confirming the rights of First Nation people. The importance of boat transportation for the community members is mentioned, and a summary of the methods is given. The results of the ACFN and MCFN studies are given in part B and C. The reduction of the quantity and quality of the river has affected the practice of ACFN and MCFN aboriginal and treaty rights. The community perceptions of the changes of the river and how it has influenced their lifestyle is discussed. Some uses of the Athabasca river have been lost because of concerns regarding contamination associated with oil sands operations. The last part of the document provides an analysis of results and suggests two thresholds that define the ability of ACFN and MCFN members to practice their rights and access their territories. This document ends with recommendations for implementation of these thresholds. 22 refs., 12 maps.

  4. HYDROLOGICAL ASSESSMENTS OF SOME RIVERS IN EDO ...

    African Journals Online (AJOL)

    Highest monthly hydropower yields were recorded in September for Ovia, Ikpoba and Edion Rivers and in August for Orlie River. On annual basis, Ovia River, recorded the highest power yield of 61.619MW (suggesting that Ovia river may be suitable for a Medium hydropower scheme, 10MW-100MW) with the highest ...

  5. Post-flood status of the Endangered Ganges River Dolphin Platanista gangetica gangetica (Cetartiodactyla: Platanistidae in the Koshi River, Nepal

    Directory of Open Access Journals (Sweden)

    T.B. Khatri

    2010-12-01

    Full Text Available The breach of the eastern embankment of the Koshi Barrage at Paschim Kusaha Village of Sunsari District on 18 August 2008, created havoc for wildlife and their habitats, as well as people’s livelihood and welfare. The Koshi River flowed through the breach for five months. Following the breach, a population assessment survey of the Endangered Ganges River Dolphin Platanista gangetica gangetica was made between March and November 2009 in the Koshi River main channel starting from Chatara to 2km south of Koshi Barrage to ascertain their status. A direct count survey was conducted by two teams of researchers simultaneously searching for animals by boat from Chatara to the Koshi Barrage including the Triyuga River and on foot along the river banks downstream of Koshi Barrage and along the Mariya River. Standard protocols were followed to record the number of sighted dolphins. A total of 11 dolphins were recorded in the entire 49-km river stretch with an encounter rate of 0.23 dolphins per km. The current result showed an encouraging population of dolphins in the Koshi Tappu Wildlife Reserve and its buffer zone but the threats for conservation still remain challenging. Close monitoring of dolphins and their habitats involving local communities are required for long term conservation of the river dolphins in Nepal. The breach of the eastern embankment of the Koshi Barrage at Paschim Kusaha Village of Sunsari District on 18 August 2008, created havoc for wildlife and their habitats, as well as people’s livelihood and welfare. The Koshi River flowed through the breach for five months. Following the breach, a population assessment survey of the Endangered Ganges River Dolphin Platanista gangetica gangetica was made between March and November 2009 in the Koshi River main channel starting from Chatara to 2km south of Koshi Barrage to ascertain their status. A direct count survey was conducted by two teams of researchers simultaneously searching for

  6. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzüberschreitender Flüsse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel beschäftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Förderung allgemeiner regionaler Kooperation im Festländischen Südostasien.

  7. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  8. Multielement analysis of water in Yodo River

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira; Matsunami, Tadao; Matsuda, Yatsuka

    1980-01-01

    Yodo River is a major source of water supplies in the Osaka district. Three tributaries including Katsura River flow into this river at close positions. It is known that the Katsura River is considerably polluted due to the sewage treatment in Kyoto City. Following the previous survey in September, 1970, a similar survey by neutron activation has been carried out on the pollution of the Yodo River in October, 1977, by increasing the number of sampling points. Because it is reported that the pollution of the Katsura River has been largely lowered from that in the previous survey, the purpose was to grasp the present situation of the water pollution of the Yodo River due to metal elemens and others, and further to examine in relation of material balance. The procedures used were, first, the evaporation and solidification of sample water, and then neutron activation analysis. The correlation among the concentrations of elements, the pattern of the concentrations of elements, the material balance along the Yodo River, etc. are described in this paper. (J.P.N.)

  9. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    Science.gov (United States)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment

  10. Interlinking of Rivers in India: Issues & Challenges

    OpenAIRE

    MEHTA, Dharmendra; MEHTA, Naveen K.

    2013-01-01

    Abstract. The rivers in India are truly speaking not only life-line of masses but also for wild-life. The rivers play a vital role in the lives of the Indian people. The river systems help us in irrigation, potable water, cheap transportation, electricity as well as a source of livelihood for our ever increasing population. Some of the major cities of India are situated at the banks of holy rivers. Proper management of river water is the need of the hour. Indian agriculture largely d...

  11. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  12. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    Science.gov (United States)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  13. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  14. Groundwater controls on river channel pattern

    Science.gov (United States)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a

  15. Savannah River Plant environment

    International Nuclear Information System (INIS)

    Dukes, E.K.

    1984-03-01

    On June 20, 1972, the Atomic Energy Commission designated 192,323 acres of land near Aiken, SC, as the nation's first National Environmental Research Park. The designated land surrounds the Department of Energy's Savannah River Plant production complex. The site, which borders the Savannah River for 17 miles, includes swampland, pine forests, abandoned town sites, a large man-made lake for cooling water impoundment, fields, streams, and watersheds. This report is a description of the geological, hydrological, meteorological, and biological characteristics of the Savannah River Plant site and is intended as a source of information for those interested in environmental research at the site. 165 references, 68 figures, 52 tables

  16. The Columbia River System Inside Story

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  17. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China.

    Science.gov (United States)

    Pan, Chang-Gui; Ying, Guang-Guo; Liu, You-Sheng; Zhang, Qian-Qian; Chen, Zhi-Feng; Peng, Feng-Jiao; Huang, Guo-Yong

    2014-11-01

    A survey on contamination profiles of eighteen perfluoroalkyl substances (PFASs) was performed via high performance liquid chromatography-tandem mass spectrometry for surface water and sediments from five typical rivers of the Pearl River Delta region, South China in summer and winter in 2012. The total concentrations of the PFASs in the water phase of the five rivers ranged from 0.14 to 346.72 ng L(-1). The PFAS concentrations in the water phase were correlated positively to some selected water quality parameters such as chemical oxygen demand (COD) (0.7913) and conductivity (0.5642). The monitoring results for the water samples showed significant seasonal variations, while those for the sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctane sulfonic acid (PFOS) was the dominant PFAS compound both in water and sediment for two seasons with its maximum concentration of 320.5 ng L(-1) in water and 11.4 ng g(-1) dry weight (dw) in sediment, followed by perfluorooctanoic acid (PFOA) with its maximum concentration of 26.48 ng L(-1) in water and 0.99 ng g(-1) dw in sediment. PFOS and PFOA were found at relatively higher concentrations in the Shima River and Danshui River than in the other three rivers (Xizhijiang River, Dongjiang River and Shahe River). The principal component analysis for the PFASs concentrations in water and sediment separated the sampling sites into two groups: rural and agricultural area, and urban and industrial area, suggesting the PFASs in the riverine environment were mainly originated from industrial and urban activities in the region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Riparian vegetation interacting with river morphology : modelling long-term ecosystem responses to invasive species, climate change, dams and river restoration

    NARCIS (Netherlands)

    van Oorschot, M.

    2017-01-01

    River systems are amongst the most dynamic and productive ecosystems in the world and provide habitats for numerous fluvial species. River flow and river shape determine the conditions that affect plant growth and survival. In turn, riparian plants can actively influence river flow and sedimentation

  19. 33 CFR 117.1058 - Snake River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.1058 Section 117... OPERATION REGULATIONS Specific Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco and Burbank is...

  20. Comparative Influences of Precipitation and River Stage on Groundwater Levels in Near-River Areas

    Directory of Open Access Journals (Sweden)

    Incheol Kim

    2015-12-01

    Full Text Available The sustainable performance of foundations of various urban buildings and infrastructures is strongly affected by groundwater level (GWL, as GWL causes changes in the stress state within soil. In the present study, the components affecting GWL were investigated, focusing on the effects of precipitation and river stage. These components were analyzed using a six-year database established for hydrological and groundwater monitoring data. Five study regions for which daily measured precipitation, river stage, and GWL data were available were compared. Different periods of precipitation, geographical characteristics, and local surface conditions were considered in the analysis. The results indicated that key influence components on GWL are different depending on the hydrological, geological, and geographical characteristics of the target regions. River stage had the strongest influence on GWL in urban areas near large rivers with a high ratio of paved surface. In rural areas, where the paved surface area ratio and soil permeability were low, the moving average showed a closer correlation to GWL than river stage. A moving average-based method to predict GWL variation with time was proposed for regions with a low ratio of paved surface area and low permeability soils.

  1. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    2018-06-01

    Full Text Available To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.

  2. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    Science.gov (United States)

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  3. Estimating River Surface Elevation From ArcticDEM

    Science.gov (United States)

    Dai, Chunli; Durand, Michael; Howat, Ian M.; Altenau, Elizabeth H.; Pavelsky, Tamlin M.

    2018-04-01

    ArcticDEM is a collection of 2-m resolution, repeat digital surface models created from stereoscopic satellite imagery. To demonstrate the potential of ArcticDEM for measuring river stages and discharges, we estimate river surface heights along a reach of Tanana River near Fairbanks, Alaska, by the precise detection of river shorelines and mapping of shorelines to land surface elevation. The river height profiles over a 15-km reach agree with in situ measurements to a standard deviation less than 30 cm. The time series of ArcticDEM-derived river heights agree with the U.S. Geological Survey gage measurements with a standard deviation of 32 cm. Using the rating curve for that gage, we obtain discharges with a validation accuracy (root-mean-square error) of 234 m3/s (23% of the mean discharge). Our results demonstrate that ArcticDEM can accurately measure spatial and temporal variations of river surfaces, providing a new and powerful data set for hydrologic analysis.

  4. Analysis of Cruise Tourism on Croatian Rivers

    Directory of Open Access Journals (Sweden)

    Astrid Zekić

    2017-03-01

    Full Text Available Cruise trips have been rising in popularity since the 1970sand are currently a trend in the tourism market. This is particularly true of river cruises, which record a constant growth in the number of ship calls. The general upward trend in the number of river cruise passengers and dockings is also present in Croatia. Prerequisites for the development of cruising on Croatian rivers include, in addition to other geographical features, also the length of navigable water ways, but a systematic approach to this issue is needed for further development. The authors investigate the level of development of infrastructure on Croatian rivers and analyse the passenger and ship traffic on them. Special attention is given to the importance of cruises for tourism on European rivers and worldwide. In accordance with the Croatian Tourism Development Strategy until 2020, the authors explore geographical and other conditions necessary for the development of river cruise tourism. The aim of the paper is to point to the importance of building infrastructure for accommodation of vessels sailing on Croatian rivers, and in particular to the need to improve tourism offer in river destinations.

  5. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  6. Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2005-09-01

    Full Text Available The paper presents a comparative analysis of two different river mouths from two different geographical zones (subtropical and temperate climatic regions. One is the multi-branch and multi-spit mouth of the Red River on the Gulf of Tonkin (Vietnam, the other is the smaller delta of the river Vistula on a bay of the Baltic Sea (Poland. The analysis focuses on the similarities and differences in the hydrodynamics between these estuaries and the adjacent coastal zones, the features of sediment transport, and the long-term morphodynamics of the river outlets. Salinity and water level are also discussed, the latter also in the context of the anticipated global effect of accelerated sea level rise. The analysis shows that the climatic and environmental conditions associated with geographical zones give rise to fundamental differences in the generation and dynamic evolution of the river mouths.

  7. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.

    Science.gov (United States)

    von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi

    2016-01-01

    River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.

  8. Haw River PFCs Data Set

    Data.gov (United States)

    U.S. Environmental Protection Agency — PFAS concentrations in river and drinking water in and around the Haw River in North Carolina. This dataset is associated with the following publication: Sun, M., E....

  9. Flood Disaster Mitigation as Revealed by Cawang-Manggarai River Improvement of Ciliwung River

    Directory of Open Access Journals (Sweden)

    Airlangga Mardjono

    2015-06-01

    The final result of this simulation shows that Scenario 3 gives the lowest water surface elevation profile. Scenario 3 is subjected to river normalization, revetment works along the river, and also flood control structure improvement through the additional sluice gate on Manggarai Barrage. This scenario results 167 cm, 163 cm, 172 cm, 179 cm, 167 cm and 171 cm or 17,60%, 17,16%, 18,09%, 18,76%, 17,38% and 17,72% of maximum water level reduction respectively over cross section number S 20 to S 25, for several simulations with 100 year of design discharge. Keywords: Simulation, river improvement, flood water surface elevation.

  10. Hydrological and geochemical consequences of river regulation - hyporheic perspective

    Science.gov (United States)

    Siergieiev, Dmytro; Lundberg, Angela; Widerlund, Anders

    2014-05-01

    River-aquifer interfaces, essential for ecosystem functioning in terms of nutrient exchange and biological habitat, appear greatly threatened worldwide. Although river regulation is a vast pressure on river-aquifer interaction, influencing entire watersheds, knowledge about hyporheic exchange in regulated rivers is rather limited. In this study, we combine two decades of research on hydrological and geochemical impacts of hydropower regulation on river water and hyporheic zone in two large boreal rivers, unregulated Kalix River and regulated Lule River. Altered river discharge, with reduced spring peaks, daily summer fluctuations and elevated winter base flow severely modified Lule River water geochemistry and thus the transport of solutes to the Bothnian Bay (Baltic Sea). Further, these river modifications changed the river-aquifer exchange on both daily and seasonal scale, which resulted in deteriorated hyporheic conditions with reduced riverbed hydraulic conductivity (formation of a clogging layer) reflected in a declined hyporheic flux. Altered hydrological regime of the hyporheic zone created quasi-stagnant conditions beneath the river-aquifer interface and promoted the formation of geochemically suboxic environment. Taken that hyporheic water is a mixture of river water and groundwater, mixing models for the regulated site demonstrate a considerable addition of Fe, Mn, Al, NH4 and removal of dissolved oxygen and nitrate, which suggests the hyporheic zone in the Lule River to be a source of solutes. This contradicts the observations from the hyporheic zone in the unregulated river, with opposite behaviour functioning as a barrier. These results suggest that the hyporheic zone function is dependent on the river discharge and the state of the river-aquifer connectivity. Improved knowledge about the latter on a watershed scale will substantially increase our understanding about the status and potential pressures of riverine ecosystems and assist management and

  11. Columbia River Component Data Evaluation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  12. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  13. Hydrology and ecology of the Apalachicola River, Florida : a summary of the river quality assessment

    Science.gov (United States)

    Elder, John F.; Flagg, Sherron D.; Mattraw, Harold C.

    1988-01-01

    During 1979-81, the U.S. Geological Survey conducted a large-scale study of the Apalachicola River in northwest Florida, the largest and one of the most economically important rivers in the State. Termed the Apalachicola River Quality Assessment, the study emphasized interrelations among hydrodynamics, the flood-plain forest, and the nutrient-detritus flow through the river system to the estuary. This report summarizes major findings of the study. Data on accumulation of toxic substances in sediments and benthic organisms in the river were also collected. Because of the multiple uses of the Apalachicola River system, there are many difficult management decisions. The river is a waterway for shipping; hence there is an economic incentive for modification to facilitate movement of barge traffic. Such modifications include the proposed construction of dams, levees, bend easings, and training dikes; ditching and draining in the flood plain; and dredging and snagging in the river channel. The river is also recognized as an important supplier of detritus, nutrients, and freshwater to the Apalachicola Bay, which maintains an economically important shellfish industry. The importance of this input to the bay creates an incentive to keep the river basin in a natural state. Other values, such as timber harvesting, recreation, sport hunting, nature appreciation, and wildlife habitat, add even more to the difficulty of selecting management strategies. Water and nutrient budgets based on data collected during the river assessment study indicate the relative importance of various inputs and outflows in the system. Waterflow is controlled primarily by rainfall in upstream watersheds and is not greatly affected by local precipitation, ground-water exchanges, or evapotranspiration in the basin. On an annual basis, the total nutrient inflow to the system is nearly equal in quantity to total outflow, but there is a difference between inflow and outflow in the chemical and physical

  14. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    Science.gov (United States)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated

  15. Endangered river fish: factors hindering conservation and restoration

    Science.gov (United States)

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  16. Missouri River 1943 Compact Line

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Flood Control, Bank Stabilization and development of a navigational channel on the Missouri River had a great impact on the river and adjacent lands. The new...

  17. Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haiyun Shi

    2017-09-01

    Full Text Available River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper and ETM (Enhanced Thematic Mapper+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1 TM/ETM+ images met the criteria of information extraction of river islands; (2 generally, the total area of these islands in this section and their changing rate decreased over time; (3 sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles.

  18. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    International Nuclear Information System (INIS)

    Nikitin, Alexander I.; Chumichev, Vladimir B.; Valetova, Nailia K.; Katrich, Ivan Yu.; Kabanov, Alexander I.; Dunaev, Gennady E.; Shkuro, Valentina N.; Rodin, Victor M.; Mironenko, Alexander N.; Kireeva, Elena V.

    2007-01-01

    Data on content of 90 Sr, 137 Cs, 239,240 Pu and 3 H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of 137 Cs, 90 Sr and 3 H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by 90 Sr is distinctly traced as far as the area of the Irtysh and Ob confluence

  19. River Data Package for the 2004 Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  20. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  1. Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S. (Washington Department of Fish and Wildlife); Honanie, Isadore (Confederated Tribes and Bands, Yakama Nation)

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

  2. Management scenarios for the Jordan River salinity crisis

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a lowland river (Aa River, Belgium)

    Science.gov (United States)

    Ghysels, Gert; Benoit, Sien; Awol, Henock; Jensen, Evan Patrick; Debele Tolche, Abebe; Anibas, Christian; Huysmans, Marijke

    2018-04-01

    An improved general understanding of riverbed heterogeneity is of importance for all groundwater modeling studies that include river-aquifer interaction processes. Riverbed hydraulic conductivity (K) is one of the main factors controlling river-aquifer exchange fluxes. However, the meter-scale spatial variability of riverbed K has not been adequately mapped as of yet. This study aims to fill this void by combining an extensive field measurement campaign focusing on both horizontal and vertical riverbed K with a detailed geostatistical analysis of the meter-scale spatial variability of riverbed K . In total, 220 slug tests and 45 standpipe tests were performed at two test sites along the Belgian Aa River. Omnidirectional and directional variograms (along and across the river) were calculated. Both horizontal and vertical riverbed K vary over several orders of magnitude and show significant meter-scale spatial variation. Horizontal K shows a bimodal distribution. Elongated zones of high horizontal K along the river course are observed at both sections, indicating a link between riverbed structures, depositional environment and flow regime. Vertical K is lognormally distributed and its spatial variability is mainly governed by the presence and thickness of a low permeable organic layer at the top of the riverbed. The absence of this layer in the center of the river leads to high vertical K and is related to scouring of the riverbed by high discharge events. Variograms of both horizontal and vertical K show a clear directional anisotropy with ranges along the river being twice as large as those across the river.

  4. INFLUENCE OF EXTREME DISCHARGE ON RESTORATION WORKS IN MOUNTAIN RIVER – A CASE STUDY OF THE KRZCZONÓWKA RIVER (SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Anna Lenar-Matyas

    2015-06-01

    Full Text Available The research was conducted on the Krzczonówka River channel, one of the gravel-bedded, regulated mountain river in Polish Carpathians. The main morphological and ecological problem of the river was lack of sediment and channel downcutting. The area is currently associated with an on-going project called “the Upper Raba River Spawning Grounds”. Lowering of an existing debris dam on Krzczonówka River is a part of the project. In 2013 twelve artificial riffles have been created by heaping up stones at points within the segment of the river channel below the debris dam. The riffles are to introduce variety to the longitudinal profile of the river and to reduce the river’s slope. Consequently, these are to decrease sediment transport and to prevent further deepening of the river channel. Post-project monitoring of river restoration works is conducted to determine channel changes and development. In May, 2014, extreme flooding occurred, which caused unexpected changes in channel development. This paper describes maintenance work performed in the riverbed of the Krzczonówka River. Observations and calculations concerning changes in conditions of water flow and sediment transport are also presented. The main purpose is to characterize the influence of an extreme flow event on morphology and functioning of the recently restored gravel-bed river.

  5. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  6. Preserving the Dnipro River

    International Development Research Centre (IDRC) Digital Library (Canada)

    Humanity inherited the true sense of proportion, synergy, and harmony from the natural environment. ..... In Ukraine, the middle and lower sections of the Dnipro have a drainage ... The following large cities are located in the Dnipro basin: in Russia, .... In Kherson Oblast and in river basins of some small rivers it is as high as ...

  7. Yukon River King Salmon - Ichthyophonus Pilot Study

    Science.gov (United States)

    Kocan, R.M.; Hershberger, P.K.

    2001-01-01

    When king salmon enter the Yukon River on their spawning migration in mid June, over 25% of the population are infected with Ichthyophonus. The percent of infected fish remains relatively constant until the fish pass river mile 1,319 at Dawson, Y.T., then it drops to 13% when they reach river mile 1,745 at Whitehorse, Y.T. When the sexes are examined separately, slightly more females are infected than males (29% vs 22%). The percent of fish exhibiting clinical signs (diseased) is 2-3% when they enter the river, but increases to over 20% at river mile 715 near Tanana, AK. Disease prevalence within the population remains constant at >20% until fish pass Dawson, then the percent of diseased fish drops to <9% at Whitehorse. When the sexes are examined separately, male disease prevalence is highest at Tanana (22.6%) then gradually drops to just 12.9% at Whitehorse. Females however, continue to show an increase in disease prevalence peaking at river mile 1,081 near Circle, AK, at 36.4%, then dropping to just 5.3% at Whitehorse. Data on infection and disease collected from kings at Nenana on the Tanana River more closely resembles that seen at Whitehorse than the lower and middle Yukon River.

  8. Predictability of current and future multi-river discharges: Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling rivers

    Science.gov (United States)

    Jian, Jun

    2007-12-01

    Determining river discharge is of critical importance to many societies as they struggle with fresh water supply and risk of flooding. In Bangladesh, floods occur almost every year but with sufficient irregularity to have adverse social and economical consequences. Important goals are to predict the discharge to be used for the optimization of agricultural practices, disaster mitigation and water resource management. The aim of this study is to determine the predictability of river discharge in a number of major rivers on time scale varying from weeks to a century. We investigated predictability considering relationship between SST and discharge. Next, we consider IPCC model projections of river discharge while the models are statistically adjusted against observed discharges. In this study, we consider five rivers, the Ganges, the Brahmaputra, the Yangtze, the Blue Nile, and the Murray-Darling Rivers. On seasonal time scales, statistically significant correlations are found between mean monthly equatorial Pacific sea surface temperature (SST) and the summer Ganges discharge with lead times of 2-3 months due to oscillations of the El Nino-Southern Oscillation (ENSO) phenomena. In addition, there are strong correlations in the southwest and northeast Pacific. These, too, appear to be tied to the ENSO cycle. The Brahmaputra discharge, on the other hand, shows somewhat weaker relationships with tropical SST. Strong lagged correlations relationships are found with SST in the Bay of Bengal but these are the result of very warm SSTs and exceptional Brahmaputra discharge during the summer of 1998. When this year is removed from the time series, relationships weaken everywhere except in the northwestern Pacific for the June discharge and in areas of the central Pacific straddling the equator for the July discharge. The relationships are relative strong, but they are persistent from month to month and suggest that two different and sequential factors influence Brahmaputra

  9. Hood River production program monitoring and evaluation. Report B: Hood River and Pelton Ladder. Annual report 1996

    International Nuclear Information System (INIS)

    Lambert, M.B.; Jennings, M.; McCanna, J.P.

    1996-01-01

    The Hood River Production Program (HRPP) is jointly implemented by the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWS) and the Oregon Department of Fish and Wildlife (ODFW). The primary goals of the HRPP are (1) to re-establish naturally sustaining spring chinook salmon using Deschutes River stock in the Hood River subbasin, (2) rebuild naturally sustaining runs of summer and winter steelhead in the Hood River subbasin, (3) maintain the genetic characteristics of the populations, and (4) contribute to tribal and non-tribal fisheries, ocean fisheries, and the Northwest Power Planning Council's (NPPC) interim goal of doubling salmon runs

  10. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  11. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors

  12. Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan

    Science.gov (United States)

    Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr

    2018-01-01

    This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.

  13. Influence of technical maintenance measures on ecological status of agricultural lowland rivers - Systematic review and implications for river management.

    Science.gov (United States)

    Bączyk, Anna; Wagner, Maciej; Okruszko, Tomasz; Grygoruk, Mateusz

    2018-06-15

    Intensification of agriculture and ongoing urban sprawl exacerbate pressures on rivers. Small rivers in agricultural landscapes are especially exposed to excessive technical actions implemented in order to allow for harvesting river water for irrigation, draining agricultural water and receiving sewage. Regular dredging and macrophyte removal strongly interfere with the global need for preserving river biodiversity that allows agricultural lowland rivers to remain refuges for a variety of species, and-accordingly-to keep water bodies resilient for the benefit of society. In order to provide a comprehensive look at the influence of agricultural lowland river management on the ecological status of these water bodies, we conducted a literature review and a meta-analysis. For the structured literature review we selected 203 papers reflecting on the response of aquatic ecosystems to dredging and macrophyte management actions. The database of scientific contributions developed for our study consists of papers written by the authors from 33 countries (first authorship) addressing dredging, macrophyte removal, status of fish and macroinvertebrates as well as the general ecological status of lowland agricultural rivers. We revealed that 96% of the analyzed papers indicated unilateral, negative responses of aquatic ecosystems, particularly macroinvertebrates, ichthyofauna and macrophyte composition, to maintenance measures. We revealed that studies conducted in the European Union on the ecological status of rivers appeared to significantly increase in quantity after the implementation of the Water Framework Directive. Finally, we concluded that day-to-day management of lowland agricultural rivers requires revision in terms of compliance with environmental conservation requirements and the recurrent implementation of technical measures for river maintenance. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Greenhouse gases emission from the sewage draining rivers.

    Science.gov (United States)

    Hu, Beibei; Wang, Dongqi; Zhou, Jun; Meng, Weiqing; Li, Chongwei; Sun, Zongbin; Guo, Xin; Wang, Zhongliang

    2018-01-15

    Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) concentration, saturation and fluxes in rivers (Beitang drainage river, Dagu drainage rive, Duliujianhe river, Yongdingxinhe river and Nanyunhe river) of Tianjin city (Haihe watershed) were investigated during July and October in 2014, and January and April in 2015 by static headspace gas chromatography method and the two-layer model of diffusive gas exchange. The influence of environmental variables on greenhouse gases (GHGs) concentration under the disturbance of anthropogenic activities was discussed by Spearman correlative analysis and multiple stepwise regression analysis. The results showed that the concentration and fluxes of CO 2 , CH 4 and N 2 O were seasonally variable with >winter>fall>summer, spring>summer>winter>fall and summer>spring>winter>fall for concentrations and spring>summer>fall>winter, spring>summer>winter>fall and summer>spring>fall>winter for fluxes respectively. The GHGs concentration and saturation were higher in comprehensively polluted river sites and lower in lightly polluted river sites. The three GHGs emission fluxes in two sewage draining rivers of Tianjin were clearly higher than those of other rivers (natural rivers) and the spatial variation of CH 4 was more obvious than the others. CO 2 and N 2 O air-water interface emission fluxes of the sewage draining rivers in four seasons were about 1.20-2.41 times and 1.13-3.12 times of those in the natural rivers. The CH 4 emission fluxes of the sewage draining rivers were 3.09 times in fall to 10.87 times in spring of those in the natural rivers in different season. The wind speed, water temperature and air temperature were related to GHGs concentrations. Nitrate and nitrite (NO 3 - +NO 2 - -N) and ammonia (NH 4 + -N) were positively correlated with CO 2 concentration and CH 4 concentration; and dissolved oxygen (DO) concentration was negatively correlated with CH 4 concentration and N 2 O concentration. The effect of

  15. Genetics, recruitment, and migration patterns of Arctic Cisco (Coregonus autumnalis) in the Colville River, Alaska and Mackenzie River, Canada

    Science.gov (United States)

    Zimmerman, Christian E.; Ramey, Andy M.; Turner, S.; Mueter, Franz J.; Murphy, S.; Nielsen, Jennifer L.

    2013-01-01

    Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.

  16. Bacterial communities hitching a hike - a guide to the river system of the Red river, Disko Island, West Greenland

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N.; Stibal, Marek

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on Disko Island, West Greenland (69°N). We describe the bacterial community through a river into the estuary......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact......, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while...

  17. Hydropeaking in Nordic rivers - combined analysis from effects of changing climate conditions and energy demands to river regimes

    Science.gov (United States)

    Ashraf, Faisal Bin; Marttila, Hannu; Torabi Haghighi, Ali; Alfredsen, Knut; Riml, Joakim; Kløve, Bjørn

    2017-04-01

    Increasing national and international demands for more flexible management of the energy resources with more non-storable renewables being used in adapting to the ongoing climate change will influence hydropower operations. Damming and regulation practices of river systems causes homogenization of long term river dynamics but also higher temporal sub-daily flow variations i.e. hydropeaking. In Nordic countries, many major rivers and lakes are regulated for hydropower purposes, which have caused considerable changes in river biotic, hydrologic and morphologic structures. Due to rapidly changing energy markets in the Nordic countries (deregulation of the power market and adding of renewable but intermittent sources of energy like, wind, solar, etc.) sub-daily flow conditions are under change within regulated river systems due to the increased demand on hydropower for providing balancing power. However, holistic analysis from changes in energy markets and its effect on sub-daily river regimes is lacking. This study analyzes the effects of hydropeaking on river regime in Finland, Sweden and Norway using long term high resolution data (15 minutes to hourly time interval) from 72 pristine and 136 regulated rivers with large spatial coverage across Fennoscandia. Since the sub-daily discharge variation is masked through the monthly or daily analyzes, in order to quantify these changes high resolution data is needed. In our study we will document, characterize and classify the impacts of sub-daily flow variation due to regulation and climatic variation on various river systems in Fennoscandia. Further, with increasing social demands for ecosystem services in regulated rivers, it is important to evaluate the new demand and update hydropower operation plan accordingly. We will analyse ecological response relationships along gradients of hydrological alteration for the biological communities, processes of river ecosystems and climate boundaries together with considering the

  18. Storm-rhine -simulation Tool For River Management

    Science.gov (United States)

    Heun, J. C.; Schotanus, T. D.; de Groen, M. M.; Werner, M.

    The Simulation Tool for River Management (STORM), based on the River Rhine case, aims to provide insight into river and floodplain management, by (1) raising aware- ness of river functions, (2) exploring alternative strategies, (3) showing the links be- tween natural processes, spatial planning, engineering interventions, river functions and stakeholder interests, (4) facilitating the debate between different policy makers and stakeholders from across the basin and (5) enhancing co-operation and mutual un- derstanding. The simulation game is built around the new concepts of SRoom for the & cedil;RiverT, Flood Retention Areas, Resurrection of former River Channels and SLiving & cedil;with the FloodsT. The Game focuses on the Lower and Middle Rhine from the Dutch Delta to Maxau in Germany. Influences from outside the area are included as scenarios for boundary conditions. The heart of the tool is the hydraulic module, which calcu- lates representative high- and low water-levels for different hydrological scenarios and influenced by river engineering measures and physical planning in the floodplains. The water levels are translated in flood risks, navigation potential, nature development and land use opportunities in the floodplain. Players of the Game represent the institutions: National, Regional, Municipal Government and Interest Organisations, with interests in flood protection, navigation, agriculture, urban expansion, mining and nature. Play- ers take typical river and floodplain engineering, physical planning and administrative measures to pursue their interests in specific river functions. The players are linked by institutional arrangements and budgetary constraints. The game particularly aims at middle and higher level staff of local and regional government, water boards and members of interest groups from across the basin, who deal with particular stretches or functions of the river but who need (1) to be better aware of the integrated whole, (2) to

  19. Bathymetry and Near-River Topography of the Naches and Yakima Rivers at Union Gap and Selah Gap, Yakima County, Washington, August 2008

    Science.gov (United States)

    Mastin, M.C.; Fosness, R.L.

    2009-01-01

    Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points

  20. A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems

    Directory of Open Access Journals (Sweden)

    Razali Jidin

    2017-10-01

    Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.

  1. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    Science.gov (United States)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  2. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Assessing the Global Extent of Rivers Observable by SWOT

    Science.gov (United States)

    Pavelsky, T.; Durand, M. T.; Andreadis, K.; Beighley, E.; Allen, G. H.; Miller, Z.

    2013-12-01

    Flow of water through rivers is among the key fluxes in the global hydrologic cycle and its knowledge would advance the understanding of flood hazards, water resources management, ecology, and climate. However, gauges providing publicly accessible measurements of river stage or discharge remain sparse in many regions. The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and the French Centre National d'Etudes Spatiales (CNES) that would provide the first high-resolution images of simultaneous terrestrial water surface height, inundation extent, and ocean surface elevation. Among SWOT's primary goals is the direct observation of variations in river water surface elevation and, where possible, estimation of river discharge from SWOT measurements. The mission science requirements specify that rivers wider than 100 m would be observed globally, with a goal of observing rivers wider than 50m. However, the extent of anticipated SWOT river observations remains fundamentally unknown because no high-resolution, global dataset of river widths exists. Here, we estimate the global extent of rivers wider than 50 m-100 m thresholds using established relationships among river width, discharge, and drainage area. We combine a global digital elevation model with in situ river discharge data to estimate the global extent of SWOT-observable rivers, and validate these estimates against satellite-derived measurements of river width in two large river basins (the Yukon and the Ohio). We then compare the extent of SWOT-observed rivers with the current publicly-available, global gauge network included in the Global Runoff Data Centre (GRDC) database to examine the impact of SWOT on the availability of river observation over continental and global scales. Results suggest that if SWOT observes 100 m wide rivers, river basins with areas greater than 50,000 km2 will commonly be measured. If SWOT could observe 50 m wide rivers, then most 10,000 km2 basins

  4. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa

    CSIR Research Space (South Africa)

    Abia, ALK

    2015-10-01

    Full Text Available This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river...

  5. Urban rivers as hotspots of regional nitrogen pollution

    International Nuclear Information System (INIS)

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-01-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3–5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. - Highlights: • Nitrogen concentrations in urban rivers are much higher than that in regional rivers. • Domestic wastewater is the main source of urban river pollution in Hangzhou. • Pollutant collecting and water diversion can sharply reduce the urban river pollution. - Urban river pollution is not being measured by the current monitoring networks that are designed to measure regional patterns causing an underestimation

  6. Simulated flow and solute transport, and mitigation of a hypothetical soluble-contaminant spill for the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1993-01-01

    This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the National Park Service, to investigate the transport and factors affecting mitigation of a hypothetical spill of a soluble contaminant into the New River in the New River Gorge National River, West Virginia. The study reach, 53 miles of the lower New River between Hinton and Fayette, is characterized as a pool-and-riffle stream that becomes narrower, steeper, and deeper in the downstream direction. A USGS unsteady-flow model, DAFLOW (Diffusion Analogy FLOW), and a USGS solute-transport model, BLTM (Branch Lagrangian Transport Model), were applied to the study reach. Increases in discharge caused decreases in peak concentration and traveltime of peak concentration. Decreases in discharge caused increases in peak concentration and traveltime of peak concentration. This study indicated that the effects of an accidental spill could be mitigated by regulating discharge from Bluestone Dam. Knowledge of the chemical characteristics of the spill, location and time of the spill, and discharge of the river can aid in determining a mitigation response.

  7. Using GIS to appraise structural control of the river bottom morphology near hydrotechnical objects on Alluvial rivers

    Science.gov (United States)

    Habel, Michal; Babinski, Zygmunt; Szatten, Dawid

    2017-11-01

    The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).

  8. Correlation between river slope and meandering variability (obtained by DGPS data) and morphotectonics for two Andean tributaries of the Amazon river: the case of Beni (Bolivia) and Napo (Ecuador-Peru) rivers.

    Science.gov (United States)

    Bourrel, L.; Darrozes, J.; Guyot, J.; Christophoul, F.; Bondoux, F.

    2007-05-01

    The Beni river drains a catchment area of 282 000 km2 of which 40 percent are located in the Cordillera of the Bolivian and Peruvian Andes, and the rest in the Amazonian plain : the studied reaches runs from Guanay (Andean Piedmont) to Riberalta (junction with Madre de Dios river) that represents a distance by the river of 1055 km. The Napo river starts in the Ecuadorian Andes and leaves Ecuador in Nuevo Rocafuerte (27 400 km2) and enters in Peru until its junction with the Amazon river : the studied section runs from Misahualli (Andean Piedmont) to this junction, that represents a distance by the river of 995 km. The GPS data were acquired using a mobile GPS embarked on a boat and 4 fixed bases located along the Beni river, 6 along the Napo river and the two rivers profile calculated from post-treated differential GPS solutions. For the Beni river, two sectors were identified: - the upstream sector (~230 km) between Guanay (414 m) and 50 km downstream Rurrenabaque (245 m) is located in Andean Piedmont, which consists in a series of thrusts associated with anticlines and synclines (the subandean zone), and presents slope values range between 135 cm/km and 10 cm/km and an average index of sinuosity (IS) of 1.29, - the downstream sector (~ 820 km) which runs in Amazonian plain (until Riberalta -165 m-), is characterized by an average slope of 8 cm/km and an average IS of 2.06 (this sector is much more homogeneous and the Beni river shows a meandering channel). For the Napo River, three sectors were identified: - the first sector (~140 km) between Misahualli (401 m) and Coca (265 m), is located in Andean Piedmont (subandean zone) and presents slope values range between 170 cm/km and 30 cm/km and an average IS of 1.6, - the second sector (~250 km) between Coca (when the Napo river enters in the Amazonian plain) and Nuevo Rocafuerte (190 m), presents slope values range between 30 cm/km and 20 cm/km and an average IS of 1.2, and a convex-up shape profile corresponding to

  9. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation)]. E-mail: nikitin@typhoon.obninsk.ru; Chumichev, Vladimir B. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Valetova, Nailia K. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Katrich, Ivan Yu. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Kabanov, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Dunaev, Gennady E. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Shkuro, Valentina N. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Rodin, Victor M. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Mironenko, Alexander N. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Kireeva, Elena V. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation)

    2007-07-15

    Data on content of {sup 90}Sr, {sup 137}Cs, {sup 239,240}Pu and {sup 3}H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of {sup 137}Cs, {sup 90}Sr and {sup 3}H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by {sup 90}Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.

  10. Columbia River Pathway Dosimetry Report, 1944-1992

    International Nuclear Information System (INIS)

    Farris, W.T.; Napier, B.A.; Simpson, J.C.; Snyder, S.F.; Shipler, D.B.

    1994-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One objective of the HEDR Project is to estimate doses to individuals who were exposed to the radionuclides released to the Columbia River (the river pathway). This report documents the last in a series of dose calculations conducted on the Columbia River pathway. The report summarizes the technical approach used to estimate radiation doses to three classes of representative individuals who may have used the Columbia River as a source of drinking water, food, or for recreational or occupational purposes. In addition, the report briefly explains the approaches used to estimate the radioactivity released to the river, the development of the parameters used to model the uptake and movement of radioactive materials in aquatic systems such as the Columbia River, and the method of calculating the Columbia River's transport of radioactive materials. Potential Columbia River doses have been determined for representative individuals since the initiation of site activities in 1944. For this report, dose calculations were performed using conceptual models and computer codes developed for the purpose of estimating doses. All doses were estimated for representative individuals who share similar characteristics with segments of the general population

  11. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  12. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  13. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  14. The River Danube: An Examination of Navigation on the River

    Science.gov (United States)

    Cooper, R. W.

    One of the definitions of Navigation that gets little attention in this Institute is (Oxford English Dictionary), and which our French friends call La Navigation. I have always found this subject fascinating, and have previously navigated the Rivers Mekong, Irrawaddy, Hooghly, Indus, Shatt-al-Arab, Savannah and RhMainKanal (RMDK) and the River Danube, a distance of approximately 4000 km. This voyage has only recently become possible with the opening of the connecting RMDK at the end of 1992, but has been made little use of because of the civil war in the former Yugoslavia.

  15. CLEAN RIVER PROGRAM AT KALIGARANG CENTRAL JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    Harihanto Harihanto

    2006-11-01

    Full Text Available Kaligarang River that located n Central Java Province represents one of the rivers in Indonesia which water quality was proved very bad. Since 1989 Clean River Program has been executed in this river. Nevertheless, untul 1998 there have not yet independent evaluation towards this program. To Know wether of this program successful a survey has been conducted from November 1998 to November 1999. The success of this program investigated by: (1 reducing of pollutant loads, (2 target of pollution loads that reached, and (3 improving of river water quality. It was foujd that this program has been successfully reducing pollutant loads of waste of all factories as target froups. Nevertheless, the quality of water of Kaligarang River was still relatively bad. This condition porbably was cause by domestic waste partivularly from hospital, hotel, restaurant dan small factories that was not included as tartet group in this program. Thus it was conclude at the implementation of the Clean River Program in Kaligarang has not been succesful to im[rove water quality of this river.

  16. Owyhee River intracanyon lava flows: does the river give a dam?

    Science.gov (United States)

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  17. Role of vegetation on river bank accretion

    NARCIS (Netherlands)

    Vargas Luna, A.

    2016-01-01

    There is rising awareness of the need to include the effects of vegetation in studies dealing with the morphological response of rivers. Vegetation growth on river banks and floodplains alters the river bed topography, reduces the bank erosion rates and enhances the development of new floodplains

  18. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  19. Metric-Resolution 2D River Modeling at the Macroscale: Computational Methods and Applications in a Braided River

    Directory of Open Access Journals (Sweden)

    Jochen eSchubert

    2015-11-01

    Full Text Available Metric resolution digital terrain models (DTMs of rivers now make it possible for multi-dimensional fluid mechanics models to be applied to characterize flow at fine scales that are relevant to studies of river morphology and ecological habitat, or microscales. These developments are important for managing rivers because of the potential to better understand system dynamics, anthropogenic impacts, and the consequences of proposed interventions. However, the data volumes and computational demands of microscale river modeling have largely constrained applications to small multiples of the channel width, or the mesoscale. This report presents computational methods to extend a microscale river model beyond the mesoscale to the macroscale, defined as large multiples of the channel width. A method of automated unstructured grid generation is presented that automatically clusters fine resolution cells in areas of curvature (e.g., channel banks, and places relatively coarse cells in areas lacking topographic variability. This overcomes the need to manually generate breaklines to constrain the grid, which is painstaking at the mesoscale and virtually impossible at the macroscale. The method is applied to a braided river with an extremely complex channel network configuration and shown to yield an efficient fine resolution model. The sensitivity of model output to grid design and resistance parameters is also examined as it relates to analysis of hydrology, hydraulic geometry and river habitats and the findings reiterate the importance of model calibration and validation.

  20. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    Science.gov (United States)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  1. The Columbia River System : the Inside Story.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  2. Synchronisation and stability in river metapopulation networks.

    Science.gov (United States)

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  3. Diatom species composition of the Nišava river and its tributaries Jerma and Temska rivers (southern Serbia

    Directory of Open Access Journals (Sweden)

    Andrejić Jelena Z.

    2012-01-01

    Full Text Available The main objective of this paper is to report the diatom taxa identified from the Nišava River and its tributaries, the Jerma and Temska rivers. The study area included 11 sampling sites along the Nišava River, with one site on the Jerma River and one on the Temska River. Monthly samples (from stones, sediments and macrophytes were collected from May 2008 to May 2009. Diatom frustules were cleaned with chemical agents, and mounted on permanent slides. In total, 194 diatom taxa were identified. The most species rich genera are Navicula (25, Nitzschia (17 and Gomphonema (13, while other genera are presented with one or more species. Detailed floristic analysis of the benthic diatom flora has not been conducted before on these rivers. Therefore, this paper provides a baseline for future research. [Acknowledgments. The work was supported by projects Nos. TR037009, III43002 and III45012 that are financed by the Ministry of Education and Science of the Republic of Serbia.

  4. Investigating historical changes in morphodynamic processes associated with channelization of a large Alpine river: the Etsch/Adige River, NE Italy

    Science.gov (United States)

    Zen, Simone; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Surian, Nicola; Prà, Elena Dai

    2016-04-01

    River channel management within the last centuries has largely modified fluvial processes and morphodynamic evolution of most large European rivers. Several river systems experienced extensive channelization early in the 19th century, thus strongly challenging our present ability to detect their morphodynamic functioning with contemporary photogrammetry or cartographical sources. This consequently leaves open questions about their potential future response, especially to management strategies that "give more room" to the river, aiming at partially rehabilitating their natural functioning. The Adige River (Etsch in German), the second longest Italian river, is an exemplary case where channelization occurred more than 150 years ago, and is the focus of the present work. This work aims (i) to explore changes in fundamental morphodynamic processes associated with massive channelization of the Adige River and (ii) to quantify the alteration in river bars characteristics, by using morphodynamic models of bars and meandering. To fulfil our aims we combine the analysis of historical data with morphodynamic mathematical modelling. Historical sources (recovered in a number of European archives), such as hydrotopographical maps, airborne photogrammetry and hydrological datasets were collected to investigate channel morphology before and after the channelization. Information extracted from this analysis was combined with morphodynamic linear models of free migrating and forced steady bars, to investigate river bars and bend stability properties under different hydromorphological scenarios. Moreover, a morphodynamic model for meandering channel was applied to investigate the influence of river channel planform on the evolution of the fluvial bars. Results from the application of morphodynamic models allowed to predict the type, position and geometry of bars characterizing the channelized configuration of the river, and to explain the presently observed relative paucity of bars

  5. Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden

    Directory of Open Access Journals (Sweden)

    G. Göransson

    2013-07-01

    Full Text Available The turbidity variation in time and space is investigated in the downstream stretch of the river Göta Älv in Sweden. The river is heavily regulated and carries the discharge from the largest fresh water lake in Sweden, Lake Vänern, to the outflow point in Göteborg Harbour on the Swedish west coast. The river is an important waterway and serves as a fresh-water supply for 700 000 users. Turbidity is utilised as a water quality indicator to ensure sufficient quality of the intake water to the treatment plant. The overall objective of the study was to investigate the influence of rainfall, surface runoff, and river water flow on the temporal and spatial variability of the turbidity in the regulated river system by employing statistical analysis of an extensive data set. A six year long time series of daily mean values on precipitation, discharge, and turbidity from six stations along the river were examined primarily through linear correlation and regression analysis, combined with nonparametric tests and analysis of variance. The analyses were performed on annual, monthly, and daily bases, establishing temporal patterns and dependences, including; seasonal changes, impacts from extreme events, influences from tributaries, and the spatial variation along the river. The results showed that there is no simple relationship between discharge, precipitation, and turbidity, mainly due to the complexity of the runoff process, the regulation of the river, and the effects of Lake Vänern and its large catchment area. For the river Göta Älv, significant, positive correlations between turbidity, discharge, and precipitation could only be found during periods with high flow combined with heavy rainfall. Local precipitation does not seem to have any significant impact on the discharge in the main river, which is primarily governed by precipitation at catchment scale. The discharge from Lake Vänern determines the base level for the turbidity in the river

  6. Mapping mean annual and monthly river discharges: geostatistical developments for incorporating river network dependencies

    International Nuclear Information System (INIS)

    Sauquet, Eric

    2004-01-01

    Regional hydrology is one topic that shows real improvement in partly due to new statistical development and computation facilities. Nevertheless theoretical difficulties for mapping river regime characteristics or recover these features at un gauged location remain because of the nature of the variable under study: river flows are related to a specific area that is defined by the drainage basin, are spatially organised by the river network with upstream-downstream dependencies. Estimations of hydrological descriptors are required for studying links with ecological processes at different spatial scale, from local site where biological or/and water quality data are available to large scale for sustainable development purposes. This presentation aims at describing a method for runoff pattern along the main river network. The approach dedicated to mean annual runoff is based on geostatistical interpolation procedures to which a constraint of water budget has been added. Expansion in Empirical Orthogonal Function has been considered in combination with kriging for interpolating mean monthly discharges. The methodologies are implemented within a Geographical Information System and illustrated by two study cases (two large basins in France). River flow regime descriptors are estimated for basins of more than 50km 2 . Opportunities of collaboration with a partition of France into hydro-eco regions derived from geology and climate considerations is discussed. (Author)

  7. Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain)

    International Nuclear Information System (INIS)

    Miguel, Eduardo de; Charlesworth, Susanne; Ordonez, Almudena; Seijas, Eduardo

    2005-01-01

    The geochemical fingerprint of sediment retrieved from the banks of the River Manzanares as it passes through the City of Madrid is presented here. The river collects the effluent water from several Waste Water Treatment (WWT) plants in and around the city, such that, at low flows, up to 60% of the flow has been treated. A total of 18 bank-sediment cores were collected along the course of the river, down to its confluence with the Jarama river, to the south-east of Madrid. Trace and major elements in each sample were extracted following a double protocol: (a) 'Total' digestion with HNO 3 , HClO 4 and HF; (b) 'Weak' digestion with sodium acetate buffered to pH=5 with acetic acid, under constant stirring. The digests thus obtained were subsequently analysed by ICP-AES, except for Hg which was extracted with aqua regia and sodium chloride-hydroxylamine sulfate, and analysed by Cold Vapour-AAS. X-ray diffraction was additionally employed to determine the mineralogical composition of the samples. Uni- and multivariate analyses of the chemical data reveal the influence of Madrid on the geochemistry of Manzanares' sediments, clearly manifested by a marked increase in the concentration of typically 'urban' elements Ag, Cr, Cu, Pb and Zn, downstream of the intersection of the river with the city's perimeter. The highest concentrations of these elements appear to be associated with illegal or accidental dumping of waste materials, and with the uncontrolled incorporation of untreated urban runoff to the river. The natural matrix of the sediment is characterised by fairly constant concentrations of Ce, La and Y, whereas changes in the lithology intersected by the river cause corresponding variations in Ca-Mg and Al-Na contents. In the final stretch of the river, the presence of carbonate materials seems to exert a strong geochemical control on the amount of Zn and, to a lesser extent, Cu immobilised in the sediments. This fact suggests that a variable but significant

  8. Public support for river restoration funding in relation to local river ecomorphology, population density, and mean income

    Science.gov (United States)

    SchläPfer, Felix; Witzig, Pieter-Jan

    2006-12-01

    In 1997, about 140,000 citizens in 388 voting districts in the Swiss canton of Bern passed a ballot initiative to allocate about 3 million Swiss Francs annually to a canton-wide river restoration program. Using the municipal voting returns and a detailed georeferenced data set on the ecomorphological status of the rivers, we estimate models of voter support in relation to local river ecomorphology, population density, mean income, cultural background, and recent flood damage. Support of the initiative increased with increasing population density and tended to increase with increasing mean income, in spite of progressive taxation. Furthermore, we found evidence that public support increased with decreasing "naturalness" of local rivers. The model estimates may be cautiously used to predict the public acceptance of similar restoration programs in comparable regions. Moreover, the voting-based insights into the distribution of river restoration benefits provide a useful starting point for debates about appropriate financing schemes.

  9. Savannah River Plant/Savannah River Laboratory radiation exposure report

    International Nuclear Information System (INIS)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L.; Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R.

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs

  10. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  11. Where Does the River Run? Lessons from a Semi-Arid River

    Science.gov (United States)

    Meixner, T.; Soto, C. D.; Richter, H.; Uhlman, K.

    2009-12-01

    Spatial data sets to assess the nature of stream groundwater interactions and the resulting power law/fractal structure of travel time distributions are rare. Spatial data sets can be collected using high technology or by use of a large number of field assistants. The labor intensive way is expensive unless the public can be enlisted as citizen scientists to gather large, robust, spatial data sets robustly and cheaply. Such an effort requires public interest and the ability of a few to organize such an effort at a basin if not regional scale. The San Pedro basin offers such an opportunity for citizen science due to the water resource restrictions of the basins semi-arid climate. Since 1999 The Nature Conservancy, in cooperation with the Upper San Pedro Partnership, the public at large and various university and federal science agency participants, has been mapping where the San Pedro River has water present versus where it is dry. This mapping has used an army of volunteers armed with GPS units, clipboards and their eyes to make the determination if a given 10m reach of the river is wet or dry. These wet/dry mapping data now exist for 11 different annual surveys. These data are unique and enable an investigation of the hydrologic connectedness of flowing waters within this system. Analysis of these data reveals several important findings. The total river area that is wet is strongly correlated with stream flow as observed at three USGS gauges. The correlation is strongest however for 90 day and 1 year average flows rather than more local in time observations such as the daily, 7 day or monthly mean flow at the gauges. This result indicates that where the river is flowing depends on long term hydrologic conditions. The length of river reach that is mapped as wet or dry is indicative of the travel distance and thus time that water travels in the surface (wet) and subsurface (dry) of the river system. The reach length that is mapped as wet follows a power law function

  12. Rivers as Political Boundaries: Peru and its Dynamic Borders

    Science.gov (United States)

    Abad, J. D.; Escobar, C.; Garcia, A. M. P.; Ortals, C.; Frias, C. E.; Vizcarra, J.

    2014-12-01

    Rivers, although inherently dynamic, have been chosen as political boundaries since the beginning of colonization for several reasons. Such divisions were chosen namely for their defensive capabilities and military benefits, and because they were often the first features mapped out by explorers. Furthermore, rivers were indisputable boundaries that did not require boundary pillars or people to guard them. However, it is important to understand the complexities of a river as a boundary. All rivers inevitably change over time through processes such as accretion, deposition, cut-off, or avulsion, rendering a political boundary subject to dispute. Depending upon the flow, size, and surrounding land, a river will migrate differently than others. As these natural features migrate one country loses land while another gains land leading to tension between legal rigidity and fluid dynamism. This in turn can manifest in social disruption due to cultural differences, political upheaval, or conflict risk as a result of scarce water resources. The purpose of this research is to assess the temporal and spatial variability of the political boundaries of Peru that follow rivers. Peru shares borders with Colombia, Brazil, Bolivia, Chile, and Ecuador. A large part of its northern border with Colombia follows the Putumayo River and later the Amazon River. Part of its eastern border with Brazil follows the Yavari River and later the Yaquirana River. These rivers are natural features used as political boundaries yet they differ in how each migrates. By means of a spatial and temporal analysis of satellite images it was possible to obtain erosion and deposition areas for the Putumayo River, the portion of the Amazon River that is part of the Peruvian boundary, the Yavari River, and the Yaquirana River. The erosion and deposition areas were related to land distribution among Peru, Colombia, and Brazil. By examining the Digital Elevation Model one can see how the altitude of the

  13. Channel Bank Cohesion and the Maintenance of Suspension Rivers

    Science.gov (United States)

    Dunne, K. B. J.; Jerolmack, D. J.

    2017-12-01

    Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is

  14. Assessing river health in Europe and Switzerland

    Science.gov (United States)

    Milano, Marianne; Chèvre, Nathalie; Reynard, Emmanuel

    2017-04-01

    River conditions and welfare of aquatic ecosystems are threatened by anthropogenic and climatic changes. The release of personal-care products, pharmaceuticals and crop protection products is increasing and climate change is likely to cause significant changes in hydrological regimes affecting water resources' capacity to dissolve pollutants. Assessing river health, i.e. the ability of a river to support and maintain a balanced ecosystem close to the natural habitat, is thus of major concern to ensure the development of ecosystems and to provide enough clean useable water to users. Such studies involve physical, chemical and biological processes and characteristics. In Europe and Switzerland, standardized procedures have been developed to assess the hydromorphological, ecological and toxicological status of rivers. The European Water Framework Directive sets ecological requirements and chemical guidelines while the Swiss Modular Stepwise Procedure suggests methods to apprehend ecological deficits and promote water management plans. In this study, both procedures were applied and compared in order (i) to address their capacity to follow-up the spatial and temporal variability of the river's water quality and (ii) to identify challenges that still need to be addressed to assess river's health. Applied on the Boiron River (canton of Vaud, Switzerland) for a 11-year period (2005-2015), both frameworks highlight that no section of the river currently meets a good environmental state. This river flows through a diversified agricultural area causing a progressive deterioration of its chemical and biological quality. The two methods also identify two periods of time with significant changes of the river's water quality. The 2009-2011 period is characterized by a significant deterioration of the river's ecological and toxicological state due to severe low flows and an increased use of pesticides. However, since 2013, an improvement in water quality is identified in

  15. A floodplain continuum for Atlantic coast rivers of the Southeastern US: Predictable changes in floodplain biota along a river's length

    Science.gov (United States)

    Batzer, Darold P.; Noe, Gregory; Lee, Linda; Galatowitsch, Mark

    2018-01-01

    Floodplains are among the world’s economically-most-valuable, environmentally-most-threatened, and yet conceptually-least-understood ecosystems. Drawing on concepts from existing riverine and wetland models, and empirical data from floodplains of Atlantic Coast rivers in the Southeastern US (and elsewhere when possible), we introduce a conceptual model to explain a continuum of longitudinal variation in floodplain ecosystem functions with a particular focus on biotic change. Our hypothesis maintains that major controls on floodplain ecology are either external (ecotonal interactions with uplands or stream/river channels) or internal (wetland-specific functions), and the relative importance of these controls changes progressively from headwater to mid-river to lower-river floodplains. Inputs of water, sediments, nutrients, flora, and fauna from uplands-to-floodplains decrease, while the impacts of wetland biogeochemistry and obligate wetland plants and animals within-floodplains increase, along the length of a river floodplain. Inputs of water, sediment, nutrients, and fauna from river/stream channels to floodplains are greatest mid-river, and lower either up- or down-stream. While the floodplain continuum we develop is regional in scope, we review how aspects may apply more broadly. Management of coupled floodplain-river ecosystems would be improved by accounting for how factors controlling the floodplain ecosystem progressively change along longitudinal riverine gradients.

  16. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Talma, A.S.

    1987-01-01

    Variations of the isotopic ratios 18 O/ 16 O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18 O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '1 8 O content of river water reflects that of the prevailing rains within the catchment. 18 O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  17. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  18. Hydrogeomorphic and hydraulic habitats of the Niobrara River, Nebraska-with special emphasis on the Niobrara National Scenic River

    Science.gov (United States)

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathan J.

    2010-01-01

    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources' recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as ?fully appropriated? has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit

  19. Savannah River Site Environmental Implentation Plan

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described

  20. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    Science.gov (United States)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that

  1. Advances in river ice hydrology 1999-2003

    Science.gov (United States)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable

  2. Ecohydraulics of Strings and Beads in Bedrock Rivers

    Science.gov (United States)

    Wohl, E.

    2016-12-01

    Twenty years ago, Jack Stanford and others described rivers in bedrock canyons as resembling beads on a string when viewed in planform. The beads are relatively wide, low gradient river segments with floodplains, whereas the strings are the intervening steep, narrow river segments with minimal floodplain development. This pattern of longitudinal variations in channel and valley morphology along bedrock canyon rivers is very common, from small channels to major rivers such as the Colorado. Basic understanding of river ecosystems, as well as limited studies, indicates that the beads are more retentive and biologically productive. Although both strings and beads can provide habitat for diverse organisms, strings are more likely to serve as migration corridors, whereas beads provide spawning and nursery habitat, facilitate lateral (channel-floodplain) and vertical (channel-hyporheic) exchanges and associated habitat diversity, and retain dissolved and particulate organic matter. Recognition of the different characteristics and functions of strings and beads can be used to identify their spatial distribution along a river or within a river network and the hydraulically driven processes that sustain channel form, water quality, and biota within strings and beads. Diverse modeling approaches can then be used to quantify the fluxes of water and sediment needed to maintain these hydraulically driven processes. This conceptual framework is illustrated using examples from mountain streams in the Southern Rockies and canyon rivers in the southwestern United States.

  3. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  4. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    Science.gov (United States)

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  5. Handling sediments in Dutch river management: The planning stage of the Maaswerken river widening project

    NARCIS (Netherlands)

    Meulen, M.J. van der; Rijnveld, M.; Gerrits, L.M.; Joziasse, J.; Heijst, M.W.I.M. van; Gruijters, S.H.L.L.

    2006-01-01

    Goals, Scope and Background. Faced with higher peak discharges in the foreseeable future, the Dutch government has decided to increase the discharge capacities of the Dutch Rhine and Meuse rivers. Instead of raising the dikes, river widening measures are to be undertaken, in and along the riverbed.

  6. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  7. The Planform Mobility of Large River Channel Confluences

    Science.gov (United States)

    Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul

    2017-04-01

    Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock

  8. Study of interaction of shallow groundwater and river along the Cisadane and Ciliwung river of Jakarta basin and its management using environmental isotopes

    International Nuclear Information System (INIS)

    Sidauruk, P.; Syafalni; Satrio

    2012-01-01

    The environmental isotopes were employed to study the interaction of shallow groundwater and river along the Cisadane River and Ciliwung River in Jakarta basin. The rapid growth and development of Jakarta and its surrounding cities, coupled with increasing industrial and other business sectors have impacted on the demand of the water supply for the area. These investigations have been conducted to determine the interaction between shallow groundwater and the river. The 14 C results showed that the groundwater samples (above 40 m) which were close to the river influenced the iso-age contour of 14 C, which indicated the contributions of river water. The analysis of stable isotopes 18 O and Deuterium from the river implied that the river water from upstream to downstream was influenced by the mixing of the river water with the human activities in the upstream (the isotopic compositions becoming enriched). Further, the 18 O and Deuterium data revealed that rivers of Cisadane and Ciliwung are contributing to recharge the shallow groundwater in Jakarta, especially in the nearby river bank. In general, the quality of the shallow groundwater along the rivers is good and is suitable as fresh water resource. Due to pollution and declining water table problems in the Jakarta basin, the artificial recharge wells is shown to be a good way out to delineate the problems as indicated by pilot project conducted at Kelurahan Kramat Jati, using infiltration basin method. (author)

  9. Ecosystem Services and Related Sustainable Management of River Oases along the Tarim River in Northwest China

    Science.gov (United States)

    Disse, M.; Keilholz, P.; Rumbaur, C.; Thevs, N.

    2011-12-01

    Within the Taklimakan Desert of Northwestern China, an area renowned for its extreme climate and vulnerable ecosystems, lies one of the largest inland rivers in the world, the Tarim River. Because the Tarim River is located in a remote area from the oceans, rainfall is extremely rare (less than 50 mm per year) but potential evaporation is high (3000 mm). Thus, the major source of water discharge comes from snowmelt and glacier-melt in the mountains. Though the water discharge into the Tarim River has experienced an increase over the past ten years, global climate change forecasts predict this water supply to decline within the century. The Tarim River is the major source of water in Northwestern China, and has become the hub of many economic activities related to agriculture and urban life. Over the past 50 years increased activity in the area has led to a severe decline in river flow. Both human and natural ecosystems have been impacted by water diversions. Since rainfall is rare, the majority of vegetation in this area depends solely on groundwater for survival, and plants are experiencing stress caused by decreasing groundwater levels. Recently nearby cities have experienced severe dust storms caused by the shrinking of the vegetative region along the river. SuMaRiO (Sustainable Management of River Oases) is a bundle project between Germany and China working to contribute to a sustainable land management which explicitly takes into account ecosystem functions (ESF) and ecosystem services (ESS). In a transdisciplinary research process, SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. SuMaRiO is developing tools to work with Chinese decision makers to implement sustainable land management strategies. In addition, research is being conducted to estimate climate change impacts, floodplain biodiversity, and water runoff characteristics. The overarching goal of SuMaRiO is to support oasis management along

  10. Lower Charles River Bathymetry: 108 Years of Fresh Water

    Science.gov (United States)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  11. Biomarker as an Indicator of River Water Quality Degradation

    Directory of Open Access Journals (Sweden)

    Dwina Roosmini

    2006-11-01

    Full Text Available Generally physical and chemical methods are use in river water quality monitoring; currently biomarker is developed as alternative biomonitoring method. The aim of this study is to look at the probability using aquatic species in monitoring river water pollutants exposure. This study was done by using Hyposarcus pardalis as biomarker to analyze river water quality in Upstream Citarum River. Hyposarcus pardalis were taken along the river at five sampling point and look at the Cu and Zn concentration. Results from this study show that there was an indication that river water quality has been degrading along the river from upstream to downstream. Zn concentration in Hyposarcus pardalis were increasing as well as Cu concentration. The increase of Zn concentration in Hyposarcus pardalis indicating that the river was polluted by Zn. Secondary data and observation at sampling location shown that textile was the dominant industry which may contribute the Zn concentration in river as they received the effluent. Cu is use in metal coating process, as well as textile industry metal industries were identified at Majalaya, Bantar Panjang, Dayeuh Kolot and Katapang in Bandung-Indonesia. As a receiving water from many activities along the river, upstream Citarum River water quality become degrading as the increasing of heavy metal Zn and Cu concentration in Hyposarcus pardalis.

  12. Flood-inundation maps for Grand River, Red Cedar River, and Sycamore Creek near Lansing, Michigan

    Science.gov (United States)

    Whitehead, Matthew; Ostheimer, Chad J.

    2015-08-26

    Digital flood-inundation maps for a total of 19.7 miles of the Grand River, the Red Cedar River, and Sycamore Creek were created by the U.S. Geological Survey (USGS) in cooperation with the City of Lansing, Michigan, and the U.S. Army Corps of Engineers. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, show estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at three USGS streamgages: Grand River at Lansing, MI (04113000), Red Cedar River at East Lansing, MI (04112500), and Sycamore Creek at Holt Road near Holt, MI (04112850). Near-real-time stages at these streamgages can be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at all of these sites.

  13. Visualization of Flow Alternatives, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  14. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.

    Science.gov (United States)

    Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi

    2011-09-01

    Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.

  16. Coherence between coastal and river flooding along the California coast

    Science.gov (United States)

    Odigie, Kingsley O.; Warrick, Jonathan

    2018-01-01

    Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal

  17. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold

  18. Landscape elements and river chemistry as affected by river regulation – a 3-D perspective

    Directory of Open Access Journals (Sweden)

    E. Smedberg

    2009-09-01

    Full Text Available We tested the hypothesis whether individual land classes within a river catchment contribute equally to river loading with dissolved constituents or whether some land classes act as "hot spots" to river loading and if so, are these land classes especially affected by hydrological alterations. The amount of land covered by forests and wetlands and the average soil depth (throughout this paper soil refers to everything overlying bedrock i.e. regolith of a river catchment explain 58–93% of the variability in total organic carbon (TOC and dissolved silicate (DSi concentrations for 22 river catchments in Northern Sweden. For the heavily regulated Luleälven, with 7 studied sub-catchments, only 3% of the headwater areas have been inundated by reservoirs, some 10% of the soils and aggregated forest and wetland areas have been lost due to damming and further hydrological alteration such as bypassing entire sub-catchments by headrace tunnels. However, looking at individual forest classes, our estimates indicate that some 37% of the deciduous forests have been inundated by the four major reservoirs built in the Luleälven headwaters. These deciduous forest and wetlands formerly growing on top of alluvial deposits along the river corridors forming the riparian zone play a vital role in loading river water with dissolved constituents, especially DSi. A digital elevation model draped with land classes and soil depths which highlights that topography of various land classes acting as hot spots is critical in determining water residence time in soils and biogeochemical fluxes. Thus, headwater areas of the Luleälven appear to be most sensitive to hydrological alterations due to the thin soil cover (on average 2.7–4.5 m and only patchy appearance of forest and wetlands that were significantly perturbed. Hydrological alterations of these relatively small headwater areas significantly impacts downstream flux of dissolved constituents and their delivery to

  19. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  20. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum

    Science.gov (United States)

    Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Robert G.; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.

    2015-01-01

    A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.

  1. Age, distribution, and formation of late cenozoic paleovalleys of the lower Colorado River and their relation to river aggradation and degradation

    Science.gov (United States)

    Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.

    2008-01-01

    Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.

  2. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  3. Assessing flow regime alterations in a temporary river – the River Celone case study

    Directory of Open Access Journals (Sweden)

    De Girolamo Anna Maria

    2015-09-01

    Full Text Available In this paper, we present an approach to evaluate the hydrological alterations of a temporary river. In these rivers, it is expected that anthropogenic pressures largely modify low-flow components of the flow regime with consequences for aquatic habitat and diversity in invertebrate species. First, by using a simple hydrological index (IARI river segments of the Celone stream (southern Italy whose hydrological regime is significantly influenced by anthropogenic activities have been identified. Hydrological alteration has been further classified through the analysis of two metrics: the degree (Mf and the predictability of dry flow conditions (Sd6. Measured streamflow data were used to calculate the metrics in present conditions (impacted. Given the lack of data from pristine conditions, simulated streamflow time series were used to calculate the metrics in reference conditions. The Soil and Water Assessment Tool (SWAT model was used to estimate daily natural streamflow. Hydrological alterations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the metrics (Mf, Sd6 before and after the impacts. The results show that the hydrological regime of the river segment located in the upper part of the basin is slightly altered, while the regime of the river segment downstream of the reservoir is heavily altered. This approach is intended for use with ecological metrics in defining the water quality status and in planning streamflow management activities.

  4. Tritium in the Savannah River Estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1978-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing, and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is 5 pCi/ml, whereas other rivers in the southeastern United States average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the River and from sea water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary, respectively

  5. Skjern River Restoration Counterfactual

    DEFF Research Database (Denmark)

    Clemmensen, Thomas Juel

    2014-01-01

    In 2003 the Skjern River Restoration Project in Denmark was awarded the prestigious Europa Nostra Prize for ‘conserving the European cultural heritage’ (Danish Nature Agency 2005). In this case, however, it seems that the conservation of one cultural heritage came at the expense of another cultural...... this massive reconstruction work, which involved moving more than 2,7 million cubic meters of earth, cause a lot of ‘dissonance’ among the local population, the resulting ‘nature’ and its dynamic processes are also constantly compromising the preferred image of the restored landscape (Clemmensen 2014......). The presentation offers insight into an on-going research and development project - Skjern River Restoration Counterfactual, which question existing trends and logics within nature restoration. The project explores how the Skjern River Delta could have been ‘restored’ with a greater sensibility for its cultural...

  6. Hydrochemical evaluation of river water quality—a case study: Horroud River

    Science.gov (United States)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  7. The radionuclide migration model in river system

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Shiryaeva, N.M.; Myshkina, M.K.; Shagalova, Eh.D.; Denisova, V.V.; Skurat, V.V.

    2001-01-01

    It was propose the model of radionuclide migration in river system based on principle of the compartmental model at hydraulically stationary and chemically equilibrium conditions of interaction of radionuclides in system water-dredge, water-sediments. Different conditions of radioactive contamination entry in river system were considered. The model was verified on the data of radiation monitoring of Iput' river

  8. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix D: Natural River Drawdown Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  9. Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Olias, M.; Nieto, J.M.; Sarmiento, A.M.; Ceron, J.C.; Canovas, C.R

    2004-10-15

    This paper intends to analyse seasonal variations of the quality of the water of the Odiel River. This river, together with the Tinto River, drains the Iberian Pyrite Belt (IPB), a region containing an abundance of massive sulphide deposits. Because of mining activity dating back to prehistoric times, these two rivers are heavily contaminated. The Odiel and Tinto Rivers drain into a shared estuary known as the Ria of Huelva. This work studies dissolved contaminant data in water of the Odiel River collected by various organisations, between October 1980 and October 2002, close to the rivers entry into the estuary. Flow data for this location were also obtained. The most abundant metals in the water, in order of abundance, are zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu). Arsenic (As), cadmium (Cd) and lead (Pb) are also present but in much lower quantities. The quality of the river water is linked to precipitation; the maximum sulphate, Fe, Zn, Mn, Cd and Pb concentrations occur during the autumn rains, which dissolve the Fe hydroxysulphates that were precipitated during the summer months. In winter, the intense rains cause an increase in the river flow, producing a dilution of the contaminants and a slight increase in the pH. During spring and summer, the sulphate and metal concentration (except Fe) recover and once again increase. The Fe concentration pattern displays a low value during summer due to increased precipitation of ferric oxyhydroxides. The arsenic concentration displays a different evolution, with maximum values in winter, and minimum in spring and summer as they are strongly adsorbed and/or coprecipitated by the ferric oxyhydroxides. Mn and sulphates are the most conservative species in the water. Relative to sulphate, Mn, Zn and Cd, copper displays greater values in winter and lower ones in summer, probably due to its coprecipitation with hydroxysulphates during the spring and summer months. Cd and Zn also appear to be affected by the same

  10. Proceedings of the 14. workshop of the Committee on River Ice Processes and the Environment : hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Morse, B.; Bergeron, N.; Gauthier, Y.

    2007-01-01

    Ice processes play a significant role in the hydrologic regime of Canadian rivers. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. This workshop reviewed the hydraulic aspects of river ice phenomena in an effort to clarify the effects of ice cover on river flow characteristics. Other issues of concern were also discussed, notably ice formation, ice jams, winter operation of hydroelectric power plants, environmental aspects of river ice, and climate change. The workshop featured 12 poster sessions and 40 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs

  11. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  12. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  13. Determination of mixing characteristics of the river Kabul and the river Indus using physico-chemical and stable isotope parameters

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Hussain, Q.M.; Sajjad, M.I.; Hussain, S.D.; Latif, Z.

    1990-11-01

    This report presents a comparative study on the usefulness of stable isotope parameters (hydrogen and oxygen) versus the physico-chemical parameters (electrical conductivity, temperature, pH value) of water to determine the extent of mixing of the river Kabul with the river Indus near Attock. In view of the sampling techniques employed in the present investigations, electrical conductivity and temperature are found to be the best field parameters for a quick estimate of mixing path length. However, the stable isotopes of the water molecule, due to their greater sensitivity and measuring accuracy, provide a better scenario of mixing characteristics as compared to the physico-chemical parameters. It appears that under normal flow condition, it takes about 5 km channel distance for complete mixing of the Kabul river water in the Indus river channel. A computer code MIXABC is developed to determine the percentage contribution of one river water along a mixing channel in the other river. Details of the source programs are presented. The code can be used on any IBM-compatible microsystem. (author)

  14. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    Science.gov (United States)

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  15. Water isotope composition as a tracer for study of mixing processes in rivers. Part II. Determination of mixing degrees in the tributary-main river systems

    International Nuclear Information System (INIS)

    Owczarczyk, A.; Wierzchnicki, R.; Zimnicki, R.; Ptaszek, S.; Palige, J.; Dobrowolski, A.

    2006-01-01

    Two river-tributary systems have been chosen for the investigation of mixing processes: the Narew River-the Bug River-Zegrzynski Reservoir and the Bugo-Narew River-the Vistula River. In both river systems, several profiles for the water sampling have been selected down to the tributary confluent line. Each sample position has been precisely determined by means of GPS. Then, the δDi have been measured in IRMS (isotope ratio mass spectroscopy). The δD distributions in selected profiles have been presented for both investigated river systems. Presented results will be applied for the verification of the mathematical model for transport and mixing in river systems

  16. Tritium in the Savannah River estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1979-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is approximately 5 pCi/ml, whereas other rivers in the southeastern United States of America average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the river and from sea-water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary respectively. (author)

  17. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    Science.gov (United States)

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe; Lo Giudice, Rosa

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily's largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  19. Application of Two Quality Indices as Monitoring and Management Tools of Rivers. Case Study: The Imera Meridionale River, Italy

    Science.gov (United States)

    Bonanno, Giuseppe; Giudice, Rosa Lo

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily’s largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  20. Russian River Ice Thickness and Duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of river ice thickness measurements, and beginning and ending dates for river freeze-up events from fifty stations in northern Russia. The...

  1. “Yonne River Corridor” Network of Yonne Cities: the River as Tourist Route

    Directory of Open Access Journals (Sweden)

    Christina Matika

    2014-12-01

    Full Text Available Long living space for many animal and plant species, the river system and its tributaries represent a principal wealth, always valid for human settlements in the Yonne valley, France. In my case study the major questions raised as starting points are: 1. How the infrastructure is related to the landscape of Yonne. 2. Which could be the possibilities and potentialities to treat this local resource. 3. How local authorities could start a project of exploitation and valorization of the water region. 4. Which interventions could enforce the dynamics of the region. 5. How to articulate cities in discontinuity around the Yonne river, taking into account the flood threat, but in a sustainable way. 6. And last but not least, how can we face the problem of rupture between the banks of the river and the urban space, regaining the docks.

  2. Flathead River creel report, 1992--1993. Final report

    International Nuclear Information System (INIS)

    Hanzel, D.

    1995-09-01

    A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs

  3. Macroinvertebrate diversity in the karst Jadro River (Croatia

    Directory of Open Access Journals (Sweden)

    Rađa Biljana

    2008-01-01

    Full Text Available This paper presents the results of 10 years of investigation of the aquatic macroinvertebrate fauna along the karst Jadro River. The Jadro is a typical karst river. Benthic macroinvertebrates were collected along the river at 15 sites by standard methods of sampling, in addition to which several physicochemical parameters were also determined. Based on qualitative and quantitative composition of the macroinvertebrate fauna, correspondence analysis divided the river course into three sections: upstream, midcourse, and downstream. Forty-three taxa were recorded. Results of saprobiological analysis based on macrozoobenthos indicate that water of the Jadro River belongs to quality classes I and II.

  4. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  5. Exploring SWOT discharge algorithm accuracy on the Sacramento River

    Science.gov (United States)

    Durand, M. T.; Yoon, Y.; Rodriguez, E.; Minear, J. T.; Andreadis, K.; Pavelsky, T. M.; Alsdorf, D. E.; Smith, L. C.; Bales, J. D.

    2012-12-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on several specific research questions affecting algorithm performance: 1) To what extent do lateral inflows confound algorithm performance? We examine the ~100 km stretch of river from Colusa, CA to the Yolo Bypass, and investigate how the

  6. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zieliński, Mateusz, E-mail: mateusz.zielinski@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: dopieralska@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: zbelka@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: awalczak@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: siep@amu.edu.pl [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: mjakub@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  7. Calculation of Longitudinal Dispersion Coefficient and Modeling the Pollution Transmission in Rivers (Case studies: Severn and Narew Rivers

    Directory of Open Access Journals (Sweden)

    A. Parsaie

    2017-01-01

    Full Text Available Introduction: The study of rivers’ water quality is extremely important. This issue is more important when the rivers are one of the main sources of water supply for drinking, agriculture and industry. Unfortunately, river pollution has become one of the most important problems in the environment. When a source of pollution is transfused into the river, due to molecular motion, turbulence, and non-uniform velocity in cross-section of flow, it quickly spreads and covers all around the cross section and moves along the river with the flow. The governing equation of pollutant transmission in river is Advection Dispersion Equation (ADE. Computer simulation of pollution transmission in rives needs to solve the ADE by analytical or numerical approaches. The ADE has analytical solution under simple boundary and initial conditions but when the flow geometry and hydraulic conditions becomes more complex such as practical engineering problems, the analytical solutions are not applicable. Therefore, to solve this equation several numerical methods have been proposed. In this paper by getting the pollution transmission in the Severn River and Narew River was simulated. Materials and Methods: The longitudinal dispersion coefficient is proportional of properties of Fluid, hydraulic condition and the river geometry characteristics. For fluid properties the density and dynamic viscosity and for hydraulic condition, the velocity, flow depth, velocity and energy gradient slope and for river geometry the width of cross section and longitudinal slope can be mentioned. Several other parameters are influencive, but cannot be clearly measured such as sinuosity path and bed form of river. To derive the governed equation of pollution transmission in river, it is enough to consider an element of river and by using the continuity equation and Fick laws to balancing the inputs and outputs the pollution discharge. To calculate the dispersion coefficient several ways as

  8. The passive river restoration approach as an efficient tool to improve the hydromorphological diversity of rivers - Case study from two river restoration projects in the German lower mountain range

    Science.gov (United States)

    Groll, M.

    2017-09-01

    Intensive use of European rivers during the last hundreds of years has led to profound changes in the physicochemical properties, river morphology, and aquatic faunistic communities. Rectifying these changes and improving the ecological state of all surface water bodies is the central aim of the European Water Frame Directive (WFD), and river restoration measures are the main tool to achieve this goal for many rivers. As the cost-effectiveness of all measures is crucial to the WFD implementation, the approach of the passive river restoration has become very popular over the last decades. But while costs of this approach are minimal, not much is known about the long-term effectiveness of passive river restorations. The research presented here provides essential and in-depth data about the effects of two such restoration measures on the riverbed morphology of a large river of the lower mountain region in Germany (type 9.2). More than 3200 data sets were acquired using the TRiSHa method (Typology of Riverbed Structures and Habitats). The results show a high spatial and temporal diversity and dynamic for all analyzed hydromorphologic parameters - ranging from riverbed sediments, organic structures like dead wood or macrophytes, to the distribution of 32 microhabitat types. The structures and their dynamic depend on the character of the study area (free-flowing or impounded), the location of the study sites within the research area (main channel or restored side channel), and on the occurrence of major flood events (the mapping and sampling were conducted annually from 2006 to 2008 with a 50-year flood event occurring in early 2007). These results show the potential of the passive restoration approach for creating morphologically diverse riverbeds, as habitat diversity and the spatial heterogeneity of the riverbed substrates increased significantly (e.g., more than 40% of all habitat types were only detected in the newly restored side channels). But the results also

  9. RIVER-RAD: A computer code for simulating the transport of radionuclides in rivers

    International Nuclear Information System (INIS)

    Hetrick, D.M.; McDowell-Boyer, L.M.; Sjoreen, A.L.; Thorne, D.J.; Patterson, M.R.

    1992-11-01

    A screening-level model, RIVER-RAD, has been developed to assess the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. The purpose of this report is to provide a description of the model and a user's manual for the FORTRAN computer code

  10. Biological - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  11. Physical - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  12. 75 FR 38833 - Walker River Basin Acquisition Program

    Science.gov (United States)

    2010-07-06

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Walker River Basin Acquisition Program AGENCY... (Reclamation) is canceling work on the Environmental Impact Statement (EIS) for the Walker River Basin... Walker River, primarily for irrigated agriculture, have resulted in a steadily declining surface...

  13. Quantification of the probable effects of alternative in-river harvest regulations on recovery of Snake River fall chinook salmon. Final report

    International Nuclear Information System (INIS)

    Cramer, S.P.; Vigg, S.

    1996-03-01

    The goal of this study was to quantify the probable effects that alternative strategies for managing in-river harvest would have on recovery of Snake River fall chinook salmon. This report presents the analysis of existing data to quantify the way in which various in-river harvest strategies catch Snake River bright (SRB) fall chinook. Because there has been disagreement among experts regarding the magnitude of in-river harvest impacts on Snake River fall chinook, the authors compared the results from using the following three different methods to estimate in-river harvest rates: (1) use of run reconstruction through stock accounting of escapement and landings data to estimate harvest rate of SRB chinook in Zone 6 alone; (2) use of Coded Wire Tag (CWT) recoveries of fall chinook from Lyons Ferry Hatchery in a cohort analysis to estimate age and sex specific harvest rates for Zone 6 and for below Bonneville Dam; (3) comparison of harvest rates estimated for SRB chinook by the above methods to those estimated by the same methods for Upriver Bright (URB) fall chinook

  14. Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Ortega, J.

    2012-01-01

    Full Text Available Patterns of genetic dispersion, levels of population genetic structure, and movement of the neotropical river otter (Lontra longicaudis were investigated by screening eight polymorphic microsatellites from DNA extracted from fecal samples, collected in a hydrologic system of the Lacandon rainforest in Chiapas, Mexico. A total of 34 unique genotypes were detected from our surveys along six different rivers, and the effect of landscape genetic structure was studied. We recovered 16 of the 34 individuals in multiple rivers at multiple times. We found high levels of dispersion and low levels of genetic differentiation among otters from the six surveyed rivers (P > 0.05, except for the pairwise comparison among the Lacantún and José rivers (P < 0.05. We recommend that conservation management plans for the species consider the entire Lacantún River System and its tributaries as a single management unit to ensure the maintenance of current levels of population genetic diversity, because the population analyzed seems to follow a source–sink dynamic mainly determined by the existence of the major river.

  15. Conservation genetics of the vulnerable Treur River barb, Barbus ...

    African Journals Online (AJOL)

    At present there are only two populations of the vulnerable Treur River barb, Barbus treurensis, in existence; a founder population in the upper Blyde River and a translocated population in the Treur River where the species became extinct. The translocated population was derived from individuals from the upper Blyde River ...

  16. Risk ranking of environmental contaminants in Xiaoqing River, a heavily polluted river along urbanizing Bohai Rim.

    Science.gov (United States)

    Li, Qifeng; Zhang, Yueqing; Lu, Yonglong; Wang, Pei; Suriyanarayanan, Sarvajayakesavalu; Meng, Jing; Zhou, Yunqiao; Liang, Ruoyu; Khan, Kifayatullah

    2018-08-01

    Xiaoqing River, located in the Laizhou Bay of Bohai Sea, is heavily polluted by various pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), perfluoroalkyl acids (PFAAs), bisphenol A (BPA) and pharmaceutical and personal care products (PPCPs). The aim of this study is to identify the relative risks of such contaminants that currently affect the coastal ecosystem. The median and highest concentrations of PFAAs and perfluorooctanoic acid (PFOA) were 3.23 μg L -1 and 325.28 μg L -1 , and 0.173 μg L -1 and 276.24 μg L -1 , respectively, which were ranked higher when compared with global level concentrations. To assess the relative risk levels of perfluorooctane sulfonic acid (PFOS), PFOA, and other contaminants in the upstream and downstream of the Xiaoqing River and in its tributary, a risk ranking analysis was carried out. Copper (Cu), Zinc (Zn), and arsenic (As) showed the highest risk values in the Xiaoqing River, while the relative risks of PFOA and PFOS differed across the various segments. The risk ranking of PFOA was the second highest in the tributary and the fourth highest in the downstream portion of the river, whereas the PFOS was found to be the lowest in all the segments. Heavy metals and PFOA are the main chemicals that should be controlled in the Xiaoqing River. The results of the present study provide a better understanding of the potential ecological risks of the contaminants in Xiaoqing River. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Inorganic arsenic speciation at river basin scales: The Tinto and Odiel Rivers in the Iberian Pyrite Belt, SW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, A.M. [Department of Geology, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva (Spain)], E-mail: aguasanta.miguel@dgeo.uhu.es; Nieto, J.M. [Department of Geology, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva (Spain); Casiot, C.; Elbaz-Poulichet, F.; Egal, M. [Laboratoire Hydrosciences, UMR 5569, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier cedex 05 (France)

    2009-04-15

    The Tinto and Odiel rivers are heavily affected by acid mine drainage from mining areas in the Iberian Pyrite Belt. In this work we have conducted a study along these rivers where surface water samples have been collected. Field measurements, total dissolved metals and Fe and inorganic As speciation analysis were performed. The average total concentration of As in the Tinto river (1975 {mu}g L{sup -1}) is larger than in the Odiel river (441 {mu}g L{sup -1}); however, the mean concentration of As(III) is almost four times higher in the Odiel. In wet seasons the mean pH levels of both rivers (2.4 and 3.2 for the Tinto and Odiel, respectively) increase slightly and the amount of dissolved total arsenic tend to decrease, while the As(III)/(V) ratio strongly increase. Besides, the concentration of the reduced As species increase along the water course. As a result, As(III)/(V) ratio can be up to 100 times higher in the lower part of the basins. An estimation of the As(III) load transported by both rivers into the Atlantic Ocean has been performed, resulting in about 60 kg yr{sup -1} and 2.7 t yr{sup -1} by the Tinto and Odiel rivers, respectively. - Total arsenic concentration decreases along the water basins, however the As(III)/(V) ratio increases.

  18. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  19. Habitat Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  20. Geomorphic Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  1. Morphology of Tigris River within Baghdad City

    Directory of Open Access Journals (Sweden)

    A. A. Ali

    2012-10-01

    Full Text Available In recent years, substantial changes have occurred in the morphology of the River Tigris within Baghdad City. Although huge volumes of sediment are being trapped in recently constructed headwater reservoirs, the number of islands in the Tigris at Baghdad is increasing. The debris of bridges destroyed in the wars of 1991 and 2003 and their subsequent reconstruction have enhanced the development of these islands. As a consequence the ability of the river to carry the peaks of flood waters has been reduced. This has led to potential increase of flooding in parts of the city.

    The bed of the River Tigris has been surveyed on three occasions (1976, 1991, and 2008. The most recent survey was conducted by the Ministry of Water Resources, extended 49 km from the Al-Muthana Bridge north Baghdad to the confluence with the Diyala River south Baghdad. It yielded cross-section profiles at 250 m intervals. The data are used to predict the maximum flood capacity for the river using the one-dimensional hydraulic model for steady flow "HEC-RAS" modeling. Calibration of the model was carried out using field measurements for water levels along the last 15 km of the reach and the last 10 yr of observation at the Sarai Baghdad gauging station.

    The model showed a significant predicted reduction in the current river capacity below that which the river had carried during the floods of 1971 and 1988. The three surveys conducted on the same reach of the Tigris indicated that the ability of the river to transport water has decreased.

  2. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Directory of Open Access Journals (Sweden)

    Mary Doherty

    2017-05-01

    Full Text Available Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm. River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May and low (December discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in

  3. Radioecology of the Tejo river, 1981-1989

    International Nuclear Information System (INIS)

    Carreiro, M.C.V.; Bettencourt, A.O.; Sequeira, M.M.A.

    1991-01-01

    The survey of the natural and artificial radioactivity of the Tejo river has been carried out since 1975; although there are no nuclear power plants in the Portuguese sector of the river, they do exist upstream, in Spain. A radioecological study of the river was also accomplished between the middle of 1986 and the end of 1989 (contract (CEC) Bl6-B-198-P). A brief outline of the main characteristics of the river water, sediments, and biological material, is given in the present paper and the data on the artificial radioactivity survey from 1981 to 1989 are analysed. An increase of the radioactivity in water was detected during the years 1987 and 1989 and in sediments, hydrophytes and fish during 1988; an attempt of explanation is done. Data appear to confirm that sediments are the best compartment to detect 137 Cs contamination in the river [fr

  4. How Sustainable are Engineered Rivers in Arid Lands?

    Directory of Open Access Journals (Sweden)

    Jurgen Schmandt

    2013-06-01

    Full Text Available Engineered rivers in arid lands play an important role in feeding the world’s growing population. Each continent has rivers that carry water from distant mountain sources to fertile soil downstream where rainfall is scarce. Over the course of the last century most rivers in arid lands have been equipped with large engineering structures that generate electric power and store water for agriculture and cities. This has changed the hydrology of the rivers. In this paper we discuss how climate variation, climate change, reservoir siltation, changes in land use and population growth will challenge the sustainability of engineered river systems over the course of the next few decades. We use the Rio Grande in North America, where we have worked with Mexican and American colleagues, to describe our methodology and results. Similar work is needed to study future water supply and demand in engineered rivers around the world.

  5. Forging the Link: Using a Conservative Mixing Framework to Characterize Connections between Rivers and Great Lakes in River-lake Transition Zones

    Science.gov (United States)

    River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...

  6. Sources of plutonium to the great Miami River

    International Nuclear Information System (INIS)

    Bartelt, G.E.; Kennedy, C.W.; Bobula, C.M. III.

    1978-01-01

    Progress is reported in the study of 238 Pu, in the Great Miami River watershed the contribution of various sources to the total 238 Pu transported by the river. Periodic discharges of industrial wastewater from Mound Laboratory from 1973 to 1975 have released approximately 20 mCi of 238 Pu each year to the Great Miami River. Changes in the wastewater treatment system in 1976 have reduced the annual discharge to less than 3 mCi/year. However, despite this sevenfold reduction of plutonium in the wastewater discharge, the annual flux of 238 Pu down the river has remained relatively constant and is approximately 10 times greater than can be accounted for by the reported effluent discharges. Therefore, other sources of the 238 Pu in the Great Miami River exist. A second possible source of plutonium is the resuspension of sediments enriched by earlier waste water releases and deposited in the river. However, since there appear to be few areas where large accumulations of sediment could occur, it seems improbable that resuspension of earlier sediment deposits would continue to be a significant contributor to the annual flux of plutonium. A much more likely source is the continuing erosion of soil from a canal and stream system contaminated with approx. 5 Ci of 238 Pu, 7 which connects directly to the river 6.9 km upstream from Franklin. Results from samples analyzed in 1978 show the average concentration of 238 Pu in suspended sediments from the canal to be approximately 10 3 times greater than suspended sediment concentrations in the river and waste water effluent.Thus the main contributor to the total amount of plutonium transported by the Great Miami River appears to be highly enriched sediment from the canal, which is eroded into the river where it is then diluted by uncontaminated sediments

  7. Savannah River Site (SRS) environmental overview

    International Nuclear Information System (INIS)

    O'Rear, M.G.; Steele, J.L.; Kitchen, B.G.

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) [formerly the Savannah River Plant (SRP)] comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours ampersand Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site

  8. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    Science.gov (United States)

    Muhlfeld, Clint C.; Bennett, David H.

    2001-01-01

    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  9. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    Science.gov (United States)

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  10. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected

  11. The Pleistocene rivers of the English Channel region

    Science.gov (United States)

    Antoine, Pierre; Coutard, Jean-Pierre; Gibbard, Philip; Hallegouet, Bernard; Lautridou, Jean-Pierre; Ozouf, Jean-Claude

    2003-02-01

    The Pleistocene history of river systems that enter the English Channel from northern France and southern England is reviewed. During periods of low sea-level (cold stages) these streams were tributaries of the Channel River. In southern England the largest, the River Solent, is an axial stream that has drained the Hampshire Basin from the Early Pleistocene or late Pliocene. Other streams of southern England may be of similar antiquity but their records are generally short and their sedimentary history have been destroyed, as in northern Brittany, by coastal erosion and valley deepening as a consequence of tectonic uplift. In northern France, the Seine and Somme rivers have very well developed terrace systems recording incision that began at around 1 Ma. The uplift rate, deduced from the study of these terrace systems, is of 55 to 60 m myr-1 since the end of the Early Pleistocene. Generally the facies and sedimentary structures indicate that the bulk of the deposits in these rivers accumulated in braided river environments under periglacial climates in all the area around the Channel. Evolution of the rivers reflects their responses to climatic change, local geological structure and long-term tectonic activity. In this context the Middle Somme valley is characterised by a regular pattern in which incision occurs at the beginning of each glacial period within a general background of uplift. Nevertheless the response of the different rivers to climatic variations, uplift and sea-level changes is complex and variable according to the different parts of the river courses.

  12. The river ecosystem

    International Nuclear Information System (INIS)

    Descy, J.P.; Lambinon, J.

    1984-01-01

    From the standpoint of the ecologist, a river is an ecosystem characterized by its biocoenosis, in dynamic equilibrium with the abiotic environment. This ecosystem can be envisaged at the structural level by examining its physical, chemical and biological properties, together with the relationships existing between these compartments. The biocoenotic structure of a river is relatively complex: it manifests, among other specific features, the presence of plankton communities which show marked space-time variations. The function of the river ecosystem can be approximated by a study of the relationships between the biotic and abiotic components: primary production, secondary production, recycling of organic matter, etc. Lotic environments are subject to frequent disturbance from various forms of man-made pollution: organic pollution, eutrophization, thermal pollution, mineral pollution, contamination by organic and mineral micropollutants, as well as by radionuclides, mechanical pollution and physical degradation. The biocoenotic effects of these forms of pollution may be evaluated, in particular, using biological indicators (bioindicators): these are either able to show the overall impact of the pollution on the biocoenosis or else they permit the detection and evaluation of certain pollutant forms. (author)

  13. Drainage divides, Massachusetts; Blackstone and Thames River basins

    Science.gov (United States)

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  14. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    Science.gov (United States)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three

  15. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited)

    Science.gov (United States)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.

    2009-12-01

    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of

  16. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  17. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam – A case study of the Nhue-Day River Basin

    Directory of Open Access Journals (Sweden)

    Phan Cao Duong

    2016-09-01

    Full Text Available Global warming has caused dramatic changes in regional climate variability, particularly regarding fluctuations in temperature and rainfall. Thus, it is predicted that river flow regimes will be altered accordingly. The purpose of this paper is to present the results of modeling such changes by simulating discharge using the HEC-HMS model. The precipitation was projected using super-high resolution multiple climate models (20 km resolution with newly updated emission scenarios as the input for the HEC-HMS model for flow analysis at the Red River Basin in the northern area of Vietnam. The findings showed that climate change impact on the river flow regimes tend towards a decrease in the dry season and a longer duration of flood flow. A slight runoff reduction is simulated for November while a considerable runoff increase is modeled for July and August amounting to 30% and 25%, respectively. The discharge scenarios serve as a basis for water managers to develop suitable adaptation methods and responses on the river basin scale.

  18. Dynamic hydro-climatic networks in pristine and regulated rivers

    Science.gov (United States)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes

  19. [Seasonal changes of optical absorption properties of river and lake in East Liaohe River basin, Northeast China].

    Science.gov (United States)

    Song, Yan Yan; Su, Dong Hui; Shao, Tian Tian

    2017-06-18

    The absorption characteristics of optically active constituents (OACs) in water column are important optical properties and basic parameters of establishing the inverse analysis model. Comparative analyses about seasonal variability of the optical absorption characteristics (phytoplankton, non-algal particles and chromophoric dissolved organic matter absorption characteristics) and water quality status of East Liaohe River basin were conducted based on the water samples in Erlong-hu Reservoir collected in June, September and October of 2011 and samples in East Liaohe River in October of 2012. The results demonstrated that the eutrophication status of Erlonghu Reservoir was lower in June, eutrophic in September and moderately eutrophic in October. Some of the sampling points of the East Liaohe River belonged to the middle trophic level and the other part belonged to the eutrophic level. The absorption coefficient of each component of water increased with increasing nutrient level. Besides, the absorption spectra of total suspended particulate of Erlonghu Reservoir in June and October were similar to that of non-algal particles, and chromophoric dissolved organic matter (CDOM) contributed most to the total absorption of water. The absorption spectra of total suspended particulate matter in September were similar to that of phytoplankton and phytoplankton was the dominant contributor to the total absorption. For samples of Erlonghu Reservoir in June and September, a ph (440) and total phosphorus (TP) were correlated closely with each other. Significant correlation between a ph (440) and dissolved organic carbon (DOC) of Erlonghu Reservoir in June was observed, while a d (440) was only correlated with Chla. There were positive correlations between a ph (675) and Chla, Carlson index (TLI) in Erlonghu Reservoir (September) and East Liaohe River. Obvious differences of water optical properties were found between river and lake located in the East Liaohe River basin as

  20. Geomorphology and geologic characteristics of the Savannah River floodplain in the vicinity of the Savannah River Site, South Carolina and Georgia

    International Nuclear Information System (INIS)

    Leeth, D.C.; Nagle, D.D.

    1994-01-01

    The potential for migration of contaminated ground water from the US Department of Energy Savannah River Site (SRS) beneath the Savannah River into Georgia (trans-river flow) is a subject of recent environmental concern. The degree of incision of the ancestral Savannah River into the local hydrogeologic framework is a significant consideration in the assessment of trans-river flow. The objective of this investigation is to identify the geologic formations which subcrop beneath the alluvium and the extent to which the river has incised regional confining beds. To meet this objective 18 boreholes were drilled to depths of 25 to 100 feet along three transects across the present floodplain. These borings provided data on the hydrogeologic character of the strata that fill the alluvial valley. The profiles from the borehole transects were compared with electrical conductivity (EM-34) data to ascertain the applicability of this geophysical technique to future investigations

  1. Disruption of River Networks in Nature and Models

    Science.gov (United States)

    Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.

    2017-12-01

    Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.

  2. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  3. Using Pressure and Alteration Indicators to Assess River Morphological Quality: Case Study of the Prahova River (Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Ioana-Toroimac

    2015-06-01

    Full Text Available River morphological quality assessment, derived from quantification of human pressures as well as river channel alteration, is a demand of the Water Framework Directive (WFD in terms of integrating hydromorphological elements in defining ecological status. Our study’s aim is to contribute to the hydromorphological evaluation by proposing indicators and separating classes, based on a revisited Morphological Quality Index (rMQI protocol. The rMQI is based on 12 indicators of human pressures, 10 indicators of channel form adjustments, and 11 indicators of functionality. The rMQI scoring system allows for the quantification of changes when compared to reference conditions, be they undisturbed or nearly undisturbed by human interventions, with absent channel adjustments and a functioning natural river style. We used the lower, meandering sector of the Prahova River to demonstrate our assessment methodology. The Lower Prahova River suffers from a minor local intervention and a diminishing intensity of fluvial processes specific to a meandering style. Meanders geometry was affected by significant changes that included a decrease in the radius of curvature, width and width–to–mean–depth ratio. We concluded that the Lower Prahova River has a good morphological quality, which is rated as second class on a scale of five levels, from natural to severely modified. We recommend an improvement in the hydromorphological evaluation protocol in Romania by additional indicators for morphological alterations specific to each channel pattern.

  4. Measurement of tritium in the Sava and Danube Rivers.

    Science.gov (United States)

    Grahek, Željko; Breznik, Borut; Stojković, Ivana; Coha, Ivana; Nikolov, Jovana; Todorović, Nataša

    2016-10-01

    Two nuclear power plants (NPP), the KrškoNPP (Slovenia) on the Sava River and the Paks NPP (Hungary) on the Danube River, are located in the immediate vicinity of Croatia and Serbia. Some of the radioactivity monitoring around the NPPs involves measuring tritium activity in the waters of rivers and wells. The authors present the tritium measurement results taken over several years from the Sava and Danube Rivers, and groundwater. The measurements were carried out in two laboratories including an impact assessment of the tritium released into the rivers and groundwater. The routine methods for determining tritium (with/without electrolytic enrichment) were tested in two laboratories using two different instruments, a Tri-Carb 3180 and Quantulus 1220. Detection limits for routine measurements were calculated in compliance with ISO 11929 and Currie relations, and subsequently the results were compared with those determined experimentally. This has shown that tritium can be reliably determined within a reasonable period of time when its activity is close to the calculated detection limit. The Krško NPP discharged 62 TBq of tritium into the River Sava over a period of 6 years (23% of permitted activity, 45 TBq per year). The natural level of tritium in the Sava River and groundwater is 0.3-1 Bq/l and increases when discharges exceed 1 TBq per month. Usually, the average monthly activity in the Sava River and groundwater is maintained at a natural level. The maximum measured activity was 16 Bq/l in the Sava River and 9.5 Bq/l in groundwater directly linked to the river. In the majority of water samples from the Danube River, measured tritium activity ranged between 1 and 2 Bq/l. The increased tritium levels in the Danube River are more evident than in the Sava River because tritium activity above 1.5 Bq/l appears more frequently on the Danube River. All measured values were far below the allowed tritium limit in drinking water. Dose assessment has shown that

  5. The Morphodynamic Signature of Rivers in the Ucamara Depression: A Habitat for Formative Rivers and the Scavenger Meandering Channels they Feed

    Science.gov (United States)

    Abad, J. D.; Escobar, C.; Shan, J.

    2017-12-01

    The Pacaya Samiria National Reserve, located in Loreto, Peru, is a region of incomparable biodiversity resulting from the consistent annual climate patterns (little seasonal variability), and more importantly, the dynamics of the freshwater rivers that surround and traverse it. The Ucamara Depression, where the Pacaya Samiria National Reserve is located, presently has a myriad of active and abandoned fluvial landforms. The exploration of the geologic and tectonic history that fabricated this exceptional fluvial system is the foundation for researching and understanding further phenomena of the region. The interpretation of the history of the geologic events that occurred to form this region and the inspection of the river belts, or areas of active river migration, of these fluvial landforms, facilitate the understanding of 1) how the Ucayali and Maranon rivers interact with one another and with the streams and bodies of water in the Ucamara Depression, 2) the role of wetlands, hydrodynamics, and sediment transport mechanisms in the movement of rivers and the extent of mixing before the rivers reach their confluence, and 3) how the water chemistry, flooding, and sediment transport processes of rivers create an environment capable of fostering an unimaginable array of life and how changes in these processes affect the flora and fauna that inhabit the region. This study will discuss field measurements (hydrodynamic and bed morphodynamic) and remote sensing analysis of scavenger meandering channels (Pacaya and Samiria) and discuss confluence dynamics of the two tributaries that form the Amazon River. Morphometric parameters show that these meandering rivers do not achieve typical planform-based conditions.

  6. local government headquarters and spatial interaction within rivers

    African Journals Online (AJOL)

    user

    headquarters and rural hinterland settlements in Rivers South East ... of Rivers State is responsible for over seventy percent (70%) of the total employment in the ... even proportion and balanced development for all could not completely ... Rivers West ... agricultural under development, unemployment, poor quality of life due.

  7. Variable input parameter influence on river corridor prediction

    NARCIS (Netherlands)

    Zerfu, T.; Beevers, L.; Crosato, A.; Wright, N.

    2015-01-01

    This paper considers the erodible river corridor, which is the area in which the main river channel is free to migrate over a period of time. Due to growing anthropogenic pressure, predicting the corridor width has become increasingly important for the planning of development along rivers. Several

  8. Riverine based eco-tourism: Trinity River non-market benefits estimates

    Science.gov (United States)

    Douglas, A.J.; Taylor, J.G.

    1998-01-01

    California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.

  9. Radium-226 in waters of the Amazon river

    International Nuclear Information System (INIS)

    Shirshova, M.P.; Vinogradova, A.S.; Popov, N.I.

    1987-01-01

    Analysis of the Amazon river waters for 226 Ra content is carried out. Exploration works are carried out in the framework of the soviet investigations of the Amazon river in 1983 by the Academy of Science of USSR on board a research ship ''Professor Schtokman'' with the agreement and participation of brazilian scientists. Radium determination has been carried out in reference with equilibrium radon preliminary accumulated in samples (30 y) tightly closed. The general 226 Ra concentrations observed in the Amazon waters exceed 4-6 times the values known before relating to a ''diluted'' element fraction. It happens due to the presence of the river suspended matter in the water analysed; it is a carrier of additional quantities of 226 Ra, and considerable. The mixture zone of river and ocean waters is shown to be no ''geochemical barrier'' on the way to the ocean for river radium inlike the other microelements of the river run-off

  10. Bull trout population assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington; ANNUAL fiscal year 2001 annual report

    International Nuclear Information System (INIS)

    Thiesfield, Steven L.

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River

  11. Flood recovery maps for the White River in Bethel, Stockbridge, and Rochester, Vermont, and the Tweed River in Stockbridge and Pittsfield, Vermont, 2014

    Science.gov (United States)

    Olson, Scott A.

    2015-01-01

    From August 28 to 29, 2011, Tropical Storm Irene delivered rainfall ranging from about 4 inches to more than 7 inches in the White River Basin. The rainfall resulted in severe flooding throughout the basin and significant damage along the White River and Tweed River. In response to the flooding, the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, conducted a new flood study to aid in the flood recovery and restoration. This flood study includes a 20.7-mile reach of the White River from the downstream end at about 2,000 feet downstream from the State Route 107 bridge in the Village of Bethel, Vermont, to the upstream end at about 1,000 feet upstream from the River Brook Drive bridge in the Village of Rochester, Vt., and a 7.9-mile reach of the Tweed River from its mouth in Stockbridge, Vt., to the confluence of the West and South Branches of the Tweed River and continuing upstream on the South Branch Tweed River to the Pittsfield, Vt., town line.

  12. Analysis of Hydraulic Flood Control Structure at Putat Boro River

    OpenAIRE

    Ruzziyatno, Ruhban

    2015-01-01

    Putat Boro River is one of the main drainage systems of Surakarta city which drains into Bengawan Solo river. The primary problem when flood occur is the higher water level of Bengawan Solo than Boro River and then backwater occur and inundates Putat Boro River. The objective of the study is to obtain operational method of Putat Boro River floodgate to control both inflows and outflows not only during flood but also normal condition. It also aims to know the Putat Boro rivers floodgate op...

  13. Effects of an extreme flood on river morphology (case study: Karoon River, Iran)

    Science.gov (United States)

    Yousefi, Saleh; Mirzaee, Somayeh; Keesstra, Saskia; Surian, Nicola; Pourghasemi, Hamid Reza; Zakizadeh, Hamid Reza; Tabibian, Sahar

    2018-03-01

    An extreme flood occurred on 14 April 2016 in the Karoon River, Iran. The occurred flood discharge was the highest discharge recorded over the last 60 years in the Karoon River. Using the OLI Landsat images taken on 8 April 2016 (before the flood) and 24 April 2016 (after the flood) the geomorphic effects were detected in different land cover types within the 155-km-long study reach. The results show that the flood significantly affected the channel width and the main effect was high mobilization of channel sediments and severe bank erosion in the meandering reaches. According to field surveys, the flood occupied the channel corridor and even the floodplain parts. However, the channel pattern was not significantly altered, although the results show that the average channel width increased from 192 to 256 m. Statistical results indicate a significant change for active channel width and sinuosity index at 99% confidence level for both indexes. The flood-induced morphological changes varied significantly for different land cover types along the Karoon River. Specifically, the channel has widened less in residential areas than in other land cover types because of the occurrence of bank protection structures. However, the value of bank retreat in residential and protected sides of the Karoon River is more than what we expected during the study of extreme flood.

  14. Energy from rivers and oceans

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  15. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  16. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    Science.gov (United States)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  17. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  18. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    Science.gov (United States)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  19. River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

    National Research Council Canada - National Science Library

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River...

  20. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies.