WorldWideScience

Sample records for all-sky solar irradiance

  1. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.; Portillo, C.

    2015-01-01

    Highlights: • The solar resource has been predicted for three hours at 1-min intervals. • Digital image levels and cloud motion vectors are joint for irradiance forecasting. • The three radiation components have been predicted under different sky conditions. • Diffuse and global radiation has an nRMSE value around 10% in all sky conditions. • Beam irradiance is predicted with an nRMSE value of about 15% in overcast skies. - Abstract: In the search for new techniques to predict atmospheric features that might be useful to solar power plant operators, we have carried out solar irradiance forecasting using emerging sky camera technology. Digital image levels are converted into irradiances and then the maximum cross-correlation method is applied to obtain future predictions. This methodology is a step forward in the study of the solar resource, essential to solar plant operators in adapting a plant’s operating procedures to atmospheric conditions and to improve electricity generation. The results are set out using different statistical parameters, in which beam, diffuse and global irradiances give a constant normalized root-mean-square error value over the time interval for all sky conditions. The average measure is 25.44% for beam irradiance; 11.60% for diffuse irradiance and 11.17% for global irradiance.

  2. Enhanced solar global irradiance during cloudy sky conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schade, N.H.; Sandmann, H.; Stick, C. [Kiel Univ. (Germany). Inst. fuer Medizinische Klimatologie; Macke, A. [Kiel Univ. (DE). Leibniz Inst. fuer Meereswissenschaften (IFM-GEOMAR)

    2007-06-15

    The impact of cloudiness on the shortwave downwelling radiation (SDR) at the surface is investigated by means of collocated pyranometer radiation measurements and all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2004 and 2005. A main improvement to previous studies on this subject resulted from the very high temporal resolution of cloud images and radiation measurements and, therefore, a more robust statistical analysis of the occurrence of this effect. It was possible to observe an excess of solar irradiation compared to clear sky irradiation by more than 500 W/m{sup 2}, the largest observed excess irradiation to our knowledge so far. Camera images reveal that largest excess radiation is reached close to overcast situations with altocumulus clouds partly obscuring the solar disk, and preferably with cumulus clouds in lower levels. The maximum duration of the enhancements depends on its strength and ranges from 20 seconds (enhancements > 400 W/m{sup 2}) up to 140 seconds (enhancements > 200 W/m{sup 2}). (orig.)

  3. Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data

    DEFF Research Database (Denmark)

    Houborg, Rasmus Møller; Søgaard, Henrik; Emmerich, W.

    2007-01-01

    -sky solar irradiance components, which links a physically based clear-sky model with a neural network version of a rigorous radiative transfer model. The scheme exploits the improved cloud characterization and retrieval capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard...... contrasting climates and cloud environments. Information on the atmospheric state was provided by MODIS data products and verifications against AErosol RObotic NETwork (AERONET) data demonstrated usefulness of MODIS aerosol optical depth and total precipitable water vapour retrievals for the delineation...... and become unusable above approximately 60° latitude. However, in principle, the scheme can be applied anywhere on the globe, and a synergistic use of MODIS and geostationary satellite datasets may be envisaged for some applications....

  4. Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model

    Directory of Open Access Journals (Sweden)

    Juan Du

    2018-05-01

    Full Text Available In this paper, we propose a novel forecast method which addresses the difficulty in short-term solar irradiance forecasting that arises due to rapidly evolving environmental factors over short time periods. This involves the forecasting of Global Horizontal Irradiance (GHI that combines prediction sky images with a Radiative Transfer Model (RTM. The prediction images (up to 10 min ahead are produced by a non-local optical flow method, which is used to calculate the cloud motion for each pixel, with consecutive sky images at 1 min intervals. The Direct Normal Irradiance (DNI and the diffuse radiation intensity field under clear sky and overcast conditions obtained from the RTM are then mapped to the sky images. Through combining the cloud locations on the prediction image with the corresponding instance of image-based DNI and diffuse radiation intensity fields, the GHI can be quantitatively forecasted for time horizons of 1–10 min ahead. The solar forecasts are evaluated in terms of root mean square error (RMSE and mean absolute error (MAE in relation to in-situ measurements and compared to the performance of the persistence model. The results of our experiment show that GHI forecasts using the proposed method perform better than the persistence model.

  5. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    Science.gov (United States)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  6. Clear sky solar insolation data for Islamabad

    International Nuclear Information System (INIS)

    Akhter, P.; Baig, A.; Mufti, A.

    1990-09-01

    Monthly average values of both integrated and instantaneous clear sky solar radiation components for Islamabad territory have been presented and discussed. The components include total, direct normal, direct horizontal, global and diffuse radiations, sun hours, number of clear days and temperature for solar energy applications. Beam irradiance values are used to get clear sky (maximum) sun hours by ab-initio. The need for replacing the conventional sunshine recorder is discussed. (author). 8 refs, 1 fig, 2 tabs

  7. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  8. Application of simple all-sky imagers for the estimation of aerosol optical depth

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Nikitidou, Efterpi; Salamalikis, Vasileios; Wilbert, Stefan; Prahl, Christoph

    2017-06-01

    Aerosol optical depth is a key atmospheric constituent for direct normal irradiance calculations at concentrating solar power plants. However, aerosol optical depth is typically not measured at the solar plants for financial reasons. With the recent introduction of all-sky imagers for the nowcasting of direct normal irradiance at the plants a new instrument is available which can be used for the determination of aerosol optical depth at different wavelengths. In this study, we are based on Red, Green and Blue intensities/radiances and calculations of the saturated area around the Sun, both derived from all-sky images taken with a low-cost surveillance camera at the Plataforma Solar de Almeria, Spain. The aerosol optical depth at 440, 500 and 675nm is calculated. The results are compared with collocated aerosol optical measurements and the mean/median difference and standard deviation are less than 0.01 and 0.03 respectively at all wavelengths.

  9. Field measurement of clear-sky solar irradiance in Badain Jaran Desert of Northwestern China

    International Nuclear Information System (INIS)

    Bi, Jianrong; Huang, Jianping; Fu, Qiang; Ge, Jinming; Shi, Jinsen; Zhou, Tian; Zhang, Wu

    2013-01-01

    The Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) sponsored and conducted an intensive field campaign on dust aerosols in Badain Jaran Desert of Northwestern China from April 20 to June 20, 2010. A set of state-of-the-art broadband radiometers and sun/sky photometers were deployed along with launched radiosonde. In this paper, we compared the simulated solar irradiances by using the SBDART radiative transfer model with those from the ground-based measurements for 69 selected cases of 7 days. It was shown that the averaged aerosol optical depth at 500 nm (AOD 500 ) is 0.18±0.09 with AOD 500 less than 0.5 for all cases. The single-scattering albedo and asymmetry factor at 675 nm are 0.928±0.035, 0.712±0.023, respectively. The AODs retrieved from the CIMEL sun photometer at various wavelengths agree well with those from the PREDE sky radiometer, and the columnar water vapor contents from CIMEL also agree well with radiosonde observations. In the radiative closure experiment, we used a collocated thermopile pyrgeometer with a shadow and ventilator to correct the thermal dome offset of diffuse irradiance measurement. The mean differences between model and measurements are −9.1 Wm −2 (−2.6%) for the direct irradiance, +3.1 Wm −2 (+2.8%) for diffuse irradiance, and −6.0 Wm −2 (−1.3%) for global irradiance, which indicates an excellent radiative closure. Aerosol shortwave direct radiative forcing (ARF) and radiative heating rate are also investigated. The daily mean ARF ranges from −4.8 to +0.4 Wm −2 at the top of the atmosphere, −5.2 to −15.6 Wm −2 at the surface, and 5.2 to 10.8 Wm −2 in the atmosphere. The corresponding radiative heating rates for the whole atmosphere due to dust aerosols are 0.07, 0.11, 0.14, 0.11, 0.10, 0.08, and 0.07 K/day for the 7 selected cloudless days. These solar radiative forcing can be considered as the representative impact of background dust aerosol in Northwestern China

  10. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev

    2016-03-01

    Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  11. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Directory of Open Access Journals (Sweden)

    T. Schmidt

    2016-03-01

    Full Text Available Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1–2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  12. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  13. A new simple parameterization of daily clear-sky global solar radiation including horizon effects

    International Nuclear Information System (INIS)

    Lopez, Gabriel; Javier Batlles, F.; Tovar-Pescador, Joaquin

    2007-01-01

    Estimation of clear-sky global solar radiation is usually an important previous stage for calculating global solar radiation under all sky conditions. This is, for instance, a common procedure to derive incoming solar radiation from remote sensing or by using digital elevation models. In this work, we present a new model to calculate daily values of clear-sky global solar irradiation. The main goal is the simple parameterization in terms of atmospheric temperature and relative humidity, Angstroem's turbidity coefficient, ground albedo and site elevation, including a factor to take into account horizon obstructions. This allows us to obtain estimates even though a free horizon is not present as is the case of mountainous locations. Comparisons of calculated daily values with measured data show that this model is able to provide a good level of accurate estimates using either daily or mean monthly values of the input parameters. This new model has also been shown to improve daily estimates against those obtained using the clear-sky model from the European Solar Radiation Atlas and other accurate parameterized daily irradiation models. The introduction of Angstroem's turbidity coefficient and ground albedo should allow us to use the increasing worldwide aerosol information available and to consider those sites affected by snow covers in an easy and fast way. In addition, the proposed model is intended to be a useful tool to select clear-sky conditions

  14. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  15. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  16. Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Sricharoen, K.; Pattarapanitchai, S.

    2011-01-01

    Highlights: → New semi-empirical models for predicting clear sky irradiance were developed. → The proposed models compare favorably with other empirical models. → Performance of proposed models is comparable with that of widely used physical models. → The proposed models have advantage over the physical models in terms of simplicity. -- Abstract: This paper presents semi-empirical models for estimating global and direct normal solar irradiances under clear sky conditions in the tropics. The models are based on a one-year period of clear sky global and direct normal irradiances data collected at three solar radiation monitoring stations in Thailand: Chiang Mai (18.78 o N, 98.98 o E) located in the North of the country, Nakhon Pathom (13.82 o N, 100.04 o E) in the Centre and Songkhla (7.20 o N, 100.60 o E) in the South. The models describe global and direct normal irradiances as functions of the Angstrom turbidity coefficient, the Angstrom wavelength exponent, precipitable water and total column ozone. The data of Angstrom turbidity coefficient, wavelength exponent and precipitable water were obtained from AERONET sunphotometers, and column ozone was retrieved from the OMI/AURA satellite. Model validation was accomplished using data from these three stations for the data periods which were not included in the model formulation. The models were also validated against an independent data set collected at Ubon Ratchathani (15.25 o N, 104.87 o E) in the Northeast. The global and direct normal irradiances calculated from the models and those obtained from measurements are in good agreement, with the root mean square difference (RMSD) of 7.5% for both global and direct normal irradiances. The performance of the models was also compared with that of other models. The performance of the models compared favorably with that of empirical models. Additionally, the accuracy of irradiances predicted from the proposed model are comparable with that obtained from some

  17. Impact of atmospheric components on solar clear-sky models at different elevation: Case study Canary Islands

    International Nuclear Information System (INIS)

    Antonanzas-Torres, F.; Antonanzas, J.; Urraca, R.; Alia-Martinez, M.; Martinez-de-Pison, F.J.

    2016-01-01

    Highlights: • Assessment on the performance of solar clear-sky models at different altitude. • SOLIS and REST2 clear-sky models were superior with fine atmospheric inputs. • ESRA proved more robust with low spatial resolution atmospheric inputs. • Over-estimation occurred at the lower site when using inputs from the upper site. - Abstract: The estimation of clear-sky solar irradiance via clear-sky models depends on reliable values of aerosol optical depth, water vapor and ozone content. These atmospheric variables are rarely on-site measured and are generally provided as gridded estimates in very low spatial resolution (1°). The high spatial variability of atmospheric variables within the grid resolution (pixel) leads to important errors in those areas with great atmospheric variability, such as in mountainous regions. In this paper, the performance of three clear-sky solar irradiance models was evaluated in a site with especially great elevation range, the Izana station from the Baseline Surface Radiation Network (Tenerife, Canary Islands) located at a high elevation (2373 m) and just 14 km from the ocean. Aerosols data were obtained from measurements from the Aerosol Robotic Network (AERONET) at the same site. The evaluation was also compared with global horizontal irradiance estimations with clear-sky models in the Guimar station, located at a lower elevation (156 m) and only 11.5 km away from Izana. Results showed a strong influence of elevation on solar radiation estimation under clear-sky conditions.

  18. Clear-Sky Probability for the August 21, 2017, Total Solar Eclipse Using the NREL National Solar Radiation Database

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Billy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kutchenreiter, Mark C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Steve [Solar Resource Solutions, LLC, Lakewood, CO (United States); Stoffel, Tom [Solar Resource Solutions, LLC, Lakewood, CO (United States)

    2017-07-21

    The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of the path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.

  19. An accuracy assessment of an empirical sine model, a novel sine model and an artificial neural network model for forecasting illuminance/irradiance on horizontal plane of all sky types at Mahasarakham, Thailand

    International Nuclear Information System (INIS)

    Pattanasethanon, Singthong; Lertsatitthanakorn, Charoenporn; Atthajariyakul, Surat; Soponronnarit, Somchart

    2008-01-01

    The results of a study on all sky modeling and forecasting daylight availability for the tropical climate found in the central region of the northeastern part of Thailand (16 deg. 14' N, 103 deg. 15' E) is presented. The required components of sky quantities, namely, global and diffuse horizontal irradiance and global horizontal illuminance for saving energy used in buildings are estimated. The empirical sinusoidal models are validated. A and B values of the empirical sinusoidal model for all sky conditions are determined and developed to become a form of the sky conditions. In addition, a novel sinusoidal model, which consists of polynomial or exponential functions, is validated. A and B values of the empirical sinusoidal model for all sky conditions are determined and developed to become a new function in the polynomial or exponential form of the sky conditions. Novelettes, an artificial intelligent agent, namely, artificial neural network (ANN) model is also identified. Back propagation learning algorithms were used in the networks. Moreover, a one year data set and a next half year data set were used in order to train and test the neural network, respectively. Observation results from one year's round data indicate that luminosity and energy from the sky on horizontal in the area around Mahasarakham are frequently brighter than those of Bangkok. The accuracy of the validated model is determined in terms of the mean bias deviation (MBD), the root-mean-square-deviation (RMSD) and the coefficient of correlation (R 2 ) values. A comparison of the estimated solar irradiation values and the observed values revealed a small error slide in the empirical sinusoidal model as well. In addition, some results of the sky quantity forecast by the ANN model indicate that the ANN model is more accurate than the empirical models and the novel sinusoidal models. This study confirms the ability of the ANN to predict highly accurate solar radiance/illuminance values. We believe

  20. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  1. Towards the intrahour forecasting of direct normal irradiance using sky-imaging data.

    Science.gov (United States)

    Nou, Julien; Chauvin, Rémi; Eynard, Julien; Thil, Stéphane; Grieu, Stéphane

    2018-04-01

    Increasing power plant efficiency through improved operation is key in the development of Concentrating Solar Power (CSP) technologies. To this end, one of the most challenging topics remains accurately forecasting the solar resource at a short-term horizon. Indeed, in CSP plants, production is directly impacted by both the availability and variability of the solar resource and, more specifically, by Direct Normal Irradiance (DNI). The present paper deals with a new approach to the intrahour forecasting (the forecast horizon [Formula: see text] is up to [Formula: see text] ahead) of DNI, taking advantage of the fact that this quantity can be split into two terms, i.e. clear-sky DNI and the clear sky index. Clear-sky DNI is forecasted from DNI measurements, using an empirical model (Ineichen and Perez, 2002) combined with a persistence of atmospheric turbidity. Moreover, in the framework of the CSPIMP (Concentrating Solar Power plant efficiency IMProvement) research project, PROMES-CNRS has developed a sky imager able to provide High Dynamic Range (HDR) images. So, regarding the clear-sky index, it is forecasted from sky-imaging data, using an Adaptive Network-based Fuzzy Inference System (ANFIS). A hybrid algorithm that takes inspiration from the classification algorithm proposed by Ghonima et al. (2012) when clear-sky anisotropy is known and from the hybrid thresholding algorithm proposed by Li et al. (2011) in the opposite case has been developed to the detection of clouds. Performance is evaluated via a comparative study in which persistence models - either a persistence of DNI or a persistence of the clear-sky index - are included. Preliminary results highlight that the proposed approach has the potential to outperform these models (both persistence models achieve similar performance) in terms of forecasting accuracy: over the test data used, RMSE (the Root Mean Square Error) is reduced of about [Formula: see text], with [Formula: see text], and [Formula: see

  2. A simple formula for determining globally clear skies

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.N.; George, A.T.; Mace, G.G. [Penn State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Surface measurements to serve as {open_quotes}ground truth{close_quotes} are of primary importance in the development of retrieval algorithms using satellite measurements to predict surface irradiance. The most basic algorithms of this type deal with clear sky (i.e., cloudless) top-to-surface shortwave (SW) transfer, serving as a necessary prerequisite towards treating both clear and cloudy conditions. Recently, atmosphere SW cloud forcing to infer the possibility of excess atmospheric absorption (compared with model results) in cloudy atmospheres. The surface component of this ratio relies on inferring the expected clear sky SW irradiance to determine the effects of clouds on the SW energy budget. Solar renewable energy applications make use of clear and cloud fraction climatologies to assess solar radiation resources. All of the above depend to some extent on the identification of globally clear sky conditions and the attendant measurements of downwelling SW irradiance.

  3. New gridded database of clear-sky solar radiation derived from ground-based observations over Europe

    Science.gov (United States)

    Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.

    2017-04-01

    Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of

  4. Prediction of diffuse solar irradiance using machine learning and multivariable regression

    International Nuclear Information System (INIS)

    Lou, Siwei; Li, Danny H.W.; Lam, Joseph C.; Chan, Wilco W.H.

    2016-01-01

    Highlights: • 54.9% of the annual global irradiance is composed by its diffuse part in HK. • Hourly diffuse irradiance was predicted by accessible variables. • The importance of variable in prediction was assessed by machine learning. • Simple prediction equations were developed with the knowledge of variable importance. - Abstract: The paper studies the horizontal global, direct-beam and sky-diffuse solar irradiance data measured in Hong Kong from 2008 to 2013. A machine learning algorithm was employed to predict the horizontal sky-diffuse irradiance and conduct sensitivity analysis for the meteorological variables. Apart from the clearness index (horizontal global/extra atmospheric solar irradiance), we found that predictors including solar altitude, air temperature, cloud cover and visibility are also important in predicting the diffuse component. The mean absolute error (MAE) of the logistic regression using the aforementioned predictors was less than 21.5 W/m"2 and 30 W/m"2 for Hong Kong and Denver, USA, respectively. With the systematic recording of the five variables for more than 35 years, the proposed model would be appropriate to estimate of long-term diffuse solar radiation, study climate change and develope typical meteorological year in Hong Kong and places with similar climates.

  5. Nowcasting solar irradiance using the sunshine number

    International Nuclear Information System (INIS)

    Paulescu, Marius; Mares, Oana; Paulescu, Eugenia; Stefu, Nicoleta; Pacurar, Angel; Calinoiu, Delia; Gravila, Paul; Pop, Nicolina; Boata, Remus

    2014-01-01

    Highlights: • A new two-state model for forecasting solar irradiance is proposed. • Sunshine number conditions the transition between states. • High performance is reported. • Modularity and flexibility are advantages. - Abstract: This paper focuses on short-term forecasting of solar irradiance. An innovative two-state model is proposed: if the sun is shining, the solar irradiance is estimated with an empirical model fitted on historical data; if the sun is covered, the clear sky solar irradiance is adjusted according to the cloud transmittance. The distinction between these two states is made by the sunshine number, a binary indicator of whether the Sun is covered by clouds or not, previously introduced by Badescu (2002). Sunshine number is the sole quantity effectively forecasted in the model. The general structure of the model and its advantages are discussed. Its performance on real data is demonstrated, and comparison of the model results against classical ARIMA approach applied to clearness index time series, as main competitor, is made. We conclude with an outlook to future developments oriented to improve the model accuracy

  6. The National Solar Radiation Database (NSRDB): A Brief Overview

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of the National Solar Radiation Database (NSRDB). The NSRDB uses the physics-based model (PSM), which was developed using: adapted PATMOS-X model for cloud identification and properties, REST-2 model for clear-sky conditions, and NREL's Fast All-sky Radiation Model for Solar Applications (FARMS) for cloudy-sky Global Horizontal Irradiance (GHI) solar irradiance calculations.

  7. Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions

    International Nuclear Information System (INIS)

    Grant, R.H.; Heisler, G.M.; Gao, W.

    1996-01-01

    The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations.For clear skies, the normalized sky radiance distribution (N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as N (Θ, ψ) = 0.0361 [6.3 + (1 + cos 2 Θ / (1 - cos ψ)] [1-e -0.31 sec ( Θ]. The angle Ψ is defined by cos ψ = cos Θ cos Θ * + sin Θ sin Θ * cos Φ, where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e −2.5ψ while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e −2.1ψ . The obscured overcast sky condition (solar disk obscured) was best modeled as: N(Θ) = 0.441 [1 + 4.6cos Θ] /[1 + 4.6]. The unit of N for all equations is π Sr −1 , so that integration of each function over the sky hemisphere yields 1.0.These equations can be applied directly to the sky diffuse irradiance on the horizontal, I diff , to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from N a (Θ, ψ) = I diff N(Θ,

  8. The use of a sky camera for solar radiation estimation based on digital image processing

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.

    2015-01-01

    The necessary search for a more sustainable global future means using renewable energy sources to generate pollutant-free electricity. CSP (Concentrated solar power) and PV (photovoltaic) plants are the systems most in demand for electricity production using solar radiation as the energy source. The main factors affecting final electricity generation in these plants are, among others, atmospheric conditions; therefore, knowing whether there will be any change in the solar radiation hitting the plant's solar field is of fundamental importance to CSP and PV plant operators in adapting the plant's operation mode to these fluctuations. Consequently, the most useful technology must involve the study of atmospheric conditions. This is the case for sky cameras, an emerging technology that allows one to gather sky information with optimal spatial and temporal resolution. Hence, in this work, a solar radiation estimation using sky camera images is presented for all sky conditions, where beam, diffuse and global solar radiation components are estimated in real-time as a novel way to evaluate the solar resource from a terrestrial viewpoint. - Highlights: • Using a sky camera, the solar resource has been estimated for one minute periods. • The sky images have been processed to estimate the solar radiation at pixel level. • The three radiation components have been estimated under all sky conditions. • Results have been presented for cloudless, partially-cloudy and overcast conditions. • For beam and global radiation, the nRMSE value is of about 11% under overcast skies.

  9. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths

    International Nuclear Information System (INIS)

    Anav, A.; Rafanelli, C.; Di Menno, I.; Di Menno, M.

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Aalesund (Svalbard Islands (Norway)) and Ushuaia (Tierra del Fuego (Argentina)). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectro-radiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about ±2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than ∼20% for solar zenith angles <50 deg.. (authors)

  10. Development of software for estimating clear sky solar radiation in Indonesia

    Science.gov (United States)

    Ambarita, H.

    2017-01-01

    Research on solar energy applications in Indonesia has come under scrutiny in recent years. Solar radiation is harvested by solar collector or solar cell and convert the energy into useful energy such as heat and or electricity. In order to provide a better configuration of a solar collector or a solar cell, clear sky radiation should be estimated properly. In this study, an in-house software for estimating clear sky radiation is developed. The governing equations are solved simultaneously. The software is tested in Medan city by performing a solar radiation measurements. For clear sky radiation, the results of the software and measurements ones show a good agreement. However, for the cloudy sky condition it cannot predict the solar radiation. This software can be used to estimate the clear sky radiation in Indonesia.

  11. ESASky: All the sky you need

    Science.gov (United States)

    De Marchi, Guido; ESASky Team

    2018-06-01

    ESASky is a discovery portal giving to all astronomers, professional and amateur alike, an easy way to access high-quality scientific data from their computer, tablet, or mobile device. It includes over half a million images, 300,000 spectra, and more than a billion catalogue sources. From gamma rays to radio wavelengths, it allows users to explore the cosmos with data from a dozen space missions from the astronomical archives of ESA, NASA, and JAXA and does not require prior knowledge of any particular mission. ESASky features an all-sky exploration interface, letting users easily zoom in for stars as single targets or as part of a whole galaxy, visualise them and retrieve the relevant data taken in an area of the sky with just a few clicks. Users can easily compare observations of the same source obtained by different space missions at different times and wavelengths. They can also use ESASky to plan future observations with the James Webb Space Telescope, comparing the relevant portion of the sky as observed by Hubble and other missions. We will illustrate the many options to visualise and access astronomical data: interactive footprints for each instrument, tree-maps, filters, and solar-system object trajectories can all be combined and displayed. The most recent version of ESASky, released in February, also includes access to scientific publications, allowing users to visualise on the sky all astronomical objects with associated scientific publications and to link directly back to the papers in the NASA Astrophysics Data System.

  12. The angular distributions of ultraviolet spectral irradiance at different solar elevation angles under clear sky conditions

    Science.gov (United States)

    Liu, Yan; Hu, LiWen; Wang, Fang; Gao, YanYan; Zheng, Yang; Wang, Yu; Liu, Yang

    2016-01-01

    To investigate the angular distributions of UVA, UVB, and effective UV for erythema and vitamin D (vitD) synthesis, the UV spectral irradiances were measured at ten inclined angles (from 0° to 90°) and seven azimuths (from 0° to 180°) at solar elevation angle (SEA) that ranged from 18.8° to 80° in Shanghai (31.22° N, 121.55° E) under clear sky and the albedo of ground was 0.1. The results demonstrated that in the mean azimuths and with the back to the sun, the UVA, UVB, and erythemally and vitD-weighted irradiances increased with the inclined angles and an increase in SEA. When facing toward the sun at 0°-60° inclined angles, the UVA first increased and then decreased with an increase in SEA; at other inclined angles, the UVA increased with SEA. At 0°-40° inclined angles, the UVB and erythemally and vitD-weighted irradiances first increased and then decreased with an increase in SEA, and their maximums were achieved at SEA 68.7°; at other inclined angles, the above three irradiances increased with an increase in SEA. The maximum UVA, UVB, and erythemally and vitD-weighted irradiances were achieved at an 80° inclined angle at SEA 80° (the highest in our measurements); the cumulative exposure of the half day achieved the maximum at a 60° inclined angle, but not on the horizontal. This study provides support for the assessment of human skin sun exposure.

  13. Improving HelioClim-3 estimates of surface solar irradiance using the McClear clear-sky model and recent advances in atmosphere composition

    Directory of Open Access Journals (Sweden)

    Z. Qu

    2014-11-01

    Full Text Available The HelioClim-3 database (HC3v3 provides records of surface solar irradiation every 15 min, estimated by processing images from the geostationary meteorological Meteosat satellites using climatological data sets of the atmospheric Linke turbidity factor. This technical note proposes a method to improve a posteriori HC3v3 by combining it with data records of the irradiation under clear skies from the new McClear clear-sky model, whose inputs are the advanced global aerosol property forecasts and physically consistent total column content in water vapour and ozone produced by the MACC (Monitoring Atmosphere Composition and Climate projects. The method is validated by comparison with a series of ground measurements for 15 min and 1 h for 6 stations and for daily irradiation for 23 stations. The correlation coefficient is large, greater than respectively 0.92, 0.94, and 0.97, for 15 min, 1 h and daily irradiation. The bias ranges from −4 to 4% of the mean observed irradiation for most sites. The relative root mean square difference (RMSD varies between 14 and 38% for 15 min, 12 and 33% for 1 h irradiation, and 6 and 20% for daily irradiation. As a rule of thumb, the farther from the nadir of the Meteosat satellite located at latitude 0° and longitude 0°, and the greater the occurrence of fragmented cloud cover, the greater the relative RMSD. The method improves HC3v3 in most cases, and with no degradation in the others. A systematic correction of HC3v3 with McClear is recommended.

  14. A method to calibrate a solar pyranometer for measuring reference diffuse irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Stoffel, T.; Myers, D. [National Renewable Energy Laboratory, Golden, CO (United States)

    2003-02-01

    Accurate pyranometer calibrations, traceable to internationally recognized standards, are critical for solar irradiance measurements. One calibration method is the component summation, where the pyranometers are calibrated outdoors under clear sky conditions, and the reference global solar irradiance is calculated as the sum of two reference components, the diffuse and subtended beam solar irradiances. The beam component is measured with pyrheliometers traceable to the World Radiometric Reference, while there is no internationally recognized reference for the diffuse component. In the absence of such a reference, we present a method to consistently calibrate pyranometers for measuring the diffuse component with an estimated uncertainty of {+-} (3% of reading +1 W/m{sup 2}). The method is based on using a modified shade/unshade method, and pyranometers with less than 1 W/m{sup 2} thermal offset errors. We evaluated the consistency of our method by calibrating three pyranometers four times. Calibration results show that the responsivity change is within {+-} 0.52% for the three pyranometers. We also evaluated the effect of calibrating pyranometers unshaded, then using them shaded to measure diffuse irradiance. We calibrated three unshaded pyranometers using the component summation method. Their outdoor measurements of clear sky diffuse irradiance, from sunrise to sundown, showed that the three calibrated pyranometers can be used to measure the diffuse irradiance to within {+-} 1.4 W/m{sup 2} variation from the reference irradiance. (author)

  15. Clear-sky classification procedures and models using a world-wide data-base

    International Nuclear Information System (INIS)

    Younes, S.; Muneer, T.

    2007-01-01

    Clear-sky data need to be extracted from all-sky measured solar-irradiance dataset, often by using algorithms that rely on other measured meteorological parameters. Current procedures for clear-sky data extraction have been examined and compared with each other to determine their reliability and location dependency. New clear-sky determination algorithms are proposed that are based on a combination of clearness index, diffuse ratio, cloud cover and Linke's turbidity limits. Various researchers have proposed clear-sky irradiance models that rely on synoptic parameters; four of these models, MRM, PRM, YRM and REST2 have been compared for six world-wide-locations. Based on a previously-developed comprehensive accuracy scoring method, the models MRM, REST2 and YRM were found to be of satisfactory performance in decreasing order. The so-called Page radiation model (PRM) was found to underestimate solar radiation, even though local turbidity data were provided for its operation

  16. Practical models to estimate horizontal irradiance in clear sky conditions: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, German A.; Hernandez, Alejandro L.; Saravia, Luis R. [Department of Physics, School of Exact Sciences, National University of Salta, Bolivia Avenue 5150, 4400 Salta Capital (Argentina); INENCO (Institute of Non Conventional Energy Research), Bolivia Avenue 5150, 4400 Salta Capital (Argentina)

    2010-11-15

    The Argentinean Northwest (ANW) is a high altitude region located alongside Los Andes Mountains. The ANW is also one of the most insolated regions in the world due to its altitude and particular climate. However, the characterization of the solar resource in the region is incomplete as there are no stations to measure solar radiation continuously and methodically. With irradiance data recently having been measured at three sites in the Salta Province, a study was carried out that resulted in a practical model to quickly and efficiently estimate the horizontal irradiance in high altitude sites in clear sky conditions. This model uses the altitude above sea level (A) as a variable and generates a representative clearness index as a result (k{sub t-R}) that is calculated for each site studied. This index k{sub t-R} is then used with the relative optical air mass and the extraterrestrial irradiance to estimate the instantaneous clearness index (k{sub t}). Subsequently, the index k{sub t-R} is corrected by introducing the atmospheric pressure in the definition of relative optical air mass proposed by Kasten. The results are satisfactory as errors in the irradiance estimations with respect to measured values do not exceed 5% for pressure corrected air masses AM{sub c} < 2. This model will be used in a feasibility study to locate sites for the installation of solar thermal power plants in the ANW. A prototype of a CLFR solar power plant is being built in the INENCO Campus, at the National University of Salta. (author)

  17. Prediction of solar irradiation in Yasooj using various correlations and models

    International Nuclear Information System (INIS)

    Yaghoubi, M.; Azizian, K.; Kenary, A.; Zendehboodi, G.

    2003-01-01

    Available solar radiation potential is the primary condition for any solar energy applications in any region. In this article attempt is made to evaluate solar radiation intensity at Yasooj which located 30 5 0' north latitude about south central parts of Iran. Metrological data and climate condition from 1988 to 1997 is used to apply different correlations and daily solar irradiation during the years is determined. It was found that average a clear index is about 0.6 which shows nearly clear sky condition for this location

  18. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  19. Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models

    DEFF Research Database (Denmark)

    David, M.; Ramahatana, F.; Trombe, Pierre-Julien

    2016-01-01

    Forecasting of the solar irradiance is a key feature in order to increase the penetration rate of solar energy into the energy grids. Indeed, the anticipation of the fluctuations of the solar renewables allows a better management of the production means of electricity and a better operation...... sky index show some similarities with that of financial time series. The aim of this paper is to assess the performances of a commonly used combination of two linear models (ARMA and GARCH) in econometrics in order to provide probabilistic forecasts of solar irradiance. In addition, a recursive...... regarding the statistical distribution of the error, the reliability of the probabilistic forecasts stands in the same order of magnitude as other works done in the field of solar forecasting....

  20. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    International Nuclear Information System (INIS)

    Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) “off-grid” random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min. - Highlights: • Neural network radiative transfer solvers for generation of solar irradiance spectra. • Sensitivity analysis of irradiance spectra with respect to aerosol and cloud parameters. • Regional maps of total global horizontal irradiance for cloudy sky conditions. • Regional solar radiation maps produced directly from MSG3/SEVIRI satellite inputs.

  1. Calculating spectral direct solar irradiance, diffuse and global in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    A spectral model under conditions of clear skies has described the flow of solar irradiation and is verified experimentally in Heredia, Costa Rica. A description of the model is presented by comparing its results with experimental measurements. The model has calculated the spectral flows of the global solar irradiation, direct and diffuse incident on a horizontal surface. Necessary input data include latitude, altitude, surface albedo as characteristics of a locality, and atmospheric characteristics: turbidity, precipitable water vapor, total ozone content and the optical thickness of a particular subject. The results show satisfactory values. (author) [es

  2. Cloud and radiance measurements with the VIS/NIR Daylight Whole Sky Imager at Lindenberg (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Feister, U. [Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg (Germany); Shields, J. [Scripps Inst. of Oceanography, Univ. of California, San Diego (United States)

    2005-10-01

    Ground-based cloud data acquired with the whole sky imager (WSI) are analyzed in relation to measurements of solar radiation performed at the Lindenberg Meteorological Observatory. Cloud fractions derived by the cloud detection algorithm from WSI images acquired during daylight hours between 2002 and 2004 are compared with conventional cloud observations for the two sites Potsdam and Lindenberg, and also with ceilometer data of cloud-base heights at Lindenberg. The comparison statistics are discussed in the context of different principles of measurement. A few case studies illustrate the strong scattering effect of clouds on solar radiance and irradiance measured at the ground in different spectral regions. Particularly clouds close to the apparent position of the sun lead to strong enhancements of solar diffuse irradiance incident on horizontal planes and hemispheres that substantially exceed corresponding clear-sky values. Irradiances derived from WSI sky radiance fields are shown in comparison to pyranometer data of diffuse irradiance and radiative transfer model calculations performed for clear sky conditions. Examples of spectral sky radiances with moving contrails illustrate the significant enhancement the contrails have compared to clear sky, even though they may have a relatively small direct effect on global irradiance values. As contrails are observed at Lindenberg for about 18 to 19% of daylight hours, and part of them become clouds, the indirect impact of these changes on solar irradiance received at the ground may not be negligible. (orig.)

  3. Broadband Direct UVA irradiance measurement for clear skies evaluated using a smartphone

    International Nuclear Information System (INIS)

    Igoe, D.; Parisi, A.V.

    2015-01-01

    UVA wavelengths (320-400 nm) have been implicated in recent studies to contribute to melanoma induction and skin photo-aging in humans and damage to plants. The use of smartphones in UVA observations is a way to supplement measurements made by traditional radiometric and spectro-radiometric technology. Although the smartphone image sensor is not capable of determining broadband UVA irradiances, these can be reconstructed from narrowband irradiances, which the smartphone, with narrowband and neutral density filters, can quantify with discrepancies not exceeding 5 %. Three models that reconstruct direct broadband clear sky UVA were developed from narrowband irradiances derived from smartphone image sensor pixel data with coefficients of determination of between 0.97 and 0.99. Reasonable accuracy and precision in determining the direct broadband UVA was maintained for observations made with solar zenith angles as high as 70 deg. . The developed method has the potential to increase the uptake of the measurement of broadband UVA irradiances. (authors)

  4. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  5. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  6. Modeling daylight from solar irradiation in Malaysia

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Sayigh, A.A.K.; Surendran, P.N.; Othman, M.Y.

    1999-01-01

    The oil crises in the seventies, the environmental impact by the extensive use of energy in the nineties and the recent economic recession in Asia have led to the rediscovery of the use of daylight in energy-conscious design in buildings, the economic implication of the excessive use of artificial lighting in potential of daylight. No daylight data is currently available in Malaysia and therefore there is a need to model the daylight availability based on other climatic parameters measured at meteorological stations. A study has been carried out to produce daylight data from measured climatic parameters, specifically solar irradiation and could cover. The Model Year Climate (MYC) data for the location of Subang (3 deg. 7', N 101 deg. 33' E), model to estimate daily diffuse irradiation was produced the average values of global (KG) and diffuse (KD) luminous efficacious were calculated and found to be 112 lm/W and 120 lm/W respectively. The value of 104 lm/W for the beam luminous efficacy (KB) was selected. Using cloud data cover data as input parameters, the nebulosity index was calculated to determine the sky condition in Subang, Malaysia, which was then classified as average or intermediate sky type, the hourly illuminance on horizontal and inclined surfaces at locations with similar sky conditions in Malaysia were then produced. (author)

  7. A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain

    International Nuclear Information System (INIS)

    Yun, J.I.

    2009-01-01

    Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio (W i ) between sloping and horizontal surface is defined as multiplication of the relative solar intensity (k i ) and the slope irradiance ratio (r i ) at an hourly interval. The k i is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The r i is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of W i on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano (c.a., 570 m diameter for the bottom circle and 90 m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error (RMSE) of 1.61 MJ m −2 for the whole period but the RMSE for April to October (i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape

  8. Design principles and field performance of a solar spectral irradiance meter

    Energy Technology Data Exchange (ETDEWEB)

    Tatsiankou, V.; Hinzer, K.; Haysom, J.; Schriemer, H.; Emery, K.; Beal, R.

    2016-08-01

    A solar spectral irradiance meter (SSIM), designed for measuring the direct normal irradiance (DNI) in six wavelength bands, has been combined with models to determine key atmospheric transmittances and the resulting spectral irradiance distribution of DNI under all sky conditions. The design principles of the SSIM, implementation of a parameterized transmittance model, and field performance comparisons of modeled solar spectra with reference radiometer measurements are presented. Two SSIMs were tested and calibrated at the National Renewable Energy Laboratory (NREL) against four spectroradiometers and an absolute cavity radiometer. The SSIMs' DNI was on average within 1% of the DNI values reported by one of NREL's primary absolute cavity radiometers. An additional SSIM was installed at the SUNLAB Outdoor Test Facility in September 2014, with ongoing collection of environmental and spectral data. The SSIM's performance in Ottawa was compared against a commercial pyrheliometer and a spectroradiometer over an eight month study. The difference in integrated daily spectral irradiance between the SSIM and the ASD spectroradiometer was found to be less than 1%. The cumulative energy density collected by the SSIM over this duration agreed with that measured by an Eppley model NIP pyrheliometer to within 0.5%. No degradation was observed.

  9. Determination of the sun area in sky camera images using radiometric data

    International Nuclear Information System (INIS)

    Alonso, J.; Batlles, F.J.; Villarroel, C.; Ayala, Rosa; Burgaleta, J.I.

    2014-01-01

    Highlights: • We have developed a model for the determination of solar area on sky camera imagery. • An estimation of direct normal irradiance is given for cloudless sky. • The presented model resolves the problem of saturation of pixels in the solar area. • The model allows to identify clouds in the solar area of sky camera imagery. • Developed model has an 92% of agreement between processed and observed images. - Abstract: Due to the increasing development and expansion of solar power plants, it is necessary to have complete and absolute knowledge of all factors and occurrences that can affect the dynamics and quality of their production. The importance of clouds in the attenuation of solar radiation is a transcendental and decisive factor in the incident energy from the sun. Detecting clouds with sky cameras is a very problematic issue. The captured solar area in the images exhibits a pronounced saturation of pixels as a consequence of sunlight penetration and the appearance of various atmospheric features. The present article reports a methodology based on radiometric data that is used to determine the causes of saturation in the solar zone and its vicinity on images from a TSI-880 model sky camera. The correct method identifies the presence or absence of clouds in the saturated zone with 92% success

  10. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy

  11. Solar Wind Charge Exchange Contribution To The ROSAT Sky Survey Maps

    Science.gov (United States)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; hide

    2016-01-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC (Position Sensitive Proportional Counters) used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l = 140 degrees, b = 0 degrees, where the DXL path crosses the Galactic plane, is 33 percent plus or minus 6 percent (statistical) plus or minus 12 percent (systematic) for R1, 44 percent plus or minus 6 percent plus or minus 5 percent for R2, 18 percent plus or minus 12 percent plus or minus 11 percent for R4, 14 percent plus or minus 11 percent plus or minus 9 percent for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 percent plus or minus 6 percent plus or minus 13 percent for R1, 30 percent plus or minus 4 percent plus or minus 4 percent for R2, 8 percent plus or minus 5 percent plus or minus 5 percent for R4, 6 percent plus or minus 4 percent plus or minus 4 percent for R5, and negligible for R6 and R7.

  12. Digital all-sky polarization imaging of partly cloudy skies.

    Science.gov (United States)

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  13. Sky brightness and color measurements during the 21 August 2017 total solar eclipse.

    Science.gov (United States)

    Bruns, Donald G; Bruns, Ronald D

    2018-06-01

    The sky brightness was measured during the partial phases and during totality of the 21 August 2017 total solar eclipse. A tracking CCD camera with color filters and a wide-angle lens allowed measurements across a wide field of view, recording images every 10 s. The partially and totally eclipsed Sun was kept behind an occulting disk attached to the camera, allowing direct brightness measurements from 1.5° to 38° from the Sun. During the partial phases, the sky brightness as a function of time closely followed the integrated intensity of the unobscured fraction of the solar disk. A redder sky was measured close to the Sun just before totality, caused by the redder color of the exposed solar limb. During totality, a bluer sky was measured, dimmer than the normal sky by a factor of 10,000. Suggestions for enhanced measurements at future eclipses are offered.

  14. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  15. Solar irradiance measurements from the Danish Galathea 3 expedition

    Energy Technology Data Exchange (ETDEWEB)

    Bason, Frank [SolData Instruments, Silkeborg (Denmark)

    2008-07-01

    The Danish Galathea 3 Expedition completed an eight month journey of exploration and discovery on April 25th, 2007, having set sail from Copenhagen on August 11th, 2006. SolData Instruments was privileged to be selected to contribute an ''optics table'' with pyranometers, ultraviolet, lux, sky luminance, PAR and other optical radiation detectors. These instruments recorded data continuously during the 100.000 kilometer voyage of the Royal Danish Navy vessel Vaedderen. The voyage provided global solar irradiance and other data as far north as the Arctic Circle near Greenland and as far south as Antarctica. The data collected was analyzed to validate a solar irradiance model described in this paper. A unique opportunity was also provided to check the performance of SolData photovoltaic pyranometers against data from a Kipp-Zonen CMll instrument. In addition to optical radiation, ionizing radiation and atmospheric pressure were also measured, and some interesting aspects of these measurements will also be mentioned. (orig.)

  16. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ , the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤  θ  ≤ 40°, 1 okta ≤  ρ  ≤ 6 oktas for summer solstice, and at 20° ≤  θ  ≤ 25°, 0 okta ≤  ρ  ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite

  17. Sky camera imagery processing based on a sky classification using radiometric data

    International Nuclear Information System (INIS)

    Alonso, J.; Batlles, F.J.; López, G.; Ternero, A.

    2014-01-01

    As part of the development and expansion of CSP (concentrated solar power) technology, one of the most important operational requirements is to have complete control of all factors which may affect the quantity and quality of the solar power produced. New developments and tools in this field are focused on weather forecasting improving both operational security and electricity production. Such is the case with sky cameras, devices which are currently in use in some CSP plants and whose use is expanding in the new technology sector. Their application is mainly focused on cloud detection, estimating their movement as well as their influence on solar radiation attenuation indeed, the presence of clouds is the greatest factor involved in solar radiation attenuation. The aim of this work is the detection and analysis of clouds from images taken by a TSI-880 model sky. In order to obtain accurate image processing, three different models were created, based on a previous sky classification using radiometric data and representative sky conditions parameters. As a consequence, the sky can be classified as cloudless, partially-cloudy or overcast, delivering an average success rate of 92% in sky classification and cloud detection. - Highlights: • We developed a methodology for detection of clouds in total sky imagery (TSI-880). • A classification of sky is presented according to radiometric data and sky parameters. • The sky can be classified as cloudless, partially cloudy and overcast. • The images processing is based on the sky classification for the detection of clouds. • The average success of the developed model is around 92%

  18. Error Assessment of Solar Irradiance Forecasts and AC Power from Energy Conversion Model in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Gianfranco Chicco

    2015-12-01

    Full Text Available Availability of effective estimation of the power profiles of photovoltaic systems is essential for studying how to increase the share of intermittent renewable sources in the electricity mix of many countries. For this purpose, weather forecasts, together with historical data of the meteorological quantities, provide fundamental information. The weak point of the forecasts depends on variable sky conditions, when the clouds successively cover and uncover the solar disc. This causes remarkable positive and negative variations in the irradiance pattern measured at the photovoltaic (PV site location. This paper starts from 1 to 3 days-ahead solar irradiance forecasts available during one year, with a few points for each day. These forecasts are interpolated to obtain more irradiance estimations per day. The estimated irradiance data are used to classify the sky conditions into clear, variable or cloudy. The results are compared with the outcomes of the same classification carried out with the irradiance measured in meteorological stations at two real PV sites. The occurrence of irradiance spikes in “broken cloud” conditions is identified and discussed. From the measured irradiance, the Alternating Current (AC power injected into the grid at two PV sites is estimated by using a PV energy conversion model. The AC power errors resulting from the PV model with respect to on-site AC power measurements are shown and discussed.

  19. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  20. Recent Characterization of the Night-Sky Irradiance in the Visible/Near-Infrared Spectral Band

    Science.gov (United States)

    Moore, Carolynn; Wood, Michael; Bender, Edward; Hart, Steve

    2018-01-01

    The U.S. Army RDECOM CERDEC NVESD has made numerous characterizations of the night sky over the past 45 years. Up until the last four years, the measurement devices were highly detector-limited, which led to low spectral resolution, marginal sensitivity in no-moon conditions, and the need for inferential analysis of the resulting data. In 2014, however, the PhotoResearch Model PR-745 spectro-radiometer established a new state of the art for measurement of the integrated night-sky irradiance over the Visible-to-Near-Infrared (VNIR) spectral band (400-1050nm). This has enabled characterization of no-moon night-sky irradiance with a spectral bandwidth less than 15 nanometers, even when this irradiance is attenuated by heavy clouds or forest canopy. Since 2014, we have conducted a series of night-sky data collections at remote sites across the United States. The resulting data has provided new insights into natural radiance variations, cultural lighting impacts, and the spectrally-varying attenuation caused by cloud cover and forest canopy. Several new metrics have also been developed to provide insight into these newly-found components and temporal variations. The observations, findings and conclusions of the above efforts will be presented, including planned near-term efforts to further characterize the night-sky irradiance in the Visible/Near-Infrared spectral band.

  1. First observations from a CCD all-sky spectrograph at Barentsburg (Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. A. Chernouss

    2008-05-01

    Full Text Available A digital CCD all-sky spectrograph was made by the Polar Geophysical Institute (PGI to support IPY activity in auroral research. The device was tested at the Barentsburg observatory of PGI during the winter season of 2005–2006. The spectrograph is based on a cooled CCD and a transmission grating. The main features of this spectrograph are: a wide field of view (~180°, a wide spectral range (380–740 nm, a spectral resolution of 0.6 nm, a background level of about 100 R at 1-min exposure time. Several thousand spectra of nightglow and aurora were recorded during the observation season. It was possible to register both the strong auroral emissions, as well as weak ones. Spectra of aurora, including nitrogen and oxygen molecular and atomic emissions, as well as OH emissions of the nightglow are shown. A comparison has been conducted of auroral spectra obtained by the film all-sky spectral camera C-180-S at Spitsbergen during IGY, with spectra obtained at Barentsburg during the last winter season. The relationship between the red (630.0 nm and green (557.7 nm auroral emissions shows that the green emission is dominant near the minimum of the solar cycle activity (2005–2006. The opposite situation is observed during 1958–1959, with a maximum solar cycle activity.

  2. Prediction of transits of Solar system objects in Kepler/K2 images: an extension of the Virtual Observatory service SkyBoT

    Science.gov (United States)

    Berthier, J.; Carry, B.; Vachier, F.; Eggl, S.; Santerne, A.

    2016-05-01

    All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many Solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify Solar system objects serendipitously observed by Kepler. The sky body tracker (SkyBoT) service hosted at Institut de mécanique céleste et de calcul des éphémérides provides a Virtual Observatory compliant cone search that lists all Solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational data base to ensure a fast access. The SkyBoT web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 s. Generating object data for the entire K2 field of view (14°) takes about a minute. This extension of the SkyBoT service opens new possibilities with respect to mining K2 data for Solar system science, as well as removing Solar system objects from stellar photometric time series.

  3. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds

    Directory of Open Access Journals (Sweden)

    I. Fountoulakis

    2016-03-01

    Full Text Available In this study, we discuss the short- and the long-term variability of spectral UV irradiance at Thessaloniki, Greece, using a long, quality-controlled data set from two Brewer spectrophotometers. Long-term changes in spectral UV irradiance at 307.5, 324 and 350 nm for the period 1994–2014 are presented for different solar zenith angles and discussed in association with changes in total ozone column (TOC, aerosol optical depth (AOD and cloudiness observed in the same period. Positive changes in annual mean anomalies of UV irradiance, ranging from 2 to 6 % per decade, have been detected both for clear- and all-sky conditions. The changes are generally greater for larger solar zenith angles and for shorter wavelengths. For clear-skies, these changes are, in most cases, statistically significant at the 95 % confidence limit. Decreases in the aerosol load and weakening of the attenuation by clouds lead to increases in UV irradiance in the summer, of 7–9 % per decade for 64° solar zenith angle. The increasing TOC in winter counteracts the effect of decreasing AOD for this particular season, leading to small, statistically insignificant, negative long-term changes in irradiance at 307.5 nm. Annual mean UV irradiance levels are increasing from 1994 to 2006 and remain relatively stable thereafter, possibly due to the combined changes in the amount and optical properties of aerosols. However, no statistically significant corresponding turning point has been detected in the long-term changes of AOD. The absence of signatures of changes in AOD in the short-term variability of irradiance in the UV-A may have been caused by changes in the single scattering albedo of aerosols, which may counteract the effects of changes in AOD on irradiance. The anti-correlation between the year-to-year variability of the irradiance at 307.5 nm and TOC is clear and becomes clearer as the AOD decreases.

  4. Trends in total column ozone over Australia and New Zealand and its influence on clear-sky surface erythemal irradiance

    International Nuclear Information System (INIS)

    Bodeker, G. E.

    1995-01-01

    Australia and New Zealand are two of the countries closest to the Antarctic ozone depletion and may therefore be 'at risk' as a result of the associated increases in surface ultraviolet (UV) radiation. To investigate the possible impact of mid-latitude ozone decreases on surface erythemal irradiances, monthly mean total ozone has been calculated from daily total ozone mapping spectrometer data for 5 Australian cities (Canberra, Hobart, Melbourne, Perth and Sydney) and 3 New Zealand cities (Auckland, Christchurch and Wellington) from 1979 to 1992. These values have then been used as inputs to a single layer model to calculate noon clear-sky global UV irradiances and associated erythemal irradiances. In addition, the monthly mean ozone data have been modelled statistically for each location to reveal a long-term linear trend, an annual variation, a Quasi-Biennial Oscillation (QBO), a solar cycle component and a semi-annual (6 month) signal. Coefficients from these statistical models have been used to estimate monthly mean ozone and noon clear-sky erythemal irradiances to the year 2000 for each city. It is assumed that the rate of increase of stratospheric chlorine over the remainder of the century will remain constant. Given that there is some evidence that the rate of increase is decreasing, the results present here should be regarded as an upper limit. 33 refs., 7 tabs., 4 figs

  5. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  6. Estimation of clear sky hourly global solar radiation in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Al-Zuhairi, Munya F.; Mahdi, Zahraa S. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2012-07-01

    The availability of hourly solar radiation data is very important for applications utilizing solar energy and for climate and environmental aspects. The aim of this work is to use a simple model for estimating hourly global solar radiation under clear sky condition in Iraq. Calculations were compared with measurements obtained from local station in Baghdad city and from Meteosat satellite data for different locations in Iraq. The statistical test methods of the mean bias error (MBE), root mean square error (RMSE) and t-test were used to evaluate the performance of the model. Results indicated that a fairly good agreement exists between calculated and measured values for all locations in Iraq. Since the model is independent of any meteorological variable, it would be of a practical use for rural areas where no meteorological data are available.

  7. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    based models and tools can subsequently be recalibrated or improvised to address the unique features of characteristically high aerosol load, frequent dust episodes and yet, typically clear skies, in the Gulf's primarily arid region. For example, though clouds are an important factor, radiative extinction in desert climates is primarily due to aerosols; a fact that needs to be taken into consideration since most of the existing solar radiation models are technically cloud-based. Satellite derived irradiance, although carrying a tag of uncertainties (5-10%), have special relevance in the Gulf due to lack of long-term data at the source of application. Satellite data can be merged or combined with short-term ground measurements, by various techniques available in the literature, to smooth out uncertainties in the data and build high-accuracy long-term solar irradiance profiles. Such concatenation is of particular interest to investors as it provides vital information on solar resource variability.

  8. Nongray radiative heat transfer analysis in the anisotropic scattering fog layer subjected to solar irradiation

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Mori, Yusuke; Sakai, Seigo

    2004-01-01

    Radiative heat transfer in the fog layer is analyzed. Direct and diffuse solar irradiation, and infrared sky flux are considered as incident radiation. Anisotropic scattering of radiation by water droplets is taken into account. Absorption and emission of radiation by water droplets and radiative gases are also considered. Furthermore, spectral dependences of radiative properties of irradiation, reflectivity, gas absorption and scattering and absorption of mist are considered. The radiation element method by ray emission model (REM 2 ) is used for the nongray radiation analysis. Net downward radiative heat flux at the sea surface and radiative equilibrium temperature distribution in the fog layer are calculated for several conditions. Transmitted solar flux decreases as liquid water content (LWC) in the fog increases. However, the value does not become zero but has the value about 60 W/m 2 . The effect of humidity and mist on radiative cooling at night is investigated. Due to high temperature and humidity condition, the radiation cooling at night is not so large even in the clear sky. Furthermore, the radiative equilibrium temperature distribution in the fog layer in the daytime is higher as LWC increases, and the inversion layer of temperature occurs

  9. Optical depth retrievals from Delta-T SPN1 measurements of broadband solar irradiance at ground

    Science.gov (United States)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick

    2016-04-01

    The SPN1 radiometer, manufactured by Delta-T Devices Ltd., is an instrument designed for the measurement of global solar irradiance and its components (diffuse, direct) at ground level. In the present study, the direct irradiance component has been used to retrieve an effective total optical depth, by applying the Beer-Lambert law to the broadband measurements. The results have been compared with spectral total optical depths derived from two Cimel CE318 and Prede POM01 sun-sky radiometers, located at the Burjassot site in Valencia (Spain), during years 2013 - 2015. The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. In turn, the Beer-Lambert law has been applied to the broadband direct solar component to obtain an effective total optical depth, representative of the total extinction in the atmosphere. For the assessment of the total optical depth values retrieved with the SPN1, two different sun-sky radiometers (Cimel CE318 and Prede POM01L) have been employed. Both instruments belong to the international networks AERONET and SKYNET. The modified SUNRAD package has been applied in both Cimel and Prede instruments. Cloud affected data has been removed by applying the Smirnov cloud-screening procedure in the SUNRAD algorithm. The broadband SPN1 total optical depth has been analysed by comparison with the spectral total optical depth from the sun-sky radiometer measurements at wavelengths 440, 500, 675, 870 and 1020 nm. The slopes and intercepts have been estimated to be 0.47 - 0.98 and 0.055 - 0.16 with increasing wavelength. The average correlation coefficients and RMSD were 0.80 - 0.83 and 0.034 - 0.036 for all the channels. The

  10. Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Piacentini, Ruben D. [Instituto de Fisica Rosario (CONICET-Universidad Nacional de Rosario), 27 de Febrero 210bis, 2000 Rosario (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Pellegrini 250, 2000 Rosario (Argentina); Salum, Graciela M. [Instituto de Fisica Rosario (CONICET-Universidad Nacional de Rosario), 27 de Febrero 210bis, 2000 Rosario (Argentina); Facultad Regional Concepcion del Uruguay, Universidad Tecnologica Nacional, Concepcion del Uruguay (Argentina); Fraidenraich, Naum; Tiba, Chigueru [Grupo de Pesquisas em Fontes Alternativas de Energia, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - 50.740-540, Recife, PE (Brazil)

    2011-01-15

    Extraterrestrial total solar irradiance, usually called Solar Constant, is attenuated by the atmosphere in different proportions, depending mainly on solar zenith angle and altitude of the measurement point. In this work, it is presented very high and extreme horizontal plane measurements of global solar irradiance that in some days overpassed the Solar Constant corrected by the actual Sun-Earth distance (CSC). They were obtained at sea level of the intertropical Atlantic coast, in the city of Recife, Brazil, in the period February 2008-January 2009. Extreme total solar irradiance values larger than CSC were measured during 3.4% of the days of the total registered period. This percentage increases to 7.4% for global solar irradiance within 95.1-100% of the CSC and to 15.3% within 90.1-95% of the CSC. The largest extreme total solar irradiance value, 1477 {+-} 30 W/m{sup 2}, was registered the 28th of March 2008 at 11:34 local time (UT - 3h). It overpassed by 7.9% the CSC value for this day (1369.4 W/m{sup 2}) and by 42.3% the estimated value of the clear sky Iqbal C radiation model (1037.7 W/m{sup 2}). The observation of extreme values should be taken into account in the study of solar radiation effects related to materials exposed to the outside, UV index and biological effects, among others. Also, the detailed knowledge of this interesting effect may contribute significantly to clarify physical aspects about the interaction of global solar radiation with the ecosystem and climate change. (author)

  11. An All-Sky Portable (ASP) Optical Catalogue

    Science.gov (United States)

    Flesch, Eric Wim

    2017-06-01

    This optical catalogue combines the all-sky USNO-B1.0/A1.0 and most-sky APM catalogues, plus overlays of SDSS optical data, into a single all-sky map presented in a sparse binary format that is easily downloaded at 9 Gb zipped. Total count is 1 163 237 190 sources and each has J2000 astrometry, red and blue magnitudes with PSFs and variability indicator, and flags for proper motion, epoch, and source survey and catalogue for each of the photometry and astrometry. The catalogue is available on http://quasars.org/asp.html, and additional data for this paper is available at http://dx.doi.org/10.4225/50/5807fbc12595f.

  12. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  13. Analysis of direct to diffuse partitioning of global solar irradiance at the radiometric station in Badajoz (Spain)

    Science.gov (United States)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2010-09-01

    This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the

  14. The Next Spaceflight Solar Irradiance Sensor: TSIS

    Science.gov (United States)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  15. Inter-comparison of different models for estimating clear sky solar global radiation for the Negev region of Israel

    International Nuclear Information System (INIS)

    Ianetz, Amiran; Lyubansky, Vera; Setter, Ilan; Kriheli, Boris; Evseev, Efim G.; Kudish, Avraham I.

    2007-01-01

    Solar global radiation is a function of solar altitude, site altitude, albedo, atmospheric transparency and cloudiness, whereas solar global radiation on a clear day is defined such that it is a function of all the abovementioned parameters except cloudiness. Consequently, analysis of the relative magnitudes of solar global radiation and solar global radiation on a clear day provides a platform for studying the influence of cloudiness on solar global radiation. The Iqbal filter for determining the day type has been utilized to calculate the monthly average clear day solar global radiation at three sites in the Negev region of Israel. An inter-comparison between four models for estimating clear sky solar global radiation at the three sites was made. The relative accuracy of the four models was determined by comparing the monthly average daily clear sky solar global radiation to that determined using the Iqbal filter. The analysis was performed on databases consisting of measurements made during the time interval of January 1991 to December 2004. The monthly average daily clear sky solar global radiation determined by the Berlynd model was found to give the best agreement with that determined using the Iqbal filter. The Berlynd model was then utilized to calculate a daily clear day index, K c , which is defined as the ratio of the daily solar global radiation to the daily clear day solar global radiation. It is suggested that this index be used as an indication of the degree of cloudiness. Linear regression analysis was performed on the individual monthly databases for each site to determine the correlation between the daily clear day index and the daily clearness index, K T

  16. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  17. Comparison of several databases of downward solar daily irradiation data at ocean surface with PIRATA measurements

    Science.gov (United States)

    Trolliet, Mélodie; Wald, Lucien

    2017-04-01

    The solar radiation impinging at sea surface is an essential variable in climate system. There are several means to assess the daily irradiation at surface, such as pyranometers aboard ship or on buoys, meteorological re-analyses and satellite-derived databases. Among the latter, assessments made from the series of geostationary Meteosat satellites offer synoptic views of the tropical and equatorial Atlantic Ocean every 15 min with a spatial resolution of approximately 5 km. Such Meteosat-derived databases are fairly recent and the quality of the estimates of the daily irradiation must be established. Efforts have been made for the land masses and must be repeated for the Atlantic Ocean. The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) network of moorings in the Tropical Atlantic Ocean is considered as a reference for oceanographic data. It consists in 17 long-term Autonomous Temperature Line Acquisition System (ATLAS) buoys equipped with sensors to measure near-surface meteorological and subsurface oceanic parameters, including downward solar irradiation. Corrected downward solar daily irradiation from PIRATA were downloaded from the NOAA web site and were compared to several databases: CAMS RAD, HelioClim-1, HelioClim-3 v4 and HelioClim-3 v5. CAMS-RAD, the CAMS radiation service, combines products of the Copernicus Atmosphere Monitoring Service (CAMS) on gaseous content and aerosols in the atmosphere together with cloud optical properties deduced every 15 min from Meteosat imagery to supply estimates of the solar irradiation. Part of this service is the McClear clear sky model that provides estimates of the solar irradiation that should be observed in cloud-free conditions. The second and third databases are HelioClim-1 and HelioClim-3 v4 that are derived from Meteosat images using the Heliosat-2 method and the ESRA clear sky model, based on the Linke turbidity factor. HelioClim-3 v5 is the fourth database and differs from v4 by the

  18. Gaia , an all sky astrometric and photometric survey

    International Nuclear Information System (INIS)

    Carrasco, J.M.

    2017-01-01

    Gaia space mission includes a low resolution spectroscopic instrument to classify and parametrize the observed sources. Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full mission. The data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for future on-ground and space projects (LSST, PLATO, EUCLID, ...). This work addresses the exploitation of the Gaia spectrophotometry as standard photometry reference through the discussion of the sky coverage, the spectrophotometric precision and the expected uncertainties of the synthetic photometry derived from the low resolution Gaia spectra and photometry.

  19. TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY

    International Nuclear Information System (INIS)

    Bilicki, Maciej; Jarrett, Thomas H.; Cluver, Michelle E.; Steward, Louise; Peacock, John A.

    2014-01-01

    Key cosmological applications require the three-dimensional (3D) galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow, and testing the Copernican principle. However, the largest all-sky redshift surveys—the 2MASS Redshift Survey and IRAS Point Source Catalog Redshift Survey—have median redshifts of only z = 0.03 and sample the very local universe. All-sky galaxy catalogs exist that reach much deeper—SuperCOSMOS in the optical, the Two Micron All Sky Survey (2MASS) in the near-IR, and WISE in the mid-IR—but these lack complete redshift information. At present, the only rapid way toward larger 3D catalogs covering the whole sky is through photometric redshift techniques. In this paper we present the 2MASS Photometric Redshift catalog (2MPZ) containing one million galaxies, constructed by cross-matching Two Micron All Sky Survey Extended Source Catalog (2MASS XSC), WISE, and SuperCOSMOS all-sky samples and employing the artificial neural network approach (the ANNz algorithm), trained on such redshift surveys as the Sloan Digital Sky Survey, 6dFGS, and 2dFGRS. The derived photometric redshifts have errors nearly independent of distance, with an all-sky accuracy of σ z = 0.015 and a very small percentage of outliers. In this way, we obtain redshift estimates with a typical precision of 12% for all the 2MASS XSC galaxies that lack spectroscopy. In addition, we have made an early effort toward probing the entire 3D sky beyond 2MASS, by pairing up WISE with SuperCOSMOS and training the ANNz on GAMA redshift data currently reaching to z med ∼ 0.2. This has yielded photo-z accuracies comparable to those in the 2MPZ. These all-sky photo-z catalogs, with a median z ∼ 0.1 for the 2MPZ, and significantly deeper for future WISE-based samples, will be the largest and most complete of their kind for the foreseeable future

  20. Weather and atmosphere observation with the ATOM all-sky camera

    Directory of Open Access Journals (Sweden)

    Jankowsky Felix

    2015-01-01

    Full Text Available The Automatic Telescope for Optical Monitoring (ATOM for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.

  1. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  2. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    Science.gov (United States)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  3. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Science.gov (United States)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  4. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  5. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    Science.gov (United States)

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The SPHEREx All-Sky Spectral Survey

    Science.gov (United States)

    Bock, James; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, with a single instrument, a wide-field spectral imager. SPHEREx will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power in two deep fields located near the ecliptic poles. Following in the tradition of all-sky missions such as IRAS, COBE and WISE, SPHEREx will be the first all-sky near-infrared spectral survey. SPHEREx will create spectra (0.75 – 4.2 um at R = 41; and 4.2 – 5 um at R = 135) with high sensitivity making background-limited observations using a passively-cooled telescope with a wide field-of-view for large mapping speed. During its two-year mission, SPHEREx will produce four complete all-sky maps that will serve as a rich archive for the astronomy community. With over a billion detected galaxies, hundreds of millions of high-quality stellar and galactic spectra, and over a million ice absorption spectra, the archive will enable diverse scientific investigations including studies of young stellar systems, brown dwarfs, high-redshift quasars, galaxy clusters, the interstellar medium, asteroids and comets. All aspects of the instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. SPHEREx is a partnership between Caltech and JPL, following the

  7. Solar surface magnetism and irradiance on time scales

    NARCIS (Netherlands)

    Domingo, V.; Ermolli, I.; Fox, P.; Fröhlich, C.; Haberreiter, M.; Krivova, N.; Kopp, G.; Schmutz, W.; Solanki, S.K.; Spruit, H.C.; Unruh, Y.C.; Vögler, A.

    2009-01-01

    The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance

  8. Analysis of Global Horizontal Irradiance in Version 3 of the National Solar Radiation Database.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford; Martin, Curtis E.; Guay, Nathan Gene

    2015-09-01

    We report an analysis that compares global horizontal irradiance (GHI) estimates from version 3 of the National Solar Radiation Database (NSRDB v3) with surface measurements of GHI at a wide variety of locations over the period spanning from 2005 to 2012. The NSRDB v3 estimate of GHI are derived from the Physical Solar Model (PSM) which employs physics-based models to estimate GHI from measurements of reflected visible and infrared irradiance collected by Geostationary Operational Environment Satellites (GOES) and several other data sources. Because the ground measurements themselves are uncertain our analysis does not establish the absolute accuracy for PSM GHI. However by examining the comparison for trends and for consistency across a large number of sites, we may establish a level of confidence in PSM GHI and identify conditions which indicate opportunities to improve PSM. We focus our evaluation on annual and monthly insolation because these quantities directly relate to prediction of energy production from solar power systems. We find that generally, PSM GHI exhibits a bias towards overestimating insolation, on the order of 5% when all sky conditions are considered, and somewhat less (-3%) when only clear sky conditions are considered. The biases persist across multiple years and are evident at many locations. In our opinion the bias originates with PSM and we view as less credible that the bias stems from calibration drift or soiling of ground instruments. We observe that PSM GHI may significantly underestimate monthly insolation in locations subject to broad snow cover. We found examples of days where PSM GHI apparently misidentified snow cover as clouds, resulting in significant underestimates of GHI during these days and hence leading to substantial understatement of monthly insolation. Analysis of PSM GHI in adjacent pixels shows that the level of agreement between PSM GHI and ground data can vary substantially over distances on the order of 2 km. We

  9. The "All Sky Camera Network"

    Science.gov (United States)

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  10. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  11. STARS4ALL Night Sky Brightness Photometer

    Directory of Open Access Journals (Sweden)

    Jaime Zamorano

    2017-06-01

    Full Text Available We present the main features of TESS-W, the first version of a series of inexpensive but reliable photometers that will be used to measure night sky brightness. The bandpass is extended to the red with respect of that of the Sky Quality Meter (SQM. TESS-W connects to a router via WIFI and it sends automatically the brightness values to a data repository using Internet of Things protocols. The device includes an infrared sensor to estimate the cloud coverage. It is designed for fixed stations to monitor the evolution of the sky brightness. The photometer could also be used in local mode connected to a computer or tablet to gather data from a moving vehicle. The photometer is being developed within STARS4ALL project, a collective awareness platform for promoting dark skies in Europe, funded by the EU. We intend to extend the existing professional networks to a citizen-based network of photometers. 

  12. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  13. The cloud effects on UV irradiance modeled in Antarctica

    International Nuclear Information System (INIS)

    Rafanelli, C.; Anav, A.; Ciattaglia, L.; Di Menno, I.; Di Menno, M.; Araujo, J.; Ochoa, H.; Rodriguez, H.

    2004-01-01

    Full text: The measurement of solar UV radiation in Antarctica is very important in order to obtain information about Ozone level, and many spectro radiometers are installed in the area to perform this task. Usually, their use is very difficult in harsh environment like Southern polar regions, and several multichannel radiometers have been installed. The evaluation of the irradiance and total ozone levels are done using analytical models. A new semi-analytical method to estimate the solar UV irradiance at ground, named WL4UV, was developed. Using spectral irradiance values at 4 selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm), the solar UV irradiance at ground is evaluated with low percent of error. The applicability of the method has been tested for clear sky but such conditions are not common in Antarctic. This work investigate the applicability of the WL4UV model under cloudy sky conditions. The 4 irradiance necessary for the model were selected from spectrophotometer Brewer measurements carried out in the Argentinean Belgrano II base (77 degrees 52' S and 34 degrees 38' W). Other tests using spectrophotometers, Brewer and SUV 100, located in Ushuaia, (54 degrees 50' S and 68 degrees 19' W), were also too. This project was funded by the PNRA, IIA-DNA and CADIC for funding and supporting the activities. They thank also all the Brewer operators that in these years spent their time in the management of the instrument. Last but not the least they thank all IIA-DNA personnel for the professional help they put in carrying out the activities in all these years. (author)

  14. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  15. Solar Radiation Forecasting, Accounting for Daily Variability

    Directory of Open Access Journals (Sweden)

    Roberto Langella

    2016-03-01

    Full Text Available Radiation forecast accounting for daily and instantaneous variability was pursued by means of a new bi-parametric statistical model that builds on a model previously proposed by the same authors. The statistical model is developed with direct reference to the Liu-Jordan clear sky theoretical expression but is not bound by a specific clear sky model; it accounts separately for the mean daily variability and for the variation of solar irradiance during the day by means of two corrective parameters. This new proposal allows for a better understanding of the physical phenomena and improves the effectiveness of statistical characterization and subsequent simulation of the introduced parameters to generate a synthetic solar irradiance time series. Furthermore, the analysis of the experimental distributions of the two parameters’ data was developed, obtaining opportune fittings by means of parametric analytical distributions or mixtures of more than one distribution. Finally, the model was further improved toward the inclusion of weather prediction information in the solar irradiance forecasting stage, from the perspective of overcoming the limitations of purely statistical approaches and implementing a new tool in the frame of solar irradiance prediction accounting for weather predictions over different time horizons.

  16. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2015-01-01

    Full Text Available Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest TRF, Guinea savannah GS, Sahel savannah SHS, Sudan savannah SUS, and Mangrove swamp forest MSF was analyzed. To justify its use, the satellite data was tested for goodness of agreement with ground measured solar radiation data using 26-year mean monthly and daily data over 16 locations in the 5 climatic zones. The well-known R2, RMSE, MBE, and MPE statistical tests were used and good agreement was found. The 25 locations were grouped into the 5 climatic zones. Frequency distribution of global solar irradiance was done for each of the climatic zones. This showed that 46.88%, and 40.6% of the number of days (9794 over TRF and MSF, respectively, had irradiation within the range of 15.01–20.01 MJ/m2/day. For the GS, SHS, and SUS, 46.19%, 55.84% and 58.53% of the days had total irradiation within the range of 20.01–25.01 MJ/m2/day, respectively. Generally, in all the climatic zones, coefficients of variation of solar radiation were high and mean values were low in July and August. Contour maps showed that high and low values of global solar irradiance and clearness index were observed in the Northern and Southern locations of Nigeria, respectively.

  17. Ionospheric Change and Solar EUV Irradiance

    Science.gov (United States)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  18. Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems

    Directory of Open Access Journals (Sweden)

    Hussein Al-Taani

    2018-02-01

    Full Text Available Solar irradiance measurement is a key component in estimating solar irradiation, which is necessary and essential to design sustainable energy systems such as photovoltaic (PV systems. The measurement is typically done with sophisticated devices designed for this purpose. In this paper we propose a smartphone-aided setup to estimate the solar irradiance in a certain location. The setup is accessible, easy to use and cost-effective. The method we propose does not have the accuracy of an irradiance meter of high precision but has the advantage of being readily accessible on any smartphone. It could serve as a quick tool to estimate irradiance measurements in the preliminary stages of PV systems design. Furthermore, it could act as a cost-effective educational tool in sustainable energy courses where understanding solar radiation variations is an important aspect.

  19. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    Energy Technology Data Exchange (ETDEWEB)

    Feister, Uwe [German Meteorological Service, Meteorological Observatory Lindenberg - Richard-Assmann-Observatory, Am Observatorium 12, 15848 Lindenberg (Germany); Meyer, Gabriele; Kirst, Ulrich [German Social Accident Insurance Institution for Transport and Traffic, Ottenser Hauptstrasse 54, 22765 Hamburg (Germany)

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  20. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  1. A hybrid system for solar irradiance specification

    Science.gov (United States)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  2. 2014 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2013-01-01

    Compact, easy to use and reliable, this popular guide contains everything you need to know about the southern night sky with monthly astronomy maps, viewing tips and highlights, and details of all the year's exciting celestial events. Wherever you are in Australia or New Zealand, easy calculations allow you to estimate local rise and set times for the Sun, Moon and planets. The 2014 Australasian Sky Guide also provides information on the solar system, updated with the latest findings from space probes. Published annually since 1991, the Sky Guide continues to be a favourite with photographers,

  3. THE TOTAL SOLAR IRRADIANCE CLIMATE DATA RECORD

    Energy Technology Data Exchange (ETDEWEB)

    Dewitte, Steven; Nevens, Stijn [Royal Meteorological Institute of Belgium, Ringlaan 3, B-1180 Brussels (Belgium)

    2016-10-10

    We present the composite measurements of total solar irradiance (TSI) as measured by an ensemble of space instruments. The measurements of the individual instruments are put on a common absolute scale, and their quality is assessed by intercomparison. The composite time series is the average of all available measurements. From 1984 April to the present the TSI shows a variation in phase with the 11 yr solar cycle and no significant changes of the quiet-Sun level in between the three covered solar minima.

  4. The Solar Ultraviolet Environment at the Ocean.

    Science.gov (United States)

    Mobley, Curtis D; Diffey, Brian L

    2018-05-01

    Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for 10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.

  5. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    Science.gov (United States)

    DeMeo, F. E.; Carry, B.

    2013-09-01

    The distribution of asteroids across the main belt has been studied for decades to understand the current compositional distribution and what that tells us about the formation and evolution of our Solar System. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Binzel (Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 146-177) and Bus-DeMeo et al. (DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J. [2009]. Icarus 202(July), 160-180) systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous work such as by Mothé-Diniz et al. (Mothé-Diniz, T., Carvano, J.M.Á., Lazzaro, D. [2003]. Icarus 162(March), 10-21). Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer Solar System into the inner Solar System during planetary migration (Levison, H.F., Bottke, W.F., Gounelle, M., Morbidelli, A., Nesvorný, D., Tsiganis, K. [2009]. Nature 460(July), 364-366). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner Solar System. The main belt’s most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive

  6. A solar radiation database for Chile.

    Science.gov (United States)

    Molina, Alejandra; Falvey, Mark; Rondanelli, Roberto

    2017-11-01

    Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of "solar climates" due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.

  7. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  8. Measurements and modeling of total solar irradiance in X-class solar flares

    International Nuclear Information System (INIS)

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  9. The effect of asymmetric solar wind on the Lyman α sky background

    International Nuclear Information System (INIS)

    Joselyn, J.A.; Holzer, T.E.

    1975-01-01

    The Lyman α (Ly α) sky background arises from the scattering of solar Ly α from a spatial distribution of neutral hydrogen in interplanetary space. This distribution is partially determined by the solar wind proton flux, which provides the principal mechanism of loss by charge exchange of the neutral hydrogen. By generating isophotal maps of scattered Ly α for several choices of interstellar wind direction and solar wind proton flux distributions, the results show that latitudinal variations of the solar wind proton flux can have a significant effect on the observed location and shape of the Ly α intensity maximum. This fact should aid in the interpretation of Ly α maps and also indicates a possible method for inferring values for the average solar wind proton flux out of the ecliptic plane

  10. SORCE Level 3 Total Solar Irradiance Daily Average V016

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Solar Irradiance (TSI) data set SOR3TSID contains the total solar irradiance (a.k.a solar constant) data collected by the Total Irradiance Monitor (TIM)...

  11. Solar Irradiance & On Grid Solar Power Systems with Net Metering in Pakistan

    Directory of Open Access Journals (Sweden)

    Haleema Qamar

    2016-06-01

    Full Text Available This paper presents a case study of solar irradiance and scope of on-grid solar power systems with net-metering in Pakistan. Detailed analysis of solar irradiance in Pakistan is being carried out by developing the dedicated solar excel sheets. The need of on grid solar power systems for the present energy crisis in developing countries like Pakistan is also discussed. It also presents the inclination of many countries especially USA and Europe towards it. Identification of barriers for implementing on grid net metered solar power systems in Pakistan along with solutions of these barriers is carried out.

  12. Forecast Method of Solar Irradiance with Just-In-Time Modeling

    Science.gov (United States)

    Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi

    PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.

  13. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  14. A Lookup-Table-Based Approach to Estimating Surface Solar Irradiance from Geostationary and Polar-Orbiting Satellite Data

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2018-03-01

    Full Text Available Incoming surface solar irradiance (SSI is essential for calculating Earth’s surface radiation budget and is a key parameter for terrestrial ecological modeling and climate change research. Remote sensing images from geostationary and polar-orbiting satellites provide an opportunity for SSI estimation through directly retrieving atmospheric and land-surface parameters. This paper presents a new scheme for estimating SSI from the visible and infrared channels of geostationary meteorological and polar-orbiting satellite data. Aerosol optical thickness and cloud microphysical parameters were retrieved from Geostationary Operational Environmental Satellite (GOES system images by interpolating lookup tables of clear and cloudy skies, respectively. SSI was estimated using pre-calculated offline lookup tables with different atmospheric input data of clear and cloudy skies. The lookup tables were created via the comprehensive radiative transfer model, Santa Barbara Discrete Ordinate Radiative Transfer (SBDART, to balance computational efficiency and accuracy. The atmospheric attenuation effects considered in our approach were water vapor absorption and aerosol extinction for clear skies, while cloud parameters were the only atmospheric input for cloudy-sky SSI estimation. The approach was validated using one-year pyranometer measurements from seven stations in the SURFRAD (SURFace RADiation budget network. The results of the comparison for 2012 showed that the estimated SSI agreed with ground measurements with correlation coefficients of 0.94, 0.69, and 0.89 with a bias of 26.4 W/m2, −5.9 W/m2, and 14.9 W/m2 for clear-sky, cloudy-sky, and all-sky conditions, respectively. The overall root mean square error (RMSE of instantaneous SSI was 80.0 W/m2 (16.8%, 127.6 W/m2 (55.1%, and 99.5 W/m2 (25.5% for clear-sky, cloudy-sky (overcast sky and partly cloudy sky, and all-sky (clear-sky and cloudy-sky conditions, respectively. A comparison with other state

  15. Fireballs in the Sky

    Science.gov (United States)

    Day, B. H.; Bland, P.

    2016-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly app. To date, more than 23,000 people have downloaded the app world-wide and participated in planetary science. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  16. Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)

    Science.gov (United States)

    Cole, G. M.

    2017-12-01

    (Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  17. Sky cover from MFRSR observations

    Directory of Open Access Journals (Sweden)

    E. Kassianov

    2011-07-01

    Full Text Available The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their modeled clear-sky counterparts are the main components of a new method for estimating the fractional sky cover of different cloud types, including cumuli. The performance of this method is illustrated using 1-min resolution data from a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR. The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM Climate Research Facility (ACRF Southern Great Plains (SGP site during the summer of 2007 and represent 13 days with cumuli. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  18. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Directory of Open Access Journals (Sweden)

    M. Hess

    2008-07-01

    Full Text Available A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  19. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Science.gov (United States)

    Hess, M.; Koepke, P.

    2008-07-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  20. Retrieval of Garstang's emission function from all-sky camera images

    Science.gov (United States)

    Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio; Kundracik, František

    2015-10-01

    The emission function from ground-based light sources predetermines the skyglow features to a large extent, while most mathematical models that are used to predict the night sky brightness require the information on this function. The radiant intensity distribution on a clear sky is experimentally determined as a function of zenith angle using the theoretical approach published only recently in MNRAS, 439, 3405-3413. We have made the experiments in two localities in Slovakia and Mexico by means of two digital single lens reflex professional cameras operating with different lenses that limit the system's field-of-view to either 180º or 167º. The purpose of using two cameras was to identify variances between two different apertures. Images are taken at different distances from an artificial light source (a city) with intention to determine the ratio of zenith radiance relative to horizontal irradiance. Subsequently, the information on the fraction of the light radiated directly into the upward hemisphere (F) is extracted. The results show that inexpensive devices can properly identify the upward emissions with adequate reliability as long as the clear sky radiance distribution is dominated by a largest ground-based light source. Highly unstable turbidity conditions can also make the parameter F difficult to find or even impossible to retrieve. The measurements at low elevation angles should be avoided due to a potentially parasitic effect of direct light emissions from luminaires surrounding the measuring site.

  1. Gaia, an all-sky survey for standard photometry

    Science.gov (United States)

    Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.

    2017-03-01

    Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.

  2. Clear-sky irradiance simulation using GMAO products and its comparison to ground and CERES satellite observation

    Science.gov (United States)

    Ham, S. H.; Loeb, N. G.; Kato, S.; Rose, F. G.; Bosilovich, M. G.; Rutan, D. A.; Huang, X.; Collow, A.

    2017-12-01

    Global Modeling Assimilation Office (GMAO) GEOS assimilated datasets are used to describe temperature and humidity profiles in the Clouds and the Earth's Radiant Energy System (CERES) data processing. Given that advance versions of the assimilated data sets known as of Forward Processing (FP), FP Parallel (FPP), and Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) datasets are available, we examine clear-sky irradiance calculation to see if accuracy is improved with these newer versions of GMAO datasets when their temperature and humidity profiles are used in computing irradiances. Two older versions, GEOS-5.2.0 and GEOS-5.4.1 are used for producing, respectively, Ed3 and Ed4 CERES data products. For the evaluation, CERES-derived TOA irradiances and observed ground-based surface irradiances are compared with the computed irradiances for clear skies identified by Moderate Resolution Imaging Spectroradiometer (MODIS). Surface type dependent spectral emissivity is taken from an observationally-based monthly gridded emissivity dataset. TOA longwave (LW) irradiances computed with GOES-5.2.0 temperature and humidity profiles are biased low, up to -5 Wm-2, compared to CERES-derived TOA longwave irradiance over tropical oceans. In contrast, computed longwave irradiances agree well with CERES observations with the biases less than 2 W m-2 when GOES-5.4.1, FP v5.13, or MERRA-2 temperature and humidity are used. The negative biases of the TOA LW irradiance computed with GOES-5.2.0 appear to be related to a wet bias at 500-850 hPa layer. This indicates that if the input of CERES algorithm switches from GOES-5.2.0 to FP v5.13 or MERRA-2, the bias in clear-sky longwave TOA fluxes over tropical oceans is expected to be smaller. At surface, downward LW irradiances computed with FP v5.13 and MERRA-2 are biased low, up to -10 Wm-2, compared to ground observations over tropical oceans. The magnitude of the bias in the longwave surface irradiances

  3. Planck 2013 results. XI. All-sky model of thermal dust emission

    DEFF Research Database (Denmark)

    Abergel, A.; Ade, P. A. R.; Aghanim, N.

    2014-01-01

    This paper presents an all-sky model of dust emission from the Planck 353, 545, and 857 GHz, and IRAS 100 mu m data. Using a modified blackbody fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a good repr...

  4. Ultraviolet irradiance of inclined planes at the top of plant canopies

    International Nuclear Information System (INIS)

    Grant, R.H.

    1998-01-01

    The potential increase in ultraviolet-B (UV-B) irradiance and potential decrease in productivity of agricultural crops due to stratospheric ozone loss requires knowledge of the characteristics of UV irradiance above and within crops. Measurements of UV irradiance at the top of two crops were made during the growing seasons of 1990 and 1991. Maximum levels of irradiance relative to the horizontal (I s ) did not occur at slopes equal to the solar elevation angle, but typically occurred at slopes closer to the horizontal due to the high diffuse fraction in the UV. In general, I s for the UV tends to be smaller than that for the total short wave solar radiation (SW) as a result of the greater diffuse fraction in the UV over that for the SW. Results also showed that the UV I s over the maize and winter wheat canopies are similar. The measured I s was compared against inclined plane I s models incorporating either an isotropic or anisotropic sky radiance model. The anisotropic sky model was more accurate than the isotropic model for predicting the measured I s for planes inclined at any angle. The isotropic model was, however, found adequate to describe I s for azimuthally-invariate distributions of inclined planes typical of many canopy radiation models. Corrections for the anisotropy of the sky radiation were developed to be applied to the diffuse sky radiation term in the isotropic model to estimate the relative irradiance for specific azimuths. Using the anisotropy correction factors in a simple analytic model of irradiance improved the isotropic I s estimates by 7% (accounting for 97% of the measured I s variance). A set of functions were developed to provide analytic solutions for the anisotropy factor. The irradiance model can be used to predict the influence of orientation of plant, animal, or human surfaces on the received global UV-B irradiance above most plant canopies under clear skies. (author)

  5. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    OpenAIRE

    Hess, M.; Koepke, P.

    2008-01-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy...

  6. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  7. Continuing the Total and Spectral Solar Irradiance Climate Data Record

    Science.gov (United States)

    Coddington, O.; Pilewskie, P.; Kopp, G.; Richard, E. C.; Sparn, T.; Woods, T. N.

    2017-12-01

    Radiative energy from the Sun establishes the basic climate of the Earth's surface and atmosphere and defines the terrestrial environment that supports all life on the planet. External solar variability on a wide range of scales ubiquitously affects the Earth system, and combines with internal forcings, including anthropogenic changes in greenhouse gases and aerosols, and natural modes such as ENSO, and volcanic forcing, to define past, present, and future climates. Understanding these effects requires continuous measurements of total and spectrally resolved solar irradiance that meet the stringent requirements of climate-quality accuracy and stability over time. The current uninterrupted 39-year total solar irradiance (TSI) climate data record is the result of several overlapping instruments flown on different missions. Measurement continuity, required to link successive instruments to the existing data record to discern long-term trends makes this important climate data record susceptible to loss in the event of a gap in measurements. While improvements in future instrument accuracy will reduce the risk of a gap, the 2017 launch of TSIS-1 ensures continuity of the solar irradiance record into the next decade. There are scientific and programmatic motivations for addressing the challenges of maintaining the solar irradiance data record beyond TSIS-1. The science rests on well-founded requirements of establishing a trusted climate observing network that can monitor trends in fundamental climate variables. Programmatically, the long-term monitoring of solar irradiance must be balanced within the broader goals of NASA Earth Science. New concepts for a low-risk, cost efficient observing strategy is a priority. New highly capable small spacecraft, low-cost launch vehicles and a multi-decadal plan to provide overlapping TSI and SSI data records are components of a low risk/high reliability plan with lower annual cost than past implementations. This paper provides the

  8. The SPHEREx All-Sky Spectroscopic Survey

    Science.gov (United States)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    Science.gov (United States)

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  10. TCTE Level 3 Total Solar Irradiance Daily Means V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Solar Irradiance (TSI) Calibration Transfer Experiment (TCTE) data set TCTE3TSID contains daily averaged total solar irradiance (a.k.a solar constant) data...

  11. 2MASS - The 2 Micron All Sky Survey

    Science.gov (United States)

    Kleinmann, S. G.

    1992-01-01

    This paper describes a new sky survey to be carried out in three wavebands, J(1.25 m), H(1.65 m), and K(2.2 m). The limiting sensitivity of the survey, 10 sigma detection of point sources with K not greater than 14 mag, coupled with its all-sky coverage, were selected primarily to support studies of the large-scale structure of the Milky Way and the Local Universe. The survey requires construction of a pair of observing facilities, one each for the Northern and Southern Hemispheres. Operations are scheduled to begin in 1995. The data will begin becoming publicly available soon thereafter.

  12. Exposure amount and timing of solar irradiation during pregnancy and the risk of sensitization in children.

    Science.gov (United States)

    Koh, Hyun Yong; Cho, Eunhae; Lee, So-Yeon; Kim, Woo Kyung; Park, Yong Mean; Kim, Jihyun; Ahn, Kangmo; Lee, Seung Won; Kim, Mi Ae; Hahm, Myung-Il; Chae, Yoomi; Lee, Kee-Jae; Kwon, Ho-Jang; Han, Man Yong

    2018-04-01

    Solar irradiation affects sensitization to aeroallergens and the prevalence of allergic diseases. Little is known, however, about how the time and amount of solar irradiation during pregnancy affects such risks in children. We aimed to find out how solar irradiation during pregnancy affects sensitization to aero-allergens and the prevalence of allergic diseases in children. This population-based cross-sectional study involved 7301 aged 6 years and aged 12 years children. Maternal exposure to solar irradiation during pregnancy was evaluated using data from weather stations closest to each child's birthplace. Monthly average solar irradiation during the second and third trimesters was calculated with rank by quartiles. Risks of allergic sensitization and allergic disease were estimated. Relative to the first (lowest) quartile, the adjusted odds ratio (aOR) for allergic sensitization in the fourth (highest) quartile was lowest within solar irradiation during pregnancy months 5-6 (aOR = 0.823, 95% CI 0.720-0.942, p solar irradiation (aOR = 1.167, 95% CI 1.022-1.333, p solar irradiation was analyzed as a continuous variable during months 5 (aOR = 0.975, 95% CI 0.962-0.989, p solar irradiation during months 7-8 increased the risk of asthma (aOR = 1.309, 95% CI 1.024-1.674, p = 0.032). Maternal exposure to solar irradiation during the second trimester of pregnancy associated with reduced aeroallergen sensitization, whereas solar irradiation during the third trimester was related to increased sensitization to aeroallergens. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  13. Response of Solar Irradiance to Sunspot-area Variations

    Science.gov (United States)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  14. Spectral and Spatial UV Sky Radiance Measurements at a Seaside Resort Under Clear Sky and Slightly Overcast Conditions.

    Science.gov (United States)

    Sandmann, Henner; Stick, Carsten

    2014-01-01

    Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes. © 2013 The American Society of Photobiology.

  15. Short-term solar irradiation forecasting based on Dynamic Harmonic Regression

    International Nuclear Information System (INIS)

    Trapero, Juan R.; Kourentzes, Nikolaos; Martin, A.

    2015-01-01

    Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed

  16. New solar irradiances for use in space research

    Science.gov (United States)

    Tobiska, W.; Bouwer, D.; Jones, A.

    Space environment research applications require solar irradiances in a variety of time scales and spectral formats We describe the development of research grade modeled solar irradiances using four models and systems that are also used for space weather operations The four models systems include SOLAR2000 S2K SOLARFLARE SFLR APEX and IDAR which are used by Space Environment Technologies SET to provide solar irradiances from the soft X-rays through the visible spectrum SFLR uses the GOES 0 1--0 8 nm X-rays in combination with a Mewe model subroutine to provide 0 1--30 0 nm irradiances at 0 1 nm spectral resolution at 1 minute time resolution and in a 6-hour XUV--EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances in the S2K model There are additional developments with S2K that we discuss particularly the method by which S2K is emerging as a hybrid model empirical plus physics-based and real-time data integration platform Numerous new solar indices have been recently developed for the operations community and we describe their inclusion in S2K The APEX system is a real-time data retrieval system developed under contract to the University of Southern California Space Sciences Center SSC to provide SOHO SEM data processing and distribution SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community We

  17. The Sondrestrom Research Facility All-sky Imagers

    Science.gov (United States)

    Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.

    2010-12-01

    The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom

  18. Models of Solar Irradiance Variations: Current Status Natalie A ...

    Indian Academy of Sciences (India)

    Abstract. Regular monitoring of solar irradiance has been carried out since 1978 to show that solar total and spectral irradiance varies at different time scales. Whereas variations on time scales of minutes to hours are due to solar oscillations and granulation, variations on longer time scales are driven by the evolution of the ...

  19. Quality assessment of solar UV irradiance measured with array spectroradiometers

    Science.gov (United States)

    Egli, Luca; Gröbner, Julian; Hülsen, Gregor; Bachmann, Luciano; Blumthaler, Mario; Dubard, Jimmy; Khazova, Marina; Kift, Richard; Hoogendijk, Kees; Serrano, Antonio; Smedley, Andrew; Vilaplana, José-Manuel

    2016-04-01

    The reliable quantification of ultraviolet (UV) radiation at the earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance measurements. Within the European EMRP ENV03 project "Solar UV", new devices, guidelines and characterization methods have been developed to improve solar UV measurements with ASRMs, and support to the end user community has been provided. In order to assess the quality of 14 end user ASRMs, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the blind intercomparison revealed that ASRMs, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema-weighted UV index - in particular at large solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available ASRMs within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range of solar zenith angles. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 and 400 nm under all atmospheric conditions.

  20. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra for Applications in Solar Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jessen, Wilko [German Aerospace Center (DLR); Wilbert, Stefan [German Aerospace Center (DLR); Gueymard, Christian A. [Solar Consulting Services; Polo, Jesus [CIEMAT; Bian, Zeqiang [China Meteorological Administration; Driesse, Anton [Photovoltaic Performance Labs; Marzo, Aitor [University of Antofagasta; Armstrong, Peter [Masdar Institute of Science & Technology; Vignola, Frank [University of Oregon; Ramirez, Lourdes [CIEMAT

    2018-04-01

    Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of this ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches

  1. Planck 2013 results. XI. All-sky model of thermal dust emission

    CERN Document Server

    Abergel, A; Aghanim, N; Alina, D; Alves, M I R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cardoso, J -F; Catalano, A; Chamballu, A; Chary, R -R; Chiang, H C; Chiang, L -Y; Christensen, P R; Church, S; Clemens, M; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Grenier, I A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, A H; Jaffe, T R; Jewell, J; Joncas, G; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leonardi, R; León-Tavares, J; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Massardi, M; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Welikala, N; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a tight representation of the data at 5 arcmin. It shows variations of the order of 30 % compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions. An increase of the dust opacity at 353 GHz, tau_353/N_H, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, T_obs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at HI column densities lower than...

  2. Alaskan Auroral All-Sky Images on the World Wide Web

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  3. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Solar control on irradiated Ta2O2 thin films

    International Nuclear Information System (INIS)

    Baydogan, N. D.; Zayim, E. Oe.

    2007-01-01

    Thin films consisting of Ta 2 O 5 have been used in industry in applications related to thin-film capacitors, optical waveguides, and antireflection coatings on solar cells. Ta 2 O 5 films are used for several special applications as highly refractive material and show different optical properties depending on the deposition methods. Sol-gel technique has been used for the preparation of Ta 2 O 5 thin films. Ta 2 O 5 thin films were prepared by sol-gel proses on glass substrates to obtain good quality films. These films were exposed to gamma radiation from Co-60 radioisotope. Ta 2 O 5 coated thin films were placed against the source and irradiated for 8 different gamma doses; between 0.35 and 21.00 kGy at room temperature. Energetic gamma ray can affect the samples and change its colour. On the other hand some of the Ta 2 O 5 coated thin films were irradiated with beta radiation from Sr-90 radioisotope. The effect of gamma irradiation on the solar properties of Ta 2 O 5 films is compared with that of beta irradiation. The solar properties of the irradiated thin films differ significantly from those of the unirradiated ones. After the irradiation of the samples transmittance and reflectance are measured for solar light between 300 and 2100 nm, by using Perkin Elmer Lambda 9 UV/VIS/NIR Spectrophotometer. Change in the direct solar transmittance, reflectance and absorptance with absorbed dose are determined. Using the optical properties, the redistribution of the absorbed component of the solar radiation and the shading coefficient (SC) are calculated as a function of the convective heat-transfer coefficient. Solar parameters are important for the determination of the shading coefficient. When the secondary internal heat transfer factor (qi), direct solar transmittance (□ e ), and solar factor (g) are known, it is possible to determine shading coefficient via the dose rates. The shading coefficient changes as the dose rate is increased. In this study, the shading

  5. LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student Training

    Science.gov (United States)

    2015-09-02

    SECURITY CLASSIFICATION OF: The Low-Frequency All- Sky Monitor (LoFASM) is an innovative new radio astronomy observatory. Designed and built by...Feb-2015 Approved for Public Release; Distribution Unlimited Final Report: LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: LoFASM: A Low Frequency All Sky Monitor for Radio Transients and

  6. Advanced solar irradiances applied to satellite and ionospheric operational systems

    Science.gov (United States)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  7. All-sky radiance simulation of Megha-Tropiques SAPHIR microwave ...

    Indian Academy of Sciences (India)

    used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. ... All-sky radiance simulation; Megha tropiques; microwave SAPHIR sensor; radiative transfer; data ... versions of these non-linear processes (Ohring and.

  8. A methodology for sunlight urban planning: a computer-based solar and sky vault obstruction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fernando Oscar Ruttkay; Silva, Carlos Alejandro Nome [Federal Univ. of Santa Catarina (UFSC), Dept. of Architecture and Urbanism, Florianopolis, SC (Brazil); Turkienikz, Benamy [Federal Univ. of Rio Grande do Sul (UFRGS), Faculty of Architecture, Porto Alegre, RS (Brazil)

    2001-07-01

    The main purpose of the present study is to describe a planning methodology to improve the quality of the built environment based on the rational control of solar radiation and the view of the sky vault. The main criterion used to control the access and obstruction of solar radiation was the concept of desirability and undesirability of solar radiation. A case study for implementing the proposed methodology is developed. Although needing further developments to find its way into regulations and practical applications, the methodology has shown a strong potential to deal with an aspect that otherwise would be almost impossible. (Author)

  9. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  10. Evaluating solar irradiance over facades in high building cities, based on LiDAR technology

    International Nuclear Information System (INIS)

    Martínez-Rubio, A.; Sanz-Adan, F.; Santamaría-Peña, J.; Martínez, Araceli

    2016-01-01

    Highlights: • A method for evaluating solar irradiance over façades in building cities with mutual shading. • It calculates irradiance curves in all building façades, using LiDAR and irradiance information. • Solar irradiation maps of the city buildings are really important for urban planning. • It allows to selection BIPV elements depending of the irradiation in each façade point. • The model can be extrapolated to all the building envelope. - Abstract: Arranging a solar irradiation map of the buildings of a city is a valuable tool for sustainable urban planning in regard to non-carbonized criteria in important applications. Such applications may include: selection of materials for the building envelope and insulation according to the irradiation received at each point; monitoring the installation of photovoltaic systems to ensure that they are located in the optimal irradiance zones; or building restoration to improve the energy efficiency and electric generation. The proposed method enables to estimate the incidence of the solar irradiance as well as to visualize the effect it produces in every region of the buildings that compose the urban area of a city. The process includes the use of Laser Imaging Detection and Ranging (LiDAR) information along with 5-min horizontal irradiance data. This developed algorithm has been verified through being applied to different building envelopes distributed in different geographical areas. The results demonstrate a satisfied performance which makes that the methodology can be extrapolated to any city where the LiDAR Data and irradiance information are available, permitting an accurate analysis of the solar irradiance over the building envelopes. The algorithm succeeds in obtaining a map of solar radiation captured by the envelope of any urban building that estimates the photovoltaic power generation depending on the geographic location and on the influence of shading caused by adjacent buildings. The provided

  11. All-Sky Interferometry with Spherical Harmonic Transit Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.Richard [Canadian Inst. Theor. Astrophys.; Sigurdson, Kris [British Columbia U.; Pen, Ue-Li [Canadian Inst. Theor. Astrophys.; Stebbins, Albert [Fermilab; Sitwell, Michael [British Columbia U.

    2013-02-01

    In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with twenty-first century 21cm science.

  12. Evaluation of sea-surface photosynthetically available radiation algorithms under various sky conditions and solar elevations.

    Science.gov (United States)

    Somayajula, Srikanth Ayyala; Devred, Emmanuel; Bélanger, Simon; Antoine, David; Vellucci, V; Babin, Marcel

    2018-04-20

    In this study, we report on the performance of satellite-based photosynthetically available radiation (PAR) algorithms used in published oceanic primary production models. The performance of these algorithms was evaluated using buoy observations under clear and cloudy skies, and for the particular case of low sun angles typically encountered at high latitudes or at moderate latitudes in winter. The PAR models consisted of (i) the standard one from the NASA-Ocean Biology Processing Group (OBPG), (ii) the Gregg and Carder (GC) semi-analytical clear-sky model, and (iii) look-up-tables based on the Santa Barbara DISORT atmospheric radiative transfer (SBDART) model. Various combinations of atmospheric inputs, empirical cloud corrections, and semi-analytical irradiance models yielded a total of 13 (11 + 2 developed in this study) different PAR products, which were compared with in situ measurements collected at high frequency (15 min) at a buoy site in the Mediterranean Sea (the "BOUée pour l'acquiSition d'une Série Optique à Long termE," or, "BOUSSOLE" site). An objective ranking method applied to the algorithm results indicated that seven PAR products out of 13 were well in agreement with the in situ measurements. Specifically, the OBPG method showed the best overall performance with a root mean square difference (RMSD) (bias) of 19.7% (6.6%) and 10% (6.3%) followed by the look-up-table method with a RMSD (bias) of 25.5% (6.8%) and 9.6% (2.6%) at daily and monthly scales, respectively. Among the four methods based on clear-sky PAR empirically corrected for cloud cover, the Dobson and Smith method consistently underestimated daily PAR while the Budyko formulation overestimated daily PAR. Empirically cloud-corrected methods using cloud fraction (CF) performed better under quasi-clear skies (CF0.7), however, all methods showed larger RMSD differences (biases) ranging between 32% and 80.6% (-54.5%-8.7%). Finally, three methods tested for low sun elevations revealed

  13. Solar flare irradiation records in Antarctic meteorites

    International Nuclear Information System (INIS)

    Goswami, J.N.

    1981-01-01

    Observations of solar flare heavy nuclei tracks in eight Antartic meteorite samples are reported. Two of these were interior specimens from an L-3 chondrite which contained track-rich grains (olivine) indicating their exposure to solar flare irradiation before compaction of the meteorite. Preliminary noble gas data also indicate the presence of solar-type gases. (U.K.)

  14. The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting

    Science.gov (United States)

    Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas

    2016-04-01

    As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared

  15. Measurement and modeling of shortwave irradiance components in cloud-free atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Halthore, R.N.

    1999-08-04

    Atmosphere scatters and absorbs incident solar radiation modifying its spectral content and decreasing its intensity at the surface. It is very useful to classify the earth-atmospheric solar radiation into several components--direct solar surface irradiance (E{sub direct}), diffuse-sky downward surface irradiance (E{sub diffuse}), total surface irradiance, and upwelling flux at the surface and at the top-of-the atmosphere. E{sub direct} depends only on the extinction properties of the atmosphere without regard to details of extinction, namely scattering or absorption; furthermore it can be accurately measured to high accuracy (0.3%) with the aid of an active cavity radiometer (ACR). E{sub diffuse} has relatively larger uncertainties both in its measurement using shaded pyranometers and in model estimates, owing to the difficulty in accurately characterizing pyranometers and in measuring model inputs such as surface reflectance, aerosol single scattering albedo, and phase function. Radiative transfer model simulations of the above surface radiation components in cloud-free skies using measured atmospheric properties show that while E{sub direct} estimates are closer to measurements, E{sub diffuse} is overestimated by an amount larger than the combined uncertainties in model inputs and measurements, illustrating a fundamental gap in the understanding of the magnitude of atmospheric absorption in cloud-free skies. The excess continuum type absorption required to reduce the E{sub diffuse} model overestimate ({approximately}3--8% absorptance) would significantly impact climate prediction and remote sensing. It is not clear at present what the source for this continuum absorption is. Here issues related to measurements and modeling of the surface irradiance components are discussed.

  16. ROTSE All-Sky Surveys for Variable Stars. I. Test Fields

    International Nuclear Information System (INIS)

    Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.

    2000-01-01

    The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between m v = 10.0 and m v = 15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars. (c) (c) 2000. The American Astronomical Society

  17. The generation of hourly diffuse irradiation: A model from the analysis of the fluctuation of global irradiance series

    International Nuclear Information System (INIS)

    Posadillo, R.; Lopez Luque, R.

    2010-01-01

    An analysis of models for the estimation of hourly diffuse irradiation based on the interrelations between the hourly diffuse fraction k d and the hourly clearness index k t , has concluded that k t is not a sufficient variable for parametrizing the effect of clouds on diffuse irradiation. A detailed study of the dispersion recorded by this diffuse component for a specific clearness index under partly cloudy sky conditions has led to analyzing how the variability in the instantaneous clearness index influences this dispersion. The data sets correspond to 10 years of hourly and instantaneous value records of global and diffuse radiation collected in Cordoba, Spain. In addition to the inclusion of the sine of solar elevation as a variable into the k d -k t correlations, this model propose the inclusion of others parameters related to the variability in the normalized clearness index within an hour and with the fluctuations presented by the time series of the instantaneous values of that index. Also presented is the implementation of an algorithm permitting both the determination of the hourly diffuse irradiation and the discrimination between the different sky conditions in those situations known by the designation partly cloudy sky.

  18. Analysis of satellite-derived solar irradiance over the Netherlands

    Science.gov (United States)

    Dirksen, Marieke; Fokke Meirink, Jan; Sluiter, Raymond

    2017-04-01

    Measurements from geostationary satellites allow the retrieval of surface solar irradiance homogeneously over large areas, thereby providing essential information for the solar energy sector. In this paper, the SICCS solar irradiance data record derived from 12 years of Meteosat Second Generation satellite measurements is analysed with a focus on the Netherlands, where the spatial resolution is about 6 by 3 km2. Extensive validation of the SICCS data with pyranometer observations is performed, indicating a bias of approximately 3 W/m2 and RMSE of 11 W/m2 for daily data. Long term averages and seasonal variations of solar irradiance show regional patterns related to the surface type (e.g., coastal waters, forests, cities). The inter-annual variability over the time frame of the data record is quantified. Methods to merge satellite and surface observations into an optimized data record are explored.

  19. Observation of the Coma cluster of galaxies with ROSAT during the all-sky survey

    Science.gov (United States)

    Briel, U. G.; Henry, J. P.; Boehringer, H.

    1992-01-01

    The Coma cluster of galaxies was observed with the position sensitive proportional counter (PSPC) during the ROSAT all sky survey. We find evidence for substructure in this cluster. Diffuse X-ray emission is detected from the regions of the NGC 4839 and 4911 subgroups at 6 percent and 1 percent of the total cluster emission respectively. There may be emission associated with the NGC 4874 and 4889 subgroups as well. The NGC 4839 group appears to be in the process of merging with the cluster. These X-ray data show that at least some of the groups previously found in projection are in fact physical objects possessing potential wells deep enough to trap their own X-ray gas. Because of the unlimited field of view of the all sky survey and the low background of the PSPC, we were able to measure the azimuthally averaged surface brightness of Coma out to approximately 100 arcmin, twice as far as was previously possible. Given the validity of our mass models, these new X-ray data imply that within 5/h(50) Mpc the binding mass of the Coma cluster is 1.8 +/- 0.6 x 10 exp 15/h(50) solar mass, and the fraction of cluster mass contained in hot gas is 0.30 +/- 0.14h(50) exp -3/2. Furthermore, the binding mass is more centrally concentrated than is the X-ray gas.

  20. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  1. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  2. Making of a solar spectral irradiance dataset I: observations, uncertainties, and methods

    Directory of Open Access Journals (Sweden)

    Schöll Micha

    2016-01-01

    Full Text Available Context. Changes in the spectral solar irradiance (SSI are a key driver of the variability of the Earth’s environment, strongly affecting the upper atmosphere, but also impacting climate. However, its measurements have been sparse and of different quality. The “First European Comprehensive Solar Irradiance Data Exploitation project” (SOLID aims at merging the complete set of European irradiance data, complemented by archive data that include data from non-European missions. Aims. As part of SOLID, we present all available space-based SSI measurements, reference spectra, and relevant proxies in a unified format with regular temporal re-gridding, interpolation, gap-filling as well as associated uncertainty estimations. Methods. We apply a coherent methodology to all available SSI datasets. Our pipeline approach consists of the pre-processing of the data, the interpolation of missing data by utilizing the spectral coherency of SSI, the temporal re-gridding of the data, an instrumental outlier detection routine, and a proxy-based interpolation for missing and flagged values. In particular, to detect instrumental outliers, we combine an autoregressive model with proxy data. We independently estimate the precision and stability of each individual dataset and flag all changes due to processing in an accompanying quality mask. Results. We present a unified database of solar activity records with accompanying meta-data and uncertainties. Conclusions. This dataset can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous SSI record.

  3. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.

    Science.gov (United States)

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-11-25

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  4. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor

    Directory of Open Access Journals (Sweden)

    Ching-Chuan Wei

    2016-11-01

    Full Text Available Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi. Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  5. Estimating Solar Irradiation Absorbed by Photovoltaic Panels with Low Concentration Located in Craiova, Romania

    Directory of Open Access Journals (Sweden)

    Ionel L. Alboteanu

    2015-03-01

    Full Text Available Solar irradiation is one of the important parameters that should be taken into consideration for the design and utilization of a photovoltaic system. Usually, the input parameters of a photovoltaic system are solar irradiation, the ambient environment temperature and the wind speed, and as a consequence most photovoltaic systems are equipped with sensors for measuring these parameters. This paper presents several mathematical models for solar irradiation assessment. The starting point is represented by the mathematical model of extraterrestrial irradiation, and resulting finally in the model for solar irradiation, absorbed by a low concentration photovoltaic panel. These estimating models of solar irradiation have been particularized for the Craiova, Romania, and have been verified through numerical simulation. Regarding terrestrial solar irradiation, four mathematical models have been adopted, namely Adnot, Haurwitz, Kasten and Empirical (EIM. Of these, the most appropriate for the Craiova location were the models Adnot and Empirical. Consequently, for the calculation of the solar irradiation absorbed by the photovoltaic (PV panels with low concentration, these models have been taken into consideration. In this study, a comparative analysis was also carried out with respect to the solar irradiation absorbed by the PV panels without concentration and those with collectedness of the solar radiation. This analysis was based on the results of numerical simulation and experimental tests.

  6. Experience in Solar System and Sky Motions

    Science.gov (United States)

    Coles, K. S.

    2017-12-01

    To help students predict where they will see objects in the sky, they must comprehend sky motion and the relative motions of individual objects. Activities to promote this comprehension among college and secondary students include: Tracking star motion in the planetarium: Students predict star motion by marking the expected path on plastic hemisphere models of the celestial dome. They check their prediction by observing and marking the actual motion. For comprehension, comparing motion in different parts of the sky surpasses two-dimensional views of the sky in books or on computers. Mastery is assessed by the same exercise with the sky set at other latitudes, including those on the other side of the equator. Making sundials: Students first make a horizontal sundial for the latitude of their choice following written directions (e.g., Waugh, 1973). One problem to solve is how to convert sundial time to standard time. A prompt is a picture of the analemma (the position of the Sun in the sky at a fixed clock time over the course of a year). Tests of mastery include the questions, "What accounts for the shape of the analemma?" and "What information is needed to predict the shape of the analemma one would see on other planets?" Reference: Waugh, A. E., 1973, Sundials: their theory and construction: Dover, 228 p.

  7. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    Science.gov (United States)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  8. SURVEYING THE DYNAMIC RADIO SKY WITH THE LONG WAVELENGTH DEMONSTRATOR ARRAY

    International Nuclear Information System (INIS)

    Lazio, T. Joseph W.; Clarke, Tracy E.; Lane, W. M.; Gross, C.; Kassim, N. E.; Hicks, B.; Polisensky, E.; Stewart, K.; Ray, P. S.; Wood, D.; York, J. A.; Kerkhoff, A.; Dalal, N. Paravastu; Cohen, A. S.; Erickson, W. C.

    2010-01-01

    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10 -2 events yr -1 deg -2 , having a pulse energy density ∼>1.5 x 10 -20 J m -2 Hz -1 at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.

  9. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    Science.gov (United States)

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Deployment and early results from the CanSIM (Canadian Solar Spectral Irradiance Meter) network

    Science.gov (United States)

    Tatsiankou, Viktar; Hinzer, Karin; Schriemer, Henry; McVey-White, Patrick; Beal, Richard

    2017-09-01

    Three of seven stations have been deployed as part of the Canadian Solar Spectral Irradiance (CanSIM) network situated in Ottawa, Varennes and Egbert to measure long term spectral variation of the direct normal (DNI) and global horizontal irradiances (GHI) across the country. Every station is equipped with a solar tracker, SolarSIM-D2+, SolarSIM-G+, and SR20 pyranometer, reporting the spectral DNI, GHI, diffuse horizontal irradiance (DHI) and aerosol optical depth in the 280-4000 nm range, broadband DNI, GHI, and DHI, atmospheric total column ozone and water vapour amounts. The spectral GHI as measured by the SolarSIM-G+ was within 5% as compared to EKO MS-700 spectroradiometer in 350-1050 nm range on 17 March 2017. The difference in the GHI as reported by SolarSIM-G+ and SR20 pyranometer from all stations was within 2% on 14 April 2017. Furthermore, on this day, the daily GHI sum for the Ottawa, Varennes, and Egbert stations was 7.01, 6.95, and 7.11 kWh/m2, respectively, while the daily DNI sum was 10.65, 10.86, 10.04 kWh/m2, respectively.

  11. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Olama, Mohammed M. [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-09-01

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed to estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.

  12. Analysis of solar irradiation measurements at Beer Sheva, Israel from 1985 through 2013

    International Nuclear Information System (INIS)

    Evseev, Efim G.; Kudish, Avraham I.

    2015-01-01

    Highlights: • In depth analysis of long-term solar irradiation at Beer Sheva, Israel. • Construction of a typical meteorological year for global and beam irradiation. • Statistical analysis of the global and beam irradiation. • Analysis of long-term trends regarding global and beam irradiation. - Abstract: An in-depth analysis of the solar horizontal global, normal incidence beam and solar global incident on a south-facing surface tilted at 40° irradiation monitored at Beer Sheva from 1985 through 2013 has been performed. The horizontal beam irradiation, daily clearness index, daily beam index and beam fraction of the horizontal global irradiation were determined from the measured parameters. A statistical analysis, which included average, median, standard deviation, maximum and minimum values and the coefficient of variation, was performed on the parameters under investigation. The monthly frequency distribution types were determined for the solar global, normal incidence beam and solar global incident on a south-facing surface tilted at 40° irradiation based upon their corresponding skewness and kurtosis values. In addition, typical meteorological years were developed for the solar horizontal global and normal incidence beam irradiation. Beer Sheva is characterized as a site with a high incidence of clear days with global irradiation consisting of a relatively high beam fraction. A relatively steep minimum in the annual average daily normal incidence beam irradiation is observed from 1991 to 1993 and has been attributed to the eruption of Mt. Pinatubo, Philippines during June 1991. A time series analysis of the both individual monthly and annual average daily global and normal incidence irradiation indicated a slight trend of solar brightening for this region during the time interval 1985 through 2013, but in most cases they were not statistically significant based upon their p values

  13. Seed germination of Stenocereus thurberi (Cactaceae) under different solar irradiation levels

    International Nuclear Information System (INIS)

    Nolasco, H.; Vega-Villasante, F.; Diaz-Rondero, A.

    1997-01-01

    Germination of Stenocereus thurberi seeds was evaluated under different conditions of solar irradiation and humidity. Seed germination increased under higher humidity and low solar irradiation which provided cooler temperatures and higher water availability. Seedlings were also greener and more turgid under these conditions. Increased solar irradiation reduced seed germination and decreased seedling size and water content. The results of this study support the importance of natural shelter systems in the arid zones in providing better conditions for S. thurberi seeds germination and seedling establishment, particularly in the desert of Baja California. (author)

  14. All-sky analysis of the general relativistic galaxy power spectrum

    Science.gov (United States)

    Yoo, Jaiyul; Desjacques, Vincent

    2013-07-01

    We perform an all-sky analysis of the general relativistic galaxy power spectrum using the well-developed spherical Fourier decomposition. Spherical Fourier analysis expresses the observed galaxy fluctuation in terms of the spherical harmonics and spherical Bessel functions that are angular and radial eigenfunctions of the Helmholtz equation, providing a natural orthogonal basis for all-sky analysis of the large-scale mode measurements. Accounting for all the relativistic effects in galaxy clustering, we compute the spherical power spectrum and its covariance matrix and compare it to the standard three-dimensional power spectrum to establish a connection. The spherical power spectrum recovers the three-dimensional power spectrum at each wave number k with its angular dependence μk encoded in angular multipole l, and the contributions of the line-of-sight projection to galaxy clustering such as the gravitational lensing effect can be readily accommodated in the spherical Fourier analysis. A complete list of formulas for computing the relativistic spherical galaxy power spectrum is also presented.

  15. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    Science.gov (United States)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  16. Nonimaging solar concentrator with uniform irradiance

    Science.gov (United States)

    Winston, Roland; O'Gallagher, Joseph J.; Gee, Randy C.

    2004-09-01

    We report results of a study our group has undertaken under NREL/DOE auspices to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators.

  17. UARS Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS data product consists of daily, 1 nm resolution, solar spectral irradiances and selected...

  18. SORCE and Future Satellite Observations of Solar Irradiance

    Science.gov (United States)

    Cahalan, Robert F.; Rottman, G.; Woods, T.; Lawrence, G.; Kopp, G.; Harder, J.; McClintock, W.

    2003-01-01

    With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.

  19. The generation of hourly diffuse irradiation: A model from the analysis of the fluctuation of global irradiance series

    Energy Technology Data Exchange (ETDEWEB)

    Posadillo, R.; Lopez Luque, R. [Grupo de Investigacion de Fisica para las Energias y Recursos Renovables, Dpto. de Fisica Aplicada, UCO, Edificio C2 Campus de Rabanales, 14071 Cordoba (Spain)

    2010-04-15

    An analysis of models for the estimation of hourly diffuse irradiation based on the interrelations between the hourly diffuse fraction k{sub d} and the hourly clearness index k{sub t}, has concluded that k{sub t} is not a sufficient variable for parametrizing the effect of clouds on diffuse irradiation. A detailed study of the dispersion recorded by this diffuse component for a specific clearness index under partly cloudy sky conditions has led to analyzing how the variability in the instantaneous clearness index influences this dispersion. The data sets correspond to 10 years of hourly and instantaneous value records of global and diffuse radiation collected in Cordoba, Spain. In addition to the inclusion of the sine of solar elevation as a variable into the k{sub d}-k{sub t} correlations, this model propose the inclusion of others parameters related to the variability in the normalized clearness index within an hour and with the fluctuations presented by the time series of the instantaneous values of that index. Also presented is the implementation of an algorithm permitting both the determination of the hourly diffuse irradiation and the discrimination between the different sky conditions in those situations known by the designation partly cloudy sky. (author)

  20. Effect of front and rear incident proton irradiation on silicon solar cells

    Science.gov (United States)

    Anspaugh, Bruce; Kachare, Ram

    1987-01-01

    Four solar cell types of current manufacture were irradiated through the front and rear surfaces with protons in the energy range between 1 and 10 MeV. The solar cell parameters varied for this study were cell thickness and back surface field (BSF) vs. no BSF. Some cells were irradiated at normal incidence and an equal number were irradiated with simulated isotropic fluences. The solar cell electrical characteristics were measured under simulated AM0 illumination after each fluence. Using the normal incidence data, proton damage coefficients were computed for all four types of cells for both normal and omnidirectional radiation fields. These were found to compare well with the omnidirectional damage coefficients derived directly from the rear-incidence radiation data. Similarly, the rear-incidence omnidirectional radiation data were used to compute appropriate damage coefficients. A method for calculating the effect of a spectrum of energies is derived from these calculations. It is suitable for calculating the degradation of cells in space when they have minimal rear-surface shielding.

  1. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  2. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  3. Estimating the daily solar irradiation on building roofs and facades using Blender Cycles path tracing algorithm

    Directory of Open Access Journals (Sweden)

    Ilba Mateusz

    2016-01-01

    Full Text Available The paper presents the development of an daily solar irradiation algorithm with application of the free software Blender. Considerable attention was paid to the possibilities of simulation of reflections of direct and diffuse solar radiation. For this purpose, the rendering algorithm “Cycles” was used, based on the principle of bi-directional path tracing – tracing random paths of light beams. The value of global radiation in this study is the sum of four components: direct beam radiation, reflected beam radiation, diffuse radiation and reflected diffuse radiation. The developed algorithm allows calculation of solar irradiation for all elements of the 3D model created in Blender, or imported from an external source. One minute is the highest possible time resolution of the analysis, while the accuracy is dependent on the resolution of textures defined for each element of a 3D object. The analysed data is stored in the form of textures that in the algorithm are converted to the value of solar radiance. The result of the analysis is visualization, which shows the distribution of daily solar irradiation on all defined elements of the 3D model.

  4. The Einstein All-Sky IPC slew survey

    Science.gov (United States)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  5. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  6. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  7. Comparison of solar irradiances measured by SBUV, SME, and rockets

    International Nuclear Information System (INIS)

    Schlesinger, B.M.; Heath, D.F.

    1988-01-01

    Solar Backscatter Ultraviolet (SBUV) measurements of the solar irradiance between 170 and 320 nm have been compared with rocket and Solar Mesosphere Explorer (SME) ultraviolet spectrometer measurements. The SBUV and SME data were those available from the National Space Sciences Data Center (NSSDC). The published rocket measurement are sensitive enough to detect substantial systematic changes with time in other instruments and to check absolute calibration but not sufficiently sensitive to validate claims of changes in the solar ultraviolet irradiance longer than 170 nm. The SBUV irradiances show as systematic decrease with time not seen in the rocket measurements; a correction for this decrease, based on changes between the instrument properties measured in 1980--1981 and those in 1984, is introduced. Ratios of spectra in early 1982 to those in mid-1984, calculated using the SME and SBUV solar irradiances, have been compared with each other asnd with those predicted from Mg 280-nm variations. The scatter and overall structure in the SME spectra from the NSSDC is 3--5%, of the order of or larger than most of the changes predicted by the Mg index. The corrected SBUV ratio and the Mg index prediction for it agree to within 1% such agreement supports a common origin for variations between solar maximum and minimum and those for individual rotations: the degree to which active regions cover the visible hemisphere of the Sun. copyright American Geophysical Union 1988

  8. On the influence of total solar irradiance on global land temperature

    International Nuclear Information System (INIS)

    Varonov, Albert; Shopov, Yavor

    2014-01-01

    Using statistical analysis, correlation between the variations of the total solar irradiance and of the annual-mean land temperatures was found. An unknown time lag between both data sets was expected to be present due to the complexity of the Earth’s climate system leading to a delayed response to changes in influencing factors. We found the best correlation with coefficient over 90% for a 14-year shift of the annual mean land temperature record ahead with data until 1970, while the same comparison with data until 2006 yields 61% correlation. These results show substantially higher influence of total solar irradiance on global land temperatures until 1970. The decline of this influence during the last 40 years could be attributed to the increasing concentration of anthropogenic greenhouse gases in the Earth’s atmosphere. Key words: total solar irradiance, solar variations, solar forcing, climate change

  9. Simultaneous electron-proton irradiation of crucible grown and float-zone silicon solar cells

    International Nuclear Information System (INIS)

    Bernard, J.

    1974-01-01

    The realisation of an irradiation chamber which permits simultaneous irradiations by electrons, protons, photons and in-situ measurements of solar cells main parameters (diffusion length, I.V. characteristics) is described. Results obtained on 20 solar cells n/p 10Ωcm made in silicon pulled crystals and 20 solar cells n/p 10Ωcm made in silicon float-zone simultaneously irradiated with electrons and photons are given [fr

  10. The all-sky 408 MHz survey

    International Nuclear Information System (INIS)

    Haslam, C.G.T.; Salter, C.J.; Stoffel, H.

    1981-01-01

    A brief outline of the results of this survey is presented. The 408 MHz All-sky Survey has been made from four radio continuum surveys observed between 1965 and 1978, using the Jodrell Bank MKI telescope (Haslam et al., 1970), the Effelsberg 100 metre telescope (Haslam et al., 1974) and the Parkes 64 metre telescope (Haslam et al., 1975). A detailed description of the survey data reduction and calibration methods, with preliminary astronomical results will soon be published (Haslam et al., 1980a) and a second paper will give an atlas of maps at the full survey resolution of 51' arc between half power points (Haslam et al., 1980b). A map, smoothed to a gaussian beam with resolution between half power poitns of 3 0 , is presented. (Auth.)

  11. SORCE XPS Level 3 Solar Spectral Irradiance 6-Hour Means V010

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) 6-Hour Data Product SOR3XPS6 contains solar XUV irradiances in the 0.1 to 27 nm range, as well...

  12. Toward long-term all-sky time domain surveys-SINDICS: a prospective concept for a Seismic INDICes Survey of half a million red giants

    Directory of Open Access Journals (Sweden)

    Michel Eric

    2015-01-01

    Full Text Available CoRoT and Kepler have brought a new and deep experience in long-term photometric surveys and how to use them. This is true for exoplanets characterizing, stellar seismology and beyond for studying several other phenomena, like granulation or activity. Based on this experience, it has been possible to propose new generation projects, like TESS and PLATO, with more specific scientific objectives and more ambitious observational programs in terms of sky coverage and/or duration of the observations. In this context and as a prospective exercise, we explore here the possibility to set up an all-sky survey optimized for seismic indices measurement, providing masses, radii and evolution stages for half a million solar-type pulsators (subgiants and red giants, in our galactic neighborhood and allowing unprecedented stellar population studies.

  13. Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model

    Directory of Open Access Journals (Sweden)

    Yassine Charabi

    2016-11-01

    Full Text Available A bankable solar radiation database is required for the financial viability of solar energy project. Accurate estimation of solar energy resources in a country is very important for proper siting, sizing and life cycle cost analysis of solar energy systems. During the last decade an important progress has been made to develop multiple solar irradiance database (Global Horizontal Irradiance (GHI and Direct Normal Irradiance (DNI, using satellite of different resolution and sophisticated models. This paper assesses the performance of High-resolution solar irradiance derived with dynamical downscaling Numerical Weather Prediction model with, GIS topographical solar radiation model, satellite data and ground measurements, for the production of bankable solar radiation datasets. For this investigation, NWP model namely Consortium for Small-scale Modeling (COSMO is used for the dynamical downscaling of solar radiation. The obtained results increase confidence in solar radiation data base obtained from dynamical downscaled NWP model. The mean bias of dynamical downscaled NWP model is small, on the order of a few percents for GHI, and it could be ranked as a bankable datasets. Fortunately, these data are usually archived in the meteorological department and gives a good idea of the hourly, monthly, and annual incident energy. Such short time-interval data are valuable in designing and operating the solar energy facility. The advantage of the NWP model is that it can be used for solar radiation forecast since it can estimate the weather condition within the next 72–120 hours. This gives a reasonable estimation of the solar radiation that in turns can be used to forecast the electric power generation by the solar power plant.

  14. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Determination atmospheric conditions by evaluating clearness index, turbidity and brightness of the sky

    International Nuclear Information System (INIS)

    Kandilli, C.

    2005-01-01

    There are fifteen different sky types which range from totally overcast sky to low turbidity clear sky have been defined by CIE (International Commission on Illumination). For the applications of solar energy engineering and day lighting purposes, it has a great importance to determine the physical characteristics of atmosphere and the sky type. The most important parameters which define the sky type are clearness index, turbidity and brightness. In this study, the parameters of clearness index, turbidity and brightness of the sky belong to Izmir was calculated and their relations with solar radiation and its components were represented according to 10 years data (1994-2004) of meteorology station of Ege University Solar Energy Institute. In this study, clearness index, turbidity, sky clearness and brightness were evaluated to put forward the effects of the these parameters on the atmospheric condition for designing and engineering purposes

  16. Probabilistic Forecasts of Solar Irradiance by Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg

    2014-01-01

    approach allows for characterizing both the interdependence structure of prediction errors of short-term solar irradiance and their predictive distribution. Three different stochastic differential equation models are first fitted to a training data set and subsequently evaluated on a one-year test set...... included in probabilistic forecasts may be paramount for decision makers to efficiently make use of this uncertain and variable generation. In this paper, a stochastic differential equation framework for modeling the uncertainty associated with the solar irradiance point forecast is proposed. This modeling...

  17. Second ROSAT all-sky survey (2RXS) source catalogue

    Science.gov (United States)

    Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-04-01

    Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the

  18. Spatially Resolved Images and Solar Irradiance Variability R ...

    Indian Academy of Sciences (India)

    Abstract. The Sun is the primary source of energy that governs both the terrestrial climate and near-earth space environment. Variations in UV irradiances seen at earth are the sum of global (solar dynamo) to regional. (active region, plage, network, bright points and background) solar mag- netic activities that can be ...

  19. Total and Spectral Solar Irradiance Sensor (TSIS) Project Status

    Science.gov (United States)

    Carlisle, Candace

    2018-01-01

    TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).

  20. Long-wave Irradiance Measurement and Modeling during Snowmelt, a Case Study in the Yukon Territory, Canada

    Science.gov (United States)

    Sicart, J.; Essery, R.; Pomeroy, J.

    2004-12-01

    At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.

  1. SkyNet: A Modular Nuclear Reaction Network Library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-12-01

    Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.

  2. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    Science.gov (United States)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  3. Measuring high-resolution sky luminance distributions with a CCD camera.

    Science.gov (United States)

    Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther

    2013-03-10

    We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

  4. The influence of solar system oscillation on the variability of the total solar irradiance

    Science.gov (United States)

    Yndestad, Harald; Solheim, Jan-Erik

    2017-02-01

    Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past. This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability. The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo. We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.

  5. The 105-Month Swift-BAT All-sky Hard X-Ray Survey

    Science.gov (United States)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; Ricci, Claudio; Lien, Amy; Trakhtenbrot, Benny

    2018-03-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 90% of the sky and 7.24× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 50% of the sky in the 14–195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14–195 keV band above the 4.8σ significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (zBAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  6. Optimal topology of urban buildings for maximization of annual solar irradiation availability using a genetic algorithm

    International Nuclear Information System (INIS)

    Conceição António, Carlos A.; Monteiro, João Brasileiro; Afonso, Clito Félix

    2014-01-01

    An approach based on the optimal placement of buildings that favors the use of solar energy is proposed. By maximizing the area of exposure to incident solar irradiation on roofs and facades of buildings, improvements on the energy performance of the urban matrix are reached, contributing decisively to reduce dependence on other less environmentally friendly energy options. A mathematical model is proposed to optimize the annual solar irradiation availability where the placement of the buildings in urban environment favors the use of solar energy resource. Improvements on the solar energy potential of the urban grid are reached by maximizing the exposure of incident solar irradiation on roofs and facades of buildings. The proposed model considers predominant, the amount of direct solar radiation, omitting the components of the solar irradiation diffused and reflected. The dynamic interaction of buildings on exposure to sunlight is simulated aiming to evaluate the shadowing zones. The incident solar irradiation simulation and the dynamic shading model were integrated in an optimization approach implemented numerically. The search for optimal topological solutions for urban grid is based on a Genetic Algorithm. The objective is to generate optimal scenarios for the placement of buildings into the urban grid in the pre-design phase, which enhances the use of solar irradiation. - Highlights: • A mathematical model is proposed to optimize annual solar irradiation availability. • Maximization of incident solar irradiation on roofs and facades of buildings. • Dynamic interaction of buildings is simulated aiming to evaluate shadowing zones. • Search for optimal topological solutions for urban grid based on genetic algorithm. • Solutions are compared with the conventional configurations for urban grid

  7. Wavelength Dependence of Solar Flare Irradiation and its Influence on the Thermosphere

    Science.gov (United States)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Qian, L.; Solomon, S.; Chamberlin, P.

    2012-01-01

    The wavelength dependence of solar flare enhancement is one of the important factors determining how the Thermosphere-Ionosphere (T-I) system response to flares. To investigate the wavelength dependence of solar flare, the Flare Irradiance Spectral Model (FISM) has been run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak comparing to pre-flare condition have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest ( 1000%) in the XUV range (0 - 25 nm), and is about 100% in EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of National Center for Atmospheric Research (NCAR) Thermosphere- Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for 25 - 105 nm waveband. The effect of 122 - 195 nm is small in magnitude, but it decays slowly.

  8. A Preliminary Analysis of Solar Irradiance Measurements at TNB Solar Research Centre for Optimal Orientation of Fixed Solar Panels installed in Selangor Malaysia

    International Nuclear Information System (INIS)

    Hashim, A M; Ahmad, B; Shafie, R M; Rusli, R; Aziz, M A; Hassan, J; Wanik, M Z C; Ali, M A M

    2013-01-01

    The well established rule for orienting fixed solar devices is to face south for places in the northern hemisphere and northwards for the southern hemisphere. However for regions near the equator such as in Selangor Malaysia, the position of the sun at solar noon is always near zenith both to the north and south depending on location and month of year. This paper reports an analysis of global solar radiation data taken at TNB Solar Research Centre, Malaysia. The solar radiation is measured using both shaded and exposed pyranometers together with a pyrheliometer which is mounted on a sun-tracker. The analysis on the solar measurements show that a near regular solar irradiation pattern had occurred often enough during the year to recommend an optimum azimuth orientation of installing the fixed solar panels tilted facing towards east. Even though all the solar measurements were done at a single location in TNBR Solar Research Centre at Bangi, for locations near the equator with similar weather pattern, the recommended azimuth direction of installing fixed solar panels and collectors tilted eastward will also be generally valid.

  9. Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis

    Science.gov (United States)

    Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.

    2017-10-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.

  10. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    Science.gov (United States)

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: Comparison of the results

    International Nuclear Information System (INIS)

    Martinez-Durban, M.; Zarzalejo, L.F.; Bosch, J.L.; Rosiek, S.; Polo, J.; Batlles, F.J.

    2009-01-01

    The knowledge of the solar irradiation in a certain place is fundamental for the suitable location of solar systems, both thermal and photovoltaic. On the local scale, the topography is the most important modulating factor of the solar irradiation on the surface. In this work the global daily irradiation is estimated concerning various sky conditions, in zones of complex topography. In order to estimate the global daily irradiation we use a methodology based on a Digital Terrain Model (DTM), on one hand making use of pyranometer measurements and on the other hand utilizing satellite images. We underline that DTM application employing pyranometer measurements produces better results than estimation using satellite images, though accuracy of the same order is obtained in both cases for Root Mean Square Error (RMSE) and Mean Bias Error (MBE).

  12. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: Comparison of the results

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Durban, M. [Dpto. de Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Zarzalejo, L.F.; Polo, J. [Dpto. de Energia, CIEMAT, 28040 Madrid (Spain); Bosch, J.L.; Rosiek, S.; Batlles, F.J. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain)

    2009-09-15

    The knowledge of the solar irradiation in a certain place is fundamental for the suitable location of solar systems, both thermal and photovoltaic. On the local scale, the topography is the most important modulating factor of the solar irradiation on the surface. In this work the global daily irradiation is estimated concerning various sky conditions, in zones of complex topography. In order to estimate the global daily irradiation we use a methodology based on a Digital Terrain Model (DTM), on one hand making use of pyranometer measurements and on the other hand utilizing satellite images. We underline that DTM application employing pyranometer measurements produces better results than estimation using satellite images, though accuracy of the same order is obtained in both cases for Root Mean Square Error (RMSE) and Mean Bias Error (MBE). (author)

  13. Generation of daily global solar irradiation with support vector machines for regression

    International Nuclear Information System (INIS)

    Antonanzas-Torres, F.; Urraca, R.; Antonanzas, J.; Fernandez-Ceniceros, J.; Martinez-de-Pison, F.J.

    2015-01-01

    Highlights: • New methodology for estimation of daily solar irradiation with SVR. • Automatic procedure for training models and selecting meteorological features. • This methodology outperforms other well-known parametric and numeric techniques. - Abstract: Solar global irradiation is barely recorded in isolated rural areas around the world. Traditionally, solar resource estimation has been performed using parametric-empirical models based on the relationship of solar irradiation with other atmospheric and commonly measured variables, such as temperatures, rainfall, and sunshine duration, achieving a relatively high level of certainty. Considerable improvement in soft-computing techniques, which have been applied extensively in many research fields, has lead to improvements in solar global irradiation modeling, although most of these techniques lack spatial generalization. This new methodology proposes support vector machines for regression with optimized variable selection via genetic algorithms to generate non-locally dependent and accurate models. A case of study in Spain has demonstrated the value of this methodology. It achieved a striking reduction in the mean absolute error (MAE) – 41.4% and 19.9% – as compared to classic parametric models; Bristow & Campbell and Antonanzas-Torres et al., respectively

  14. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  15. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  16. A rapid method of estimating the solar irradiance spectra with potential lighting applications

    NARCIS (Netherlands)

    Gao, Y.; Dong, J.; Isabella, O.; Zeman, M.; Zhang, G

    2016-01-01

    Diverse solar irradiance spectra can be observed under different conditions of time, date, location, weather, etc. Since the solar irradiance spectrum is required by certain scientific and engineering applications, obtaining accurate spectral data is essential. Measurements by spectrophotometers are

  17. Hourly distributions of the diffuse fraction of global solar irradiation in Cordoba (Spain)

    International Nuclear Information System (INIS)

    Posadillo, R.; Lopez Luque, R.

    2009-01-01

    Hourly global irradiations on tilted planes are required for dimensioning PV systems. However, for most sites, only global irradiations on a horizontal plane are available, and, given that to calculate the global irradiation on inclined planes the first step is to determine the diffuse component and this is not collected, we have studied the behaviour of the diffuse component on an hourly basis. Most parametrization models for the derivation of hourly diffuse irradiance from hourly global irradiance involve the clearness index, a parameter that implicitly includes solar altitude. The present paper has focused on the possibility of also including 'mean solar altitude α-bar' explicitly as a parameter in addition to the clearness index. Several analytical models are proposed, validated and compared here, using solar data collected on our station located in Cordoba (Spain)

  18. Electroluminescence of a-Si/c-Si heterojunction solar cells after high energy irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Manuela

    2009-11-24

    The crystalline silicon as absorber material will certainly continue to dominate the market for space applications of solar cells. In the contribution under consideration the applicability of a-Si:H/c-Si heterojunction solar cells in space has been tested by the investigation of the cell modification by high energy protons and comparing the results to the degradation of homojunction crystalline silicon reference cells. The investigated solar cells have been irradiated with protons of different energies and doses. For all investigated solar cells the maximum damage happens for an energy of about 1.7 MeV and is mainly due to the decrease of the effective minority carrier diffusion length in the crystalline silicon absorber. Simulations carried out by AFORS-HET, a heterojunction simulation program, also confirmed this result. The main degradation mechanism for all types of devices is the monotonically decreasing charge carrier diffusion length in the p-type monocrystalline silicon absorber layer. For the heterojunction solar cell an enhancement of the photocurrent in the blue wavelength region has been observed but only in the case of heterojunction solar cell with intrinsic a-Si:H buffer layer. Additionally to the traditional characterization techniques the electroluminescence technique used for monitoring the modifications of the heteroluminescence technique used for monitoring the modifications of the heterointerface between amorphous silicon and crystalline silicon in solar cells after proton irradiation. A direct relation between minority carrier diffusion length and electroluminescence quantum efficiency has been observed but also details of the interface modification could be monitored by this technique.

  19. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  20. X-RAY-EMITTING STARS IDENTIFIED FROM THE ROSAT ALL-SKY SURVEY AND THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Newsom, Emily R.; Anderson, Scott F.; Hawley, Suzanne L.; Silvestri, Nicole M.; Szkody, Paula; Covey, Kevin R.; Posselt, Bettina; Margon, Bruce; Voges, Wolfgang

    2009-01-01

    The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 [mag]). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate L X . We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (f X /f g ) and the equivalent width of the Hβ emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. We report on follow-up observations of three candidate cool X-ray-emitting WDs (one DA and two DB (helium) WDs); we have not

  1. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2003-03-01

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  2. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  3. Fireballs in the Sky: An Augmented Reality Citizen Science Program

    Science.gov (United States)

    Day, Brian

    2017-01-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000 by 36 megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million square kilometers. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  4. Fireballs in the Sky: an Augmented Reality Citizen Science Program

    Science.gov (United States)

    Day, B. H.; Bland, P.; Sayers, R.

    2017-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  5. Hourly distributions of the diffuse fraction of global solar irradiation in Cordoba (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Posadillo, R.; Lopez Luque, R. [Grupo de Investigacion de Fisica para las Energias y Recursos Renovables, Dpto. de Fisica Aplicada/UCO, Edificio C2 Campus de Rabanales, 14071 Cordoba (Spain)

    2009-02-15

    Hourly global irradiations on tilted planes are required for dimensioning PV systems. However, for most sites, only global irradiations on a horizontal plane are available, and, given that to calculate the global irradiation on inclined planes the first step is to determine the diffuse component and this is not collected, we have studied the behaviour of the diffuse component on an hourly basis. Most parametrization models for the derivation of hourly diffuse irradiance from hourly global irradiance involve the clearness index, a parameter that implicitly includes solar altitude. The present paper has focused on the possibility of also including ''mean solar altitude anti {alpha}'' explicitly as a parameter in addition to the clearness index. Several analytical models are proposed, validated and compared here, using solar data collected on our station located in Cordoba (Spain). (author)

  6. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  7. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  8. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    International Nuclear Information System (INIS)

    Edelson, R.; Malkan, M.

    2012-01-01

    We have developed the ''S IX '' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S IX 95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S IX 2 , permitting construction of AGN samples in any sufficiently large region of sky.

  9. A prototype for the PASS Permanent All Sky Survey

    Science.gov (United States)

    Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.

    2004-10-01

    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.

  10. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  11. THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    International Nuclear Information System (INIS)

    Tueller, J.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Mushotzky, R. F.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Holland, S.; Ajello, M.; Beardmore, A.; Evans, P.; Godet, O.; Brandt, W. N.; Burrows, D.; Grupe, D.; Chincarini, G.; Campana, S.; Cusumano, G.; Fenimore, E.

    2010-01-01

    We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8σ level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of ∼30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z ∼ 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8σ) of 2.2 x 10 -11 erg cm -2 s -1 (1 mCrab) over most of the sky in the 14-195 keV band.

  12. Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data

    International Nuclear Information System (INIS)

    Celik, A.N.

    2003-01-01

    A general methodology is presented to estimate the monthly average daily energy output from photovoltaic energy systems. Energy output is estimated from synthetically generated solar radiation data. The synthetic solar radiation data are generated based on the cumulative frequency distribution of the daily clearness index, given as a function of the monthly clearness index. Two sets of synthetic solar irradiation data are generated: 3- and 4-day months. In the 3-day month, each month is represented by 3 days and in the 4-day month, by 4 days. The 3- and 4-day solar irradiation data are synthetically generated for each month and the corresponding energy outputs are calculated. A total of 8-year long measured hourly solar irradiation data, from five different locations in the world, is used to validate the new model. The monthly energy output values calculated from the synthetic solar irradiation data are compared to those calculated from the measured hour-by-hour data. It is shown that when the measured solar radiation data do not exist for a particular location or reduced data set is advantageous, the energy output from photovoltaic converters could be correctly calculated

  13. Short-range solar radiation forecasts over Sweden

    Directory of Open Access Journals (Sweden)

    T. Landelius

    2018-04-01

    Full Text Available In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble.The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models.Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  14. A night sky model.

    Science.gov (United States)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  15. The WATCH All-Sky Monitor for the Granat Project

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Rao, A. R.

    1990-01-01

    The Watch X-ray all-sky monitor, which is designed to localize strong X-ray sources and follow their development, is examined, focusing on the addition of four Watch units to the Granat satellite project. The components of the Watch instrument are described and the capabilities and potential...... scientific returns of the Granat project are discussed. The applications of the Watch monitor are given, including the study of time variations of known sources and the detection and localization of new, transient sources....

  16. The Infrared Sky - Science from 2MASS

    International Nuclear Information System (INIS)

    Skrutskie, Michael

    2002-01-01

    The Two Micron All Sky Survey has imaged 100% of the celestial sphere in the near-infrared J (1.2 μm), H (1.6 μm) and Ks (2.2 μm) photometric bands. Pipeline processing of these data has produced catalogs containing 500 million stars and 1.5 million extended sources which will be released later this year. The catalogs are characterized by great photometric uniformity (1%) and precision (2-3%) around the sky as well as good astrometric accuracy (100 mas). This talk will focus on some of the initial scientific results enabled by this database ranging from brown dwarfs in the solar neighborhood to large scale structure in the early universe.

  17. Verification of ECMWF and ECMWF/MACC's global and direct irradiance forecasts with respect to solar electricity production forecasts

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2017-02-01

    Full Text Available The successful electricity grid integration of solar energy into day-ahead markets requires at least hourly resolved 48 h forecasts. Technologies as photovoltaics and non-concentrating solar thermal technologies make use of global horizontal irradiance (GHI forecasts, while all concentrating technologies both from the photovoltaic and the thermal sector require direct normal irradiances (DNI. The European Centre for Medium-Range Weather Forecasts (ECMWF has recently changed towards providing direct as well as global irradiances. Additionally, the MACC (Monitoring Atmospheric Composition & Climate near-real time services provide daily analysis and forecasts of aerosol properties in preparation of the upcoming European Copernicus programme. The operational ECMWF/IFS (Integrated Forecast System forecast system will in the medium term profit from the Copernicus service aerosol forecasts. Therefore, within the MACC‑II project specific experiment runs were performed allowing for the assessment of the performance gain of these potential future capabilities. Also the potential impact of providing forecasts with hourly output resolution compared to three-hourly resolved forecasts is investigated. The inclusion of the new aerosol climatology in October 2003 improved both the GHI and DNI forecasts remarkably, while the change towards a new radiation scheme in 2007 only had minor and partly even unfavourable impacts on the performance indicators. For GHI, larger RMSE (root mean square error values are found for broken/overcast conditions than for scattered cloud fields. For DNI, the findings are opposite with larger RMSE values for scattered clouds compared to overcast/broken cloud situations. The introduction of direct irradiances as an output parameter in the operational IFS version has not resulted in a general performance improvement with respect to biases and RMSE compared to the widely used Skartveit et al. (1998 global to direct irradiance

  18. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.

    Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  19. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  20. The Rainbow Sky

    CERN Document Server

    Buick, Tony

    2010-01-01

    The world is full of color, from the blue ocean and the yellow daffodils and sunflowers in green carpeted meadows to the majestic purple mountains in the distance and brightly hued coral reefs off the edges of tropical coasts. But what is color, exactly? Why do we see things in different colors? Do we all see the same colors? Like the surface of our planet, the sky above us offers us an endless palette of color, a visual feast for the eyes. Besides atmospheric phenomena such as sunsets and rainbows, there are the many varied worlds of the Solar System, which we can spy through our telescopes, with their subtle colorings of beige and blue and green. Faraway star systems have suns that come in shades ranging from red and yellow to blue and white. Scientists even often use "false colors" to enhance the features of images they take of structures, such as the rings of Saturn and Jupiter’s clouds. This book, with its clear explanations of what makes the sky such a colorful place and in its great wealth of picture...

  1. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-01-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population

  2. distribution of hourly variability index of sky clearness

    African Journals Online (AJOL)

    Mgina

    Clouds affect the values of insolation for solar technology and other applications. To detect the presence of variability in the sky ... It appears that the site has great potential for application of solar technologies. INTRODUCTION. Knowledge about the .... for solar collectors-part 1. Thermal performance of glazed liquid heating.

  3. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  4. RXTE All-Sky Monitor Localization of SGR 1627-41

    OpenAIRE

    Smith, Donald A.; Bradt, Hale V.; Levine, Alan M.

    1999-01-01

    The fourth unambiguously identified Soft Gamma Repeater (SGR), SGR1627-41, was discovered with the BATSE instrument on 1998 June 15 (Kouveliotou et al. 1998). Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6 deg segment of a narrow (19") annulus (Hurley et al. 1999; Woods et al. 1998). We present two bursts from this source observed by the All-Sky Monitor (ASM) on RXTE. We use the ASM data to further constrain the source location to a 5'...

  5. Optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Y.; Warasawa, M. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Takakura, K. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Kimura, S. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, S.F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Ohyama, H. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Sugiyama, M., E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2011-08-31

    The optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 x 10{sup 18} cm{sup -2}. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing J{sub SC} and increasing R{sub s} reflected the influence of irradiated ZnO:Al, and decreasing V{sub OC} and increasing R{sub sh} mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.

  6. The New LASP Interactive Solar IRradiance Datacenter (LISIRD)

    Science.gov (United States)

    Baltzer, T.; Wilson, A.; Lindholm, D. M.; Snow, M. A.; Woodraska, D.; Pankratz, C. K.

    2017-12-01

    The New LASP Interactive Solar IRradiance Datacenter (LISIRD) The University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) has a long history of providing state of the art Solar instrumentation and datasets to the community. In 2005, LASP created a web interface called LISIRD which provided plotting of and access to a number of Solar Irradiance measured and modeled datasets, and it has been used extensively by members of the community both within and outside of LASP. In August of 2017, LASP is set to release a new version of LISIRD for use by anyone interested in viewing and downloading the datasets it serves. This talk will describe the new LISIRD with emphasis on features enabled by it to include: New and more functional plotting interfaces Better dataset browse and search capabilities More datasets Easier to add datasets from a wider array of resources Cleaner interface with better use of screen real estate Much easier to update metadata describing each dataset Much of this capability is leveraged off new infrastructure that will also be touched upon.

  7. Importance of atmospheric turbidity and associated uncertainties in solar radiation and luminous efficacy modelling

    International Nuclear Information System (INIS)

    Gueymard, Christian A.

    2005-01-01

    For many solar-related applications, it is important to separately predict the direct and diffuse components of irradiance or illuminance. Under clear skies, turbidity plays a determinant role in quantitatively affecting these components. In this paper, various aspects of the effect of turbidity on both spectral and broadband radiation are addressed, as well as the uncertainty in irradiance predictions due to inaccurate turbidity data, and the current improvements in obtaining the necessary turbidity data

  8. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N. [NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771 (United States); Mushotzky, R. F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Evans, P. A., E-mail: whbaumga@alum.mit.edu [X-Ray and Observational Astronomy Group/Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom)

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of the sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.

  9. The 105-Month Swift-BAT All-Sky Hard X-Ray Survey

    Science.gov (United States)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; hide

    2018-01-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40 x 10(exp -12) erg s(exp -1) cm(exp -2) over 90% of the sky and 7.24 x 10(exp -12) erg s(exp -1) cm(exp -2) over 50% of the sky in the 14-195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8 sigma significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z < 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  10. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    International Nuclear Information System (INIS)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N.; Mushotzky, R. F.; Evans, P. A.

    2013-01-01

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8σ, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 × 10 –11 erg s –1 cm –2 over 50% of the sky and 1.34 × 10 –11 erg s –1 cm –2 over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site

  11. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    Science.gov (United States)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter

  12. Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics

    International Nuclear Information System (INIS)

    Dong, Zibo; Yang, Dazhi; Reindl, Thomas; Walsh, Wilfred M.

    2014-01-01

    Highlights: • Satellite image analysis is performed and cloud cover index is classified using self-organizing maps (SOM). • The ESSS model is used to forecast cloud cover index. • Solar irradiance is estimated using multi-layer perceptron (MLP). • The proposed model shows better accuracy than other investigated models. - Abstract: We forecast hourly solar irradiance time series using satellite image analysis and a hybrid exponential smoothing state space (ESSS) model together with artificial neural networks (ANN). Since cloud cover is the major factor affecting solar irradiance, cloud detection and classification are crucial to forecast solar irradiance. Geostationary satellite images provide cloud information, allowing a cloud cover index to be derived and analysed using self-organizing maps (SOM). Owing to the stochastic nature of cloud generation in tropical regions, the ESSS model is used to forecast cloud cover index. Among different models applied in ANN, we favour the multi-layer perceptron (MLP) to derive solar irradiance based on the cloud cover index. This hybrid model has been used to forecast hourly solar irradiance in Singapore and the technique is found to outperform traditional forecasting models

  13. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  14. A comparison of solar irradiances measured by SBUV, SME, and rockets

    Science.gov (United States)

    Schlesinger, Barry M.; Heath, Donald F.

    1988-01-01

    In this paper, Solar Backscatter Ultraviolet (SBUV) measurements of solar irradiance and predictions from the Mg 280-nm index are compared with each other and with coincident Solar Mesosphere Explorer (SME) and rocket measurements. The SBUV irradiances show a systematic decrease with time not seen in the rocket measurements; a correction for this decrease is introduced. The scatter and overall structure in the SME spectra is 3-5 percent, of the order of or larger than most of the changes predicted by the Mg index. The corrected SBUV ratio and the Mg index prediction for it agree to within 1 percent. Such agreement supports a common origin for variations between solar maximum and minimum and those for individual rotations: the degree to which active regions cover the visible hemisphere of the sun.

  15. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. II. AN ALL-SKY CATALOG OF DIFFUSE O VII AND O VIII EMISSION INTENSITIES

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.

    2012-01-01

    We present an all-sky catalog of diffuse O VII and O VIII line intensities, extracted from archival XMM-Newton observations. This catalog supersedes our previous catalog, which covered the sky between l = 120° and l = 240°. We attempted to reduce the contamination from near-Earth solar wind charge exchange (SWCX) emission by excluding times of high solar wind proton flux from the data. Without this filtering, we were able to extract measurements from 1868 observations. With this filtering, nearly half of the observations became unusable, and only 1003 observations yielded measurements. The O VII and O VIII intensities are typically ∼2-11 and ∼ –2 s –1 sr –1 (line unit, L.U.), respectively, although much brighter intensities were also recorded. Our data set includes 217 directions that have been observed multiple times by XMM-Newton. The time variation of the intensities from such directions may be used to constrain SWCX models. The O VII and O VIII intensities typically vary by ∼ 10 L.U. were observed. We compared our measurements with models of the heliospheric and geocoronal SWCX. The heliospheric SWCX intensity is expected to vary with ecliptic latitude and solar cycle. We found that the observed oxygen intensities generally decrease from solar maximum to solar minimum, both at high ecliptic latitudes (which is as expected) and at low ecliptic latitudes (which is not as expected). The geocoronal SWCX intensity is expected to depend on the solar wind proton flux incident on the Earth and on the sightline's path through the magnetosheath. The intensity variations seen in directions that have been observed multiple times are in poor agreement with the predictions of a geocoronal SWCX model. We found that the oxygen lines account for ∼40%-50% of the 3/4 keV X-ray background that is not due to unresolved active galactic nuclei, in good agreement with a previous measurement. However, we found that this fraction is not easily explainable by a

  16. Illuminance and global solar irradiation in Northeast Brazil; Iluminancia e irradiacao solar global na regiao Nordeste do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Sergio da S.; Tiba, Chigueru [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear], Emails: tiba@ufpe.br, chigueru.tiba@pesquisador.cnpq.br

    2006-07-01

    In Brazil and particularly in the Northeast of Brazil, illuminance measures are not part of routine meteorological station measures, and therefore they are still rare than solar irradiation measures. In this context, two stations were installed in Pernambuco: one in Recife (maritime tropical climate) in April 2003 and the other in Pesqueira (tropical and semi-arid) in September 2004 for carrying out simultaneous measurements of hourly solar irradiation and illuminance which permit the modeling and the statistic validation of the relationship between these two parameters and with this, makes possible the estimation of illuminance where there existed only information on solar irradiation. The Alados et al. model with local coefficients showed a superior statistical performance, producing a mean bias deviation in the order of 3% and 1% and root mean quadratic deviation of 10% and 3% respectively for Recife and Pesqueira (author)

  17. Detecting TLEs using a massive all-sky camera network

    Science.gov (United States)

    Garnung, M. B.; Celestin, S. J.

    2017-12-01

    Transient Luminous Events (TLEs) are large-scale optical events occurring in the upper-atmosphere from the top of thunderclouds up to the ionosphere. TLEs may have important effects in local, regional, and global scales, and many features of TLEs are not fully understood yet [e.g, Pasko, JGR, 115, A00E35, 2010]. Moreover, meteor events have been suggested to play a role in sprite initiation by producing ionospheric irregularities [e.g, Qin et al., Nat. Commun., 5, 3740, 2014]. The French Fireball Recovery and InterPlanetary Observation Network (FRIPON, https://www.fripon.org/?lang=en), is a national all-sky 30 fps camera network designed to continuously detect meteor events. We seek to make use of this network to observe TLEs over unprecedented space and time scales ( 1000×1000 km with continuous acquisition). To do so, we had to significantly modify FRIPON's triggering software Freeture (https://github.com/fripon/freeture) while leaving the meteor detection capability uncompromised. FRIPON has a great potential in the study of TLEs. Not only could it produce new results about spatial and time distributions of TLEs over a very large area, it could also be used to validate and complement observations from future space missions such as ASIM (ESA) and TARANIS (CNES). In this work, we present an original image processing algorithm that can detect sprites using all-sky cameras while strongly limiting the frequency of false positives and our ongoing work on sprite triangulation using the FRIPON network.

  18. Evaluation of two MM5-PBL parameterization for solar radiation and temperature estimation in the South-Eastern area of the Iberian Peninsula

    International Nuclear Information System (INIS)

    Ruiz-Arias, J.A.; Pozo-Vasquez, D.; Sanchez-Sanchez, N.; Hayas-Barru, A.; Tovar-Pescador, J.; Montavez, J.P.

    2008-01-01

    We study the relative performance of two different MM5-PBL parametrizations (Blackadar and MRF) simulating hourly values of solar irradiance and temperature in the south-eastern part of the Iberian Peninsula. The evaluation was carried out throughout the different season of the year 2005 and for three different sky conditions: clear-sky, broken-clouds and overcast conditions. Two integrations, one per PBL parameterization, were carried out for every sky condition and season of the year and results were compared with observational data. Overall, the MM5 model, both using the Blackadar or MRF PBL parameterization, revealed to be a valid tool to estimate hourly values of solar radiation and temperature over the study area. The influence of the PBL parameterization on the model estimates was found to be more important for the solar radiation than for the temperature and highly dependent on the season and sky conditions. Particularly, a detailed analysis revealed that, during broken-clouds conditions, the ability of the model to reproduce hourly changes in the solar radiation strongly depends upon the selected PBL parameterization. Additionally, it was found that solar radiation RMSE values are about one order of magnitude higher during broken-clouds and overcast conditions compared to clear-sky conditions. For the temperature, the two PBL parameterizations provide very similar estimates. Only under overcast conditions and during the autumn, the MRF provides significantly better estimates.

  19. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  20. Anomalous effects in silicon solar cell irradiated by 1-MeV protons

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.

    1989-01-01

    Several silicon solar cells having thicknesses of approximately 63 microns, with and without back-surface fields (BSF), were irradiated with 1-MeV protons having fluences between 10 to the 10th and 10 to the 12th sq cm. The irradiations were performed using both normal and isotropic incidence on the rear surfaces of the cells. It was observed that after irradiation with fluences greater than 10 to the 11th protons/sq cm, all BSF cells degraded at a faster rate than cells without BSF. The irradiation results are analyzed using a model in which irradiation-induced defects in the BSF region are taken into account. Tentatively, it is concluded that an increase in defect density due to the formation of aluminum and proton complexes in BSF cells is responsible for the higher-power loss in the BSF cells compared to the non-BSF cells.

  1. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  2. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  3. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  4. Dark Sky Protection and Education - Izera Dark Sky Park

    Science.gov (United States)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  5. New models to compute solar global hourly irradiation from point cloudiness

    International Nuclear Information System (INIS)

    Badescu, Viorel; Dumitrescu, Alexandru

    2013-01-01

    Highlights: ► Kasten–Czeplak cloudy sky model is tested under the climate of South-Eastern Europe. ► Very simple cloudy sky models based on atmospheric transmission factors. ► Transmission factors are nonlinear functions of the cosine of zenith angle. ► New models’ performance is good for low and intermediate cloudy skies. ► Models show good performance when applied in stations other than the origin station. - Abstract: The Kasten–Czeplak (KC) model [16] is tested against data measured in five meteorological stations covering the latitudes and longitudes of Romania (South-Eastern Europe). Generally, the KC cloudy sky model underestimates the measured values. Its performance is (marginally) good enough for point cloudiness C = 0–1. The performance is good for skies with few clouds (C < 0.3), good enough for skies with medium amount of clouds (C = 0.3–0.7) and poor on very cloudy and overcast skies. New very simple empirical cloudy sky models are proposed. They bring two novelties in respect to KC model. First, new basic clear sky models are used, which evaluate separately the direct and diffuse radiation, respectively. Second, some of the new models assume the atmospheric transmission factor is a nonlinear function of the cosine of zenith angle Z. The performance of the new models is generally better than that of the KC model, for all cloudiness classes. One class of models (called S4) has been further tested. The sub-model S4TOT has been obtained by fitting the generic model S4 to all available data, for all stations. Generally, S4TOT has good accuracy in all stations, for low and intermediate cloudy skies (C < 0.7). The accuracy of S4TOT is good and good enough at intermediate zenith angles (Z = 30–70°) but worse for small and larger zenith angles (Z = 0–30° and Z = 70–85°, respectively). Several S4 sub-models were tested in stations different from the origin station. Almost all sub-models have good or good enough performance for skies

  6. An approach for generating synthetic fine temporal resolution solar radiation time series from hourly gridded datasets

    Directory of Open Access Journals (Sweden)

    Matthew Perry

    2017-06-01

    Full Text Available A tool has been developed to statistically increase the temporal resolution of solar irradiance time series. Fine temporal resolution time series are an important input into the planning process for solar power plants, and lead to increased understanding of the likely short-term variability of solar energy. The approach makes use of the spatial variability of hourly gridded datasets around a location of interest to make inferences about the temporal variability within the hour. The unique characteristics of solar irradiance data are modelled by classifying each hour into a typical weather situation. Low variability situations are modelled using an autoregressive process which is applied to ramps of clear-sky index. High variability situations are modelled as a transition between states of clear sky conditions and different levels of cloud opacity. The methods have been calibrated to Australian conditions using 1 min data from four ground stations for a 10 year period. These stations, together with an independent dataset, have also been used to verify the quality of the results using a number of relevant metrics. The results show that the method generates realistic fine resolution synthetic time series. The synthetic time series correlate well with observed data on monthly and annual timescales as they are constrained to the nearest grid-point value on each hour. The probability distributions of the synthetic and observed global irradiance data are similar, with Kolmogorov-Smirnov test statistic less than 0.04 at each station. The tool could be useful for the estimation of solar power output for integration studies.

  7. 2015 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2014-01-01

    Compact, easy to use and reliable, this popular guide has been providing star gazers with everything they need to know about the southern night sky for the past 25 years. The 2015 guide will celebrate this landmark with highlights from the past as well as monthly astronomy maps, viewing tips and highlights, and details of the year's exciting celestial events.Wherever you are in Australia or New Zealand, easy calculations allow you to estimate local rise and set times for the Sun, Moon and planets. The 2015 Australasian Sky Guide also provides information on the solar system, updated with the l

  8. Model for the angular distribution of sky radiance

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Brunger, A P

    1979-08-01

    A flexible mathematical model is introduced which describes the radiance of the dome of the sky under various conditions. This three-component continuous distribution (TCCD) model is compounded by the superposition of three separate terms, the isotropic, circumsolar and horizon brightening terms, each representing the contribution of a particular sky characteristic. In use a particular sky condition is characterized by the values of the coefficients of each of these three terms, defining the distribution of the total diffuse component. The TCCD model has been demonstrated to fit both the normalized clear sky data and the normalized overcast sky data with an RMS error of about ten percent of the man overall sky radiance. By extension the model could describe variable or partly clouded sky conditions. The model can aid in improving the prediction of solar collector performance.

  9. Spectral irradiance curve calculations for any type of solar eclipse

    International Nuclear Information System (INIS)

    Deepak, A.; Merrill, J.E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = /sub c/(1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail. (U.S.)

  10. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  11. The NASA POWER SSE: Deriving the Direct Normal Counterpart from the CERES SYN1deg Hourly Global Horizontal Irradiance during Early 2000 to Near Present

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.

    2017-12-01

    The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.

  12. Alternatives for the assessment of the solar resource in Argentina

    International Nuclear Information System (INIS)

    Grossi Gallegos, H; Righini, R; Raichijk, C

    2005-01-01

    In Argentina, from 1972 on, several maps were presented which reported the distribution of global solar irradiation received on a horizontal plane placed at ground level and which used different time bases and information quality, whether estimates obtained from correlations established with other meteorological variables or direct irradiation measurements.n a paper by Grossi Gallegos (1998) 12 charts were presented with the monthly distribution of the mean value of daily global irradiation and one with their annual distribution, using all available information up to that moment in Argentina, whether from daily irradiation data obtained with Argentina s Solarimetric Network pyrano meters or sunshine hours measured by the National Meteorological Service (SMN) Network; the error due to the inclusion of estimates and interpolations was evaluated as lower than 10%.Argentina's Solarimetric Network underwent a continuous decrease in the number of operational stations due to the lack of resources for supporting them.In view of this situation, different alternatives were gradually evaluated which would make it possible to improve the already mentioned available global solar irradiation charts.In this sense, a statistical survey of the adjustment of satellite irradiation data available in Internet (in the base known as Surface Solar Energy (SSE) Data Set, Version 1.00) to the ground values.The objective was evaluating the possibility of using them as a complement to the data that had already been used and their application in order to obtain contour maps in homogeneous zones such as the Pampa Humeda, using geostatistical methods for drawing the irradiation isolines.Root-mean-square errors (RMSE) range from 3.7% to 24.8% depending on the inhomogeneity of the area. Nevertheless, the available temporal series are limited in time and thus their climatic representativity can be questioned.Given the shortage of solar irradiation measured data accurate enough to fulfill

  13. ATLAS: A High-cadence All-sky Survey System

    Science.gov (United States)

    Tonry, J. L.; Denneau, L.; Heinze, A. N.; Stalder, B.; Smith, K. W.; Smartt, S. J.; Stubbs, C. W.; Weiland, H. J.; Rest, A.

    2018-06-01

    Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalog of 5 × 106 sources. This is the first of a series of articles describing ATLAS, devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient light curves.

  14. Solar Irradiance Variability and Its Impacts on the Earth Climate System

    Science.gov (United States)

    Harder, J. W.; Woods, T. N.

    The Sun plays a vital role in the evolution of the climates of terrestrial planets. Observations of the solar spectrum are now routinely made that span the wavelength range from the X-ray portion of the spectrum (5 nm) into the infrared to about 2400 nm. Over this very broad wavelength range, accounting for about 97% of the total solar irradiance, the intensity varies by more than 6 orders of magnitude, requiring a suite of very different and innovative instruments to determine both the spectral irradiance and its variability. The origins of solar variability are strongly linked to surface magnetic field changes, and analysis of solar images and magnetograms show that the intensity of emitted radiation from solar surface features in active regions has a very strong wavelength and magnetic field strength dependence. These magnetic fields produce observable solar surface features such as sunspots, faculae, and network structures that contribute in different ways to the radiated output. Semi-empirical models of solar spectral irradiance are able to capture much of the Sun's output, but this topic remains an active area of research. Studies of solar structures in both high spectral and spatial resolution are refining this understanding. Advances in Earth observation systems and high-quality three-dimensional chemical climate models provide a sound methodology to study the mechanisms of the interaction between Earth's atmosphere and the incoming solar radiation. Energetic photons have a profound effect on the chemistry and dynamics of the thermosphere and ionosphere, and these processes are now well represented in upper atmospheric models. In the middle and lower atmosphere the effects of solar variability enter the climate system through two nonexclusive pathways referred to as the top-down and bottom-up mechanisms. The top-down mechanism proceeds through the alteration of the photochemical rates that establish the middle atmospheric temperature structure and

  15. Recent changes in solar irradiance and infrared irradiance related with air temperature and cloudiness at the King Sejong Station, Antarctica

    Science.gov (United States)

    Jung, Y.; Kim, J.; Cho, H.; Lee, B.

    2006-12-01

    The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.

  16. Tropospheric haze and colors of the clear twilight sky.

    Science.gov (United States)

    Lee, Raymond L; Mollner, Duncan C

    2017-07-01

    At the earth's surface, clear-sky colors during civil twilights depend on the combined spectral effects of molecular scattering, extinction by tropospheric aerosols, and absorption by ozone. Molecular scattering alone cannot produce the most vivid twilight colors near the solar horizon, for which aerosol scattering and absorption are also required. However, less well known are haze aerosols' effects on twilight sky colors at larger scattering angles, including near the antisolar horizon. To analyze this range of colors, we compare 3D Monte Carlo simulations of skylight spectra with hyperspectral measurements of clear twilight skies over a wide range of aerosol optical depths. Our combined measurements and simulations indicate that (a) the purest antisolar twilight colors would occur in a purely molecular, multiple-scattering atmosphere, whereas (b) the most vivid solar-sky colors require at least some turbidity. Taken together, these results suggest that multiple scattering plays an important role in determining the redness of the antitwilight arch.

  17. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  18. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  19. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada)

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  20. Comparison of auroral ovals from all-sky camera studies and from satellite photographs

    International Nuclear Information System (INIS)

    Bond, F.R.; Akasofu, S.I.

    1979-01-01

    A comparison is made of the statistical auroral ovals determined by all-sky camera photographs with DMSP photographs for different degrees of geomagnetic activity. It is shown that the agreement between them is excellent. (author)

  1. A proposed new method for the determination of the solar irradiance at EUV wavelength range

    Science.gov (United States)

    Feldman, Uri; Doschek, G. A.; Seely, J. F.; Landi, E.; Dammasch, I.

    The solar irradiance in the far ultraviolet (FUV) and extreme ultraviolet (EUV) and its time variability are important inputs to geospace models. It provides the primary mechanism for heating the earth's upper atmosphere and creating the ionosphere. Understanding various space weather phenomena requires reliable detailed knowledge of the solar EUV irradiance. Ideally one would like to have a single well-calibrated, high-resolution spectrometer that can continuously monitor the solar irradiance over the relevant wavelengths range. Since this is much too difficult to accomplish, a number of monitoring instruments were constructed in the past, each covering a fraction of the required wavelength range. Assembling solar irradiance from measurements by a number of instruments is extremely difficult and is usually plagued by large uncertainties. To overcome some of the difficulties resulting from such procedures, empirical models have been developed that rely in large part on solar activity levels as proxies. In recent years a different approach has been established for the determination of the solar irradiance, an approach independent of irradiance observations. The new approach is based on the line intensities calculated from emission measure (EM) distributions across the solar surface. The EM distributions are derived from spatially and spectrally resolved measurements of line intensities and describe the temperature and density structure of the basic large scale features of the solar atmosphere, specifically coronal holes, quiet Sun, and active regions. Recently, as a result of detailed analysis of solar upper atmosphere (SUA) spectra recorded by SUMER/SoHO it was discovered that, in contrast to earlier beliefs, the solar EM in 3x105 -4x106 K plasmas does not appear to vary continuously with temperature as previously assumed. Instead it appears to be composed of isothermal structures where each can attain but one of the following four main temperatures: 5x105 , 9x105

  2. Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Shuai, Yong; Gong, Liang; Tan, Heping

    2014-01-01

    Highlights: • H 2 production by hybrid solar energy and methane steam reforming is analyzed. • MCRT and FVM coupling method is used for chemical reaction in solar porous reactor. • LTNE model is used to study the solid phase and fluid phase thermal performance. • Modified P1 approximation programmed by UDFs is used for irradiative heat transfer. - Abstract: The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production

  3. Erythemal solar UV measurement network in New Zealand

    International Nuclear Information System (INIS)

    Smith, G.J.

    1993-01-01

    Measured daily total erythemal doses for 1989, 1990 and 1991 were presented and the cloudless-sky daily dose at the autumn equinox was approximately 30-50% higher than at the spring equinox as a result of the seasonal variation in ozone levels. In addition a substantially lower spring equinox erythemal dose was observed in 1991, probably as a result of increased aerosols arising from the Pinatubo eruption. An asymmetry in the diurnal pattern of irradiances about solar noon has been observed on cloudless days. Higher UV irradiances have been usually observed in the afternoons than in the mornings. Measurement of erythemal radiation is needed for skin cancer epidemiology projects. Given the uncertainties relating to the exposure of individuals to solar erythemal radiation, personal dosimeters may be very useful in providing more reliable personal UV exposure data. (author). 4 refs

  4. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    Science.gov (United States)

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.

  5. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays

    Science.gov (United States)

    O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy

    2001-11-01

    We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.

  6. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    Science.gov (United States)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  7. Performance characteristics of a perforated shadow band under clear sky conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Michael J. [School of Mechanical Engineering, University of KwaZulu-Natal, Durban (South Africa)

    2010-12-15

    A perforated, non-rotating shadow band is described for separating global solar irradiance into its diffuse and direct normal components using a single pyranometer. Whereas shadow bands are normally solid so as to occult the sensor of a pyranometer throughout the day, the proposed band has apertures cut from its circumference to intermittently expose the instrument sensor at preset intervals. Under clear sky conditions the device produces a saw tooth waveform of irradiance data from which it is possible to reconstruct separate global and diffuse curves. The direct normal irradiance may then be calculated giving a complete breakdown of the irradiance curves without need of a second instrument or rotating shadow band. This paper describes the principle of operation of the band and gives a mathematical model of its shading mask based on the results of an optical ray tracing study. An algorithm for processing the data from the perforated band system is described and evaluated. In an extended trial conducted at NREL's Solar Radiation Research Laboratory, the band coupled with a thermally corrected Eppley PSP produced independent curves for diffuse, global and direct normal irradiance with low mean bias errors of 5.6 W/m{sup 2}, 0.3 W/m{sup 2} and -2.6 W/m{sup 2} respectively, relative to collocated reference instruments. Random uncertainties were 9.7 W/m{sup 2} (diffuse), 17.3 W/m{sup 2} (global) and 19.0 W/m{sup 2} (direct). When the data processing algorithm was modified to include the ray trace model of sensor exposure, uncertainties increased only marginally, confirming the effectiveness of the model. Deployment of the perforated band system can potentially increase the accuracy of data from ground stations in predominantly sunny areas where instrumentation is limited to a single pyranometer. (author)

  8. Planck early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to 29. Its ...

  9. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    Science.gov (United States)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  10. Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses

    Science.gov (United States)

    Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron

    2018-01-01

    Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit

  11. TCTE Level 3 Total Solar Irradiance 6-Hour Means V002 (TCTE3TSI6) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Solar Irradiance (TSI) Calibration Transfer Experiment (TCTE) data set TCTE3TSI6 contains 6-hour averaged total solar irradiance (a.k.a solar constant)...

  12. A novel procedure for generating solar irradiance TSYs

    Science.gov (United States)

    Fanego, Vicente Lara; Rubio, Jesús Pulgar; Peruchena, Carlos M. Fernández; Romeo, Martín Gastón; Tejera, Sara Moreno; Santigosa, Lourdes Ramírez; Balderrama, Rita X. Valenzuela; Tirado, Luis F. Zarzalejo; Pantaleón, Diego Bermejo; Pérez, Manuel Silva; Contreras, Manuel Pavón; García, Ana Bernardos; Anarte, Sergio Macías

    2017-06-01

    Typical Solar Years (TSYs) are key parameters for the solar energy industry. In particular, TSYs are mainly used for the design and bankability analysis of solar projects. In essence, a TSY intends to describe the expected long-term behavior of the solar resource (direct and/or global irradiance) into a condensed period of one year at the specific location of interest. A TSY differs from a conventional Typical Meteorological Year (TMY) by its absence of meteorological variables other than solar radiation. Concerning the probability of exceedance (Pe) needed for bankability, various scenarios are commonly used, with Pe90, Pe95 or even Pe99 being most usually required as unfavorable scenarios, along with the most widely used median scenario (Pe50). There is no consensus in the scientific community regarding the methodology for generating TSYs for any Pe scenario. Furthermore, the application of two different construction methods to the same original dataset could produce differing TSYs. Within this framework, a group of experts has been established by the Spanish Association for Standardization and Certification (AENOR) in order to propose a method that can be standardized. The method developed by this working group, referred to as the EVA method, is presented in this contribution. Its evaluation shows that it provides reasonable results for the two main irradiance components (direct and global), with low errors in the annual estimations for any given Pe. The EVA method also preserves the long-term statistics when the computed TSYs for a specific Pe are expanded from the monthly basis used in the generation of the TSY to higher time resolutions, such as 1 hour, which are necessary for the precise energy simulation of solar systems.

  13. Next generation x-ray all-sky monitor

    International Nuclear Information System (INIS)

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-01

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10 -15 W/m 2 (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars

  14. Cloud classification in a mediterranean location using radiation data and sky images

    International Nuclear Information System (INIS)

    Martinez-Chico, M.; Batlles, F.J.; Bosch, J.L.

    2011-01-01

    Knowledge regarding the solar radiation reaching the earth's surface and its geographical distribution is very important for the use of solar energy as a resource to produce electricity. Therefore, a proper assessment of available solar resource is particularly important to determine the placement and operation of solar thermal power plants. To perform this analysis correctly, it is necessary to determine the main factors influencing the radiation reaching the earth's surface, such as the earth's geometry, terrain, and atmospheric attenuation by gases, particles and clouds. Among these factors, it is important to emphasise the role of clouds as the main attenuating factor of radiation. Information about the amount and type of clouds present in the sky is therefore necessary to analyse both their attenuation levels and the prevalence of different sky conditions. Cloud cover is characterised according to attenuation levels, using the beam transmittance (k b , ratio of direct radiation incident on the surface to the extraterrestrial solar radiation) and hemispherical sky images. An analysis of the frequency and duration of each type of cloud cover blocking the sun's disk is also performed. Results show prevailing sky situations that make the studied area very suitable for the use of solar energy systems. -- Highlights: → Beam transmittance index k b have been used successfully to classify the cloud cover. → The proposed classification has been used to study a Mediterranean location in south-eastern Spain. → Percentage of cloudless/cloudy situations showed a good potential for solar energy applications in the studied area.

  15. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    Science.gov (United States)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  16. Impact of a Saharan dust intrusion over southern Spain on DNI estimation with sky cameras

    Science.gov (United States)

    Alonso-Montesinos, J.; Barbero, J.; Polo, J.; López, G.; Ballestrín, J.; Batlles, F. J.

    2017-12-01

    To operate Central Tower Solar Power (CTSP) plants properly, solar collector systems must be able to work under varied weather conditions. Therefore, knowing the state of the atmosphere, and more specifically the level of incident radiation, is essential operational information to adapt the electricity production system to atmospheric conditions. In this work, we analyze the impact of a strong Saharan dust intrusion on the Direct normal irradiance (DNI) registered at two sites 35 km apart in southeastern Spain: the University of Almería (UAL) and the Plataforma Solar de Almería (PSA). DNI can be inputted into the European Solar Radiation Atlas (ESRA) clear sky procedure to derive Linke turbidity values, which proved to be extremely high at the UAL. By using the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) at the PSA site, AERONET data from PSA and assuming dust dominated aerosol, DNI estimations agreed strongly with the measured DNI values. At the UAL site, a SMARTS simulation of the DNI values also seemed to be compatible with dust dominated aerosol.

  17. Sky luminosity for Rio de Janeiro City - Brazil

    International Nuclear Information System (INIS)

    Corbella, O.D.

    1995-12-01

    This paper presents sky luminosity data for Rio de Janeiro City, useful to be used in daylighting design in architecture. The data are presented as monthly graphics that correlate sunshine-hours with the frequency of occurrence during the day of a specific type of sky, that would present one of five defined characteristics (among clear and overcast sky). These results were derived from the knowledge of daily solar radiation and sunshine-hours data, for every day for a twelve year period. (author). 10 refs, 13 figs, 16 tabs

  18. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  19. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  20. Estimation of hourly ultraviolet solar irradiance in the semi-arid northeast region of Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ricardo C. de; Tiba, Chigueru [Dept. de Energia Nuclear da Univ. Federal de Pernambuco, Recife, Pernambuco (Brazil)

    2008-07-01

    Two computational codes, SPCTRAL2 and SMARTS2, were used for estimating ultraviolet solar irradiance in a locality of the semi-arid region of the Northeast of Brazil. The softwares presented simplicity of use, precision and relative ease in obtaining the input variables: zenith angle, atmospheric pressure in relation to sea level, relative humidity of the air, amount of precipitable water, total ozone and the aerosol optic depths (AOD). All these variables are measured in conventional meteorological stations, except for the aerosol optic depth. The AOD was measured with an apparatus that was constructed with a narrow band LED sensor, centered in 555nm which measures the monochromatic radiation transmission through the terrestrial atmosphere, which can be described by Beer's law. The measurements for obtaining the AOD were carried out during the months of December, 2006 and January, 2007 for Pesqueira-PE (Longitude -36.77 and Latitude 8.4 ) semi-arid region of Pernambuco, at intervals of 10 and 10 minutes, simultaneously. The ultraviolet solar irradiation was measured with a TURV (Total Ultraviolet Radiometer) Eppley Pyranometer on a minute scale. The computational simulations with SPCTRAL2 and SMARTS2 were made considering the following cases: (a) obtention of daily AOD, or be it, coming from the linear extrapolation of all the data along the day (b) obtention of hourly AOD, or be it the linearization by parts (piecewise). In the first case, the results of the simulations of ultraviolet solar irradiance and ultraviolet radiation index show an error of 4% and 13% for solar midday, and 78% at end of afternoon, when compared with the values measured with the TURV pyranometer. These results were significantly improved when using the AOD obtained on hourly bases: an error of 6.7 % for solar midday, a maximum error of 10% between 11 and 13 h, a maximum error of 20% between 10 and 14h and finally a maximum error of 30% between 9 and 15h. (orig.)

  1. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  2. Displacement damage analysis and modified electrical equivalent circuit for electron and photon-irradiated silicon solar cells

    Science.gov (United States)

    Arjhangmehr, Afshin; Feghhi, Seyed Amir Hossein

    2014-10-01

    Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The "modified circuit" is capable of modeling the "radiation damage" in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.

  3. Measuring the influence of aerosols and albedo on sky polarization.

    Science.gov (United States)

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  4. Predicting daylight illuminance on inclined surfaces using sky luminance data

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.H.W.; Lau, C.C.S.; Lam, J.C. [City University of Hong Kong, Kowloon (China). Dept. of Building and Construction

    2005-07-01

    Daylight illuminance, particularly on vertical surfaces, plays a major role in determining and evaluating the daylighting performance of a building. In many parts of the world, however, the basic daylight illuminance data for various vertical planes are not always readily available. The usual method to obtain diffuse illuminance on tilted planes would be based on inclined surface models using data from the horizontal measurements. Alternatively, the diffuse illuminance on a sloping plane can be computed by integrating the luminance distribution of the sky 'seen' by the plane. This paper presents an approach to estimate the vertical outdoor illuminance from sky luminance data and solar geometry. Sky luminance data recorded from January 1999 to December 2001 in Hong Kong and generated by two well-known sky luminance models (Kittler and Perez) were used to compute the outdoor illuminance for the four principal vertical planes (N, E, S and W). The performance of this approach was evaluated against data measured in the same period. Statistical analysis indicated that using sky luminance distributions to predict outdoor illuminance can give reasonably good agreement with measured data for all vertical surfaces. The findings provide an accurate alternative to determine the amount of daylight on vertical as well as other inclined surfaces when sky luminance data are available. (author)

  5. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  6. GASS: THE PARKES GALACTIC ALL-SKY SURVEY. I. SURVEY DESCRIPTION, GOALS, AND INITIAL DATA RELEASE

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Calabretta, M. R.; Ford, H. Alyson; Newton-McGee, K.

    2009-01-01

    The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (H I) emission in the Southern sky covering declinations δ ≤ 1 0 using the Parkes Radio Telescope. The survey covers 2π steradians with an effective angular resolution of ∼16', at a velocity resolution of 1.0 km s -1 , and with an rms brightness temperature noise of 57 mK. GASS is the most sensitive, highest angular resolution survey of Galactic H I emission ever made in the Southern sky. In this paper, we outline the survey goals, describe the observations and data analysis, and present the first-stage data release. The data product is a single cube at full resolution, not corrected for stray radiation. Spectra from the survey and other data products are publicly available online.

  7. Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2

    Science.gov (United States)

    Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-05-01

    The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.

  8. Automated exploitation of sky polarization imagery.

    Science.gov (United States)

    Sadjadi, Firooz A; Chun, Cornell S L

    2018-03-10

    We propose an automated method for detecting neutral points in the sunlit sky. Until now, detecting these singularities has been done manually. Results are presented that document the application of this method on a limited number of polarimetric images of the sky captured with a camera and rotating polarizer. The results are significant because a method for automatically detecting the neutral points may aid in the determination of the solar position when the sun is obscured and may have applications in meteorology and pollution detection and characterization.

  9. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-06-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.

  10. Correction for reflected sky radiance in low-altitude coastal hyperspectral images.

    Science.gov (United States)

    Kim, Minsu; Park, Joong Yong; Kopilevich, Yuri; Tuell, Grady; Philpot, William

    2013-11-10

    Low-altitude coastal hyperspectral imagery is sensitive to reflections of sky radiance at the water surface. Even in the absence of sun glint, and for a calm water surface, the wide range of viewing angles may result in pronounced, low-frequency variations of the reflected sky radiance across the scan line depending on the solar position. The variation in reflected sky radiance can be obscured by strong high-spatial-frequency sun glint and at high altitude by path radiance. However, at low altitudes, the low-spatial-frequency sky radiance effect is frequently significant and is not removed effectively by the typical corrections for sun glint. The reflected sky radiance from the water surface observed by a low-altitude sensor can be modeled in the first approximation as the sum of multiple-scattered Rayleigh path radiance and the single-scattered direct-solar-beam radiance by the aerosol in the lower atmosphere. The path radiance from zenith to the half field of view (FOV) of a typical airborne spectroradiometer has relatively minimal variation and its reflected radiance to detector array results in a flat base. Therefore the along-track variation is mostly contributed by the forward single-scattered solar-beam radiance. The scattered solar-beam radiances arrive at the water surface with different incident angles. Thus the reflected radiance received at the detector array corresponds to a certain scattering angle, and its variation is most effectively parameterized using the downward scattering angle (DSA) of the solar beam. Computation of the DSA must account for the roll, pitch, and heading of the platform and the viewing geometry of the sensor along with the solar ephemeris. Once the DSA image is calculated, the near-infrared (NIR) radiance from selected water scan lines are compared, and a relationship between DSA and NIR radiance is derived. We then apply the relationship to the entire DSA image to create an NIR reference image. Using the NIR reference image

  11. Impact of the 2017 Solar Eclipse on Smart Grid

    Science.gov (United States)

    Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.

    2017-12-01

    With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.

  12. All-sky photogrammetry techniques to georeference a cloud field

    Science.gov (United States)

    Crispel, Pierre; Roberts, Gregory

    2018-01-01

    In this study, we present a novel method of identifying and geolocalizing cloud field elements from a portable all-sky camera stereo network based on the ground and oriented towards zenith. The methodology is mainly based on stereophotogrammetry which is a 3-D reconstruction technique based on triangulation from corresponding stereo pixels in rectified images. In cases where clouds are horizontally separated, identifying individual positions is performed with segmentation techniques based on hue filtering and contour detection algorithms. Macroscopic cloud field characteristics such as cloud layer base heights and velocity fields are also deduced. In addition, the methodology is fitted to the context of measurement campaigns which impose simplicity of implementation, auto-calibration, and portability. Camera internal geometry models are achieved a priori in the laboratory and validated to ensure a certain accuracy in the peripheral parts of the all-sky image. Then, stereophotogrammetry with dense 3-D reconstruction is applied with cameras spaced 150 m apart for two validation cases. The first validation case is carried out with cumulus clouds having a cloud base height at 1500 m a.g.l. The second validation case is carried out with two cloud layers: a cumulus fractus layer with a base height at 1000 m a.g.l. and an altocumulus stratiformis layer with a base height of 2300 m a.g.l. Velocity fields at cloud base are computed by tracking image rectangular patterns through successive shots. The height uncertainty is estimated by comparison with a Vaisala CL31 ceilometer located on the site. The uncertainty on the horizontal coordinates and on the velocity field are theoretically quantified by using the experimental uncertainties of the cloud base height and camera orientation. In the first cumulus case, segmentation of the image is performed to identify individuals clouds in the cloud field and determine the horizontal positions of the cloud centers.

  13. SPHEREx: Probing the Physics of Inflation with an All-Sky Spectroscopic Galaxy Survey

    Science.gov (United States)

    Dore, Olivier; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA’s astrophysics division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. These themes are addressed by a single survey, with a single instrument.In this poster, we describe how SPHEREx can probe the physics of inflationary non-Gaussianity by measuring large-scale structure with galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra. In particular, it will measure the redshifts of over 500 million galaxies of all types, an unprecedented dataset. Using this catalog, SPHEREx will reduce the uncertainty in fNL -- a parameter describing the inflationary initial conditions -- by a factor of more than 10 compared with CMB measurements. At the same time, this catalog will enable strong scientific synergies with Euclid, WFIRST and LSST

  14. Automated Meteor Detection by All-Sky Digital Camera Systems

    Science.gov (United States)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  15. A Semantically Enabled Metadata Repository for Solar Irradiance Data Products

    Science.gov (United States)

    Wilson, A.; Cox, M.; Lindholm, D. M.; Nadiadi, I.; Traver, T.

    2014-12-01

    The Laboratory for Atmospheric and Space Physics, LASP, has been conducting research in Atmospheric and Space science for over 60 years, and providing the associated data products to the public. LASP has a long history, in particular, of making space-based measurements of the solar irradiance, which serves as crucial input to several areas of scientific research, including solar-terrestrial interactions, atmospheric, and climate. LISIRD, the LASP Interactive Solar Irradiance Data Center, serves these datasets to the public, including solar spectral irradiance (SSI) and total solar irradiance (TSI) data. The LASP extended metadata repository, LEMR, is a database of information about the datasets served by LASP, such as parameters, uncertainties, temporal and spectral ranges, current version, alerts, etc. It serves as the definitive, single source of truth for that information. The database is populated with information garnered via web forms and automated processes. Dataset owners keep the information current and verified for datasets under their purview. This information can be pulled dynamically for many purposes. Web sites such as LISIRD can include this information in web page content as it is rendered, ensuring users get current, accurate information. It can also be pulled to create metadata records in various metadata formats, such as SPASE (for heliophysics) and ISO 19115. Once these records are be made available to the appropriate registries, our data will be discoverable by users coming in via those organizations. The database is implemented as a RDF triplestore, a collection of instances of subject-object-predicate data entities identifiable with a URI. This capability coupled with SPARQL over HTTP read access enables semantic queries over the repository contents. To create the repository we leveraged VIVO, an open source semantic web application, to manage and create new ontologies and populate repository content. A variety of ontologies were used in

  16. Optical Sky Brightness and Transparency during the Winter Season at Dome A Antarctica from the Gattini-All-Sky Camera

    Science.gov (United States)

    Yang, Yi; Moore, Anna M.; Krisciunas, Kevin; Wang, Lifan; Ashley, Michael C. B.; Fu, Jianning; Brown, Peter J.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel; Riddle, Reed L.; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Suntzeff, Nicholas B.; Tothill, Nick; Travouillon, Tony; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2017-07-01

    The summit of the Antarctic plateau, Dome A, is proving to be an excellent site for optical, near-infrared, and terahertz astronomical observations. Gattini is a wide-field camera installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in 2009 January. We present here the measurements of sky brightness with the Gattini ultra-large field of view (90^\\circ × 90^\\circ ) in the photometric B-, V-, and R-bands; cloud cover statistics measured during the 2009 winter season; and an estimate of the sky transparency. A cumulative probability distribution indicates that the darkest 10% of the nights at Dome A have sky brightness of S B = 22.98, S V = 21.86, and S R = 21.68 mag arcsec-2. These values were obtained during the year 2009 with minimum aurora, and they are comparable to the faintest sky brightness at Maunakea and the best sites of northern Chile. Since every filter includes strong auroral lines that effectively contaminate the sky brightness measurements, for instruments working around the auroral lines, either with custom filters or with high spectral resolution instruments, these values could be easily obtained on a more routine basis. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based site. These light curves will be published in a future paper.

  17. Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation.

    Science.gov (United States)

    Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing

    2018-01-10

    The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.

  18. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    Science.gov (United States)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  19. Influence of solar irradiation on power transformer thermal balance

    NARCIS (Netherlands)

    Gorgan, B.; Notingher, P.V.; Wetzer, J.M.; Verhaart, H.F.A.; Wouters, P.A.A.F.; Schijndel, van A.

    2012-01-01

    In countries with a high ambient temperature and strong solar irradiation, transformer winding hot-spot temperature may increase over its maximum permissible limit. This can considerably reduce the insulation life of the transformer by enhanced degradation of the paper insulation. According to

  20. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    Science.gov (United States)

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Characteristics of merging at the magnetopause inferred from dayside 557.7-nm all-sky images: IMF drivers of poleward moving auroral forms

    Directory of Open Access Journals (Sweden)

    N. C. Maynard

    2006-11-01

    Full Text Available We combine in situ measurements from Cluster with high-resolution 557.7 nm all-sky images from South Pole to investigate the spatial and temporal evolution of merging on the dayside magnetopause. Variations of 557.7 nm emissions were observed at a 6 s cadence at South Pole on 29 April 2003 while significant changes in the Interplanetary Magnetic Field (IMF clock angle were reaching the magnetopause. Electrons energized at merging sites are the probable sources for 557.7 nm cusp emissions. At the same time Cluster was crossing the pre-noon cusp in the Northern Hemisphere. The combined observations confirm results of a previous study that merging events can occur at multiple sites simultaneously and vary asynchronously on time scales of 10 s to 3 min (Maynard et al., 2004. The intensity of the emissions and the merging rate appear to vary with changes in the IMF clock angle, IMF BX and the dynamic pressure of the solar wind. Most poleward moving auroral forms (PMAFs reflect responses to changes in interplanetary medium rather than to local processes. The changes in magnetopause position required by increases in dynamic pressure are mediated by merging and result in the generation of PMAFs. Small (15–20% variations in dynamic pressure of the solar wind are sufficient to launch PMAFs. Changes in IMF BX create magnetic flux compressions and rarefactions in the solar wind. Increases (decreases in IMF BX strengthens |B| near northern (southern hemisphere merging sites thereby enhancing merging rates and triggering PMAFs. When correlating responses in the two hemispheres, the presence of significant IMF BX also requires that different lag-times be applied to ACE measurements acquired ~0.1 AU upstream of Earth. Cluster observations set lag times for merging at Northern Hemisphere sites; post-noon optical emissions set times of Southern Hemisphere merging. All-sky images and magnetohydrodynamic simulations indicate that merging occurs in multiple

  2. Estimation of incident solar radiation on the roof of the cultural and sports university centre of the Foundation University Los Libertadores

    International Nuclear Information System (INIS)

    Jiménez, S A; Carrillo, V M; Rátiva, L C

    2016-01-01

    This document shows the estimate of the total solar irradiance incident for the set of solar collectors to be located on the roof of cultural and sports university centre (CSUC) of the Foundation University Los Libertadores (FULL) in Bogotá, Colombia, and they will be part of the climate control system of the pool built inside. The calculation was based on experimental data of global solar radiation on the horizontal surface on March, July, October, November and December, through the three most commonly models used to determine the total solar radiation on tilted surfaces: isotropic sky, HDKR and Perez. The results show differences of less than 5% between the values calculated by the three models for December, the month with lower irradiance. For this month, reductions up to 15% and 19% were observed in the estimated irradiance, relative to those obtained on a horizontal surface on a surface under ideal orientation and inclination, respectively. (paper)

  3. Estimation of incident solar radiation on the roof of the cultural and sports university centre of the Foundation University Los Libertadores

    Science.gov (United States)

    Jiménez, S. A.; Carrillo, V. M.; Rátiva, L. C.

    2016-02-01

    This document shows the estimate of the total solar irradiance incident for the set of solar collectors to be located on the roof of cultural and sports university centre (CSUC) of the Foundation University Los Libertadores (FULL) in Bogotá, Colombia, and they will be part of the climate control system of the pool built inside. The calculation was based on experimental data of global solar radiation on the horizontal surface on March, July, October, November and December, through the three most commonly models used to determine the total solar radiation on tilted surfaces: isotropic sky, HDKR and Perez. The results show differences of less than 5% between the values calculated by the three models for December, the month with lower irradiance. For this month, reductions up to 15% and 19% were observed in the estimated irradiance, relative to those obtained on a horizontal surface on a surface under ideal orientation and inclination, respectively.

  4. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks

    International Nuclear Information System (INIS)

    Cao Jiacong; Lin Xingchun

    2008-01-01

    An accurate forecast of solar irradiation is required for various solar energy applications and environmental impact analyses in recent years. Comparatively, various irradiation forecast models based on artificial neural networks (ANN) perform much better in accuracy than many conventional prediction models. However, the forecast precision of most existing ANN based forecast models has not been satisfactory to researchers and engineers so far, and the generalization capability of these networks needs further improving. Combining the prominent dynamic properties of a recurrent neural network (RNN) with the enhanced ability of a wavelet neural network (WNN) in mapping nonlinear functions, a diagonal recurrent wavelet neural network (DRWNN) is newly established in this paper to perform fine forecasting of hourly and daily global solar irradiance. Some additional steps, e.g. applying historical information of cloud cover to sample data sets and the cloud cover from the weather forecast to network input, are adopted to help enhance the forecast precision. Besides, a specially scheduled two phase training algorithm is adopted. As examples, both hourly and daily irradiance forecasts are completed using sample data sets in Shanghai and Macau, and comparisons between irradiation models show that the DRWNN models are definitely more accurate

  5. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  6. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA: MASCARA

    Science.gov (United States)

    Snellen, Ignas A. G.; Stuik, Remko; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; le Poole, Rudolf

    2012-09-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.

  7. Photometric measurements of solar irradiance variations due to sunspots

    International Nuclear Information System (INIS)

    Chapman, G.A.; Herzog, A.D.; Laico, D.E.; Lawrence, J.K.; Templer, M.S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage. 23 refs

  8. Impact of the 2017 Solar Eclipse on the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Andreas, Afshin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-12

    With the increasing interest in using solar energy as a major contributor to the use of renewable generation, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, the need arises to know the moons position in the sky with respect to the sun. When a solar eclipse occurs, the moon disk might totally or partially shade the sun disk, which can affect the irradiance level from the sun disk, consequently affecting a resource on the electric grid. The moons position can then provide smart grid users with information about how potential total or partial solar eclipses might affect different locations on the grid so that other resources on the grid can be directed to where they might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on Earth, they can last 3 hours or more depending on the location, and they can affect smart grid users. On August 21, 2017, a partial and full solar eclipse occurred in many locations in the United States, including at the National Renewable Energy Laboratory in Golden, Colorado. Solar irradiance measurements during the eclipse were compared to the data generated by a model for validation at eight locations.

  9. A Method for Deriving All-Sky Evapotranspiration From the Synergistic Use of Remotely Sensed Images and Meteorological Data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Tang, Ronglin; Gao, Mao-Fang

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy cycle. The present study develops a practical approach for generating all-sky ET with the synergistic use of satellite images and meteorological data. In this approach, the ET over clear-sky pixels is estimated from a two-stage land surface temperature (LST)/fractional vegetation cover feature space method where the dry/wet edges are determined from theoretical calculations. For cloudy pixels, the Penman-Monteith equation is used to calculate the ET where no valid remotely sensed LST is available. An evaluation of the method with ET collected at ground-based large aperture scintillometer measurements at the Yucheng Comprehensive Experimental Station (YCES) in China is performed over a growth period from April to October 2010. The results show that the root-mean-square error (RMSE) and bias over clear-sky pixels are 57.3 W/m2 and 18.2 W/m2, respectively, whereas an RMSE of 69.3 W/m2 with a bias of 12.3 W/m2 can be found over cloudy pixels. Moreover, a reasonable overall RMSE of 65.3 W/m2 with a bias of 14.4 W/m2 at the YCES can be obtained under all-sky conditions, indicating a promising prospect for the derivation of all-sky ET using currently available satellite and meteorological data at a regional or global scale in future developments.

  10. Solar Spectral Irradiance Reconstruction over 9 Millennia from a Composite 14C and 10Be Series

    Science.gov (United States)

    Wu, C. J.; Usoskin, I. G.; Krivova, N.; Kovaltsov, G.; Solanki, S. K.

    2017-12-01

    The Sun is the main external energy source to the Earth and thus the knowledge of solar variability on different time scales is important for understanding the solar influence on the terrestrial atmosphere and climate. The overall energy input and its spectral distribution are described by the total (TSI) and spectral (SSI) solar irradiance, respectively. Direct measurements of the solar irradiance provide information on solar variability on the decadal and shorter time scales, while the sunspot number record covers four centuries. On yet longer time scales only indirect proxies can be used, such as the concentrations of the cosmogenic isotopes 10Be and 14C in terrestrial archives. These isotopes are produced in the terrestrial atmosphere by impinging cosmic rays, whose flux is modulated by solar activity. Therefore the isotope data retrieved from various natural archives around the globe show a very high degree of similarity reflecting changes in the solar activity. Nevertheless, significant short-term deviations can be observed due to the different geochemical production processes and local climatic conditions. We will present the newest TSI/SSI reconstruction over the last 9000 years based on a new consistent composite multi-isotope proxy series. The solar irradiance reconstruction reveals the global and robust pattern of solar variability in the past.

  11. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system

    Directory of Open Access Journals (Sweden)

    Chun Yang

    2016-06-01

    Full Text Available A method to assimilate all-sky radiances from the Advanced Microwave Scanning Radiometer 2 (AMSR2 was developed within the Weather Research and Forecasting (WRF model's data assimilation (WRFDA system. The four essential elements are: (1 extending the community radiative transform model's (CRTM interface to include hydrometeor profiles; (2 using total water Qt as the moisture control variable; (3 using a warm-rain physics scheme for partitioning the Qt increment into individual increments of water vapour, cloud liquid water and rain; and (4 adopting a symmetric observation error model for all-sky radiance assimilation.Compared to a benchmark experiment with no AMSR2 data, the impact of assimilating clear-sky or all-sky AMSR2 radiances on the analysis and forecast of Hurricane Sandy (2012 was assessed through analysis/forecast cycling experiments using WRF and WRFDA's three-dimensional variational (3DVAR data assimilation scheme. With more cloud/precipitation-affected data being assimilated around tropical cyclone (TC core areas in the all-sky AMSR2 assimilation experiment, better analyses were obtained in terms of the TC's central sea level pressure (CSLP, warm-core structure and cloud distribution. Substantial (>20 % error reduction in track and CSLP forecasts was achieved from both clear-sky and all-sky AMSR2 assimilation experiments, and this improvement was consistent from the analysis time to 72-h forecasts. Moreover, the all-sky assimilation experiment consistently yielded better track and CSLP forecasts than the clear-sky did for all forecast lead times, due to a better analysis in the TC core areas. Positive forecast impact from assimilating AMSR2 radiances is also seen when verified against the European Center for Medium-Range Weather Forecasts (ECMWF analysis and the Stage IV precipitation analysis, with an overall larger positive impact from the all-sky assimilation experiment.

  12. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  13. Comparison of the Changes in the Visible and Infrared Irradiance Observed by the SunPhotometers on EURECA to the UARS Total Solar and UV Irradiances

    Science.gov (United States)

    Pap, Judit

    1995-01-01

    Solar irradiance in the near-UV (335 nm), visible (500 nm) and infrared (778 nm) spectral bands has been measured by the SunPhotometers developed at the World Radiation Center, Davos, Switzerland on board the European Retrievable Carrier between August 1992 and May 1993. Study of the variations in the visible and infrared irradiance is important for both solar and atmospheric physics. The purpose of this paper is to examine the temporal variations observed in the visible and infrared spectral bands after eliminating the trend in the data mainly related to instrument degradation. The effect of active regions in these spectral irradiances is clearly resolved. Variations in the visible and infrared irradiances are compared to total solar irradiance observed by the SOVA2 radiometer on the EURECA platform and by the ACRIMII radiometer on UARS as well as to UV observations of the UARS and NOAA9 satellites. The space-borne spectral irradiance observations are compared to the photometric sunspot deficit and CaII K irradiance measured at the San Fernando Observatory, California State University at Northridge in order to study the effect of active regions in detail.

  14. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    Science.gov (United States)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  15. Reconstruction of the solar EUV irradiance from 1996 to 2010 based on SOHO/EIT images

    Directory of Open Access Journals (Sweden)

    Haberreiter Margit

    2014-01-01

    Full Text Available The solar Extreme UltraViolet (EUV spectrum has important effects on the Earth’s upper atmosphere. For a detailed investigation of these effects it is important to have a consistent data series of the EUV spectral irradiance available. We present a reconstruction of the solar EUV irradiance based on SOHO/EIT images, along with synthetic spectra calculated using different coronal features which represent the brightness variation of the solar atmosphere. The EIT images are segmented with the SPoCA2 tool which separates the features based on a fixed brightness classification scheme. With the SOLMOD code we then calculate intensity spectra for the 10–100 nm wavelength range and each of the coronal features. Weighting the intensity spectra with the area covered by each of the features yields the temporal variation of the EUV spectrum. The reconstructed spectrum is then validated against the spectral irradiance as observed with SOHO/SEM. Our approach leads to good agreement between the reconstructed and the observed spectral irradiance. This study is an important step toward understanding variations in the solar EUV spectrum and ultimately its effect on the Earth’s upper atmosphere.

  16. Evaluation of the performance of a meso-scale NWP model to forecast solar irradiance on Reunion Island for photovoltaic power applications

    Science.gov (United States)

    Kalecinski, Natacha; Haeffelin, Martial; Badosa, Jordi; Periard, Christophe

    2013-04-01

    Solar photovoltaic power is a predominant source of electrical power on Reunion Island, regularly providing near 30% of electrical power demand for a few hours per day. However solar power on Reunion Island is strongly modulated by clouds in small temporal and spatial scales. Today regional regulations require that new solar photovoltaic plants be combined with storage systems to reduce electrical power fluctuations on the grid. Hence cloud and solar irradiance forecasting becomes an important tool to help optimize the operation of new solar photovoltaic plants on Reunion Island. Reunion Island, located in the South West of the Indian Ocean, is exposed to persistent trade winds, most of all in winter. In summer, the southward motion of the ITCZ brings atmospheric instabilities on the island and weakens trade winds. This context together with the complex topography of Reunion Island, which is about 60 km wide, with two high summits (3070 and 2512 m) connected by a 1500 m plateau, makes cloudiness very heterogeneous. High cloudiness variability is found between mountain and coastal areas and between the windward, leeward and lateral regions defined with respect to the synoptic wind direction. A detailed study of local dynamics variability is necessary to better understand cloud life cycles around the island. In the presented work, our approach to explore the short-term solar irradiance forecast at local scales is to use the deterministic output from a meso-scale numerical weather prediction (NWP) model, AROME, developed by Meteo France. To start we evaluate the performance of the deterministic forecast from AROME by using meteorological measurements from 21 meteorological ground stations widely spread around the island (and with altitudes from 8 to 2245 m). Ground measurements include solar irradiation, wind speed and direction, relative humidity, air temperature, precipitation and pressure. Secondly we study in the model the local dynamics and thermodynamics that

  17. Multiband photometry and spectroscopy of an all-sky sample of bright white dwarfs

    Science.gov (United States)

    Raddi, R.; Gentile Fusillo, N. P.; Pala, A. F.; Hermes, J. J.; Gänsicke, B. T.; Chote, P.; Hollands, M. A.; Henden, A.; Catalán, S.; Geier, S.; Koester, D.; Munari, U.; Napiwotzki, R.; Tremblay, P.-E.

    2017-12-01

    The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will obtain space-based uninterrupted light curves for a large sample of bright white dwarfs distributed across the entire sky, providing a very rich resource for asteroseismological studies and the search for transits from planetary debris. We have compiled an all-sky catalogue of ultraviolet, optical and infrared photometry as well as proper motions, which we propose as an essential tool for the preliminary identification and characterization of potential targets. We present data for 1864 known white dwarfs and 305 high-probability white dwarf candidates brighter than 17 mag. We describe the spectroscopic follow-up of 135 stars, of which 82 are white dwarfs and 25 are hot subdwarfs. The new confirmed stars include six pulsating white dwarf candidates (ZZ Cetis), and nine white dwarf binaries with a cool main-sequence companion. We identify one star with a spectroscopic distance of only 25 pc from the Sun. Around the time TESS is launched, we foresee that all white dwarfs in this sample will have trigonometric parallaxes measured by the ESA Gaia mission next year.

  18. Dusty WDs in the WISE all sky survey ∩ SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Sara D.; Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: barber@nhn.ou.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-10

    A recent cross-correlation between the Sloan Digital Sky Survey (SDSS) Data Release 7 White Dwarf Catalog with the Wide-Field Infrared Survey Explorer (WISE) all-sky photometry at 3.4, 4.6, 12, and 22 μm performed by Debes et al. resulted in the discovery of 52 candidate dusty white dwarfs (WDs). However, the 6'' WISE beam allows for the possibility that many of the excesses exhibited by these WDs may be due to contamination from a nearby source. We present MMT+SAO Wide-Field InfraRed Camera J- and H-band imaging observations (0.''5-1.''5 point spread function) of 16 of these candidate dusty WDs and confirm that four have spectral energy distributions (SEDs) consistent with a dusty disk and are not accompanied by a nearby source contaminant. The remaining 12 WDs have contaminated WISE photometry and SEDs inconsistent with a dusty disk when the contaminating sources are not included in the photometry measurements. We find the frequency of disks around single WDs in the WISE ∩ SDSS sample to be 2.6%-4.1%. One of the four new dusty WDs has a mass of 1.04 M {sub ☉} (progenitor mass 5.4 M {sub ☉}) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

  19. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    Science.gov (United States)

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interrelations of UV-global/global/diffuse solar irradiance components and UV-global attenuation on air pollution episode days in Athens, Greece

    International Nuclear Information System (INIS)

    Koronakis, P.S.; Sfantos, G.K.

    2002-01-01

    An investigation of global ultraviolet (G UV ), global (G) and diffuse (G d ) solar intensities, continuously recorded over a period of five years at a station in Athens, Greece, and stored on the basis of hourly time intervals since 1996, has revealed the following: (a) UV-global irradiation, associated with the 290-395 nm wavelength region, constitutes 4.1% of global solar. (b) UV-global irradiance ranges from an average minimum of 2.4 W m -2 and 3.1% of global solar in January to an average maximum of 45 W m -2 and 7.8%, respectively, in June, both considered at 13:00, solar time. (c) There exists a good correlation among the two dimensionless irradiance ratios G UV /G d and G d /G in the form of an exponential relationship. (d) UV-global monthly irradiation data show evidence of temporal variability in Athens, from 1996 to 2000. (e) Anthropogenic and photochemical atmospheric pollutant agents (O 3 , CO, SO 2 , NO x , smoke) causing air pollution episodes seem to affect differently solar irradiance components. The main results of analysis (measurements within ± 2 h from solar noon) indicate that a buildup of O 3 and NO x inside the urban Athens plume during cloudless and windless warm days could cause: (i) UV-global irradiance depletion between 5.4% and 14.4%. (ii) Diffuse solar irradiance enhancement up to 38.1%. (iii) Global solar irradiance attenuation ranging up to 6.3%. (author)

  1. A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey

    Science.gov (United States)

    Westmeier, Tobias

    2018-02-01

    High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.

  2. Sensor network based solar forecasting using a local vector autoregressive ridge framework

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J. [Stony Brook Univ., NY (United States); Yoo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heiser, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalb, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-04

    The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations due to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.

  3. A Novel Concentrator Photovoltaic (CPV System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-09-01

    Full Text Available This paper proposes a novel concentrator photovoltaic (CPV system with improved irradiation uniformity and system efficiency. CPV technology is very promising its for highly efficient solar energy conversion. A conventional CPV system usually uses only one optical component, such as a refractive Fresnel lens or a reflective parabolic dish, to collect and concentrate solar radiation on the solar cell surface. Such a system creates strongly non-uniform irradiation distribution on the solar cell, which tends to cause hot spots, current mismatch, and degrades the overall efficiency of the system. Additionally, a high-concentration CPV system is unable to collect diffuse solar radiation. In this paper, we propose a novel CPV system with improved irradiation uniformity and collection of diffuse solar radiation. The proposed system uses a Fresnel lens as a primary optical element (POE to concentrate and focus the sunlight and a plano-concave lens as a secondary optical element (SOE to uniformly distribute the sunlight over the surface of multi-junction (MJ solar cells. By using the SOE, the irradiance uniformity is significantly improved in the system. Additionally, the proposed system also captures diffuse solar radiation by using an additional low-cost solar cell surrounding MJ cells. In our system, incident direct solar radiation is captured by MJ solar cells, whereas incident diffuse solar radiation is captured by the low-cost solar cell. Simulation models were developed using a commercial optical simulation tool (LightTools™. The irradiance uniformity and efficiency of the proposed CPV system were analyzed, evaluated, and compared with those of conventional CPV systems. The analyzed and simulated results show that the CPV system significantly improves the irradiance uniformity as well as the system efficiency compared to the conventional CPV systems. Numerically, for our simulation models, the designed CPV with the SOE and low-cost cell provided

  4. Spatiotemporal variability and modeling of the solar irradiance transmissivity through a boreal forest

    Science.gov (United States)

    Nadeau, D.; Isabelle, P. E.; Asselin, M. H.; Parent, A. C.; Jutras, S.; Anctil, F.

    2017-12-01

    Solar irradiance is the largest driver of land-surface exchanges of energy, water and trace gases. Its absorption by a forest canopy generates considerable sensible and latent heat fluxes as well as tree temperature changes. A fraction of the irradiance gets transmitted through the canopy and powers another layer of energy fluxes, which can reach substantial values. Transmitted radiation is also of particular relevance to understory vegetation photosynthesis, snowpack energetics and soil temperature dynamics. Boreal forest canopy transmissivity needs to be quantified to properly reproduce land-atmosphere interactions in the circumpolar boreal biome, but its high spatiotemporal variability makes it a challenging task. The objective of this study is to characterize the spatiotemporal variability in under-canopy radiation and to evaluate the performance of various models in representing plot-scale observations. The study site is located in Montmorency Forest (47°N, 71°W), in southern Quebec, Canada. The vegetation includes mostly juvenile balsam firs, up to 6 to 8 m tall. Since January 2016, a 15-m flux tower measures the four components of radiation, as well as other relevant fluxes and meteorological variables, on a ≈10° northeast-facing slope. In summer 2016, 20 portable weather stations were mounted in a 150 m x 200 m grid around the flux tower. These stations were equipped with silicon-cell pyranometers and provided measurements of downwelling irradiance at a height of 2 m. This setup allowed us to compute irradiance transmissivity and to assess its spatiotemporal variability at the site. First, we show that the average of daily incoming energy varies tremendously across the sites, from 1 MJ/m2 to nearly 9 MJ/m2, due to large variations in canopy structure over short distances. Using a regression tree analysis, we show that transmissivity mostly depends on sun elevation, diffuse fraction of radiation, sky and sun view fraction and wind speed above canopy. We

  5. Workplace Electric Vehicle Solar Smart Charging based on Solar Irradiance Forecasting

    OpenAIRE

    Almquist, Isabelle; Lindblom, Ellen; Birging, Alfred

    2017-01-01

    The purpose of this bachelor thesis is to investigate different outcomes of the usage of photovoltaic (PV) power for electric vehicle (EV) charging adjacent to workplaces. In the investigated case, EV charging stations are assumed to be connected to photovoltaic systems as well as the electricity grid. The model used to simulate different scenarios is based on a goal of achieving constant power exchange with the grid by adjusting EV charging to a solar irradiance forecast. The model is implem...

  6. Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres

    Science.gov (United States)

    Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath

    2018-02-01

    The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.

  7. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  8. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  9. RXTE All-Sky Monitor Localization of SGR 1627-41

    Science.gov (United States)

    Smith, D. A.; Bradt, H. V.; Levine, A. M.

    1999-09-01

    The fourth unambiguously identified Soft Gamma Repeater (SGR), SGR 1627--41, was discovered with the BATSE instrument on 1998 June 15 (Kouveliotou et al. 1998). Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6(deg) segment of a narrow (19('') ) annulus (Hurley et al. 1999; Woods et al. 1998). We report on two bursts from this source observed by the All-Sky Monitor (ASM) on RXTE. We use the ASM data to further constrain the source location to a 5(') long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3(') of the supernova remnant (SNR) G337.0--0.1. The probability that a SNR would fall so close to the error box purely by chance is ~ 5%.

  10. The ROSAT All-Sky Survey view of the Large Magellanic Cloud (LMC)

    Science.gov (United States)

    Pietsch, W.; Denner, K.; Kahabka, P.; Pakull, M.; Schaeidt, S.

    1996-01-01

    During the Rosat all sky survey, centered on the Large Magellanic Cloud (LMC), 516 X-ray sources were detected. The field was covered from July 1990 to January 1991. The X-ray parameters of the sources, involving position, count rates, hardness ratios, extent, and time variability during the observations, are discussed. Identifications with objects from optical, radio and infrared wavelength allow the LMC candidates to be separated from the foreground stars and the background objects.

  11. Solar irridiance variations and solar activity

    International Nuclear Information System (INIS)

    Willson, R.C.

    1982-01-01

    A mean value for the 1 AU total solar irradiance of 1368.2 W/m 2 and a downward trend of 0.05% per year were derived from measurements by the Active Cavity Radiometer Irradiance Monitor (ACRIM) experiment on the Solar Maximum Mission during 1980. Distinct temporary solar irradiance decreases associated with solar activity maxima were observed with a series of nine dips from April to October recurring at fairly regular intervals averaging 24 days. The decreases correlate inversely with sunspot area, 2800-MHz flux, and Zurich sunspot number. Dominant periods common to the irradiance and sunspot area power spectra link the irradiance decreases to sunspot flux deficit in solar active regions. Evidence of significant total irradiance modulation by facular flux excess is cited. A persistent radiative cycle of active regions consistent with the ACRIM irradiance results and the morphology of solar active regions was found. The pattern of regularly recurrent active region maxima between April and October suggests an asymmetry in solar activity generation during this period

  12. SORCE SIM Level 3 Solar Spectral Irradiance Daily Means V020

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SIM Solar Spectral Irradiance (SSI) data product SOR3SIMD is constructed using measurements from the SIM instruments, which are combined into merged daily...

  13. SORCE SIM Level 3 Solar Spectral Irradiance Daily Means V022

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SIM Solar Spectral Irradiance (SSI) data product SOR3SIMD is constructed using measurements from the SIM instruments, which are combined into merged daily...

  14. Imaging and mapping the impact of clouds on skyglow with all-sky photometry.

    Science.gov (United States)

    Jechow, Andreas; Kolláth, Zoltán; Ribas, Salvador J; Spoelstra, Henk; Hölker, Franz; Kyba, Christopher C M

    2017-07-27

    Artificial skyglow is constantly growing on a global scale, with potential ecological consequences ranging up to affecting biodiversity. To understand these consequences, worldwide mapping of skyglow for all weather conditions is urgently required. In particular, the amplification of skyglow by clouds needs to be studied, as clouds can extend the reach of skyglow into remote areas not affected by light pollution on clear nights. Here we use commercial digital single lens reflex cameras with fisheye lenses for all-sky photometry. We track the reach of skyglow from a peri-urban into a remote area on a clear and a partly cloudy night by performing transects from the Spanish town of Balaguer towards Montsec Astronomical Park. From one single all-sky image, we extract zenith luminance, horizontal and scalar illuminance. While zenith luminance reaches near-natural levels at 5 km distance from the town on the clear night, similar levels are only reached at 27 km on the partly cloudy night. Our results show the dramatic increase of the reach of skyglow even for moderate cloud coverage at this site. The powerful and easy-to-use method promises to be widely applicable for studies of ecological light pollution on a global scale also by non-specialists in photometry.

  15. Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search

    International Nuclear Information System (INIS)

    Astone, Pia; Borkowski, Kazimierz M.; Jaranowski, Piotr; Krolak, Andrzej

    2002-01-01

    We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-wave signals and we test our tools against simulated data. The aim of the paper is to prepare for an analysis of the real data from the EXPLORER bar detector; however, the methods that we present apply both to data from the resonant bar detectors that are currently in operation and the laser interferometric detectors that are in the final stages of construction and commissioning. With our techniques we shall be able to perform an all-sky coherent search of 2 days of data from the EXPLORER detector for a frequency bandwidth of 0.76 Hz in one month with 250 Mflops computing power. This search will detect all the continuous gravitational-wave signals with the dimensionless amplitude larger than 2.8x10 -23 with 99% confidence, assuming that the noise in the detector is Gaussian

  16. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Thomas N.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden [University of Colorado, Boulder, CO (United States); Caspi, Amir [Southwest Research Institute, Boulder, CO (United States); Chamberlin, Phillip C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Solomon, Stanley C. [National Center for Atmospheric Research, Boulder, CO (United States); Machol, Janet; Viereck, Rodney [NOAA Space Weather Prediction Center, Boulder, CO (United States)

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer ( MinXSS ) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1–10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5–30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS -1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS -1 observations are compared to the Geostationary Operational Environmental Satellite ( GOES ) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  17. "Radiative Closure Studies for Clear Skies During the ARM 2003 Aerosol Intensive Observation Period"

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Michalsky, G. P. Anderson, J. Barnard, J. Delamere, C. Gueymard, S. Kato, P. Kiedron, A. McComiskey, and P. Ricchiazzi

    2006-04-01

    The Department of Energy's Atmospheric Radiation Measurement (ARM) program sponsored a large intensive observation period (IOP) to study aerosol during the month of May 2003 around the Southern Great Plains (SGP) Climate Research Facility (CRF) in north central Oklahoma. Redundant measurements of aerosol optical properties were made using different techniques at the surface as well as in vertical profile with sensors aboard two aircraft. One of the principal motivations for this experiment was to resolve the disagreement between models and measurements of diffuse horizontal broadband shortwave irradiance at the surface, especially for modest aerosol loading. This paper focuses on using the redundant aerosol and radiation measurements during this IOP to compare direct beam and diffuse horizontal broadband shortwave irradiance measurements and models at the surface for a wide range of aerosol cases that occurred during 30 clear-sky periods on 13 days of May 2003. Models and measurements are compared over a large range of solar-zenith angles. Six different models are used to assess the relative agreement among them and the measurements. Better agreement than previously achieved appears to be the result of better specification of input parameters and better measurements of irradiances than in prior studies. Biases between modeled and measured direct irradiances are less than 1%, and biases between modeled and measured diffuse irradiances are less than 2%.

  18. Thermal performance of climber greenwalls: Effects of solar irradiance and orientation

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Highlights: • Field experiment tested solar irradiance effect on greenwall thermal performance. • Climber greenwalls were planted on four orientations of circular concrete tank. • High solar-energy input had high bare-surface temperature but maximum cooling. • Threshold solar intensity of 300 Wm −2 was needed for effective greenwall cooling. • Transpiration cooled anterior air better than shading and thermal insulation. - Abstract: Thermal performance of greenwalls, a critical and common concern, is regulated by solar irradiance vis-à-vis orientation and shading. A field experiment was conducted in humid-tropical Hong Kong to address the research question under typical summer-weather scenarios: sunny, cloudy and rainy. On a large circular concrete tank, climber-greenwall experimental plots were established with duplication in four cardinal compass directions. Air and infrared-radiometer surface temperature sensors monitored at different greenwall positions: ambient-air (control), bare-concrete-surface (control), vegetation-surface, behind-mesh-airgap, and behind-mesh-concrete surface. Pyranometers were installed vertically at four orientations and horizontally at tank-top (control) to monitor solar-energy input. Habitat verticality induces notable variations in solar-energy capture at four orientations by daily total, peak level, intensity, duration and timing. On sunny day, solar fraction reaching east side was only 37.1% of tank-top. Early morning sunshine striking east side nearly perpendicularly brings maximum intensity. South side facing the sun but at tangential incident angle has only 23.3% reception. Strong irradiance drives high control-surface temperature, but also induces notable vegetation-surface and adjacent ambient-air cooling by transpiration. A threshold solar intensity of about 300 Wm −2 is necessary to impart notable cooling-effect. Summer-sunny day and rainy-day sunshine-burst episodes could satisfy this condition; cloudy day and

  19. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, A. J. K.; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.C.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Galiana, A. Fernandez; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, R.G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, H.C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath Hoareau, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, F.A.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton-Howes, G.; Nguyen, T. T.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerner, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J.R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Torya, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.G.; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.

    2017-01-01

    We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of

  20. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NARCIS (Netherlands)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M.A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G.L.; Hanke, M.; Kühnel, M.; Markoff, S.; Pooley, G.G.; Rothschild, R.E.; Tomsick, J.A.; Wilson-Hodge, C.A.; Wilms, J.

    2013-01-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different

  1. The night sky companion a yearly guide to sky-watching 2008-2009

    CERN Document Server

    Plotner, Tammy

    2007-01-01

    The Night Sky Companion is a comprehensive guide to what can be explored in the heavens on a nightly basis. Designed to appeal to readers at all skill levels, it provides a digest for sky watchers interested in all types of astronomical information.

  2. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  3. Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks

    International Nuclear Information System (INIS)

    Cao Long; Bala, Govindasamy; Caldeira, Ken

    2012-01-01

    Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO 2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO 2 content and solar irradiance. Over ocean, increased atmospheric CO 2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO 2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO 2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO 2 versus solar forcing are manifested within days after the forcing is imposed. (letter)

  4. A SOUTHERN SKY AND GALACTIC PLANE SURVEY FOR BRIGHT KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Sheppard, Scott S.; Udalski, Andrzej; Kubiak, Marcin; Pietrzynski, Grzegorz; Poleski, Radoslaw; Soszynski, Igor; Szymanski, Michal K.; Ulaczyk, Krzysztof; Trujillo, Chadwick

    2011-01-01

    About 2500 deg 2 of sky south of declination -25 0 and/or near the Galactic Plane were surveyed for bright outer solar system objects. This survey is one of the first large-scale southern sky and Galactic Plane surveys to detect dwarf planets and other bright Kuiper Belt Objects in the trans-Neptunian region. The survey was able to obtain a limiting R-band magnitude of 21.6. In all, 18 outer solar system objects were detected, including Pluto which was detected near the Galactic center using optimal image subtraction techniques to remove the high stellar density background. Fourteen of the detections were previously unknown trans-Neptunian objects, demonstrating that the southern sky had not been well searched to date for bright outer solar system objects. Assuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets. Combining this survey with previous surveys from the northern hemisphere suggests that the Kuiper Belt is nearly complete to around 21st magnitude in the R band. All the main dynamical classes in the Kuiper Belt are occupied by at least one dwarf-planet-sized object. The 3:2 Neptune resonance, which is the innermost well-populated Neptune resonance, has several large objects while the main outer Neptune resonances such as the 5:3, 7:4, 2:1, and 5:2 do not appear to have any large objects. This indicates that the outer resonances are either significantly depleted in objects relative to the 3:2 resonance or have a significantly different assortment of objects than the 3:2 resonance. For the largest objects (H < 4.5 mag), the scattered disk population appears to have a few times more objects than the main Kuiper Belt (MKB) population, while the Sedna population could be several times more than that of the MKB.

  5. Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks

    International Nuclear Information System (INIS)

    Notton, Gilles; Paoli, Christophe; Vasileva, Siyana; Nivet, Marie Laure; Canaletti, Jean-Louis; Cristofari, Christian

    2012-01-01

    Calculating global solar irradiation from global horizontal irradiation only is a difficult task, especially when the time step is small and the data are not averaged. We used an Artificial Neural Network (ANN) to realize this conversion. The ANN is optimized and tested on the basis of five years of solar data; the accuracy of the optimal configuration is around 6% for the RRMSE (relative root mean square error) and around 3.5% for the RMAE (relative mean absolute value) i.e. a better performance than the empirical correlations available in the literature. -- Highlights: ► ANN (Artificial Neural Network) methodology applied to hourly global solar irradiation in order to estimate tilted irradiations. ► Model validation with more than 23,000 data. ► Comparison with “conventional” models. ► The precision in the results is better than with empirical correlations. ► 6% for the RMSE (root means square error) and around 3.5% for the RMAE (Relative Mean Absolute Value).

  6. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Fontenla, J. M. [NorthWest Research Associates, Boulder, CO 80301 (United States); Codrescu, M. [Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO 80305 (United States); Fedrizzi, M.; Fuller-Rowell, T. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Hill, F. [National Solar Observatory, Boulder, CO 80303 (United States); Landi, E. [Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Woods, T., E-mail: johnf@digidyna.com [Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303 (United States)

    2017-01-01

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm is used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.

  7. Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI with Brewer measurements at El Arenosillo (Spain – Part 1: Analysis of parameter influence

    Directory of Open Access Journals (Sweden)

    M. Antón

    2010-07-01

    Full Text Available The main objective of this study is to compare the erythemal UV irradiance (UVER and spectral UV irradiances (at 305, 310 and 324 nm from the Ozone Monitoring Instrument (OMI onboard NASA EOS/Aura polar sun-synchronous satellite (launched in July 2004, local equator crossing time 01:45 p.m. with ground-based measurements from the Brewer spectrophotometer #150 located at El Arenosillo (South of Spain. The analyzed period comprises more than four years, from October 2004 to December 2008. The effects of several factors (clouds, aerosols and the solar elevation on OMI-Brewer comparisons were analyzed. The proxies used for each factor were: OMI Lambertian Equivalent Reflectivity (LER at 360 nm (clouds, the aerosol optical depth (AOD at 440 nm measured from the ground-based Cimel sun-photometer (http://aeronet.gsfc.nasa.gov, and solar zenith angle (SZA at OMI overpass time. The comparison for all sky conditions reveals positive biases (OMI higher than Brewer 12.3% for UVER, 14.2% for UV irradiance at 305 nm, 10.6% for 310 nm and 8.7% for 324 nm. The OMI-Brewer root mean square error (RMSE is reduced when cloudy cases are removed from the analysis, (e.g., RMSE~20% for all sky conditions and RMSE smaller than 10% for cloud-free conditions. However, the biases remain and even become more significant for the cloud-free cases with respect to all sky conditions. The mentioned overestimation is partially due to aerosol extinction influence. In addition, the differences OMI-Brewer typically decrease with SZA except days with high aerosol loading, when the bias is near constant. The seasonal dependence of the OMI-Brewer difference for cloud-free conditions is driven by aerosol climatology.

    To account for the aerosol effect, a first evaluation in order to compare with previous TOMS results (Antón et al., 2007 was performed. This comparison shows that the OMI bias is between +14% and +19% for

  8. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  9. Simulation of temperature effect on microalgae culture in a tubular photo bioreactor for local solar irradiance

    Science.gov (United States)

    Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur

    2017-06-01

    Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.

  10. Global irradiation on horizontal surface at Hyderabad, Pakistan

    International Nuclear Information System (INIS)

    Kalhoro, A.N.

    2005-01-01

    The measurement of global irradiation on horizontal surface at PCSIR (Pakistan Council of Scientific and Industrial Research) Laboratories, Hyderabad, Pakistan, for the period of January-June, 2003 is presented in this paper. During six months the total global irradiation received on horizontal surface at Hyderabad Laboratories is 1.80238 MW-h-m2. The daily irradiation data (Watt-h/Sq.m) has been collected on continuous basis by means of EPLAB Pyranometer and EPLAB Electronic Integrator provided with DIGITEC printer system. HPX- Y recorder (potentiometer) is also connected for continuous data recording of solar intensity (m V). The weather effect over the radiation income was observed regularly and proportion of sunny, cloudy, partly cloudy and dusty days is plotted. Monthly mean daily irradiation bifurcated for sunny and cloudy days are also shown separately. To give an overview of sky conditions, the monthly clearness index is calculated. The highest value of average irradiation per day was recorded in June (7.15 kW/m/sup 2/) and minimum recorded in January (4.11 kW/m/sup 2/). The summer season, although rich in radiation with long sunshine duration, brings dust storms along with many partly cloudy or cloudy days, mostly in the month of May and likely in June as well. This could be an additional barrier for solar energy applications especially in desert areas; therefore the study was made for evaluating the effect of dust on the radiation flux. The purpose of the study is the development of rural life in Pakistan such that the inhabitants of rural areas may need not to wait for the connection to national grid. This study will help in improving the efficiency of solar thermal devices, (currently fabricated on theoretical basis at the laboratories), according to experimental data. (author)

  11. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2015-06-01

    Full Text Available Solar surface radiation data of high quality is essential for the appropriate monitoring and analysis of the Earth's radiation budget and the climate system. Further, they are crucial for the efficient planning and operation of solar energy systems. However, well maintained surface measurements are rare in many regions of the world and over the oceans. There, satellite derived information is the exclusive observational source. This emphasizes the important role of satellite based surface radiation data. Within this scope, the new satellite based CM-SAF SARAH (Solar surfAce RAdiation Heliosat data record is discussed as well as the retrieval method used. The SARAH data are retrieved with the sophisticated SPECMAGIC method, which is based on radiative transfer modeling. The resulting climate data of solar surface irradiance, direct irradiance (horizontal and direct normal and clear sky irradiance are covering 3 decades. The SARAH data set is validated with surface measurements of the Baseline Surface Radiation Network (BSRN and of the Global Energy and Balance Archive (GEBA. Comparison with BSRN data is performed in order to estimate the accuracy and precision of the monthly and daily means of solar surface irradiance. The SARAH solar surface irradiance shows a bias of 1.3 \\(W/m^2\\ and a mean absolute bias (MAB of 5.5 \\(W/m^2\\ for monthly means. For direct irradiance the bias and MAB is 1 \\(W/m^2\\ and 8.2 \\(W/m^2\\ respectively. Thus, the uncertainty of the SARAH data is in the range of the uncertainty of ground based measurements. In order to evaluate the uncertainty of SARAH based trend analysis the time series of SARAH monthly means are compared to GEBA. It has been found that SARAH enables the analysis of trends with an uncertainty of 1 \\(W/m^2/dec\\; a remarkable good result for a satellite based climate data record. SARAH has been also compared to its legacy version, the satellite based CM-SAF MVIRI climate data record. Overall

  12. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  13. Evaluation of the Delta-T SPN1 radiometer for the measurement of solar irradiance components

    Science.gov (United States)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick; Utrillas, Maria Pilar

    2016-04-01

    In this study we analyse the performance of an SPN1 radiometer built by Delta-T Devices Ltd. to retrieve global solar irradiance at ground and its components (diffuse, direct) in comparison with measurements from two Kipp&Zonen CMP21 radiometers and a Kipp&Zonen CHP1 pirheliometer, mounted on an active Solys-2 suntracker at the Burjassot site (Valencia, Spain) using data acquired every minute during years 2013 - 2015. The measurement site is close to sea level (60 m a.s.l.), near the Mediterranean coast (10 km) and within the metropolitan area of Valencia City (over 1.500.000 inhabitants). The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. The SPN1 pyranometer measures the irradiance between 400 and 2700 nm, and the nominal uncertainty for the individual readings is about 8% ± 10 W/m2 (5% for the daily averages). The pyranometer Kipp&Zonen CMP21 model is a secondary standard for the measurement of broadband solar global irradiance in horizontal planes. Two ventilated CMP21 are used for the measurement of the global and diffuse irradiances. The expected total daily uncertainty of the radiometer is estimated to be 2%. The pirheliometer Kipp&Zonen CHP1 is designed for the measurement of the direct irradiance. The principles are similar to the CMP21 pyranometer. The results of the comparison show that the global irradiance from the SPN1 compares very well with the CMP21, with absolute RMSD and MBD differences below the combined uncertainties (15 W/m2 and -5.4 W/m2, respectively; relative RMSD of 3.1%). Both datasets are very well correlated, with a correlation coefficient higher than 0.997 and a slope and intercept very close to 1 and 0

  14. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  15. Development of a cloud model to generate high-frequency solar irradiance and power data

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael C.; Beaucage, Philippe; Frank, Jaclyn D.; Freedman, Jeffrey M. [AWS Truepower, Albany, NY (United States); Vidal, Jose [AWS Truepower, Barcelona (Spain)

    2012-07-01

    This paper describes a new method to synthesize high-frequency ({proportional_to}2 second) solar irradiance and photovoltaic output data for grid integration studies. The method couples a numerical weather prediction model with a newly developed stochastic-kinematic cloud model. The coupled model is shown to match the mean profiles as well as ramping characteristics of measured data on Oahu, Hawaii. This model was used to synthesize 2 years of 2-second irradiance and PV data for over 800 MW of hypothetical utility-scale and residential rooftop sites for the Hawaii Solar Integration Study. (orig.)

  16. Spectral Monte Carlo simulation of collimated solar irradiation transfer in a water-filled prismatic louver.

    Science.gov (United States)

    Cai, Yaomin; Guo, Zhixiong

    2018-04-20

    The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.

  17. Properties of solar gravity mode signals in total irradiance observations

    International Nuclear Information System (INIS)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs

  18. Comprehensive method for analyzing the power conversion efficiency of organic solar cells under different spectral irradiances considering both photonic and electrical characteristics

    International Nuclear Information System (INIS)

    Chong, Kok-Keong; Khlyabich, Petr P.; Hong, Kai-Jeat; Reyes-Martinez, Marcos; Rand, Barry P.; Loo, Yueh-Lin

    2016-01-01

    Highlights: • Method to analyze power-conversion efficiency under various solar irradiance. • Power-conversion efficiency at local irradiance is 5.4% higher than AM1.5G. • Diffuse local irradiance has gain of 23.7–27.9% relative to AM1.5G conditions. • Annual average energy density yield is estimated as 31.89 kW h/m 2 in Malaysia. - Abstract: The solar spectral irradiance varies significantly for different locations and time due to latitude, humidity, cosine effect of incident sunlight, etc. For convenience, the power-conversion efficiency of a solar cell is referenced to the international standard of AM1.5G spectral irradiance, which inevitably leads to varying performance of deployed solar cells under the specific local climate and insolation conditions. To predict the actual performance of solar cells under local climate conditions, we propose a methodology to compute the power-conversion efficiency of organic photovoltaic cells based upon indoor measurement with a solar simulator, the measured local solar spectrum, and making use of both optical and electrical factors. From our study, the annual average energy density yield of poly(3-hexylthiophene):phenyl-C 61 -butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction organic solar cells under the local spectral irradiance of Malaysia is estimated to be 31.89 kW h/m 2 and the power-conversion efficiency is increased by 5.4% compared to that measured under AM1.5G conditions. In addition, diffuse solar irradiance (cloudy condition) was found to be in favor of P3HT:PCBM solar cells, with gain of 23.7–27.9% relative to AM1.5G conditions.

  19. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia. ohoud-aljawi@hotmail.com (Malaysia)

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  20. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Decoupling Solar Variability and Instrument Trends Using the Multiple Same-Irradiance-Level (MuSIL) Analysis Technique

    Science.gov (United States)

    Woods, Thomas N.; Eparvier, Francis G.; Harder, Jerald; Snow, Martin

    2018-05-01

    The solar spectral irradiance (SSI) dataset is a key record for studying and understanding the energetics and radiation balance in Earth's environment. Understanding the long-term variations of the SSI over timescales of the 11-year solar activity cycle and longer is critical for many Sun-Earth research topics. Satellite measurements of the SSI have been made since the 1970s, most of them in the ultraviolet, but recently also in the visible and near-infrared. A limiting factor for the accuracy of previous solar variability results is the uncertainties for the instrument degradation corrections, which need fairly large corrections relative to the amount of solar cycle variability at some wavelengths. The primary objective of this investigation has been to separate out solar cycle variability and any residual uncorrected instrumental trends in the SSI measurements from the Solar Radiation and Climate Experiment (SORCE) mission and the Thermosphere, Mesosphere, Ionosphere, Energetic, and Dynamics (TIMED) mission. A new technique called the Multiple Same-Irradiance-Level (MuSIL) analysis has been developed, which examines an SSI time series at different levels of solar activity to provide long-term trends in an SSI record, and the most common result is a downward trend that most likely stems from uncorrected instrument degradation. This technique has been applied to each wavelength in the SSI records from SORCE (2003 - present) and TIMED (2002 - present) to provide new solar cycle variability results between 27 nm and 1600 nm with a resolution of about 1 nm at most wavelengths. This technique, which was validated with the highly accurate total solar irradiance (TSI) record, has an estimated relative uncertainty of about 5% of the measured solar cycle variability. The MuSIL results are further validated with the comparison of the new solar cycle variability results from different solar cycles.

  2. SORCE SOLSTICE FUV Level 3 Solar Spectral Irradiance Daily Means V012

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Far-UV Solar Spectral Irradiance (SSI) data product SOR3SOLFUVD is constructed using measurements from the SOLSTICE FUV instrument, which are...

  3. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, R. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Malkan, M., E-mail: rickedelson@gmail.com [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095-1547 (United States)

    2012-05-20

    We have developed the ''S{sub IX}'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S{sub IX} < 0 have a {approx}>95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S{sub IX} < 0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J {approx}< 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg{sup 2}, permitting construction of AGN samples in any sufficiently large region of sky.

  4. Luminescent solar concentrators with fiber geometry.

    Science.gov (United States)

    Edelenbosch, Oreane Y; Fisher, Martyn; Patrignani, Luca; van Sark, Wilfried G J H M; Chatten, Amanda J

    2013-05-06

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5 g spectrum up to 1100 nm at normal incidence by ~35 x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.

  5. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. MEPSOCON project: Calibration of Radiometers for High Solar Irradiance; Proyecto MEPSOCON: Calibracion de Radiometros de Alta Irradiancia Solar

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.; Rodriguez-Alonso, M.

    2006-07-01

    The development of central receiver solar plants is a currently emerging field into renewable energies. For several years various receiver prototypes have been evaluated at the Plataforma Solar de Almeria (PSA). The measurement of the incident solar power on the receiver aperture is fundamental to the estimation of its efficiency. Many factors interfere with this measurement and consequently accuracy is very low. This uncertainty is transmitted to the design of the final solar plant and thereby to its price. The sensors used for this measurement are of small size in comparison with the receiver apertures, therefore different systems are necessary to obtain the incident solar power on the receiver aperture from the individual radiometer measurements. This report presents calibration procedures for the sensor used on the measurement of high solar irradiance and the analysis of the different factors affecting the incident power measurement to significantly reduce its uncertainty. (Author) 16 refs.

  7. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    Science.gov (United States)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  8. Solar Energy Potential Assessment on Rooftops and Facades in Large Built Environments Based on LiDAR Data, Image Processing, and Cloud Computing. Methodological Background, Application, and Validation in Geneva (Solar Cadaster

    Directory of Open Access Journals (Sweden)

    Gilles Desthieux

    2018-03-01

    Full Text Available The paper presents the core methodology for assessing solar radiation and energy production on building rooftops and vertical facades (still rarely considered of the inner-city. This integrated tool is based on the use of LiDAR, 2D and 3D cadastral data. Together with solar radiation and astronomical models, it calculates the global irradiance for a set of points located on roofs, ground, and facades. Although the tool takes simultaneously roofs, ground, and facades, different methods of shadow casting are applied. Shadow casting on rooftops is based on image processing techniques. On the other hand, the assessment on facade involves first to create and interpolate points along the facades and then to implement a point-by-point shadow casting routine. The paper is structured in five parts: (i state of the art on the use of 3D GIS and automated processes in assessing solar radiation in the built environment, (ii overview on the methodological framework used in the paper, (iii detailed presentation of the method proposed for solar modeling and shadow casting, in particular by introducing an innovative approach for modeling the sky view factor (SVF, (iv demonstration of the solar model introduced in this paper through applications in Geneva’s building roofs (solar cadaster and facades, (v validation of the solar model in some Geneva’s spots, focusing especially on two distinct comparisons: solar model versus fisheye catchments on partially inclined surfaces (roof component; solar model versus photovoltaic simulation tool PVSyst on vertical surfaces (facades. Concerning the roof component, validation results emphasize global sensitivity related to the density of light sources on the sky vault to model the SVF. The low dense sky model with 145 light sources gives satisfying results, especially when processing solar cadasters in large urban areas, thus allowing to save computation time. In the case of building facades, introducing weighting factor

  9. Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    We present all-sky modelling of the high resolution Planck, IRAS, andWISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling....... The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Sigma(Md), the dust optical extinction A(V), and the starlight intensity heating the bulk...... of the dust, parametrized by U-min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31...

  10. Estimating solar irradiation in the Arctic

    Directory of Open Access Journals (Sweden)

    Babar Bilal

    2016-01-01

    Full Text Available Solar radiation data plays an important role in pre-feasibility studies of solar electricity and/or thermal system installations. Measured solar radiation data is scarcely available due to the high cost of installing and maintaining high quality solar radiation sensors (pyranometers. Indirect measured radiation data received from geostationary satellites is unreliable at latitudes above 60 degrees due to the resulting flat viewing angle. In this paper, an empirical method to estimate solar radiation based on minimum climatological data is proposed. Eight sites in Norway are investigated, all of which lie above 60 N. The estimations by the model are compared to the ground measured values and a correlation coefficient of 0.88 was found while over all percentage error was −1.1%. The proposed models is 0.2% efficient on diurnal and 10.8% better in annual estimations than previous models.

  11. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  12. Proton irradiation experiment for x-ray charge-coupled devices of the monitor of all-sky x-ray image mission onboard the international space station. 2. Degradation of dark current and identification of electron trap level

    CERN Document Server

    Miyata, E; Kamiyama, D

    2003-01-01

    We have investigated the radiation damage effects on a charge-coupled device (CCD) to be used for the Japanese X-ray mission, the monitor of all-sky X-ray image (MAXI), onboard the international space station (ISS). A temperature dependence of the dark current as a function of incremental dose is studied. We found that the protons having energy of >292 keV seriously increased the dark current of the devices. In order to improve the radiation tolerance of the devices, we have developed various device architectures to minimize the radiation damage in orbit. Among them, nitride oxide enables us to reduce the dark current significantly and therefore we adopted nitride oxide for the flight devices. We also compared the dark current of a device in operation and that out of operation during the proton irradiation. The dark current of the device in operation became twofold that out of operation, and we thus determined that devices would be turned off during the passage of the radiation belt. The temperature dependenc...

  13. Simultaneous measurement of spectral sky radiance by a non-scanning multidirectional spectroradiometer (MUDIS)

    International Nuclear Information System (INIS)

    Riechelmann, Stefan; Schrempf, Michael; Seckmeyer, Gunther

    2013-01-01

    We present a novel non-scanning multidirectional spectroradiometer (MUDIS) measuring the spectral sky radiance as a function of zenith and azimuth angle with a high spectral and temporal resolution. The instrument is based on a hyperspectral imager and measures spectral sky radiance in the wavelength range of 250–600 nm at 113 different directions simultaneously. MUDIS has been intercalibrated with a sky scanning CCD spectroradiometer (SCCD). Sky radiance measurements have been performed with both instruments under cloudless and overcast sky. The spectral actinic irradiance derived from those measurements agrees within 8% for wavelengths higher than 320 nm. The bias between synchronous MUDIS and SCCD sky radiance measurements during cloudless and overcast sky is below 5% for 320 and 500 nm with a 1σ standard deviation of less than 10%. MUDIS enables us to perform more than 220 000 spectral sky radiance measurements instead of approximately 6000 SCCD spectral sky radiance measurements per day and to measure spatial variations of spectral sky radiance simultaneously. (paper)

  14. High-energy and high-fluence proton irradiation effects in silicon solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Taylor, S.J.; Yang, M.; Matsuda, S.; Kawasaki, O.; Hisamatsu, T.

    1996-01-01

    We have examined proton irradiation damage in high-energy (1 endash 10 MeV) and high-fluence (approx-gt 10 13 cm -2 ) Si n + -p-p + structure space solar cells. Radiation testing has revealed an anomalous increase in short-circuit current I sc followed by an abrupt decrease and cell failure, induced by high-fluence proton irradiation. We propose a model to explain these phenomena by expressing the change in carrier concentration p of the base region as a function of the proton fluence in addition to the well-known model where the short-circuit current is decreased by minority-carrier lifetime reduction after irradiation. The reduction in carrier concentration due to majority-carrier trapping by radiation-induced defects has two effects. First, broadening of the depletion layer increases both the generation endash recombination current and also the contribution of the photocurrent generated in this region to the total photocurrent. Second, the resistivity of the base layer is increased, resulting in the abrupt decrease in the short circuit current and failure of the solar cells. copyright 1996 American Institute of Physics

  15. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  16. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  17. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  18. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Batlles, F.J. [Dept. de Ingenieria Electrica y Termica, EPS La Rabida, Univ. de Huelva, Huelva (Spain)

    2004-07-01

    Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Aangstroem turbidity coefficient {beta} is frequently used. In this work, we analyse the performance of three methods based on broadband solar irradiance measurements in the estimation of {beta}. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors) means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of {beta} for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns. (orig.)

  19. Measuring the color and brightness of artificial sky glow from cities using an all-sky imaging system calibrated with astronomical methods in the Johnson-Cousins B and V photometric systems

    Science.gov (United States)

    Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian

    2017-01-01

    Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.

  20. Tropical rainforest response to marine sky brightening climate engineering

    Science.gov (United States)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  1. A LIMIT ON THE NUMBER OF ISOLATED NEUTRON STARS DETECTED IN THE ROSAT ALL-SKY-SURVEY BRIGHT SOURCE CATALOG

    International Nuclear Information System (INIS)

    Turner, Monica L.; Rutledge, Robert E.; Letcavage, Ryan; Shevchuk, Andrew S. H.; Fox, Derek B.

    2010-01-01

    Using new and archival observations made with the Swift satellite and other facilities, we examine 147 X-ray sources selected from the ROSAT All-Sky-Survey Bright Source Catalog (RASS/BSC) to produce a new limit on the number of isolated neutron stars (INSs) in the RASS/BSC, the most constraining such limit to date. Independent of X-ray spectrum and variability, the number of INSs is ≤48 (90% confidence). Restricting attention to soft (kT eff < 200 eV), non-variable X-ray sources-as in a previous study-yields an all-sky limit of ≤31 INSs. In the course of our analysis, we identify five new high-quality INS candidates for targeted follow-up observations. A future all-sky X-ray survey with eROSITA, or another mission with similar capabilities, can be expected to increase the detected population of X-ray-discovered INSs from the 8-50 in the BSC, to (for a disk population) 240-1500, which will enable a more detailed study of neutron star population models.

  2. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  3. The Use of Meteosat Second Generation Satellite Data Within A New Type of Solar Irradiance Calculation Scheme

    Science.gov (United States)

    Mueller, R. W.; Beyer, H. G.; Cros, S.; Dagestad, K. F.; Dumortier, D.; Ineichen, P.; Hammer, A.; Heinemann, D.; Kuhlemann, R.; Olseth, J. A.; Piernavieja, G.; Reise, C.; Schroedter, M.; Skartveit, A.; Wald, L.

    1-University of Oldenburg, 2-University of Appl. Sciences Magdeburg, 3-Ecole des Mines de Paris, 4-University of Bergen, 5-Ecole Nationale des Travaux Publics de l'Etat, 6-University of Geneva, 7-Instituto Tecnologico de Canarias, 8-Fraunhofer Institute for Solar Energy Systems, 9-German Aerospace Center Geostationary satellites such as Meteosat provide cloud information with a high spatial and temporal resolution. Such satellites are therefore not only useful for weather fore- casting, but also for the estimation of solar irradiance since the knowledge of the light reflected by clouds is the basis for the calculation of the transmitted light. Additionally an the knowledge of atmospheric parameters involved in scattering and absorption of the sunlight is necessary for an accurate calculation of the solar irradiance. An accurate estimation of the downward solar irradiance is not only of particular im- portance for the assessment of the radiative forcing of the climate system, but also necessary for an efficient planning and operation of solar energy systems. Currently, most of the operational calculation schemes for solar irradiance are semi- empirical. They use cloud information from the current Meteosat satellite and clima- tologies of atmospheric parameters e.g. turbidity (aerosols and water vapor). The Me- teosat Second Generation satellites (MSG, to be launched in 2002) will provide not only a higher spatial and temporal resolution, but also the potential for the retrieval of atmospheric parameters such as ozone, water vapor and with restrictions aerosols. With this more detailed knowledge about atmospheric parameters it is evident to set up a new calculation scheme based on radiative transfer models using the retrieved atmospheric parameters as input. Unfortunately the possibility of deriving aerosol in- formation from MSG data is limited. As a cosequence the use of data from additional satellite instruments ( e.g. GOME/ATSR-2) is neeeded. Within this

  4. The Malaysian Robotic Solar Observatory (P29)

    Science.gov (United States)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  5. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  6. Solar energy prediction and verification using operational model forecasts and ground-based solar measurements

    International Nuclear Information System (INIS)

    Kosmopoulos, P.G.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Bais, A.

    2015-01-01

    The present study focuses on the predictions and verification of these predictions of solar energy using ground-based solar measurements from the Hellenic Network for Solar Energy and the National Observatory of Athens network, as well as solar radiation operational forecasts provided by the MM5 mesoscale model. The evaluation was carried out independently for the different networks, for two forecast horizons (1 and 2 days ahead), for the seasons of the year, for varying solar elevation, for the indicative energy potential of the area, and for four classes of cloud cover based on the calculated clearness index (k_t): CS (clear sky), SC (scattered clouds), BC (broken clouds) and OC (overcast). The seasonal dependence presented relative rRMSE (Root Mean Square Error) values ranging from 15% (summer) to 60% (winter), while the solar elevation dependence revealed a high effectiveness and reliability near local noon (rRMSE ∼30%). An increment of the errors with cloudiness was also observed. For CS with mean GHI (global horizontal irradiance) ∼ 650 W/m"2 the errors are 8%, for SC 20% and for BC and OC the errors were greater (>40%) but correspond to much lower radiation levels (<120 W/m"2) of consequently lower energy potential impact. The total energy potential for each ground station ranges from 1.5 to 1.9 MWh/m"2, while the mean monthly forecast error was found to be consistently below 10%. - Highlights: • Long term measurements at different atmospheric cases are needed for energy forecasting model evaluations. • The total energy potential at the Greek sites presented ranges from 1.5 to 1.9 MWh/m"2. • Mean monthly energy forecast errors are within 10% for all cases analyzed. • Cloud presence results of an additional forecast error that varies with the cloud cover.

  7. SCANDI – an all-sky Doppler imager for studies of thermospheric spatial structure

    Directory of Open Access Journals (Sweden)

    A. L. Aruliah

    2010-02-01

    Full Text Available A new all-sky Fabry-Perot Interferometer called the Scanning Doppler Imager (SCANDI was built and installed at Longyearbyen in December 2006. Observations have been made of the Doppler shifts and Doppler broadening of the 630 nm airglow and aurora, from which upper thermospheric winds and temperatures are calculated. SCANDI allows measurements over a field-of-view (FOV with a horizontal radius of nearly 600 km for observations at an altitude of 250 km using a time resolution of 8 min. The instrument provides the ability to observe thermospheric spatial structure within a FOV which overlaps that of the EISCAT Svalbard radar and CUTLASS SuperDARN radars. Coordinating with these instruments provides an important opportunity for studying ion-neutral coupling. The all-sky image is divided into several sectors to provide a horizontal spatial resolution of between 100–300 km. This is a powerful extension in observational capability but requires careful calibration and data analysis, as described here. Two observation modes were used: a fixed and a scanning etalon gap. SCANDI results are corroborated using the Longyearbyen single look direction FPI, and ESR measurements of the ion temperatures. The data show thermospheric temperature gradients of a few Kelvins per kilometre, and a great deal of meso-scale variability on spatial scales of several tens of kilometres.

  8. Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge

    International Nuclear Information System (INIS)

    Hilmy, N.; Harsoyo, S.; Suwirma, S.

    1987-01-01

    Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge. A combined treatment of solar energy and gamma irradiation has been done to eliminate the pathogenic microbes contaminating dewatered sludge. Samples were collected during dry season, i.e. from June to September 1985. To reduce the water content from 70% to 20%, solar energy from sun rays was used, i.e. from 9 a.m. to 2 p.m. for 4 days. Total bacterial count coliform bacteria Escherichia coli, Fecal Streptococcus, Enterobacteriaceae, and Pseudomonas sp were found to be 7.4x10 8 per g, 4.1x10 3 per g, 4.5x10 2 per g, 3.1x10 5 per g, 3.6x10 4 per g, and 5.4x10 3 per g of samples respectively. The combined treatment could reduce the irradiation dose needed to eliminate the pathogenic microbes of samples investigated from 6 to 2 kGy. (author). 5 figs, 11 refs

  9. Review of all-sky camera data for the period Sep. 1 to Dec. 1, 1976

    International Nuclear Information System (INIS)

    1978-02-01

    The auroral and cloud conditions are presented in the form of a numerical code, in coordinate tables, the coordinates representing the date and universal time respectively. The compilation is intended to be a guide to available all-sky camera films, copies of which are supplied at self-cost prices by the Auroral Observatory. (JIW)

  10. Behavior of a thermoelectric power generation device based on solar irradiation and the earth’s surface-air temperature difference

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming

    2015-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by TEG is boosted from less than 1 V to more than 4 V. • An output current and voltage of TEG device is acquired as 21.47 mA and 221 mV. • The device successfully provides output power 4.7 mW in no electricity conditions. • The thermo-economic value of TEG device is demonstrated. - Abstract: Motivated by the limited power supply of wireless sensors used to monitor the natural environment, for example, in forests, this study presents a technical solution by recycling solar irradiation heat using thermoelectric generators. Based on solar irradiation and the earth’s surface-air temperature difference, a new type of thermoelectric power generation device has been devised, the distinguishing features of which include the application of an all-glass heat-tube-type vacuum solar heat collection pipe to absorb and transfer solar energy without a water medium and the use of a thin heat dissipation tube to cool the earth surface air temperature. The effects of key parameters such as solar illumination, air temperature, load resistance, the proportional coefficient, output power and power generation efficiency for thermoelectric energy conversion are analyzed. The results of realistic outdoor experiments show that under a state of regular illumination at 3.75 × 10 4 lx, using one TEG module, the thermoelectric device is able to boost the voltage obtained from the natural solar irradiation from 221 mV to 4.41 V, with an output power of 4.7 mW. This means that the electrical energy generated can provide the power supply for low power consumption components, such as low power wireless sensors, ZigBee modules and other low power loads

  11. Estimation of solar radiation over Turkey using artificial neural network and satellite data

    International Nuclear Information System (INIS)

    Senkal, Ozan; Kuleli, Tuncay

    2009-01-01

    This study introduces artificial neural networks (ANNs) for the estimation of solar radiation in Turkey (26-45 E and 36-42 N). Resilient propagation (RP), Scale conjugate gradient (SCG) learning algorithms and logistic sigmoid transfer function were used in the network. In order to train the neural network, meteorological data for the period from August 1997 to December 1997 for 12 cities (Antalya, Artvin, Edirne, Kayseri, Kuetahya, Van, Adana, Ankara, Istanbul, Samsun, Izmir, Diyarbakir) spread over Turkey were used as training (nine stations) and testing (three stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean diffuse radiation and mean beam radiation) are used in the input layer of the network. Solar radiation is the output. However, solar radiation has been estimated as monthly mean daily sum by using Meteosat-6 satellite C3 D data in the visible range over 12 cities in Turkey. Digital counts of satellite data were converted into radiances and these are used to calculate the albedos. Using the albedo, the cloud cover index of each pixel was constructed. Diffuse and direct component of horizontal irradiation were calculated as a function of optical air mass, turbidity factor and Rayleigh optical thickness for clear-sky. Using the relation between clear-sky index and cloud cover index, the solar irradiance for any pixel is calculated for Physical method. RMS between the estimated and ground values for monthly mean daily sum with ANN and Physical method values have been found as 2.32 MJ m -2 (54 W/m 2 ) and 2.75 MJ m -2 (64 W/m 2 ) (training cities), 3.94 MJ m -2 (91 W/m 2 ) and 5.37 MJ m -2 (125 W/m 2 ) (testing cities), respectively

  12. Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis

    International Nuclear Information System (INIS)

    Haeder, D.-P.

    1986-01-01

    The effect of solar irradiation on the percentage of motile cells, their average speed and their phototactic orientation to white actinic light was studied in the flagellate, Euglena gracilis. Unfiltered solar radiation in midsummer during mid-day at a location near Lisboa, Portugal, was found to impair motility within 2 h. This effect is exclusively due to the UV-B component of the radiation and not due to UV-A, visible light or a temperature increase. Likewise, phototactic orientation was drastically impaired. Reduction of the solar UV-B irradiation by insertion of an ozone-flooded plexiglass cuvette partially reduced the inhibition and covering the cuvettes with glass prevented any decrease in motility and photoorientation. Similar results were found with artificial irradiation (Xe lamps). After inoculation, the motility of the population follows an optimum curve (optimum at 8 days). Also, the UV-B effect on motility was smallest after about one week and increased for younger and older cultures. (author)

  13. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    Science.gov (United States)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  14. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  15. Technologies and Methods Used at the Laboratory for Atmospheric and Space Physics (LASP) to Serve Solar Irradiance Data

    Science.gov (United States)

    Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don

    2018-01-01

    The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.

  16. A web service for controlling the quality of measurements of global solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, M.; Menard, L.; Wald, L. [Ecole des Mines, Paris (France). Centre d' Energetique; Diabate, L. [UFAE/GCMI, Bamako (Mali)

    2002-12-01

    The control of the quality of irradiation data is often a prerequisite to their further processing. Though data are usually controlled by meteorological offices, the sources are so numerous that the user often faces time-series of measurements containing questionable values. As customers of irradiation data, we established our own procedures to screen time-series of measurements. Since this problem of quality control is of concern to many researchers and engineers and since it is often a lengthy and tedious task, we decided to make this screening procedure available to everyone as a web service. This service is the purpose of this paper. The objective is not to perform a precise and fine control, an objective out of reach without details on the site and instruments, but to perform a likelihood control of the data and to check their plausibility. This is achieved by comparing observations with some expectations based upon the extraterrestrial irradiation and a simulation of the irradiation for clear skies. This service is available to everyone on the Web site www.helioclim.net. It offers a very convenient means to check time-series of irradiation: data are input in a HTML page by a copy and paste procedure and the return is also a HTML page that can be analyzed in detail for the data flagged as suspicious. (author)

  17. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  18. SOUTH POL: Revealing the Polarized Southern Sky

    Science.gov (United States)

    Magalhaes, Antonio Mario Mario; Ramírez, Edgar; Ribeiro, Nadili; Seriacopi, Daiane; Rubinho, Marcelo; Ferrari, Tiberio; Rodrigues, Claudia; Schoenell, William; Herpich, Fabio; Pereyra, Antonio

    2018-01-01

    SOUTH POL will be a survey of the Southern sky in optical polarized light. It will use a newly built polarimeter for T80-S, an 84 cm robotic telescope installed at Cerro Tololo (CTIO), Chile. It will initially cover the sky South of declination -15 deg with a polarimetric accuracy Solar System.The polarimeter has just been commissioned in mid-November, 2017. The data reduction pipeline has already been built. We will describe the instrument and the data reduction, as well as a few of the science cases. The survey is expected to begin midway through the 1st semester of 2018. Both catalog data and raw images will be made available.

  19. Infrared Sky Imager (IRSI) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  20. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  1. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  2. Statistical analysis of global horizontal solar irradiation GHI in Fez city, Morocco

    Science.gov (United States)

    Bounoua, Z.; Mechaqrane, A.

    2018-05-01

    An accurate knowledge of the solar energy reaching the ground is necessary for sizing and optimizing the performances of solar installations. This paper describes a statistical analysis of the global horizontal solar irradiation (GHI) at Fez city, Morocco. For better reliability, we have first applied a set of check procedures to test the quality of hourly GHI measurements. We then eliminate the erroneous values which are generally due to measurement or the cosine effect errors. Statistical analysis show that the annual mean daily values of GHI is of approximately 5 kWh/m²/day. Daily monthly mean values and other parameter are also calculated.

  3. First performance results of two novel spectroradiometers developed for fast scanning of solar spectra UV irradiance

    Science.gov (United States)

    Feister, Uwe; Kaifel, Anton K.; Grewe, Rolf-Dieter; Kaptur, Jasmine; Reutter, Oliver; Wohlfart, Michael; Gericke, Klaus

    2003-11-01

    Two recently developed different types of fast spectroradiometers measuring solar UV irradiance have been compared in a field campaign: i) the UV spectroradiometer on filter model basis (UV-SPRAFIMO) and ii) the modified version of the spectroradiometer SPECTRO 320D by Instrument Systems. The all-weather UV-SPRAFIMO instrument combines a UV filter radiometer with 5 narrow-band (FBHM ~ 2.0 to 2.5 nm) filters centered within +/- 0.01 nm at 303.5, 309.0, 314.5, 327.0 and 387.0 nm, and an advanced neural network-based model. It allows up to 5 measurements per second to be taken that are averaged within time intervals between 5 and 30 s. The neural networks model that is embedded in the PC-based processing software converts the 5 measured irradiances into a full spectrum from 280 to 450 nm at small wavelength steps (>= 0.05 nm). These spectra can be convoluted with user-defined slit function and integrated to broad-band and action-spectra-weighted irradiance values. Users can access the data stored in the internal data logger by a serial RS232 interface or by a modem and display them on a PC-based Graphical User Interface. The spectroradiometer SPECTRO320D consists of a grating double monochromator with a cooled (-20°C) PMT receiver. The modified instrument version run by DWD uses a Schreder type cosine diffuser that directs the solar global irradiance via quartz fiber optics onto the spectroradiometer's entrance slit. The spectroradiometer used at the campaign was installed in a thermostatted (22 +/- 0.02)°C aluminum box. The modified instrument version performs a spectral scan over the whole UV region in two subsequent parts, with a lower speed in the UV-B than in the UV-A to account for the exponential changes of solar irradiance with increasing wavelengths in the UV-B and for the almost linear change in the UV-A region. In the configuration applied in the comparison, i.e. wavelength steps of 0.2 nm within the scan range from 290 nm to 450 nm, the resulting scan

  4. Current Status of The Low Frequency All Sky Monitor

    Science.gov (United States)

    Dartez, Louis; Creighton, Teviet; Jenet, Fredrick; Dolch, Timothy; Boehler, Keith; Bres, Luis; Cole, Brent; Luo, Jing; Miller, Rossina; Murray, James; Reyes, Alex; Rivera, Jesse

    2018-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of cross-dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual- polarization dipole antenna stands. The primary science goals of LoFASM will be the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council’s ASTRO2010 decadal survey. The data acquisition system for the LoFASM antenna array uses Field Programmable Gate Array (FPGA) technology to implement a real time full Stokes spectrometer and data recorder. This poster presents an overview of the LoFASM Radio Telescope as well as the status of data analysis of initial commissioning observations.

  5. SKYMONITOR: A Global Network for Sky Brightness Measurements

    Science.gov (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  6. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules; Calculo de la Temperature de Operacion de Celulas Solares en un Panel Fotovoltaico Plano

    Energy Technology Data Exchange (ETDEWEB)

    Chenlo, F.

    2002-07-01

    Two procedures (simplified and complete) to determine the operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show the dependence of this temperature on several environment (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, antirreflexive optical coatings, etc) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author)

  7. A methodology for the stochastic generation of hourly synthetic direct normal irradiation time series

    Science.gov (United States)

    Larrañeta, M.; Moreno-Tejera, S.; Lillo-Bravo, I.; Silva-Pérez, M. A.

    2018-02-01

    Many of the available solar radiation databases only provide global horizontal irradiance (GHI) while there is a growing need of extensive databases of direct normal radiation (DNI) mainly for the development of concentrated solar power and concentrated photovoltaic technologies. In the present work, we propose a methodology for the generation of synthetic DNI hourly data from the hourly average GHI values by dividing the irradiance into a deterministic and stochastic component intending to emulate the dynamics of the solar radiation. The deterministic component is modeled through a simple classical model. The stochastic component is fitted to measured data in order to maintain the consistency of the synthetic data with the state of the sky, generating statistically significant DNI data with a cumulative frequency distribution very similar to the measured data. The adaptation and application of the model to the location of Seville shows significant improvements in terms of frequency distribution over the classical models. The proposed methodology applied to other locations with different climatological characteristics better results than the classical models in terms of frequency distribution reaching a reduction of the 50% in the Finkelstein-Schafer (FS) and Kolmogorov-Smirnov test integral (KSI) statistics.

  8. NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) contains solar spectral irradiance (SSI) as a function of time and wavelength created with the Naval Research Laboratory model for...

  9. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  10. Caspase-3 activation and DNA damage in pig skin organ culture after solar irradiation.

    Science.gov (United States)

    Bacqueville, Daniel; Mavon, Alain

    2008-01-01

    In the present study, a convenient and easy-to-handle skin organ culture was developed from domestic pig ears using polycarbonate Transwell culture inserts in 12-well plate. This alternative model was then tested for its suitability in analyzing the short-term effects of a single solar radiation dose (from 55 to 275 kJ.m(-2)). Differentiation of the pig skin was maintained for up to 48 h in culture, and its morphology was similar to that of fresh human skin. Solar irradiation induced a significant release of the cytosolic enzymes lactate dehydrogenase and extracellular signal-related kinase 2 protein in the culture medium 24 h after exposure. These photocytotoxic effects were associated with the formation of sunburn cells, thymine dimers and DNA strand breaks in both the epidermis and dermis. Interestingly, cell death was dose dependent and associated with p53 protein upregulation and strong caspase-3 activation in the basal epidermis. None of these cellular responses was observed in non-irradiated skin. Finally, topical application of a broad-spectrum UVB + A sunfilter formulation afforded efficient photoprotection in irradiated explants. Thus, the ex vivo pig ear skin culture may be a useful tool in the assessment of solar radiation-induced DNA damage and apoptosis, and for evaluating the efficacy of sunscreen formulations.

  11. Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops

    Science.gov (United States)

    Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said

    2017-11-01

    The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.

  12. Photocarrier Radiometry for Non-contact Evaluation of Monocrystalline Silicon Solar Cell Under Low-Energy (< 200 keV) Proton Irradiation

    Science.gov (United States)

    Oliullah, Md.; Liu, J. Y.; Song, P.; Wang, Y.

    2018-06-01

    A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.

  13. Improved Modeling Tools Development for High Penetration Solar

    Energy Technology Data Exchange (ETDEWEB)

    Washom, Byron [Univ. of California, San Diego, CA (United States); Meagher, Kevin [Power Analytics Corporation, San Diego, CA (United States)

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.

  14. Night sky a field guide to the constellations

    CERN Document Server

    Poppele, Jonathan

    2009-01-01

    Stargazing is among the most peaceful and inspiring outdoor activities. Night Sky, the award-winning book by Jonathan Poppele, makes it more fun than ever! Take a simple approach to finding 62 constellations by focusing on one constellation at a time, instead of attempting to study dizzying charts. Start with the easy-to-find constellations during each season and work toward the more difficult ones. Better yet, you'll learn how to locate any constellation in relation to the Big Dipper, the North Star and the top of the sky. With two ways to locate each constellation, you'll know where in the sky to look and what to look for! Along the way, you'll be introduced to mythology, facts and tidbits, as well as details about the planets, solar system and more! As an added bonus, the book comes with a red-light flashlight for night reading.

  15. NOAA Climate Data Record (CDR) of Total Solar Irradiance (TSI), NRLTSI Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) contains total solar irradiance (TSI) as a function of time created with the Naval Research Laboratory model for spectral and total...

  16. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Gonzalez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lueck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.

    2017-01-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO.

  17. Consideration of sky-shine radiation effects for the development of Korean regulatory guidance about industrial radiography

    International Nuclear Information System (INIS)

    Yong Ki Chi; Bokyun Seo; Wantae Kim

    2015-01-01

    Although most of the sky-shine radiation levels in industrial radiography are below regulatory limits, sky-shine radiation could make a valuable contribution to the total radiation level near shielding facility with little shielding and open field without shielding. Therefore sky-shine radiation should be thoroughly predicted and supervised with the ALARA principle. In this study, we simulated sky-shine radiation for mobile irradiators using MCNP and newly suggested the equation for calculating sky-shine radiation. Also these results were applied to developing Korean regulatory guidance about industrial radiography and to recommending the requirement of the facility design, controlled or supervised area at work places. (author)

  18. Oregon | Midmarket Solar Policies in the United States | Solar Research |

    Science.gov (United States)

    purpose funds and offers a wide range of solar incentives. ETO's Solar Electric program offers cash , or 35% of total project costs Utility Incentive Programs Utility Incentive Limitations Ashland Power Grant varies by projects 100% of capital costs Pacific Power - Blue Sky Community Project Funds

  19. Planck early results. XXIII. The first all-sky survey of Galactic cold clumps

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    We present the statistical properties of the Cold Clump Catalogue of Planck Objects (C3PO), the first all-sky catalogue of cold objects, in terms of their spatial distribution, dust temperature, distance, mass, and morphology. We have combined Planck and IRAS data to extract 10342 cold sources...... dark clouds where the latter have been catalogued. These cold clumps are not isolated but clustered in groups. Dust temperature and emissivity spectral index values are derived from their spectral energy distributions using both Planck and IRAS data. The temperatures range from 7K to 19K...

  20. Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    El Chaar, Lana; Lamont, Lisa A. [Petroleum Institute, Electrical Engineering Department, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2010-07-15

    Renewable energy technology and in particular solar energy is being considered worldwide due to the fluctuations in oil prices, global warming and the growing demand for energy supply. This paper investigates the climate conditions available in the United Arab Emirates (UAE) in particular Abu Dhabi to implement Photovoltaic (PV) technology. Measured solar radiation was analyzed for five different geographical locations to ensure the suitability of this region. Hourly, daily and monthly global horizontal irradiation (GHI) were collected and processed. Statistical methods were used to evaluate the computed GHI and showed high values especially during the summer period. Moreover, clearness index was calculated to investigate the frequency of cloudy sky days and results have shown a high percentage of clear days during the year. This paper highlights a promising future for Abu Dhabi in the solar energy sector and in particular Photovoltaic (PV) technology. (author)

  1. A catalogue of clusters of galaxies identified from all sky surveys of 2MASS, WISE, and SuperCOSMOS

    Science.gov (United States)

    Wen, Z. L.; Han, J. L.; Yang, F.

    2018-03-01

    We identify 47 600 clusters of galaxies from photometric data of Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), and SuperCOSMOS, among which 26 125 clusters are recognized for the first time and mostly in the sky outside the Sloan Digital Sky Survey (SDSS) area. About 90 per cent of massive clusters of M500 > 3 × 1014 M⊙ in the redshift range of 0.025 < z < 0.3 have been detected from such survey data, and the detection rate drops down to 50 per cent for clusters with a mass of M500 ˜ 1 × 1014 M⊙. Monte Carlo simulations show that the false detection rate for the whole cluster sample is less than 5 per cent. By cross-matching with ROSAT and XMM-Newton sources, we get 779 new X-ray cluster candidates which have X-ray counterparts within a projected offset of 0.2 Mpc.

  2. Potential for improvement in estimation of solar diffuse irradiance

    International Nuclear Information System (INIS)

    Muneer, T.; Munawwar, S.

    2006-01-01

    Most of the meteorological stations around the world measure global irradiation and provide information on weather elements. Diffuse radiation measurement, however, is unavailable for many of those sites. This accentuates the need to estimate it whereupon it can be used for the simulation of solar applications. This paper explores the role of synoptic information, e.g. sunshine fraction, cloud cover and air mass on the basic k-k t relationship for nine sites across the globe. The influence on the k-k t regressions is studied qualitatively, and the inclusion of these parameters is suggested based on that. Thus, it is recommended to use the complementary data usually provided with the database apart from the global irradiation in order to estimate the diffuse irradiation more accurately. It was found by analysing each synoptic parameter individually that while the sunshine fraction showed a strong bearing, it was followed closely by cloud cover. Air mass, on the other hand, was found to be a weak parameter for general estimation of diffuse radiation. It was concluded that air mass if coupled with other synoptic parameters might improve the estimation accuracy, but it does not show much promise on its own when used with the global irradiation

  3. Short term solar radiation forecasting: Island versus continental sites

    International Nuclear Information System (INIS)

    Boland, John; David, Mathieu; Lauret, Philippe

    2016-01-01

    Due its intermittency, the large-scale integration of solar energy into electricity grids is an issue and more specifically in an insular context. Thus, forecasting the output of solar energy is a key feature to efficiently manage the supply-demand balance. In this paper, three short term forecasting procedures are applied to island locations in order to see how they perform in situations that are potentially more volatile than continental locations. Two continental locations, one coastal and one inland are chosen for comparison. At the two time scales studied, ten minute and hourly, the island locations prove to be more difficult to forecast, as shown by larger forecast errors. It is found that the three methods, one purely statistical combining Fourier series plus linear ARMA models, one combining clear sky index models plus neural net models, and a third using a clear sky index plus ARMA, give similar forecasting results. It is also suggested that there is great potential of merging modelling approaches on different horizons. - Highlights: • Solar energy forecasting is more difficult for insular than continental sites. • Fourier series plus linear ARMA models are one forecasting method tested. • Clear sky index models plus neural net models are also tested. • Clear sky index models plus linear ARMA is also an option. • All three approaches have similar skill.

  4. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  5. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015)

    OpenAIRE

    Honda, Takumi; Miyoshi, Takemasa; Lien, Guo-Yuan; Nishizawa, Seiya; Yoshida, Ryuji; Adachi, Sachiho A.; Terasaki, Koji; Okamoto, Kozo; Tomita, Hirofumi; Bessho, Kotaro

    2018-01-01

    Japan’s new geostationary satellite Himawari-8, the first of a series of the third-generation geostationary meteorological satellites includingGOES-16, has been operational since July 2015. Himawari-8 produces highresolution observations with 16 frequency bands every 10 min for full disk, and every 2.5 min for local regions. This study aims to assimilate all-sky every-10-min infrared (IR) radiances from Himawari-8 with a regional numerical weather prediction model and to investigate its impac...

  6. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    International Nuclear Information System (INIS)

    Song, P.; Liu, J.Y.; Yuan, H.M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-01-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J_s_c), and open-circuit voltage (V_o_c) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J_s_c and V_o_c of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  7. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Song, P. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, J.Y., E-mail: ljywlj@hit.edu.cn [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China); Yuan, H.M.; Oliullah, Md.; Wang, F. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Y., E-mail: songpengkevin@126.com [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China)

    2016-09-15

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J{sub sc}), and open-circuit voltage (V{sub oc}) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J{sub sc} and V{sub oc} of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  8. Clear-Sky Narrowband Albedo Datasets Derived from Modis Data

    Science.gov (United States)

    Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.

    2013-12-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.

  9. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    Science.gov (United States)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  10. Tailored vs Black-Box Models for Forecasting Hourly Average Solar Irradiance

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Paulescu, M.; Badescu, V.

    2015-01-01

    Roč. 111, January (2015), s. 320-331 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : solar irradiance * forecasting * tilored statistical models Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.685, year: 2015

  11. Solar eclipse of 20 March 2015 and impacts on irradiance, meteorological parameters, and aerosol properties over southern Italy

    Science.gov (United States)

    Romano, S.; Lo Feudo, T.; Calidonna, C. R.; Burlizzi, P.; Perrone, M. R.

    2017-12-01

    The effects of the partial solar eclipse of 20 March 2015 on short-wave (SW) and long-wave (LW) irradiance measurements, meteorological variables, and near surface particle properties have been investigated. Measurements were performed at three southern Italy observatories of the Global Atmospheric Watch - World Meteorological Organization (GAW-WMO): Lecce (LE, 40.3°N, 18.1°E, 30 m a.s.l.), Lamezia Terme (LT, 38.9°N, 16.2°E, 50 m a.s.l.), and Capo Granitola (CG, 37.6°N, 12.7°E, 50 m a.s.l.), to investigate the dependence of the eclipse effects on monitoring site location and meteorology. LE, LT, and CG were affected by a similar maximum obscuration of the solar disk, but meteorological parameters and aerosol optical and microphysical properties varied from site to site on the eclipse's day. The maximum obscuration of the solar disk, which was equal to 43.6, 42.8, and 45.1% at LE, LT, and CG, respectively, was responsible for the decrease of the downward SW irradiance up to 45, 44, and 45% at LE, LT, and CG, respectively. The upward SW irradiance decreased up to 45, 48, and 44% at LE, LT, and CG, respectively. Consequently, the eclipse SW direct radiative forcing (DRF) was equal to - 307, - 278, and - 238 W m- 2 at LE, LT, and CG, respectively, at the maximum obscuration of the solar disk. The downward and upward LW irradiance decrease was quite small (up to 4%) at the three sites. The time evolution of the meteorological parameters and aerosol optical and microphysical properties and their response strength to the solar eclipse impact varied from site to site, mainly because of the local meteorology and geographical location. Nevertheless, the solar eclipse was responsible at the study sites for a temperature decrease within 0.5-0.8 K, a relative humidity increase within 3.5-4.5%, and a wind speed decrease within 0.5-1.0 m s- 1, because of its cooling effect. The solar eclipse was also responsible at all the sites for the increase of near surface particle

  12. Proof of Concept for a Simple Smartphone Sky Monitor

    Science.gov (United States)

    Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.

    2013-01-01

    We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.

  13. Solar Irradiance and Pan Evaporation Estimation from Meteorological Satellite Data

    Directory of Open Access Journals (Sweden)

    Ming-Ren Syu

    2016-04-01

    Full Text Available Knowledge about spatial and temporal variations in surface global solar radiation (GSR and evaporative water loss from the ground are important issues to many researches and applications. In this study empirical relationships suitable for Taiwan were established for GSR retrieval from geostationary satellite images using the Heliosat method for the period from 2011 - 2013. The derived GSR data has been used to generate consecutive maps of 10-day averaged pan evaporation (Epan as the basis to produce regional ET estimation using a strategy that does not require remote sensed land surface temperatures (LST. The retrieved daily GSR and the derived 10-day averaged Epan were validated against pyranometer and class-A pan measurements at selected Central Weather Bureau (CWB stations spread across various climatic regions in Taiwan. Compared with the CWB observed data the overall relative mean bias deviations (MBD% and root mean square differences (RMSD% in daily solar irradiance retrieval were about 5 and 15%, respectively. Seasonally, the largest MBD% and RMSD% of retrieved daily solar irradiance occur in spring (9.5 and 21.3% on average, while the least MBD% (-0.3% on average and RMSD% (9.7% on average occur in autumn and winter, respectively. For 10-day averaged Epan estimation, the mean MBD% and RMSD% for stations located in the coastal plain areas were 0.1 and 16.9%, respectively. However, in mountainous areas the mean MBD% and RMSD% increased to 30.2 and 34.5%, respectively. This overestimation was due mainly to the large differences in surrounding micro-environments between the mountainous and plain areas.

  14. Optimizing UV Index determination from broadband irradiances

    Science.gov (United States)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0

  15. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    Science.gov (United States)

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery

    International Nuclear Information System (INIS)

    Ener Rusen, Selmin; Hammer, Annette; Akinoglu, Bulent G.

    2013-01-01

    In this work, the current version of the satellite-based HELIOSAT method and ground-based linear Ångström–Prescott type relations are used in combination. The first approach is based on the use of a correlation between daily bright sunshine hours (s) and cloud index (n). In the second approach a new correlation is proposed between daily solar irradiation and daily data of s and n which is based on a physical parameterization. The performances of the proposed two combined models are tested against conventional methods. We test the use of obtained correlation coefficients for nearby locations. Our results show that the use of sunshine duration together with the cloud index is quite satisfactory in the estimation of daily horizontal global solar irradiation. We propose to use the new approaches to estimate daily global irradiation when the bright sunshine hours data is available for the location of interest, provided that some regression coefficients are determined using the data of a nearby station. In addition, if surface data for a close location does not exist then it is recommended to use satellite models like HELIOSAT or the new approaches instead the Ångström type models. - Highlights: • Satellite imagery together with surface measurements in solar radiation estimation. • The new coupled and conventional models (satellite and ground-based) are analyzed. • New models result in highly accurate estimation of daily global solar irradiation

  17. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  18. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  19. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    International Nuclear Information System (INIS)

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-01-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  20. Assessment of performances of sun zenith angle and altitude parameterisations of atmospheric radiative transfer for spectral surface downwelling solar irradiance

    Science.gov (United States)

    Wald, L.; Blanc, Ph.

    2010-09-01

    change in irradiance with a specific variable. The communication discusses two parameterisations found in the literature. One deals with the solar zenith angle, the other with the altitude. We assess their performances in retrieving solar irradiance for 32 spectral bands, from 240 nm to 4606 nm. The model libRadtran is run to create data sets for all sun zenith angles (every 5 degrees) and all altitudes (every km). These data sets are considered as a reference. Then, for each parameterisation, we compute the parameters using two irradiance values for specific values of angle (e.g., 0 and 60 degrees) or altitude (e.g., 0 and 3 km). The parameterisations are then applied to other values of angle and altitude. Differences between these assessments and the reference values of irradiance are computed and analysed. We conclude on the level of performances of each parameterisation for each spectral band as well as for the total irradiance. We discuss the possible use of these parameterisations in the future method Heliosat-4 and possible improvements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793 (MACC project).

  1. On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation

    International Nuclear Information System (INIS)

    Wang, Yamin; Wu, Lei

    2016-01-01

    This paper presents a comprehensive analysis on practical challenges of empirical mode decomposition (EMD) based algorithms on wind speed and solar irradiation forecasts that have been largely neglected in literature, and proposes an alternative approach to mitigate such challenges. Specifically, the challenges are: (1) Decomposed sub-series are very sensitive to the original time series data. That is, sub-series of the new time series, consisting of the original one plus a limit number of new data samples, may significantly differ from those used in training forecasting models. In turn, forecasting models established by original sub-series may not be suitable for newly decomposed sub-series and have to be trained more frequently; and (2) Key environmental factors usually play a critical role in non-decomposition based methods for forecasting wind speed and solar irradiation. However, it is difficult to incorporate such critical environmental factors into forecasting models of individual decomposed sub-series, because the correlation between the original data and environmental factors is lost after decomposition. Numerical case studies on wind speed and solar irradiation forecasting show that the performance of existing EMD-based forecasting methods could be worse than the non-decomposition based forecasting model, and are not effective in practical cases. Finally, the approximated forecasting model based on EMD is proposed to mitigate the challenges and achieve better forecasting results than existing EMD-based forecasting algorithms and the non-decomposition based forecasting models on practical wind speed and solar irradiation forecasting cases. - Highlights: • Two challenges of existing EMD-based forecasting methods are discussed. • Significant changes of sub-series in each step of the rolling forecast procedure. • Difficulties in incorporating environmental factors into sub-series forecasting models. • The approximated forecasting method is proposed to

  2. Improvement of shipborne sky radiometer and its demonstration aboard the Antarctic research vessel Shirase

    Directory of Open Access Journals (Sweden)

    Noriaki Tanaka

    2014-11-01

    Full Text Available The sun-tracking performance of a shipborne sky radiometer was improved to attain accurate aerosol optical thickness (AOT from direct solar measurements on a pitching and rolling vessel. Improvements were made in the accuracy of sun-pointing measurements, field-of-view expansion, sun-tracking speed, and measurement method. Radiometric measurements of direct solar and sky brightness distribution were performed using the shipborne sky radiometer onboard the Antarctic research vessel (R/V Shirase during JARE-51 (2009-2010 and JARE-52 (2010-2011. The temporal variation of signal intensity measured by the radiometer under cloudless conditions was smooth, demonstrating that the radiometer could measure direct sunlight onboard the R/V. AOT at 500 nm ranged from 0.01 to 0.34, and values over Southeast Asia and over the western Pacific Ocean in spring were higher than those over other regions. The Angstrom exponent ranged from -0.06 to 2.00, and values over Southeast Asia and off the coast near Sydney were the highest. The improved shipborne sky radiometer will contribute to a good understanding of the nature of aerosols over the ocean.

  3. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  4. Effect of solar-terrestrial phenomena on solar cell's efficiency

    International Nuclear Information System (INIS)

    Zahee, K. B.; Ansari, W.A.; Raza, S.M.M.

    2012-01-01

    It is assumed that the solar cell efficiency of PV device is closely related to the solar irradiance, consider the solar parameter Global Solar Irradiance (G) and the meteorological parameters like daily data of Earth Skin Temperature (E), Average Temperature (T), Relative Humidity (H) and Dew Frost Point (D), for the coastal city Karachi and a non-coastal city Jacobabad, K and J is used as a subscripts for parameters of Karachi and Jacobabad respectively. All variables used here are dependent on the location (latitude and longitude) of our stations except G. To employ ARIMA modeling, the first eighteen years data is used for modeling and forecast is done for the last five years data. In most cases results show good correlation among monthly actual and monthly forecasted values of all the predictors. Next, multiple linear regression is employed to the data obtained by ARIMA modeling and models for mean monthly observed G values are constructed. For each station, two equations are constructed, the R values are above 93% for each model, showing adequacy of the fit. Our computations show that solar cell efficiency can be increased if better modeling for meteorological predictors governs the process. (author)

  5. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám; Horváth, Gábor

    2016-07-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors Δ ω N was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal Δ ω N was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

  6. The Fermi All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in our Galaxy

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.; hide

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  7. Experimental investigation of simple solar radiation spectral model performances under a Mediterranean Algerian's climate

    International Nuclear Information System (INIS)

    Koussa, Mustapha; Saheb-Koussa, Djohra; Hadji, Seddik

    2017-01-01

    In this work, models are presented that, under cloudless atmosphere conditions, calculate solar spectral normal direct and horizontal diffuse irradiance. Based on different monochromatic transmission factors related to the main constituents of the atmosphere, the models evaluate the spectral irradiance between 0.29 and 4.0 μm. Absorption by water vapor, uniformly mixed gas, and ozone are considered as well as scattering by the atmospheric aerosols. Based on the equations relative to each one of the two retained models, a MATLAB program is developed to evaluate the spectral distribution of each solar irradiance component. Hence, the geographical coordinates of the site, and the monochromatic distribution of the extraterrestrial irradiance are used as input data. From three-year data measurement records made in Bouzareah site (temperate climate), thirty eight days characterized by a clear sky state have been selected from over different months of the year and the corresponding main meteorological parameters used as input parameters. So, because only the five-minute broadband data measurements are available, the modified numerical trapeze method is used to integrate the monochromatic curve values related to each solar irradiance component. Consequently, the precipitable water vapor amount, the Angstrom and Linke turbidity factors are evaluated and a multi-linear correlation relating the Linke turbidity factor to the precipitable water vapor and the Angstrom turbidity coefficient is established. Hence, according to the mean values of Linke and Angstrom turbidity factors and those of the precipitable water vapor, the site of Bouzareah is classified as a rural site. So, the effect of the main constituents of the atmosphere on the spectral distribution of solar irradiance is discussed and, it is also observed that the aerosol amount contained in the atmosphere affects most both of the diffuse and direct solar irradiance amount than that of the horizontal and inclined

  8. Many skies alternative histories of the Sun, Moon, planets, and stars

    CERN Document Server

    Upgren, Arthur

    2005-01-01

    Many Skies: Alternative Histories of the Sun, Moon, Planets, and Stars examines the changes in science that  alternative solar, stellar, and galactic arrangements would have brought, and explores the different theologies, astrologies, and methods of tracking time that would have developed to reflect them. Our perception of our surroundings, the number of gods we worship, the symbols we use in art and literature, even the way we form nations and empires are all closely tied to our particular (and accidental) placement in the universe.  Upgren also explores the actual ways tha

  9. Disaggregation of remotely sensed soil moisture under all sky condition using machine learning approach in Northeast Asia

    Science.gov (United States)

    Kim, S.; Kim, H.; Choi, M.; Kim, K.

    2016-12-01

    Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.

  10. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  11. Search for neutrino point sources with an all-sky autocorrelation analysis in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Andrea; Bernhard, Anna; Coenders, Stefan [TU, Munich (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic kilometre scale neutrino telescope located in the Antarctic ice. Its full-sky field of view gives unique opportunities to study the neutrino emission from the Galactic and extragalactic sky. Recently, IceCube found the first signal of astrophysical neutrinos with energies up to the PeV scale, but the origin of these particles still remains unresolved. Given the observed flux, the absence of observations of bright point-sources is explainable with the presence of numerous weak sources. This scenario can be tested using autocorrelation methods. We present here the sensitivities and discovery potentials of a two-point angular correlation analysis performed on seven years of IceCube data, taken between 2008 and 2015. The test is applied on the northern and southern skies separately, using the neutrino energy information to improve the effectiveness of the method.

  12. ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    Science.gov (United States)

    Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.

    2017-12-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic

  13. Treasures of the Southern Sky

    CERN Document Server

    Gendler, Robert; Malin, David

    2011-01-01

    In these pages, the reader can follow the engaging saga of astronomical exploration in the southern hemisphere, in a modern merger of aesthetics, science, and a story of human endeavor. This book is truly a celebration of southern skies.  Jerry Bonnell, Editor - Astronomy Picture of the Day The southern sky became accessible to scientific scrutiny only a few centuries ago, after the first European explorers ventured south of the equator. Modern observing and imaging techniques have since revealed what seems like a new Universe, previously hidden below the horizon, a fresh astronomical bounty of beauty and knowledge uniquely different from the northern sky. The authors have crafted a book that brings this hidden Universe to all, regardless of location or latitude. Treasures of the Southern Sky celebrates the remarkable beauty and richness of the southern sky in words and with world-class imagery. In part, a photographic anthology of deep sky wonders south of the celestial equator, this book also celebrates th...

  14. Modelling 1-minute directional observations of the global irradiance.

    Science.gov (United States)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  15. Approaching conversion limit with all-dielectric solar cell reflectors.

    Science.gov (United States)

    Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert

    2015-02-09

    Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.

  16. Total solar irradiance as measured by the SOVAP radiometer onboard PICARD

    Directory of Open Access Journals (Sweden)

    Meftah Mustapha

    2016-01-01

    Full Text Available From the SOlar VAriability PICARD (SOVAP space-based radiometer, we obtained a new time series of the total solar irradiance (TSI during Solar Cycle 24. Based on SOVAP data, we obtained that the TSI input at the top of the Earth’s atmosphere at a distance of one astronomical unit from the Sun is 1361.8 ± 2.4 W m−2 (1σ representative of the 2008 solar minimum period. From 2010 to 2014, the amplitude of the changes has been of the order of ± 0.1%, corresponding to a range of about 2.7 W m−2. To determine the TSI from SOVAP, we present here an improved instrument equation. A parameter was integrated from a theoretical analysis that highlighted the thermo-electrical non-equivalence of the radiometric cavity. From this approach, we obtained values that are lower than those previously provided with the same type of instrument. The results in this paper supersede the previous SOVAP analysis and provide the best SOVAP-based TSI-value estimate and its temporal variation.

  17. An estimation of impact of anthropogenic aerosols in atmosphere of Tirana on solar insolation. Part II: Modification of solar energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Buzra, Urim, E-mail: rimibuzra@yahoo.com; Berberi, Pellumb; Mitrushi, Driada; Muda, Valbona [Department of Engineering Physics, FIMIF, PUT, Tirana (Albania); Halili, Daniela [Department of physics, FNS, AXHU, Elbasan (Albania); Berdufi, Irma [Institute of Nuclear Physics, INP, TU, Tirana (Albania)

    2016-03-25

    Change of irradiative properties of the atmosphere during clear days is an indicator, among others, of existence of atmospheric aerosols and can be used as an indicator for assessment both air pollution and local modifications of solar energy potentials. The main objective of this study is estimation of influence of anthropogenic aerosols on solar energy falling in a horizontal surface during a cloudless day. We have analyzed and quantified the effect of aerosols on reducing the amount of solar energy that falls on the horizontal ground surface in cloudless sky conditions, estimating temporal evolution, both in daily and hour scale, considering also, side effects caused by relative humidity of the air wind speed and geometric factor. As an indicator of concentration of aerosols in atmosphere, we agreed to use the attenuation of solar radiation after the last rainy day. All data were corrected by factors such as, variations of relative humidity, wind speed and daily change of incident angle of solar radiation. We studied the change of solar insolation in three sites with different traffic intensity, one in city of Shkodra and two in city of Tirana. Fifteen days after last rainy day, approximate time needed to achieve saturation, the insolation drops only 3.1% in the city of Shkodra, while in two sites in city of Tirana are 8.5 % and 18.4%. These data show that reduction of solar insolation is closely related with anthropogenic activity, mainly traffic around the site of the meteorological station. The day to day difference tends to decrease with increasing of number of days passed from the last rainy day, which is an evidence of a trend toward a dynamic equilibrium between decantation process of aerosols during the night and their generation during the day.

  18. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Antolini, E.; Bonamente, E. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: majello@slac.stanford.edu, E-mail: allafort@stanford.edu, E-mail: rolf.buehler@desy.de [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2013-07-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  19. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Antolini, E.; Bonamente, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bregeon, J.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10° and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  20. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  1. Three-Dimensional Reconstruction and Solar Energy Potential Estimation of Buildings

    Science.gov (United States)

    Chen, Y.; Li, M.; Cheng, L.; Xu, H.; Li, S.; Liu, X.

    2017-12-01

    In the context of the construction of low-carbon cities, green cities and eco-cities, the ability of the airborne and mobile LiDAR should be explored in urban renewable energy research. As the main landscape in urban environment, buildings have large regular envelopes could receive a huge amount of solar radiation. In this study, a relatively complete calculation scheme about building roof and façade solar utilization potential is proposed, using building three-dimensional geometric feature information. For measuring the city-level building solar irradiance, the precise three-dimensional building roof and façade models should be first reconstructed from the airborne and mobile LiDAR, respectively. In order to obtaining the precise geometric structure of building facades from the mobile LiDAR data, a new method for structure detection and the three-dimensional reconstruction of building façades from mobile LiDAR data is proposed. The method consists of three steps: the preprocessing of façade points, the detection of façade structure, the restoration and reconstruction of building façade. As a result, the reconstruction method can effectively deal with missing areas caused by occlusion, viewpoint limitation, and uneven point density, as well as realizing the highly complete 3D reconstruction of a building façade. Furthermore, the window areas can be excluded for more accurate estimation of solar utilization potential. After then, the solar energy utilization potential of global building roofs and facades is estimate by using the solar irradiance model, which combine the analysis of the building shade and sky diffuse, based on the analysis of the geometrical structure of buildings.

  2. Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol ethoxylate degradation under UV and solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ashar, Ambreen [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Iqbal, Munawar, E-mail: bosalvee@yahoo.com [Department of Chemistry, Qurtuba University of Science and Information Technology, Peshawar 25100, KPK (Pakistan); Bhatti, Ijaz Ahmad; Ahmad, Muhammad Zubair; Qureshi, Khizar [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Nisar, Jan [National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Bukhari, Iftikhar Hussain [Department of Chemistry, Government College University, Faisalabad (Pakistan)

    2016-09-05

    ZnO particles (flower and pseudo sphere) were synthesized via precipitation route and characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), Fourier transform infra-red (FTIR) spectroscopy, Atomic force microscopy (AFM), Particle size analyzer and UV–visible techniques. The photocatalytic activities (PCA) of ZnO flower (uncalcined) and pseudo-sphere (calcined) were evaluated by degrading nonylphenol ethoxylate-9 (NP9EO) under UV and solar irradiation. The process variables i.e., catalyst dose, calcination temperature, H{sub 2}O{sub 2} concentration, pH and UV/solar light exposure were investigated and under optimum conditions of process variables, paper, textile and leather industries effluents were also treated. Calcination at high temperature affected the morphology of ZnO particles. Both ZnO flower and pseudo-sphere degraded NP9EO and pollutants in industrial wastewater efficiently under both UV and solar irradiation. Maximum NP9EO degradation was achieved at 2.5 g/L catalyst dose, high calcination temperature, 4% H{sub 2}O{sub 2} concentration, 6 pH, 110 UV exposure and 12 h solar light exposure. Results reveal that ZnO is efficient photo-catalyst and could be used under solar irradiation for photocatalytic application by tuning the band gap. - Highlights: • ZnO flower and pseudo-spheres were synthesized via precipitation route. • The photocatalytic activities by degrading surfactant. • ZnO particles showed considerable photocatalytic activity under UV and solar irradiation. • By tuning the band gap of ZnO absorption capacity can be enhanced.

  3. Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis

    Science.gov (United States)

    Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun

    2018-04-01

    As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.

  4. On the detectability of solar-like oscillations with the NASA TESS mission

    Science.gov (United States)

    Campante, Tiago L.

    2017-10-01

    The upcoming NASA TESS mission will perform an all-sky survey for planets transiting bright nearby stars. In addition, its excellent photometric precision will enable asteroseismology of solar-type and red-giant stars. We apply a newly developed detection test along a sequence of stellar evolutionary tracks in order to predict the detectability of solar-like oscillations with TESS.

  5. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent ra...

  6. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-07-20

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca ii K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  7. Predicting Downward Longwave Radiation for Various Land Use in All-Sky Condition: Northeast Florida

    Directory of Open Access Journals (Sweden)

    Chi-Han Cheng

    2014-01-01

    Full Text Available Accurate estimate of the surface longwave radiation is important for the surface radiation budget, which in turn controls evaporation and sensible heat fluxes. Regional land use changes can impact local weather conditions; for example, heterogeneous land use patterns and temporal changes in atmospheric circulation patterns would affect air temperature and water vapor pressure, which are more commonly used as inputs in existing models for estimating downward longwave radiation (LWd. In this study, first, we analyzed the cloud cover and land use covers impacts on LWd. Next, LWd on all-sky conditions were developed by using the existing land use-adapted model and cloud cover data from the region of Saint Johns River Water Management District (SJRWMD, FL. The results show that factors, such as, seasonal effects, cloud cover, and land use, are of importance in the estimation of LWd and they cannot be ignored when developing a model for LWd prediction. The all-sky land use-adapted model with all factors taken into account performs better than other existing models statistically. The results of the statistical analyses indicated that the BIAS, RMSE, MAE, and PMRE are −0.18 Wm−2, 10.81 Wm−2, 8.00 Wm−2, and 2.30%; −2.61 Wm−2, 14.45 Wm−2, 10.64 Wm−2, and 3.19%; −0.07 Wm−2, 10.53 Wm−2, 8.03 Wm−2, and 2.27%; and −0.62 Wm−2, 13.97 Wm−2, 9.76 Wm−2, and 2.87% for urban, rangeland, agricultural, and wetland areas, respectively.

  8. Candidate isolated neutron stars and other optically blank x-ray fields identified from the rosat all-sky and sloan digital sky surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agueros, Marcel A.; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Margon, Bruce; /Baltimore, Space Telescope Sci.; Haberl, Frank; Voges, Wolfgang; /Garching,; Annis, James; /Fermilab; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Brinkmann, Jonathan; /Apache Point Observ.

    2005-11-01

    Only seven radio-quiet isolated neutron stars (INSs) emitting thermal X rays are known, a sample that has yet to definitively address such fundamental issues as the equation of state of degenerate neutron matter. We describe a selection algorithm based on a cross-correlation of the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) that identifies X-ray error circles devoid of plausible optical counterparts to the SDSS g {approx} 22 magnitudes limit. We quantitatively characterize these error circles as optically blank; they may host INSs or other similarly exotic X-ray sources such as radio-quiet BL Lacs, obscured AGN, etc. Our search is an order of magnitude more selective than previous searches for optically blank RASS error circles, and excludes the 99.9% of error circles that contain more common X-ray-emitting subclasses. We find 11 candidates, nine of which are new. While our search is designed to find the best INS candidates and not to produce a complete list of INSs in the RASS, it is reassuring that our number of candidates is consistent with predictions from INS population models. Further X-ray observations will obtain pinpoint positions and determine whether these sources are entirely optically blank at g {approx} 22, supporting the presence of likely isolated neutron stars and perhaps enabling detailed follow-up studies of neutron star physics.

  9. Sky brightness and twilight measurements at Jogyakarta city, Indonesia

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani

    2016-01-01

    The sky brightness measurements were performed using a portable photometer. A pocket-sized and low-cost photometer has 20 degree area measurement, and spectral ranges between 320-720 nm with output directly in magnitudes per arc second square (mass) unit. The sky brightness with 3 seconds temporal resolutions was recorded at Jogyakarta city (110° 25’ E; 70° 52’ S; elevation 100 m) within 136 days in years from 2014 to 2016. The darkest night could reach 22.61 mpass only in several seconds, with mean value 18.8±0.7 mpass and temperature variation 23.1±1.2 C. The difference of mean sky brightness between before and after midnight was about -0.76 mpass or 2.0 times brighter. Moreover, the sky brightness and temperature fluctuations were more stable in after midnight than in before midnight. It is suggested that city light pollution affects those variations, and subsequently duration of twilight. By comparing twilight brightness for several places, we also suggest a 17° solar dip or about 66 minutes before sunrise for new time of Fajr prayer. (paper)

  10. Analysis of radiation damage to Si solar cells under high-fluence electron irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Yang, Ming-Ju; Matsuda, Sumio; Kawasaki, Osamu; Hisamatsu, Tadashi.

    1996-01-01

    Radiation testing of Si n + -p-p + space solar cells has revealed an anomalous increase in short-circuit current I sc , followed by an abrupt decrease and cell failure, induced by high-fluence (>10 16 cm -2 ) electron irradiation. A model which can be used to explain these phenomena by expressing the change in majority-carrier concentration p of the base region as a function of the electron fluence has been proposed in addition to the well-known model in which I sc is decreased due to minority-carrier lifetime reduction with irradiation. The reduction in p due to majority-carrier trapping by radiation-induced defects has two effects; one is broadening of the depletion layer which contributes to the increase in the generated photocurrent and that in the recombination-generation current in the depletion layer, and the second is an increase in the resistivity of the base layer resulting in an abrupt decrease of I sc and failure of the solar cells. (author)

  11. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  12. The red-sky enigma over Svalbard in December 2002

    Directory of Open Access Journals (Sweden)

    F. Sigernes

    2005-07-01

    Full Text Available On 6 December 2002, during winter darkness, an extraordinary event occurred in the sky, as viewed from Longyearbyen (78° N, 15° E, Svalbard, Norway. At 07:30 UT the southeast sky was surprisingly lit up in a deep red colour. The light increased in intensity and spread out across the sky, and at 10:00 UT the illumination was observed to reach the zenith. The event died out at about 12:30 UT. Spectral measurements from the Auroral Station in Adventdalen confirm that the light was scattered sunlight. Even though the Sun was between 11.8 and 14.6deg below the horizon during the event, the measured intensities of scattered light on the southern horizon from the scanning photometers coincided with the rise and setting of the Sun. Calculations of actual heights, including refraction and atmospheric screening, indicate that the event most likely was scattered solar light from a target below the horizon. This is also confirmed by the OSIRIS instrument on board the Odin satellite. The deduced height profile indicates that the scattering target is located 18–23km up in the stratosphere at a latitude close to 73–75° N, southeast of Longyearbyen. The temperatures in this region were found to be low enough for Polar Stratospheric Clouds (PSC to be formed. The target was also identified as PSC by the LIDAR systems at the Koldewey Station in Ny-Ålesund (79° N, 12° E. The event was most likely caused by solar illuminated type II Polar Stratospheric Clouds that scattered light towards Svalbard. Two types of scenarios are presented to explain how light is scattered. Keywords. Atmospheric composition and structure (Transmissions and scattering of radiation; Middle atmospherecomposition and chemistry; Instruments and techniques – History of geophysics (Atmospheric Sciences; The red-sky phenomena

  13. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  14. Biomass converted carbon quantum dots for all-weather solar cells

    International Nuclear Information System (INIS)

    Meng, Yuanyuan; Zhang, Yue; Sun, Weiyin; Wang, Min; He, Benlin; Chen, Haiyan; Tang, Qunwei

    2017-01-01

    Highlights: •CQDs are converted from soybean powders by a hydrothermal method. •The biomass converted CQDs are used for all-weather DSSCs. •The so-called all-weather DSSCs can generate electricity in the daytime and dark. •A dark efficiency as high as 7.97% is determined on the all-weather photovoltaics. •The launched solar cell extend our knowledge of advanced all-weather solar cells. -- Abstract: A great challenge for state-of-the-art photovoltaic devices is to realize electric power generation in all weathers. We constructively demonstrate here the conversion from biomass to carbon quantum dots for all-weather carbon quantum dot solar cells that can generate electricity in the daytime and in the dark. The combination of green-emitting long persistence phosphors with mesoscopic titanium dioxide realizes optical storage by composite photoanode under illumination and excitation to monochromatic green light in the dark. The optimized all-weather solar cell yields maximized dark power conversion efficiency as high as 7.97% along with persistent electricity output for several hours. This work begins a photovoltaic revolution to forward all-weather solar cells as future energy solutions.

  15. NREL Pyrheliometer Comparisons: September 26-October 7, 2016 (NPC-2016)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dooraghi, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andreas, Afshin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for developing and deploying solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations that are traceable to an international standard is the first step in producing research-quality solar irradiance measurements. National Renewable Energy Laboratory (NREL) pyrheliometer comparisons (NPCs) are held annually at the Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Open to all pyrheliometer owners and operators, each NPC provides an opportunity to determine the unique World Radiometric Reference transfer factor (WRR-TF) for each participating pyrheliometer. By adjusting all subsequent pyrheliometer measurements by the appropriate WRR-TF, the solar irradiance data are traceable to the WRR. NPC-2016 was September 26 through October 7, 2016. Participants operated 45 absolute cavity radiometers and 27 conventional thermopile-based pyrheliometers to simultaneously measure clear-sky, direct normal solar irradiance during this period.

  16. VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)

    Science.gov (United States)

    Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir

    2018-01-01

    The VLA Low Band Ionosphere and Transient Experiment (VLITE; ) is a commensal observing system on the Karl G. Janksy Very Large Array (VLA) which was developed by the Naval Research Laboratory and NRAO. A 64 MHz sub-band from the prime focus 240-470 MHz dipoles is correlated during nearly all regular VLA observations. VLITE uses dedicated samplers and fibers, as well as a custom designed, real-time DiFX software correlator, and requires no additional resources from the VLA system running the primary science program. The experiment has been operating since November 2014 with 10 antennas; a recent expansion in summer 2017 increased that number to 16 and more than doubled the number of baselines.The VLA Sky Survey (VLASS; ), is an ongoing survey of the entire sky visible to the VLA at a frequency of 2-4 GHz. The observations are made using an "on-the-fly" (OTF) continuous RA scanning technique which fills in the sky by observing along rows of constant declination. VLITE breaks the data into 2-second integrations and correlates these at a central position every 1.5 degrees. All data for each correlator position is imaged separately, corrected and weighted by an appropriately elongated primary beam model, and then combined in the image plane to create a mosaic of the sky. A catalog of the sources is extracted to provide a 340 MHz sky model.We present preliminary images and catalogs from the 2017 VLASS observations which began in early September, 2017, and continued on a nearly daily basis throughout the fall. In addition to providing a unique sky model at 340 MHz, these data complement VLASS by providing spectral indices for all cataloged sources.

  17. Fluctuation characteristics of solar radiation in crop cultivation

    International Nuclear Information System (INIS)

    Hayashi, S.; Suzuki, H.

    1996-01-01

    The objective of this study was to clarify the fluctuation of solar radiation for long and short periods, which is very crucial for plant growth. Data obtained from a meteorological observatory were used to investigate solar radiation and sunshine duration for a long period. For a short period, observation of global solar radiation and sky solar radiation were conducted in a glass house and at an open field. (1) Yearly average percentage of solar radiation at Kagawa from 1973 to 1994 was 44.3%, and its coefficient of variation was 3.9%. The percentage of possible sunshine and the coefficient were larger than those of solar radiation, 47.3% and 56% respectively. (2) Percentage of possible solar radiation and percentage of possible sunshine showed seasonal variation. Those coefficients of variation both increased exponentially with cloud amount. (3) Variations of global solar radiation and direct solar radiation were more remarkable in the glass house than those in the open field, while variations of sky solar radiation were small in the house and at the open field. (4) The fluctuation of solar radiation observed every 5 minutes was presented as the difference of radiation, present value minus the preceding value. The difference was positive in the morning, negative in the afternoon at the open field. In the house both positive and negative values were obtained the whole day. (5) Diurnal variation of ratio of direct solar radiation to sky solar radiation showed a parabolic effect, whereas it had irregular and large fluctuations at the open field

  18. First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform

    International Nuclear Information System (INIS)

    Abbott, B.; Adhikari, R.; Agresti, J.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.

    2005-01-01

    We perform a wide parameter-space search for continuous gravitational waves over the whole sky and over a large range of values of the frequency and the first spin-down parameter. Our search method is based on the Hough transform, which is a semicoherent, computationally efficient, and robust pattern recognition technique. We apply this technique to data from the second science run of the LIGO detectors and our final results are all-sky upper limits on the strength of gravitational waves emitted by unknown isolated spinning neutron stars on a set of narrow frequency bands in the range 200-400 Hz. The best upper limit on the gravitational-wave strain amplitude that we obtain in this frequency range is 4.43x10 -23

  19. Sky-Radiance Models for Monte Carlo Radiative Transfer Applications

    Science.gov (United States)

    Santos, I.; Dalimonte, D.; Santos, J. P.

    2012-04-01

    Photon-tracing can be initialized through sky-radiance (Lsky) distribution models when executing Monte Carlo simulations for ocean color studies. To be effective, the Lsky model should: 1) properly represent sky-radiance features of interest; 2) require low computing time; and 3) depend on a limited number of input parameters. The present study verifies the satisfiability of these prerequisite by comparing results from different Lsky formulations. Specifically, two Lsky models were considered as reference cases because of their different approach among solutions presented in the literature. The first model, developed by the Harrisson and Coombes (HC), is based on a parametric expression where the sun geometry is the unique input. The HC model is one of the sky-radiance analytical distribution applied in state-of-art simulations for ocean optics. The coefficients of the HC model were set upon broad-band field measurements and the result is a model that requires a few implementation steps. The second model, implemented by Zibordi and Voss (ZV), is based on physical expressions that accounts for the optical thickness of permanent gases, aerosol, ozone and water vapour at specific wavelengths. Inter-comparisons between normalized ^LskyZV and ^LskyHC (i.e., with unitary scalar irradiance) are discussed by means of individual polar maps and percent difference between sky-radiance distributions. Sky-radiance cross-sections are presented as well. Considered cases include different sun zenith values and wavelengths (i.e., λ=413, 490 and 665 nm, corresponding to selected center-bands of the MEdium Resolution Imaging Spectrometer MERIS). Results have shown a significant convergence between ^LskyHC and ^LskyZV at 665 nm. Differences between models increase with the sun zenith and mostly with wavelength. For Instance, relative differences up to 50% between ^ L skyHC and ^ LskyZV can be observed in the antisolar region for λ=665 nm and θ*=45°. The effects of these

  20. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Department of Electronics, Faculty of Sciences and Technology, LAMEL, Jijel University, Ouled-aissa, P.O. Box 98, Jijel 18000 (Algeria); Pavan, Alessandro Massi [Department of Materials and Natural Resources, University of Trieste Via A. Valerio, 2 - 34127 Trieste (Italy)

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)