WorldWideScience

Sample records for allegheny river

  1. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  2. 76 FR 27892 - Special Local Regulation; Allegheny River, Pittsburgh, PA

    Science.gov (United States)

    2011-05-13

    ...-AA08 Special Local Regulation; Allegheny River, Pittsburgh, PA AGENCY: Coast Guard, DHS. ACTION... Outdoors Festival marine event that will occur in the city of Pittsburgh, PA. The date of the Venture... Pittsburgh, PA. Persons or vessels shall not enter into, depart from, or move within the regulated area...

  3. 76 FR 47993 - Safety Zone; Allegheny River; Pittsburgh, PA

    Science.gov (United States)

    2011-08-08

    ...-AA00 Safety Zone; Allegheny River; Pittsburgh, PA AGENCY: Coast Guard, DHS. ACTION: Temporary final... of Pittsburgh, PA on August 6, 2011 (rain date August 7, 2011). Under 5 U.S.C. 553(d)(3), the Coast... during the Guyasuta Days Festival fireworks display that will occur in the city of Pittsburgh, PA on...

  4. 75 FR 81469 - Safety Zone; Allegheny River, Pittsburgh, PA

    Science.gov (United States)

    2010-12-28

    ...-AA00 Safety Zone; Allegheny River, Pittsburgh, PA AGENCY: Coast Guard, DHS. ACTION: Temporary final... fireworks display that will occur in the city of Pittsburgh, PA. Under 5 U.S.C. 553(d)(3), the Coast Guard... display that will occur in the city of Pittsburgh, PA. Background and Purpose The First Night Pittsburgh...

  5. Chemical quality of surface water in the Allegheny River basin, Pennsylvania and New York

    Science.gov (United States)

    McCarren, Edward F.

    1967-01-01

    The Allegheny River is the principal source of water to many industries and to communities in the upper Ohio River Valley. The river and its many tributaries pass through 19 counties in northwestern and western Pennsylvania. The population in these counties exceeds 3 million. A major user of the Allegheny River is the city of Pittsburgh, which has a population greater than The Allegheny River is as basic to the economy of the upper Ohio River Valley in western Pennsylvania as are the rich deposits of bituminous coal, gas, and oil that underlie the drainage basin. During the past 5 years many streams that flow into the Allegheny have been low flowing because of droughts affecting much of the eastern United States. Consequently, the concentration of solutes in some streams has been unusually high because of wastes from coal mines and oil wells. These and other water-quality problems in the Allegheny River drainage basin are affecting the economic future of some areas in western Pennsylvania. Because of environmental factors such as climate, geology, and land and water uses, surface-water quality varies considerably throughout the river basin. The natural quality of headwater streams, for example, is affected by saltwater wastes from petroleum production. One of the streams most affected is Kinzua Creek, which had 2,900 parts per million chloride in a sample taken at Westline on September 2, 1959. However, after such streams as the Conewango, Brokenstraw, Tionesta, Oil, and French Creeks merge with the Allegheny River, the dissolved-solids and chloride concentrations are reduced by dilution. Central segments of the main river receive water from the Clarion River, Redbank, Mahoning, and Crooked Creeks after they have crossed the coal fields of west-central Pennsylvania. At times, therefore, these streams carry coal-mine wastes that are acidic. The Kiskiminetas River, which crosses these coal fields, discharged sulfuric acid into the Allegheny at a rate of 299 tons a

  6. Hydraulic modeling of mussel habitat at a bridge-replacement site, Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    Fulton, John W.; Wagner, Chad R.; Rogers, Megan E.; Zimmerman, Gregory F.

    2010-01-01

    The Allegheny River in Pennsylvania supports a large and diverse freshwater-mussel community, including two federally listed endangered species, Pleurobema clava(Clubshell) and Epioblasma torulosa rangiana (Northern Riffleshell). It is recognized that river hydraulics and morphology play important roles in mussel distribution. To assess the hydraulic influences of bridge replacement on mussel habitat, metrics such as depth, velocity, and their derivatives (shear stress, Froude number) were collected or computed.

  7. Allegheny County Watershed Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  8. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  9. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  10. Allegheny County Greenways

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Greenways data was compiled by the Allegheny Land Trust as a planning effort in the development of Allegheny Places, the Allegheny County Comprehensive Plan. The...

  11. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  12. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.

    Science.gov (United States)

    Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy

    2016-01-15

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters

  13. Allegheny County TIF Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Tax Increment Financing (TIF) outline parcels for Allegheny County, PA. TIF closing books contain all necessary documentation related to a TIF in order to close on...

  14. Allegheny County Parks Outlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the size and shape of the nine Allegheny County parks. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  15. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  16. Allegheny County Dam Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the point locations of dams in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  17. Allegheny County Plumbers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All master plumbers must be registered with the Allegheny County Health Department. Only Registered Master Plumbers who possess a current plumbing license or...

  18. Allegheny County Hospitals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  19. Allegheny County Boundary

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the Allegheny County boundary. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  20. Allegheny County Council Districts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays the boundaries of the County Council Districts in Allegheny County. The dataset is based on municipal boundaries and City of Pittsburgh ward...

  1. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2016. Fields include injury severity,...

  2. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  3. Allegheny County Tobacco Vendors

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The tobacco vendor information provides the location of all tobacco vendors in Allegheny County in 2015. Data was compiled from administrative records managed by...

  4. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  5. Allegheny County Depression Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  6. Allegheny County Anxiety Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  7. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  8. Allegheny County Property Viewer

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Webmap of Allegheny municipalities and parcel data. Zoom for a clickable parcel map with owner name, property photograph, and link to the County Real Estate website...

  9. Allegheny County Property Assessments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Real Property parcel characteristics for Allegheny County, PA. Includes information pertaining to land, values, sales, abatements, and building characteristics (if...

  10. Allegheny County Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of the street centerlines for vehicular and foot traffic in Allegheny County. Street Centerlines are classified as Primary Road,...

  11. Allegheny County Obesity Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Obesity rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  12. Allegheny County Smoking Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Smoking rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  13. Allegheny County Blazed Trails Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the location of blazed trails in all Allegheny County parks. This is the same data used in the Allegheny County Parks Trails Mobile App, available for Apple...

  14. Allegheny County Supermarkets & Convenience Stores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Location information for all Supermarkets and Convenience Stores in Allegheny County was produced using the Allegheny County Fee and Permit Data for 2016.

  15. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  16. Allegheny County Older Housing

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Older housing can impact the quality of the occupant's health in a number of ways, including lead exposure, housing quality, and factors that may exacerbate...

  17. Allegheny County Housing Tenure

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Home ownership provides a number of financial, social, and health benefits to American families. Especially in areas with housing price appreciation, home ownership...

  18. Allegheny County Cemetery Outlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Outlines of public and private cemeteries greater than one acre in size. Areas were delineated following a generalized line along the outside edge of the area....

  19. Allegheny County Dog Licenses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A list of dog license dates, dog breeds, and dog name by zip code. Currently this dataset does not include City of Pittsburgh dogs.

  20. Allegheny County Employee Salaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Employee salaries are a regular Right to Know request the County receives. Here is the disclaimer language that is included with the dataset from the Open Records...

  1. Allegheny County Sheriff Sales

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List of properties up for auction at a Sheriff Sale. Datasets labeled "Current" contain this month's postings, while those labeled "Archive" contain a running list...

  2. Allegheny County Vacant Properties

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Mail carriers routinely collect data on address no longer receiving mail due to vacancy. This vacancy data is reported quarterly at census tract geographies in the...

  3. Allegheny County Walk Scores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...

  4. Allegheny County Asbestos Permits

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Current asbestos permit data issued by the County for commercial building demolitions and renovations as required by the EPA. This file is updated daily and can be...

  5. Allegheny County School District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  6. Allegheny County Park Rangers Outreach

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Launched in June 2015, the Allegheny County Park Rangers program reached over 48,000 people in its first year. Park Rangers interact with residents of all ages and...

  7. Allegheny County Poor Housing Conditions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This estimate of the percent of distressed housing units in each Census Tract was prepared using data from the American Community Survey and the Allegheny County...

  8. Allegheny County Public Building Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of municipal facilities in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  9. Allegheny County Primary Care Access

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  10. Allegheny County Addressing Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the road centerlines in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  11. Allegheny County Addressing Segment Aliases

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This table contains the segment aliases for roads in Allegheny County that may have an alternate street nameIf viewing this description on the Western Pennsylvania...

  12. Allegheny County Addressing Street Aliases

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the road centerlines in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  13. Allegheny County Jail Daily Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A daily census of the inmates at the Allegheny County Jail (ACJ). Includes gender, race, age at booking, and current age. The records for each month contain a...

  14. Allegheny County Summer Food Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set shows the Summer Food Sites located within Allegheny County for children (18 years and younger) for breakfast and lunch during summer recess. OPEN...

  15. Allegheny County Commercial Vehicle Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset lists the locations and results of all commercial vehicle inspections performed by the Allegheny County Police Motor Carrier Safety Assistance Program...

  16. Allegheny County Mortgage Foreclosure Records

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data includes filings related to mortgage foreclosure in Allegheny County. The foreclosure process enables a lender to take possession of a property due to an...

  17. Allegheny County Property Sale Transactions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA. Before doing any market analysis on property sales, check...

  18. Allegheny County Fatal Accidental Overdoses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Fatal accidental overdose incidents in Allegheny County, denoting age, gender, race, drugs present, zip code of incident and zip code of residence. Zip code of...

  19. Allegheny County Cell Tower Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays cell tower locations as points in Allegheny County. The dataset is based on outbuilding codes in the Property Assessment Parcel Database used...

  20. Allegheny County Zip Code Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  1. Allegheny County Fast Food Establishments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Allegheny County Health Department has generated this list of fast food restaurants by exporting all chain restaurants without an alcohol permit from the...

  2. Allegheny County Land Use Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Allegheny County land use as ascribed to areas of land. The Land Use Feature Dataset contains photogrammetrically compiled information concerning vegetation and...

  3. Allegheny County Block Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset overlays a grid on the County to assist in locating a parcel. The grid squares are 3,500 by 4,500 square feet. The data was derived from original...

  4. Pruning Allegheny hardwoods

    Science.gov (United States)

    W. D. Zeedyk; A. F. Hough

    1958-01-01

    The continuing heavy demand for high-quality Allegheny hardwoods, particularly black cherry and sugar maple, impresses on us the need for more information responses of hardwoods to pruning. Pruning may have beneficial effects: it may increase quality without sacrificing growth. Or it may have detrimental effects: it may cause dieback of cambium, decay, staining and...

  5. ACED Allegheny Home Improvement Loan Program (AHILP)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Allegheny Home Improvement Loan Program (AHILP) is the most affordable way for eligible Allegheny County residents to rehabilitate and improve their homes....

  6. Allegheny County Beltway System Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Authoritative dataset of the beltway system in Allegheny County. The system was developed to help motorists navigate through Allegheny County on low-traffic roads....

  7. Allegheny County Map Index Grid

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid...

  8. Allegheny County Illegal Dump Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Illegal Dump Site dataset includes information on illegal dump sites, their type of trash, and the estimate tons of trash at each site. The information was...

  9. Allegheny County Soil Type Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm;...

  10. Allegheny County Property Assessment Appeals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Lists property assessment appeals filed and heard with the Board of Property Assessment Appeals and Review (BPAAR) and the hearing results, for tax years 2015 to...

  11. Allegheny County Toxics Release Inventory

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Toxics Release Inventory (TRI) data provides information about toxic substances released into the environment or managed through recycling, energy recovery, and...

  12. Allegheny County Land Cover Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  13. Allegheny County Basin Outlines Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This basins dataset was created to initiate regional watershed approaches with respect to sewer rehabilitation. If viewing this description on the Western...

  14. Allegheny County Building Footprint Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains photogrammetrically compiled roof outlines of buildings. All near orthogonal corners are square. Buildings that are less than 400 square feet...

  15. Allegheny County Wooded Area Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates stands of trees (coniferous and deciduous) too numerous to plot as individual trees. The area is delineated following a generalized line...

  16. Allegheny County Environmental Justice Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Environmental Justice areas in this guide have been defined by the Pennsylvania Department of Environmental Protection. The Department defines an environmental...

  17. Allegheny County WIC Vendor Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of Women, Infants, and Children (WIC) program vendors. If viewing this description on the Western Pennsylvania Regional Data...

  18. Allegheny County Employee Salaries 2016

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Employee salaries are a regular Right to Know request the County receives. Here is the disclaimer language that is included with the dataset from the Open Records...

  19. Allegheny County Certified MWDBE Businesses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — According to the Federal Department of Transportation, Disadvantaged Business Enterprises (DBE) are for-profit small business concerns where socially and...

  20. Allegheny County Polling Place Locations (November 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  1. Allegheny County Addressing StreetDictionary

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the road centerlines in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  2. Allegheny County-Owned Bridges Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the location of bridges owned by Allegheny County as centroids. If viewing this description on the Western Pennsylvania Regional Data Center’s...

  3. Allegheny County-Owned Roads Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the roads owned by Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  4. Allegheny County Polling Place Locations (November 2015)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  5. Allegheny County Pennsylvania Senate District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the Pennsylvania Senate district boundaries within Allegheny County. If viewing this description on the Western Pennsylvania Regional Data...

  6. Allegheny County Voting District (2015) Web Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This webmap demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  7. Allegheny County Polling Place Locations (November 2014)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  8. Allegheny County Weights and Measures Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Inspections conducted by the Allegheny County Bureau of Weights and Measures. The Bureau inspects weighing and timing devices such as gas pumps, laundromat timers,...

  9. Port Authority of Allegheny County Transit Stops

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All transit stops within the Port Authority of Allegheny County's service area for the November 20, 2016 - March (TBD) 2017 schedule period.

  10. Allegheny County Polling Place Locations (November 2016)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  11. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  12. Allegheny County-Owned Bridges Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the bridges owned by Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  13. Allegheny County Magisterial Districts Outlines (2015)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the magisterial districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  14. Allegheny County Voting District (2016) Web Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This webmap demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  15. Allegheny County Median Age at Death

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The median age at death is calculated for each municipality in Allegheny County. Data is based on the decedent's residence at the time of death, not the location...

  16. Allegheny County Polling Place Locations (May 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  17. Allegheny County Farmers Markets Locations (2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the locations of farmers markets in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  18. Address Points - Allegheny County Address Points 201601

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This dataset contains Address Points in Allegheny County. The Address Points were created by GDR for the Allegheny County CAD project, October 2008. Data is updated...

  19. State of Aging in Allegheny County Survey

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — For more than three decades UCSUR has documented the status of older adults in the County along multiple life domains. Every decade we issue a comprehensive report...

  20. Allegheny County Housing and Community Environment Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Residential housing inspections and inspections in response to complaints for community environment problems, such as open vacant structures, vacant lots with...

  1. Allegheny County Municipal Land Use Ordinances

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Many municipalities have their own land use ordinances and establish standards and requirements for land use and development in that municipality. This dataset is...

  2. Allegheny County Kane Regional Center Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Total number of residents in each Kane Regional Center facility by race and gender. The Kane Regional Centers are skilled nursing and rehabilitation centers run by...

  3. Port Authority of Allegheny County Transit Routes

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shapefile of Transit Routes - Please refer to each resource for active dates of the route information. Routes change over time,

  4. Allegheny County Pennsylvania U.S. Legislative Congressional District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the U.S. Legislative Congressional district boundaries within Allegheny County. If viewing this description on the Western Pennsylvania...

  5. Allegheny County Voting District Boundaries (Spring 2015 - Spring 2016)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  6. Allegheny County Pennsylvania House of Representatives District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the Pennsylvania House of Representatives district boundaries within Allegheny County. If viewing this description on the Western...

  7. Allegheny County Voting District Boundaries (Fall 2016 - Spring 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  8. Allegheny County Voting District Boundaries (Spring 2017 - present)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates municipal voting districts in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  9. Port Authority of Allegheny County Park and Rides

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset includes the GIS shapefile for Port Authority of Allegheny County's Park and Ride facilities. This layer is updated annually or on an as-needed basis...

  10. Allegheny County Restaurant/Food Facility Inspection Violations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Facilities located within Allegheny County that produce, distribute and sell food products are subject to mandatory, routine inspection by one of the health...

  11. Allegheny County Clean Indoor Air Act Exemptions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List and location of all the businesses and social clubs who have received an exemption from the Pennsylvania Clean Indoor Air Act. “The Clean Indoor Air Act, Act...

  12. Project monitor. Final report. [Allegheny County, PA

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, P.Y.; Beck, P.; Doctors, S.I.

    1979-04-27

    Results are reported of a study of consumers' energy attitudes and behavior. Household consumers and small business consumers (both retail and manufacturing) responded to the survey, but only the household results are reported. The study sought to understand energy-related behavior at the level where the various components of energy policy intersect. Attempts are made to attain this goal by determining the extent to which various properties of the individuals and firms are associated with various amounts of conservation. A representative sample of the adult population in Allegheny County, Pennsylvania was interviewed. Part I introduces the measures of household conservation to be used in the survey. Part II analyzes each of the types of energy conservation - general, winterization, heating, cooling, appliance, transportation, and electricity reductions - and relates them to demographic, situation, attitudinal, and perceptual variables in the household sample. Part III deals with the impacts of Project Pacesetter and the United Mine Workers' strike against the coal operators - particularly, the impact of the coal strike on household residents of Allegheny County. Part IV summarizes the findings and uses them for recommendations regarding energy conservation policy. Additional data are presented in 4 appendices. (MCW)

  13. Allegheny County Public Swimming Pool, Hot Tub, and Spa Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Public swimming pool, hot tub, and spa facilities are licensed and inspected once each year to assure proper water quality, sanitation, lifeguard coverage and...

  14. Allegheny County Department of Public Works Maintenance District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis...

  15. Interference by weeds and deer with Allegheny hardwood reproduction

    Science.gov (United States)

    Stephen B. Horsley; David A. Marquis

    1983-01-01

    Deer browsing and interference from forest weeds, particularly hayscented fem (Dennstaedtia punctilobula (Michx.) Moore), New York fern (Thelypteris noveboracensis L.), and short husk grass (Brachyelytrnm erectum Schreb.), influence the establishment of Allegheny hardwood reproduction. We determined the...

  16. Allegheny County Tax Liens (Filings, Satisfactions, and Current Status)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Tax liens are a method the government uses to secure an interest in unpaid tax debt. This dataset represents information about county, municipal, school district,...

  17. Allegheny County Municipal Building Energy and Water Use

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains energy and water use information from 2010 to 2014 for 144 County-operated buildings. Metrics include: kBtu (thousand British thermal units),...

  18. Allegheny Portage Railroad: Developing Transportation Technology. Teaching with Historic Places.

    Science.gov (United States)

    Eick, Brian; Wallner, Rick

    1999-01-01

    Presents a lesson that will help students discover the innovative technologies of the Allegheny Portage Railroad that can be used when teaching about early 19th-century expansion and industrialization. Expounds that students' skills in geography and history will be strengthened through map reading, examination of pictures, and analysis of…

  19. Allegheny hardwood regeneration response to even-age harvesting methods

    Science.gov (United States)

    John C. Bjorkbom; Russell S. Walters; Russell S. Walters

    1986-01-01

    Allegheny hardwood regeneration response to block clearcutting, alternate strip clearcutting, and two-cut shelterwood, and in an uncut control was compared. Stand regeneration success was evaluated 5 years after harvest. Clearcutting resulted in high mortality of advance regeneration. Thus, regeneration by block clearcutting was not successful, though both alternate...

  20. Communicating the story of silviculture on the Allegheny National Forest

    Science.gov (United States)

    Lois M. DeMarco; Susan L. Stout

    1997-01-01

    To communicate the story of silviculture on the Allegheny National Forest, we need to distinguish silviculture-the art and science of manipulating forest vegetation to achieve management objectives-from forest management. During the field trip for the National Silviculture Workshop we visited five sites that demonstrate how inventory and monitoring, resource management...

  1. ALLEGHENY RIVER AND REDBANK CREEK HYDRAULICS, CLARION COUNTY, PA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  2. ALLEGHENY RIVER AND REDBANK CREEK HYDRAULICS, CLARION COUNTY, PA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  3. Persistence of Allegheny woodrats Neotoma magister across the mid-Atlantic Appalachian Highlands landscape, USA

    Science.gov (United States)

    W. Mark Ford; Steven B. Castleberry; Michael T. Mengak; Jane L. Rodrigue; Daniel J. Feller; Kevin R. Russell

    2006-01-01

    We examined a suite of macro-habitat and landscape variables around active and inactive Allegheny woodrat Neotoma magister colony sites in the Appalachian Mountains of the mid-Atlantic Highlands of Maryland, Virginia, and West Virginia using an information-theoretic modeling approach. Logistic regression analyses suggested that Allegheny woodrat presence was related...

  4. 77 FR 790 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Science.gov (United States)

    2012-01-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM...) Rules of Practice and Procedures, 18 CFR 385.206, FirstEnergy Solutions Corp., Allegheny Energy Supply...

  5. 75 FR 81480 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Allegheny County's...

    Science.gov (United States)

    2010-12-28

    ... Allegheny County Health Department (ACHD) Rules and Regulations, Article XXI, Air Pollution Control, and... and prior to the area's date of attainment. CTGs are intended to provide State and local air pollution...; plastic asceptic packaging; and carbon paper and inked ribbons. VOC emissions from large appliance, metal...

  6. Aligning Civic Engagement with the Strategic Goals of an Institution: Focus on Allegheny College

    Science.gov (United States)

    Martin, Stephanie; Weisman, Eleanor

    2012-01-01

    The Values, Ethics, and Social Action (VESA) minor at Allegheny College has been an academic program since 1999. This article describes the unique strengths of VESA and some of the institutional and conceptual challenges faced by the program and presents details of practices employed to meet these challenges in order to sustain this community…

  7. Evaluation of cleanings to maintain oak forests on the Allegheny National Forest

    Science.gov (United States)

    Kurt W. Gottschalk; Gary W. Miller; Robert L. White; Andrea Hille; Thomas M. Schuler

    2014-01-01

    Ten-year results for an administrative study on the Allegheny National Forest (ANF) that examined their cleaning (precommercial thinning) prescriptions and standards for success in maintaining oak (Quercus spp.) composition in young stands and maintaining oak stems in a competitive position are presented. Two studies were installed. One study was in...

  8. Deer and diversity in Allegheny hardwood forests: managing an unlikely challenge

    Science.gov (United States)

    David S. deCalesta

    1994-01-01

    High white-tailed deer (Odocoileus virginianus) density and interfering vegetation were identified as factors affecting the regeneration of hardwood forests in the Allegheny National Forest and surrounding forests in northwestern Pennsylvania. Research was designed by Forest Service scientists to quantify these effects. A high degree of interest in...

  9. 75 FR 60865 - Surety Companies Acceptable on Federal Bonds: Amendment-Allegheny Casualty Company

    Science.gov (United States)

    2010-10-01

    ... 20782. Dated: September 24, 2010. Laura Carrico, Director, Financial Accounting and Services Division...-- Allegheny Casualty Company AGENCY: Financial Management Service, Fiscal Service, Department of the Treasury..., published July 1, 2010, at 75 FR 38192. FOR FURTHER INFORMATION CONTACT: Surety Bond Branch at (202) 874...

  10. Influence of geologic and pedologic factors on health of sugar maple on the Allegheny Plateau

    Science.gov (United States)

    Scott W. Bailey; Stephen B. Horsley; Robert P. Long; Richard A. Hallett

    1999-01-01

    Decline of sugar maple (Acer saccharum Marsh.) has been a problem on the Allegheny Plateau of Pennsylvania since the mid-1980's (Kolb and McCormick 1993; Williams et al. 1996). Horsley et al. (this volume) found that declining stands were distinguished from non-declining stands by a combination of repeated insect defoliation and low foliar...

  11. Analysis of forest health monitoring surveys on the Allegheny National Forest (1998-2001)

    Science.gov (United States)

    Randall S. Morin; Andrew M Liebhold; K.W. Gottschalk; Chris W. Woodall; Daniel B. Twardus; Robert L. White; Stephen B. Horsley; Todd E. Ristau

    2006-01-01

    Describes forest vegetation and health conditions on the Allegheny National Forest (ANF). During the past 20 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical aerial surveys (1984-98...

  12. Composition and structure of hemlock-dominated riparian forests of the northern Allegheny plateau: a baseline assessment

    Science.gov (United States)

    Charles E. Williams; William J. Moriarity

    2000-01-01

    We assessed the species composition and structure of three riparian forest stands of differing ages (old-growth, late-successional, mid-successional), dominated by eastern hemlock (Tsuga canadensis Carr.), in the Allegheny National Forest of northwestern Pennsylvania.

  13. Environmental geology, Allegheny County and vicinity, Pennsylvania; description of a program and its results

    Science.gov (United States)

    Briggs, Reginald Peter

    1977-01-01

    Past land-use practices, including mining, in Allegheny County, Pa., have resulted in three principal environmental problems, exclusive of air and water contamination. They are flooding, landsliding, and subsidence over underground mines. In 1973, information was most complete relative to flooding and least complete relative to landsliding. Accordingly, in July 1973, the U.S. Geological Survey (USGS) and The Appalachian Regional Commission (ARC) entered into an agreement by which the USGS undertook studies chiefly aimed at increasing knowledge of landsliding and mine subsidence relative to land use, but having other ramifications as well, as part of a larger ARC 'Land-use and physical-resource analysis' (LUPRA) program. The chief geographic focus was Allegheny County, but adjacent areas were included in some investigations. Resulting products, exclusive of this report, are: 1. Forty-three provisional maps of landslide, distribution and susceptibility and of land modified by man in Allegheny County, 1:24,000 scale, 7? -minute quadrangle format, released to open files. 2. Four USGS Miscellaneous Field Studies (MF) maps of Allegheny County showing (a) bedrock, MF685A; (b) susceptibility to landsliding, MF-685B ; (c) coal-mining features, MF-685C; and (d) zones that can be affected by flooding, landsliding and undermining, MF-685D; all at the scale of 1:50,000. 3. Two MF maps showing coal-mining activity and related information and sites of recorded mine-subsidence events, and one MF map classifying land surface by relative potentiality of mine subsidence, in Allegheny, Washington, and Westmoreland Counties, Pa., at a scale of 1:125,000--MF-693A through MF-693C. 4. A companion report to the Allegheny County map of susceptibility to landsliding--USGS Circular 728. 5. Five MF maps, largely in chart form, describing interaction of the shallow ground-water regime with mining-related problems, landsliding, heavy storm precipitation, and other features and processes, largely

  14. Listening to old beech and young cherry trees - long-term research in the Alleghenies

    Science.gov (United States)

    Susan L. Stout; Coeli M. Hoover; Todd E. Ristau

    2006-01-01

    Long-term research results have been a foundation of forestry practice on the Allegheny Plateau since the 1970s. This includes results from monitoring reference conditions in areas set aside for this purpose and from long-running manipulative studies, some dating back to the 1920s. The success of long-term research in this region reflects the commitment of a handful of...

  15. Ohio River Environmental Assessment: Cultural Resources Reconnaissance, Pennsylvania,

    Science.gov (United States)

    1977-10-01

    low cost of iron ore and coal, the iron industry soon began to take shape. In 1812, Christopher Cowan constructed a steam driven rolling mill in...Hall of McCandless Street between 52nd and 53rd Streets, Pittsburgh. Built by Croghan in 1759, the building was surrounded by 1500 acres. It was...Bridge and crossing of the Allegheny River by George Wainwright’s Washington and Christopher Gist on December 29, Island 1753, upon their return from

  16. Ten-year results of using oak Cleanings to maintain oak species dominance on the Allegheny National Forest

    Science.gov (United States)

    Kurt W. Gottschalk; Gary W. Miller; Robert White; Andrea Hille; Thomas M. Schuler

    2014-01-01

    The Allegheny National Forest (ANF) in northwestern Pennsylvania implemented precommercial thinning in young stands to maintain oak (Quercus spp.) stems in a competitive position. This administrative study was developed to test ANF standards for precommercial thinning for success in maintaining oak composition. An additional objective was to examine...

  17. 78 FR 58533 - FirstEnergy Generation, LLC, Allegheny Energy Supply Company, LLC, and Green Valley Hydro, LLC...

    Science.gov (United States)

    2013-09-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 2280-017, 2343-084, 2459-245, 2516-057, 2517-036, 3494- 091, 3671-086, 2391-046, 2425-052, and 2509-046] FirstEnergy Generation, LLC, Allegheny Energy Supply...

  18. 78 FR 12750 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Science.gov (United States)

    2013-02-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM... sections 206 and 306 of the Federal Power Act, 16 U.S.C. 824(e) and 825(e), FirstEnergy Solutions Corp. and...

  19. 77 FR 20019 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Science.gov (United States)

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM... Practice and Procedure, 18 CFR 385.206 and 206(h), FirstEnergy Solutions Corp. (FirstEnergy Solutions) and...

  20. Forest health conditions on the Allegheny National Forest (1989-1999): Analysis of forest health monitoring surveys

    Science.gov (United States)

    R.S. Morin; A.M. Liebhold; K.W. Gottschalk; D.B. Twardus; R.E. Acciavatti; R.L. White; S.B. Horsley; W.D. Smith; E.R. Luzader

    2001-01-01

    This publication describes the forest vegetation and health conditions of the Allegheny National Forest (ANF). During the past 15 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical...

  1. Public attitude toward pesticides. A random survey of pesticide use in Allegheny County, Pa.

    Science.gov (United States)

    Lande, S S

    1975-01-01

    Pesticide use was examined by means of a random survey in Allegheny County, Pa., in October and November 1973. The objectives included gaining insight into the need for a new community pesticide program and estimating its public acceptance. The 110 survey sites were grouped as single-family dwellings, commercial and recreational lawns, institutions, farms, rights-of-way, and wasteland. In the single-family dwellings, most householders (85 percent) used a pesticide in the previous 12 months, usually an aerosol insecticide (76 percent) or herbicide (55 percent). Their pesticide selections were most often based on advertisements of availabel products. A high percentage lacked either the interest or the knowledge of the information on the pesticide's label. No observation in this or any other study supports the need for a new special program in pesticides or indicates that a substantial segment of the public would use its services. The main users of "hard" pesticides were the golf courses, rights-of-way, and one farm-nursery. The rights-of-way used chemicals only for vegetation control. Utilities and railroads contracted with pesticide companies for this work. Municipal users applied pesticides recommended by dealers. The golf courses and a farm-nursery used a broad range of fungicides, insecticides, and herbicides, which they selected because of information received from the Pennsylvania Extension Service and professional organizations. PMID:803693

  2. White ash (Fraxinus americana) health in the Allegheny plateau region, Pennsylvania: Evaluating the relationship between FIA phase 3 crown variables and a categorical rating system

    Science.gov (United States)

    Alejandro A. Royo; Kathleen S. Knight; Jamie M. Himes; Ashley N. Will

    2012-01-01

    Following the detection of white ash (Fraxinus americana) decline in the Allegheny National Forest (ANF) of Pennsylvania, we established an intensified white ash monitoring network throughout the ANF. We rated crowns using both a categorical system as well as Forest Inventory and Analyses (FIA) Phase 3 measures of uncompacted live crown ratio,...

  3. Evaluation of genetic population structure of smallmouth bass in the Susquehanna River basin, Pennsylvania

    Science.gov (United States)

    Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler

    2017-01-01

    The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.

  4. Public health aspects of the Rainbow Family of Living Light annual gathering--Allegheny National Forest, Pennsylvania, 1999.

    Science.gov (United States)

    2000-04-21

    The Rainbow Family of Living Light (RFLL) is a loosely organized group that developed out of the late 1960s counterculture movement. RFLL has had a 2-week "Gathering for World Peace and the Healing of the Earth" in a different national forest each summer since 1972. For the June 21-July 10, 1999, gathering, RFLL selected the Allegheny National Forest in Pennsylvania. The site was not accessible by vehicle and was an hour's walk to the nearest road. No sanitary facilities were available, and water from streams was consumed without treatment. Approximately 20,000 persons attended from the United States and several foreign countries. The state health department requested federal assistance to establish and maintain public health surveillance and to advise on outbreak prevention and control. This report describes the public health aspects of the gathering and presents recommendations for the management of health risks at large outdoor events.

  5. The Allegheny Initiative for Mental Health Integration for the Homeless: Integrating Heterogeneous Health Services for Homeless Persons

    Science.gov (United States)

    Gordon, Adam J.; Montlack, Melissa L.; Freyder, Paul; Johnson, Diane; Bui, Thuy; Williams, Jennifer

    2007-01-01

    The Allegheny Initiative for Mental Health Integration for the Homeless (AIM-HIGH) was a 3-year urban initiative in Pennsylvania that sought to enhance integration and coordination of medical and behavioral services for homeless persons through system-, provider-, and client-level interventions. On a system level, AIM-HIGH established partnerships between several key medical and behavioral health agencies. On a provider level, AIM-HIGH conducted 5 county-wide conferences regarding homeless integration, attended by 637 attendees from 72 agencies. On a client level, 5 colocated medical and behavioral health care clinics provided care to 1986 homeless patients in 4084 encounters, generating 1917 referrals for care. For a modest investment, AIM-HIGH demonstrated that integration of medical and behavioral health services for homeless persons can occur in a large urban environment. PMID:17267708

  6. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    Science.gov (United States)

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  7. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  8. Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

    2011-01-01

    Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

  9. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  10. Antecedent Rivers

    Indian Academy of Sciences (India)

    Figure 3). These rivers seem to have maintained ... the river cuts a deep can- yon with practically vertical walls (valley slopes). ... furiously at work, cutting channel beds, eroding slopes, and denuding watersheds. This ever-youthfulness of the.

  11. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...

  12. Developing Rivers

    Directory of Open Access Journals (Sweden)

    Abhik Chakraborty

    2013-10-01

    Full Text Available This article explores the reasons behind the continuation of contentious dam projects in Japanese river basins. Though the River Law of the country was reformed in 1997, and subsequent sociopolitical developments raised hopes that river governance would progress toward a more environment-oriented and bottom-up model, basin governance in Japan remains primarily based on a utilitarian vision that sees rivers as waterways. This article reviews the Achilles heel of the 1997 River Law by examining some most contentious river valley projects, and concludes that a myth of vulnerability to flooding, short-sightedness of river engineers, and bureaucratic inertia combine to place basin governance in a time warp: as projects planned during postwar reconstruction and economic growth continue to be top priorities in policymaking circles while concerns over environment remain largely unaddressed.

  13. HYDROLOGY, Allegheny County, PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  14. HYDRAULICS, Allegheny County, PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  15. National Dam Safety Program. Wiscoy Dam (Inventory Number N.Y. 461), Genesee River Basin, Allegheny County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1981-08-27

    York. Piase I 13. SUPPLEM.TARY NOTE Inspection Report 19. K iY ROS (Conrthw on row... oido if noc. s r md Idnlty by bloc>. rmbe)ID =_ Safety...C3 CL &L. 0 4a4E Il 0 I% 0 E000 C4 co BtD%% E~ T - <. r-,.r.- cc )%N =00 00 C%%% 00 Ito 4, EL - II C> ɘu E v 4a 0 0N0 NI fn 0w 0 * SECTION 6...6-N wtn SjEcT 1 ~ D-1 J’ ~ DATE7~/k ERMAN, ANTHONY, ASSOCIATES 𔃿T~KD DATE " _ _ susJUcT 7/ / - 0 u- TN. Z dc47%/ 4 - I el c6). _-Ts- -1 70 60. -2

  16. Digital analysis of Potomac River Basin ERTS imagery: Sedimentation levels at the Potomac-Anacostia confluence and strip mining in Allegheny County, Maryland

    Science.gov (United States)

    Schubert, J. S.; Macleod, N. H.

    1973-01-01

    Two simple algorithms for classification of sedimentation levels in water and for delineation of active strip mines are in use as part of the development of a more general resource management information system. ERTS MSS CCT's are processed so that each pixel in each channel is geographically referenced and can be accessed individually during whole frame, multi-channel analysis or partial frame analysis. The sedimentation analysis clearly separates classes representing the turbid Anacostia water, the less disturbed Potomac (really), and mud flats resulting from effluent of a major sewage treatment plant. Mud flats of organic or mineral origin are easily distinguished.

  17. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  18. River Piracy

    Indian Academy of Sciences (India)

    . There is allusion to the disappearance of the river in Van. Parva of the Mahabharat, and also in the Siddhant Shiromani. Great Betrayal. The Aravali continued to rise. The newly formed Yamuna was forced to migrate progressively eastward.

  19. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    policy making, decision drivers and framing of large hydropower projects in China. Hydropower is a complex and interesting field to explore as the consequences go beyond the immediate locality and interacts with local as well as the global contexts. Inspired by Tsing (2003) and Zhan (2008) the paper...... explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...... after running through the Thai-Burmese border. In 2003, a cascade of up to 13 dams were approved by the Chinese government, however, as of yet no dams have been built due to a prolonged controversy between Chinese government officials, Chinese and international environmental NGOs, the media, social...

  20. River Piracy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. River Piracy Saraswati that Disappeared. K S Valdiya. General Article Volume 1 Issue 5 May 1996 pp 19-28. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0019-0028. Author Affiliations.

  1. RIVER STATE

    African Journals Online (AJOL)

    The aim of this study was to investigate the influence of gender on leadership styles and administrative effective~~ess of secondary school principals in selected sctiools in Cross River State. In pursuance of this study, two hypothesis were formulated. Two sets of questionnaires, Principal's Self-Evaluation. Questionnaire ...

  2. River Piracy

    Indian Academy of Sciences (India)

    towns of the Harappan culture (4600 to 4100 years Before Pres en t. - BP) and ashrams ofrishis (sages) lay on the banks of this life-line of the Vedic time. Where has that great river gone? It is today represented by the disproportionately wide and astonishingly water-less, sand-filled channels ofGhaggar in Haryana and ...

  3. Antecedent Rivers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Antecedent Rivers - Ganga Is Older Than Himalaya. K S Valdiya. General Article Volume 1 Issue 8 August 1996 pp 55-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/08/0055-0063 ...

  4. RIVER STATE

    African Journals Online (AJOL)

    The aim of this study was to investigate the influence of gender on leadership styles and administrative .... ranked significantly ahead of men as democratic leaders ... effectiveness and leadership styles of secondary school principals In Cross River. State. METHODOLOGY. Research Area: The study was conducte'd in c ~ m.

  5. River Corridor Easements

    Data.gov (United States)

    Vermont Center for Geographic Information — A River Corridor Easement (RCE) is an area of conserved land adjacent to a river or stream that was conserved to permanently protect the lateral area the river needs...

  6. Stream water quality in coal mined areas of the lower Cheat River Basin, West Virginia and Pennsylvania, during low-flow conditions, July 1997

    Science.gov (United States)

    Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.

    1999-01-01

    IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and

  7. River Diversions and Shoaling

    National Research Council Canada - National Science Library

    Letter, Jr., Joseph V; Pinkard, Jr., C. F; Raphelt, Nolan K

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note describes the current knowledge of the potential impacts of river diversions on channel morphology, especially induced sedimentation in the river channel...

  8. Appendix C: A comparative study of small scale remotely sensed data for monitoring clearcutting in hardwood forests. M.S. Thesis; [Allegheny National Forest, Pennsylvania and the Adirondacks, New York

    Science.gov (United States)

    Hafker, W. R.

    1980-01-01

    Manual photointerpretation techniques were used to analyze images acquired by high altitude aircraft, the Skylab multispectral and Earth terrain camera (ETC), the LANDSAT multispectral scanner, and the LANDSAT-3 return beam vidicon camera. A color-additive viewer, and digital image analysis were also used on the LANDSAT MSS imagery. The value of each type of remotely sensed data was judged by the ease and accuracy of clearcut identification, and by the amount of detail discernible, especially regarding revegetation. Results of a site study in the Allegheny National Forest, Pennsylvania indicate that high altitude aerial photography, especially color infrared photography acquired during the growing season, is well suited for identifying clearcuts and assessing revegetation. Although photographs acquired with Skylab's ETC also yielded good results, only incomplete inventories of clearcuts could be made using LANDSAT imagery. Results for the Adirondack region of New York State were similar for the aircraft and satellite photography, but even less satisfactory for the LANDSAT imagery.

  9. BASEMAP, ALLEGHENY COUNTY, PENNSYLVANIA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme,...

  10. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  11. Measuring River Pollution

    Science.gov (United States)

    Ayyavoo, Gabriel

    2004-01-01

    The Don River watershed is located within Canada's most highly urbanized area--metropolitan Toronto. Many residential and commercial uses, including alterations to the river's course with bridges, have had a significant impact on the Don's fauna and flora. Pollutants have degraded the river's water quality, a situation exacerbated by the…

  12. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  13. The river research programme

    CSIR Research Space (South Africa)

    Ferrar, AA

    1988-01-01

    Full Text Available OF CONTENTS The Zones of a River Headwaters: the mountain stream The middle reaches The mature lover reaches The estuary CHAPTER 2. HYPOTEESES CONCERNING RIVER ECOSYSTFM The river continuum concept The nutrient sp i r a l l i ng hypothesis... banks. Algae and mosses are present only in small quantities because little light reaches them. Even where sunlight does reach the water, green plantt are still relatively rare because the water is very poor in nutrients. Phyto- and zooplanktonic...

  14. River Corridors (Jan 2, 2015)

    Data.gov (United States)

    Vermont Center for Geographic Information — River corridors are delineated to provide for the least erosive meandering and floodplain geometry toward which a river will evolve over time. River corridor maps...

  15. Tidal river dynamics

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Jay, D.A.

    2016-01-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity

  16. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY... safety zone during the ``NAS Patuxent River Air Expo '11,'' which consists of aerial practices, performance demonstrations and air shows, to be held over certain waters of the Patuxent River adjacent to...

  17. 76 FR 36447 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-06-22

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY... a temporary safety zone during the ``NAS Patuxent River Air Expo '11'', which consists of aerial practices, performance demonstrations and air shows, to be held over certain waters of the Patuxent River...

  18. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River... BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.734 Navesink River (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  19. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  20. Savannah River Plant environment

    International Nuclear Information System (INIS)

    Dukes, E.K.

    1984-03-01

    On June 20, 1972, the Atomic Energy Commission designated 192,323 acres of land near Aiken, SC, as the nation's first National Environmental Research Park. The designated land surrounds the Department of Energy's Savannah River Plant production complex. The site, which borders the Savannah River for 17 miles, includes swampland, pine forests, abandoned town sites, a large man-made lake for cooling water impoundment, fields, streams, and watersheds. This report is a description of the geological, hydrological, meteorological, and biological characteristics of the Savannah River Plant site and is intended as a source of information for those interested in environmental research at the site. 165 references, 68 figures, 52 tables

  1. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus Province, little of the land is flat, and most of the flat land is in the flood plains and terraces of streams; this has caused most development in this part of the basin to be near streams. The Blue Ridge Province is composed of crystalline rocks, and the Valley and Ridge and Appalachian Plateaus Provinces contain both carbonate and clastic rocks. Annual precipitation ranges from about 36 in. to more than 60 in., and is orographically affected, both locally and regionally. Average annual air temperature ranges from about 43?F to about 55?F, and varies with altitude but not physiographic province. Precipitation is greatest in the summer and least in the winter, and has the least seasonal variation in the Blue Ridge Province. In 1990, the population of the basin was about 870,000, of whom about 25 percent lived in the Charleston, W. Va. metropolitan area. About 75 million tons of coal were mined in the Kanawha River Basin in 1998. This figure represents about 45 percent of the coal mined in West Virginia, and about seven percent of the coal mined in the United States. Dominant forest types in the basin are Northern Hardwood, Oak-Pine, and Mixed Mesophytic. Agricultural land use is more common in the Valley and Ridge and Blue Ridge Provinces than in the Appalachian Plateaus Province. Cattle are the principal agricultural products of the basin. Streams in the Blue Ridge Province and Allegheny Highlands have the most runoff in the basin, and streams in the Valley and Ridge Province and the southwestern Appalachian Plateaus have the least runoff. Streamflow is greatest in the

  2. Hunting camp. River Murray

    OpenAIRE

    ? Bayliss, Charles, 1850-1897, photographer

    2003-01-01

    200 x 149 mm. A good photograph showing a group of aborigines (in European clothes) with two hunting dogs, holding spears and standing in front of rough wooden cabins; with the river in the background. Photograph unknown, possible Charles Bayliss.

  3. Wild and Scenic Rivers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer portrays the linear federally-owned land features (i.e., national parkways, wild and scenic rivers, etc.) of the United States, Puerto Rico, and the...

  4. Down to the River

    DEFF Research Database (Denmark)

    Wessels, Josepha Ivanka

    2015-01-01

    Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from the persp......Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from...... the perspective of economic benefits? I hypothesize that the political uses of citizenship, identity and security at the local level hamper cooperation at the basin level and ignore cognitive dimensions of violence and conflict. In this article, I have chosen the Israeli-occupied Golan Heights as a case study...

  5. What's working on working rivers: a handbook for improving urban rivers: examples from Chicago area rivers.

    Science.gov (United States)

    Naomi Cohn

    1998-01-01

    What's been done on Chicago Area Rivers is truly an inspiration. People's ability to improve these rivers shows what can be improved anywhere, even in a highly developed and complex urban setting like Chicago. A veteran staffer with the Friends of the Chicago River recently concluded: "People look at what's being accomplished on the Chicago River...

  6. Restoring rivers, sustaining communities

    Science.gov (United States)

    Rachel White; Susan Charnley; Gordon Grant; Mary Rowland; Michael Wisdom

    2016-01-01

    Healthy Rivers Connect Humans and Ecosystems James Nash says he is part trout. Growing up on a ranch in the Wallowa Valley of northeast Oregon, he disappeared as often as he could to the banks of the Wallowa River, which runs for more than two miles through his family’s land. Once, while exploring the bottomland, he discovered some old ruts and...

  7. The rivers of civilization

    Science.gov (United States)

    Macklin, Mark G.; Lewin, John

    2015-04-01

    The hydromorphic regimes that underpinned Old World river-based civilizations are reviewed in light of recent research. Notable Holocene climatic changes varied from region to region, whilst the dynamics of floodplain environments were equally diverse, with river channel changes significantly affecting human settlement. There were longer-term trends in Holocene hydroclimate and multi-centennial length 'flood-rich' and 'flood-poor' episodes. These impacted on five identified flooding and settlement scenarios: (i) alluvial fans and aprons; (ii) laterally mobile rivers; (iii) rivers with well-developed levees and flood basins; (iv) river systems characterised by avulsions and floodouts; and (v) large river-fed wetlands. This gave a range of changes that were either more or less regular or incremental from year-to-year (and thus potentially manageable) or catastrophic. The latter might be sudden during a flood event or a few seasons (acute), or over longer periods extending over many decades or even centuries (chronic). The geomorphic and environmental impacts of these events on riparian societies were very often irreversible. Contrasts are made between allogenic and autogenic mechanism for imposing environmental stress on riverine communities and a distinction is made between channel avulsion and contraction responses. Floods, droughts and river channel changes can precondition as well as trigger environmental crises and societal collapse. The Nile system currently offers the best set of independently dated Holocene fluvial and archaeological records, and the contrasted effects of changing hydromorphological regimes on floodwater farming are examined. The persistence of civilizations depended essentially on the societies that maintained them, but they were also understandably resilient in some environments (Pharaonic Egypt in the Egyptian Nile), appear to have had more limited windows of opportunity in others (the Kerma Kingdom in the Nubian Nile), or required

  8. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  9. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook...

  10. Skjern River Restoration Counterfactual

    DEFF Research Database (Denmark)

    Clemmensen, Thomas Juel

    2014-01-01

    In 2003 the Skjern River Restoration Project in Denmark was awarded the prestigious Europa Nostra Prize for ‘conserving the European cultural heritage’ (Danish Nature Agency 2005). In this case, however, it seems that the conservation of one cultural heritage came at the expense of another cultural...... this massive reconstruction work, which involved moving more than 2,7 million cubic meters of earth, cause a lot of ‘dissonance’ among the local population, the resulting ‘nature’ and its dynamic processes are also constantly compromising the preferred image of the restored landscape (Clemmensen 2014......). The presentation offers insight into an on-going research and development project - Skjern River Restoration Counterfactual, which question existing trends and logics within nature restoration. The project explores how the Skjern River Delta could have been ‘restored’ with a greater sensibility for its cultural...

  11. Assessment of river plan changes in Terengganu River using RS ...

    African Journals Online (AJOL)

    River is one of the most multifarious regular systems. The database can help in the appropriate understanding of river plan change and know the stand of Terengganu River, Malaysia. The data collected from Geographic Information System (GIS) and Remote Sensing (RS) database. Analysis of Types of Lateral Activity ...

  12. Missouri River 1943 Compact Line

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Flood Control, Bank Stabilization and development of a navigational channel on the Missouri River had a great impact on the river and adjacent lands. The new...

  13. Haw River PFCs Data Set

    Data.gov (United States)

    U.S. Environmental Protection Agency — PFAS concentrations in river and drinking water in and around the Haw River in North Carolina. This dataset is associated with the following publication: Sun, M., E....

  14. Two Pontic rivers

    DEFF Research Database (Denmark)

    Bekker-Nielsen, Tønnes; Jensen, Marit

    2015-01-01

    The accounts of the landscape around the Iris (Yeşilirmak) and the Thermodon (Terme) given by ancient authors are diverse and often contradictory. The Periegesis of the World by Dionysius of Alexandria, a didactic poem written in the early IInd c. A.D., established an image of the two rivers...... that does not correspond to their actual characteristics. A closer study reveals that Dionysius, or possibly his source, has confused the two: the river which he describes as the Thermodon is in fact the Iris, and vice versa. This mistake was not realized by later translators (Avienus, late IVth c. A...

  15. for non-perennial rivers

    African Journals Online (AJOL)

    Environmental water requirement (EWR) assessment methods, for ascertaining how much water should be retained in rivers to sustain ecological functioning and desired levels of biodiversity, have mostly been developed for perennial rivers. Despite non-perennial rivers comprising about 30–50% of the world's freshwater ...

  16. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  17. River impoundment and sunfish growth

    Science.gov (United States)

    Andrew L. Rypel

    2011-01-01

    Impoundment of rivers by dams is widespread and one of the most devastating anthropogenic impacts to freshwater environments. Linking theoretical and applied research on river impoundment requires an improved capacity for predicting how varying degrees of impoundment affects a range of species. Here, growth of 14 North American sunfish species resilient to river...

  18. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  19. Concentrations of arsenic, cadmium, copper, lead, selenium, and zinc in fish from the Mississippi River Basin, 1995

    Science.gov (United States)

    Schmitt, Christopher J.

    2004-01-01

    Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, `carp') or black bass (Micropterus spp., `bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carpand bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984–1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8–4.7 μg g-1 in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where

  20. communities of rivers, nigeria

    African Journals Online (AJOL)

    DEVELOPMENT EFFORTS OF OIL COMPANIES AS PERCEIVED BY. RURAL HOUSEHOLDS IN SELECTED OIL PRODUCING. COMMUNITIES OF RIVERS, NIGERIA. STATE. MATTHEW UKPONGSON AND DONATUS ONU. ABSTRACT. A total of 120 respondents participated in the study to detemmine the perceptions of ...

  1. River and Stream Pollution

    Science.gov (United States)

    ... plants to grow. The two most common nutrients found in water are nitrogen and phosphorus. They cause algae to ... streams and rivers clean helps keep all the water downstream clean, too. Other stuff you might ... What's That Word Scientific Dictionary Not sure of what a word ...

  2. Savannah River Technology Center

    International Nuclear Information System (INIS)

    1993-01-01

    This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns

  3. (MNCHW) in Rivers State?

    African Journals Online (AJOL)

    DATONYE ALASIA

    Monitoring the Maternal, Newborn and Child Health Week — Ordinioha B. ... month . Rivers State has 23 Local Government councils that have an average annual budget that. 5 often exceeds one billion Naira . A substantial part of the State and Local Governments annual .... The nutritional status of 210, 300 children aged.

  4. Stepping in the river

    Directory of Open Access Journals (Sweden)

    Julie Kearney

    2016-11-01

    Full Text Available 'Stepping in the River' is about the cultural misunderstandings and small betrayals that arise when First World tourists visit Third World countries. It is also about the enduring love that people in these countries can inspire, imperfect though that love may be.

  5. River Out of Edenl

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. River Out of Eden Darwin Goes Digital: Old View, New Metaphor. J A Santosh. Book Review Volume 2 Issue 11 November 1997 pp 104-106. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Discover the Nile River

    Science.gov (United States)

    Project WET Foundation, 2009

    2009-01-01

    Bordering on the Fantastic. As the longest river on earth, the Nile passes through 10 countries. Presented through a wide range of activities and a winning array of games, it's also unsurpassed at taking young minds into exploring the world of water, as well as natural and man made wonders.

  7. River Pollution: Part I.

    Science.gov (United States)

    Openshaw, Peter

    1983-01-01

    Describes a unit on river pollution and analytical methods to use in assessing temperature, pH, flow, calcium, chloride, dissolved oxygen, biochemical oxygen demand, dissolved nitrogen, detergents, heavy metals, sewage pollution, conductivity, and sediment cores. Suggests tests to be carried out and discusses significance of results. (JM)

  8. Geomorphic classification of rivers

    Science.gov (United States)

    J. M. Buffington; D. R. Montgomery

    2013-01-01

    Over the last several decades, environmental legislation and a growing awareness of historical human disturbance to rivers worldwide (Schumm, 1977; Collins et al., 2003; Surian and Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and Merritts, 2008) have fostered unprecedented collaboration among scientists, land managers, and stakeholders to better understand,...

  9. Manyame River Basin, Zimbabwe

    African Journals Online (AJOL)

    Available on website http://www.wrc.org.za. ISSN 1816-7950 (On-line) = Water SA Vol. 42 No. 1 January 2016. Published under a Creative Commons Attribution Licence. A test of the Lake Habitat Survey method in Cleveland Reservoir and. Lake Chivero (Manyame River Basin, Zimbabwe). Tatenda Dalu1*, Edwin ...

  10. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  11. New River controversy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbaum, T.J.

    1979-01-01

    The New River for more than 100 million years has made its way, beginning from a source in the mountains of North Carolina and winding northward through Virginia and West Virginia. Today there are dams in its path, to be sure; but between its wellspring in North Carolina and the point at which it crosses into Virginia, it has never suffered the ignominy of impoundment. Not long ago, however, the freedom of the New was almost sacrificed to help satisfy the appetite of a society hungry for electric energy. In 1965, Appalachian Power Company announced its intention to construct in North Carolina the Blue Ridge Project, a pumped-storage facility for generating electricity that would have required damming the river and flooding thousands of acres of its valley. Supporting Appalachian's plans were the national AFL-CIO, the Federal Power Commission, and the governors of Virginia and West Virginia. And though Blue Ridge would have consumed four units of power for every three it produced, destroying in the process unappraisable archeological treasures and displacing hundreds of families - all to provide peak-load electricity to cities far from the serene river that was to yield the energy - construction of the dams was approved time and time again. The threat of Blue Ridge, which loomed for more than eleven years, was finally eliminated by the efforts of one of the most diverse-environmental coalitions ever established. The State of North Carolina, the people of the New River Valley, and conservation groups and newspaper editors from across the country banded together to fight the project in the courts, in Congress, in the media - always against overwhelming odds. The author tells the fascinating story of the tactics and maneuvers employed by those struggling to preserve the river, while also pointing beyond the New to an effective strategy of environmental action.

  12. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  13. Sapucai River Project

    International Nuclear Information System (INIS)

    Duarte, A.L.; Rosa, M.J.

    1988-01-01

    The Sapucai River Project is a gold, ilmenite, monazite and zircon alluvial deposit. It is located on Sapucai River valley in the south of Minas Gerais State. The reserves are 28.000.000 m 3 of pay bed. The production will be 1.400.000 m 3 /year and the mine's life 20 years. A cutterhead suction dredge will do the overburden removal. The pay bed will be mined with an underwater bucket-wheel dredge. The ROM will be concentrated in a washing plant. The gold will be recovered by leaching method. The other heavy minerals will be recovered by electrostatic, magnetic and gravitic methods. SAMITRI believes that it's possible to implant and operate the Project without ecological damage. (author) [pt

  14. Re: Soviet river diversions

    Science.gov (United States)

    Robertson, Jas O.

    The paper on ‘Soviet River Diversions’ by Phil Micklin (Eos, 62(19), May 12, 1981) has just come to hand.Referring to the map on page 489, I was interested to see the estimates of river flows for the Amu and Syr Darya, which clearly show the effect of irrigation on inflows to the Aral Sea. Recently, I was passing over the northeast corner of the sea on a flight from Tashkent to Moscow when I got the impression that increasing irrigation development on the Syr Darya is likely to decrease the annual inflow even more than in the recent past. The same state of affairs has been going on in the Caspian Sea for years, as a result of irrigation development on the Volga. My impression was that the Aral Sea had shrunk considerably from the 26,000 odd square miles (67,304 km2) area quoted (from memory) in Encyclopaedia Britannica (edition circa 1970).

  15. Geomorphology and River Management

    Directory of Open Access Journals (Sweden)

    GARY BRIERLEY

    2008-01-01

    Full Text Available Engineering-dominated practices, visible in a "command and control" outlook on natural systems, have induced enormous damage to the environment. Biodiversity losses and declining provision of ecosystem services are testimony to the non-sustainable outcomes brought about by such practices. More environmentally friendly approaches that promote a harmonious relationship between human activities and nature are required. Moves towards an "ecosystem approach" to environmental management require coherent (integrative scientific guidance. Geomorphology, the study of the form of the earth, provides a landscape template with which to ground this process. This way of thinking respects the inherent diversity and complexity of natural systems. Examples of the transition toward such views in environmental practice are demonstrated by the use of science to guide river management, emphasising applications of the River Styles framework.

  16. River networks as biodiversity hotlines.

    Science.gov (United States)

    Décamps, Henri

    2011-05-01

    For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Onilahy River, Madagascar

    Science.gov (United States)

    1982-01-01

    Near the southern tip of Madagascar, the Onilahy River (23.5S, 44E) drains a near barren landscape, the result of rapid deforestation for quick profits from the lumber industry with no regard to the environmental impact. At the turn of the century, the island was a lush tropical paradise with about 90 percent of the surface forested. Now, at the close of the century, only about 10 percent of the forests remain in inaccessible rugged terrain.

  18. Columbia River pathway report

    International Nuclear Information System (INIS)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  19. The river ecosystem

    International Nuclear Information System (INIS)

    Descy, J.P.; Lambinon, J.

    1984-01-01

    From the standpoint of the ecologist, a river is an ecosystem characterized by its biocoenosis, in dynamic equilibrium with the abiotic environment. This ecosystem can be envisaged at the structural level by examining its physical, chemical and biological properties, together with the relationships existing between these compartments. The biocoenotic structure of a river is relatively complex: it manifests, among other specific features, the presence of plankton communities which show marked space-time variations. The function of the river ecosystem can be approximated by a study of the relationships between the biotic and abiotic components: primary production, secondary production, recycling of organic matter, etc. Lotic environments are subject to frequent disturbance from various forms of man-made pollution: organic pollution, eutrophization, thermal pollution, mineral pollution, contamination by organic and mineral micropollutants, as well as by radionuclides, mechanical pollution and physical degradation. The biocoenotic effects of these forms of pollution may be evaluated, in particular, using biological indicators (bioindicators): these are either able to show the overall impact of the pollution on the biocoenosis or else they permit the detection and evaluation of certain pollutant forms. (author)

  20. The Pulse of Allegheny County and Pittsburgh.

    Science.gov (United States)

    2016-01-01

    Cities are increasingly equipped with low-resolution cameras. They are cheap to : buy, install, and maintain, and thus are usually the choice of departments of : transportation and their contractors. Pittsburgh or New York City have networks of : hun...

  1. Effects of human activities on the Waterval River, Vaal River ...

    African Journals Online (AJOL)

    Rand Water's chemical water quality data from 1991 to 2000 were used to assess the water quality of the Waterval River, which contributes about 111 x 106m3 of water to the Vaal River annually. Due to a biological community's ability to reflect water quality changes over time, biomonitoring was undertaken to support ...

  2. River Restoration and Meanders

    Directory of Open Access Journals (Sweden)

    G. Mathias Kondolf

    2006-12-01

    Full Text Available Among the most visually striking river restoration projects are those that involve the creation of a new channel, often in a new alignment and generally with a form and dimensions that are different from those of the preproject channel. These channel reconstruction projects often have the objective of creating a stable, single-thread, meandering channel, even on rivers that were not historically meandering, on rivers whose sediment load and flow regime would not be consistent with such stable channels, or on already sinuous channels whose bends are not symmetrical. Such meandering channels are often specified by the Rosgen classification system, a popular restoration design approach. Although most projects of this type have not been subject to objective evaluation, completed postproject appraisals show that many of these projects failed within months or years of construction. Despite its, at best, mixed results, this classification and form-based approach continues to be popular because it is easy to apply, because it is accessible to those without formal training in fluvial geomorphology, and probably because it satisfies a deep-seated, although unrecognized, cultural preference for single-thread meandering channels. This preference is consistent with 18th-century English landscape theories, which held the serpentine form to be ideal and led to widespread construction of meandering channels on the country estates of the era. The preference for stability in restored channels seems to be widely accepted by practitioners and funders despite the fact that it is antithetical to research showing that dynamically migrating channels have the greatest ecological richness.

  3. Saga of Clinch River

    International Nuclear Information System (INIS)

    Young, W.H.

    1984-01-01

    An epic struggle in the US Congress between what the author calls the forces of transcendence and the forces of experience over development of a breeder reactor for electric power generation is described in this article. The project was started by President Nixon, survived repeated attacks under President Carter, and ironically succumbed under a strong supporter, President Reagan, as a result of an unlikely coalition of conservative organizations and Republican politicians. The broader meanings of the demise of the Clinch River project are examined on several levels, examining the significance for the nation's energy future and for the nation's political future

  4. River coalitions and water trade

    NARCIS (Netherlands)

    Ansink, Erik; Gengenbach, Michael; Weikard, Hans-Peter

    2017-01-01

    We analyse coalition stability in a game with a spatial structure. We consider a set of agents located along a river who abstract scarce water for their own benefit. Agents may enter an agreement to mutually acknowledge property rights in river water as a prerequisite for water trade. We find that

  5. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  6. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  7. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  8. Robotics at Savannah River

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1983-01-01

    A Robotics Technology Group was organized at the Savannah River Laboratory in August 1982. Many potential applications have been identified that will improve personnel safety, reduce operating costs, and increase productivity using modern robotics and automation. Several active projects are under way to procure robots, to develop unique techniques and systems for the site's processes, and to install the systems in the actual work environments. The projects and development programs are involved in the following general application areas: (1) glove boxes and shielded cell facilities, (2) laboratory chemical processes, (3) fabrication processes for reactor fuel assemblies, (4) sampling processes for separation areas, (5) emergency response in reactor areas, (6) fuel handling in reactor areas, and (7) remote radiation monitoring systems. A Robotics Development Laboratory has been set up for experimental and development work and for demonstration of robotic systems

  9. Ganges River Delta

    Science.gov (United States)

    2002-01-01

    The Ganges River forms an extensive delta where it empties into the Bay of Bengal. The delta is largely covered with a swamp forest known as the Sunderbans, which is home to the Royal Bengal Tiger. It is also home to most of Bangladesh, one of the world's most densely populated countries. Roughly 120 million people live on the Ganges Delta under threat of repeated catastrophic floods due to heavy runoff of meltwater from the Himalayas, and due to the intense rainfall during the monsoon season. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on February 28, 2000. This is a false-color composite image made using green, infrared, and blue wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  10. Alligator Rivers analogue project

    International Nuclear Information System (INIS)

    Duerden, P.

    1990-01-01

    Australian Nuclear Science and Technology Organization has extensively evaluated uranium ore bodies in the Alligator Rivers Uranium Province in Australia as analogues of radioactive waste repositories. The work was extended for a three-year program as an international project based on the Koongarra uranium deposit and sponsored by the OECD Nuclear Energy Agency. The technical program comprises six major sub-projects involving modelling and experimental work: modelling of radionuclide migration; hydrogeology of the Koongarra uranium deposit; uranium/thorium series disequilibria studies; groundwater and colloid studies; fission product studies; transuranic nuclide studies; an outline of the technical programs and a summary of progress in the technical sub-projects is given. This is followed by a series of technical reports which briefly describe current research tasks, and which have been separately indexed

  11. 76 FR 23485 - Safety Zone; Red River

    Science.gov (United States)

    2011-04-27

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Red River AGENCY: Coast Guard, DHS. ACTION... Red River in the State of North Dakota, including those portions of the river bordered by Richland... across latitude 46 20'00'' N, extending the entire width of the river. This safety zone is needed to...

  12. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  13. Elwha River dam removal-Rebirth of a river

    Science.gov (United States)

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  14. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Science.gov (United States)

    2010-07-01

    ... go adrift. Immediately after completion of the emergency mooring, the lockmaster of the first lock... of approach to unattended, normally open automatic, movable span bridges, the factor of river flow...

  15. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Department of Resources — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  16. Anastomosing Rivers are Disequilibrium Patterns

    NARCIS (Netherlands)

    Lavooi, E.; Haas, de T.; Kleinhans, M.G.; Makaske, B.; Smith, D.G.

    2010-01-01

    Anastomosing rivers have multiple interconnected channels that enclose floodbasins. Various theories have been proposed to explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, or, alternatively, a tendency to avulse due to upstream

  17. Missouri River, Natural Resources Bibliography.

    Science.gov (United States)

    1997-07-01

    Dissertation Abstracts, UnCover, Agricola , and terrestrial habitats adjacent to the river resulted in a variety of bibliographies available on the Internet...Missouri and Cheyenne Rivers in South Dakota. South Dakota St. Univ., Brookings. 408. DORTW, RATZLAFF JR. 1970. Recent variations in course and regimen ...Dakota, Grand Forks. 185 p. 1563. RuHE RV. 1971. Stream regimen and man’s manipulation. In: Environmental 1573. SANDHEINRICH MB, ATCHISON GJ. 1986

  18. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  19. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  20. How rivers split

    Science.gov (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.

    2012-12-01

    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  1. Rivers, runoff, and reefs

    Science.gov (United States)

    McLaughlin, C.J.; Smith, C.A.; Buddemeier, R.W.; Bartley, J.D.; Maxwell, B.A.

    2003-01-01

    The role of terrigenous sediment in controlling the occurrence of coral reef ecosystems is qualitatively understood and has been studied at local scales, but has not been systematically evaluated on a global-to-regional scale. Current concerns about degradation of reef environments and alteration of the hydrologic and sediment cycles place the issue at a focal point of multiple environmental concerns. We use a geospatial clustering of a coastal zone database of river and local runoff identified with 0.5?? grid cells to identify areas of high potential runoff effects, and combine this with a database of reported coral reef locations. Coastal cells with high runoff values are much less likely to contain reefs than low runoff cells and GIS buffer analysis demonstrates that this inhibition extends to offshore ocean cells as well. This analysis does not uniquely define the effects of sediment, since salinity, nutrients, and contaminants are potentially confounding variables also associated with runoff. However, sediment effects are likely to be a major factor and a basis is provided for extending the study to higher resolution with more specific variables. ?? 2003 Elsevier B.V. All rights reserved.

  2. A Rejang River rash

    Directory of Open Access Journals (Sweden)

    Jean-Li Lim

    2014-04-01

    Full Text Available A 30-year-old Iban woman presented to a rural primary healthcare clinic located along the Batang Rejang in Sarawak. She had a 2-day history of rash, which started over her trunk and later spread to her face and limbs. What started out as individual erythematous maculopapular spots later coalesced to form larger raised blotches. The rash was extremely pruritic and affected her sleep, and hence her visit. The rash was preceded by high grade, persistent fever that was temporarily relieved by paracetamol. She also complained of malaise, arthralgia and myalgia. Her appetite had been poor since the onset of the fever. She lived in a long house at the edge of the jungle. Although she did not have a history of going into the jungle to forage, she went regularly to the river to wash clothes. Clinically, she appeared lethargic and had bilateral conjunctival injection. Her left anterior cervical lymph nodes were palpable. There were erythematous macules measuring 5 to 15 mm distributed over her whole body but predominantly over the chest and abdominal region (Figure 1. An unusual skin lesion was discovered at the right hypochondriac region. This lesion resembled a cigarette burn with a necrotic centre (Figure 2. There was no evidence of hepato-splenomegaly. Examination of the other systems was unremarkable. On further questioning, the patient admitted being bitten by a ‘kutu babi’ or mite 3 days before the onset of her fever.

  3. Towards a sociogeomorphology of rivers

    Science.gov (United States)

    Ashmore, Peter

    2015-12-01

    While human impacts on rivers and other landforms have long been a component of geomorphic research, little of this work explicitly includes insights into human agency from social science or recognises that in many cases rivers can be considered to be hybrid co-productions or 'socio-natures'. A socio-geomorphic approach proposed here has parallels with some aspects of sociohydrology and can extend and enrich existing geomorphic explanations of the morphology of, for example, urban rivers by explicitly recognising and working with the co-evolution of the human and natural systems. Examples from recent literature illustrate ways in which these relationships can be understood and analyzed, showing a range of socio-natural influences in particular contexts that have material consequences for river morphology and recognising that events in the system have many forms. The approach recognises the importance of contingency in time and place together with the role and nature of both local and global knowledge. An important element of this approach is that it provides ways for understanding the nature, position and intention of geomorphic and other scientific interventions as part of the system, for example in the case of river restoration. This also leads to the need for reflexivity by geomorphologists and reconsideration of the nature of geomorphological knowledge by those involved in such work and with respect to sociogeomorphology as a whole.

  4. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  5. Terrestrial teleconnections link global rivers

    Science.gov (United States)

    O'Loughlin, F.; Howden, N. J.; Woods, R. A.; Bates, P. D.

    2013-12-01

    We present analyses of river discharge data from across the world, which we used to identify links between annual river flow regimes across different continents. Our hypothesis was that, as atmospheric processes are subject to large-scale teleconnection patterns, and because these atmospheric processes are inherently linked to precipitation regimes across the world, there should be identifiable links between river flow regimes driven by these atmospheric processes. We used discharge data from the Global Runoff Data Centre (GRDC) to identify cross-correlations (and accounted for serial dependence) between 23 of the world's largest river basins where overlapping data were available over a period of 12 years or more: two in South America; five in Africa; one in Australasia; five in North America and ten in Eurasia. The selected river basins drain approximately a third of the Earth's landmass at their furthest downstream gauging station. Where significant cross-correlations were found, we compared these to known patterns associated with the ENSO and NAO teleconnections. In total, 85 of the 253 possible correlations were deemed significant at p0). We compared these significant cross-correlations with known atmospheric teleconnection patterns, and while these were consistent for the majority of cases, we found a number of significant correlations that are inconsistent with the anticipated effects of known atmospheric teleconnections. Our results provide new insight into the inter-continental links between global river systems and the way in which these are controlled by large-scale atmospheric processes. We suggest this may be useful for global industries, such as insurers or aid agencies, who seek to understand correlations between the magnitudes of extreme events across different regions of the world. For the former, this may enable more efficient management of global liabilities, for the latter it may enable better logistical planning of disaster relief requirements

  6. in a non-perennial river

    African Journals Online (AJOL)

    EWRs) in a non-perennial river (Mokolo River) in South Africa. Maitland Seaman, Marie Watson, Marinda Avenant, Alison Joubert, Jackie King, Charles Barker, Surina Esterhuyse, Douglas Graham, Marthie Kemp, Pieter le Roux, Bob Prucha, Nola ...

  7. Charles River Fish Contaminant Survey, April 2001

    Science.gov (United States)

    Report summarizing a biological monitoring component of the Clean Charles River 2005 initiative through the monitoring & analysis of fish within the lower Charles River basin, implemented by the EPA New England Regional Laboratory in the late fall of 1999.

  8. River restoration - Malaysian/DID perspective

    International Nuclear Information System (INIS)

    Ahmad Darus

    2006-01-01

    Initially the river improvement works in Malaysia was weighted on flood control to convey a certain design flood with the lined and channelized rivers. But in late 2003 did has makes the approaches that conservation and improvement of natural function of river, i.e. river environment and eco-system should be incorporated inside the planning and design process. Generally, river restoration will focus on four approaches that will improve water quality, which is improving the quality of stormwater entering the river, maximizing the quantity of the urban river riparian corridor, stabilizing the riverbank, and improving the habitat within the river. This paper outlined the appropriate method of enhancing impairment of water quality from human activities effluent and others effluent. (Author)

  9. Russian River Ice Thickness and Duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of river ice thickness measurements, and beginning and ending dates for river freeze-up events from fifty stations in northern Russia. The...

  10. Habitat Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  11. Minnesota Wild and Scenic River Districts

    Data.gov (United States)

    Minnesota Department of Natural Resources — District boundaries for wild, scenic, and recreational rivers designated under the Minnesota State Wild and Scenic Rivers Act. Includes portions of the Minnesota...

  12. Biological - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  13. Savannah River Site Environmental Implentation Plan

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described

  14. Geomorphic Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  15. Physical - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  16. The dark river: Kearsley power station

    OpenAIRE

    Darwell, John

    2016-01-01

    Edition of 150 black and white digital images by John Darwell of the River Irwell area around Kearsley power station, in the North of England. Volume three of five volume set exploring the River Irwell during the 1980s.

  17. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  18. SIRIU RESERVOIR, BUZAU RIVER (ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel Constantin DIACONU

    2008-06-01

    Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.

  19. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA...

  20. 78 FR 41689 - Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA

    Science.gov (United States)

    2013-07-11

    ... submerged automobiles and floating bridge debris in the Skagit River. Following the initial response and...-AA00 Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone around the Skagit River Bridge...

  1. 76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN

    Science.gov (United States)

    2011-04-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AAOO Safety Zone; Red River Safety Zone, Red River, MN AGENCY... Safety Unit Duluth, MN is establishing a temporary safety zone on the Red River, MN. This safety zone is... entering all navigable waters of the Red River in the State of Minnesota north of a line drawn across...

  2. 76 FR 25545 - Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC

    Science.gov (United States)

    2011-05-05

    ...-AA00 Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC AGENCY: Coast... zone on the waters of Little River in Little River, South Carolina during the Blue Crab Festival... this rule because the Coast Guard did not receive notice of the Blue Crab Festival Fireworks Display...

  3. Columbia River Component Data Evaluation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  4. Sediment Size Distribution at Three Rivers with Different Types of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    reach and lower reach as well as to compare between three rivers with different type of land use. The three rivers are Dengar River representing palm oil plantation land use, Mengkibol River representing urban area and Madek River representing logging area. Rivers with a depth of about 200 meter were chosen for the ...

  5. Similarities and differences between a large meandering river and an anabranching river: the Ucayali and Amazon River cases

    Science.gov (United States)

    Abad, J. D.; Paredes, J. R.; Montoro, H.

    2010-12-01

    The Ucayali is one of the largest freely meandering rivers in the world and its planform migration produces complex meander shapes dominated by not only fluvial erosion but mainly geotechnical processes since changes on water stage are appreciable compared to medium- and small-meander rivers. The Amazon is one of the largest anabranching rivers in the world and it is formed by the confluence of the anabranching Marañon River together with the meandering Ucayali River. The seasonal increase and decrease in water and sediment discharges from the Amazonian lowland rivers produce changes in the river’s planform configuration, river flooding, and streambank erosion affecting nearby towns and navigation and shoaling issues. Even though, extensive work has been dedicated to understand both river systems, there is still no absolute understanding of their physically-based formation processes and dynamics, especially at large scales as these lowland Amazonian rivers. The Ucayali Meandering River migrates at greater rates than the Amazon Anabranching River mainly due to their single channel condition; however localized secondary channels of the latter could behave as meandering channels dominating and modifying the planform dynamics of the entire anabranching system. Insights on how a large meandering river (Ucayali) is similar and at the same time different from an anabranching river (Amazon) will be described herein. A team composed of the Earth Processes & Environmental Flows Group (EPEF) at the University of Pittsburgh and the Directorate of Hydrology and Navigation (DHN) from the Peruvian Navy is working towards gathering information and field measurements concerning the dynamics of the Amazonian rivers. Therefore, based on three-dimensional velocity and bed morphodynamic measurements (performed in both river systems using acoustic profilers and echo sounders respectively) combined with mathematical hydrodynamic models, some insights on the flow structure, bed

  6. RiverCare: towards self-sustaining multifunctional rivers

    Science.gov (United States)

    Augustijn, Denie; Schielen, Ralph; Hulscher, Suzanne

    2014-05-01

    Rivers are inherently dynamic water systems involving complex interactions among hydrodynamics, morphology and ecology. In many deltas around the world lowland rivers are intensively managed to meet objectives like safety, navigation, hydropower and water supply. With the increasing pressure of growing population and climate change it will become even more challenging to reach or maintain these objectives and probably also more demanding from a management point of view. In the meantime there is a growing awareness that rivers are natural systems and that, rather than further regulation works, the dynamic natural processes should be better utilized (or restored) to reach the multifunctional objectives. Currently many integrated river management projects are initiated all over the world, in large rivers as well as streams. Examples of large scale projects in the Netherlands are 'Room for the River' (Rhine), the 'Maaswerken' (Meuse), the Deltaprogramme and projects originating from the European Water Framework Directive (WFD). These projects include innovative measures executed never before on this scale and include for example longitudinal training dams, side channels, removal of bank protection, remeandering of streams, dredging/nourishment and floodplain rehabilitation. Although estimates have been made on the effects of these measures for many of the individual projects, the overall effects on the various management objectives remains uncertain, especially if all projects are considered in connection. For all stakeholders with vested interests in the river system it is important to know how that system evolves at intermediate and longer time scales (10 to 100 years) and what the consequences will be for the various river functions. If the total, integrated response of the system can be predicted, the system may be managed in a more effective way, making optimum use of natural processes. In this way, maintenance costs may be reduced, the system remains more natural

  7. Setting targets in strategies for river restoration

    NARCIS (Netherlands)

    Pedroli, G.B.M.; Blust, de G.; Looy, van K.; Rooij, van S.A.M.

    2002-01-01

    Since about 90% of the natural floodplain area of rivers in Europe has been reclaimed and now lacks river dynamics, nature rehabilitation along rivers is of crucial importance for the restoration of their natural function. Flood protection, self-purification of surface water, groundwater recharge,

  8. Interplay between river dynamics and international borders

    NARCIS (Netherlands)

    Yousefi, Saleh; Keesstra, Saskia; Pourghasemi, Hamid Reza; Surian, Nicola; Mirzaee, Somayeh

    2017-01-01

    Fluvial dynamics in riverine borders can play an important role in political relationships between countries. Rivers move and evolve under the influence of natural processes and external drivers (e.g. land use change in river catchments). The Hirmand River is an important riverine border between

  9. 33 CFR 117.175 - Mokelumne River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mokelumne River. 117.175 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.175 Mokelumne River. (a) The draw of the California Department of Transportation highway bridge, the Mokelumne River Bridge, mile 3.0, at...

  10. 33 CFR 117.570 - Sassafras River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sassafras River. 117.570 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.570 Sassafras River. The draw of the Sassafras River (Route 213) bridge, mile 10.0 at Georgetown, Maryland, shall open on signal; except that...

  11. 33 CFR 117.291 - Hillsborough River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hillsborough River. 117.291... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.291 Hillsborough River. (a) The... the CSX Railroad Bridge across the Hillsborough River, mile 0.7, at Tampa, operates as follows: (1...

  12. 33 CFR 117.337 - Trout River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Trout River. 117.337 Section 117... OPERATION REGULATIONS Specific Requirements Florida § 117.337 Trout River. The draw of the CSX Railroad Bridge across the Trout River, mile 0.9 at Jacksonville, operates as follows: (a) The bridge is not...

  13. 33 CFR 117.411 - Missouri River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Missouri River. 117.411 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Kansas § 117.411 Missouri River. The draws of the bridges across the Missouri River shall open on signal; except during the winter season between the date...

  14. 33 CFR 117.217 - Norwalk River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Norwalk River. 117.217 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.217 Norwalk River. (a) The draw of.... to 12 p.m., on the first Saturday in December, to facilitate the running of the annual Norwalk River...

  15. 33 CFR 117.171 - Middle River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Middle River. 117.171 Section 117... OPERATION REGULATIONS Specific Requirements California § 117.171 Middle River. (a) The draw of the San..., mile 9.8 near Middle River Station, shall open on signal if at least 12 hours notice is given to the...

  16. 33 CFR 117.189 - Sacramento River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sacramento River. 117.189 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.189 Sacramento River. (a) The draws of each bridge from Isleton to American River junction shall open on signal from May 1 through...

  17. 33 CFR 117.531 - Piscataqua River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Piscataqua River. 117.531 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.531 Piscataqua River. (a) The following requirements apply to all bridges across the Piscataqua River: (1) Public vessels of the United States...

  18. 33 CFR 117.258 - Apalachicola River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Apalachicola River. 117.258... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.258 Apalachicola River. The draw of the CSX Railroad bridge, mile 105.9, at River Junction shall open on signal Monday through Friday from 8 a...

  19. 33 CFR 117.407 - Missouri River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Missouri River. 117.407 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Iowa § 117.407 Missouri River. See § 117.691, Missouri River listed under Nebraska. Kansas ...

  20. 33 CFR 117.403 - Wabash River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Wabash River. 117.403 Section 117.403 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Indiana § 117.403 Wabash River. See § 117.397, Wabash River...

  1. 33 CFR 117.547 - Bush River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bush River. 117.547 Section 117... OPERATION REGULATIONS Specific Requirements Maryland § 117.547 Bush River. The draw of the Amtrak bridge... Superintendent at 301-291-4278 by an authorized representative of the Bush River Yacht Club by noon on the Friday...

  2. 33 CFR 117.183 - Old River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Old River. 117.183 Section 117... OPERATION REGULATIONS Specific Requirements California § 117.183 Old River. The draw of the California... notice is given to the drawtender at the Rio Vista bridge across the Sacramento River, mile 12.8. ...

  3. 33 CFR 117.359 - Chattahoochee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chattahoochee River. 117.359... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.359 Chattahoochee River. See § 117.107, Chattahoochee River, listed under Alabama. ...

  4. 33 CFR 117.299 - Loxahatchee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Loxahatchee River. 117.299... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.299 Loxahatchee River. The draw of the Florida East Coast Railway bridge across the Loxahatchee River, mile 1.2 at Jupiter, operates as follows...

  5. 33 CFR 117.300 - Manatee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Manatee River. 117.300 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.300 Manatee River. The draw of the CSX Railroad Bridge across the Manatee River, mile 4.5 Bradenton, operates as follows: (a) The bridge is not...

  6. 33 CFR 117.527 - Kennebunk River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kennebunk River. 117.527 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.527 Kennebunk River. The Dock Square drawbridge at mile 1.0, across the Kennebunk River, between Kennebunk and Kennebunkport, Maine, need not open...

  7. 33 CFR 117.333 - Suwannee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Suwannee River. 117.333 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.333 Suwannee River. The draw of Suwannee River bridge, mile 35 at Old Town need not be opened for the passage of vessels, however, the draw shall...

  8. 33 CFR 117.391 - Chicago River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chicago River. 117.391 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Illinois § 117.391 Chicago River. The draws of the bridges operated by the City of Chicago over the Main Branch of Chicago River, the bridges on the North...

  9. 33 CFR 117.397 - Wabash River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Wabash River. 117.397 Section 117... OPERATION REGULATIONS Specific Requirements Illinois § 117.397 Wabash River. The draws of the bridges across the Wabash River need not be opened for the passage of vessels. Indiana ...

  10. HYDROLOGICAL ASSESSMENTS OF SOME RIVERS IN EDO ...

    African Journals Online (AJOL)

    The aim of this study is to determine the hydro-power potentials of selected rivers in Edo State using hydrological indices. Four Rivers were investigated namely Ovia, Ikpoba Edion, Orlie Rivers. Discharge measurement was carried out for 12 calendar months, from January 2013 to December 2013 using the grid point ...

  11. Role of vegetation on river bank accretion

    NARCIS (Netherlands)

    Vargas Luna, A.

    2016-01-01

    There is rising awareness of the need to include the effects of vegetation in studies dealing with the morphological response of rivers. Vegetation growth on river banks and floodplains alters the river bed topography, reduces the bank erosion rates and enhances the development of new floodplains

  12. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  13. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    OpenAIRE

    Ellen Wohl

    2005-01-01

    A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restorati...

  14. 77 FR 47331 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-08-08

    ...-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl... navigable waters of New Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the..., Quinnipiac River, and Mill River RNA. The proposed amendment would give the Captain of the Port Sector Long...

  15. Rebirth of the Cheat River

    Science.gov (United States)

    The Cheat River in West Virginia is again a haven for whitewater rafting and smallmouth bass fishing after years of Clean Water Act funding and the efforts of a local non-profit group and others to control pollution from old abandoned mines.

  16. Sorting out river channel patterns

    NARCIS (Netherlands)

    Kleinhans, M.G.

    2010-01-01

    Rivers self-organize their pattern/planform through feedbacks between bars, channels, floodplain and vegetation, which emerge as a result of the basic spatial sorting process of wash load sediment and bed sediment. The balance between floodplain formation and destruction determines the width and

  17. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective

  18. Hydrological balance of Cauca River

    International Nuclear Information System (INIS)

    Corzo G, J.; Garcia, M.

    1992-11-01

    This thesis understand the superficial and underground hydrology of the C.c. River Basin; the purpose of this study is to obtain information related to the quantity and behavior of the water resource, in order to make the necessary recommendations for the adequate managing, the aquifer protection and thus be able to have valuable liquid

  19. Conservation of South African Rivers

    CSIR Research Space (South Africa)

    O'Keeffe, JH

    1986-01-01

    Full Text Available The report presents the proceedings of a three-day workshop at Midmar Dam designed to establish a consensus view of river conservation and to provide professional conservationists, managers and planners with a set of guidelines. These indicate what...

  20. Union Lake Bourbeuse River, Missouri.

    Science.gov (United States)

    1974-10-01

    Poeciliidae -Cambusia affinis Mosquitofish 8,10 Order Atueriniformes Centrarchidne - Suinfishes AalbloTpites rupestris Rock Bass 9,10,14 LLpomis cyanellus...4, I’he i.ss, ( muscle ) shoals of the Tennessee River revisted. Amercan a~ae1zia Union. Annual Report (19 4)~ pp 25-28. Stansberv, i). ff. 1970

  1. MICROPHYTOBENTHOS IN THE SUTLA RIVER

    Directory of Open Access Journals (Sweden)

    Marija Tomec

    2009-10-01

    Full Text Available The Sutla river is a river along Croatian/Slovenian border. Its length is about 91 km, out of which 89 km in Croatia. Microphytobenthos investigations have been performed at six locations along the Sutla river on Croatian territory. Samples were collected from specific areas of characteristic habitats. Beside sample collection, basic physico–chemical parameters were measured: water temperature, pH values and quantity of water dissolved oxygen. Water temperature changed depending on air temperature and the depth of the river, ranging from 5.1ºC to 6.3ºC. pH values were between 7.77 and 8.14, and dissolved oxygen concentrations (mg/L O2 at the six locations ranged between 8.6 mg/L and 14.9 mg/L. Quantitative microphytobenthos composition comprised 87 microphythic species belonging to the systematic groups of Bacteriophyta, Cyanobacteria and Chrysophyta (Bacillariophyceae and Xanthophyceae. The most numerous group were the diatoms or Bacillariophyceae (76 species or 88.3%, with dominance of the species of the genera Achnanthes, Cocconeis, Cymbella, Gomphonema, Navicula, Nitzschia and Surirella. The group Cyanobacteria was represented with relatively small number of species (9 species or 10%, with the dominance of filamentous algae belonging to the genus Phormidium. From the total number of the determined microphytobenthic species, 73 species or 84% were indicators of saprobity. Most of them were beta–mezosaprobic indicators. Based on the indicator values of determined microphytobenthic species at six investigated locations, P–B saprobity index was in the range from 1.8 to 2.0. These values suggested that the water at the investigated part of the Sutla river belonged to the second class of Croatian Water Quality Directive.

  2. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  3. HANFORD SITE RIVER CORRIDOR CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  4. Biota of the upper Mississippi River ecosystem

    Science.gov (United States)

    Wiener, James G.; Naimo, Teresa J.; Korschgen, Carl E.; Dahlgren, Robert; Sauer, Jennifer S.; Lubinski, Kenneth S.; Rogers, Sara J.; Brewer, Sandra; LaRoe, Edward T.; Farris, Gaye S.; Puckett, Catherine E.; Doran, Peter D.; Mac, Michael J.

    1995-01-01

    The Mississippi River is one of the world's major river systems in size, habitat and biotic diversity, and biotic productivity. The navigable Upper Mississippi River, extending 1,370 km (850 mi) from St. Anthony Falls (Minnesota) to the confluence with the Ohio River, has been impounded by 27 locks and dams to enhance commercial navigation. The reach between two consecutive locks and dams is termed a "pool." The upstream portions of many pools are similar to the unimpounded river, whereas the downstream reaches are similar to reservoirs.

  5. The Amazon, measuring a mighty river

    Science.gov (United States)

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  6. Health evaluation indicator system for urban landscape rivers, case study of the Bailianjing River in Shanghai

    Science.gov (United States)

    Wang, Juan; Wang, Yue; Yang, Haizhen; Lu, Zhibo; Xu, Xiaotian

    2010-11-01

    The River Bailianjing is an iconic landscape feature known to all residents in Pudong area and running through the Shanghai Expo 2010 Park. The river and its basin was a complex living ecosystem which supports a unique variety of flora and fauna several decades ago. However, as a result of unsuccessful pollution source control, sewage and first flow of the storm water is directly coming into the river in some catchment. The water quality of the river is seriously organically polluted now. The typical organic pollutants are COD, NH3-N, TN and TP, which cause the extinction of the water plants and aquatic. Furthermore, the artificial hard river banks isolate the river course and the land, which damaged the whole ecological system totally. The nature of the River Bailianjing and its history has resulted in many government departments and authorities and non government organizations having jurisdiction and/or an interest in the river's management. As a new tool to improve river management, the river health assessment has become the major focus of ecological and environmental science. Consequently, research on river health evaluation and its development on river management are of great theoretical and practical significance. In order to evaluate the healthy status of the River Bailianjing and prepare comprehensive scientific background data for the integrated river ecological rehabilitation planning, the health evaluation indicator system for River Bailianjing is brought forward. The indicator system has three levels: the first is target layer; the second is criteria layer, including five fields: water quality characteristics, hydrology characteristics, river morphology, biological characteristics and river scenic beauty; the third is an index layer, a total of 15 specific indicators included. Fuzzy AHP method is used to evaluate the target river's health status, and five grades are set up to describe it: healthy, sub health, marginal, unhealthy and pathological. The

  7. Energy potential of the Estonian rivers

    International Nuclear Information System (INIS)

    Reihan, Alvina; Kovalenko, Olga

    2002-01-01

    In the current study the river runoff, its long-term distribution and river slope were considered as factors in the evaluation of the hydro energy potential of the Estonian rivers. The analyses of the long-term runoff hydrographs showed the increase of the maximum discharges and the decrease of the minimum discharges, at the same time mean annual discharges were almost unchanged. It indicated that seasonal variability of the runoff decreased. The evaluation of the hydro energy potential of rivers showed, that the Narva and Paernu rivers are the most suitable for hydro energy production, then in decreasing order - the Kasari, Pedja, Piusa, Halliste, Vohandu, Jaegala rivers etc. The analyses of the Rannapungerja river runoff showed, that the activity of the restored Tudulinna hydropower plant had an influence on runoff in 2001: the minimum discharge was less than permitted by the legislative acts. Thus, the environmental aspects should have a high priority in hydropower plants reconstruction(author)

  8. Characteristics of Atmospheric River Families in California's Russian River Basin

    Science.gov (United States)

    Fish, M. A.; Wilson, A. M.; Ralph, F. M.

    2017-12-01

    Previous studies have shown the importance of antecedent conditions and storm duration on atmospheric river (AR) impacts in California's Russian River basin. This study concludes that successive ARs, or families of ARs, produce an enhanced streamflow response compared to individual storms. This amplifies the impacts of these storms, which contribute to 50% of the annual precipitation in the Russian River basin. Using the Modern Era Retrospective - analysis for Research and Applications 2 dataset and 228 AR events from November 2004 - April 2017 affecting Bodega Bay, CA (BBY), this study identified favorable characteristics for families vs single ARs and their associated impacts. It was found that 111 AR events ( 50%) occurred within 5 days of one another with 44 events ( 40%) occurring within 24 hours. Using the winter of 2017, which had a multitude of successive ARs in Northern California, this study evaluates the applicability of family composites using case study comparisons. The results of this study show large divergences of family composites from the overall AR pattern, depending on the time interval between events. A composite of all AR events show Bodega Bay generally south of the jet exit region, SW-NE tilt of 500mb heights and a more northerly subtropical high. ARs occurring on the same day have faster southerly winds, a weaker low off the coast and a southerly moisture plume extending along the CA coast. Comparatively ARs that occur the following day, feature a more zonal pattern with faster winds north of BBY, a deeper low off the coast and a moisture plume southwest of the Russian River watershed.

  9. Elwha River Restoration: Sediment Management

    Science.gov (United States)

    Kimbrel, S.; Bountry, J.; Randle, T. J.; Ritchie, A.; Huginin, H.; Torrance, A.

    2013-12-01

    The removal of Elwha and Glines Canyon Dams on the Elwha River relies on controlled reservoir drawdown increments and natural river flows to erode and redistribute the reservoir sediment, estimated to be a total of 23 (× 3) million m3. To mitigate for the predicted sediment effects, facilities have been constructed for water quality and flood protection. A sediment monitoring program is being implemented by an interdisciplinary team from Reclamation and National Park Service to integrate real-time measurements with continually updated numerical model predictions. The most recent numerical reservoir modeling and monitoring results indicate about 20 to 25 percent of the reservoir sediment has been released since the start of dam removal. Monitoring results in 2012 and early 2013 confirmed that controlled reservoir drawdown increments have induced sufficient vertical and lateral erosion of delta surfaces behind both dams. Predam channel and floodplain surface has been exposed in numerous portions of Lake Aldwell, with the release of coarse and fine sediment in the first few pools below Elwha Dam. The material released from Lake Aldwell has included organic material. With the removal of about three quarters of Glines Canyon Dam and the disappearance of Lake Mills, coarse bedload sediment has been continually released into the downstream river since late fall 2012. Field measurements and numerical modeling are being used to track the progression of the sediment wave downstream to the Elwha River mouth. Initial findings are that the aggradation was greatest immediately downstream of Glines Canyon Dam, and filled pools and transformed river planform from step-pool to glide for most of the 7 mile reach between Lake Mills and Lake Aldwell. Although there has not been a major flood, winter flows and spring snowmelt have significantly reworked the released sediment and remnants of the pre-sediment release pools and rapids have re-emerged. Large wood and organics have also

  10. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry

    Science.gov (United States)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan

    2016-09-01

    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning

  11. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  12. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  13. Large-scale river regulation

    International Nuclear Information System (INIS)

    Petts, G.

    1994-01-01

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  14. Radiocesium dynamics in the Hirose River basin

    Science.gov (United States)

    Kuramoto, T.; Taniguchi, K.; Arai, H.; Onuma, S.; Onishi, Y.

    2017-12-01

    A significant amount of radiocesium was deposited in Fukushima Prefecture during the accident of Fukushima Daiichi Nuclear Power Plant. In river systems, radiocesium is transported to downstream in rivers. For the safe use of river and its water, it is needed to clarify the dynamics of radiocesium in river systems. We started the monitoring of the Hirose River from December 2015. The Hirose River is a tributary of the Abukuma River flowing into the Pacific Ocean, and its catchment is close to areas where a large amount of radiocesium was deposited. We set up nine monitoring points in the Hirose River watershed. The Water level and turbidity data are continuously observed at each monitoring point. We regularly collected about 100 liters of water at each monitoring point. Radiocesium in water samples was separated into two forms; the one is the dissolved form, and the other is the suspended particulate form. Radionuclide concentrations of radiocesium in both forms were measured by a germanium semiconductor detector. Furthermore, we applied the TODAM (Time-dependent One-dimensional Degradation And Migration) code to the Hirose River basin using the monitoring data. The objectives of the modeling are to understand a redistribution pattern of radiocesium adsorbed by sediments during flooding events and to determine the amount of radiocesium flux into the Abukuma River.

  15. Geocode of River Networks in Global Plateaus

    Science.gov (United States)

    Ni, J.; Wang, Y.; Wang, T.

    2017-12-01

    As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.

  16. Naturalness and Place in River Rehabilitation

    Directory of Open Access Journals (Sweden)

    Kirstie Fryirs

    2009-06-01

    Full Text Available An authentic approach to river rehabilitation emphasizes concerns for the natural values of a given place. As landscape considerations fashion the physical template upon which biotic associations take place, various geomorphic issues must be addressed in framing rehabilitation activities that strive to improve river health. An open-ended approach to river classification promotes applications that appreciate the values of a given river, rather than pigeonholing reality. As the geomorphic structure of some rivers is naturally simple, promoting heterogeneity as a basis for management may not always be appropriate. Efforts to protect unique attributes of river systems must be balanced with procedures that look after common features. Concerns for ecosystem functionality must relate to the behavioral regime of a given river, remembering that some rivers are inherently sensitive to disturbance. Responses to human disturbance must be viewed in relation to natural variability, recognizing how spatial relationships in a catchment, and responses to past disturbances, fashion the operation of contemporary fluxes. These fluxes, in turn, influence what is achievable in the rehabilitation of a given reach. Given the inherently adjusting and evolutionary nature of river systems, notional endpoints do not provide an appropriate basis upon which to promote concepts of naturalness and place in the rehabilitation process. These themes are drawn together to promote rehabilitation practices that relate to the natural values of each river system, in preference to applications of "cookbook" measures that build upon textbook geomorphology.

  17. River flood defence. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Toensmann, F. [Kassel Univ. (Germany). Dept. of Hydraulic and Water-Resources Engineering; Koch, M. (eds.) [Kassel Univ. (Germany). Dept. of Geohydraulics and Engineering Hydrology

    2001-07-01

    The present proceedings volume is complementary to the previous two proceedings volumes of the International Symposium on 'River Flood Defence' that was held in Kassel, September, 20-23, 2000. Apart from two supplementary contributions that did not meet the deadline to be published in the first two volumes, the present volume contains contributions to the special symposium 'Pollutants and Disease Pathogens in Floods'. (orig.)

  18. Dioxin in the river Elbe.

    Science.gov (United States)

    Götz, Rainer; Bergemann, Michael; Stachel, Burkhard; Umlauf, Gunther

    2017-09-01

    This paper provides a macro-analysis of the dioxin contamination in the river Elbe from the 1940s to the present. Based on different data sets, the historic dioxin concentration in the Elbe has been reconstructed. For the section between the tributary Mulde and Hamburg, during the 1940s, we find a concentration of about 1500 pg WHO-TEQ g -1 . We argue that this dioxin contamination was caused mainly by emissions from a magnesium plant in Bitterfeld-Wolfen, whose effluents were discharged into a tributary of the river Mulde which flows into the Elbe. Dioxin pattern recognition with neural networks (Kohonen) confirms this. A model simulation shows that a hypothetical dioxin concentration of 10,000 pg WHO-TEQ g -1 in the tributary Mulde could have caused the reconstructed dioxin concentration of 1500 pg WHO-TEQ g -1 in the Elbe. The recent dioxin concentration (about 25-100 pg WHO-TEQ g -1 ) in the river Elbe, downstream the tributary Mulde, originates, according to our hypothesis, from emissions of the banks and the highly contaminated flood plains (transport of the particle bound dioxin). As other possible dioxin sources, the following could be excluded: the dioxin concentration in the Mulde, groynes, small ports, sport boat harbours, and extreme floods. Our hypothesis is supported by the results of pattern recognition techniques and a model simulation. According to these findings, we argue that remediation efforts to reduce the dioxin concentration in the river Elbe are unlikely to be successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  20. Raft River geoscience case study

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  1. THE IMPACT OF URBAN RIVER VALLEY LAND USE AND MORPHOLOGICAL CONDITION FOR RIVER VEGETATION IN RIVER BED

    Directory of Open Access Journals (Sweden)

    Adam Marek Hamerla

    2016-09-01

    Full Text Available This paper is focused on the results of research about the relationship between hydromorphological condition and share of plants in river bed. Assessment, made in urbanized and heavy industry part of Upper Silesia, provide proof of strong relation between land use, land cover in river valley and type of river vegetation. Moreover, the relationship between hydromorphological indicators and groups of plants was defined.

  2. Fish fauna from Sapucaí-Mirim River, tributary of Grande River, upper Paraná River basin, Southeastern Brazil

    OpenAIRE

    Oliveira,Alexandre Kannebley de; Garavello,Julio Cesar; Cesario,Vinicius Vendramini; Cardoso,Rodrigo Torres

    2016-01-01

    The fish species composition of Sapucaí-Mirim River is herein reported and discussed in the faunistic context of Grande and Paranaíba river basins, both formers of the Paraná River. The Sapucaí-Mirim is an important tributary of this hydrographic system, flowing to the left bank of Grande River in a region occupied by the reservoir of the Porto Colombia hydroelectric power plant, at São Paulo state northeastern region, in southeastern Brazil. The poorly known fish diversity of the Sapucaí-Mir...

  3. Rare earth elements in river waters

    Science.gov (United States)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  4. The Upper Mississippi River System—Topobathy

    Science.gov (United States)

    Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.

    2017-03-23

    The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.

  5. Decline of radionuclides in Columbia River biota

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Watson, D.G.; Scott, A.J.; Gurtisen, J.M.

    1980-03-01

    In January 1971, the last of nine plutonium production reactors using direct discharge of once-through cooling waters into the Columbia River was closed. Sampling was initiated at three stations on the Columbia River to document the decline of the radionuclide body burdens in the biota of the Columbia River ecosystem. The data show that in a river-reservoir complex, the measurable body burden of fission-produced radionuclides decreased to essentially undetectable levels within 18 to 24 mo after cessation of discharge of once-through cooling water into the river. On the basis of data from the free-flowing station, we believe that this decrease would be even more rapid in an unimpounded river.

  6. 33 CFR 117.424 - Belle River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Belle River. 117.424 Section 117... OPERATION REGULATIONS Specific Requirements Louisiana § 117.424 Belle River. The draw of the S70 bridge, mile 23.8 (Landside Route) near Belle River, shall open on signal; except that, from 10 p.m. to 6 a.m...

  7. Ecological management of urban rivers in China

    Science.gov (United States)

    Zhang, Junhong; Hou, Xin; Xu, Yiping

    2017-03-01

    At present, China's urban river is widespread with serious pollution, poor water quality, poor water mobility and other issues. In this article, we analyzed the root causes of urban river water environment problems systematically, then puts forward the ways to solve the problems, which including implement the "river length system", strengthen the control of pollution sources, persist in ecological concepts, establish long-term mechanism and strengthen publicity and education.

  8. Anthropogenic impacts on global organic river pollution

    OpenAIRE

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water management for organic river quality at global scale, a crucial step is to develop a spatial analysis of organic river pollution threats. This thesis provides for the first time a quantitative picture of th...

  9. Fish, Barra Bonita River, upper Paraná River basin, state of Paraná, Brazil.

    Directory of Open Access Journals (Sweden)

    Bifi, A. G.

    2008-01-01

    Full Text Available The Barra Bonita River is an affluent of the left margin of the Ivaí River, upper Paraná River basin. Fishsamples were conduced in November 2006 (spring and in February 2007 (summer, in three sampling stations alongthe Barra Bonita River, using gill nets, casting nets, and sieves. Thirty one fish species were collected, which belong tofive orders, 14 families, and 25 genera. Among them, five are probably new to science.

  10. Classification of Tropical River Using Chemometrics Technique: Case Study in Pahang River, Malaysia

    International Nuclear Information System (INIS)

    Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Nur Hishaam Sulaiman

    2015-01-01

    River classification is very important to know the river characteristic in study areas, where this database can help to understand the behaviour of the river. This article discusses about river classification using Chemometrics techniques in mainstream of Pahang River. Based on river survey, GIS and Remote Sensing database, the chemometric analysis techniques have been used to identify the cluster on the Pahang River using Hierarchical Agglomerative Cluster Analysis (HACA). Calibration and validation process using Discriminant Analysis (DA) has been used to confirm the HACA result. Principal Component Analysis (PCA) study to see the strong coefficient where the Pahang River has been classed. The results indicated the main of Pahang River has been classed to three main clusters as upstream, middle stream and downstream. Base on DA analysis, the calibration and validation model shows 100 % convinced. While the PCA indicates there are three variables that have a significant correlation, domination slope with R 2 0.796, L/D ratio with R 2 -0868 and sinuosity with R 2 0.557. Map of the river classification with moving class also was produced. Where the green colour considered in valley erosion zone, yellow in a low terrace of land near the channels and red colour class in flood plain and valley deposition zone. From this result, the basic information can be produced to understand the characteristics of the main Pahang River. This result is important to local authorities to make decisions according to the cluster or guidelines for future study in Pahang River, Malaysia specifically and for Tropical River generally. The research findings are important to local authorities by providing basic data as a guidelines to the integrated river management at Pahang River, and Tropical River in general. (author)

  11. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  12. 33 CFR 207.330 - Mississippi River between Winnibigoshish and Pokegama dams, Leech River between outlet of Leech...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Mississippi River between Winnibigoshish and Pokegama dams, Leech River between outlet of Leech Lake and Mississippi River, and Pokegama... Winnibigoshish and Pokegama dams, Leech River between outlet of Leech Lake and Mississippi River, and Pokegama...

  13. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Science.gov (United States)

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount Pleasant... water swim, starts at Hobcaw Yacht Club on the Wando River, in approximate position 32[deg]49'19'' N, 79...

  14. Savannah River Laboratory monthly report, July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  15. Savannah River Laboratory monthly report, July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  16. The Columbia River System Inside Story

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  17. Savannah River Laboratory monthly report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  18. Savannah River Laboratory monthly report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  19. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  20. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  1. Savannah River Laboratory monthly report, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  3. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    Science.gov (United States)

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  4. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    Science.gov (United States)

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  5. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Science.gov (United States)

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  6. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...

  7. Rivers running deep : complex flow and morphology in the Mahakam River, Indonesia

    NARCIS (Netherlands)

    Vermeulen, B.

    2014-01-01

    Rivers in tropical regions often challenge our geomorphological understanding of fluvial systems. Hairpin bends, natural scours, bifurcate meander bends, tie channels and embayments in the river bank are a few examples of features ubiquitous in tropical rivers. Existing observation techniques

  8. 78 FR 59237 - Regulated Navigation Area-Weymouth Fore River, Fore River Bridge Construction, Weymouth and...

    Science.gov (United States)

    2013-09-26

    ...-AA11 Regulated Navigation Area--Weymouth Fore River, Fore River Bridge Construction, Weymouth and... necessary to provide for the safety of life in the vicinity of the Fore River Bridge during its construction.... Mark Cutter, Coast Guard Sector Boston Waterways Management Division, telephone 617-223-4000, email...

  9. 78 FR 49918 - Drawbridge Operation Regulation; Taunton River, Fall River and Somerset, MA

    Science.gov (United States)

    2013-08-16

    ... create an environmental risk to health or risk to safety that might disproportionately affect children... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Taunton River, Fall... across the Taunton River, mile 2.1, between Fall River and Somerset, Massachusetts. The bridge owner...

  10. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran

    NARCIS (Netherlands)

    Yousefi, Saleh; Moradi, Hamid Reza; Keesstra, Saskia; Pourghasemi, Hamid Reza; Navratil, Oldrich; Hooke, Janet

    2017-01-01

    In the present study, we investigate the effects of urbanization growth on river morphology in the downstream part of Talar River, east of Mazandaran Province, Iran. Morphological and morphometric parameters in 10 equal sub-reaches were defined along a 11.5 km reach of the Talar River after land

  11. The Middle Sacramento River: Human Impacts on Physical and Ecological Processes Along a Meandering River

    Science.gov (United States)

    Koll Buer; Dave Forwalter; Mike Kissel; Bill Stohlert

    1989-01-01

    Native plant and wildlife communities along Northern California's middle Sacramento River (Red Bluff to Colusa) originally adapted to a changing pattern of erosion and deposition across a broad meander belt. The erosion-deposition process was in balance, with the river alternately building and eroding terraces. Human-induced changes to the Sacramento River,...

  12. 76 FR 24914 - Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers...

    Science.gov (United States)

    2011-05-03

    ... Digital River Education Services acquired Journey Education Marketing (JEM) in August 2010. Some workers... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,975] Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers Whose Unemployment Insurance (UI...

  13. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ...; Yakima River Basin Water Enhancement Project, Yakima, WA AGENCY: Bureau of Reclamation, Interior. ACTION... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... future projects being funded with Yakima River Basin Water Enhancement Project funds. The CAG will also...

  14. Saving a river: a joint management approuch to the Mekong River Basin

    NARCIS (Netherlands)

    Houba, H.E.D.; Pham Do, K.H.; Zhu, X.

    2013-01-01

    The Mekong River Basin (MRB) is a trans-boundary river shared by six countries. The governance by the Mekong River Commission (MRC) of the Lower Mekong Basin (LMB) is weak. This study investigates the welfare effects in the year 2030 arising from strengthening the MRC's governance versus joint

  15. Saving a river: a joint management approach to the Mekong River Basin

    NARCIS (Netherlands)

    Houba, H.; Hang Pham-Do, K.; Zhu, X.

    2013-01-01

    The Mekong River Basin (MRB) is a trans-boundary river shared by six countries. The governance by the Mekong River Commission (MRC) of the Lower Mekong Basin (LMB) is weak. This study investigates the welfare effects in the year 2030 arising from strengthening the MRC's governance versus joint

  16. EPA’s Study of Potential Impacts of Hydraulic Fracturing on Drinking Water Resources: Wastewater Source Apportionment Project

    Science.gov (United States)

    EPA scientists evaluated sources of bromide and other inorganic pollutants impacting drinking water intakes on the Allegheny River in Pennsylvania to examine the potential impacts related to the treatment and disposal of oil & gas well produced wastewater.

  17. Inputs from Indian rivers to the ocean: A synthesis

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; SenGupta, R.

    ). Fluxes of chemical substances to the Indian Ocean from these rivers are computed to a first approximation. The major ion contents are inversely proportional to the river runoff especially for the rivers entering the Arabian Sea. On an average Indian...

  18. How Do Atmospheric Rivers Form?

    Science.gov (United States)

    Dacre, H.; Martinez-Alvarado, O.; Clark, P. A.; Stringer, M. A.; Lavers, D.

    2017-12-01

    The term "atmospheric river" is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high-impact flooding events. However, there remains some debate as to how these filaments form. In this study, the authors analyze the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front that sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the center of a cyclone (as suggested by the term "atmospheric river"), these filaments are, in fact, the result of water vapor exported from the cyclone, and thus they represent the footprints left behind as cyclones travel poleward from the subtropics.

  19. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  20. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    Science.gov (United States)

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  1. Coastal river plumes: Collisions and coalescence

    Science.gov (United States)

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas  100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and fate of river waters in these settings will be strongly influenced by these interactions. We conclude that new investigations are needed to characterize how plumes interact offshore of river mouths to

  2. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  3. Savannah River Site dose control

    International Nuclear Information System (INIS)

    Smith, L.S.

    1992-01-01

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits

  4. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  5. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland

    Directory of Open Access Journals (Sweden)

    Przybyłek Jan

    2017-12-01

    Full Text Available River bank filtration (RBF is a system that enriches groundwater resources by induced infiltration of river water to an aquifer. Problematic during operation of RBF systems is the deterioration of infiltration effectiveness caused by river bed clogging. This situation was observed in the Krajkowo well field which supplies fresh water to the city of Poznań (Poland during and after the long hydrological drought between the years 1989 and 1992. The present note discusses results of specific hydrogeological research which included drilling of a net of boreholes to a depth of 10 m below river bottom (for sediment sampling as well as for hydrogeological measurements, analyses of grain size distribution and relative density studies. The results obtained have allowed the recognition of the origin of the clogging processes, as well as the documentation of the clogged parts of the river bottom designated for unclogging activities.

  6. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study...... is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements...

  7. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Science.gov (United States)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  8. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    Directory of Open Access Journals (Sweden)

    Ellen Wohl

    2005-12-01

    Full Text Available A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restoration as well as the decision about what type of restoration should be attempted. Determining the degree to which a river has been altered from its reference condition requires a knowledge of historical land use and the associated effects on rivers. Rivers of the Front Range of the Colorado Rocky Mountains in the United States are used to illustrate how historical land uses such as beaver trapping, placer mining, tie drives, flow regulation, and the construction of transportation corridors continue to affect contemporary river characteristics. Ignorance of regional land use and river history can lead to restoration that sets unrealistic goals because it is based on incorrect assumptions about a river's reference condition or about the influence of persistent land-use effects.

  9. Savannah River Site Environmental Report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  10. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  11. 33 CFR 117.457 - Houston River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Houston River. 117.457 Section 117.457 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.457 Houston River. The draw of the...

  12. Sea Otter, River Otter. The Wonder Series.

    Science.gov (United States)

    Robinson, Sandra Chisholm

    This curriculum guide is all about otters and provides information on both sea and river otters. Included are activities related to the diet of sea otters, the adaptations sea otters have made to live in the sea, their tool-using abilities, where they live and how to spot them, comparative anatomy of sea and river otters, and otter movement. The…

  13. Climate influences on Vaal River flow

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... enriched NW-cloud bands over the Vaal River catchment, during the flood case study of January 2010. Comparison of. (Pacific) Southern Oscillation and east Atlantic influence on Vaal River discharge reveals the former drives evaporative losses while the latter provides an advance warning of flow ...

  14. Excessive nitrogen and phosphorus in European rivers

    NARCIS (Netherlands)

    Blaas, Harry; Kroeze, Carolien

    2016-01-01

    Rivers export nutrients to coastal waters. Excess nutrient export may result in harmful algal blooms and hypoxia, affecting biodiversity, fisheries, and recreation. The purpose of this study is to quantify for European rivers (1) the extent to which N and P loads exceed levels that minimize the

  15. 129I in the Ob river

    International Nuclear Information System (INIS)

    Moran, S.B.; Cochran, J.K.; Fisher, N.S.; Kilius, L.R.

    1995-01-01

    The aim of this study was: 1) to determine 129 I concentrations in the Ob river, and 2) to determine 129 I concentrations in surficial sediments in the river. Some results from the study are summarized in the present paper. 5 refs., 3 figs

  16. Analysis of Cruise Tourism on Croatian Rivers

    Directory of Open Access Journals (Sweden)

    Astrid Zekić

    2017-03-01

    Full Text Available Cruise trips have been rising in popularity since the 1970sand are currently a trend in the tourism market. This is particularly true of river cruises, which record a constant growth in the number of ship calls. The general upward trend in the number of river cruise passengers and dockings is also present in Croatia. Prerequisites for the development of cruising on Croatian rivers include, in addition to other geographical features, also the length of navigable water ways, but a systematic approach to this issue is needed for further development. The authors investigate the level of development of infrastructure on Croatian rivers and analyse the passenger and ship traffic on them. Special attention is given to the importance of cruises for tourism on European rivers and worldwide. In accordance with the Croatian Tourism Development Strategy until 2020, the authors explore geographical and other conditions necessary for the development of river cruise tourism. The aim of the paper is to point to the importance of building infrastructure for accommodation of vessels sailing on Croatian rivers, and in particular to the need to improve tourism offer in river destinations.

  17. 33 CFR 334.230 - Potomac River.

    Science.gov (United States)

    2010-07-01

    ... infrequent intervals. (ii) Middle zone. Beginning at the intersection of the Potomac River Bridge with the... using dredged channels and propelled by mechanical power at a speed greater than five miles per hour may... Potomac River during firing hours shall proceed outside of the northeastern boundary of the Middle Danger...

  18. 33 CFR 117.417 - Ohio River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ohio River. 117.417 Section 117.417 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Kentucky § 117.417 Ohio River. The draw of the Southern Railway...

  19. 33 CFR 117.241 - Mispillion River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mispillion River. 117.241 Section 117.241 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.241 Mispillion River. The draw of the...

  20. 33 CFR 117.381 - Clearwater River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Clearwater River. 117.381 Section 117.381 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho § 117.381 Clearwater River. The draws of the...

  1. 33 CFR 117.113 - Tensaw River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tensaw River. 117.113 Section 117.113 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.113 Tensaw River. The draw of the CSX...

  2. 33 CFR 117.127 - Current River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Current River. 117.127 Section 117.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.127 Current River. The draws of the...

  3. 33 CFR 117.367 - Ogeechee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ogeechee River. 117.367 Section 117.367 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.367 Ogeechee River. (a) The draw of the...

  4. 33 CFR 117.305 - Miami River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Miami River. 117.305 Section 117.305 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.305 Miami River. (a) General. Public vessels of...

  5. 33 CFR 117.141 - American River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false American River. 117.141 Section 117.141 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.141 American River. The draw of the...

  6. 33 CFR 117.473 - Little River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Little River. 117.473 Section 117.473 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.473 Little River. The draw of the Louisiana and...

  7. 33 CFR 117.493 - Sabine River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sabine River. 117.493 Section 117.493 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.493 Sabine River. (a) The draw of the Union...

  8. 33 CFR 117.121 - Arkansas River

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Arkansas River 117.121 Section 117.121 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.121 Arkansas River The draw of the...

  9. 33 CFR 117.215 - Niantic River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Niantic River. 117.215 Section 117.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.215 Niantic River. (a) The draw of...

  10. 33 CFR 117.423 - Atchafalaya River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atchafalaya River. 117.423 Section 117.423 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.423 Atchafalaya River. The draw of the...

  11. 33 CFR 117.365 - Oconee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oconee River. 117.365 Section 117.365 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.365 Oconee River. The draw of the SR46 bridge...

  12. 33 CFR 117.523 - Back River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Back River. 117.523 Section 117.523 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.523 Back River. The draw of the Maine Department of...

  13. 33 CFR 117.109 - Coosa River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Coosa River. 117.109 Section 117.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.109 Coosa River. The draw of the CSX...

  14. 33 CFR 117.422 - Amite River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amite River. 117.422 Section 117.422 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.422 Amite River. (a) The draw of the S22 bridge...

  15. 33 CFR 117.224 - Thames River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Thames River. 117.224 Section 117.224 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.224 Thames River. The draw of the Amtrak...

  16. 33 CFR 117.245 - Smyrna River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smyrna River. 117.245 Section 117.245 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.245 Smyrna River. The draw of the Delaware...

  17. 33 CFR 117.131 - Little River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Little River. 117.131 Section 117.131 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.131 Little River. The draws of the Burlington...

  18. 33 CFR 117.553 - Choptank River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Choptank River. 117.553 Section 117.553 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.553 Choptank River. (a) The draw of the...

  19. 33 CFR 117.529 - Narraguagus River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Narraguagus River. 117.529 Section 117.529 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.529 Narraguagus River. The draw of the...

  20. 33 CFR 117.565 - Miles River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Miles River. 117.565 Section 117.565 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.565 Miles River. The draw of the Route S370...

  1. 33 CFR 117.295 - Kissimmee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kissimmee River. 117.295 Section 117.295 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.295 Kissimmee River. The draw of the DSX...

  2. 33 CFR 117.207 - Housatonic River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Housatonic River. 117.207 Section 117.207 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.207 Housatonic River. (a) The draw...

  3. 33 CFR 117.139 - White River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false White River. 117.139 Section 117.139 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.139 White River. (a) The draws of the St. Louis...

  4. 33 CFR 117.125 - Black River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Black River. 117.125 Section 117.125 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.125 Black River. The following draws need not be...

  5. 33 CFR 117.575 - Susquehanna River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Susquehanna River. 117.575 Section 117.575 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.575 Susquehanna River. The draw of the...

  6. 33 CFR 117.427 - Black River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Black River. 117.427 Section 117.427 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.427 Black River. The draw of the US84 bridge...

  7. 33 CFR 117.480 - Mermentau River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mermentau River. 117.480 Section 117.480 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.480 Mermentau River. The draw of the...

  8. 33 CFR 117.569 - Pocomoke River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pocomoke River. 117.569 Section 117.569 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.569 Pocomoke River. (a) The Conrail...

  9. 33 CFR 117.551 - Chester River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chester River. 117.551 Section 117.551 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.551 Chester River. The draw of the S213...

  10. 33 CFR 117.319 - Oklawaha River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oklawaha River. 117.319 Section 117.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.319 Oklawaha River. (a) The draw of the...

  11. 33 CFR 117.107 - Chattahoochee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chattahoochee River. 117.107 Section 117.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.107 Chattahoochee River. The draws of...

  12. 33 CFR 117.585 - Acushnet River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Acushnet River. 117.585 Section 117.585 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.585 Acushnet River. (a) The...

  13. 33 CFR 117.221 - Saugatuck River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Saugatuck River. 117.221 Section 117.221 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.221 Saugatuck River. (a) Public...

  14. 33 CFR 117.500 - Tchefuncta River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tchefuncta River. 117.500 Section 117.500 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.500 Tchefuncta River. The draw of the...

  15. 33 CFR 117.525 - Kennebec River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kennebec River. 117.525 Section 117.525 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.525 Kennebec River. (a) The draw of the...

  16. 33 CFR 117.101 - Alabama River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Alabama River. 117.101 Section 117.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.101 Alabama River. (a) The Alabama...

  17. 33 CFR 117.271 - Blackwater River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Blackwater River. 117.271 Section 117.271 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.271 Blackwater River. The draw of the...

  18. 33 CFR 117.219 - Pequonnock River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pequonnock River. 117.219 Section 117.219 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.219 Pequonnock River. (a) Public...

  19. 33 CFR 117.361 - Flint River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Flint River. 117.361 Section 117.361 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.361 Flint River. The draws of the CSX...

  20. 33 CFR 117.389 - Calumet River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Calumet River. 117.389 Section 117.389 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Illinois § 117.389 Calumet River. The draws of the...

  1. 33 CFR 117.503 - Tensas River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tensas River. 117.503 Section 117.503 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.503 Tensas River. The draws of the S15 bridge...

  2. 33 CFR 117.483 - Ouachita River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ouachita River. 117.483 Section 117.483 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.483 Ouachita River. The draw of the S8...

  3. 33 CFR 117.133 - Ouachita River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ouachita River. 117.133 Section 117.133 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.133 Ouachita River. The draw of the St...

  4. 33 CFR 117.567 - Patuxent River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Patuxent River. 117.567 Section 117.567 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.567 Patuxent River. The draw of S231...

  5. 33 CFR 117.587 - Apponagansett River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Apponagansett River. 117.587 Section 117.587 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.587 Apponagansett River. (a) The...

  6. 33 CFR 117.187 - Petaluma River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Petaluma River. 117.187 Section 117.187 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.187 Petaluma River. (a) The draws of...

  7. 33 CFR 117.205 - Connecticut River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Connecticut River. 117.205 Section 117.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.205 Connecticut River. (a) The...

  8. 33 CFR 117.588 - Bass River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bass River. 117.588 Section 117.588 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.588 Bass River. The Hall Whitaker Bridge...

  9. 33 CFR 117.533 - Sheepscot River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sheepscot River. 117.533 Section 117.533 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.533 Sheepscot River. The draw of the Maine...

  10. 33 CFR 117.211 - Mystic River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mystic River. 117.211 Section 117.211 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.211 Mystic River. (a) The draw of the Amtrak...

  11. 33 CFR 117.243 - Nanticoke River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nanticoke River. 117.243 Section 117.243 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.243 Nanticoke River. (a) The draw of...

  12. 33 CFR 117.255 - Potomac River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Potomac River. 117.255 Section 117.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements District of Columbia § 117.255 Potomac River. (a) The...

  13. 33 CFR 117.253 - Anacostia River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Anacostia River. 117.253 Section 117.253 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements District of Columbia § 117.253 Anacostia River. (a...

  14. 33 CFR 117.363 - Ocmulgee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ocmulgee River. 117.363 Section 117.363 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.363 Ocmulgee River. The draws of each...

  15. 33 CFR 117.369 - Satilla River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Satilla River. 117.369 Section 117.369 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.369 Satilla River. The draw of the...

  16. 33 CFR 117.415 - Green River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Green River. 117.415 Section 117.415 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Kentucky § 117.415 Green River. (a) The draw of the CSX...

  17. 33 CFR 80.715 - Savannah River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from the...

  18. 33 CFR 117.135 - Red River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges above...

  19. 33 CFR 117.209 - Mianus River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mianus River. 117.209 Section 117.209 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.209 Mianus River. The draw of the Metro-North...

  20. 33 CFR 117.509 - Vermilion River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Vermilion River. 117.509 Section 117.509 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.509 Vermilion River. (a) The draw of...

  1. 33 CFR 117.351 - Altamaha River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Altamaha River. 117.351 Section 117.351 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.351 Altamaha River. (a) The draws of all...

  2. 33 CFR 117.371 - Savannah River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 117.371 Section 117.371 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of the...

  3. 33 CFR 117.313 - New River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New River. 117.313 Section 117.313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.313 New River. (a) The draw of the SE. Third...

  4. 33 CFR 117.486 - Pearl River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pearl River. 117.486 Section 117.486 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.486 Pearl River. (a) The draw of the CSX...

  5. 33 CFR 117.491 - Red River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union Pacific...

  6. 76 FR 12094 - Whitman River Dam, Inc.

    Science.gov (United States)

    2011-03-04

    ... Dam, Inc. Notice of Application Tendered for Filing With the Commission and Soliciting Additional.... Project No.: 13237-002. c. Date Filed: February 14, 2011. d. Applicant: Whitman River Dam, Inc. e. Name of Project: Crocker Dam Hydro Project. f. Location: On the Whitman River, in the Town of Westminster...

  7. 33 CFR 117.385 - Snake River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge...

  8. 33 CFR 117.697 - Hampton River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hampton River. 117.697 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.697 Hampton River. The SR1A bridge, mile 0.0 at Hampton, operates as follows: (a) The draw shall open on signal from April 1 through...

  9. 33 CFR 117.263 - Banana River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers (SR...

  10. Restoring Oaks in the Missouri River Floodplain

    Science.gov (United States)

    Dan Dey; John Kabrick; Jennifer Grabner; Mike Gold

    2001-01-01

    Restoration of native vegetation and hydrologic regimes in the Mississippi and Missouri River floodplains is problematic because they are among the most altered ecosystems in North America (Noss et al. 1995), and because of the competing demands placed on these river ecosystems by commercial, private and social interests. Since the 1780s, more than half (53 percent) of...

  11. Determination of characteristics maximal runoff Mountain Rivers

    African Journals Online (AJOL)

    Ovcharuk V and Todorova O

    Odessa State Environmental University, Ukraine. Received: 03 December 2015 / Accepted: 23 April 2016 / Published online: 01 May 2016. ABSTRACT. This article has been examined maximum runoff of the rivers of the Crimean Mountains. The rivers flow through the western and eastern part of the northern slope Crimean ...

  12. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  13. Water quality of the river Damanganga (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Narvekar, P.V.; Sarma, R.V.; Desai, B.N.

    Water quality (pH, suspended solids, chlorides, DO, BOD, reactive and total phosphorus, nitrates and boron) of River Damanganga which receives 0.2 mld of industrial waste into its fresh water zone through Pimparia River and 3.7 mld in its tidal zone...

  14. Vocal behaviour of Orange River Francolin Scleroptila ...

    African Journals Online (AJOL)

    Fieldwork to study the vocal behaviour of Orange River Francolin Scleroptilia levaillantoides was conducted on a farm in the Heidelberg district, Gauteng province, South Africa, during August 2009 to March 2011. Orange River Francolins possess a basic repertoire of seven calls and one mechanical sound. From 83 ...

  15. Savannah River Site Environmental Report for 1998

    International Nuclear Information System (INIS)

    Arnett, M.

    1999-01-01

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program

  16. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  17. Modern and ancient periglacial river types

    NARCIS (Netherlands)

    Vandenberghe, J.; Woo, M.K.

    2002-01-01

    Climate has been proposed conventionally as the primary factor that determines periglacial river activity (aggradation) and pattern (braided). This concept does not explain the rich diversity in river patterns and morphological processes in both the present and past periglacial environments: besides

  18. Environmental protection in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Riley, G.

    1989-01-01

    One of a series of articles on the work of the Office of the Supervising Scientist for the Alligator Rivers Region (OSS) and its Alligator Rivers Region Research Institute (ARRRI), this discusses the environmental protection function of the OSS and the role of the ARRRI in achieving this

  19. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  20. Thinking big: linking rivers to landscapes

    Science.gov (United States)

    Joan O’Callaghan; Ashley E. Steel; Kelly M. Burnett

    2012-01-01

    Exploring relationships between landscape characteristics and rivers is an emerging field, enabled by the proliferation of satellite date, advances in statistical analysis, and increased emphasis on large-scale monitoring. Landscapes features such as road networks, underlying geology, and human developments, determine the characteristics of the rivers flowing through...

  1. Tanzania River Scoring System (TARISS): a macroinvertebrate ...

    African Journals Online (AJOL)

    The biological assessment of rivers using aquatic macroinvertebrates is an internationally recognised approach for the determination of riverine ecological conditions. In this study a Tanzanian macroinvertebrate-based biotic method, Tanzania River Scoring System (TARISS), was developed in 2012, based on the South ...

  2. 33 CFR 117.1095 - Root River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main Street...

  3. River System Behaviour Effects on Flood Risk

    NARCIS (Netherlands)

    Schweckendiek, T.; Vrouwenvelder, A.C.W.M.; Van Mierlo, M.C.L.M.; Calle, E.O.F.; Courage, W.M.G.

    2008-01-01

    A risk-based safety approach is indispensable to support decision-making on flood protection strategies and measures. Hitherto the effects of river system behaviour on flood risk have usually been neglected. River system behaviour refers to the fact that the flood risk (or safety) of a particular

  4. River system behaviour effects on flood risk

    NARCIS (Netherlands)

    Schweckendiek, T.; Vrouwenvelder, A.C.W.M.; Mierlo, M.C.L.M. van; Calle, E.O.F.; Courage, W.M.G.

    2009-01-01

    A risk-based safety approach is indispensable to support decision-making on flood protection strategies and measures. Hitherto the effects of river system behaviour on flood risk have usually been neglected. River system behaviour refers to the fact that the flood risk (or safety) of a particular

  5. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  6. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    Science.gov (United States)

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  7. Radioactivity in Orontes river environment

    International Nuclear Information System (INIS)

    Othman, I.; Al-Masri, M. S.; Al-Oudat, M.; Abba, A.; Al-Hishari, M.; Berakdar, I.

    1998-09-01

    Syrian phosphate industry is considered to be one of the main sources of pollutants at the most important water resources of the middle region viz. Orontes river and Quttina lake. The main environmental concern associated with this industry in connection to radioactive contamination is the presence of naturally occurring radionuclides such as 238 U, 226 Ra and their daughters. The impact of this industry on Orontes environment has been investigated. Water, particulates, sediments and plants from seven locations along the Orontes River have been collected and analyzed for radioactivity. The results have shown a clear signal enhancement of natural radionuclides such as 226 Ra, 238 U and 210 Po in those samples collected from sites close to the factory. This enhancement was found to be due to phosphate factory discharges viz. Dust, liquid influents and phosphogypsum piles situated in the area. In addition, an increase in the concentrations of these radionuclides was also observed in other samples where the applications of phosphate fertilizers which contain relatively higher levels of 226 Ra (225 Bq/kg), 238 U (444 Bq/kg) and 210 (220 Bq/kg) being the main source of enhancement. However, the obtained levels of radioactivity are still lower than those reported in other areas in the world where similar source of contamination is presented. (author)

  8. The social connectivity of urban rivers

    Science.gov (United States)

    Kondolf, G. Mathias; Pinto, Pedro J.

    2017-01-01

    By social connectivity we refer to the communication and movement of people, goods, ideas, and culture along and across rivers, recognizing longitudinal, lateral, and vertical connectivity, much as has been described for other rivers for hydrology and ecology. We focus on rivers as they pass through cities, and the relationships between these rivers and city dwellers. Historically, the most important longitudinal connectivity function of rivers was their role as major transport routes and the simplification of formerly complex, irregular banks and beds, into straight, uniform shipping channels has resulted in a loss of lateral and vertical connectivity, notably the quotidian uses such as fishing, washing clothes, water supply, swimming and other recreation. The scale of the river itself, and its scale in comparison to the scale of the city, largely determine the river's social function and the degree to which it influences city form. River width affects the perception of 'closeness' of the other bank, ease of bridging the river, influence of the river on the city's street pattern, and type of waterfront uses that occur. Up to 15 m wide, people can converse, whereas across rivers 50 to 200 m wide, people are not recognizable but still clearly visible, instilling the banks with a 'lively' atmosphere. At widths over 200 m, people blur, yet moving vehicles and trees branches shaking in wind may still provide some dynamic elements to an otherwise static landscape composed of building facades. In exceptionally wide rivers, the city on the opposite bank is little more than a skyline, which often becomes a signature and symbol of regional identity. In contemplating how people use rivers, we can define a range of human activities in relation to height above the water (i.e., instream to banktop), a vertical dimension of human connectivity with rivers. Many uses occur on the top of the bank, such as quiet contemplation, walking, or cycling along a riverside trail, while

  9. Ambient noise in large rivers (L).

    Science.gov (United States)

    Vračar, Miodrag S; Mijić, Miomir

    2011-10-01

    This paper presents the results of hydroacoustic noise research in three large European rivers: the Danube, the Sava, and the Tisa. Noise in these rivers was observed during a period of ten years, which includes all annual variation in hydrological and meteorological conditions (flow rate, speed of flow, wind speed, etc.). Noise spectra are characterized by wide maximums at frequencies between 20 and 30 Hz, and relatively constant slope toward higher frequencies. Spectral level of noise changes in time in relatively wide limits. At low frequencies, below 100 Hz, the dynamics of noise level is correlated with the dynamics of water flow and speed. At higher frequencies, noise spectra are mostly influenced by human activities on river and on riverbanks. The influence of wind on noise in rivers is complex due to the annual variation of river surface. The influence of wind is less pronounced than in oceans, seas, and lakes. © 2011 Acoustical Society of America

  10. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  11. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    Hydrological models are widely used by water managers as a decision support tool for both real-time and long-term applications. Some examples of real-time management issues are the optimal management of reservoir releases, flood forecasting or water allocation in drought conditions. Long term....... Many types of RS are now routinely used to set up and drive river basin models. One of the key hydrological state variables is river discharge. It is typically the output of interest for water allocation applications and is also widely used as a source of calibration data as it presents the integrated...... response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...

  12. Preface to the volume Large Rivers

    Science.gov (United States)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  13. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  15. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Lijun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yang Jifeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Wang Li; Yang Bin; Liu Shan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  16. Plankton diversity as bioindicator of Surakarta rivers quality

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2002-07-01

    Full Text Available Rivers have essential role in human cultures. They are sanctuary for amount of biodiversity, but threatened seriously now. The objective of this research is to know Surakarta (Solo rivers quality based on plankton diversity. This town has amount of kampongs and industrial estates that discard wastes to rivers directly. Plankton community is one of the river qualities indicators, because pollutant and other organisms can influence their population. The research was conducted at four rivers in Surakarta, namely Pepe River, Premulung River, Anyar River and Jenes River. Data was collected in triple before and after rivers through the town. Data was analyzed by diversity index of Shannon Wienner. The result indicated that Surakarta rivers had been polluted in degree of lightly to seriously.

  17. [Diatoms Distribution in Ningbo Three-river Watershed during Summer].

    Science.gov (United States)

    Cai, H G; Ying, J; Ni, Z H; Lan, P; Zhang, Y Y; Yu, R J; Pang, H B; Ye, C L; Wei, D M

    2016-12-01

    To explore the species, quantity and distribution of diatoms in Ningbo three-river watershed during summer and to provide scientific basis for forensic examination of drowning cases in the waters of Ningbo. Water samples were collected in July and August of 2015. Fourteen water sampling points were selected from the Yao River, the Fenghua River and the Yong River. The morphological features of diatom species and dominant diatoms were distinguished by microscope. A total of 16 species of diatoms were detected in the Yao River, the Fenghua River and the Yong River. Melosira was the dominant species in the Yao River, and the quantity and richness were higher than in other rivers. The richness of Cyclotella in the Yong River was higher than in other rivers. The richness of Pinnularia and Licmophora were higher in the Fenghua River than in the Yao River and the Yong River. The species and proportion of diatom is different in each river. Database of the species and relative composition for the diatoms in corresponding river is established, which may provide data support for forensic examination of drowning cases in Ningbo three-river watershed. Copyright© by the Editorial Department of Journal of Forensic Medicine

  18. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  19. Isotopic Characterization of River Waters and Water Source Identification in an Inland River, Central Asia

    Directory of Open Access Journals (Sweden)

    Yuting Fan

    2016-07-01

    Full Text Available Understanding runoff generation and dynamics is the basis for water resource management, while water isotopic ratios are a potential tool for studying the mechanism on a large scale. In this paper, spatial variations of δ18O and δD of river water and their sources within a large region of the Tarim River were investigated. The results showed obvious spatial variations of both water isotope values along the river flow direction, and significant seasonal variation occurred within the river water isotopes. This indicated that different proportions of rain and melt water entering river water should lead to spatial variation, and for mid-stream and downstream regions, the transformation relationship between surface water and groundwater should consider less input of melt water. Furthermore, we quantitatively determine the ratio of different water sources using the stable isotope mass balance method and other stable tracer elements. Results showed the contribution of ice-snowmelt water varied from 14.97% to 40.85%, that of rain varied from 9.04% to 54.80%, and that of groundwater varied from 15.34% to 58.85%, and they also showed that baseflow is a factor connecting melt water and groundwater, which meant the Hotan River and the Yarkand River are melt water–dependent rivers, and seasonal precipitation is the main water supply source of baseflow in the Aksu River and the Kaidu River.

  20. Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river.

    Science.gov (United States)

    Tank, Jennifer L; Rosi-Marshall, Emma J; Baker, Michelle A; Hall, Robert O

    2008-10-01

    Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a mass balance approach. To begin to fill this knowledge gap, we present data using a pulse method to measure inorganic nitrogen. (N) transport and removal in the Upper Snake River, Wyoming, USA (seventh order, discharge 12000 L/s). We found that the Upper Snake had surprisingly high biotic demand relative to smaller streams in the same river network for both ammonium (NH4+) and nitrate (NO3-). Placed in the context of a meta-analysis of previously published nutrient uptake studies, these data suggest that large rivers may have similar biotic demand for N as smaller tributaries. We also found that demand for different forms of inorganic N (NH4+ vs. NO3-) scaled differently with stream size. Data from rivers like the Upper Snake and larger are essential for effective water quality management at the scale of river networks. Empirical measurements of solute dynamics in large rivers are needed to understand the role of whole river networks (as opposed to stream reaches) in patterns of nutrient export at regional and continental scales.

  1. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  2. Operational river ice forecasting on the Peace River : managing flood risk and hydropower production

    Energy Technology Data Exchange (ETDEWEB)

    Jasek, M. [BC Hydro, Burnaby, BC (Canada); Friensenhan, E. [Alberta Environment, Edmonton, AB (Canada); Granson, W. [Alberta Environment, Peace River, AB (Canada)

    2007-07-01

    This paper described the procedures used jointly by Alberta Environment and BC Hydro to manage the water flows on the Peace River. The Alberta-British Columbia Joint Task Force on Peace River Ice (JTF) was concerned with the coordination of break-up ice observations along the river as well as ice jam flooding at the Town of Peace River (TPR), resulting from an induced dynamic break-up on the Smoky River, a main tributary of the Peace River. The TPR is the largest community that can be most affected by ice jams on river. As such, river ice processes on the river are monitored and subject to operational procedures of the JTF. These operating procedures are organized into 3 separate sequential phases, notably freeze-up procedures, mid-winter procedures, and break-up procedures. In April 2007, the ice break-up season on the Peace River and Smoky River, was particularly challenging as record high snow cover led to a dynamic break-up of these two streams. Costs due to reduced hydropower production were documented. This paper highlighted the main decision points for mitigation and presented the recommendations that improve mitigation efforts with benefits to both the flood prone community and the power utility. This paper revealed that forecasting the start of control flow by predicting the arrival of the ice front using the Comprehensive River Ice Simulation System Project (CRISSP) model was largely successful. Further work is underway to define the accuracy of forecasting the start of control flow using CRISSP, as accuracy of temperature forecasts appears to be the major uncertainty. The JTF was able to make successful recommendations for flow reductions. However, the need for an accurate hydrologic model for the Smoky River as well as other inflows between Peace Canyon and the TPR was emphasized. 4 refs., 31 figs.

  3. Quantifying River-Groundwater Interactions of New Zealand's Gravel-Bed Rivers: The Wairau Plain.

    Science.gov (United States)

    Wöhling, Thomas; Gosses, Moritz J; Wilson, Scott R; Davidson, Peter

    2017-12-21

    New Zealand's gravel-bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river-groundwater exchange processes in gravel-bed rivers, we investigate the Wairau Plain Aquifer using a three-dimensional groundwater flow model which was calibrated using targeted field observations, "soft" information from experts of the local water authority, parameter regularization techniques, and the model-independent parameter estimation software PEST. The uncertainty of simulated river-aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null-space Monte-Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m 3 /s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m 3 /s, the net exchange flow rarely exceeds 12 m 3 /s and seems to be limited by the physical constraints of unit-gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low-flow periods in the river. We hypothesize that the new insights into the river-groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics. © 2017, National Ground Water Association.

  4. Clinch River Environmental Restoration Program

    International Nuclear Information System (INIS)

    Cook, R.B.

    1992-01-01

    This report consists of tables and listings from the results of the Phase I data gathering activities of the Clinch River Environmental Restoration Program (CR-ERP). The table of contents outlines the presentation of the material and has been annotated to indicate the key fields used to order the printing of each data table. Definitions of selected column headings are provided. Sample collection information is shown first and then more specific information for each matrix type is presented. The analytical results have been reviewed by independent validators and the qualifiers shown are the results of their efforts. No data that were rejected by the validation process are included in this listing. Only results of routine samples are listed; quality control sample results were excluded. All data, both detected and nondetected values, were used to calculated the summary table values. However, only Detected values are given on the analyte specific listings

  5. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  6. Studies on Lyari river effluents

    International Nuclear Information System (INIS)

    Khan, M.A.; Hashmi, I.; Rashid, A.; Niaz, G.R.; Khan, F.

    1999-01-01

    The study was aimed to determining the physical (TS, TSS, TDS, TVS) and chemical (Cl, SO/sub 4/, NH/sub 3/, BOD/sub 5/ COD, DO) characteristics as well as heavy present in the Lyari river effluents so as to identify the extent of pollution. The average results of each parameter of twelve different sites were compared with that of National Environmental Quality Standards (NEQS), BOD/sub 5/ and COD levels were above the NEQS while the NH/sub 3/-N concentration was low. Concentrations of Cd and Zn were within the range while that of Pb, Cr, Ni and Cu were higher than the NEQS at times. This indicates that heavy pollution load is entering into the Arabian Sea creating tremendous harm especially to marine life. (author)

  7. The Mississippi River: A place for fish

    Science.gov (United States)

    Schramm, Harold; Ickes, Brian; Chen, Yushun; Chapman, Duane C.; Jackson, John; Chen, Daqing; Li, Zhongjie; Kilgore, Jack; Phelps, Quinton; Eggleton, Michael

    2016-01-01

    The Mississippi River flows 3,734 km from its source at Lake Itasca, Minnesota to its outlet at the Gulf of Mexico. Along its course, it collects water from portions of two Canadian provinces and 41 % of the conterminous United States. Although greatly altered for navigation and flood control throughout much of its length, the Mississippi River remains an important fishery resource that provides habitat for 188 species of fishes and recreational and commercial fishing opportunities. The objectives of this chapter are to describe the contemporary fisheries habitat throughout the Mississippi River, identify how management to achieve human benefits influences the fishes and their habitats, and summarize efforts to conserve and enhance fish habitat. The 826-km headwater reach is entirely in Minnesota and remains largely unaltered. The reaches that extend 1,059 km from St. Anthony Falls, Minnesota to above the confluence with the Missouri River near St. Louis, Missouri have been altered by impoundment that has affected floodplain function, increased sedimentation of backwaters, and homogenized the formerly diverse aquatic habitats. After the confluence with the Missouri River, the Mississippi River flows freely for 1,849 km to the Gulf of Mexico. The alterations of the free-flowing reaches of greatest significance to the fisheries resource are reducing the duration and height of the flood pulse as a consequence of shortening the river channel, disconnection of the river from its historic and present floodplain, and loss of secondary channel-island complexes. Engineering features to improve commercial navigation have also added habitat and, when wisely manipulated, can be used to rehabilitate habitat. Some aspects of water quality have improved, but legacy chemicals and nutrient-laden inflows and sediments remain problems. Although true restoration in the sense of restoring all environmental conditions to an unaltered state is unlikely, the future value of the

  8. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantifying flooding regime in floodplain forests to guide river restoration

    Science.gov (United States)

    Christian O. Marks; Keith H. Nislow; Francis J. Magilligan

    2014-01-01

    Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and...

  10. Metal bioaccumulation in the fish of the Olifants River, Limpopo ...

    African Journals Online (AJOL)

    The Olifants River, Limpopo River system, is now one of the most polluted rivers in South Africa. The concentrations of metals in fish muscle tissue from two impoundments on the Olifants River, Flag Boshielo Dam and Phalaborwa Barrage, were measured and a human health risk assessment conducted to investigate ...

  11. Concentrations of Heavy Metals in Some Important Rivers of Owerri ...

    African Journals Online (AJOL)

    0.054 ppm). Arsenic was present in lower concentration in Azaraegbelu, Ogochie and Okatankwu Rivers. Cadmium concentration was 0.511 ppm in Azaraegbelu River, 0.034 ppm in Ogochie River, 0.091 ppm in Okatankwu River and 0.166 ...

  12. Conservation genetics of the vulnerable Treur River barb, Barbus ...

    African Journals Online (AJOL)

    At present there are only two populations of the vulnerable Treur River barb, Barbus treurensis, in existence; a founder population in the upper Blyde River and a translocated population in the Treur River where the species became extinct. The translocated population was derived from individuals from the upper Blyde River ...

  13. Projected future runoff of the Breede River under climate change ...

    African Journals Online (AJOL)

    The Breede River is the largest river in the Western Cape Province of South Africa, and as such, is a key resource for a variety of activities within the region. It is this significance of the river that prompted a study into the impact of climate change on future runoff in the river and hence, the potential impacts a projected change ...

  14. An assessment of water quality of Angaw River in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical and bacteriological water quality of the Angaw river were investigated at three different locations on the river. A range of water quality variables were measured in the river over a period of 12 months. The river was characterized by high ionic content. Relatively higher levels of ionic constituents occurred at ...

  15. Hydraulics and morphology of mountain rivers; literature survey

    NARCIS (Netherlands)

    Sieben, J.

    1993-01-01

    Present knowledge on fluvial processes in mountain rivers should be expanded to enable the development of projects dealing with mountain rivers or mountain-river catchment areas. This study reviews research on hydraulic and morphological features of mountain rivers. A major characteristic of

  16. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  17. 78 FR 3836 - Drawbridge Operation Regulation; Shark River, Avon, NJ

    Science.gov (United States)

    2013-01-17

    ... Operation Regulation; Shark River, Avon, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from... Township, NJ. This deviation is necessary to facilitate machinery replacement on the Shark River railroad... River Railroad Bridge across the Shark River (South Channel), mile 0.9, at Avon, NJ, has requested a...

  18. 77 FR 57022 - Drawbridge Operation Regulation; Shark River, Avon, NJ

    Science.gov (United States)

    2012-09-17

    ... Operation Regulation; Shark River, Avon, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation... across the Shark River (South Channel), at Avon Township, NJ. This deviation is necessary to facilitate... of the Shark River Railroad Bridge across the Shark River (South Channel), mile 0.9, at Avon, NJ, has...

  19. 27 CFR 9.47 - Hudson River Region.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Hudson River Region. 9.47... Hudson River Region. (a) Name. The name of the viticultural area described in this section is “Hudson River Region.” (b) Approved maps. The approved maps for determining the boundaries of Hudson River...

  20. Rapid River Hatchery - Spring Chinook, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife