Sample records for alkylaminocarbene ligand leads

  1. Ligand versus Complex: C-F and C-H Bond Activation of Polyfluoroaromatics at a Cyclic (Alkyl)(Amino)Carbene. (United States)

    Paul, Ursula S D; Radius, Udo


    C-F and C-H bond activation reactions of polyfluoroaromatics at the cyclic (alkyl)(amino)carbene (cAAC) cAAC(methyl) (1) are reported. Studies on the C-F bond activation using the cAAC-stabilized nickel(0) complex [Ni(cAAC(methyl) )2 ] (2) have shown that 2 does not react with fluorinated arenes. However, these investigations led to the observation of C-F bond cleavage of perfluorinated arenes by the carbene ligand cAAC(methyl) (1) itself. The reaction of 1 with C6 F6 , C6 F5 -C6 F5 , C6 F5 -CF3 , and C5 F5 N afforded the insertion products of cAAC into one of the C-F bonds of the substrate, that is, the C-F bond activation products (cAAC(methyl) )F(Ar(f) ) (Ar(f) =C6 F5 4 a, C6 F4 -C6 F5 4 b, C6 F4 -CF3 4 c, C5 F4 N 4 d). These products decompose readily upon heating to 80 °C within a few hours in solution with formation of ionic iminium salts [(cAAC(methyl) )(Ar(f) )][X] 6 a-d or neutral alkenyl perfluoroaryl imine compounds 7 a-d. The compounds (cAAC(methyl) )F(Ar(f) ) 4 a-d readily transfer fluoride, which has been exemplified by the fluoride transfer of all compounds using BF3 etherate as fluoride acceptor. Fluoride transfer has also been achieved starting from (cAAC(methyl) )F(C6 F4 -CF3 ) (4 c) or (cAAC(methyl) )F(C5 F4 N) (4 d) to other selected substrates such as trimethylchlorosilane, benzoyl chloride and tosyl chloride. Instead of C-F bond activation, insertion of the cAAC into the C-H bond was observed if 1 was treated with the partially fluorinated arenes C6 F5 H, 1,2,4,5-C6 F4 H2 , 1,3,5-C6 F3 H3 , and 1,3-C6 F2 H4 . The compounds (cAAC(methyl) )H(Ar(f) ) (Ar(f) =C6 F5 12 e, 2,3,5,6-C6 F4 H 12 f, 2,4,6-C6 F3 H2 12 g and 2,6-C6 F2 H3 12 h) have been isolated in good yields and have been characterized including X-ray analysis. Fluorobenzene C6 FH5 (pKa ≈37), the least C-H acidic fluoroarene used in this study, does not react. In order to investigate the scope and limitations of this type of cAAC C-H bond activation

  2. Cyclic (Alkyl)(Amino)Carbene Complexes of Rhodium and Nickel and Their Steric and Electronic Parameters. (United States)

    Paul, Ursula S D; Sieck, Carolin; Haehnel, Martin; Hammond, Kai; Marder, Todd B; Radius, Udo


    N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) are of great interest, as their electronic and steric properties provide a unique class of ligands and organocatalysts. Herein, substitution reactions involving novel carbonyl complexes of rhodium and nickel were studied to provide a deeper understanding of the fundamental electronic factors characterizing CAAC(methyl) , which were compared with the large array of data available for NHC and sterically more demanding CAAC ligands.

  3. Lead Generation and Optimization Based on Protein-Ligand Complementarity

    Directory of Open Access Journals (Sweden)

    Koji Ogata


    Full Text Available This work proposes a computational procedure for structure-based lead generation and optimization, which relies on the complementarity of the protein-ligand interactions. This procedure takes as input the known structure of a protein-ligand complex. Retaining the positions of the ligand heavy atoms in the protein binding site it designs structurally similar compounds considering all possible combinations of atomic species (N, C, O, CH3, NH,etc. Compounds are ranked based on a score which incorporates energetic contributions evaluated using molecular mechanics force fields. This procedure was used to design new inhibitor molecules for three serine/threonine protein kinases (p38 MAP kinase, p42 MAP kinase (ERK2, and c-Jun N-terminal kinase 3 (JNK3. For each enzyme, the calculations produce a set of potential inhibitors whose scores are in agreement with IC50 data and Ki values. Furthermore, the native ligands for each protein target, scored within the five top-ranking compounds predicted by our method, one of the top-ranking compounds predicted to inhibit JNK3 was synthesized and his inhibitory activity confirmed against ATP hydrolysis. Our computational procedure is therefore deemed to be a useful tool for generating chemically diverse molecules active against known target proteins.

  4. Kinetic Selectivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes (United States)

    Anderson, Donde R.; Ung, Thay; Mkrtumyan, Garik; Bertrand, Guy; Grubbs, Robert H.; Schrodi, Yann


    The evaluation of ruthenium olefin metathesis catalysts 4–6 bearing cyclic (alkyl)(amino)carbenes (CAACs) in the cross-metathesis of cis-1,4-diacetoxy-2-butene (7) with allylbenzene (8) and the ethenolysis of methyl oleate (11) is reported. Relative to most NHC-substituted complexes, CAAC-substituted catalysts exhibit lower E/Z ratios (3:1 at 70% conversion) in the cross-metathesis of 7 and 8. Additionally, complexes 4–6 demonstrate good selectivity for the formation of terminal olefins versus internal olefins in the ethenolysis of 11. Indeed, complex 6 achieved 35 000 TONs, the highest recorded to date. CAAC-substituted complexes exhibit markedly different kinetic selectivity than most NHC-substituted complexes. PMID:18584055

  5. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization. (United States)

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher


    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer's disease.

  6. Dopamine D(3) receptor antagonists: The quest for a potentially selective PET ligand. Part two: Lead optimization. (United States)

    Micheli, Fabrizio; Holmes, Ian; Arista, Luca; Bonanomi, Giorgio; Braggio, Simone; Cardullo, Francesca; Di Fabio, Romano; Donati, Daniele; Gentile, Gabriella; Hamprecht, Dieter; Terreni, Silvia; Heidbreder, Christian; Savoia, Chiara; Griffante, Cristiana; Worby, Angela


    The lead optimization process to identify new selective dopamine D(3) receptor antagonists is reported. DMPK parameters and binding data suggest that selective D(3) receptor antagonists as potential PET ligands might have been identified.

  7. Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques

    Directory of Open Access Journals (Sweden)

    Nizar M. Mhaidat


    Full Text Available Farnesyltransferase enzyme (FTase is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774 were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.

  8. Spatio-temporal regulation of Hsp90-ligand complex leads to immune activation.

    Directory of Open Access Journals (Sweden)

    Yasuaki eTamura


    Full Text Available Hsp90 is the most abundant cytosolic HSP and is known to act as a molecular chaperone. We found that an Hsp90-cancer antigen peptide complex was efficiently cross-presented by human monocyte-derived dendritic cells and induced peptide-specific cytotoxic T lymphocytes. Furthermore, we observed that the internalized Hsp90-peptide complex was strictly sorted to the Rab5+, EEA1+ static early endosome and the Hsp90-chaperoned peptide was processed and bound to MHC class I molecules through a endosome-recycling pathway. We also found that extracellular Hsp90 complexed with CpG-A or self-DNA stimulates production of a large amount of IFN-α from pDCs via static early endosome targeting. Thus, extracellular Hsp90 can target the antigen or nucleic acid to a static early endosome by spatio-temporal regulation. Moreover, we showed that Hsp90 associates with and delivers TLR7/9 from the ER to early endosomes for ligand recognition. Hsp90 inhibitor, geldanamycin derivative inhibited the Hsp90 association with TLR7/9, resulting in inhibition IFN-α production, leading to improvement of SLE symptoms. Interstingly, we observed that serum Hsp90 is clearly increased in patients with active SLE compared with that in patients with inactive disease. Serum Hsp90 detected in SLE patients binds to self-DNA and/or anti-DNA Ab, thus leading to stimulation of pDCs to produce IFN-α. Thus, Hsp90 plays a crucial role in the pathogenesis of SLE and that an Hsp90 inhibitor will therefore provide a new therapeutic approach to SLE and other nucleic acid-related autoimmune diseases. We will discuss how spatio-temporal regulation of Hsp90-ligand complexes within antigen-presenting cells affects the innate immunity and adaptive immunity.

  9. Recyclable non-ligand dual cloud point extraction method for determination of lead in food samples. (United States)

    Wang, Yun; Han, Juan; Liu, Yingying; Wang, Lei; Ni, Liang; Tang, Xu


    A new pH-mediated non-ligand dual cloud point extraction (NL-DCPE) was first developed for extraction Pb(II) from food samples. The NL-DCPE method includes two cloud point extraction (CPE) steps and the recycling of the copolymer. The first procedure was based on the forming of lead hydroxide at pH 9.5 and subsequent lead hydroxide was entrapped in a thermoseparating triblock copolymer [(PEO)10(PPO)23(PEO)10] (L44) phase. At second stage, the copolymer-rich phase was treated with the acidic solution, and Pb(II) was back extracted into the aqueous phase. So the problem emerging from the high viscosity of the copolymer-rich phase can be well solved. Under the optimized conditions, the extraction efficiency of 97.20% and detection limit of 1.9 μg L(-1) were obtained. Moreover, the copolymer L44 was successfully recycled and reused for more than two times. This method was successfully used for analyzing Pb(II) in food samples with satisfactory recoveries in the range of 94.01-101.19%.

  10. Glycation of the high affinity NGF-receptor and RAGE leads to reduced ligand affinity. (United States)

    Bennmann, Dorit; Kannicht, Christoph; Fisseau, Claudine; Jacobs, Kathleen; Navarette-Santos, Alexander; Hofmann, Britt; Horstkorte, Rüdiger


    AGEs are posttranslational modifications generated by irreversible non-enzymatic crosslinking reactions between sugars and proteins - a reaction referred to as glycation. Glycation, a feature of ageing, can lead to non-degradable and less functional proteins and enzymes and can additionally induce inflammation and further pathophysiological processes such as neurodegeneration. In this study we investigated the influence of glycation on the high affinity NGF-receptor TrkA and the AGE-receptor RAGE. We quantified the binding affinity of the TrkA-receptor and RAGE to their ligands by surface plasmon resonance (SPR) and compared these to the binding affinity after glycation. At the same time, we established a glycation procedure using SPR. We found that glycation of TrkA reduced the affinity to NGF by a factor of three, which could be shown to lead to a reduction of NGF-dependent neurite outgrowth in PC12 cells. Glycation of RAGE reduced binding affinity of AGEs by 10-fold.

  11. Urgent percutaneous coronary intervention leads to a decrease in serum concentrations of soluble CD40 ligand

    Directory of Open Access Journals (Sweden)

    Ratković Nenad


    Full Text Available Background/Aim. Inflammation as a consequence of vascular injury after percutaneous coronary intervention (PCI is a pathological substrate of restenosis and of its complications. The aim of the study was to examine perprocedural inflammatory response expressed by soluble CD40 ligand (sCD40L and C-reactive protein (CRP in patients treated with PCI and dual antiplatelet therapy. Methods. The experimental group included 52 patients (80.8% men, age 60 ± 9 years with angina pectoris treated by PCI (22 urgent PCI with stent implantation, and dual antiplatelet therapy (tienopiridins and aspirin, according to the current recommendations for the execution of the intervention. The control group consisted of 8 patients (70.5% men, age 59 ± 7 years with angina pectoris, who had undergone coronarography taking aspirin 3 days prior to it. In all the patients 24 hours before and after the PCI concentrations of CRP and sCD40L in the blood were determined. Results. In the experimental group, the concentration of sCD40L was lower as compared to the control (p < 0.02. In 34 (65% patients postprocedural decrease in sCD40L was recorded, in 18 (34.6% of them increase, while in 50 (96% patients there was a rise in CRP. The patients with postprocedural fall in sCD40L hod greater preprocedural concentration of sCD40L (p < 0.001, and less postprocedural concentration of sCD40L (p < 0.001, compared to the group with an increase in sCD40L after the PCI, while CRP levels tients treated with emergency PCI compared to elective patietns had a postprocedural decrease in sCD40L (p = 0.02. Increase in the level of CRP was higher in the group with emergency PCI in relation to elective PCI (p < 0.01. Conclusion. Emergency PCI procedures in the treatment of patients with unstable angina pectoris lead to a postprocedural fall in the serum concentration of sCD40L. Dual antiplate therapy with tienopiridins and aspirin inhibits the release of sCD40L. Regardless a clinical presentation

  12. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    Directory of Open Access Journals (Sweden)

    Rohan Patil

    Full Text Available BACKGROUND: Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. METHODOLOGY: In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. CONCLUSIONS: The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  13. Copper(II and lead(II complexation by humic acid and humic-like ligands

    Directory of Open Access Journals (Sweden)



    Full Text Available The stability of metal–humate complexes is an important factor determining and predicting speciation, mobility and bioavailability of heavy metals in the environment. A comparative investigation of the complexation of Cu(II and Pb(II with humic acid and humic-like ligands, such as benzoic and salicylic acid, was performed. The analysis was realized at pH 4.0, a temperature of 25 °C and at an ionic strength of 0.01 mol dm-3 (NaCl using the Schubert ion-exchange method and its modified form. The stability constants were calculated from the experimental data by the Schubert method for complexes with benzoic and humic acid. A modified Schubert method was used for the determination of the stability constants of the complexes with salicylic acid. It was found that Cu(II and Pb(II form mononuclear complexes with benzoic and humic acid while with salicylic acid both metals form polynuclear complexes. The results indicate that Pb(II has a higher binding ability than Cu(II to all the investigated ligands. The Cu(II–salicylate and Pb(II–salicylate complexes showed noticeable higher stability constants compared with their complexes with humic acid, while the stabilities of the complexes with benzoic acid differed less. Salicylic and benzoic acids as humic-like ligands can be used for setting the range of stability constants of humic complexes with Cu(II and Pb(II.

  14. Tin(IV) and lead(IV) complexes with a tetradentate redox-active ligand. (United States)

    Piskunov, Alexandr V; Trofimova, Olesya Yu; Fukin, Georgy K; Ketkov, Sergei Yu; Smolyaninov, Ivan V; Cherkasov, Vladimir K


    The coordination chemistry of a tetradentate redox-active ligand, glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil) (H(2)L), was investigated with the diorganotin(IV) and diphenyllead(IV) moieties. Complexes R(2)SnL (R = Me (1), Et (2), (t)Bu (3), Ph (4)) and Ph(2)PbL (5) have been prepared and characterized. The molecular structures of compounds 1, 3, and 5 have been determined by single crystal X-ray diffraction. The diamagnetic octahedral complexes bear a tetradentate O,N,N,O redox-active ligand with a nearly planar core. Complexes 1-5 demonstrate solvatochromism in solution. The CV of complexes 1-5 reveals four one-electron redox processes. The spin density distribution in the chemically generated cations and anions of 1-5 was studied by X-band EPR spectroscopy. The experimental data agree well with the results of DFT calculations of electronic structures for 1, its pyridine adduct 1·Py, cation 1(+) and anion 1(-).

  15. A new ligand system based on a bipyridine-functionalized calix[4]arene backbone leading to mono- and bimetallic complexes. (United States)

    Dorta, Reto; Shimon, Linda J W; Rozenberg, Haim; Ben-David, Yehoshoa; Milstein, David


    The synthesis of a new ligand system for mono- and bimetallic complexes based on a calixarene is described. Ligand BBPC (3, bis(bipyridine)-calix[4]arene) is obtained in three steps in 40% overall yield by first brominating one of the methyl groups of the 4,4'-dimethyl-2,2'-bipyridine in two steps and subsequently reacting it with p-tert-butylcalix[4]arene under basic conditions. Reaction of BBPC (3) with 2 equiv of [Rh(NBD)(2)]BF(4) or [Rh(NBD)(CH(3)CN)(2)]BF(4) (NBD = norbornadiene) produces the bimetallic compound BBPC[Rh(NBD)BF(4)](2) (4). Treatment of the ligand with PdCl(2)(CH(3)CN)(2) leads to the isolation of the bimetallic complex BBPC[PdCl(2)](2) (5). When the nickel precursor NiBr(2)(DME) (DME = dimethoxyethane) is reacted with BBPC, the bimetallic complex BBPC[NiBr(2)](2) (6) is isolated which, upon crystallization from methanol, gives the mononuclear bis(bipyridine) complex BBPC[NiBr(OMe)] (7). Full characterization includes X-ray structural studies of complexes 4, 5, and 7. The bimetallic compounds 4 and 5 show metal to metal distances of 4.334 A (for 4) and 3.224 A (for 5). For all three complexes, unique molecular packing arrangements were found, based on hydrophobic/hydrophilic interactions.

  16. Lead (United States)

    ... found? Who is at risk? What are the health effects of lead? Get educational material about lead Get certified as a Lead Abatement Worker, or other abatement discipline Lead in drinking water Lead air pollution Test your child Check and maintain your home ...

  17. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment

    Energy Technology Data Exchange (ETDEWEB)

    Neu, Mary Patricia [Univ. of California, Berkeley, CA (United States)


    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pKas and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pKa = 5.94, logβ120 = 10.92; acetohydroxamic acid, pKa = 9.34, logβ120 = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is logβ120 = 41.7. The solubility limited speciation of 242Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

  18. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment

    Energy Technology Data Exchange (ETDEWEB)

    Neu, M.P. [Lawrence Berkeley Lab., CA (United States)


    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK{sub a}s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK{sub a} = 5.94, log{beta}{sub 120} = 10.92; acetohydroxamic acid, pK{sub a} = 9.34, log{beta}{sub l20} = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is log{beta}{sub 110} = 41.7. The solubility limited speciation of {sup 242}Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

  19. A Saccharomyces cerevisiae assay system to investigate ligand/AdipoR1 interactions that lead to cellular signaling.

    Directory of Open Access Journals (Sweden)

    Mustapha Aouida

    Full Text Available Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p. The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides' ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA signaling and AMP activated protein kinase (AMPK phosphorylation in S. cerevisiae, which are

  20. A Saccharomyces cerevisiae Assay System to Investigate Ligand/AdipoR1 Interactions That Lead to Cellular Signaling

    KAUST Repository

    Aouida, Mustapha


    Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc) activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc) in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p). The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides\\' ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA) signaling and AMP activated protein kinase (AMPK) phosphorylation in S. cerevisiae, which are homologous to

  1. Two new metal-organic coordination polymers of lead with O-, N-donor ligands: Synthesis, characterization, luminescence and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Abhinandan; Kumar Jana, Swapan; Bera, Madhusudan; Hazari, Debdoot; Sankar Chowdhuri, Durga [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India); Zangrando, Ennio [Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, 34127 Trieste (Italy); Dalai, Sudipta, E-mail: [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India)


    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(picOH){sub 4}]{center_dot}H{sub 2}O (1) and [Pb{sub 3}(Sip){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (2) has been reported, where HpicOH=3-hydroxypicolinic acid and NaH{sub 2}Sip=5-sulfoisophthalic acid monosodium salt. Both the complexes were structurally characterized by X-ray single crystal diffraction analysis. Complex 1, where the 3-hydroxypicolinate ligand is used for the first time in conjunction with Pb(II), revealed to be a 1D polymeric array. Complex 2 showed a 3D structure with 5-sulfoisophthalate ligand adopting two novel binding modes of high denticity ({eta}{sup 6}{mu}{sub 6} and {eta}{sup 7}{mu}{sub 7}). The photoluminescence and thermal properties of the two complexes have been studied. - Graphical abstract: 1D and 3D inorganic organic hybrid luminescent material of Pb(II) have been synthesized by using 3-hydroxypicolinate and 5-sulfoisophthalate anions. The 5-sulfoisophthalate ligand shows two novel binding modes with high denticity. Highlights: Black-Right-Pointing-Pointer 3-hydroxypicolinic acid is used for first time with Pb{sup 2+} in a MOF. Black-Right-Pointing-Pointer 5-sulfoisophthalic acid displays two novel binding modes of high denticity. Black-Right-Pointing-Pointer Complex 1 shows high thermal stability (up to 167 Degree-Sign C). Black-Right-Pointing-Pointer MLCT is present in both the complexes.

  2. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses.

    Directory of Open Access Journals (Sweden)

    Benjamin Schwessinger


    Full Text Available Plant plasma membrane localized pattern recognition receptors (PRRs detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24, two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.

  3. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data. (United States)

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas


    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times.

  4. Reactivity of cyclic (alkyl)(amino)carbenes (CAACs) and bis(amino)cyclopropenylidenes (BACs) with heteroallenes: comparisons with their N-heterocyclic carbene (NHCs) counterparts. (United States)

    Kuchenbeiser, Glenn; Soleilhavoup, Michele; Donnadieu, Bruno; Bertrand, Guy


    Similarly to NHCs, CAAC(a) and BAC(a) react with CO2 to give the corresponding betaines. Based on the carbonyl stretching frequencies of cis-[RhCl(CO)2(L)] complexes, the order of electron donor ability was predicted to be CAAC(a) approximately BAC(a)>NHCs. When the betaines nu(asym)(CO2) values are used, the apparent ordering is BAC(a)>NHCs approximately CAAC(a) that indicates a limitation for the use of IR spectroscopy in the ranking of ligand sigma-donating ability. Although all carbenes react with carbon disulfide to give the corresponding betaines, a second equivalent of CS2 reacts with the BAC-CS2 leading to a bicyclic thieno[2,3-diamino]-1,3-dithiole-2-thione, which results from a novel ring expansion process. Surprisingly, in contrast to NHCs, CAAC(a) does not react with carbodiimide, whereas BAC(a) exclusively gives a ring expanded product, analogous to that obtained with CS2. The intermediate amidinate can be trapped, using the lithium tetrafluoroborate adduct of BAC(b) as a carbene surrogate.

  5. 1. Medicinal chemistry of a small molecule drug lead: Tamoxilog 2. Electronic communication through ruthenium nanoparticles: Synthesis of custom ligands and nanoparticles (United States)

    Zuckerman, Nathaniel Benjamin

    1. Compound NSC-670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), a widely utilized breast cancer drug. The structure of NSC-670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated in conjunction with the UCSC Chemical Screening Center. The synthesis of a biotinylated affinity probe was also completed in order to extract the protein target(s) of NSC-670224 from yeast and human cell lines in collaboration with the Hartzog lab (UCSC MCD Biology) 2. Stabilization of ruthenium nanoparticles (Ru NPs) through carbene bound ligands has led to a simple and effective means to generate new materials with unique optoelectronic properties. The affinity of freshly prepared Ru NPs to diazo compounds, specifically octyl diazoacetate (ODA), provides a robust nanostructure that can be further functionalized via metathesis of terminal olefins to generate these unique materials. Carbene-stabilized Ru NPs have provided insights into the nature of extended conjugation and intraparticle charge delocalization through covalently bound probes (e.g., ferrocene and pyrene). The growing interest to study electronic communication through Ru NPs has lead to collaborative, multidisciplinary efforts between analytical (Shaowei Chen lab, UCSC), theoretical (Haobin Wang Lab, NMSU), and synthetic organic chemists (Konopelski Lab, UCSC). With this powerful collaboration, new methods to generate stabilized Ru NPs, testing theory with experiment, and efficient means to functionalize NPs have been investigated. The syntheses of custom ligands and their applications to nanoparticle-mediated electronic communication are reported.

  6. Identification and in vitro evaluation of new leads as selective and competitive glycogen synthase kinase-3β inhibitors through ligand and structure based drug design. (United States)

    Darshit, B S; Balaji, B; Rani, P; Ramanathan, M


    Glycogen synthase kinase-3β elicits multi-functional effects on intracellular signaling pathways, thereby making the kinase a therapeutic target in multiple pathologies. Hence, it is important to selectively inhibit GSK-3β over structurally and biologically similar targets, such as CDK5. The current study was designed to identify and evaluate novel ATP-competitive GSK-3β inhibitors. The study was designed to identify new leads by ligand based drug design, structure based drug design and in vitro evaluation. The best validated pharmacophore model (AADRRR) identified using LBDD was derived from a dataset of 135 molecules. There were 357 primary hits within the SPECS database using this pharmacophore model. A SBDD approach to the GSK-3β and CDK5 proteins was applied to all primary hits, and 5 selective inhibitors were identified for GSK-3β. GSK-3β and CDK5 in vitro kinase inhibition assays were performed with these molecules to confirm their selectivity for GSK-3β. The molecules showed IC50 values ranging from 0.825μM to 1.116μM and were 23- to 57-fold selective for GSK-3β. Of all the molecules, molecule 3 had the lowest IC50 value of 0.825μM. Our research identified molecules possessing benzothiophene, isoquinoline, thiazolidinedione imidazo-isoquinoline and quinazolinone scaffolds. Potency of these molecules may be due to H-bond interaction with backbone residues of Val135, Asp133 and side chain interaction with Tyr134. Selectivity over CDK5 may be due to side chain interactions with Asp200, backbone of Val61, ionic interaction with Lys60 and π-cationic interaction with Arg141. These selective molecules were also exhibited small atom hydrophobicity and H-bond interaction with water molecule.

  7. Forced homo- and heterodimerization of all gp130-type receptor complexes leads to constitutive ligand-independent signaling and cytokine-independent growth. (United States)

    Suthaus, Jan; Tillmann, Anna; Lorenzen, Inken; Bulanova, Elena; Rose-John, Stefan; Scheller, Jürgen


    Naturally ligand independent constitutively active gp130 variants were described to be responsible for inflammatory hepatocellular adenomas. Recently, we genetically engineered a ligand-independent constitutively active gp130 variant based on homodimerization of Jun leucine zippers. Because also heterodimeric complexes within the gp130 family may have tumorigenic potential, we seek to generate ligand-independent constitutively active heterodimers for all known gp130-receptor complexes based on IL-15/IL-15R alpha-sushi fusion proteins. Ligand-independent heterodimerization of gp130 with WSX-1, LIFR, and OSMR and of OSMR with GPL led to constitutive, ligand-independent STAT1 and/or STAT3 and ERK1/2 phosphorylation. Moreover, these receptor combinations induced transcription of the STAT3 target genes c-myc and Pim-1 and factor-independent growth of stably transduced Ba/F3-gp130 cells. Here, we establish the IL-15/IL-15R alpha-sushi system as a new system to mimic constitutive and ligand-independent activation of homo- and heterodimeric receptor complexes, which might be applicable to other heterodimeric receptor families. A mutated IL-15 protein, which was still able to bind the IL-15R alpha-sushi domain, but not to beta- and gamma-receptor chains, in combination with the 2A peptide technology may be used to translate our in vitro data into the in vivo situation to assess the tumorigenic potential of gp130-heterodimeric receptor complexes.

  8. Holo- and hemidirected lead(II) in the polymeric [Pb(4)(mu-3,4-TDTA)2(H2O)2]*4H2O complex. N,N,N',N'-tetraacetate ligands derived from o-phenylenediamines as sequestering agents for lead(II). (United States)

    Sanchiz, Joaquín; Esparza, Pedro; Villagra, Diego; Domínguez, Sixto; Mederos, Alfredo; Brito, Felipe; Araujo, Lorena; Sánchez, Agustin; Arrieta, Juan Manuel


    The coordinating ability of the ligands 3,4-toluenediamine-N,N,N',N'-tetraacetate (3,4-TDTA), o-phenylenediamine-N,N,N',N'-tetraacetate (o-PhDTA), and 4-chloro-1,2-phenylenediamine-N,N,N',N'-tetraacetate (4-Cl-o-PhDTA) (H4L acids) toward lead(II) is studied by potentiometry (25 degrees C, I = 0.5 mol x dm(-3) in NaClO4), UV-vis spectrophotometry, and 207Pb NMR spectrometry. The stability constants of the complex species formed were determined. X-ray diffraction structural analysis of the complex [Pb4(mu-3,4-TDTA)4(H2O)2]*4H2O (1) revealed that 1 has a 2-D structure. The layers are built up by the polymerization of centrosymmetric [Pb4L2(H2O)2] tetranuclear units. The neutral layers have the aromatic rings of the ligands pointing to the periphery, whereas the metallic ions are located in the central part of the layers. In compound 1, two types of six-coordinate lead(II) environments are produced. The Pb(1) is coordinated to two nitrogen atoms and four carboxylate oxygens from the ligand, whereas Pb(2) has an O6 trigonally distorted octahedral surrounding. The lead(II) ion is surrounded by five carboxylate oxygens and a water molecule. The carboxylate oxygens belong to four different ligands that are also joined to four other Pb(1) ions. The selective uptake of lead(II) was analyzed by means of chemical speciation diagrams as well as the so-called conditional or effective formation constants K(Pb)eff. The results indicate that, in competition with other ligands that are strong complexing agents for lead(II), our ligands are better sequestering agents in acidic media.

  9. Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands. (United States)

    Wang, Shuai; Dupin, Lucie; Noël, Mathieu; Carroux, Cindy J; Renaud, Louis; Géhin, Thomas; Meyer, Albert; Souteyrand, Eliane; Vasseur, Jean-Jacques; Vergoten, Gérard; Chevolot, Yann; Morvan, François; Vidal, Sébastien


    Anti-infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA-targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low-nanomolar (Kd =19 nm, microarray) ligand with a tyrosine-based linker arm could be identified in a structure-activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.

  10. In-situ Spectroscopic Characterization of a Solution-Phase X-Type Ligand Exchange at Colloidal Lead Sulphide Quantum Dot Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kroupa, Daniel M.; Anderson, Nicholas C.; Castaneda, Chloe V.; Nozik, Arthur J.; Beard, Matt C.


    We employed quantitative NMR spectroscopy and spectrophotometric absorbance titration to study a quantum dot X-type ligand exchange reaction. We find that the exchange is highly cooperative, where at low extents of exchange the change in free energy of the reaction,, is ~11 kJ mol-1 while at higher extents of exchange saturates to ~-4 kJ mol-1. A modified Fowler binding isotherm is developed to describe the reaction.

  11. Unexpected metal ion-assisted transformations leading to unexplored bridging ligands in Ni(II) coordination chemistry: the case of PO3F(2-) group. (United States)

    Dermitzaki, Despina; Raptopoulou, Catherine P; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P; Stamatatos, Theocharis C


    The initial 'accidental', metal ion-assisted hydrolysis of PF6(-) to PO3F(2-) has been evolved in a systematic investigation of the bridging affinity of the latter group in Ni(II)/oximate chemistry; mono-, di- and trinuclear complexes have been prepared and confirmed both the rich reactivity of PO3F(2-) and its potential for further use as bridging ligand in high-nuclearity 3d-metal cluster chemistry.

  12. Tropolone as anionic and neutral ligand in lead(II) and bismuth(III) complexes: Synthesis, structure, characterization and computational studies (United States)

    Lyczko, Krzysztof


    Two new metal complexes, [Bi(trop)2(Htrop)(CF3SO3)] (1) and [Pb(trop)2(Htrop)] (2), have been synthesized by reaction of the respective metal triflates with an excess of tropolone (Htrop) in the concentrated methanol or dimethylsulfoxide solution. In addition, it was found that complex 1 crystallizes through the formation of unstable intermediate methanol solvated tris(tropolonato)bismuth(III) compound. The characteristic behavior of tropolone which coordinates both as the bidentate anion (trop-) and the monodentate neutral molecule (Htrop) has been revealed in 1 and 2. The crystal structures of studied compounds have been determined by single-crystal X-ray diffraction. The molecular structures of both complexes have been compared with their geometries received from DFT calculations giving a good correlation. The presented compounds show coordination number of metal ion equal to five in 2 and six in 1 and the presence of stereochemically active 6s2 lone electron pair. The complexes were characterized by FT-IR, NMR and UV-Vis techniques. IR and UV-Vis spectra of 1 and 2 were also simulated by DFT methods. TD-DFT predictions demonstrate the frontier HOMOs and LUMOs cover in the major part the tropolonate and(or) tropolone moieties which gives mainly ligand-to-ligand charge transfer (LLCT) and ligand centered (LC) character to the energy bands above 300 nm.

  13. Photoconductivity of CdTe Nanocrystal-Based Thin Films. Te2- Ligands Lead To Charge Carrier Diffusion Lengths Over 2 Micrometers

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, Ryan W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Callahan, Rebecca [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reid, Obadiah G. [Univ. of Colorado, Boulder, CO (United States); Dolzhnikov, Dmitriy S. [Univ. of Chicago, IL (United States); Talapin, Dmitri V. [Univ. of Chicago, IL (United States); Rumbles, Garry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Luther, Joseph M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kopidakis, Nikos [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm2/(V s)). Our TRMC findings show that Te2- capped CdTe NCs show a marked improvement in carrier mobility (11 cm2/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

  14. Photoconductivity of CdTe Nanocrystal-Based Thin Films: Te(2-) Ligands Lead To Charge Carrier Diffusion Lengths Over 2 μm. (United States)

    Crisp, Ryan W; Callahan, Rebecca; Reid, Obadiah G; Dolzhnikov, Dmitriy S; Talapin, Dmitri V; Rumbles, Garry; Luther, Joseph M; Kopidakis, Nikos


    We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm(2)/(V s)). Our TRMC findings show that Te(2-) capped CdTe NCs show a marked improvement in carrier mobility (11 cm(2)/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

  15. LigandRNA: computational predictor of RNA-ligand interactions. (United States)

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M


    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at

  16. Determination of Lead Ion by a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs and Ligand (N-(4-Hydroxyphenyl Ethanamide

    Directory of Open Access Journals (Sweden)

    Marzieh Bagheri


    Full Text Available The preparation of a new modified carbon paste electrode (CPE to measure lead ion has been reported in this study. Lead is a highly toxic element which can have a negative impact on the environment. Therefore, measurement of lead in aquatic environments is very important. Although several methods have been developed for determination of lead ion in aquatic environments, there is no a cheap, simple, accurate and rapid method to measure this ion. Aim of this study is to develop a new method to measure the lead based on using multi walls carbon nanotubes (MWCNTs and Paracetamol as an ionophore for modification of a CPE. The optimum composition of modified CPE was determined as 64% of graphite powder, 20% of paraffin oil, 12% of nanotube and 4% of ionophore. This optimum composition was shown high selectivity, with appropriate Nernestian slope (-29.73 mV/decade, linear range (from 1.0×10-1to 1.0×10-8M, low lead concentration detection limit (7.5×10-9M and good response time (equal of 25 sec.The results of this study to introduce a cheap, accurate and simple method for determination of lead ion in aquatic environments.

  17. Determination of Lead Ion by a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs andLigand (N-(4-Hydroxyphenyl Ethanamide

    Directory of Open Access Journals (Sweden)

    Marzieh Bagheri


    Full Text Available The preparation of a new modified carbon paste electrode (CPEto measure lead ion has been reported in this study. Lead is a highly toxic element which can have a negative impact on the environment. Therefore, measurement of lead in aquatic environments is very important. Although several methods have been developed for determination of lead ion in aquatic environments, there is no a cheap, simple, accurate and rapid method to measure this ion. Aim of this study is to develop a new method to measure the lead based on using multi walls carbon nanotubes (MWCNTs and Paracetamol as an ionophore for modificationof a CPE.The optimum composition of modified CPE was determined as 64% of graphite powder, 20% of paraffin oil, 12% of nanotube and 4% of ionophore.This optimum composition was shown high selectivity, with appropriate Nernestian slope (-29.73 mV/decade, linear range (from 1.0×10-1to 1.0×10-8M, low lead concentration detection limit (7.5×10-9M and good response time (equal of 25 sec.The results of this study to introduce a cheap, accurate and simple method for determination of lead ion in aquatic environments.

  18. Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: A multivariate study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Faheem, E-mail: [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Naeemullah, E-mail: [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: [Department of Chemistry, University of Science and Technology, Bannu, KPK (Pakistan); Baig, Jameel Ahmed, E-mail: [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)


    Highlights: {yields} Trace levels of lead in blood samples of healthy children and with different kidney disorders {yields} Pre-concentration of Pb{sup +2} in acid digested blood samples after chelating with two complexing reagents. {yields} Multivariate technique was used for screening of significant factors that influence the CPE of Pb{sup +2} {yields} The level of Pb{sup +2} in diseased children was significantly higher than referents of same age group. - Abstract: The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead (Pb{sup 2+}) from digested blood samples after simultaneous complexation with ammonium pyrrolidinedithiocarbamate (APDC) and diethyldithiocarbamate (DDTC) separately. The complexed analyte was quantitatively extracted with octylphenoxypolyethoxyethanol (Triton X-114). The multivariate strategy was applied to estimate the optimum values of experimental factors. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometer (FAAS). The detection limit value of Pb{sup 2+} for the preconcentration of 10 mL of acid digested blood sample was 1.14 {mu}g L{sup -1}. The accuracy of the proposed methods was assessed by analyzing certified reference material (whole blood). Under the optimized conditions of both CPE methods, 10 mL of Pb{sup 2+} standards (10 {mu}g L{sup -1}) complexed with APDC and DDTC, permitted the enhancement factors of 56 and 42, respectively. The proposed method was used for determination of Pb{sup 2+} in blood samples of children with kidney disorders and healthy controls.

  19. Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead toxicity in invertebrates. (United States)

    Esbaugh, A J; Brix, K V; Mager, E M; De Schamphelaere, K; Grosell, M


    The current study examined the chronic toxicity of lead (Pb) to three invertebrate species: the cladoceran Ceriodaphnia dubia, the snail Lymnaea stagnalis and the rotifer Philodina rapida. The test media consisted of natural waters from across North America, varying in pertinent water chemistry parameters including dissolved organic carbon (DOC), calcium, pH and total CO(2). Chronic toxicity was assessed using reproductive endpoints for C. dubia and P. rapida while growth was assessed for L. stagnalis, with chronic toxicity varying markedly according to water chemistry. A multi-linear regression (MLR) approach was used to identify the relative importance of individual water chemistry components in predicting chronic Pb toxicity for each species. DOC was an integral component of MLR models for C. dubia and L. stagnalis, but surprisingly had no predictive impact on chronic Pb toxicity for P. rapida. Furthermore, sodium and total CO(2) were also identified as important factors affecting C. dubia toxicity; no other factors were predictive for L. stagnalis. The Pb toxicity of P. rapida was predicted by calcium and pH. The predictive power of the C. dubia and L. stagnalis MLR models was generally similar to that of the current C. dubia BLM, with R(2) values of 0.55 and 0.82 for the respective MLR models, compared to 0.45 and 0.79 for the respective BLMs. In contrast the BLM poorly predicted P. rapida toxicity (R(2)=0.19), as compared to the MLR (R(2)=0.92). The cross species variability in the effects of water chemistry, especially with respect to rotifers, suggests that cross species modeling of invertebrate chronic Pb toxicity using a C. dubia model may not always be appropriate.

  20. Sulfur donor atom effects on copper(I)/O(2) chemistry with thioanisole containing tetradentate N(3)S ligand leading to μ-1,2-peroxo-dicopper(II) species. (United States)

    Lee, Yunho; Lee, Dong-Heon; Park, Ga Young; Lucas, Heather R; Narducci Sarjeant, Amy A; Kieber-Emmons, Matthew T; Vance, Michael A; Milligan, Ashley E; Solomon, Edward I; Karlin, Kenneth D


    To better understand the effect of thioether coordination in copper-O(2) chemistry, the tetradentate N(3)S ligand L(ASM) (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand L(EOE) (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, [(L(ASM))Cu(I)](+) (1a) and [(L(EOE))Cu(I)](+) (3a), were studied as were the related compound [(L(ESE))Cu(I)](+) (2a, L(ESE) = (2-ethylthio-N,N-bis((pyridin-2-yl)methyl)ethanamine). The X-ray structure of 1a and its solution conductivity reveal a monomeric molecular structure possessing thioether coordination which persists in solution. In contrast, the C-O stretching frequencies of the derivative Cu(I)-CO complexes reveal that for these complexes, the modulated ligand arms, whether arylthioether, alkylthioether, or ether, are not coordinated to the cuprous ion. Electrochemical data for 1a and 2a in CH(3)CN and N,N-dimethylformamide (DMF) show the thioanisole moiety to be a poor electron donor compared to alkylthioether (1a is ∼200 mV more positive than 2a). The structures of [(L(ASM))Cu(II)(CH(3)OH)](2+) (1c) and [(L(ESE))Cu(II)(CH(3)OH)](2+) (2c) have also been obtained and indicate nearly identical copper coordination environments. Oxygenation of 1a at reduced temperature gives a characteristic deep blue intermediate [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) with absorption features at 442 (1,500 M(-1) cm(-1)), 530 (8,600 M(-1) cm(-1)), and 605 nm (10,400 M(-1) cm(-1)); these values compare well to the ligand-to-metal charge-transfer (LMCT) transitions previously reported for [{(L(ESE))Cu(II)}(2)(O(2)(2-))](2+) (2b(P)). Resonance Raman data for [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) support the formation of μ-1,2-peroxo species ν(O-O) = 828 cm(-1)(Δ((18)O(2)) = 48), ν(sym)(Cu-O) = 547 cm(-1) (Δ((18)O(2)) = 23), and ν(asym)(Cu-O) = 497 cm(-1) (Δ((18)O(2)) = 22) and suggest the L(ASM) ligand is a poorer electron donor to copper

  1. Multicomponent mixtures for cryoprotection and ligand solubilization

    Directory of Open Access Journals (Sweden)

    Lidia Ciccone


    Full Text Available Mixed cryoprotectants have been developed for the solubilization of ligands for crystallization of protein–ligand complexes and for crystal soaking. Low affinity lead compounds with poor solubility are problematic for structural studies. Complete ligand solubilization is required for co-crystallization and crystal soaking experiments to obtain interpretable electron density maps for the ligand. Mixed cryo-preserving compounds are needed prior to X-ray data collection to reduce radiation damage at synchrotron sources. Here we present dual-use mixes that act as cryoprotectants and also promote the aqueous solubility of hydrophobic ligands. Unlike glycerol that increases protein solubility and can cause crystal melting the mixed solutions of cryo-preserving compounds that include precipitants and solubilizers, allow for worry-free crystal preservation while simultaneously solubilizing relatively hydrophobic ligands, typical of ligands obtained in high-throughput screening. The effectiveness of these mixture has been confirmed on a human transthyretin crystals both during crystallization and in flash freezing of crystals.

  2. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)


    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  3. Site-directed in vitro immunization leads to a complete human monoclonal IgG4λ that binds specifically to the CDR2 region of CTLA-4 (CD152 without interfering the engagement of natural ligands

    Directory of Open Access Journals (Sweden)

    Hsu Shu-Ching


    Full Text Available Abstract Background The ability to acquire fully human monoclonal antibodies (mAbs with pre-defined specificities is critical to the development of molecular tags for the analysis of receptor function in addition to promising immunotherapeutics. Yet most of the arriving affinity maturated and complete human immunoglobulin G (IgG molecules, which are actually derived from single human B cells, have not widely been used to study the conserved self antigens (Ags such as CD152 (cytotoxic T lymphocyte antigen-4, CTLA-4 because proper hosts are lacking. Results Here we developed an optimized protocol for site-directed in vitro immunizing peripheral blood mononuclear cells (PBMC by using a selected epitope of human CD152, an essential receptor involved in down-regulation of T cell activation. The resultant stable trioma cell lines constantly produce anti-CD152 mAb (γ4λhuCD152, which contains variable (V regions of the heavy chain and the light chain derived from the VH3 and Vλ human germline genes, respectively, and yet displays an unusual IgG4 isotype. Interestingly, γ4λhuCD152 has a basic pI not commonly found in myeloid monoclonal IgG4λs as revealed by the isoelectric focusing (IEF analysis. Furthermore, γ4λhuCD152 binds specifically, with nanomolar affinity, to an extracellular constituency encompassing the putative second complementarity determining region (CDR2 of CD152, whereby it can react to activated CD3+ cells. Conclusion In a context of specific cell depletion and conditioned medium,in vitro induction of human Abs against a conserved self Ag was successfully acquired and a relatively basic mAb, γ4λhuCD152, with high affinity to CDR2 of CD152 was thus obtained. Application of such a human IgG4λ mAb with designated CDR2 specificity may impact upon and prefer for CD152 labeling both in situ and ex situ, as it does not affect the binding of endogenous B7 ligands and can localize into the confined immunological synapse which may

  4. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B. [Pacific Northwest Lab., Richland, WA (United States)


    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  5. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.


    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  6. Ligands of Therapeutic Utility for the Liver X Receptors

    Directory of Open Access Journals (Sweden)

    Rajesh Komati


    Full Text Available Liver X receptors (LXRs have been increasingly recognized as a potential therapeutic target to treat pathological conditions ranging from vascular and metabolic diseases, neurological degeneration, to cancers that are driven by lipid metabolism. Amidst intensifying efforts to discover ligands that act through LXRs to achieve the sought-after pharmacological outcomes, several lead compounds are already being tested in clinical trials for a variety of disease interventions. While more potent and selective LXR ligands continue to emerge from screening of small molecule libraries, rational design, and empirical medicinal chemistry approaches, challenges remain in minimizing undesirable effects of LXR activation on lipid metabolism. This review provides a summary of known endogenous, naturally occurring, and synthetic ligands. The review also offers considerations from a molecular modeling perspective with which to design more specific LXRβ ligands based on the interaction energies of ligands and the important amino acid residues in the LXRβ ligand binding domain.

  7. Lead Poisoning (United States)

    Lead is a metal that occurs naturally in the earth's crust. Lead can be found in all parts of our ... from human activities such as mining and manufacturing. Lead used to be in paint; older houses may ...

  8. Lead Toxicity (United States)

    ... including some imported jewelry. What are the health effects of lead? • More commonly, lower levels of lead in children over time may lead to reduced IQ, slow learning, Attention Deficit Hyperactivity Disorder (ADHD), or behavioral issues. • Lead also affects other ...

  9. Ligand fitting with CCP4 (United States)


    Crystal structures of protein–ligand complexes are often used to infer biology and inform structure-based drug discovery. Hence, it is important to build accurate, reliable models of ligands that give confidence in the interpretation of the respective protein–ligand complex. This paper discusses key stages in the ligand-fitting process, including ligand binding-site identification, ligand description and conformer generation, ligand fitting, refinement and subsequent validation. The CCP4 suite contains a number of software tools that facilitate this task: AceDRG for the creation of ligand descriptions and conformers, Lidia and JLigand for two-dimensional and three-dimensional ligand editing and visual analysis, Coot for density interpretation, ligand fitting, analysis and validation, and REFMAC5 for macromolecular refinement. In addition to recent advancements in automatic carbohydrate building in Coot (LO/Carb) and ligand-validation tools (FLEV), the release of the CCP4i2 GUI provides an integrated solution that streamlines the ligand-fitting workflow, seamlessly passing results from one program to the next. The ligand-fitting process is illustrated using instructive practical examples, including problematic cases such as post-translational modifications, highlighting the need for careful analysis and rigorous validation. PMID:28177312

  10. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre


    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  11. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. (United States)

    van Linden, Oscar P J; Kooistra, Albert J; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris


    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase-ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase-ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies.

  12. Lead Test (United States)

    ... months, and at 3, 4, 5, and 6 years of age. A blood lead level test should be done only if the risk ... recommended if the person is symptomatic at any level below 70 mcg/dL. Because lead will pass through the blood to an unborn child, pregnant ...

  13. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U;


    found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same...... is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were...... characteristics as calreticulin's interaction with C1q and MBL: a time-dependent saturable binding to immobilized protein, which was initially sensitive to salt but gradually developed into a salt-insensitive interaction. Thus, the interaction requires a structural change in the interaction partner and leads...

  14. Bexarotene ligand pharmaceuticals. (United States)

    Hurst, R E


    Bexarotene (LGD-1069), from Ligand, was the first retinoid X receptor (RXR)-selective, antitumor retinoid to enter clinical trials. The company launched the drug for the treatment of cutaneous T-cell lymphoma (CTCL), as Targretin capsules, in the US in January 2000 [359023]. The company filed an NDA for Targretin capsules in June 1999, and for topical gel in December 1999 [329011], [349982] specifically for once-daily oral administration for the treatment of patients with early-stage CTCL who have not tolerated other therapies, patients with refractory or persistent early stage CTCL and patients with refractory advanced stage CTCL. The FDA approved Targretin capsules at the end of December 1999 for once-daily oral treatment of all stages of CTCL in patients refractory to at least one prior systemic therapy, at an initial dose of 300 mg/m2/day. After an NDA was submitted in December 1999 for Targretin gel, the drug received Priority Review status for use as a treatment of cutaneous lesions in patients with stage IA, IB or IIA CTCL [354836]. The FDA issued an approvable letter in June 2000, and granted marketing clearance for CTCL in the same month [370687], [372768], [372769], [373279]. Ligand had received Orphan Drug designation for this indication [329011]. At the request of the FDA, Ligand agreed to carry out certain post-approval phase IV and pharmacokinetic studies [351604]. The company filed an MAA with the EMEA for Targretin Capsules to treat lymphoma in November 1999 [348944]. The NDA for Targretin gel is based on a multicenter phase III trial that was conducted in the US, Canada, Europe and Australia involving 50 patients and a multicenter phase I/II clinical program involving 67 patients. Targretin gel was evaluated for the treatment of patients with early stage CTCL (IA-IIA) who were refractory to, intolerant to, or reached a response plateau for at least 6 months on at least two prior therapies. Efficacy results exceeded the protocol-defined response

  15. Lead Poisoning (United States)

    ... menopause.) Once the lead is released from the mother's bones, it re-enters the blood stream and ... drinks. Avoid eating off any colorfully painted ceramic plates, and avoid drinking from any ceramic mugs unless ...

  16. Lead Poisoning (United States)

    ... Topics Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The Natural World Games ... OTHERS: Lead has recently been found in some plastic mini-blinds and vertical blinds which were made ...

  17. Ecotoxicology: Lead (United States)

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.


    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  18. Melatonin: functions and ligands. (United States)

    Singh, Mahaveer; Jadhav, Hemant R


    Melatonin is a chronobiotic substance that acts as synchronizer by stabilizing bodily rhythms. Its synthesis occurs in various locations throughout the body, including the pineal gland, skin, lymphocytes and gastrointestinal tract (GIT). Its synthesis and secretion is controlled by light and dark conditions, whereby light decreases and darkness increases its production. Thus, melatonin is also known as the 'hormone of darkness'. Melatonin and analogs that bind to the melatonin receptors are important because of their role in the management of depression, insomnia, epilepsy, Alzheimer's disease (AD), diabetes, obesity, alopecia, migraine, cancer, and immune and cardiac disorders. In this review, we discuss the mechanism of action of melatonin in these disorders, which could aid in the design of novel melatonin receptor ligands.

  19. Lead grids

    CERN Multimedia


    One of the 150 lead grids used in the multiwire proportional chamber g-ray detector. The 0.75 mm diameter holes are spaced 1 mm centre to centre. The grids were made by chemical cutting techniques in the Godet Workshop of the SB Physics.

  20. Leading men

    DEFF Research Database (Denmark)

    Bekker-Nielsen, Tønnes


    Through a systematic comparison of c. 50 careers leading to the koinarchate or high priesthood of Asia, Bithynia, Galatia, Lycia, Macedonia and coastal Pontus, as described in funeral or honorary inscriptions of individual koinarchs, it is possible to identify common denominators but also...

  1. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond


    G-quadruplex stabilizing compounds have recently received increased interest due to their potential application as anticancer therapeutics. A significant number of structurally diverse G-quadruplex ligands have been developed. Some of the most potent and selective ligands currently known are macr...

  2. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven


    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at:

  3. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea;


    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA......-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar...... limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e...

  4. Targeting Selectins and Their Ligands in Cancer

    Directory of Open Access Journals (Sweden)

    Alessandro eNatoni


    Full Text Available Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids have been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases. Humans differentially express twenty different sialyltransferases in a tissue-specific manner, each of which catalyze the attachment of sialic acids via different glycosidic linkages (2-3; 2-6 or 2-8 to the underlying glycan chain. One important mechanism whereby overexpression of sialyltransferases contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural-isomer sialyl-Lewis A, which are synthesized by the combined action of alpha 1-3-fucosyltransferases, 2-3-sialyltransferases, 1-4-galactosyltranferases, and N-acetyl--glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these sialyltransferases have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular sialyltransferases, could be beneficial to many cancer patients. Potential strategies include sialyltransferase inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of sialyltransferase inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical

  5. Protecting Ligands Enhance Selective Targeting of Multivalent Nanoparticles

    CERN Document Server

    Angioletti-Uberti, Stefano


    Nanoparticles functionalized with multiple ligands can be programmed to bind biological targets, e.g. cells, depending on the receptors they express, providing a general platform for the development of different technologies, from selective drug-delivery to biosensing. In order to be highly selective ligands should exclusively bind to specific targeted receptors, since formation of bonds with other, untargeted ones would lead to non-specific binding and potentially harmful behaviour. This poses a particular problem for multivalent nanoparticles, because even very weak bonds can collectively lead to strong binding. A statistical mechanical model is presented here to describe the extent to which bond strength and nanoparticle valency can induce non-selective adsorption. The same model is used to describe a possible solution: functionalization of the nanoparticles with "protective" receptors. The latter compete with cell receptors for the targeting ligands, and can be optimized to strongly reduce the effect of u...

  6. Synthesis and transition metal coordination chemistry of a novel hexadentate bispidine ligand. (United States)

    Comba, Peter; Rudolf, Henning; Wadepohl, Hubert


    Reported is the new bispidine-derived hexadentate ligand (L = 3-(2-methylpyridyl)-7-(bis-2-methylpyridyl)-3,7-diazabicyclo[3.3.1]nonane) with two tertiary amine and four pyridine donor groups. This ligand can form heterodinuclear and mononuclear complexes and, in the mononuclear compounds discussed here, the ligand may coordinate as a pentadentate ligand, with one of the bispyridinemethane-based pyridine groups un- or semi-coordinated, or as a hexadentate ligand, leading to a pentagonal pyramidal coordination geometry or, with an additional monodentate ligand, to a heptacoordinate pentagonal bipyramidal structure. The solution and solid state data presented here indicate that, with the relatively small Cu(II) and high-spin Fe(II) ions the fourth pyridine group is only semi-coordinated for steric reasons and, with the larger high-spin Mn(II) ion genuine heptacoordination is observed but with a relatively large distortion in the pentagonal equatorial plane.

  7. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.


    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  8. Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes

    Institute of Scientific and Technical Information of China (English)

    Yong Ding; Jian-xiu Guo; Xiang-si Wang; Sha-sha Liu; Feng-cai Ma


    Three methods including the atomic resolved density of state, charge difference density, and the transition density matrix are used to visualize metal to ligand charge transfer (MLCT) in ruthenium(Ⅱ) ammine complex. The atomic resolved density of state shows that there is density of Ru on the HOMOs. All the density is localized on the ammine, which reveals that the excited electrons in the Ru complex are delocalized over the ammine ligand. The charge difference density shows that all the holes are localized on the Ru and the electrons on the ammine. The localization explains the MLCT on excitation. The transition density matrix shows that there is electron-hole coherence between Ru and ammine. These methods are also used to examine the MLCT in Os(bpy)(p0p)Cl ("Osp0p"; bpy=2,2'-bipyridyl; p0p=4,4'-bipyridyl) and the ligand-to-ligand charge transfer (LLCT) in Alq3. The calculated results show that these methods are powerful to examine MLCT and LLCT in the metal-ligand system.

  9. Why mercury prefers soft ligands

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, Demian M [ORNL; Guo, Hao-Bo [ORNL; Gu, Baohua [ORNL; Parks, Jerry M [ORNL; Summers, Anne [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco; Liang, Liyuan [ORNL; Smith, Jeremy C [ORNL


    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  10. Molecular Recognition and Ligand Association (United States)

    Baron, Riccardo; McCammon, J. Andrew


    We review recent developments in our understanding of molecular recognition and ligand association, focusing on two major viewpoints: (a) studies that highlight new physical insight into the molecular recognition process and the driving forces determining thermodynamic signatures of binding and (b) recent methodological advances in applications to protein-ligand binding. In particular, we highlight the challenges posed by compensating enthalpic and entropic terms, competing solute and solvent contributions, and the relevance of complex configurational ensembles comprising multiple protein, ligand, and solvent intermediate states. As more complete physics is taken into account, computational approaches increase their ability to complement experimental measurements, by providing a microscopic, dynamic view of ensemble-averaged experimental observables. Physics-based approaches are increasingly expanding their power in pharmacology applications.

  11. Integrin receptors and ligand-gated channels. (United States)

    Morini, Raffaella; Becchetti, Andrea


    Plastic expression of different integrin subunits controls the different stages of neural development, whereas in the adult integrins regulate synaptic stability. Evidence of integrin-channel crosstalk exists for ionotropic glutamate receptors. As is often the case in other tissues, integrin engagement regulates channel activity through complex signaling pathways that often include tyrosine phosphorylation cascades. The specific pathways recruited by integrin activation depend on cerebral region and cell type. In turn, ion channels control integrin expression onto the plasma membrane and their ligand binding affinity. The most extensive studies concern the hippocampus and suggest implications for neuronal circuit plasticity. The physiological relevance of these findings depends on whether adhesion molecules, aside from determining tissue stability, contribute to synaptogenesis and the responsiveness of mature synapses, thus contributing to long-term circuit consolidation. Little evidence is available for other ligand-gated channels, with the exception of nicotinic receptors. These exert a variety of functions in neurons and non neural tissue, both in development and in the adult, by regulating cell cycle, synaptogenesis and synaptic circuit refinement. Detailed studies in epidermal keratinocytes have shed some light on the possible mechanisms through which ACh can regulate cell motility, which may be of general relevance for morphogenetic processes. As to the control of mature synapses, most results concern the integrinic control of nicotinic receptors in the neuromuscular junction. Following this lead, a few studies have addressed similar topics in adult cerebral synapses. However, pursuing and interpreting these results in the brain is especially difficult because of the complexity of the nicotinic roles and the widespread contribution of nonsynaptic, paracrine transmission. From a pathological point of view, considering the well-known contribution of both

  12. Memetic algorithms for ligand expulsion from protein cavities

    CERN Document Server

    Rydzewski, Jakub


    Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic GPCR receptor, enzyme nitrile hydratase and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform Simulated Annealing and Random Acceleration Molecular Dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a n...

  13. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip? (United States)

    Geschwindner, Stefan; Ulander, Johan; Johansson, Patrik


    The use of ligand binding thermodynamics has been proposed as a potential success factor to accelerate drug discovery. However, despite the intuitive appeal of optimizing binding enthalpy, a number of factors complicate routine use of thermodynamic data. On a macroscopic level, a range of experimental parameters including temperature and buffer choice significantly influence the observed thermodynamic signatures. On a microscopic level, solute effects, structural flexibility, and cooperativity lead to nonlinear changes in enthalpy. This multifactorial character hides essential enthalpy contributions of intermolecular contacts, making them experimentally nonobservable. In this perspective, we present three case studies, reflect on some key factors affecting thermodynamic signatures, and investigate their relation to the hydrophobic effect, enthalpy-entropy compensation, lipophilic ligand efficiency, and promiscuity. The studies highlight that enthalpy and entropy cannot be used as direct end points but can together with calculations increase our understanding of ligand binding and identify interesting outliers that do not behave as expected.

  14. Ligand-based virtual screening under partial shape constraints (United States)

    von Behren, Mathias M.; Rarey, Matthias


    Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see

  15. Determination of Lead by Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    HE YuFeng; ZHANG Zhang; MA YongJun; KANG JingWan


    @@ Lead is one of the poisonous trace element for human body. It is important to find a way for measuring content of lead. Deternination of lead by electrochemistry is one of a method[1]. In this paper, lead is determined by single-sweep polarography. The absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) complex with lead ion has also been studied.In Na2B4O7-NaOH solution with pH=l 0.5, the reduction peaks of the ligand are P1 (Ep1=-0.38V), P2 (Ep2=-1.04V), which potentials are obtained vs. S.C.E. When lead ion has been added into above solution. The peak current of P1 and P2 decrease, and a new reduction peak P3 (Ep3=-1.10 V) appears. It shows that the TPPS4-Pb(Ⅱ) complex forms,and this method can be applied to study the complex.

  16. Determination of Lead by Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    HE; YuFeng


    Lead is one of the poisonous trace element for human body. It is important to find a way for measuring content of lead. Deternination of lead by electrochemistry is one of a method[1]. In this paper, lead is determined by single-sweep polarography. The absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) complex with lead ion has also been studied.In Na2B4O7-NaOH solution with pH=l 0.5, the reduction peaks of the ligand are P1 (Ep1=-0.38V), P2 (Ep2=-1.04V), which potentials are obtained vs. S.C.E. When lead ion has been added into above solution. The peak current of P1 and P2 decrease, and a new reduction peak P3 (Ep3=-1.10 V) appears. It shows that the TPPS4-Pb(Ⅱ) complex forms,and this method can be applied to study the complex.……

  17. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand. (United States)

    Duus, K; Pagh, R T; Holmskov, U; Højrup, P; Skov, S; Houen, G


    The molecular chaperone calreticulin has been shown to bind C1q and mannan-binding lectin (MBL), which are constituents of the innate immune defence system. C1q and MBL do not share a large sequence identity but have a similar overall molecular architecture: an N-terminal triple-helical collagen-like domain and a C-terminal globular domain with ligand-binding properties. C1q is a hetero-trimer, while MBL is a homo-trimer, but due to the presence of N-terminal cysteines they both form higher order oligomers of trimers, which are the mature functional molecules. The same molecular architecture is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same characteristics as calreticulin's interaction with C1q and MBL: a time-dependent saturable binding to immobilized protein, which was initially sensitive to salt but gradually developed into a salt-insensitive interaction. Thus, the interaction requires a structural change in the interaction partner and leads to a conformational change in calreticulin itself. The implications of these results are that calreticulin may function as a general response modifier for a whole group of immunologically important proteins.

  18. Predicting Electrophoretic Mobility of Protein-Ligand Complexes for Ligands from DNA-Encoded Libraries of Small Molecules. (United States)

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Shaginian, Alex; Arico-Muendel, Christopher C; Krylov, Sergey N


    Selection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes. Such prediction, in turn, requires a theory that would be applicable to DNA tags of different structures used in different DELSMs. Here we present such a theory. It utilizes a model of a globular protein connected, through a single point (small molecule), to a linear DNA tag containing a combination of alternating double-stranded and single-stranded DNA (dsDNA and ssDNA) regions of varying lengths. The theory links the unknown electrophoretic mobility of protein-DNA complex with experimentally determined electrophoretic mobilities of the protein and DNA. Mobility prediction was initially tested by using a protein interacting with 18 ligands of various combinations of dsDNA and ssDNA regions, which mimicked different DELSMs. For all studied ligands, deviation of the predicted mobility from the experimentally determined value was within 11%. Finally, the prediction was tested for two proteins and two ligands with a DNA tag identical to those of DELSM manufactured by GlaxoSmithKline. Deviation between the predicted and experimentally determined mobilities did not exceed 5%. These results confirm the accuracy and robustness of our model, which makes KCE methods one step closer to their practical use in selection of drug leads, and diagnostic probes from DELSMs.

  19. A race for RAGE ligands. (United States)

    Schleicher, Erwin D


    In experimental animals a causal involvement of the multiligand receptor for advanced glycation end products (RAGE) in the development of diabetic vascular complications has been demonstrated. However, the nature of RAGE ligands present in patients with diabetic nephropathy has not yet been defined; this leaves open the relevance of the RAGE system to the human disease.

  20. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells. (United States)

    Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing


    The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.

  1. Recent development of CB2 selective and peripheral CB1/CB2 cannabinoid receptor ligands. (United States)

    Nevalainen, Tapio


    Cannabinoids have potential therapeutic value e.g. in pain relief, cancer therapy, control of nausea and vomiting, and appetite stimulation, but their therapeutic benefits are limited by unwanted central nervous system (CNS) side-effects. Separating the therapeutic effects of cannabinoid agonists from their undesired CNS effects can be achieved by either increasing the selectivity of the ligands for the CB2 receptor or by developing peripherally restricted CB1/CB2 ligands. A vast number of structurally diverse CB2 ligands have been developed during the past 3 years, stemming from the screening hits, which are further optimized towards lead compounds and drug candidates. Some of CB2 ligands may ultimately enter into clinical use as pain relief, anticancer, or antipruritic agents. This review focuses on the recent literature dealing with selective CB2 receptor ligands, with a particular emphasis on the CB2 agonists developed from 2009 onwards.

  2. Solvent fluctuations induce non-Markovian kinetics in hydrophobic pocket-ligand binding

    CERN Document Server

    Weiß, R Gregor; Dzubiella, Joachim


    We investigate the impact of water fluctuations on the key-lock association kinetics of a hydrophobic ligand (key) binding to a hydrophobic pocket (lock) by means of a minimalistic stochastic model system. It describes the collective hydration behavior of the pocket by bimodal fluctuations of a water-pocket interface that dynamically couples to the diffusive motion of the approaching ligand via the hydrophobic interaction. This leads to a set of overdamped Langevin equations in 2D-coordinate-space, that is Markovian in each dimension. Numerical simulations demonstrate locally increased friction of the ligand, decelerated binding kinetics, and local non-Markovian (memory) effects in the ligand's reaction coordinate as found previously in explicit-water molecular dynamics studies of model hydrophobic pocket-ligand binding [1,2]. Our minimalistic model elucidates the origin of effectively enhanced friction in the process that can be traced back to long-time decays in the force-autocorrelation function induced by...

  3. Controlled-deactivation cannabinergic ligands. (United States)

    Sharma, Rishi; Nikas, Spyros P; Paronis, Carol A; Wood, Jodianne T; Halikhedkar, Aneetha; Guo, Jason Jianxin; Thakur, Ganesh A; Kulkarni, Shashank; Benchama, Othman; Raghav, Jimit Girish; Gifford, Roger S; Järbe, Torbjörn U C; Bergman, Jack; Makriyannis, Alexandros


    We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.

  4. Hydrothermal Synthesis, Characterization and Natural Bond Orbital(NBO) Analysis of a Binuclear Lead(Ⅱ) Complex with Cinnamic Acid and Medpq Ligands%由肉桂酸和甲基联吡啶喹喔啉配体构筑的双核铅(Ⅱ)的配合物的水热合成、表征及自然键轨道(NBO)分析

    Institute of Scientific and Technical Information of China (English)

    方燕; 王蕾; 倪良; 姚加


    采用水热法合成了一种新型双核铅(Ⅱ)配合物[Pb2(CA)4(Medpq)2](HCA=cinnamic acid,Medpq=2-methyldipyrido[3,2-f:2,3'-h]quinoxaline),并对其进行了元素分析、红外光谱、紫外可见光光谱、热重表征、荧光光谱、X射线单晶衍射测定和理论计算.标题配合物属于三斜晶系,空间群为P(1).在晶体中,铅与来自Medpq配体的2个氮原子和3个肉桂酸配体的5个氧原子形成七配位.应用Gaussian 03程序,对标题配合物进行了自然键轨道(NBO)分析,结果表明Pb(Ⅱ)与配位原子间的价键类型都属于共价键范畴.%A binuclear Pb(Ⅱ) complex [Pb2(CA)4(Medpq)2] (HCA=cinnamic acid,Medpq=2-methyldipyrido[3,2-f:2,3'-h]quinoxaline) has been hydrothermally synthesized and structurally characterized by elemental analysis,IR spectrum,UV-Vis spectrum,TG,fluorescent emission,single-crystal X-ray diffraction and theoretical calculations.Title compound crystallizes in triclinic,space group P(1) with a=0.854 35(17) nm,b=1.250 9(3) nm,c=1.436 6 (3) nm,α=107.45 (3)°,β=105.63 (3)°,y=97.04 (3)°.In the crystal structure,the lead atom is sevencoordinated with two nitrogen atoms from Medpq ligand and five oxygen atoms from three cinnamic acid ligands.Natural bond orbital (NBO) analysis was performed by using the NBO method built in Gaussian 03 Program.The calculation results shown an covalent interaction between the coordinated atoms and Pb(Ⅱ) ion.CCDC:859036.

  5. Privileged chiral ligands and catalysts

    CERN Document Server

    Zhou, Qi-Lin


    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  6. Tumor targeting via integrin ligands

    Directory of Open Access Journals (Sweden)

    Udaya Kiran eMarelli


    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  7. Study on copper complexing ligand concentrations in several China's coastal waters

    Institute of Scientific and Technical Information of China (English)


    Copper complexing ligand concentrations in the Daya Bay, Qingdao coast, Jiaozhou Bay, South China Sea and Huanghe Estuary waters were determined by the anodic stripping voltammetry technique. The distribution regularity and the relationship with other parameters were discussed. The results were as follows: Copper complexing ligand concentrations of the South China Sea were a little higher than those of other sea areas, and they were apparently higher than those of the ocean. Compared with the subsurface layer (SSL) in the sea surface microlayer copper complexing ligand concentrations showed an enrichment phenomenon, of which the mechanism is similar to dissolved organic matter. The metal complexing ligand concentration profiles of the South China Sea showed that the value in the sea surface was the highest, then it decreased with depth accruing, and a higher value appeared at the bottom. Copper complexing ligand concentrations were higher than those of cadmium and lead. Ligands in each sea area exhibited a complicated property. In short, the distribution regularity of copper complexing ligand concentrations in China' s coastal waters was consistent with that of other regions in the world. Meanwhile, the positive relationship between the copper complexing ligand concentrations and biological oxygen demand, chemical oxygen demand, dissolved organic carbon, and viscosity were found clearly.

  8. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  9. An approach to rational ligand-design based on a thermodynamic analysis. (United States)

    Ui, Mihoko; Tsumoto, Kouhei


    Thermodynamic analysis is an effective tool in screening of lead-compounds for development of potential drug candidates. In most cases, a ligand achieve high affinity and specificity to a target protein by means of both favorable enthalpy and entropy terms, which can be reflected in binding profiles of Isothermal Titration Calorimetry (ITC). A favorable enthalpy change suggests the contribution of noncovalent contacts such as hydrogen bonding and van der Waals interaction between a ligand and its target protein. In general, optimization of binding enthalpy is more difficult than that of entropies in ligand-design; therefore, it is desirable to choose firstly a lead-compound based on its binding enthalpic gain. In this paper, we demonstrate the utility of thermodynamic approach to ligand screening using anti-ciguatoxin antibody 10C9 as a model of a target protein which possesses a large hydrophobic pocket. As a result of this screening, we have identified three compounds that could bind to the antigen-binding pocket of 10C9 with a few kcal/mol of favorable binding enthalpy. Comparison of their structure with the proper antigen ciguatoxin CTX3C revealed that 10C9 rigorously identifies their cyclic structure and a characteristic hydroxyl group. ITC measurement might be useful and powerful for a rational ligand screening and the optimization of the ligand; the enthalpic gain is an effective index for ligand-design studies.

  10. Ligand "Brackets" for Ga-Ga Bond. (United States)

    Fedushkin, Igor L; Skatova, Alexandra A; Dodonov, Vladimir A; Yang, Xiao-Juan; Chudakova, Valentina A; Piskunov, Alexander V; Demeshko, Serhiy; Baranov, Evgeny V


    The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1) (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) toward acenaphthenequinone (AcQ), sulfur dioxide, and azobenzene was investigated. The reaction of 1 with AcQ in 1:1 molar ratio proceeds via two-electron reduction of AcQ to give (dpp-Bian)Ga(μ2-AcQ)Ga(dpp-Bian) (2), in which diolate [AcQ](2-) acts as "bracket" for the Ga-Ga bond. The interaction of 1 with AcQ in 1:2 molar ratio proceeds with an oxidation of the both dpp-Bian ligands as well as of the Ga-Ga bond to give (dpp-Bian)Ga(μ2-AcQ)2Ga(dpp-Bian) (3). At 330 K in toluene complex 2 decomposes to give compounds 3 and 1. The reaction of complex 2 with atmospheric oxygen results in oxidation of a Ga-Ga bond and affords (dpp-Bian)Ga(μ2-AcQ)(μ2-O)Ga(dpp-Bian) (4). The reaction of digallane 1 with SO2 produces, depending on the ratio (1:2 or 1:4), dithionites (dpp-Bian)Ga(μ2-O2S-SO2)Ga(dpp-Bian) (5) and (dpp-Bian)Ga(μ2-O2S-SO2)2Ga(dpp-Bian) (6). In compound 5 the Ga-Ga bond is preserved and supported by dithionite dianionic bracket. In compound 6 the gallium centers are bridged by two dithionite ligands. Both 5 and 6 consist of dpp-Bian radical anionic ligands. Four-electron reduction of azobenzene with 1 mol equiv of digallane 1 leads to complex (dpp-Bian)Ga(μ2-NPh)2Ga(dpp-Bian) (7). Paramagnetic compounds 2-7 were characterized by electron spin resonance spectroscopy, and their molecular structures were established by single-crystal X-ray analysis. Magnetic behavior of compounds 2, 5, and 6 was investigated by superconducting quantum interference device technique in the range of 2-295 K.

  11. Structural Analysis Uncovers Lipid-Binding Properties of Notch Ligands

    Directory of Open Access Journals (Sweden)

    Chandramouli R. Chillakuri


    Full Text Available The Notch pathway is a core cell-cell signaling system in metazoan organisms with key roles in cell-fate determination, stem cell maintenance, immune system activation, and angiogenesis. Signals are initiated by extracellular interactions of the Notch receptor with Delta/Serrate/Lag-2 (DSL ligands, whose structure is highly conserved throughout evolution. To date, no structure or activity has been associated with the extreme N termini of the ligands, even though numerous mutations in this region of Jagged-1 ligand lead to human disease. Here, we demonstrate that the N terminus of human Jagged-1 is a C2 phospholipid recognition domain that binds phospholipid bilayers in a calcium-dependent fashion. Furthermore, we show that this activity is shared by a member of the other class of Notch ligands, human Delta-like-1, and the evolutionary distant Drosophila Serrate. Targeted mutagenesis of Jagged-1 C2 domain residues implicated in calcium-dependent phospholipid binding leaves Notch interactions intact but can reduce Notch activation. These results reveal an important and previously unsuspected role for phospholipid recognition in control of this key signaling system.

  12. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang


    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  13. Central nicotinic receptors: structure, function, ligands, and therapeutic potential. (United States)

    Romanelli, M Novella; Gratteri, Paola; Guandalini, Luca; Martini, Elisabetta; Bonaccini, Claudia; Gualtieri, Fulvio


    The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.

  14. Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications. (United States)

    Jurca, Titel; Farghal, Ahmed; Lin, Po-Heng; Korobkov, Ilia; Murugesu, Muralee; Richeson, Darrin S


    Bis(imino)pyridine pincer ligands in conjunction with two isothiocyanate ligands have been used to prepare two mononuclear Co(II) complexes. Both complexes have a distorted square-pyramidal geometry with the Co(II) centers lying above the basal plane. This leads to significant spin-orbit coupling for the d(7) Co(II) ions and consequently to slow relaxation of the magnetization that is characteristic of Single-Molecule Magnet (SMM) behavior.

  15. Natural products as tools for studies of ligand-gated ion channels

    DEFF Research Database (Denmark)

    Strømgaard, Kristian


    in the brain. Historically, natural products have been used extensively in biomedical studies and ultimately as drugs or leads for drug design. In studies of ligand-gated ion channels, natural products have been essential for the understanding of their structure and function. In the following a short survey...... of natural products and their use in studies of ligand-gated ion channels is given....

  16. Ligand placement based on prior structures: the guided ligand-replacement method

    Energy Technology Data Exchange (ETDEWEB)

    Klei, Herbert E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Moriarty, Nigel W., E-mail:; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Baldwin, Eric T. [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Natural Discovery LLC, Princeton, NJ 08542-0096 (United States); Pokross, Matt; Posy, Shana [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California at Berkeley, Berkeley, CA 94720-1762 (United States)


    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR

  17. Lead Poisoning Prevention Tips (United States)

    ... or removed safely. How are children exposed to lead? Lead-based paint and lead contaminated dust are ... What can be done to prevent exposure to lead? It is important to determine the construction year ...

  18. Lead (Pb) Air Pollution (United States)

    ... States Environmental Protection Agency Search Search Lead (Pb) Air Pollution Share Facebook Twitter Google+ Pinterest Contact Us As ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Lead Air Pollution Basics How does lead get ...

  19. CB receptor ligands from plants. (United States)

    Woelkart, Karin; Salo-Ahen, Outi M H; Bauer, Rudolf


    Advances in understanding the physiology and pharmacology of the endogenous cannabinoid system have potentiated the interest of cannabinoid receptors as potential therapeutic targets. Cannabinoids have been shown to modulate a variety of immune cell functions and have therapeutic implications on central nervous system (CNS) inflammation, chronic inflammatory conditions such as arthritis, and may be therapeutically useful in treating autoimmune conditions such as multiple sclerosis. Many of these drug effects occur through cannabinoid receptor signalling mechanisms and the modulation of cytokines and other gene products. Further, endocannabinoids have been found to have many physiological and patho-physiological functions, including mood alteration and analgesia, control of energy balance, gut motility, motor and co-ordination activities, as well as alleviation of neurological, psychiatric and eating disorders. Plants offer a wide range of chemical diversity and have been a growing domain in the search for effective cannabinoid ligands. Cannabis sativa L. with the known plant cannabinoid, Delta(9-)tetrahydrocannabinol (THC) and Echinacea species with the cannabinoid (CB) receptor-binding lipophilic alkamides are the best known herbal cannabimimetics. This review focuses on the state of the art in CB ligands from plants, as well their possible therapeutic and immunomodulatory effects.

  20. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  1. Measurement of protein-ligand complex formation. (United States)

    Lowe, Peter N; Vaughan, Cara K; Daviter, Tina


    Experimental approaches to detect, measure, and quantify protein-ligand binding, along with their theoretical bases, are described. A range of methods for detection of protein-ligand interactions is summarized. Specific protocols are provided for a nonequilibrium procedure pull-down assay, for an equilibrium direct binding method and its modification into a competition-based measurement and for steady-state measurements based on the effects of ligands on enzyme catalysis.

  2. Photomechanical actuation of ligand geometry in enantioselective catalysis. (United States)

    Kean, Zachary S; Akbulatov, Sergey; Tian, Yancong; Widenhoefer, Ross A; Boulatov, Roman; Craig, Stephen L


    A catalyst that couples a photoswitch to the biaryl backbone of a chiral bis(phosphine) ligand, thus allowing photochemical manipulation of ligand geometry without perturbing the electronic structure is reported. The changes in catalyst activity and selectivity upon switching can be attributed to intramolecular mechanical forces, thus laying the foundation for a new class of catalysts whose selectivity can be varied smoothly and in situ over a useful range by controlling molecular stress experienced by the catalyst during turnover. Forces on the order of 100 pN are generated, thus leading to measurable changes in the enantioselectivities of asymmetric Heck arylations and Trost allylic alkylations. The differential coupling between applied force and competing stereochemical pathways is quantified and found to be more efficient for the Heck arylations.

  3. Ligand Binding and Conformational Changes in the Purine-Binding Riboswitch Aptamer Domains (United States)

    Noeske, Jonas; Buck, Janina; Wöhnert, Jens; Schwalbe, Harald

    Riboswitches are highly structured mRNA elements that regulate gene expression upon specific binding of small metabolite molecules. The purine-binding riboswitches bind different purine ligands by forming both canonical Watson—Crick and non-canonical intermolecular base pairs, involving a variety of hydrogen bonds between the riboswitch aptamer domain and the purine ligand. Here, we summarize work on the ligand binding modes of both purine-binding aptamer domains, their con-formational characteristics in the free and ligand-bound forms, and their ligand-induced folding. The adenine- and guanine-binding riboswitch aptamer domains display different conformations in their free forms, despite nearly identical nucleotide loop sequences that form a loop—loop interaction in the ligand-bound forms. Interestingly, the stability of helix II is crucial for the formation of the loop—loop interaction in the free form. A more stable helix II in the guanine riboswitch leads to a preformed loop—loop interaction in its free form. In contrast, a less stable helix II in the adenine riboswitch results in a lack of this loop—loop interaction in the absence of ligand and divalent cations.

  4. Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. (United States)

    Jayaraman, Narayanaswamy


    Studying the weak binding affinities between carbohydrates and proteins has been a central theme in sustained efforts to uncover intricate details of this class of biomolecular interaction. The amphiphilic nature of most carbohydrates, the competing nature of the surrounding water molecules to a given protein receptor site and the receptor binding site characteristics led to the realization that carbohydrates are required to exert favorable interactions, primarily through clustering of the ligands. The clustering of sugar ligands has been augmented using many different innovative molecular scaffolds. The synthesis of clustered ligands also facilitates fine-tuning of the spatial and topological proximities between the ligands, so as to allow the identification of optimal molecular features for significant binding affinity enhancements. The kinetic and thermodynamic parameters have been delineated in many instances, thereby allowing an ability to correlate the multivalent presentation and the observed ligand-receptor interaction profiles. This critical review presents various multivalent ligands, synthetic and semisynthetic, and mechanisms by which the weak binding affinities are overcome, and the ligand-receptor complexation leads to significantly enhanced binding affinities (157 references).

  5. Impact of killer immunoglobulin-like receptor-human leukocyte antigens ligand incompatibility among renal transplantation. (United States)

    Alam, S; Rangaswamy, D; Prakash, S; Sharma, R K; Khan, M I; Sonawane, A; Agrawal, S


    Killer immunoglobulin-like receptor (KIR) gene shows a high degree of polymorphism. Natural killer cell receptor gets activated once they bind to self-human leukocyte antigens (HLAs) with specific ligand. KIR gene and HLA ligand incompatibility due to the presence/absence of KIR in the recipient and the corresponding HLA ligand in the allograft may impact graft survival in solid organ transplantation. This study evaluates the effect of matches between KIR genes and known HLA ligands. KIR genotypes were determined using sequence specific primer polymerase chain reaction. Presence of certain KIR in a recipient, where the donor lacked the corresponding HLA ligand was considered a mismatch. The allograft was considered matched when both KIR receptor and HLA alloantigen reveald compatibility among recipient and donor. The data revealed better survival among individuals with matched inhibitory KIR receptors and their corresponding HLA ligands (KIR2DL2/DL3-HLAC2, KIR3DL1-HLABw4). On the contrary, no adverse effect was seen for matched activating KIR receptors and their corresponding HLA ligands. One of the activating gene KIR2DS4 showed risk (P = 0.0413, odds ratio = 1.91, 95% confidence interval = 1.02-3.57) association with renal allograft rejection. We conclude that the presence of inhibitory KIR gene leads to better survival; whereas activating motifs show no significant role in renal allograft survival.

  6. Lead and the Romans (United States)

    Reddy, Aravind; Braun, Charles L.


    Lead poisoning has been a problem since early history and continues into modern times. An appealing characteristic of lead is that many lead salts are sweet. In the absence of cane and beet sugars, early Romans used "sugar of lead" (lead acetate) to sweeten desserts, fruits, and sour wine. People most at risk would have been those who consumed the…

  7. Lead and the Romans (United States)

    Reddy, Aravind; Braun, Charles L.


    Lead poisoning has been a problem since early history and continues into modern times. An appealing characteristic of lead is that many lead salts are sweet. In the absence of cane and beet sugars, early Romans used "sugar of lead" (lead acetate) to sweeten desserts, fruits, and sour wine. People most at risk would have been those who…

  8. Reductive Cleavage of CO2 by Metal-Ligand-Cooperation Mediated by an Iridium Pincer Complex. (United States)

    Feller, Moran; Gellrich, Urs; Anaby, Aviel; Diskin-Posner, Yael; Milstein, David


    A unique mode of stoichiometric CO2 activation and reductive splitting based on metal-ligand-cooperation is described. The novel Ir hydride complexes [((t)Bu-PNP*)Ir(H)2] (2) ((t)Bu-PNP*, deprotonated (t)Bu-PNP ligand) and [((t)Bu-PNP)Ir(H)] (3) react with CO2 to give the dearomatized complex [((t)Bu-PNP*)Ir(CO)] (4) and water. Mechanistic studies have identified an adduct in which CO2 is bound to the ligand and metal, [((t)Bu-PNP-COO)Ir(H)2] (5), and a di-CO2 iridacycle [((t)Bu-PNP)Ir(H)(C2O4-κC,O)] (6). DFT calculations confirm the formation of 5 and 6 as reversibly formed side products, and suggest an η(1)-CO2 intermediate leading to the thermodynamic product 4. The calculations support a metal-ligand-cooperation pathway in which an internal deprotonation of the benzylic position by the η(1)-CO2 ligand leads to a carboxylate intermediate, which further reacts with the hydride ligand to give complex 4 and water.

  9. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  10. Conversion of a monodentate amidinate-germylene ligand into chelating imine-germanate ligands (on mononuclear manganese complexes). (United States)

    Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego


    The unprecedented transformation of a terminal two-electron-donor amidinate-germylene ligand into a chelating three-electron-donor κ(2)-N,Ge-imine-germanate ligand has been achieved by treating the manganese amidinate-germylene complex [MnBr{Ge((i)Pr2bzam)(t)Bu}(CO)4] (1; (i)Pr2bzam = N,N'-bis(isopropyl)benzamidinate) with LiMe or Ag[BF4]. In these reactions, which afford [Mn{κ(2)Ge,N-GeMe((i)Pr2bzam)(t)Bu}(CO)4] (2) and [Mn{κ(2)Ge,N-GeF((i)Pr2bzam)(t)Bu}(CO)4] (3), respectively, the anionic nucleophile, Me(-) or F(-), ends on the Ge atom while an arm of the amidinate fragment migrates from the Ge atom to the Mn atom. In contrast, the reaction of 1 with AgOTf (OTf = triflate) leads to [Mn(OTf){Ge((i)Pr2bzam)(t)Bu}(CO)4] (4), which maintains intact the amidinate-germylene ligand. Complex 4 is very moisture-sensitive, leading to [Mn2{μ-κ(4)Ge2,O2-Ge2(t)Bu2(OH)2O}(CO)8] (5) and [(i)Pr2bzamH2]OTf (6) in wet solvents. In 5, a novel digermanate(II) ligand, [(t)Bu(OH)GeOGe(OH)(t)Bu](2-), doubly bridges two Mn(CO)4 units. The structures of 1-6 have been characterized by spectroscopic (IR, NMR) and single-crystal X-ray diffraction methods.

  11. Rhodium olefin complexes of diiminate type ligands

    NARCIS (Netherlands)

    Willems, Sander Theodorus Hermanus


    The mono-anionic beta-diiminate ligand (ArNC(CH3)CHC(CH3)NAr) on several previous occasions proved useful in stabilising low coordination numbers for both early and late transition metals. In this thesis the reactivity of the rhodium olefin complexes of one of these beta-diiminate ligands (Ar = 2,6-

  12. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.


    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  13. Flexible Ligand Docking Using Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Thomsen, Rene


    The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein–ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large...

  14. Jinde Lead lead smelting project starts construction

    Institute of Scientific and Technical Information of China (English)


    <正>On Dec.20,the lead smelting project of Jiangxi Jinde Lead started construction in Dexin as a technical renovation project on environmental treatment of Jiangxi Metallurgical Group.The project is the one with the largest investment of Provincial Metallurgical Group in non-ferrous

  15. Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes. (United States)

    Habib, Fatemah; Luca, Oana R; Vieru, Veacheslav; Shiddiq, Muhandis; Korobkov, Ilia; Gorelsky, Serge I; Takase, Michael K; Chibotaru, Liviu F; Hill, Stephen; Crabtree, Robert H; Murugesu, Muralee


    The electronic and magnetic properties of the complexes [Co(terpy)Cl2 ] (1), [Co(terpy)(NCS)2 ] (2), and [Co(terpy)2 ](NCS)2 (3) were investigated. The coordination environment around Co(II) in 1 and 2 leads to a high-spin complex at low temperature and single-molecule magnet properties with multiple relaxation pathways. Changing the ligand field and geometry with an additional terpy ligand leads to spin-crossover behavior in 3 with a gradual transition from high spin to low spin.

  16. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement (United States)

    de Roo, Jonathan; van Driessche, Isabel; Martins, José C.; Hens, Zeger


    Surface chemistry is a key enabler for colloidal nanocrystal applications. In this respect, metal oxide nanocrystals (NCs) stand out from other NCs as carboxylic acid ligands adsorb on their surface by dissociation to carboxylates and protons, the latter proving essential in electron transfer reactions. Here, we show that this binding motif sets the stage for chemically driven ligand displacement where the binding of amines or alcohols to HfO2 NCs is promoted by the conversion of a bound carboxylic acid into a non-coordinating amide or ester. Furthermore, the sustained ligand displacement, following the addition of excess carboxylic acid, provides a catalytic pathway for ester formation, whereas the addition of esters leads to NC-catalysed transesterification. Because sustained, chemically driven ligand displacement leaves the NCs--including their surface composition--unchanged and preserves colloidal stability, metal oxide nanocrystals are thus turned into effective nanocatalysts that bypass the tradeoff between colloidal stability and catalytic activity.

  17. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands. (United States)

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y


    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.

  18. Ligand binding modulates the structural dynamics and compactness of the major birch pollen allergen. (United States)

    Grutsch, Sarina; Fuchs, Julian E; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R; Tollinger, Martin


    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens.

  19. NeoPHOX – a structurally tunable ligand system for asymmetric catalysis (United States)

    Padevět, Jaroslav; Schrems, Marcus G; Scheil, Robin


    Summary A synthesis of new NeoPHOX ligands derived from serine or threonine has been developed. The central intermediate is a NeoPHOX derivative bearing a methoxycarbonyl group at the stereogenic center next to the oxazoline N atom. The addition of methylmagnesium chloride leads to a tertiary alcohol, which can be acylated or silylated to produce NeoPHOX ligands with different sterical demand. The new NeoPHOX ligands were tested in the iridium-catalyzed asymmetric hydrogenation and palladium-catalyzed allylic substitution. In both reactions high enantioselectivities were achieved, that were comparable to the enantioselectivities obtained with the up to now best NeoPHOX ligand derived from expensive tert-leucine. PMID:27559370

  20. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P. (TGRI); (Toronto)


    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  1. Lead - nutritional considerations (United States)

    Lead poisoning - nutritional considerations; Toxic metal - nutritional considerations ... Markowitz M. Lead poisoning. In: Kliegman RM, Behrman RE, Jenson HB, ... Emergency Medicine: Concepts and Clinical Practice . 8th ed. ...

  2. Ligand binding mechanics of maltose binding protein. (United States)

    Bertz, Morten; Rief, Matthias


    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  3. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.; Crotty, A.; Kilina, S.; Ivanov, I.; Tretiak, S


    We examine in detail the impact of passivating ligands (i.e., amines, phosphines, phosphine oxides and pyridines) on the electronic and optical spectra of Cd{sub 33}Se{sub 33} quantum dots (QDs) using density functional theory (DFT) and time-dependent DFT (TDDFT) quantum-chemical methodologies. Most ligand orbitals are found deep inside in the valence and conduction bands of the QD, with pyridine being an exception by introducing new states close to the conduction band edge. Importantly, all ligands contribute states which are highly delocalized over both the QD surface and ligands, forming hybridized orbitals rather than ligand-localized trap states. In contrast, the states close to the band gap are delocalized over the QD atoms only and define the lower energy absorption spectra. The random detachment of one of ligands from the QD surface results in the appearance of a highly localized unoccupied state inside the energy gap of the QD. Such changes in the electronic structure are correlated with the respective QD-ligand binding energy and steric ligand-ligand interactions. Polar solvent significantly reduces both effects leading to delocalization and stabilization of the surface states. Thus, trap and surface states are substantially eliminated by the solvent. Polar solvent also blue-shifts (e.g., 0.3-0.4 eV in acetonitrile) the calculated absorption spectra. This shift increases with an increase of the dielectric constant of the solvent. We also found that the approximate single-particle Kohn-Sham (KS) approach is adequate for calculating the absorption spectra of the ligated QDs. Besides a systematic blue-shift, the KS spectra are in very good agreement with their respective counterparts calculated with the more accurate TDDFT method.

  4. Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands

    Directory of Open Access Journals (Sweden)

    Rubén Sierra-Ávila


    Full Text Available The synthesis of copper nanoparticles was studied by wet chemical methods using copper sulfate pentahydrate (CuSO4·5H2O and nitrogen ligands allylamine (AAm and polyallylamine (PAAm as stabilizers. The results suggest that the use of these ligands leads to the exclusive formation of metallic copper nanoparticles (Cu-NPs. The use of partially crosslinked polyallylamine (PAAmc leads to nanoparticles (NPs with low yields and high coating content, while linear PAAm leads to NPs with high yields and low coating content. The chemical composition of the particles was determined by XRD and average particle diameters were determined by the Debye-Scherrer equation. TGA analysis provided evidence of the content and thermal stability of the coating on the nanoparticles and PAAm. The morphology, particle size distribution, and presence of PAAm coating were observed through TEM. The use of AAm in the synthesis of NPs could be a good alternative to reduce costs. By using TGA, TEM, and DSC techniques, it was determined that synthesized NPs with AAm presented a coating with similar characteristics to NPs with PAAm, suggesting that AAm underwent polymerization during the synthesis.

  5. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert


    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  6. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.


    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  7. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs). (United States)

    Handlon, Anthony L; Schaller, Lee T; Leesnitzer, Lisa M; Merrihew, Raymond V; Poole, Chuck; Ulrich, John C; Wilson, Joseph W; Cadilla, Rodolfo; Turnbull, Philip


    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%).

  8. Coordinate unsaturation with fluorinated ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rack, J.L.; Hurlburt, P.K.; Anderson, O.P.; Strauss, S.H. [Colorado State Univ., Ft. Collins, CO (United States)


    The preparation and characterization of Zn(OTeF{sub 5}){sub 2} has resulted in a model compound with which to explore the concept of coordinative unsaturation. The coordination of solvents of varying donicity and dielectric constant to the Zn(II) ions in Zn(OTeF{sub 5}){sub 2} was studied by vapor phase monometry, NMR and IR spectroscopy, conductimetry, and X-Ray crystallography. The structures of [Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 2}(OTeF{sub 5})2]2 and Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 3}(OTEF{sub 5}){sub 2} demonstrate the electronic flexibility of some weakly coordinating solvents in that nitrobenzene can function as either an {eta}{sup 1}O or {eta}{sup 2}O,O`-ligand. The dependence of the number of bound solvent molecules and the degree of OTeF{sub 5}{minus} dissociation on solvent donor number and dielectric constant will be presented.

  9. Synthetic and Thermodynamic Investigations of Ancillary Ligand Influence on Catalytic Organometallic Systems. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, Steven


    During the grant period we have been involved in synthesizing and experimentally determining solution enthalpy values associated with partially fluorinated ligands. This has lead to the publication of manuscripts dealing with synthetic, calorimetric and catalytic behavior of partially fluorinated ligands. The collaboration with Los Alamos researchers has lead to the publication of catalytic results in sc CO{sub 2} which have proven very interesting. Furthermore, we have also examined ligands that behave as phosphine mimics. The N-heterocyclic carbenes have been explored as alternatives for tertiary phosphines and have resulted in the design and construction of efficient palladium and nickel system capable of performing C-C and C-N cross coupling reactions. The initial studies in this areas were made possible by exploratory work conducted under the DOE/EPSCoR grant.

  10. Complexation of lead by organic matter in Luanda Bay, Angola. (United States)

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R


    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands.

  11. Antibody-ligand interactions for hydrophobic charge-induction chromatography: a surface plasmon resonance study. (United States)

    Cheng, Fang; Li, Ming-Yang; Wang, Han-Qi; Lin, Dong-Qiang; Qu, Jing-Ping


    This article describes the use of surface plasmon resonance (SPR) spectroscopy to study antibody-ligand interactions for hydrophobic charge-induction chromatography (HCIC) and its versatility in investigating the surface and solution factors affecting the interactions. Two density model surfaces presenting the HCIC ligand (mercapto-ethyl-pyridine, MEP) were prepared on Au using a self-assembly technique. The surface chemistry and structure, ionization, and protein binding of such model surfaces were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), contact-angle titration, and SPR, respectively. The influences of the surface and solution factors, e.g., ligand density, salt concentration, and solution pH, on protein adsorption were determined by SPR. Our results showed that ligand density affects both equilibrium and dynamic aspects of the interactions. Specifically, a dense ligand leads to an increase in binding strength, rapid adsorption, slow desorption, and low specificity. In addition, both hydrophobic interactions and hydrogen bonding contribute significantly to the protein adsorption at neutral pH, while the electrostatic repulsion is overwhelmed under acidic conditions. The hydrophobic interaction at a high concentration of lyotropic salt would cause drastic conformational changes in the adsorbed protein. Combined with the self-assembly technique, SPR proves to be a powerful tool for studying the interactions between an antibody and a chromatographic ligand.

  12. Kinetic Studies of the Coordination of Mono- and Ditopic Ligands with First Row Transition Metal Ions. (United States)

    Munzert, Stefanie Martina; Schwarz, Guntram; Kurth, Dirk G


    The reactions of the ditopic ligand 1,4-bis(2,2':6',2″-terpyridin-4'-yl)benzene (1) as well as the monotopic ligands 4'-phenyl-2,2':6',2″-terpyridine (2) and 2,2':6',2″-terpyridine (3) with Fe(2+), Co(2+), and Ni(2+) in solution are studied. While the reaction of 1 with Fe(2+), Co(2+), and Ni(2+) results in metallo-supramolecular coordination polyelectrolytes (MEPEs), ligands 2 and 3 give mononuclear complexes. All compounds are analyzed by UV/vis and fluorescence spectroscopy. Fluorescence spectroscopy indicates that protonation as well as coordination to Zn(2+) leads to an enhanced fluorescence of the terpyridine ligands. In contrast, Fe(2+), Co(2+), or Ni(2+) quench the fluorescence of the ligands. The kinetics of the reactions are studied by stopped-flow fluorescence spectroscopy. Analysis of the measured data is presented and the full kinetic rate laws for the coordination of the terpyridine ligands 1, 2, and 3 to Fe(2+), Co(2+), and Ni(2+) are presented. The coordination occurs within a few seconds, and the rate constant increases in the order Ni(2+) < Co(2+) < Fe(2+). With the rate constants at hand, the polymer growth of Ni-MEPE is computed.

  13. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.


    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  14. Why do receptor-ligand bonds in cell adhesion cluster into discrete focal-adhesion sites? (United States)

    Gao, Zhiwen; Gao, Yanfei


    Cell adhesion often exhibits the clustering of the receptor-ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor-ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor-ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.

  15. NMR and theoretical study on interactions between diperoxovanadate complex and pyrazole-like ligands. (United States)

    Yu, Xianyong; Liu, Ronghua; Peng, Hongliang; Huang, Haowen; Li, Xiaofang; Zheng, Baishu; Yi, Pinggui; Chen, Zhong


    To understand the effects of pyrazole substitution on reaction equilibrium, the interactions between a series of pyrazole-like ligands and [OV(O(2))(2)(D(2)O)](-)/[OV(O(2))(2)(HOD)](-) were explored by using multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, HSQC, and variable temperature NMR in 0.15 mol/L NaCl ionic medium mimicking physiological conditions. These results show that the relative reactivities among the pyrazole-like ligands are 3-methyl-1H-pyrazole approximately 4-methyl-1H-pyrazole approximately 1H-pyrazole>1-methyl-1H-pyrazole. As a result, the main factor which affects the reaction equilibrium is the steric effect instead of the electronic effect of the methyl group of these ligands. A pair of isomers has been formed resulting from the coordination of 3-methyl-1H-pyrazole and a vanadium complex, which is attributed to different types of coordination between the vanadium atom and the ligands. Thus, the competitive coordination leads to the formation of a series of six-coordinate peroxovanadate species [OV(O(2))(2)L](-) (L, pyrazole-like ligands). Moreover, the results of density functional calculations provided a reasonable explanation on the relative reactivity of the pyrazole-like ligands as well as the important role of solvation in these reactions.

  16. Dehydrogenation of formic acid by Ir-bisMETAMORPhos complexes: experimental and computational insight into the role of a cooperative ligand

    NARCIS (Netherlands)

    Oldenhof, S.; Lutz, M.; de Bruin, B.; van der Vlugt, J.I.; Reek, J.N.H.


    The synthesis and tautomeric nature of three xanthene-based bisMETAMORPhos ligands (La-Lc) is reported. Coordination of these bis(sulfonamidophosphines) to Ir(acac)(cod) initially leads to the formation of Ir-I(L-H) species (1a), which convert via formal oxidative addition of the ligand to Ir-III(L)

  17. Ligand inducible assembly of a DNA tetrahedron. (United States)

    Dohno, Chikara; Atsumi, Hiroshi; Nakatani, Kazuhiko


    Here we show that a small synthetic ligand can be used as a key building component for DNA nanofabrication. Using naphthyridinecarbamate dimer (NCD) as a molecular glue for DNA hybridization, we demonstrate NCD-triggered formation of a DNA tetrahedron.

  18. Rapid Lead Screening Test (United States)

    ... Vitro Diagnostics Tests Used In Clinical Care Rapid Lead Screening Test Share Tweet Linkedin Pin it More ... reducing the need for a follow-up visit. Lead Risk Links Centers for Disease Control and Prevention ( ...

  19. Lead and tap water (United States)

    Water contaminated with lead ... The Environmental Protection Agency (EPA) monitors drinking water in the United States. It requires water suppliers to produce annual water quality reports. These reports include information about lead amounts, and they ...

  20. Exposures to lead. (United States)

    Callan, Anna C; Hinwood, Andrea L


    The Pacific Basin Consortium for Environment and Health hosted a workshop on Exposures to Lead. Speakers from Australia and the United States of America addressed current research knowledge on lead exposures and health effects in children, risk assessment and communication issues in dealing with lead exposure sources, different methods for assessing exposure, and the variety of scenarios where lead still remains a pollutant of concern. Mining continues to be a source of lead for many communities, and approaches to reducing exposures in these settings present particular challenges. A Perth Declaration for the Global Reduction of Childhood Lead Exposure was signed by participants of the meeting and is aimed at increasing attention to the need to continue to assess lead in the environment and to develop strategies to reduce lead in the environment and exposure by communities.

  1. Lead and Your Baby (United States)

    ... who works with lead, like in auto repair, construction or in a plant that makes paint, batteries, ... who works with lead, like in auto repair, construction or in a plant that makes paint, batteries, ...

  2. Lead Poisoning (For Parents) (United States)

    ... organs and tissues that need it, thus causing anemia. Most lead ends up in the bone, where it causes ... vomiting or nausea constipation pallor (pale skin) from ... look for lead poisoning or other health problems. Treatment Treatment for ...

  3. Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation

    NARCIS (Netherlands)

    Dzik, W.I.; Zhang, X.P.; de Bruin, B.


    In this Forum contribution, we highlight the radical-type reactivities of one-electron-reduced Fischer-type carbenes. Carbene complexes of group 6 transition metals (Cr, Mo, and W) can be relatively easily reduced by an external reducing agent, leading to one-electron reduction of the carbene ligand

  4. Vesicular Stomatitis Virus Infection Promotes Immune Evasion by Preventing NKG2D-Ligand Surface Expression

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Nielsen, Jens


    leads to a robust induction of MICA mRNA expression, however the subsequent surface expression is potently hindered. Thus, VSV lines up with human cytomegalovirus (HCMV) and adenovirus, which actively subvert the immune system by negatively affecting NKG2D-ligand surface expression. VSV infection caused...

  5. Optimization of enrichment for virtual ligand screening using an established FRED-Surflex approach

    NARCIS (Netherlands)

    Du, J.; Bleylevens, I.W.M.; Bitorina, A.V.; Nicolaes, G.A.F.


    Virtual ligand screening (VLS) is an in silico technology used for the productive and cost effective search for novel hit or lead compounds. VLS can be divided into rigid body docking (e.g. FRED) and flexible body docking (e.g. Surflex) procedures. Theoretically, rigid body docking VLS is fast but l

  6. Electrochemical Study on Ligand Substitution Reactions in Oxofluoro Boron Containing Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.;


    Linear voltammetry was used for study of the ligand substitution reactions in the process of titration of FLINAK-KBF4, melt with different oxides. At molar ratio O/B=1 complexes BF4- which are characteristic for oxygenless melt transform into BOF2- Further increasing of O/B ratio up to 2 leads to...

  7. Nye ligander for Pt-MOF strukturer


    Jakobsen, Søren


    Metalorganic frameworks (MOFs) are a new type of compounds which have been intensely investigated during the last few years. They have been synthesized using a wide variety of metals and ligands constructing a vast number of 1, 2 and 3 dimensional structures, some of which possess zeolite-type physics and chemistry. Our approach is to incorporate platinum metal sites into the structures making them bimetallic and potentially catalytically active. Therefore a number of N-N-type ligands (dii...

  8. Occupational lead poisoning


    Ramírez, Augusto V; Médico del Trabajo. American College of Occupational and Environmental Medicine.


    Lead, a ubiquitous heavy metal, has been found in places as unlikely as Greenland’s fossil ice. Egyptians and Hebrews used it. In Spain, Phoenicians c. 2000 BC worked ores of lead. At the end of the XX century, occupational lead’s poisoning became a public health problem in developed countries. In non-developed countries occupational lead poisoning is still frequent. Diagnosis is directed to recognize lead existence at the labor environment and good clinical and occupational documentation. Di...

  9. NA49: lead-lead collision

    CERN Document Server


    This is an image of an actual lead ion collision taken from tracking detectors on the NA49 experiment, part of the heavy ion project at CERN. These collisions produce a very complicated array of hadrons as the heavy ions break up. It is hoped that one of these collisions will eventually create a new state of matter known as quark-gluon plasma.

  10. Lead Poisoning in Children. (United States)

    Drummond, A. H., Jr.


    Early symptoms of lead poisoning in children are often overlooked. Lead poisoning has its greatest effects on the brain and nervous system. The obvious long-term solution to the lead poisoning problem is removal of harmful forms of the metal from the environment. (JN)

  11. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  12. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles. (United States)

    Chen, Cherry C; Borden, Mark A


    Using microbubbles as model systems, we examined molecular diffusion and binding to colloidal surfaces in bimodal poly(ethylene glycol) (PEG) brush layers. A microbubble is a gaseous colloidal particle with a diameter of less than 10 mum, of which the surface comprises amphiphilic phospholipids self-assembled to form a lipid monolayer shell. Due to the compressible gas core, microbubbles provide a sensitive acoustic response and are currently used as ultrasound contrast agents. Similar to the design of long circulating liposomes, PEG chains are typically incorporated into the shell of microbubbles to form a steric barrier against coalescence and adsorption of macromolecules to the microbubble surface. We introduced a buried-ligand architecture (BLA) design where the microbubble surface was coated with a bimodal PEG brush. After microbubbles were generated, fluorescent ligands with different molecular weights were conjugated to the tethered functional groups on the shorter PEG chains, while the longer PEG chains served as a shield to protect these ligands from exposure to the surrounding environment. BLA microbubbles reduced the binding of macromolecules (>10 kDa) to the tethers due to the steric hindrance of the PEG overbrush while allowing the uninhibited attachment of small molecules (microbubbles compared to exposed-ligand architecture (ELA) microbubbles. The binding of SA-FITC to BLA microbubbles suggested a possible phase separation between the lipid species on the surface leading to populations of revealed and concealed ligands. Ligand conjugation kinetics was independent of microbubble size, regardless of ligand size or microbubble architecture. We observed, for the first time, streptavidin-induced surface structure formation for ELA microbubbles and proposed that this phenomenon may be correlated to flow cytometry scattering measurements. We therefore demonstrated the feasibility of postlabeling for small-molecule ligands to BLA microbubbles to generate

  13. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations (United States)

    Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio


    G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 (d[AG3(T2AG3)3]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy (ΔGb0 = −10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands. PMID:28232513

  14. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand.

    Directory of Open Access Journals (Sweden)

    Samuel DeLuca

    Full Text Available RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand making it unfeasible for use in virtual High Throughput Screening (vHTS. To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial 'low-resolution' docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10-15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the 'high-resolution' full atom refinement step.

  15. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng


    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  16. Synthesis of novel chiral N, P-containing multidentate ligands and their applications in asymmetric transfer hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Shen Luan Yu; Yan Yun Li; Zhen Rong Dong; Juan Ni Zhang; Qi Li; Jing Xing Gao


    Novel chiral PN4-type multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and various chiral amino-sulfonamides. Their structures were fully characterized by IR, EI-MS and NMR. The catalytic systems, prepared in situ from the multidentate ligands and iridium(I) complexes, showed high activity in asymmetric transfer hydrogenation of propiophenone in 2-propanol solution, leading to corresponding optical alcohol with up to 75% ee.

  17. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.


    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  18. ALICE: Simulated lead-lead collision

    CERN Document Server


    This track is an example of simulated data modelled for the ALICE detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. ALICE will focus on the study of collisions between nuclei of lead, a heavy element that produces many different particles when collided. It is hoped that these collisions will produce a new state of matter known as the quark-gluon plasma, which existed billionths of a second after the Big Bang.

  19. First Insertions of Carbene Ligands into Ge-N and Si-N Bonds. (United States)

    Álvarez-Rodríguez, Lucía; Cabeza, Javier A; García-Álvarez, Pablo; Gómez-Gallego, Mar; Merinero, Alba D; Sierra, Miguel A


    The insertion of carbene ligands into Ge-N (three examples) and Si-N (one example) bonds has been achieved for the first time by treating Fischer carbene complexes (M = W, Cr) with bulky amidinatotetrylenes (E = Ge, Si). These reactions, which start with a nucleophilic attack of the amidinatotetrylene heavier group-14 atom to the carbene C atom, proceed through a stereoselective insertion of the carbene fragment into an E-N bond of the amidinatotetrylene ENCN four-membered ring, leading to [M(CO)5L] derivatives in which L belongs to a novel family of tetrylene ligands comprising an ECNCN five-membered ring.

  20. Lead-Free Piezoelectrics

    CERN Document Server

    Nahm, Sahn


    Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.

  1. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.


    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  2. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein. (United States)

    Li, Huameng; Li, Chenglong


    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively.

  3. Lead Poison Detection (United States)


    With NASA contracts, Whittaker Corporations Space Science division has developed an electro-optical instrument to mass screen for lead poisoning. Device is portable and detects protoporphyrin in whole blood. Free corpuscular porphyrins occur as an early effect of lead ingestion. Also detects lead in urine used to confirm blood tests. Test is inexpensive and can be applied by relatively unskilled personnel. Similar Whittaker fluorometry device called "drug screen" can measure morphine and quinine in urine much faster and cheaper than other methods.

  4. Organotellurium ligands - designing and complexation reactions

    Indian Academy of Sciences (India)

    Ajai K Singh


    A variety of tellurium ligands has been designed and studied for their complexation reactions in the last decade. Of these hybrid telluroethers, halotellurium ligands and polytellurides are the most notable ones. RTe- and polytelluride ions have also been used to design clusters. Ligation of ditelluroethers and several hybrid telluroethers is extensively studied in our laboratories. The ditelluroether ligand RTeCH2TeR (where R = 4-MeOC6H4) (1), similar to dppm [1,2-bis(diphenylphosphino) methane], has been synthesized in good yield (∼80 %) by reacting CHCl3 with RTe- (generated in situ by borohydride reduction of R2Te2). Iodine reacts with 1 to give tetra-iodo derivative, which has intermolecular Te$\\cdots$I interactions resulting in a macro structure containing rectangular Te-I$\\cdots$Te bridges. 1 readily forms four membered rings with Pd(II) and Ru(II). On the formation of this chelate ring, the signal in 125Te NMR spectra shifts significantly upfield (50-60 ppm). The bridging mode of 1 has been shown in [Ru(-cymene)Cl2](-1)[Ru(-cymene)Cl2]. The hybrid telluroether ligands explored are of the types (Te, S), (Te, N) and (Te, O). The tellurium donor site has strong trans influence, which is manifested more strongly in square planar complexes of palladium(II). The morpholine N-donor site has been found to have weaker donor characteristics in (Te, N) ligands than pyridine and alkylamine donor sites of analogous ligands. The singlet oxygen readily oxidises the coordinated Te. This oxidation follows first order kinetics. The complexation reaction of RuCl3.H2O with N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (2) results in a novel (Te, N, O)-heterocycle, Te-chloro,Te-anisyl-1a-aza-4-oxa-3-tellura-1H, 2H, 4aH-9 fluorenone. The (Te, O) ligands can be used as hemilabile ligands, the oxygen atom temporarily protects the vacant coordination site before the arrival of the substrate. The chelate shifts observed in 125Te NMR spectra of metal complexes of Te-ligands have

  5. Dockomatic - automated ligand creation and docking

    Directory of Open Access Journals (Sweden)

    Hampikian Greg


    Full Text Available Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. Results DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. Conclusions DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  6. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng


    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  7. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design (United States)

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.


    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  8. Lead Speciation in remote Mountain Lakes (United States)

    Plöger, A.; van den Berg, C. M. G.


    In natural waters trace metals can become complexed by organic matter. This complexation can change the geochemistry of the metals by preventing them being scavenged, thereby increasing their residence time in the water column. The chemical speciation of trace metals also affects the bioavalability and their toxicological impact on organisms. It is therefore important to determine the chemical speciation of trace metals as well as their concentrations. Mountain lakes have been less studied in the past than other lakes- partly because of their remoteness and partly because they were perceived to be unpolluted and undisturbed. But work so far on mountain lakes has shown that most sites are affected and threatened, for example by transboundary air pollutants like trace metals. One of the important features that distinguishes these lakes from lowland lakes at similar latitudes is the fact that they may be isolated from the atmosphere for six months or more during the winter by a thick ice cover. Also, as these lakes are remote from direct anthropogenic influences, they reflect the regional distribution of pollutants transferred via the atmosphere. For this work, under the framework of the EMERGE (European Mountain lake Ecosystems: Regionalisation, diaGnostic and socio-economic Evaluation) programme, two remote mountain lakes have been studied in detail, with water sampling taking place at different times of the year to investigate possible seasonal differences in lead concentrations and speciation. Results so far have shown that lead-complexing ligand concentrations are in excess to dissolved lead concentrations, indicating that dissolved lead probably occurs fully complexed in these lakes. Therefore the toxic fraction is likely to be less than the dissolved lead concentration. Also, lead concentrations at the time of the spring thaw are higher than autumn concentrations just before ice cover, indicating that a significant proportion of fallout onto the lake catchment

  9. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles. (United States)

    Yang, Luzhu; Wang, Yanjun; Li, Baoxin; Jin, Yan


    Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs.

  10. Cationic ruthenium alkylidene catalysts bearing phosphine ligands. (United States)

    Endo, Koji; Grubbs, Robert H


    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  11. Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications through Ligand Exchange and Direct Conjugation

    Directory of Open Access Journals (Sweden)

    Tina Lam


    Full Text Available Stable superparamagnetic iron oxide nanoparticles (SPIONs, which can be easily dispersed in an aqueous medium and exhibit high magnetic relaxivities, are ideal candidates for biomedical applications including contrast agents for magnetic resonance imaging. We describe a versatile methodology to render water dispersibility to SPIONs using tetraethylene glycol (TEG-based phosphonate ligands, which are easily introduced onto SPIONs by either a ligand exchange process of surface-anchored oleic-acid (OA molecules or via direct conjugation. Both protocols confer good colloidal stability to SPIONs at different NaCl concentrations. A detailed characterization of functionalized SPIONs suggests that the ligand exchange method leads to nanoparticles with better magnetic properties but higher toxicity and cell death, than the direct conjugation methodology.

  12. Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?

    Directory of Open Access Journals (Sweden)

    Michel Ferreira


    Full Text Available The behaviour of platinum(II and palladium(0 complexes coordinated by various hydrosoluble monodentate phosphane ligands has been investigated by 31P{1H} NMR spectroscopy in the presence of randomly methylated β-cyclodextrin (RAME-β-CD. This molecular receptor can have no impact on the organometallic complexes, induce the formation of phosphane low-coordinated complexes or form coordination second sphere species. These three behaviours are under thermodynamic control and are governed not only by the affinity of RAME-β-CD for the phosphane but also by the phosphane stereoelectronic properties. When observed, the low-coordinated complexes may be formed either via a preliminary decoordination of the phosphane followed by a complexation of the free ligand by the CD or via the generation of organometallic species complexed by CD which then lead to expulsion of ligands to decrease their internal steric hindrance.

  13. Vesicular Stomatitis Virus Infection Promotes Immune Evasion by Preventing NKG2D-Ligand Surface Expression

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Nielsen, Jens;


    Vesicular stomatitis virus (VSV) has recently gained attention for its oncolytic ability in cancer treatment. Initially, we hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune stimulatory NKG2D-ligands. Here we show that VSV infection...... leads to a robust induction of MICA mRNA expression, however the subsequent surface expression is potently hindered. Thus, VSV lines up with human cytomegalovirus (HCMV) and adenovirus, which actively subvert the immune system by negatively affecting NKG2D-ligand surface expression. VSV infection caused...... an active suppression of NKG2D-ligand surface expression, affecting both endogenous and histone deacetylase (HDAC)-inhibitor induced MICA, MICB and ULBP-2 expression. The classical immune escape mechanism of VSV (i.e., the M protein blockade of nucleocytoplasmic mRNA transport) was not involved, as the VSV...

  14. Signal processing in the TGF-beta superfamily ligand-receptor network.

    Directory of Open Access Journals (Sweden)

    Jose M G Vilar


    Full Text Available The TGF-beta pathway plays a central role in tissue homeostasis and morphogenesis. It transduces a variety of extracellular signals into intracellular transcriptional responses that control a plethora of cellular processes, including cell growth, apoptosis, and differentiation. We use computational modeling to show that coupling of signaling with receptor trafficking results in a highly versatile signal-processing unit, able to sense by itself absolute levels of ligand, temporal changes in ligand concentration, and ratios of multiple ligands. This coupling controls whether the response of the receptor module is transient or permanent and whether or not different signaling channels behave independently of each other. Our computational approach unifies seemingly disparate experimental observations and suggests specific changes in receptor trafficking patterns that can lead to phenotypes that favor tumor progression.

  15. Lead toxicity: Current concerns

    Energy Technology Data Exchange (ETDEWEB)

    Goyer, R.A. (Univ. of Western Ontario, London (Canada))


    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. 97 refs.

  16. Tuning the Topology and Functionality of Metal–Organic Frameworks by Ligand Design

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Timmons, Daren J; Yuan, Daqiang; Zhou, Hong-Cai


    Metal–organic frameworks (MOFs)—highly crystalline hybrid materials that combine metal ions with rigid organic ligands—have emerged as an important class of porous materials. The organic ligands add flexibility and diversity to the chemical structures and functions of these materials. In this Account, we summarize our laboratory’s experience in tuning the topology and functionality of MOFs by ligand design. These investigations have led to new materials with interesting properties. By using a ligand that can adopt different symmetry conformations through free internal bond rotation, we have obtained two MOFs that are supramolecular stereoisomers of each other at different reaction temperatures. In another case, where the dimerized ligands function as a D₃-Piedfort unit spacer, we achieve chiral (10,3)-a networks. In the design of MOF-based materials for hydrogen and methane storage, we focused on increasing the gas affinity of frameworks by using ligands with different geometries to control the pore size and effectively introduce unsaturated metal centers (UMCs) into the framework. Framework interpenetration in PCN-6 (PCN stands for porous coordination network) can lead to higher hydrogen uptake. Because of the proper alignment of the UMCs, PCN-12 holds the record for uptake of hydrogen at 77 K/760 Torr. In the case of methane storage, PCN-14 with anthracene-derived ligand achieves breakthrough storage capacity, at a level 28% higher than the U.S. Department of Energy target. Selective gas adsorption requires a pore size comparable to that of the target gas molecules; therefore, we use bulky ligands and network interpenetration to reduce the pore size. In addition, with the help of an amphiphilic ligand, we were able to use temperature to continuously change pore size in a 2D layer MOF. Adding charge to an organic ligand can also stabilize frameworks. By ionizing the amine group within mesoMOF-1, the resulting electronic repulsion keeps the network from

  17. Efficient chemoenzymatic synthesis of chiral pincer ligands. (United States)

    Felluga, Fulvia; Baratta, Walter; Fanfoni, Lidia; Pitacco, Giuliana; Rigo, Pierluigi; Benedetti, Fabio


    Chiral, nonracemic pincer ligands based on the 6-phenyl-2-aminomethylpyridine and 2-aminomethylbenzo[h]quinoline scaffolds were obtained by a chemoenzymatic approach starting from 2-pyridyl and 2-benzoquinolyl ethanone. In the enantiodifferentiating step, secondary alcohols of opposite absolute configuration were obtained by a baker's yeast reduction of the ketones and by lipase-mediated dynamic kinetic resolution of the racemic alcohols. Their transformation into homochiral 1-methyl-1-heteroarylethanamines occurred without loss of optical purity, giving access to pincer ligands used in enantioselective catalysis.

  18. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes. (United States)

    Chen, X; Ji, Z L; Zhi, D G; Chen, Y Z


    Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.

  19. REVIEW ARTICLE:Future of Lead Chelation – Distribution and Treatment

    Directory of Open Access Journals (Sweden)

    Venkatesh Thuppil


    Full Text Available Lead is the major environmental toxin resulting in the ill health and deleterious effect on almost all organs in the human body in a slow and effective manner. The best treatment for lead poisoning is chelation therapy which is next only to prevention. The authors describe the disruption of homeostasis of the human body by lead in various tissues like blood, bones, liver, kidneys and brain; and the ability of lead to enter the cell using calcium channels and calcium receptors like Ca++ dependant K+ ion channels, transient receptor potential channels, T-tubules, calmodulin receptors, inositol trisphosphate receptors and ryanodine receptors. We report a few novel chelating agents like ionophores, decadentate ligands, picolinate ligands, octadentate ligand, allicin, thiamine, that show good potential for being used in chelation therapy. Future of leadpoisoning is a challenge to all and it needs to be meticulously studies to have an economic and health approach.

  20. Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. (United States)

    Pozharski, Edwin; Weichenberger, Christian X; Rupp, Bernhard


    As a result of substantial instrumental automation and the continuing improvement of software, crystallographic studies of biomolecules are conducted by non-experts in increasing numbers. While improved validation almost ensures that major mistakes in the protein part of structure models are exceedingly rare, in ligand-protein complex structures, which in general are most interesting to the scientist, ambiguous ligand electron density is often difficult to interpret and the modelled ligands are generally more difficult to properly validate. Here, (i) the primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) the most common categories of building errors or overinterpretation are classified; (iii) a few instructive and specific examples are discussed in detail, including an electron-density-based analysis of ligand structures that do not contain any ligands; (iv) means of avoiding such mistakes are suggested and the implications for database validity are discussed and (v) a user-friendly software tool that allows non-expert users to conveniently inspect ligand density is provided.

  1. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.; (NIH)


    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  2. Copper, iron and the organic ligands that bind them - updates from San Francisco Bay and beyond (United States)

    Buck, K. N.; Bundy, R.; Biller, D.; Bruland, K. W.; Barbeau, K.


    Building on more than 30 years of measurements in San Francisco Bay by Russ Flegal and others, the concentrations of dissolved manganese, iron, cobalt, nickel, copper, zinc, cadmium and lead were determined from a suite of water quality monitoring program stations in North, Central and South Bay using inductively coupled plasma- mass spectrometry following preconcentration on a Nobias-chelate PA1 resin. Given the importance of organic ligands in governing iron solubility and copper bioavailability in natural waters, the organic complexation of dissolved iron and copper in these samples was determined from multiple analytical windows applied to competitive ligand exchange- adsorptive cathodic stripping voltammetry. This study constitutes the first dataset of iron speciation in San Francisco Bay and expands upon prior work evaluating the potential for copper toxicity in this urbanized estuary. Recent advances in voltammetric techniques emerging from a Scientific Committee on Oceanic Research (SCOR) working group on metal-binding ligands in the marine environment, and insights gained from high-resolution ligand measurements from the U.S. GEOTRACES program, highlight how metal-binding ligands in San Francisco Bay compare with those of the coastal and open ocean.

  3. Competition for ligands between FGFR1 and FGFR4 regulates Xenopus neural development. (United States)

    Yamagishi, Masahiro; Okamoto, Harumasa


    Cell-surface-localized receptors and their extracellular ligands usually comprise distinct families and promote diversity of signal transduction regulation. The number of available ligand molecules is often the limiting factor for receptor activation during interpretation of the signal by the responding cell. Limited ligand availability in a particular area of tissue should lead to local competition between different members of a receptor family for binding and subsequent activation. Fibroblast growth factor receptor (FGFR) 4 (FGFR4) is a less potent activator of downstream pathways than FGFR1, the major subtype of FGFR. Regional expression of Xenopus FGFR1 and FGFR4 (XFGFR1 and XFGFR4, respectively) overlap in the anterior part of prospective and developing neural tissue. In this paper we show that XFGFR1 and XFGFR4 have opposing effects on the positioning of expression domains of mid- and hindbrain markers when the expression levels of the receptors are altered. We present a line of evidence to support our hypothesis that competition between XFGFR1 and XFGFR4 for ligands is required for correct positioning of marker expression. Local competition between receptors with different potencies should provide an efficient means for a cell to interpret the ligand signal correctly, and may constitute a more general mechanism for regulating signal transduction.

  4. Vesicular stomatitis virus infection promotes immune evasion by preventing NKG2D-ligand surface expression.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available Vesicular stomatitis virus (VSV has recently gained attention for its oncolytic ability in cancer treatment. Initially, we hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune stimulatory NKG2D-ligands. Here we show that VSV infection leads to a robust induction of MICA mRNA expression, however the subsequent surface expression is potently hindered. Thus, VSV lines up with human cytomegalovirus (HCMV and adenovirus, which actively subvert the immune system by negatively affecting NKG2D-ligand surface expression. VSV infection caused an active suppression of NKG2D-ligand surface expression, affecting both endogenous and histone deacetylase (HDAC-inhibitor induced MICA, MICB and ULBP-2 expression. The classical immune escape mechanism of VSV (i.e., the M protein blockade of nucleocytoplasmic mRNA transport was not involved, as the VSV mutant strain, VSV(ΔM51, which possess a defective M protein, prevented MICA surface expression similarly to wild-type VSV. The VSV mediated down modulation of NKG2D-ligand expression did not involve apoptosis. Constitutive expression of MICA bypassed the escape mechanism, suggesting that VSV affect NKG2D-ligand expression at an early post-transcriptional level. Our results show that VSV possess an escape mechanism, which could affect the immune recognition of VSV infected cancer cells. This may also have implications for immune recognition of cancer cells after combined treatment with VSV and chemotherapeutic drugs.

  5. Lead Time Study, (United States)


    AD-A128 318 LEAD TIME STUDY (U) ARMY ARMAMENT RESEARCH AND DEVELOPMENT CDMMAND DOVER NJ SYSTEMS ANALYSIS DIV dI-T~~ CHU MAY 82 ARRAA 82- 3/ /l N...EhhEEE--E 1111.0 U 1 - I 1120 1.25I1,,-. 11.6 MICROCOPY RESOLUTION TESI CHARI NATIONAL BUREAU 01 STANDARDt 19t,3 A co LEAD TIME STUDY c*A JULIE CHU MAY...188 D I.-f . . .... .. - r - .. " ’- -~ L - - _ _ __ ARRAA 82-3 LEAD TIME STUDY Prepared by:_ JL CHU Reviewed by:Li t’ ( LAWRENCE J. QWUNI Chief, Sys

  6. Lead effects on fungi

    Energy Technology Data Exchange (ETDEWEB)

    Gullino, M.L.; Fiussello, N.


    Addition of 0.01M lead nitrate to media caused complete inhibition of most of a group of 80 strains of fungi of several genera. Those which did grow at all had an extended lag period in comparison to controls. At 0.001M all the fungi grew, but had thinner-than-normal mycelia and delayed fruiting body formation. Fusarium species and members of Class Basidiomycetes were among the most sensitive, and Penicillium and Aspergillus species were the most tolerant. Lead uptake rates varied positively with lead nitrate concentration in the media. 9 references, 2 figures, 3 tables.

  7. Identification of Physiologically Active Substances as Novel Ligands for MRGPRD

    Directory of Open Access Journals (Sweden)

    Makiko Uno


    Full Text Available Mas-related G-protein coupled receptor member D (MRGPRD is a G protein-coupled receptor (GPCR which belongs to the Mas-related GPCRs expressed in the dorsal root ganglia (DRG. In this study, we investigated two novel ligands in addition to beta-alanine: (1 beta-aminoisobutyric acid, a physiologically active substance, with which possible relation to tumors has been seen together with beta-alanine; (2 diethylstilbestrol, a synthetic estrogen hormone. In addition to the novel ligands, we found that transfection of MRGPRD leads fibroblast cells to form spheroids, which would be related to oncogenicity. To understand the MRGPRD novel character, oncogenicity, a large chemical library was screened in order to obtain MRGPRD antagonists to utilize in exploring the character. The antagonist in turn inhibited the spheroid proliferation that is dependent on MRGPRD signaling as well as MRGPRD signals activated by beta-alanine. The antagonist, a small-molecule compound we found in this study, is a potential anticancer agent.

  8. Learn about Lead (United States)

    Jump to main content US EPA United States Environmental Protection Agency Search Search Lead Share Facebook Twitter Google+ ... 2 pp, 291 K, About PDF ) The most important step parents, doctors, and others can take is ...

  9. Lead levels - blood (United States)

    Blood lead levels ... A blood sample is needed. Most of the time blood is drawn from a vein located on the inside ... may be used to puncture the skin. The blood collects in a small glass tube called a ...

  10. Lead User Innovation

    DEFF Research Database (Denmark)

    Brem, Alexander; Larsen, Henry


    , deliver and capture the value of an innovatively new device together. From the perspective of the lead user, we show antecedents and effects of social interaction between organizational actors and the lead user on the development of social capital, especially trust and shared imagination. The second case......User innovation and especially the integration of lead users is a key topic in the innovation management literature of recent years. This paper contributes by providing a rare perspective into what easily could be seen as innovation failure, shown from two perspectives. We show how a lack of shared...... imagination hampers participation and kills innovation between interdependent stakeholders at the threshold between invention and innovation in practice. We present a first case in the fun-sport industry where an external lead user and diverse firm representatives in different functions fail to create...

  11. Lead-210 contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [Peter Gray and Associates, Tulsa, OK (United States)


    Nearly all scrap dealers, smelters and other recyclers routinely monitor for radioactivity in shipments entering their facility. These sensitive radiation gate monitors easily detect radium-226 and most other radioactive nuclides. However, the type of detector normally used, sodium iodide scintillation crystals, will not detect the low energy gamma radiation emitted by lead-210 and its progeny. Since lead-210 is a common radioactive contaminant in certain industries, contaminated scrap metal from these industries may avoid detection at the recycler. Lead-210 is a decay product of radon-222 which is produced in small concentrations with natural gas. As the natural gas liquids, particularly ethane and propane, are separated from the natural gas, the radon concentrates in the ethane/propane fraction. The natural gas industry, particularly gas processing facilities and industries using ethane and propane as feed stocks can be significantly contaminated with the radon decay products, especially lead-210, bismuth-210 and polonium-210. Unless the scrap metal is decontaminated before sending to the recycler, the lead-210 contaminated scrap may be processed, resulting in some degree of radioactive contamination of the recycling facilities. Methods of detecting the low energy gamma radiation associated with lead-210 include the pancake G-M detector and the thin crystal-thin window scintillation detector.

  12. Structural Diversity of Metallosupramolecular Assemblies Based on the Bent Bridging Ligand 4,4′-Dithiodipyridine

    Directory of Open Access Journals (Sweden)

    Rüdiger W. Seidel


    Full Text Available 4,4′-Dithiodipyridine (dtdp, also termed 4,4′-dipyridyldisulfide, is a bridging ligand of the 4,4′-bipyridine type. The introduction of the disulfide moiety inevitably leads to a relatively rigid angular structure, which exhibits axial chirality. More than 90 metal complexes containing the dtdp ligand have been crystallographically characterised until now. This review focuses on the preparation and structural diversity of discrete and polymeric metallosupramolecular assemblies constructed from dtdp as bridging ligands. These encompass metallamacrocycles with M2L2 topology and coordination polymers with periodicity in one or two dimensions. One-dimensional coordination polymers represent the vast majority of the metallosupramolecular structures obtained from dtdp. These include repeated rhomboids, zigzag, helical and arched chains among other types. In this contribution, we make an attempt to provide a comprehensive account of the structural data that are currently available for metallosupramolecular assemblies based on the bent bridging ligand dtdp.

  13. Ligand field theory and the origin of life as an emergent feature of the periodic table of elements. (United States)

    Morowitz, Harold J; Srinivasan, Vijayasarathy; Smith, Eric


    The assumption that all biological catalysts are either proteins or ribozymes leads to an outstanding enigma of biogenesis-how to determine the synthetic pathways to the monomers for the efficient formation of catalytic macromolecules in the absence of any such macromolecules. The last 60 years have witnessed chemists developing an understanding of organocatalysis and ligand field theory, both of which give demonstrable low-molecular-weight catalysts. We assume that transition-metal-ligand complexes are likely to have occurred in the deep ocean trenches by the combination of naturally occurring oceanic metals and ligands synthesized from the emergent CO(2), H(2), NH(3), H(2)S, and H(3)PO(4). We are now in a position to investigate experimentally the metal-ligand complexes, their catalytic function, and the reaction networks that could have played a role in the development of metabolism and life itself.

  14. Supramolecular architectures constructed using angular bipyridyl ligands

    CERN Document Server

    Barnett, S A


    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...

  15. [Functional selectivity of opioid receptors ligands]. (United States)

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela


    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  16. A versatile dinucleating ligand containing sulfonamide groups

    DEFF Research Database (Denmark)

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa


    Copper, iron, and gallium coordination chemistries of the new pentadentate bis-sulfonamide ligand 2,6-bis(N-2-pyridylmethylsulfonamido)-4-methylphenol (psmpH3) were investigated. PsmpH3 is capable of varying degrees of deprotonation, and notably, complexes containing the fully trideprotonated...

  17. Flexible Ligand Docking Using Differential Evolution

    DEFF Research Database (Denmark)

    Thomsen, René


    Molecular docking of biomolecules is becoming an increasingly important part in the process of developing new drugs, as well as searching compound databases for promising drug candidates. The docking of ligands to proteins can be formulated as an optimization problem where the task is to find...

  18. Receptor Binding Ligands to Image Infection

    NARCIS (Netherlands)

    Chianelli, M.; Boerman, O. C.; Malviya, G.; Galli, F.; Oyen, W. J. G.; Signore, A.


    The current gold standard for imaging infection is radiolabeled white blood cells. For reasons of safety, simplicity and cost, it would be desirable to have a receptor-specific ligand that could be used for imaging infection and that would allow a differential diagnosis between sterile and septic in

  19. Ligand iron catalysts for selective hydrogenation (United States)

    Casey, Charles P.; Guan, Hairong


    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  20. Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal-organic complexes: molybdenum-tetracarbonyl spirooxazine complexes. (United States)

    Paquette, Michelle M; Patrick, Brian O; Frank, Natia L


    The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.

  1. Magnesium Diboride Current Leads (United States)

    Panek, John


    A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.

  2. Identifying Protein Stabilizing Ligands Using GroEL (United States)

    Naik, Subhashchandra; Haque, Inamul; Degner, Nick; Kornilayev, Boris; Bomhoff, Gregory; Hodges, Jacob; Khorassani, Ara-Azad; Katayama, Hiroo; Morris, Jill; Kelly, Jeffery; Seed, John; Fisher, Mark T.


    Over the past five years, it has become increasingly apparent to researchers that the initial promise and excitement of using gene replacement therapies to ameliorate folding diseases are still far from being broadly or easily applicable. Because a large number of human diseases are protein folding diseases (~30 to 50%), many researchers now realize that more directed approaches to target and reverse the fundamental misfolding reactions preceding disease are highly feasible and offer the potential of developing more targeted drug therapies. This is also true with a large number of so called “orphan protein folding diseases”. The development of a broad-based general screening array method using the chaperonin as a detection platform will enable us to screen large chemical combinatorial libraries for specific ligands against the elusive transient, primary reactions that often lead to protein misfolding. This development will provide a highly desirable tool for the pharmaceutical, academic and medical professions. PMID:19802819

  3. Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer (United States)


    Award Number: W81XWH-12-1-0288 TITLE: Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

  4. Fusion of ligand-coated nanoparticles with lipid bilayers: effect of ligand flexibility. (United States)

    Van Lehn, Reid C; Alexander-Katz, Alfredo


    Amphiphilic, monolayer-protected gold nanoparticles (AuNPs) have recently been shown to insert into and fuse with lipid bilayers, driven by the hydrophobic effect. The inserted transmembrane state is stabilized by the "snorkeling" of charged ligand end groups out of the bilayer interior. This snorkeling process is facilitated by the backbone flexibility of the alkanethiol ligands that comprise the monolayer. In this work, we show that fusion is favorable even in the absence of backbone flexibility by modeling the ligands as rigid rods. For rigid ligands, snorkeling is still accommodated by rotations of the ligand with respect to the grafting point, but the process incurs a more significant free energy penalty than if the backbone were fully flexible. We show that the rigid rod model predicts similar trends in the free energy change for insertion as the previous flexible model when the size of the AuNPs is varied. However, the rigidity of the ligand backbone reduces the overall magnitude of the free energy change compared to that of the flexible model. These results thus generalize previous findings to systems with hindered backbone flexibility due to either structural constraints or low temperature.

  5. Leading healthcare in complexity. (United States)

    Cohn, Jeffrey


    Healthcare institutions and providers are in complexity. Networks of interconnections from relationships and technology create conditions in which interdependencies and non-linear dynamics lead to surprising, unpredictable outcomes. Previous effective approaches to leadership, focusing on top-down bureaucratic methods, are no longer effective. Leading in complexity requires leaders to accept the complexity, create an adaptive space in which innovation and creativity can flourish and then integrate the successful practices that emerge into the formal organizational structure. Several methods for doing adaptive space work will be discussed. Readers will be able to contrast traditional leadership approaches with leading in complexity. They will learn new behaviours that are required of complexity leaders, along with challenges they will face, often from other leaders within the organization.

  6. Open-shell organometallics: reactivity at the ligand

    NARCIS (Netherlands)

    W.I. Dzik; B. de Bruin


    The purpose of this review is to show that (cooperative) ligand radical reactivity can be effectively employed in synthetic organometallic chemistry and catalysis to achieve selectivity in radical-type transformations. The ‘redox non-innocence’ of ligands, and the controlled reactivity of ‘ligand ra

  7. Triple Bioaffinity Mass Spectrometry Concept for Thyroid Transporter Ligands

    NARCIS (Netherlands)

    Aqai, P.; Fryganas, C.; Mizuguchi, M.; Haasnoot, W.; Nielen, M.W.F.


    For the analysis of thyroid transporter ligands, a triple bioaffinity mass spectrometry (BioMS) concept was developed, with the aim at three different analytical objectives: rapid screening of any ligand, confirmation of known ligands in accordance with legislative requirements, and identification o

  8. Relational Perspectives on Leading

    DEFF Research Database (Denmark)

    Larsen, Mette Vinther; Rasmussen, Jørgen Gulddahl


    Relational Perspectives on Leading discusses leadership from a relational and social constructionism perspective as practiced on an everyday basis between people. The book pursues a fast growing, practice-based approach - particularly within the Anglo-Saxon parts of the world - to organization...... studies and organizational phenomena....

  9. Change, Lead, Succeed (United States)

    Munger, Linda; von Frank, Valerie


    Redefine leadership in your school, and create capacity through school leadership teams that successfully coordinate professional learning. "Change, Lead, Succeed" shows school leaders and teachers in leadership roles what they need to know to effectively create a culture for change. Find out what distinguishes a school leadership team from other…

  10. lead glass brick

    CERN Multimedia

    As well as accelerators to boost particles up to high energy, physicists need detectors to see what happens when those particles collide. This lead glass block is part of a CERN detector called OPAL. OPAL uses some 12 000 blocks of glass like this to measure particle energies.

  11. Structure of a glycomimetic ligand in the carbohydrate recognition domain of C-type lectin DC-SIGN. Structural requirements for selectivity and ligand design. (United States)

    Thépaut, Michel; Guzzi, Cinzia; Sutkeviciute, Ieva; Sattin, Sara; Ribeiro-Viana, Renato; Varga, Norbert; Chabrol, Eric; Rojo, Javier; Bernardi, Anna; Angulo, Jesus; Nieto, Pedro M; Fieschi, Franck


    In genital mucosa, different fates are described for HIV according to the subtype of dendritic cells (DCs) involved in its recognition. This notably depends on the C-type lectin receptor, langerin or DC-SIGN, involved in gp120 interaction. Langerin blocks HIV transmission by its internalization in specific organelles of Langerhans cells. On the contrary, DC-SIGN enhances HIV trans-infection of T lymphocytes. Thus, approaches aiming to inhibit DC-SIGN, without blocking langerin, represent attractive anti-HIV strategies. We previously demonstrated that dendrons bearing multiple copies of glycomimetic compounds were able to block DC-SIGN-dependent HIV infection in cervical explant models. Optimization of such ligand requires detailed characterization of its binding mode. In the present work, we determined the first high-resolution structure of a glycomimetic/DC-SIGN complex by X-ray crystallography. This glycomimetic, pseudo-1,2-mannobioside, shares shape and conformational properties with Manα1-2Man, its natural counterpart. However, it uses the binding epitope previously described for Lewis X, a ligand specific for DC-SIGN among the C-type lectin family. Thus, selectivity gain for DC-SIGN versus langerin is observed with pseudo-1,2-mannobioside as shown by surface plasmon resonance analysis. In parallel, ligand binding was also analyzed by TR-NOESY and STD NMR experiments, combined with the CORCEMA-ST protocol. These studies demonstrate that the complex, defined by X-ray crystallography, represents the unique binding mode of this ligand as opposed to the several binding orientations described for the natural ligand. This exclusive binding mode and its selective interaction properties position this glycomimetic as a good lead compound for rational improvement based on a structurally driven approach.

  12. Molecular Dynamics Investigation of gluazo, a Photo-Switchable Ligand for the Glutamate Receptor GluK2.

    Directory of Open Access Journals (Sweden)

    Yanan Guo

    Full Text Available Photochromic ligands (PCLs, defined as photoswitchable molecules that are able to endow native receptors with a sensitivity towards light, have become a promising photopharmacological tool for various applications in biology. In general, PCLs consist of a ligand of the target receptor covalently linked to an azobenzene, which can be reversibly switched between two configurations upon light illumination. Gluazo, as a PCL that targets excitatory amino acid receptors, in its dark-adapted trans iso-form was characterized to be a partial agonist of the kainate glutamate receptor GluK2. Application of UV light leads to the formation of the cis form, with remarkedly reduced affinity towards GluK2. The mechanism of the change of ligand affinity induced by the photoisomerization was unresolved. The presented computational study explains how the isomerization of such a PCL affects the structural changes in the target receptor that lead to its activation.

  13. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony. (United States)

    Jones, J Stuart; Gabbaï, François P


    transition metals. Although coordinated to a metal, the antimony centers in these complexes retain residual Lewis acidity, as evidenced by their ability to participate in anion binding. Anion binding events at the antimony center have been shown by structural, spectroscopic, and theoretical studies to perturb the antimony-transition metal interaction and in some cases to trigger reactivity at the metal center. Coordinated Sb(III) centers in polydentate ligands have also been found to readily undergo two-electron oxidation, generating strongly Lewis acidic Sb(V) centers in the coordination sphere of the metal. Theoretical studies suggest that oxidation of the coordinated antimony center induces an umpolung of the antimony-metal bond, resulting in depletion of electron density at the metal center. In addition to elucidating the fundamental coordination and redox chemistry of antimony-containing ambiphilic ligands, our work has demonstrated that these unusual behaviors show promise for use in a variety of applications. The ability of coordinated antimony centers to bind anions has been exploited for sensing applications, in which anion coordination at antimony leads to a colorimetric response via a change in the geometry about the metal center. In addition, the capacity of antimony Lewis acids to modulate the electron density of coordinated metals has proved to be key in facilitating photochemical activation of M-X bonds as well as antimony-centered redox-controlled catalysis.

  14. Tren centered tris-macrocycles as polytopic ligands for Cu(II) and Ni(II). (United States)

    Siegfried, Liselotte; McMahon, C Niamh; Kaden, Thomas A; Palivan, Cornelia; Gescheidt, Georg


    Two novel symmetric polytopic ligands L(1) and L(2) have been synthesized. They are composed of three 1,4,8,11-tetraazacyclotetradecane macrocycles which are connected to a central tren moiety via an ethylene and a trimethylene bridge, respectively. The complexation potential and the speciation diagrams of L(1) and L(2) towards Cu(2+) and Ni(2+) were determined by spectrophotometric and potentiometric titrations. Insight into the geometry of the Cu(2+) complexes is provided by UV-VIS and EPR spectroscopy. The simplified ligands L(3) and L(4) are utilized as references for an aminoethyl- and a tren-substituted tetraaza macrocycle to help assign the EPR spectra of the polytopic ligands L(1) and L(2). At a metal-to-ligand ratio of 3 : 1, the metal cations are preferentially bound to the tetraaza macrocycles of L(1) and L(2) in a square planar geometry. At high pH values, a nitrogen atom of the tren moiety in L(1) serves as an additional ligand in an axial position leading to a square pyramidal coordination around Cu(2+), whereas in L(2) no such geometry change is observed. At a metal-to-ligand ratio of 4 : 1, the additional metal cation resides in the central tren moiety of L(1) and L(2). However, in contrast to the typical trigonal bipyramidal geometry found in the [Cutren](2+) complex, the fourth Cu(2+) has a square pyramidal coordination caused by the interaction with the Cu(2+) cations in the macrocycles (as evidenced by EPR spectra). Since the sequence of metal complexation is such that the first three metal ions always bind to the three macrocycles of L(1) and L(2) and the fourth to the tren unit, it is possible to prepare heteronuclear complexes such as [Cu(3)NiL](8+) or [Ni(3)CuL](8+), which can be unambiguously identified by their spectral properties.

  15. Identification and functional analysis of ligands for natural killer cell activating receptors in colon carcinoma. (United States)

    Zhang, Zhang; Su, Tao; He, Liang; Wang, Hongtao; Ji, Gang; Liu, Xiaonan; Zhang, Yun; Dong, Guanglong


    Natural killer (NK) cells play important roles in the immune defense against tumor cells. The function of NK cells is determined by a balance between activating and inhibitory signals. DNAX accessory molecule-1 (DNAM-1) and NK group 2 member D (NKG2D) are major NK cell activating receptors, which transduce activating signals after binding their ligands CD155, CD112 and major histocompatibility complex class I-related chains A and B (MICA/B). However, the expression and functions of these ligands in colon carcinoma are still elusive. Here, we show the higher expression of CD155, CD112 and MICA/B in colon carcinoma tissues, although no correlations between the ligands expression and patient clinicopathological parameters were found. The subsequent cytotoxicity assay indicated that NK cells effectively kill colon carcinoma cells. Functional blocking of these ligands and/or receptors with antibodies led to significant inhibition of NK cell cytotoxicity. Importantly, expression of DNAM-1 and NKG2D was reduced in NK cells of colon cancer patients, and this reduction could directly suppress the activation of NK cells. Moreover, colon cancer patients have higher serum concentrations of sCD155 and sMICA/B (soluble ligands, secreted or shed from cells) than those in healthy donors (sCD155, 127.82 ± 44.12 vs. 63.67 ± 22.30 ng/ml; sMICA, 331.51 ± 65.23 vs. 246.74 ± 20.76 pg/ml; and sMICB, 349.42 ± 81.69 vs. 52.61 ± 17.56 pg/ml). The up-regulation of these soluble ligands may down-regulate DNAM-1 and NKG2D on NK cells, ultimately leading to the inhibition of NK cytotoxicity. Colon cancer might be a promising target for NK cell-based adoptive immunotherapy.

  16. Crystal structure of di-μ-chlorido-bis[dichloridobis(methanol-κOiridium(III] dihydrate: a surprisingly simple chloridoiridium(III dinuclear complex with methanol ligands

    Directory of Open Access Journals (Sweden)

    Joseph S. Merola


    Full Text Available The reaction between IrCl3·xH2O in methanol led to the formation of small amounts of the title compound, [Ir2Cl6(CH3OH4]·2H2O, which consists of two IrCl4O2 octahedra sharing an edge via chloride bridges. The molecule lies across an inversion center. Each octahedron can be envisioned as being comprised of four chloride ligands in the equatorial plane with methanol ligands in the axial positions. A lattice water molecule is strongly hydrogen-bonded to the coordinating methanol ligands and weak interactions with coordinating chloride ligands lead to the formation of a three-dimensional network. This is a surprising structure given that, while many reactions of iridium chloride hydrate are carried out in alcoholic solvents, especially methanol and ethanol, this is the first structure of a chloridoiridium compound with only methanol ligands.

  17. Leaching behavior of butanedionedioxime as gold ligand

    Institute of Scientific and Technical Information of China (English)


    Butanedionedioxime, a small organic compound with low-toxicity and good chemical stability, has been proposed as an effective gold ligand in gold extraction. The result of experiment shows that: 1) highly effective gold lixiviantcan be composed of butanedionedioxime (BDM) with many oxidants, especially potassium permanganate; 2)in the leaching system of BD M- K M nO4 the suitable Ox/Lig(ratio of oxidants to gold ligands) tange is 0.20 ~ 0. 50, optimally 0.25 ~0.45 at the pH range of 7 ~ 11; 3) BDM-KMnO4 extraction of gold from an oxide ore is similar to cyanide(cyanide-O2)extraction, but the leaching rate of gold by BDM-KMnO4 is faster than that by cyanide-O2; 4) gold may readily be recov-ered by carbon adsorption and zinc precipitation

  18. Glycomimetic ligands for the human asialoglycoprotein receptor. (United States)

    Mamidyala, Sreeman K; Dutta, Sanjay; Chrunyk, Boris A; Préville, Cathy; Wang, Hong; Withka, Jane M; McColl, Alexander; Subashi, Timothy A; Hawrylik, Steven J; Griffor, Matthew C; Kim, Sung; Pfefferkorn, Jeffrey A; Price, David A; Menhaji-Klotz, Elnaz; Mascitti, Vincent; Finn, M G


    The asialoglycoprotein receptor (ASGPR) is a high-capacity galactose-binding receptor expressed on hepatocytes that binds its native substrates with low affinity. More potent ligands are of interest for hepatic delivery of therapeutic agents. We report several classes of galactosyl analogues with varied substitution at the anomeric, C2-, C5-, and C6-positions. Significant increases in binding affinity were noted for several trifluoromethylacetamide derivatives without covalent attachment to the protein. A variety of new ligands were obtained with affinity for ASGPR as good as or better than that of the parent N-acetylgalactosamine, showing that modification on either side of the key C3,C4-diol moiety is well tolerated, consistent with previous models of a shallow binding pocket. The galactosyl pyranose motif therefore offers many opportunities for the attachment of other functional units or payloads while retaining low-micromolar or better affinity for the ASGPR.

  19. Glucocorticoid-induced tumour necrosis factor receptor (GITR) and its ligand (GITRL) in atopic dermatitis

    DEFF Research Database (Denmark)

    Baumgartner-Nielsen, Jane; Vestergaard, Christian; Thestrup-Pedersen, K.


    The glucocorticoid-induced tumour necrosis factor receptor-related gene (GITR) is expressed on regulatory T-cells (Treg), which are CD4+CD25+ lymphocytes. Binding of the GITR-ligand (GITRL) leads to downregulation of the regulatory function of Tregs. Patients suffering from a defect in their Treg......-cells are localized in the vicinity of GITRL-expressing cells in atopic dermatitis skin, the GITR/GITRL interaction may serve to perpetuate the inflammation locally....

  20. Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding (United States)

    Huang, Renjie; Bonnichon, Arnaud; Claridge, Timothy D. W.; Leung, Ivanhoe K. H.


    WaterLOGSY is a popular ligand-observed NMR technique to screen for protein-ligand interactions, yet when applied to measure dissociation constants (KD) through ligand titration, the results were found to be strongly dependent on sample conditions. Herein, we show that accurate KDs can be obtained by waterLOGSY with optimised experimental setup.

  1. The ligands of CXCR4 in vascularization


    Tuchscheerer, Nancy


    The formation of a functional and integrated vascular network is a basic process in the growth and maintenance of tissues and can be established by two forms of blood vessel growth in adults: angiogenesis and arteriogenesis. In this study, the ligands of the chemokine receptor CXCR4 and its role in angiogenesis (represented by the experimental myocardial infarction) and arteriogenesis (represented by the murine hind limb ischemia model) was investigated. The first approach identified the CXCL...

  2. galectin-3 ligand — EDRN Public Portal (United States)

    Galectin-3 is an endogenous lectin that binds glycan epitopes of cell membrane and some extracellular glycoproteins such as integrins and laminin. Galectin-3 is involved in several biological activities including regulation of cellular cycle, modulation of adhesion and tumor progression and metastasis. Serum galectin-3 ligands have been shown to modulate the immune reaction against tumors and viruses and their level increases in sera of several neoplastic diseases.

  3. Selective oxoanion separation using a tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin


    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  4. Dockomatic - automated ligand creation and docking


    Hampikian Greg; McDougal Owen M; Jacob Reed B; Bullock Casey W; Andersen Tim


    Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user frie...

  5. RAGE and its ligands in retinal disease. (United States)

    Barile, Gaetano R; Schmidt, Ann M


    RAGE, the receptor for advanced glycation endproducts (AGEs), is a multiligand signal transduction receptor of the immunoglobulin superfamily of cell surface molecules that has been implicated in the pathogenesis of diabetic complications, neurodegenerative diseases, inflammatory disorders, and cancer. These diverse biologic disorders reflect the multiplicity of ligands capable of cellular interaction via RAGE that include, in addition to AGEs, amyloid-beta (Abeta) peptide, the S100/calgranulin family of proinflammatory cytokines, and amphoterin, a member of the High Mobility Group Box (HMGB) DNA-binding proteins. In the retina, RAGE expression is present in neural cells, the vasculature, and RPE cells, and it has also been detected in pathologic cellular retinal responses including epiretinal and neovascular membrane formation. Ligands for RAGE, in particular AGEs, have emerged as relevant to the pathogenesis of diabetic retinopathy and age-related macular disease. While the understanding of RAGE and its role in retinal dysfunction with aging, diabetes mellitus, and/or activation of pro-inflammatory pathways is less complete compared to other organ systems, increasing evidence indicates that RAGE can initiate and sustain significant cellular perturbations in the inner and outer retina. For these reasons, antagonism of RAGE interactions with its ligands may be a worthwhile therapeutic target in such seemingly disparate, visually threatening retinal diseases as diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinopathy.

  6. EGF receptor ligands: recent advances [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Bhuminder Singh


    Full Text Available Seven ligands bind to and activate the mammalian epidermal growth factor (EGF receptor (EGFR/ERBB1/HER1: EGF, transforming growth factor-alpha (TGFA, heparin-binding EGF-like growth factor (HBEGF, betacellulin (BTC, amphiregulin (AREG, epiregulin (EREG, and epigen (EPGN. Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.


    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁


    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  8. Leading Generation Y (United States)


    ensure the success of their child, failure is not often experienced. These successes and the ease of childhood lead to not only confidence but an...Messaging, chatting on the cell phone and working on homework is a common place scene for teens and college students. “The level of Gen Yers entering the workforce with unrealistic expectations and a sense of entitlement. Barbara Dwyer, CEO of the Job Journey, states that

  9. Superconductivity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Boorse, H.A.; Cook, D.B.; Zemansky, W.M.


    Numerous determinations of the zero-field transition temperature of lead have been made. All of these observations except that of Daunt were made by the direct measurement of electrical resistance. Daunt`s method involved the shielding effect of persistent currents in a hollow cylinder. In the authors work on columbium to be described in a forthcoming paper an a.c. induction method was used for the measurement of superconducting transitions. The superconductor was mounted as a cylindrical core of a coil which functioned as the secondary of a mutual inductance. The primary coil was actuated by an oscillator which provided a maximum a.c. field within the secondary of 1.5 oersteds at a frequency of 1000 cycles per second. The secondary e.m.f. which was dependent for its magnitude on the permeability of the core was amplified, rectifie, and observed on a recording potentiometer. During the application of this method to the study of columbium it appeared that a further check on the zero-field transition temperature of lead would be worth while especially if agreement between results for very pure samples could be obtained using this method. Such result would help in establishing the lead transition temperature as a reasonably reproducible reference point in the region between 4 deg and 10 deg K.

  10. Synthesis, crystal structure and luminescence properties of acenaphthene benzohydrazide based ligand and its zinc(II) complex (United States)

    Kumar, Mukesh; Roy, Soumyabrata; Faizi, Md. Serajul Haque; Kumar, Santosh; Singh, Mantu Kumar; Kishor, Shyam; Peter, Sebastian C.; John, Rohith P.


    The complex compound of zinc(II) supported by (Z)-2-hydroxy-N‧-(1-oxoacenaphthylen-2(1H) ylidene)benzohydrazide ligand (H2L1) has been reported and discussed. The reaction of zinc acetate with H2L1 ligand leads to the formation of a mononuclear zinc(ii) complex, [Zn(HL1)2H2O]. The ligand, H2L1 has been characterized by elemental analysis, 1H, 13C and 1Hsbnd COSY -NMR, IR and ESI-MS, while the complex was characterized by elemental analysis, IR, and ESI-MS. The crystal structures of the free ligand H2L1 and the complex have also been determined by single crystal X-ray diffraction. The ligand chelates with metal centre with a nitrogen atom of imino moiety and an oxygen atom of enolic group. The complex shows distorted trigonal bipyramidal geometry around the metal centre with oxygen atoms lying in the equatorial plane and imino nitrogen atoms along the axial direction. The DFT/TD-DFT calculations were performed on both the ligand and its zinc complex to get insight into the structural, electronic and optical properties. The photoluminescence, fluorescence properties of the complex have been investigated.

  11. The Recognition of Identical Ligands by Unrelated Proteins. (United States)

    Barelier, Sarah; Sterling, Teague; O'Meara, Matthew J; Shoichet, Brian K


    The binding of drugs and reagents to off-targets is well-known. Whereas many off-targets are related to the primary target by sequence and fold, many ligands bind to unrelated pairs of proteins, and these are harder to anticipate. If the binding site in the off-target can be related to that of the primary target, this challenge resolves into aligning the two pockets. However, other cases are possible: the ligand might interact with entirely different residues and environments in the off-target, or wholly different ligand atoms may be implicated in the two complexes. To investigate these scenarios at atomic resolution, the structures of 59 ligands in 116 complexes (62 pairs in total), where the protein pairs were unrelated by fold but bound an identical ligand, were examined. In almost half of the pairs, the ligand interacted with unrelated residues in the two proteins (29 pairs), and in 14 of the pairs wholly different ligand moieties were implicated in each complex. Even in those 19 pairs of complexes that presented similar environments to the ligand, ligand superposition rarely resulted in the overlap of related residues. There appears to be no single pattern-matching "code" for identifying binding sites in unrelated proteins that bind identical ligands, though modeling suggests that there might be a limited number of different patterns that suffice to recognize different ligand functional groups.

  12. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands. (United States)

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés


    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  13. The impact of Metal-Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer

    NARCIS (Netherlands)

    Filonenko, G.A.; Conley, M.P.; Copéret, C.; Lutz, M.; Hensen, E.J.M.; Pidko, E.A.


    The metal–ligand cooperative activation of CO2 with pyridine-based ruthenium PNP pincer catalysts leads to pronounced inhibition of the activity in the catalytic CO2 hydrogenation to formic acid. The addition of water restores catalytic performance by activating alternative reaction pathways and lea

  14. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. (United States)

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng


    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.

  15. Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies. (United States)

    Kämper, Andreas; Apostolakis, Joannis; Rarey, Matthias; Marian, Christel M; Lengauer, Thomas


    The prediction of the structure of host-guest complexes is one of the most challenging problems in supramolecular chemistry. Usual procedures for docking of ligands into receptors do not take full conformational freedom of the host molecule into account. We describe and apply a new docking approach which performs a conformational sampling of the host and then sequentially docks the ligand into all receptor conformers using the incremental construction technique of the FlexX software platform. The applicability of this approach is validated on a set of host-guest complexes with known crystal structure. Moreover, we demonstrate that due to the interchangeability of the roles of host and guest, the docking process can be inverted. In this inverse docking mode, the receptor molecule is docked around its ligand. For all investigated test cases, the predicted structures are in good agreement with the experiment for both normal (forward) and inverse docking. Since the ligand is often smaller than the receptor and, thus, its conformational space is more restricted, the inverse docking approach leads in most cases to considerable speed-up. By having the choice between two alternative docking directions, the application range of the method is significantly extended. Finally, an important result of this study is the suitability of the simple energy function used here for structure prediction of complexes in organic media.

  16. Synthesis, Structures and Properties of Cobalt Thiocyanate Coordination Compounds with 4-(hydroxymethylpyridine as Co-ligand

    Directory of Open Access Journals (Sweden)

    Stefan Suckert


    Full Text Available Reaction of Co(NCS2 with 4-(hydroxymethylpyridine (hmpy leads to the formation of six new coordination compounds with the composition [Co(NCS2(hmpy4] (1, [Co(NCS2(hmpy4] × H2O (1-H2O, [Co(NCS2(hmpy2(EtOH2] (2, [Co(NCS2(hmpy2(H2O2] (3, [Co(NCS2(hmpy2]n∙4 H2O (4 and [Co(NCS2(hmpy2]n (5. They were characterized by single crystal and powder X-ray diffraction experiments, thermal and elemental analysis, IR and magnetic measurements. Compound 1 and 1-H2O form discrete complexes, in which the Co(II cations are octahedrally coordinated by two terminal thiocyanato anions and four 4-(hydroxymethylpyridine ligands. Discrete complexes were also observed for compounds 2 and 3 where two of the hmpy ligands were substituted by solvent, either water (3 or ethanol (2. In contrast, in compounds 4 and 5, the Co(II cations are linked into chains by bridging 4-(hydroxymethylpyridine ligands. The phase purity was checked with X-ray powder diffraction. Thermogravimetric measurements showed that compound 3 transforms into 5 upon heating, whereas the back transformation occurs upon resolvation. Magnetic measurements did not show any magnetic exchange via the hmpy ligand for compound 5.

  17. Ligand Binding Modulates the Structural Dynamics and Compactness of the Major Birch Pollen Allergen (United States)

    Grutsch, Sarina; Fuchs, Julian E.; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R.; Tollinger, Martin


    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens. PMID:25517162

  18. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W


    indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on alpha1 glycine receptors to compare changes mediated by the agonist, glycine......, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...

  19. Identification of CB1/CB2 ligands from Zanthoxylum bungeanum. (United States)

    Dossou, Katina S S; Devkota, Krishna P; Morton, Cynthia; Egan, Josephine M; Lu, Guanghua; Beutler, John A; Moaddel, Ruin


    In order to study cannabinoid receptor ligands, a novel plate-based assay was developed previously to measure internalization of CB1/CB2 receptors by determining the change in the intracellular levels of the radiolabeled agonists. This plate-based assay was also used for screening against complex matrices, specifically, in the present study screening for CB1/CB2 receptor activity of extracts for several species of the plant genus Zanthoxylum. The objective of this screen was to identify novel antagonists of the CB1 receptor, which simultaneously displayed agonist activity against the CB2 receptor, since compounds matching this criterion could be potential candidates for the treatment of type-1 diabetes. As a result, two Z. bungeanum extracts were deemed active, leading to the identification of eight compounds, of which compound 7 [(2E,4E,8E,10E,12E)-N-isobutyl-2,4,8,10,12-tetradecapentaenamide, γ-sanshool] was obtained as a promising lead compound.

  20. Identification of Novel Smoothened Ligands Using Structure-Based Docking (United States)

    Torosyan, Hayarpi; Parathaman, Pranavan; Irwin, John J.; Shoichet, Brian K.


    The seven transmembrane protein Smoothened is required for Hedgehog signaling during embryonic development and adult tissue homeostasis. Inappropriate activation of the Hedgehog signalling pathway leads to cancers such as basal cell carcinoma and medulloblastoma, and Smoothened inhibitors are now available clinically to treat these diseases. However, resistance to these inhibitors rapidly develops thereby limiting their efficacy. The determination of Smoothened crystal structures enables structure-based discovery of new ligands with new chemotypes that will be critical to combat resistance. In this study, we docked 3.2 million available, lead-like molecules against Smoothened, looking for those with high physical complementarity to its structure; this represents the first such campaign against the class Frizzled G-protein coupled receptor family. Twenty-one high-ranking compounds were selected for experimental testing, and four, representing three different chemotypes, were identified to antagonize Smoothened with IC50 values better than 50 μM. A screen for analogs revealed another six molecules, with IC50 values in the low micromolar range. Importantly, one of the most active of the new antagonists continued to be efficacious at the D473H mutant of Smoothened, which confers clinical resistance to the antagonist vismodegib in cancer treatment. PMID:27490099

  1. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  2. Leading change: 2--planning. (United States)

    Kerridge, Joanna

    National initiatives have outlined the importance of involving frontline staff in service improvement, and the ability to influence and manage change has been identified as an essential skill for delivering new models of care. Nurses often have to take the lead in managing change in clinical practice. The second in a three-part series is designed to help nurses at all levels develop the knowledge and skills to function as change agents within their organisations. This article focuses on planning the change and dealing with resistance.

  3. Optimization leads to symmetry

    Institute of Scientific and Technical Information of China (English)

    Chenghong WANG; Yuqian GUO; Daizhan CHENG


    The science of complexity studies the behavior and properties of complex systems in nature and human society.Particular interest has been put on their certain simple common properties.Symmetry is one of such properties.Symmetric phenomena can be found in many complex systems.The purpose of this paper is to reveal the internal reason of the symmetry.Using some physical systems and geometric objects,the paper shows that many symmetries are caused by optimization under certain criteria.It has also been revealed that an evolutional process may lead to symmetry.

  4. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  5. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange (United States)


    topologies with porous architectures. They have potential to be applied to molecular sieving , storage, ion exchange, heterogeneous catalysis, sensor...the Zn ions: carbon , gray; oxygen, red; and nitrogen, blue. (b) 3MPN, (c) NB, (d) NDC, and (e) DPNI d and e from Bae et al. 4 (used with... molecular ligands, leading to robust open framework structures that can accommodate various guest molecules. Organic ligands in the MOFs make the structure

  6. Evaluation of small ligand-protein interaction by ligation reaction with DNA-modified ligand. (United States)

    Sugita, Rie; Mie, Masayasu; Funabashi, Hisakage; Kobatake, Eiry


    A method for the evaluation of interactions between protein and ligand using DNA-modified ligands, including signal enhancement of the DNA ligation reactions, is described. For proof of principle, a DNA probe modified by biotin was used. Two DNA probes were prepared with complementary sticky-ends. While one DNA probe was modified at the 5'-end of the sticky-end, the other was not modified. The probes could be ligated together by T4 DNA ligase along the strand without biotin modification. However, in the presence of streptavidin or anti-biotin Fab, the ligation reaction joining the two probes could not occur on either strand.

  7. Landscape of protein-small ligand binding modes. (United States)

    Kasahara, Kota; Kinoshita, Kengo


    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  8. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion. (United States)

    Gkeka, Paraskevi; Angelikopoulos, Panagiotis; Sarkisov, Lev; Cournia, Zoe


    Intracellular uptake of nanoparticles (NPs) may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained Molecular Dynamics (MD) simulations are performed to investigate the partitioning of an anionic, ligand-decorated NP in model membranes containing dipalmitoylphosphatidylcholine (DPPC) phospholipids and different concentrations of cholesterol. Spontaneous fusion and translocation of the anionic NP is not observed in any of the 10-µs unbiased MD simulations, indicating that longer timescales may be required for such phenomena to occur. This picture is supported by the free energy analysis, revealing a considerable free energy barrier for NP translocation across the lipid bilayer. 5-µs unbiased MD simulations with the NP inserted in the bilayer core reveal that the hydrophobic and hydrophilic ligands of the NP surface rearrange to form optimal contacts with the lipid bilayer, leading to the so-called snorkeling effect. Inside cholesterol-containing bilayers, the NP induces rearrangement of the structure of the lipid bilayer in its vicinity from the liquid-ordered to the liquid phase spanning a distance almost twice its core radius (8-10 nm). Based on the physical insights obtained in this study, we propose a mechanism of cellular anionic NP partitioning, which requires structural rearrangements of both the NP and the bilayer, and conclude that the translocation of anionic NPs through cholesterol-rich membranes must be accompanied by formation of cholesterol-lean regions in the proximity of NPs.

  9. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.

    Directory of Open Access Journals (Sweden)

    Paraskevi Gkeka


    Full Text Available Intracellular uptake of nanoparticles (NPs may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained Molecular Dynamics (MD simulations are performed to investigate the partitioning of an anionic, ligand-decorated NP in model membranes containing dipalmitoylphosphatidylcholine (DPPC phospholipids and different concentrations of cholesterol. Spontaneous fusion and translocation of the anionic NP is not observed in any of the 10-µs unbiased MD simulations, indicating that longer timescales may be required for such phenomena to occur. This picture is supported by the free energy analysis, revealing a considerable free energy barrier for NP translocation across the lipid bilayer. 5-µs unbiased MD simulations with the NP inserted in the bilayer core reveal that the hydrophobic and hydrophilic ligands of the NP surface rearrange to form optimal contacts with the lipid bilayer, leading to the so-called snorkeling effect. Inside cholesterol-containing bilayers, the NP induces rearrangement of the structure of the lipid bilayer in its vicinity from the liquid-ordered to the liquid phase spanning a distance almost twice its core radius (8-10 nm. Based on the physical insights obtained in this study, we propose a mechanism of cellular anionic NP partitioning, which requires structural rearrangements of both the NP and the bilayer, and conclude that the translocation of anionic NPs through cholesterol-rich membranes must be accompanied by formation of cholesterol-lean regions in the proximity of NPs.

  10. Computer-aided design of GPCR ligands. (United States)

    Gutiérrez-de-Terán, Hugo; Keränen, Henrik; Azuaje, Jhonny; Rodríguez, David; Åqvist, Johan; Sotelo, Eddy


    The recent availability of several GPCR crystal structures now contributes decisively to the perspective of structure-based ligand design. In this context, computational approaches are extremely helpful, particularly if properly integrated in drug design projects with cooperation between computational and medicinal chemistry teams. Here, we present the pipelines used in one such project, devoted to the design of novel potent and selective antagonists for the different adenosine receptors. The details of the computational strategies are described, and particular attention is given to explain how these procedures can effectively guide the synthesis of novel chemical entities.

  11. Polydentate cyclotriphosphazene ligands: Design, synthesis and bioactivity

    Institute of Scientific and Technical Information of China (English)

    Le Wang; Yong Ye; Shang Bin Zhong; Yu Fen Zhao


    Five multinuelear cyclotriphosphazene ligands were synthesized and tested for their cleavage activities to plasmid DNA. All of these new compounds were confirmed by MS, 1H NMR, 31p NMR, 13C NMR and IR. Preliminary studies on the cleavage of pUC19 DNA in the presence of metal complexes were performed. The results revealed that these complexes could act as powerful catalysts under physiological conditions. The complexes 3b + Cu can effectively cleave DNA to nicked form, giving hydrolysis rate constant of 0.08/h under physiological conditions. An acid-base catalyzed DNA phosphate-diester hydrolysis mechanism was also proposed.

  12. Thermal melting studies of ligand DNA interactions. (United States)

    Guédin, Aurore; Lacroix, Laurent; Mergny, Jean-Louis


    A simple thermal melting experiment may be used to demonstrate the stabilization of a given structure by a ligand (usually a small molecule, sometimes a peptide). Preparation of the sample is straightforward, and the experiment itself requires an inexpensive apparatus. Furthermore, reasonably low amounts of sample are required. A qualitative analysis of the data is simple: An increase in the melting temperature (T(m)) indicates preferential binding to the folded form as compared to the unfolded form. However, it is perilous to derive an affinity constant from an increase in T(m) as other factors play a role.

  13. Cofilin takes the lead. (United States)

    DesMarais, Vera; Ghosh, Mousumi; Eddy, Robert; Condeelis, John


    Cofilin has emerged as a key regulator of actin dynamics at the leading edge of motile cells. Through its actin-severing activity, it creates new actin barbed ends for polymerization and also depolymerizes old actin filaments. Its function is tightly regulated in the cell. Spatially, its activity is restricted by other actin-binding proteins, such as tropomyosin, which compete for accessibility of actin filament populations in different regions of the cell. At the molecular level, it is regulated by phosphorylation, pH and phosphatidylinositol (4,5)-bisphosphate binding downstream of signaling cascades. In addition, it also appears to be regulated by interactions with 14-3-3zeta and cyclase-associated protein. In vivo, cofilin acts synergistically with the Arp2/3 complex to amplify local actin polymerization responses upon cell stimulation, which gives it a central role in setting the direction of motility in crawling cells.

  14. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde


    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  15. The autoxidation activity of new mixed-ligand manganese and iron complexes with tripodal ligands

    NARCIS (Netherlands)

    van Gorkum, R.; Berding, J.; Tooke, D.M.; Spek, A.L.; Reedijk, J.; Bouwman, E.


    The activity of new manganese and iron complexes of dianionic tripodal ligands in the autoxidation of ethyl linoleate (EL) is reported. EL consumption rates were monitored using time-resolved FTIR and the degree of oligomerisation was determined by SEC. Almost all complexes showed the same trend in

  16. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. (United States)

    Ruff, Karen M; Strobel, Scott A


    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.

  17. SuperLigands – a database of ligand structures derived from the Protein Data Bank

    Directory of Open Access Journals (Sweden)

    Preissner Robert


    Full Text Available Abstract Background Currently, the PDB contains approximately 29,000 protein structures comprising over 70,000 experimentally determined three-dimensional structures of over 5,000 different low molecular weight compounds. Information about these PDB ligands can be very helpful in the field of molecular modelling and prediction, particularly for the prediction of protein binding sites and function. Description Here we present an Internet accessible database delivering PDB ligands in the MDL Mol file format which, in contrast to the PDB format, includes information about bond types. Structural similarity of the compounds can be detected by calculation of Tanimoto coefficients and by three-dimensional superposition. Topological similarity of PDB ligands to known drugs can be assessed via Tanimoto coefficients. Conclusion SuperLigands supplements the set of existing resources of information about small molecules bound to PDB structures. Allowing for three-dimensional comparison of the compounds as a novel feature, this database represents a valuable means of analysis and prediction in the field of biological and medical research.

  18. SuperLigands – a database of ligand structures derived from the Protein Data Bank (United States)

    Michalsky, Elke; Dunkel, Mathias; Goede, Andrean; Preissner, Robert


    Background Currently, the PDB contains approximately 29,000 protein structures comprising over 70,000 experimentally determined three-dimensional structures of over 5,000 different low molecular weight compounds. Information about these PDB ligands can be very helpful in the field of molecular modelling and prediction, particularly for the prediction of protein binding sites and function. Description Here we present an Internet accessible database delivering PDB ligands in the MDL Mol file format which, in contrast to the PDB format, includes information about bond types. Structural similarity of the compounds can be detected by calculation of Tanimoto coefficients and by three-dimensional superposition. Topological similarity of PDB ligands to known drugs can be assessed via Tanimoto coefficients. Conclusion SuperLigands supplements the set of existing resources of information about small molecules bound to PDB structures. Allowing for three-dimensional comparison of the compounds as a novel feature, this database represents a valuable means of analysis and prediction in the field of biological and medical research. PMID:15943884

  19. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening. (United States)

    Reid, Darryl; Sadjad, Bashir S; Zsoldos, Zsolt; Simon, Aniko


    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  20. Treatment of autoimmune inflammation by a TLR7 ligand regulating the innate immune system.

    Directory of Open Access Journals (Sweden)

    Tomoko Hayashi

    Full Text Available The Toll-like receptors (TLR have been advocated as attractive therapeutic targets because TLR signaling plays dual roles in initiating adaptive immune responses and perpetuating inflammation. Paradoxically, repeated stimulation of bone marrow mononuclear cells with a synthetic TLR7 ligand 9-benzyl-8-hydroxy-2-(2-methoxyethoxy adenine (called 1V136 leads to subsequent TLR hyporesponsiveness. Further studies on the mechanism of action of this pharmacologic agent demonstrated that the TLR7 ligand treatment depressed dendritic cell activation, but did not directly affect T cell function. To verify this mechanism, we utilized experimental allergic encephalitis (EAE as an in vivo T cell dependent autoimmune model. Drug treated SJL/J mice immunized with proteolipid protein (PLP(139-151 peptide had attenuated disease severity, reduced accumulation of mononuclear cells in the central nervous system (CNS, and limited demyelination, without any apparent systemic toxicity. Splenic T cells from treated mice produced less cytokines upon antigenic rechallenge. In the spinal cords of 1V136-treated EAE mice, the expression of chemoattractants was also reduced, suggesting innate immune cell hyposensitization in the CNS. Indeed, systemic 1V136 did penetrate the CNS. These experiments indicated that repeated doses of a TLR7 ligand may desensitize dendritic cells in lymphoid organs, leading to diminished T cell responses. This treatment strategy might be a new modality to treat T cell mediated autoimmune diseases.

  1. Increased accuracy of ligand sensing by receptor internalization

    CERN Document Server

    Aquino, Gerardo


    Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as the overcounting of the same ligand molecules is reduced. Here we show, by extending simple ligand-receptor models to out-of-equilibrium thermodynamics, that internalization increases the accuracy with which cells can measure ligand concentrations in the external environment. Comparison with experimental rates of real receptors demonstrates that our model has indeed biological significance.

  2. Do organic ligands affect calcite dissolution rates? (United States)

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale


    Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  3. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo


    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  4. Continuous microfluidic assortment of interactive ligands (CMAIL) (United States)

    Hsiao, Yi-Hsing; Huang, Chao-Yang; Hu, Chih-Yung; Wu, Yen-Yu; Wu, Chung-Hsiun; Hsu, Chia-Hsien; Chen, Chihchen


    Finding an interactive ligand-receptor pair is crucial to many applications, including the development of monoclonal antibodies. Biopanning, a commonly used technique for affinity screening, involves a series of washing steps and is lengthy and tedious. Here we present an approach termed continuous microfluidic assortment of interactive ligands, or CMAIL, for the screening and sorting of antigen-binding single-chain variable antibody fragments (scFv) displayed on bacteriophages (phages). Phages carrying native negative charges on their coat proteins were electrophoresed through a hydrogel matrix functionalized with target antigens under two alternating orthogonal electric fields. During the weak horizontal electric field phase, phages were differentially swept laterally depending on their affinity for the antigen, and all phages were electrophoresed down to be collected during the strong vertical electric field phase. Phages of different affinity were spatially separated, allowing the continuous operation. More than 105 CFU (colony forming unit) antigen-interacting phages were isolated with ~100% specificity from a phage library containing 3 × 109 individual members within 40 minutes of sorting using CMAIL. CMAIL is rapid, sensitive, specific, and does not employ washing, elution or magnetic beads. In conclusion, we have developed an efficient and cost-effective method for isolating and sorting affinity reagents involving phage display.

  5. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)


    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  6. Multivalent ligands control stem cell behaviour in vitro and in vivo (United States)

    Conway, Anthony; Vazin, Tandis; Spelke, Dawn P.; Rode, Nikhil A.; Healy, Kevin E.; Kane, Ravi S.; Schaffer, David V.


    There is broad interest in designing nanostructured materials that can interact with cells and regulate key downstream functions. In particular, materials with nanoscale features may enable control over multivalent interactions, which involve the simultaneous binding of multiple ligands on one entity to multiple receptors on another and are ubiquitous throughout biology. Cellular signal transduction of growth factor and morphogen cues (which have critical roles in regulating cell function and fate) often begins with such multivalent binding of ligands, either secreted or cell-surface-tethered to target cell receptors, leading to receptor clustering. Cellular mechanisms that orchestrate ligand-receptor oligomerization are complex, however, so the capacity to control multivalent interactions and thereby modulate key signalling events within living systems is currently very limited. Here, we demonstrate the design of potent multivalent conjugates that can organize stem cell receptors into nanoscale clusters and control stem cell behaviour in vitro and in vivo. The ectodomain of ephrin-B2, normally an integral membrane protein ligand, was conjugated to a soluble biopolymer to yield multivalent nanoscale conjugates that potently induce signalling in neural stem cells and promote their neuronal differentiation both in culture and within the brain. Super-resolution microscopy analysis yielded insights into the organization of the receptor-ligand clusters at the nanoscale. We also found that synthetic multivalent conjugates of ephrin-B1 strongly enhance human embryonic and induced pluripotent stem cell differentiation into functional dopaminergic neurons. Multivalent bioconjugates are therefore powerful tools and potential nanoscale therapeutics for controlling the behaviour of target stem cells in vitro and in vivo.

  7. Quantifying Rosette Formation Mediated by Receptor-ligand Interactions

    Institute of Scientific and Technical Information of China (English)


    1 IntroductionRosetting is a simple assay for specific cell-cell adhesion, in which receptor- (or ligand-) coated RBCs form the rosettes with ligand- (or receptor-) expressed nucleated cells~([1]). Although routinely used by immunologists to examine the functionality of the interacting receptors and ligands, however, it has not been regarded as a quantitative method, as the measured rosette fraction has not been quantitatively related to the underlying molecular properties.Recently, we have solved probabili...

  8. Polymorphism of lead oxoborate

    Energy Technology Data Exchange (ETDEWEB)

    Tyulyupa, A.G. [Middle School, Sablinskoe, Stavropol region, 356322 (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Fedorov, P.P., E-mail: [A.M. Prokhorov General Physics Institute RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation)


    Highlights: • Pb{sub 4}B{sub 2}O{sub 7} melt undergoes statistical undercooling. • Orthorhombic nonlinear optical crystal Pb{sub 4}O(BO{sub 3}){sub 2} is the metastable γ-polymorph. • Temperature of metastable melting of γ-Pb{sub 4}O(BO{sub 3}){sub 2} is equal to 530 °C. - Abstract: The study of lead borate melt crystallization by differential thermal analysis (DTA) and X-ray diffraction analysis has shown that, for Pb{sub 4}O(BO{sub 3}){sub 2} (or 4PbO·B{sub 2}O{sub 3}) stoichiometric compound, its well-known orthorhombic modification (non-centrosymmetric Aba2 space symmetry group (SSG), a = 15.472(1), b = 10.802(1), c = 9.9486(6) Å unit cell parameters) is metastable. It forms from the undercooled melt and has a melting point of 530 ± 5 °C.

  9. Chemometric analysis of ligand receptor complementarity: identifying Complementary Ligands Based on Receptor Information (CoLiBRI). (United States)

    Oloff, Scott; Zhang, Shuxing; Sukumar, Nagamani; Breneman, Curt; Tropsha, Alexander


    We have developed a novel structure-based chemoinformatics approach to search for Complimentary Ligands Based on Receptor Information (CoLiBRI). CoLiBRI is based on the representation of both receptor binding sites and their respective ligands in a space of universal chemical descriptors. The binding site atoms involved in the interaction with ligands are identified by the means of a computational geometry technique known as Delaunay tessellation as applied to X-ray characterized ligand-receptor complexes. TAE/RECON multiple chemical descriptors are calculated independently for each ligand as well as for its active site atoms. The representation of both ligands and active sites using chemical descriptors allows the application of well-known chemometric techniques in order to correlate chemical similarities between active sites and their respective ligands. We have established a protocol to map patterns of nearest neighbor active site vectors in a multidimensional TAE/RECON space onto those of their complementary ligands and vice versa. This protocol affords the prediction of a virtual complementary ligand vector in the ligand chemical space from the position of a known active site vector. This prediction is followed by chemical similarity calculations between this virtual ligand vector and those calculated for molecules in a chemical database to identify real compounds most similar to the virtual ligand. Consequently, the knowledge of the receptor active site structure affords straightforward and efficient identification of its complementary ligands in large databases of chemical compounds using rapid chemical similarity searches. Conversely, starting from the ligand chemical structure, one may identify possible complementary receptor cavities as well. We have applied the CoLiBRI approach to a data set of 800 X-ray characterized ligand-receptor complexes in the PDBbind database. Using a k nearest neighbor (kNN) pattern recognition approach and variable selection

  10. Riboswitch Structure: an Internal Residue Mimicking the Purine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Delfosse, V.; Bouchard, P; Bonneau, E; Dagenais, P; Lemay, J; Lafontaine, D; Legault, P


    The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson-Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39-C65 and A39-U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation.

  11. Competitive antagonism of AMPA receptors by ligands of different classes

    DEFF Research Database (Denmark)

    Hogner, Anders; Greenwood, Jeremy R; Liljefors, Tommy;


    that ATPO and DNQX stabilize an open form of the ligand-binding core by different sets of interactions. Computational techniques are used to quantify the differences between these two ligands and to map the binding site. The isoxazole moiety of ATPO acts primarily as a spacer, and other scaffolds could......-(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO) in complex with the ligand-binding core of the receptor. Comparison with the only previous structure of the ligand-binding core in complex with an antagonist, 6,7-dinitro-2,3-quinoxalinedione (DNQX) (Armstrong, N.; Gouaux, E. Neuron 2000, 28, 165-181), reveals...

  12. Structural basis for ligand recognition of incretin receptors

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Parthier, Christoph; Reedtz-Runge, Steffen


    been solved recently by X-ray crystallography. The crystal structures reveal a similar fold of the ECD and a similar mechanism of ligand binding, where the ligand adopts an α-helical conformation. Residues in the C-terminal part of the ligand interact directly with the ECD and hydrophobic interactions...... appear to be the main driving force for ligand binding to the ECD of incretin receptors. Obviously, the-still missing-structures of full-length incretin receptors are required to construct a complete picture of receptor function at the molecular level. However, the progress made recently in structural...

  13. Superior serum half life of albumin tagged TNF ligands

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Nicole [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany); Schneider, Britta; Pfizenmaier, Klaus [Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart (Germany); Wajant, Harald, E-mail: [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany)


    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  14. Design of targeting ligands in medicinal inorganic chemistry. (United States)

    Storr, Tim; Thompson, Katherine H; Orvig, Chris


    This tutorial review will highlight recent advances in medicinal inorganic chemistry pertaining to the use of multifunctional ligands for enhanced effect. Ligands that adequately bind metal ions and also include specific targeting features are gaining in popularity due to their ability to enhance the efficacy of less complicated metal-based agents. Moving beyond the traditional view of ligands modifying reactivity, stabilizing specific oxidation states, and contributing to substitution inertness, we will discuss recent work involving metal complexes with multifunctional ligands that target specific tissues, membrane receptors, or endogenous molecules, including enzymes.


    Directory of Open Access Journals (Sweden)

    Mark Dysinger


    Full Text Available As biomarkers grow in relevance for both the design and support of therapeutics and the clinical trials associated with them, there is an ever increasing need for accurate quantitation of these biochemical entities in biological matrices. While quantifying many biotherapeutics via ligand binding assay platforms can be fairly straightforward, biomarkers present some unique challenges that must be taken into account during assay development, validation and subsequent sample analysis. These challenges can be especially confounded by the relationship between two ligand binding assay tools: The regression curve and quality control samples. Due diligence must be performed to develop an assay that takes into account matrix vs. buffer effects and endogenous biomarker presence. Lack of diligence in these areas can lead to less than reliable results, thus potentially rendering the intended use of the assay moot.

  16. Ligand binding strategies of human serum albumin: how can the cargo be utilized? (United States)

    Varshney, Ankita; Sen, Priyankar; Ahmad, Ejaz; Rehan, Mohd; Subbarao, Naidu; Khan, Rizwan Hasan


    Human serum albumin (HSA), being the most abundant carrier protein in blood and a modern day clinical tool for drug delivery, attracts high attention among biologists. Hence, its unfolding/refolding strategies and exogenous/endogenous ligand binding preference are of immense use in therapeutics and clinical biochemistry. Among its fellow proteins albumin is known to carry almost every small molecule. Thus, it is a potential contender for being a molecular cargo/or nanovehicle for clinical, biophysical and industrial purposes. Nonetheless, its structure and function are largely regulated by various chemical and physical factors to accommodate HSA to its functional purpose. This multifunctional protein also possesses enzymatic properties which may be used to convert prodrugs to active therapeutics. This review aims to highlight current overview on the binding strategies of protein to various ligands that may be expected to lead to significant clinical applications.

  17. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.


    Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to catalysis. This success resulted from the manipulation of the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal nanoclusters, such as doped Ag29 with five gold (Au) atoms leading to enhance its quantum yield with remarkable stability. We also developed half-doped (alloyed) cluster of Ni6 nanocluster with molybdenum (Mo). This enabled enhanced stability and better catalytic activity. The third metal nanocluster that we synthesized was Au28 nanocluster by using di-thiolate as the ligand stabilizer instead of mono-thiolate. The new metal clusters obtained have been characterized by spectroscopic, electrochemical and crystallographic methods.

  18. Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes. (United States)

    Kurczyk, Agata; Warszycki, Dawid; Musiol, Robert; Kafel, Rafał; Bojarski, Andrzej J; Polanski, Jaroslaw


    In a search for new anti-HIV-1 chemotypes, we developed a multistep ligand-based virtual screening (VS) protocol combining machine learning (ML) methods with the privileged structures (PS) concept. In its learning step, the VS protocol was based on HIV integrase (IN) inhibitors fetched from the ChEMBL database. The performances of various ML methods and PS weighting scheme were evaluated and applied as VS filtering criteria. Finally, a database of 1.5 million commercially available compounds was virtually screened using a multistep ligand-based cascade, and 13 selected unique structures were tested by measuring the inhibition of HIV replication in infected cells. This approach resulted in the discovery of two novel chemotypes with moderate antiretroviral activity, that, together with their topological diversity, make them good candidates as lead structures for future optimization.

  19. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status. (United States)

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S; Poeppel, Thorsten D; van den Broek, Sebastiaan A M W; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C


    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided.

  20. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. (United States)

    Sheng, Jia; Gan, Jianhua; Huang, Zhen


    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.

  1. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction. (United States)

    Brylinski, Michal


    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  2. Ultrafast heme-ligand recombination in truncated hemoglobin HbO from Mycobacterium tuberculosis: A ligand cage (United States)

    Jasaitis, Audrius; Ouellet, Hugues; Lambry, Jean-Christophe; Martin, Jean-Louis; Friedman, Joel M.; Guertin, Michel; Vos, Marten H.


    Truncated hemoglobin HbO from Mycobacterium tuberculosis displays very slow exchange of diatomic ligands with its environment. Using femtosecond spectroscopy, we show that upon photoexcitation, ligands rebind with unusual speed and efficiency. Only ˜1% O2 can escape from the heme pocket and less than 1% NO. Most remarkably, CO rebinding occurs for 95%, predominantly in 1.2 ns. The general CO rebinding properties are unexpectedly robust against changes in the interactions with close by aromatic residues Trp88 (G8) and Tyr36 (CD1). Molecular dynamics simulations of the CO complex suggest that interactions of the ligand with structural water molecules as well as its rotational freedom play a role in the high reactivity of the ligand and the heme. The slow exchange of ligands between heme and environment may result from a combination of hindered ligand access to the heme pocket by the network of distal aromatic residues, and low escape probability from the pocket.

  3. Assembly of tetra, di and mononuclear molecular cadmium phosphonates using 2,4,6-triisopropylphenylphosponic acid and ancillary ligands. (United States)

    Chandrasekhar, Vadapalli; Sasikumar, Palani; Boomishankar, Ramamoorthy


    The reaction of ArPO(3)H(2) (Ar = 2,4,6-iPr(3)-C(6)H(2)) with Cd(CH(3)COO)(2).2H(2)O using various co-ligands such as methanol, dimethylformamide (DMF) and 3,5-dimethylpyrazole (DMPZH) resulted in the formation of tetranuclear assemblies [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(CH(3)OH)(4)].3(CH(3)OH) (1), [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(DMF)(4)].3(DMF) (2) and [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(DMF)(2)(DMPZH)(2)].2(DMF).2(H(2)O) (3). In all of these compounds the tetranuclear cadmium array, containing two five-coordinate and two six-coordinate cadmium atoms, is held together by two mu(4) capping [ArPO(3)](2-) and four anisobidentate mu(2) [ArPO(2)(OH)](-) ligands. Each cadmium atom is bound to an additional ancillary ligand. The reaction of ArPO(3)H(2) with Cd(CH(3)COO)(2).2H(2)O in the presence of the chelating ligand 2,2'-bipyridine (bipy) leads to the exclusive formation of the dinuclear assembly [Cd(2)(ArPO(3)H)(4)(bipy)(2)].(CH(3)OH)(H(2)O) (4). The latter contains an eight-membered Cd(2)P(2)O(4) inorganic ring formed as a result of the bridging coordination action of two anisobidentate mu(2) [ArPO(2)(OH)](-) ligands. Each cadmium atom is bound by one chelating bipy and one monodentate [ArPO(2)(OH)](-) ligands. Use of four equivalents of 3,5-dimethylpyrazole leads to the formation of the mononuclear derivative [Cd(ArPO(3)H)(2)(DMPZH)(4)] (5). The molecular structure of the latter comprises of a central cadmium atom surrounded by six monodentate ligands. Four of these are neutral pyrazole ligands that occupy the equatorial plane; the remaining two are anionic phosphinate ligands which are present trans to each other. The thermal analysis of 1 and 4 reveals that the char residue obtained at 600 degrees C consists predominantly of Cd(2)P(2)O(7).

  4. Half-sandwich pentamethylcyclopentadienyl group 9 metal complexes of 2-aminopyridyl ligands: Synthesis, spectral and molecular study

    Indian Academy of Sciences (India)

    Mahesh Kalidasan; Scott Forbes; Yurij Mozharivskyj; Mohan Rao Kollipara


    Thereaction of [Cp*M(-Cl)Cl]2 (M = Rh, Ir) with 2-aminopyridyl based ligands lead to the formation of mononuclear neutral complexes of general formula [Cp*MCl2(L)] {where L1= 2-aminopyridine, L2= 2-amino-3-picoline, L3= 2-amino-3-nirtopyridine, and L4= 2-amino-3-pyridine carboxyaldehyde}. The complexes have been characterized by FT-IR, UV-Vis, 1H-13C NMR and mass spectroscopic methods. X-ray crystallographic studies of the complexes have shown typical piano-stool geometry around the metal centre in which 2-aminopyridyl ligand acts as an N-monodentate ligand and the amino functionality is not involved in metal coordination. The intra/intermolecular arrangement is due to hydrogen bonding.

  5. Ligand-induced Ordering of the C-terminal Tail Primes STING for Phosphorylation by TBK1

    Directory of Open Access Journals (Sweden)

    Yuko Tsuchiya


    Full Text Available The innate immune protein Stimulator of interferon genes (STING promotes the induction of interferon beta (IFN-β production via the phosphorylation of its C-terminal tail (CTT by TANK-binding kinase 1 (TBK1. Potent ligands of STING are, therefore, promising candidates for novel anti-cancer drugs or vaccine adjuvants. However, the intrinsically flexible CTT poses serious problems in in silico drug discovery. Here, we performed molecular dynamics simulations of the STING fragment containing the CTT in ligand-bound and unbound forms and observed that the binding of a potent ligand cyclic GMP-AMP (cGAMP induced a local structure in the CTT, reminiscent of the known structure of a TBK1 substrate. The subsequent molecular biological experiments confirmed the observed dynamics of the CTT and identified essential residues for the activation of the IFN-β promoter, leading us to propose a new mechanism of STING activation.

  6. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts. (United States)

    Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia


    For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a 'Trojan-Horse' that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.

  7. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing. (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana


    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  8. Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater (United States)

    Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; Carolus, Vicky E.; Velzeboer, Ilona; de Baar, Hein J. W.


    In laboratory experiments, we investigated the effect of five individual Fe-binding ligands: phaeophytin, ferrichrome, desferrioxamine B (DFOB), inositol hexaphosphate (phytic acid), and protoporphyrin IX (PPIX) on the Fe(II) photoproduction using seawater of the open Southern Ocean. Addition of 10-100 nM Fe(III) to open Southern Ocean seawater without the model ligands and containing; 1.1 nM dissolved Fe(III), 1.75 ± 0.28 equivalents of nM Fe of natural ligands with a conditional stability constant (log K') of 21.75 ± 0.34 and a concentration DOC of 86.8 ± 1.13 μM C leads to the formation of amorphous Fe(III) hydroxides. These amorphous Fe(III) hydroxides are the major source for the photoproduction of Fe(II). The addition of the model ligands changed the Fe(II) photoproduction considerably and in various ways. Phaeophytin showed higher Fe(II) photoproduction than ferrichrome and the control, i.e., amorphous Fe(III) hydroxides. Additions of phytic acid between 65 and 105 nM increased the concentration of photoproduced Fe(II) with 0.16 nM Fe(II) per nM phytic acid, presumably due to the co-aggregation of Fe(III) and phytic acid leading via an increasing colloidal surface to an increasing photoreducible Fe(III) fraction. DFOB and PPIX strongly decreased the photoproduced Fe(II) concentration. The low Fe(II) photoproduction with DFOB confirmed reported observations that Fe(III) complexed to DFOB is photo-stable. The PPIX hardly binds Fe(III) in the open Southern Ocean seawater but decreased the photoproduced Fe(II) concentration by complexing the Fe(II) with a binding rate constant of kFe(II)PPIX = 1.04 × 10 -4 ± 1.53 × 10 -5 s -1 nM -1 PPIX. Subsequently, PPIX is suggested to act as a photosensitizing producer of superoxide, thus increasing the dark reduction of Fe(III) to Fe(II). Our research shows that the photochemistry of Fe(III) and the resulting photoproduced Fe(II) concentration is strongly depending on the identity of the Fe-binding organic ligands


    Directory of Open Access Journals (Sweden)

    P. Meshgi


    Full Text Available A survey on lead intoxication in lead mine workers was carried out among Khanehsorme, lead miners in NajafAabad and also in Ab-bagh lead miners in Shahreza, both located in district of Esfahan, Iran. The studies were carried out on 62 miners out of 82 employees in Khanehsorme, 25 miners out of 27 employees in Ab-bagh lead miners and 47 rural inhabitants in the surroundings of mines were selected as the Control group. Clinical examinations were done. Age and sex group, working hours, type of work, and duration of service and previous occupation of workers were questioned. The determination of lead in urine was done according to Truhaut et Boudene's method and the content of blood Hemoglobin was performed according to Sali method. Results obtained in lead miners in comparison with the control group showed the absorption of lead and consequently lead intoxication was observed some extent.

  10. Leading Your Leaders (United States)

    Hale, Wayne N.


    life is good. More often when an unbelievably difficult test fails, we are left with a very long discussion of why and what was wrong in the design or execution of the test. Make sure that the test is well defined. Even then, it is important to explain to your leaders what inherent accuracy (or error) the test conditions or equipment have and what the assumptions or initial conditions were for the test. Test results without a good understanding of the test's accuracy or the pedigree of the test assumptions are worth very little. Finally, there is flight test data. Always limited, never at the edge of the envelope, it still shows how the real hardware works in a combined environment. Flight experience is dangerous because it typically doesn't show how close to the edge of the cliff the equipment is operating, but it does demonstrate how the hardware really works. A flight test is the ultimate test, again taken with the knowledge that it is probably not the extreme but something more like the middle of the environmental and systems performance. Good understanding of a problem and its solution always relies on a combination of all these methods. Be sure to lead your leaders by using all the tools you have at your disposal. At the end of the day, decisions in space flight always come down to a risk trade. Our business is not remotely safe, not in the sense that the public, the media, or our legislators use the term. Everything we do has a risk, cost, schedule, or performance trade-off. For your leaders to make an appropriate decision, you need to educate them, lead them, talk with them, and engage them in the discussion until full understanding takes place. It's your job. *

  11. Drowning: a leading killer!

    Directory of Open Access Journals (Sweden)

    Nuno Domingos Garrido


    Full Text Available Drowning kills at least 372,000 people worldwide every year and is the 3rd leading cause of unintentional death, accounting for 7% of all deaths stemming from accidents (WHO, 2014. Conceptually, “drowning” is a complex and multi-faceted phenomenon, characterized as a chain of events (Bierens, 2006. Drowning is defined as the process of experiencing respiratory impairment from immersion or submersion in liquid. Research on drowning as a phenomenon presents several difficulties - most of all, that global data concerning the number of occurrences are not accurate. Nevertheless, detailed analysis of the registered incidents allows the identification of risk factors of drowning. An in-depth analysis of the risk factors is the basis for the creation of targeted and effective strategies to prevent drowning. Due to variability of situations which could lead to a drowning episode, experts suggest the adoption of a multi-layer prevention model, rather than opting for isolated measures, since no single measure can prevent all deaths and injuries caused by submersion. Among the preventive measures we would like to emphasize instruction in swimming and water safety. So, what does "knowing how to swim" really mean? Some authors define mastery of this competence as swimming a given distance, while others put the emphasis on how this/any given distance is swum (Stallman, Junge, & Blixt, 2008. It has long been realized that there is no contradiction between learning those competencies which make a person less susceptible to drowning and those competencies which prepare the path towards higher levels of performance and competition. Aquatic movement researchers and practitioners and drowning prevention researchers and practitioners, share in the responsibility for drowning prevention though they are often unaware of it. The question “What should be taught to children?” is too infrequently asked. There remains great variation in what is taught and programs

  12. Design of Ligands for Affinity Purification of G-CSF Based on Peptide Ligands Derived from a Peptide Library

    Institute of Scientific and Technical Information of China (English)


    Combinatorial peptide libraries have become powerful tools to screen functional ligands by the principle of affinity selection. We screened in a phage peptide library to investigate potential peptide affinity ligands for the purification of human granulocyte colony-stimulation factor(hG-CSF). Peptide ligands will be promising to replace monoclonal antibodies as they have advantages of high stability, efficiency, selectivity and low price.

  13. Modeling the construction of polymeric adsorbent media: Effects of counter-ions on ligand immobilization and pore structure (United States)

    Riccardi, Enrico; Wang, Jee-Ching; Liapis, Athanasios I.


    Molecular dynamics modeling and simulations are employed to study the effects of counter-ions on the dynamic spatial density distribution and total loading of immobilized ligands as well as on the pore structure of the resultant ion exchange chromatography adsorbent media. The results show that the porous adsorbent media formed by polymeric chain molecules involve transport mechanisms and steric resistances which cause the charged ligands and counter-ions not to follow stoichiometric distributions so that (i) a gradient in the local nonelectroneutrality occurs, (ii) non-uniform spatial density distributions of immobilized ligands and counter-ions are formed, and (iii) clouds of counter-ions outside the porous structure could be formed. The magnitude of these counter-ion effects depends on several characteristics associated with the size, structure, and valence of the counter-ions. Small spherical counter-ions with large valence encounter the least resistance to enter a porous structure and their effects result in the formation of small gradients in the local nonelectroneutrality, higher ligand loadings, and more uniform spatial density distributions of immobilized ligands, while the formation of exterior counter-ion clouds by these types of counter-ions is minimized. Counter-ions with lower valence charges, significantly larger sizes, and elongated shapes, encounter substantially greater steric resistances in entering a porous structure and lead to the formation of larger gradients in the local nonelectroneutrality, lower ligand loadings, and less uniform spatial density distributions of immobilized ligands, as well as substantial in size exterior counter-ion clouds. The effects of lower counter-ion valence on pore structure, local nonelectroneutrality, spatial ligand density distribution, and exterior counter-ion cloud formation are further enhanced by the increased size and structure of the counter-ion. Thus, the design, construction, and functionality of

  14. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy. (United States)

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L


    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand. (United States)

    Abou-Hussein, A A; Linert, Wolfgang


    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, (1)H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, (1)H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  16. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure (United States)

    Suddala, Krishna C.; Rinaldi, Arlie J.; Feng, Jun; Mustoe, Anthony M.; Eichhorn, Catherine D.; Liberman, Joseph A.; Wedekind, Joseph E.; Al-Hashimi, Hashim M.; Brooks, Charles L.; Walter, Nils G.


    Riboswitches are structural elements in the 5′ untranslated regions of many bacterial messenger RNAs that regulate gene expression in response to changing metabolite concentrations by inhibition of either transcription or translation initiation. The preQ1 (7-aminomethyl-7-deazaguanine) riboswitch family comprises some of the smallest metabolite sensing RNAs found in nature. Once ligand-bound, the transcriptional Bacillus subtilis and translational Thermoanaerobacter tengcongensis preQ1 riboswitch aptamers are structurally similar RNA pseudoknots; yet, prior structural studies have characterized their ligand-free conformations as largely unfolded and folded, respectively. In contrast, through single molecule observation, we now show that, at near-physiological Mg2+ concentration and pH, both ligand-free aptamers adopt similar pre-folded state ensembles that differ in their ligand-mediated folding. Structure-based Gō-model simulations of the two aptamers suggest that the ligand binds late (Bacillus subtilis) and early (Thermoanaerobacter tengcongensis) relative to pseudoknot folding, leading to the proposal that the principal distinction between the two riboswitches lies in their relative tendencies to fold via mechanisms of conformational selection and induced fit, respectively. These mechanistic insights are put to the test by rationally designing a single nucleotide swap distal from the ligand binding pocket that we find to predictably control the aptamers′ pre-folded states and their ligand binding affinities. PMID:24003028

  17. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand (United States)

    Abou-Hussein, A. A.; Linert, Wolfgang


    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  18. Current issues in human lead exposure and regulation of lead. (United States)

    Davis, J M; Elias, R W; Grant, L D


    Concern about lead as a significant public health problem has increased as epidemiological and experimental evidence has mounted regarding adverse health effects at successively lower levels of lead exposure. This concern has led to downward revision of criteria for acceptable blood lead concentrations to the 10 micrograms/dL mark now designated by EPA as a target level for regulatory development and enforcement/clean-up purposes. Much progress has been made in reducing lead exposures during the past 10-15 years, with marked declines evident both in air lead and blood lead concentrations in parallel to the phase-down of lead in gasoline and notable decreases in food lead exposure due to elimination of lead soldered cans by U.S. food processors. With the lessening of exposure from these sources, the importance of other components of multimedia exposure pathways has grown and stimulated increasing regulatory attention and abatement efforts to reduce health risks associated with lead exposure from drinking water, from lead-based paint, and from household dust and soil contaminated by deteriorating paint, smelter emissions, or various other sources. Increasing attention is also being accorded to reduction of occupational lead exposures (including those related to lead abatement activities), with particular concern for protection of men and women during their reproductive years.

  19. Phosphinothiolates as ligands for polyhydrido copper nanoclusters. (United States)

    Huertos, Miguel A; Cano, Israel; Bandeira, Nuno A G; Benet-Buchholz, Jordi; Bo, Carles; van Leeuwen, Piet W N M


    The reaction of [CuI(HSC6 H4 PPh2 )]2 with NaBH4 in CH2 Cl2 /EtOH led to air- and moisture-stable copper hydride nanoparticles (CuNPs) containing phosphinothiolates as new ligands, one of which was isolated by crystallization. The X-ray crystal structure of [Cu18 H7 L10 I] (L=(-) S(C6 H4 )PPh2 ) shows unprecedented features in its 28-atom framework (18 Cu and 10 S atoms). Seven hydrogen atoms, in hydride form, are needed for charge balance and were located by density functional theory methods. H2 was released from the copper hydride nanoparticles by thermolysis and visible light irradiation.

  20. Quantum probability ranking principle for ligand-based virtual screening. (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal


    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  1. Quantum probability ranking principle for ligand-based virtual screening (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal


    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  2. Transcriptome analysis of differentiating spermatogonia stimulated with kit ligand. (United States)

    Rossi, Pellegrino; Lolicato, Francesca; Grimaldi, Paola; Dolci, Susanna; Di Sauro, Annarita; Filipponi, Doria; Geremia, Raffaele


    Kit ligand (KL) is a survival factor and a mitogenic stimulus for differentiating spermatogonia. However, it is not known whether KL also plays a role in the differentiative events that lead to meiotic entry of these cells. We performed a wide genome analysis of difference in gene expression induced by treatment with KL of spermatogonia from 7-day-old mice, using gene chips spanning the whole mouse genome. The analysis revealed that the pattern of RNA expression induced by KL is compatible with the qualitative changes of the cell cycle that occur during the subsequent cell divisions in type A and B spermatogonia, i.e. the progressive lengthening of the S phase and the shortening of the G2/M transition. Moreover, KL up-regulates in differentiating spermatogonia the expression of early meiotic genes (for instance: Lhx8, Nek1, Rnf141, Xrcc3, Tpo1, Tbca, Xrcc2, Mesp1, Phf7, Rtel1), whereas it down-regulates typical spermatogonial markers (for instance: Pole, Ptgs2, Zfpm2, Egr2, Egr3, Gsk3b, Hnrpa1, Fst, Ptch2). Since KL modifies the expression of several genes known to be up-regulated or down-regulated in spermatogonia during the transition from the mitotic to the meiotic cell cycle, these results are consistent with a role of the KL/kit interaction in the induction of their meiotic differentiation.

  3. Cyclic porphyrin dimers as hosts for coordinating ligands

    Indian Academy of Sciences (India)

    G Vaijayanthimala; V Krishnan; S K Mandal


    Bicovalently linked tetraphenylporphyrins bearing dioxypentane groups at the opposite (transoid, H4A) and adjacent (cisoid, H4B) aryl groups have been synthesised. Protonation of the free-base porphyrins leads to fully protonated species H8A4+/H8A4+ accompanied by expansion of cavity size of the bisporphyrins. The electrochemical redox studies of these porphyrins and their Zinc(II) derivatives revealed that the first ring oxidation proceeds through a two-electron process while the second ring oxidation occurs at two distinct one-electron steps indicating unsymmetrical charge distribution in the oxidized intermediate. The axial ligation properties of the Zinc(Il) derivatives of H4A/H4B with DABCO and PMDA investigated by spectroscopic and single crystal X-ray diffraction studies showed predominant existence of 1 : I complex. The Zn2A.DABCO complex assumes an interesting eclipsed structure wherein DABCO is located inside the cavity between the two porphyrin planes with Zn-N distances at 2.08 and 2.22 Å. The Zn atoms are pulled into the cavity due to coordination towards nitrogen atoms of DABCO and deviate from the mean porphyrin plane by 0.35 Å. The electrochemical redox potentials of the axially ligated metal derivatives are found to be sensitive function of the relative coordinating ability of the ligands and the conformation of the hosts.

  4. Investigating Silver Coordination to Mixed Chalcogen Ligands

    Directory of Open Access Journals (Sweden)

    J. Derek Woollins


    Full Text Available Six silver(I coordination complexes have been prepared and structurally characterised. Mixed chalcogen-donor acenaphthene ligands L1–L3 [Acenap(EPh(E'Ph] (Acenap = acenaphthene-5,6-diyl; E/E' = S, Se, Te were independently treated with silver(I salts (AgBF4/AgOTf. In order to keep the number of variables to a minimum, all reactions were carried out using a 1:1 ratio of Ag/L and run in dichloromethane. The nature of the donor atoms, the coordinating ability of the respective counter-anion and the type of solvent used in recrystallisation, all affect the structural architecture of the final silver(I complex, generating monomeric, silver(I complexes {[AgBF4(L2] (1 L = L1; 2 L = L2; 3 L = L3, [AgOTf(L3] (4 L = L1; 5 L = L3, [AgBF4(L3] (2a L = L1; 3a L = L3} and a 1D polymeric chain {[AgOTf(L3]n 6}. The organic acenaphthene ligands L1-L3 adopt a number of ligation modes (bis-monodentate μ2-η2-bridging, quasi-chelating combining monodentate and η6-E(phenyl-Ag(I and classical monodentate coordination with the central silver atom at the centre of a tetrahedral or trigonal planar coordination geometry in each case. The importance of weak interactions in the formation of metal-organic structures is also highlighted by the number of short non-covalent contacts present within each complex.

  5. Hot spot analysis for driving the development of hits into leads in fragment based drug discovery


    Hall, David R.; Ngan, Chi Ho; Zerbe, Brandon S.; Kozakov, Dima; Vajda, Sandor


    Fragment based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening...

  6. Soluble CD40 ligand in acute coronary syndromes

    NARCIS (Netherlands)

    C. Heeschen (Christopher); S. Dimmeler (Stefanie); C.W. Hamm (Christian); A.M. Zeiher (Andreas); M.L. Simoons (Maarten); M.J.B.M. van den Brand (Marcel); H. Boersma (Eric)


    textabstractBACKGROUND: CD40 ligand is expressed on platelets and released from them on activation. We investigated the predictive value of soluble CD40 ligand as a marker for clinical outcome and the therapeutic effect of glycoprotein IIb/IIIa receptor inhibition in patients with acute coronary syn

  7. Ligand-modified metal clusters for gas separation and purification

    Energy Technology Data Exchange (ETDEWEB)

    Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron; Gates, Bruce C.; Katz, Alexander


    Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.

  8. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.


    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  9. Death receptors and ligands in cervical carcinogenesis : an immunohistochemical study

    NARCIS (Netherlands)

    Reesink-Peters, N; Hougardy, B M T; van den Heuvel, F A J; Ten Hoor, K A; Hollema, H; Boezen, H M; de Vries, E G E; de Jong, S; van der Zee, A G J


    OBJECTIVE: Increasing imbalance between proliferation and apoptosis is important in cervical carcinogenesis. The death ligands FasL and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induce apoptosis by binding to their cognate cell-surface death receptors Fas or death receptor (DR)

  10. Polymerization catalysts containing electron-withdrawing amide ligands (United States)

    Watkin, John G.; Click, Damon R.


    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  11. Enthalpy of ligand substitution in cis organopalladium complexes with monodentate ligands. (United States)

    Salas, Gorka; Casares, Juan A; Espinet, Pablo


    The enthalpy for the substitution reaction cis-[PdRf(2)(THF)(2)] + 2 L -->cis-[PdRf(2)L(2)] + 2THF (THF = tetrahydrofuran) has been measured in THF by calorimetric methods for Rf = 3,5-dichloro-2,4,6-trifluorophenyl, L = PPh(3), AsPh(3), SbPh(3), PMePh(2), PCyPh(2), PMe(3), AsMePh(2), or L(2) = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene). The values determined show that the substitution enthalpy has a strong dependence on the electronic and steric properties of the ligand. The study of the consecutive substitution reactions cis-[PdRf(2)(THF)(2)] + L -->cis-[PdRf(2)L(THF)] + THF, and cis-[PdRf(2)L(THF)] + L -->cis-[PdRf(2)L(2)] + THF has been carried our for L = PPh(3) and L = PCyPh(2). The first substitution is clearly more favorable for the bulkier leaving ligand, but the second gives practically the same DeltaH value for both cases, indicating that the differences in steric hindrance happen to compensate the electronic differences for both ligands. The X-ray structures of cis-[PdRf(2)(PMePh(2))(2)], cis-[PdRf(2)(dppe)] and cis-[PdRf(2)(dppf)] are reported.

  12. Polypharmacology: in silico methods of ligand design and development. (United States)

    McKie, Samuel A


    How to design a ligand to bind multiple targets, rather than to a single target, is the focus of this review. Rational polypharmacology draws on knowledge that is both broad ranging and hierarchical. Computer-aided multitarget ligand design methods are described according to their nested knowledge level. Ligand-only and then receptor-ligand strategies are first described; followed by the metabolic network viewpoint. Subsequently strategies that view infectious diseases as multigenomic targets are discussed, and finally the disease level interpretation of medicinal therapy is considered. As yet there is no consensus on how best to proceed in designing a multitarget ligand. The current methodologies are bought together in an attempt to give a practical overview of how polypharmacology design might be best initiated.

  13. Predicting protein-ligand affinity with a random matrix framework. (United States)

    Lee, Alpha A; Brenner, Michael P; Colwell, Lucy J


    Rapid determination of whether a candidate compound will bind to a particular target receptor remains a stumbling block in drug discovery. We use an approach inspired by random matrix theory to decompose the known ligand set of a target in terms of orthogonal "signals" of salient chemical features, and distinguish these from the much larger set of ligand chemical features that are not relevant for binding to that particular target receptor. After removing the noise caused by finite sampling, we show that the similarity of an unknown ligand to the remaining, cleaned chemical features is a robust predictor of ligand-target affinity, performing as well or better than any algorithm in the published literature. We interpret our algorithm as deriving a model for the binding energy between a target receptor and the set of known ligands, where the underlying binding energy model is related to the classic Ising model in statistical physics.

  14. Development of chiral sulfoxide ligands for asymmetric catalysis. (United States)

    Trost, Barry M; Rao, Meera


    Nitrogen-, phosphorus-, and oxygen-based ligands with chiral backbones have been the historic workhorses of asymmetric transition-metal-catalyzed reactions. On the contrary, sulfoxides containing chirality at the sulfur atom have mainly been used as chiral auxiliaries for diastereoselective reactions. Despite several distinct advantages over traditional ligand scaffolds, such as the proximity of the chiral information to the metal center and the ability to switch between S and O coordination, these compounds have only recently emerged as a versatile class of chiral ligands. In this Review, we detail the history of the development of chiral sulfoxide ligands for asymmetric catalysis. We also provide brief descriptions of metal-sulfoxide bonding and strategies for the synthesis of enantiopure sulfoxides. Finally, insights into the future development of this underutilized ligand class are discussed.

  15. Lead in School Drinking Water. (United States)

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  16. Lead exposure among lead-acid battery workers in Jamaica. (United States)

    Matte, T D; Figueroa, J P; Burr, G; Flesch, J P; Keenlyside, R A; Baker, E L


    To assess lead exposure in the Jamaican lead-acid battery industry, we surveyed three battery manufacturers (including 46 production workers) and 10 battery repair shops (including 23 battery repair workers). Engineering controls and respiratory protection were judged to be inadequate at battery manufacturers and battery repair shops. At manufacturers, 38 of 42 air samples for lead exceeded a work-shift time-weighted average concentration of 0.050 mg/m3 (range 0.030-5.3 mg/m3), and nine samples exceeded 0.50 mg/m3. Only one of seven air samples at repair shops exceeded 0.050 mg/m3 (range 0.003-0.066 mg/m3). Repair shop workers, however, had higher blood lead levels than manufacturing workers (65% vs. 28% with blood lead levels above 60 micrograms/dl, respectively). Manufacturing workers had a higher prevalence of safe hygienic practices and a recent interval of minimal production had occurred at one of the battery manufacturers. Workers with blood lead levels above 60 micrograms/dl tended to have higher prevalences of most symptoms of lead toxicity than did workers with lower blood lead levels, but this finding was not consistent or statistically significant. The relationship between zinc protoporphyrin concentrations and increasing blood lead concentrations was consistent with that described among workers in developed countries. The high risk of lead toxicity among Jamaican battery workers is consistent with studies of battery workers in other developing countries.

  17. FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines. (United States)

    Kreiter, Sebastian; Diken, Mustafa; Selmi, Abderraouf; Petschenka, Jutta; Türeci, Özlem; Sahin, Ugur


    Intranodal immunization with antigen-encoding naked mRNA has proven to be an efficacious and safe approach to induce antitumor immunity. Thanks to its unique characteristics, mRNA can act not only as a source for antigen but also as an adjuvant for activation of the immune system. The search for additional adjuvants that can be combined with mRNA to further improve the potency of the immunization revealed Fms-like tyrosine kinase 3 (FLT3) ligand as a potent candidate. Systemic administration of the dendritic cell-activating FLT3 ligand prior to or along with mRNA immunization-enhanced priming and expansion of antigen-specific CD8(+) T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodally administered mRNA. Both compounds demonstrate a successful combination in terms of boosting the immune response. This chapter describes methods for intranodal immunization with naked mRNA by co-administration of FLT3 ligand, which leads to strong synergistic effects.

  18. Quantitative determination of ligand densities on nanomaterials by X-ray photoelectron spectroscopy. (United States)

    Torelli, Marco D; Putans, Rebecca A; Tan, Yizheng; Lohse, Samuel E; Murphy, Catherine J; Hamers, Robert J


    X-ray photoelectron spectroscopy (XPS) is a nearly universal method for quantitative characterization of both organic and inorganic layers on surfaces. When applied to nanoparticles, the analysis is complicated by the strong curvature of the surface and by the fact that the electron attenuation length can be comparable to the diameter of the nanoparticles, making it necessary to explicitly include the shape of the nanoparticle to achieve quantitative analysis. We describe a combined experimental and computational analysis of XPS data for molecular ligands on gold nanoparticles. The analysis includes scattering in both Au core and organic shells and is valid even for nanoparticles having diameters comparable to the electron attenuation length (EAL). To test this model, we show experimentally how varying particle diameter from 1.3 to 6.3 nm leads to a change in the measured AC/AAu peak area ratio, changing by a factor of 15. By analyzing the data in a simple computational model, we demonstrate that ligand densities can be obtained, and, moreover, that the actual ligand densities for these nanoparticles are a constant value of 3.9 ± 0.2 molecules nm(-2). This model can be easily extended to a wide range of core-shell nanoparticles, providing a simple pathway to extend XPS quantitative analysis to a broader range of nanomaterials.

  19. A ligand-directed divergent catalytic approach to establish structural and functional scaffold diversity (United States)

    Lee, Yen-Chun; Patil, Sumersing; Golz, Christopher; Strohmann, Carsten; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert


    The selective transformation of different starting materials by different metal catalysts under individually optimized reaction conditions to structurally different intermediates and products is a powerful approach to generate diverse molecular scaffolds. In a more unified albeit synthetically challenging strategy, common starting materials would be exposed to a common metal catalysis, leading to a common intermediate and giving rise to different scaffolds by tuning the reactivity of the metal catalyst through different ligands. Herein we present a ligand-directed synthesis approach for the gold(I)-catalysed cycloisomerization of oxindole-derived 1,6-enynes that affords distinct molecular scaffolds following different catalytic reaction pathways. Varying electronic properties and the steric demand of the gold(I) ligands steers the fate of a common intermediary gold carbene to selectively form spirooxindoles, quinolones or df-oxindoles. Investigation of a synthesized compound collection in cell-based assays delivers structurally novel, selective modulators of the Hedgehog and Wnt signalling pathways, autophagy and of cellular proliferation.

  20. Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route (United States)

    Mirbagheri, N.; Engberg, S.; Crovetto, A.; Simonsen, S. B.; Hansen, O.; Lam, Y. M.; Schou, J.


    Single-phase, ligand-free Cu2ZnSnS4 (CZTS) nanoparticles that can be dispersed in polar solvents are desirable for thin film solar cell fabrication, since water can be used as the solvent for the nanoparticle ink. In this work, ligand-free nanoparticles were synthesized using a simple hot injection method and the precursor concentration in the reaction medium was tuned to control the final product. The as-synthesized nanoparticles were characterized using various techniques, and were found to have a near-stoichiometric composition and a phase-pure kesterite crystal structure. No secondary phases were detected with Raman spectroscopy or scanning transmission electron microscopy energy dispersive x-ray spectroscopy. Furthermore, high resolution transmission electron microscopy showed large-sized nanoparticles with an average diameter of 23 nm ± 11 nm. This approach avoids all organic materials and toxic solvents that otherwise could hinder grain growth and limit the deposition techniques. In addition the synthesis route presented here results in nanoparticles of a large size compared to other ligand-free CZTS nanoparticles, due to the high boiling point of the solvents selected. Large particle size in CZTS nanoparticle solar cells may lead to a promising device performance. The results obtained demonstrate the suitability of the synthesized nanoparticles for application in low cost thin film solar cells.

  1. Biomolecular ligands screening using radiation damping difference WaterLOGSY spectroscopy. (United States)

    Sun, Peng; Jiang, Xianwang; Jiang, Bin; Zhang, Xu; Liu, Maili


    Water-ligand observed via gradient spectroscopy (WaterLOGSY) is a widely used nuclear magnetic resonance method for ligand screening. The crucial procedure for the effectiveness of WaterLOGSY is selective excitation of the water resonance. The selective excitation is conventionally achieved by using long selective pulse, which causes partial saturation of the water magnetization leading to reduction of sensitivity, in addition to time consuming and error prone. Therefore, many improvements have been made to enhance the sensitivity and robustness of the method. Here we propose an alternative selective excitation scheme for WaterLOGSY by utilizing radiation damping effect. The pulse scheme starts simply with a hard inversion pulse, instead of selective pulse or pulse train, followed by a pulse field gradient to control the radiation damping effect. The rest parts of the pulse scheme are similar to conventional WaterLOGSY. When the gradient pulse is applied immediately after the inversion pulse, the radiation damping effect is suppressed, and all of the magnetization is inversed. When the gradient pulse and the inversion pulse are about 10-20 ms apart, the radiation damping effect remains active and drives the water magnetization toward +z-axis, resulting in selective non-inversion of the water magnetization. By taking the differences of the spectra obtained under these two conditions, one should get the result of WaterLOGSY. The method is demonstrated to be simple, robust and sensitive for ligand screening.

  2. Molecular evolution of a peptide GPCR ligand driven by artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Bandholtz

    Full Text Available Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and optimization.

  3. Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand. (United States)

    Wang, Ningkun; Lodge, Jean M; Fierke, Carol A; Mapp, Anna K


    Allosteric binding events play a critical role in the formation and stability of transcriptional activator-coactivator complexes, perhaps in part due to the often intrinsically disordered nature of one or more of the constituent partners. The kinase-inducible domain interacting (KIX) domain of the master coactivator CREB binding protein/p300 is a conformationally dynamic domain that complexes with transcriptional activators at two discrete binding sites in allosteric communication. The complexation of KIX with the transcriptional activation domain of mixed-lineage leukemia protein leads to an enhancement of binding by the activation domain of CREB (phosphorylated kinase-inducible domain of CREB) to the second site. A transient kinetic analysis of the ternary complex formation aided by small molecule ligands that induce positive or negative cooperative binding reveals that positive cooperativity is largely governed by stabilization of the bound complex as indicated by a decrease in koff. Thus, this suggests the increased binding affinity for the second ligand is not due to an allosteric creation of a more favorable binding interface by the first ligand. This is consistent with data from us and from others indicating that the on rates of conformationally dynamic proteins approach the limits of diffusion. In contrast, negative cooperativity is manifested by alterations in both kon and koff, suggesting stabilization of the binary complex.

  4. Ambivalent binding between a radical-based pincer ligand and iron. (United States)

    Harriman, Katie L M; Leitch, Alicea A; Stoian, Sebastian A; Habib, Fatemah; Kneebone, Jared L; Gorelsky, Serge I; Korobkov, Ilia; Desgreniers, Serge; Neidig, Michael L; Hill, Stephen; Murugesu, Muralee; Brusso, Jaclyn L


    A complex exhibiting valence delocalization was prepared from 3,5-bis(2-pyridyl)-1,2,4,6-thiatriazinyl (), an inherently redox active pincer-type ligand, coordinated to iron ( ()). Complex can be prepared via two routes, either from the reaction of the neutral radical with FeCl2 or by treatment of the anionic ligand () with FeCl3, demonstrating its unique redox behaviour. Electrochemical studies, solution absorption and solid-state diffuse reflectance measurements along with X-ray crystallography were carried out to elucidate the molecular and solid-state properties. Temperature- and field-dependent Mössbauer spectroscopy coupled with magnetic measurements revealed that exhibits an isolated S = 5/2 ground spin state for which the low-temperature magnetic behaviour is dominated by exchange interactions between neighbouring molecules. This ground state is rationalized on the basis of DFT calculations that predict the presence of strong electronic interactions between the redox active ligand and metal. This interaction leads to the delocalization of β electron density over the two redox active centres and highlights the difficulty in assigning formal charges to .

  5. Isolation of atomically precise mixed ligand shell PdAu24 clusters (United States)

    Sels, Annelies; Barrabés, Noelia; Knoppe, Stefan; Bürgi, Thomas


    Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1,1-binaphthyl-2,2-dithiol) leads to species of composition PdAu24(2-PET)18-2x(BINAS)x due to ligand exchange reactions. The BINAS adsorbs in a specific mode that bridges the apex and one core site of two adjacent S(R)-Au-S(R)-Au-S(R) units. Species with different compositions of the ligand shell can be separated by HPLC. Furthermore, site isomers can be separated. For the cluster with exactly one BINAS in its ligand shell only one isomer is expected due to the symmetry of the cluster, which is confirmed by High-Performance Liquid Chromatography (HPLC). Addition of a second BINAS to the ligand shell leads to several isomers. In total six distinguishable isomers are possible for PdAu24(2-PET)14(BINAS)2 including two pairs of enantiomers concerning the adsorption pattern. At least four distinctive isomers are separated by HPLC. Calculations indicate that one of the six possibilities is energetically disfavoured. Interestingly, diastereomers, which have an enantiomeric relationship concerning the adsorption pattern of chiral BINAS, have significantly different stabilities. The relative intensity of the observed peaks in the HPLC does not reflect the statistical weight of the different isomers. This shows, as supported by the calculations, that the first adsorbed BINAS molecule influences the adsorption of the second incoming BINAS ligand. In addition, experiments with the corresponding Pt doped gold cluster reveal qualitatively the same behaviour, however with slightly different relative abundances of the corresponding isomers. This finding points towards the influence of electronic effects on the isomer distribution. Even for clusters containing more than two BINAS ligands a limited number of isomers were found, which is in contrast to the corresponding situation for monothiols, where the number of possible isomers is much larger.Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1

  6. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins. (United States)

    Pethica, Brian A


    Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry.

  7. Gas adsorption and gas mixture separations using mixed-ligand MOF material (United States)

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang


    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  8. Ligand-protein docking: cancer research at the interface between biology and chemistry. (United States)

    Glen, R C; Allen, S C


    In recent years there has been a growing interest in computer-based screening. One of the driving forces has been the increased efficiency of protein crystallography leading to the real possibility of using structure-based design as a significant contributor to the discovery of novel ligands. In 1957 after 22 years of work the first protein structure, determined by x-ray crystallography was produced. Now the process has become increasingly automated and nearly 20,000 protein structures are available in the Protein Data Bank (PDB). Equally, progress in genomics will result in a great expansion of validated targets for cancer therapy. The understanding of the relationships between structure and function of gene products will be one of the key routes to new therapeutic advances. The challenge now is to use this data in the discovery of novel therapeutics. One approach is obviously to synthesize molecules and co-crystallize or soak them into the protein crystal and so determine the position and interaction of the molecule with the protein. The structural information obtained (where does the molecule bind; what are the ligand/protein/solvent interactions?) can be invaluable in the generation of novel molecules or in the re-design of existing molecules whose drug properties are not optimal. However, when dealing with large numbers (millions) of molecules, when crystallization is difficult or in testing hypotheses, a significant contribution can be made using computer based screening methods. In order to use the structural information derived from x-ray crystallography (or other sources, for example NMR or homology modelling) when evaluating the utility of a novel ligand, we need to understand where in the protein (or other macromolecule such as RNA) the ligand is likely to bind and also if possible, the strength of the binding interactions. This problem is known as the 'docking problem'. There have been many approaches to the solution of this problem over the last ten

  9. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M


    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  10. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers (United States)

    Miskowski, Vincent M.; Houlding, Virginia H.


    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  11. Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. (United States)

    Naik, Milind Mohan; Dubey, Santosh Kumar


    Lead (Pb) is non-bioessential, persistent and hazardous heavy metal pollutant of environmental concern. Bioremediation has become a potential alternative to the existing technologies for the removal and/or recovery of toxic lead from waste waters before releasing it into natural water bodies for environmental safety. To our best knowledge, this is a first review presenting different mechanisms employed by lead resistant bacteria to resist high levels of lead and their applications in cost effective and eco-friendly ways of lead bioremediation and biomonitoring. Various lead resistant mechanisms employed by lead resistant bacteria includes efflux mechanism, extracellular sequestration, biosorption, precipitation, alteration in cell morphology, enhanced siderophore production and intracellular lead bioaccumulation.

  12. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: optimising brain penetration. (United States)

    Peters, Jens-Uwe; Lübbers, Thomas; Alanine, Alexander; Kolczewski, Sabine; Blasco, Francesca; Steward, Lucinda


    The optimisation of molecular properties within a series of 2-amino dihydroquinazoline 5-HT5A/5-HT7 receptor ligands resulted in a significantly improved brain-to-plasma ratio, enhancing the pharmacological utility of these compounds. By modulating the lipophilicity and pKa, a 20-fold increase in brain-to-plasma ratio could be achieved, leading to micromolar brain concentrations after oral administration. The enantiomers of one representative of this series of improved compounds were separated, and the configuration of the eutomer was determined by X-ray crystallography.

  13. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni;


    -induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds....... As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly...

  14. Lead levels of Culex mosquito larvae inhabiting lead utilizing factory

    Institute of Scientific and Technical Information of China (English)

    Kitvatanachai S; Apiwathnasorn C; Leemingsawat S; Wongwit W; Overgaard HJ


    Objective: To determine lead level primarily in Culex quinquefasciatus (Cx. quinquefasciatus), and Culex gelidus (Cx. gelidus) larvae inhabiting lead consuming factories, and to putatively estimate eco-toxicological impact of effluents from the firms. Methods: Third instars larvae were sampled by standard dipping method and lead concentrations in the larvae and their respective surrounding factory aquatic environments were determined through standard atomic absorption spectrophotometry (AAS). Results: Cx. quinquefasciatus was the most abundant species followed by Cx. gelidus. The levels of lead were higher in the Cx. quinquefasciatus (1.08-47.47 μg/g), than in the wastewaters surface (0.01-0.78 μg/mL) from the factories or closer areas around factories. Other species were not reaching the criteria for lead determination. Conclusions: The Cx.quinquefasciatus larvae can bio-accumulate the metal and can potentially serve as a biomarker of lead contamination, to complemente conventional techniques.

  15. Prevalence of lead disease among secondary lead smelter workers and biological indicators of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lilis, R. (City Univ. of New York); Fischbein, A.; Eisinger, J.


    The report concerns itself primarily with the assessment of medical and biochemical effects of chronic lead exposure and comparing the usefulness of various biological screening parameters. In addition it appraises the effects of chelation therapy to control blood lead levels in lead workers, which have recently attracted critical attention. It is of considerable importance to ascertain whether such a therapeutic approach may, under some circumstances, in fact contribute to the deleterious effects of undue lead exposure.

  16. Synthesis, structures, and dearomatization by deprotonation of iron complexes featuring bipyridine-based PNN pincer ligands. (United States)

    Zell, Thomas; Langer, Robert; Iron, Mark A; Konstantinovski, Leonid; Shimon, Linda J W; Diskin-Posner, Yael; Leitus, Gregory; Balaraman, Ekambaram; Ben-David, Yehoshoa; Milstein, David


    The synthesis and characterization of new iron pincer complexes bearing bipyridine-based PNN ligands is reported. Three phosphine-substituted pincer ligands, namely, the known (t)Bu-PNN (6-((di-tert-butylphosphino)methyl)-2,2'-bipyridine) and the two new (i)Pr-PNN (6-((di-iso-propylphosphino)methyl)-2,2'-bipyridine) and Ph-PNN (6-((diphenylphosphino)methyl)-2,2'-bipyridine) ligands were synthesized and studied in ligation reactions with iron(II) chloride and bromide. These reactions lead to the formation of two types of complexes: mono-chelated neutral complexes of the type [(R-PNN)Fe(X)2] and bis-chelated dicationic complexes of the type [(R-PNN)2Fe](2+). The complexes [(R-PNN)Fe(X)2] (1: R = (t)Bu, X = Cl, 2: R = (t)Bu, X = Br, 3: R = (i)Pr, X = Cl, and 4: R = (i)Pr, X = Br) are readily prepared from reactions of FeX2 with the free R-PNN ligand in a 1:1 ratio. Magnetic susceptibility measurements show that these complexes have a high-spin ground state (S = 2) at room temperature. Employing a 2-fold or higher excess of (i)Pr-PNN, diamagnetic hexacoordinated dicationic complexes of the type [((i)Pr-PNN)2Fe](X)2 (5: X = Cl, and 6: X = Br) are formed. The reactions of Ph-PNN with FeX2 in a 1:1 ratio lead to similar complexes of the type [(Ph-PNN)2Fe](FeX4) (7: X = Cl, and 8: X = Br). Single crystal X-ray studies of 1, 2, 4, 6, and 8 do not indicate electron transfer from the Fe(II) centers to the neutral bipyridine unit based on the determined bond lengths. Density functional theory (DFT) calculations were performed to compare the relative energies of the mono- and bis-chelated complexes. The doubly deprotonated complexes [(R-PNN*)2Fe] (9: R = (i)Pr, and 10: R = Ph) were synthesized by reactions of the dicationic complexes 6 and 8 with KO(t)Bu. The dearomatized nature of the central pyridine of the pincer ligand was established by X-ray diffraction analysis of single crystals of 10. Reactivity studies show that 9 and 10 have a slightly different behavior in

  17. Identification of Soft Matter Binding Peptide Ligands Using Phage Display. (United States)

    Günay, Kemal Arda; Klok, Harm-Anton


    Phage display is a powerful tool for the selection of highly affine, short peptide ligands. While originally primarily used for the identification of ligands to proteins, the scope of this technique has significantly expanded over the past two decades. Phage display nowadays is also increasingly applied to identify ligands that selectively bind with high affinity to a broad range of other substrates including natural and biological polymers as well as a variety of low-molecular-weight organic molecules. Such peptides are of interest for various reasons. The ability to selectively and with high affinity bind to the substrate of interest allows the conjugation or immobilization of, e.g., nanoparticles or biomolecules, or generally, facilitates interactions at materials interfaces. On the other hand, presentation of peptide ligands that selectively bind to low-molecular-weight organic materials is of interest for the development of sensor surfaces. The aim of this article is to highlight the opportunities provided by phage display for the identification of peptide ligands that bind to synthetic or natural polymer substrates or to small organic molecules. The article will first provide an overview of the different peptide ligands that have been identified by phage display that bind to these "soft matter" targets. The second part of the article will discuss the different characterization techniques that allow the determination of the affinity of the identified ligands to the respective substrates.

  18. Ligand-based identification of environmental estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Waller, C.L. [Environmental Protection Agency, Research Triangle Park, NC (United States); Oprea, T.I. [Los Alamos National Lab., NM (United States); Chae, K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)] [and others


    Comparative molecular field analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (3D-QSAR) paradigm, was used to examine the estrogen receptor (ER) binding affinities of a series of structurally diverse natural, synthetic, and environmental chemicals of interest. The CoMFA/3D-QSAR model is statistically robust and internally consistent, and successfully illustrates that the overall steric and electrostatic properties of structurally diverse ligands for the estrogen receptor are both necessary and sufficient to describe the binding affinity. The ability of the model to accurately predict the ER binding affinity of an external test set of molecules suggests that structure-based 3D-QSAR models may be used to supplement the process of endocrine disrupter identification through prioritization of novel compounds for bioassay. The general application of this 3D-QSAR model within a toxicological framework is, at present, limited only by the quantity and quality of biological data for relevant biomarkers of toxicity and hormonal responsiveness. 28 refs., 12 figs., 9 tabs.

  19. Costimulation of IL-2 Production through CD28 Is Dependent on the Size of Its Ligand. (United States)

    Lim, Hong-Sheng; Cordoba, Shaun-Paul; Dushek, Omer; Goyette, Jesse; Taylor, Alison; Rudd, Christopher E; van der Merwe, P Anton


    Optimal T cell activation typically requires engagement of both the TCR and costimulatory receptors, such as CD28. Engagement of CD28 leads to tyrosine phosphorylation of its cytoplasmic region and recruitment of cytoplasmic signaling proteins. Although the exact mechanism of CD28 signal transduction is unknown, CD28 triggering has similarities to the TCR, which was proposed to use the kinetic-segregation (KS) mechanism. The KS model postulates that, when small receptors engage their ligands within areas of close (∼15 nm) contact in the T cell/APC interface, this facilitates phosphorylation by segregating the engaged receptor/ligand complex from receptor protein tyrosine phosphatases with large ectodomains, such as CD45. To test this hypothesis, we examined the effect of elongating the extracellular region of the CD28 ligand, CD80, on its ability to costimulate IL-2 production by primary T cells. CD80 elongation reduced its costimulatory effect without abrogating CD28 binding. Confocal microscopy revealed that elongated CD80 molecules were less well segregated from CD45 at the T cell/APC interface. T cells expressing CD28 harboring a key tyrosine-170 mutation were less sensitive to CD80 elongation. In summary, the effectiveness of CD28 costimulation is inversely proportional to the dimensions of the CD28-CD80 complex. Small CD28-CD80 complex dimensions are required for optimal costimulation by segregation from large inhibitory tyrosine phosphatases. These results demonstrate the importance of ligand dimensions for optimal costimulation of IL-2 production by T cells and suggest that the KS mechanism contributes to CD28 signaling.

  20. Synthesis of mixed silylene-carbene chelate ligands from N-heterocyclic silylcarbenes mediated by nickel. (United States)

    Tan, Gengwen; Enthaler, Stephan; Inoue, Shigeyoshi; Blom, Burgert; Driess, Matthias


    The Ni(II) -mediated tautomerization of the N-heterocyclic hydrosilylcarbene L(2) Si(H)(CH2 )NHC 1, where L(2) =CH(CCH2 )(CMe)(NAr)2 , Ar=2,6-iPr2 C6 H3 ; NHC=3,4,5-trimethylimidazol-2-yliden-6-yl, leads to the first N-heterocyclic silylene (NHSi)-carbene (NHC) chelate ligand in the dibromo nickel(II) complex [L(1) Si:(CH2 )(NHC)NiBr2 ] 2 (L(1) =CH(MeCNAr)2 ). Reduction of 2 with KC8 in the presence of PMe3 as an auxiliary ligand afforded, depending on the reaction time, the N-heterocyclic silyl-NHC bromo Ni(II) complex [L(2) Si(CH2 )NHCNiBr(PMe3 )] 3 and the unique Ni(0) complex [η(2) (Si-H){L(2) Si(H)(CH2 )NHC}Ni(PMe3 )2 ] 4 featuring an agostic SiH→Ni bonding interaction. When 1,2-bis(dimethylphosphino)ethane (DMPE) was employed as an exogenous ligand, the first NHSi-NHC chelate-ligand-stabilized Ni(0) complex [L(1) Si:(CH2 )NHCNi(dmpe)] 5 could be isolated. Moreover, the dicarbonyl Ni(0) complex 6, [L(1) Si:(CH2 )NHCNi(CO)2 ], is easily accessible by the reduction of 2 with K(BHEt3 ) under a CO atmosphere. The complexes were spectroscopically and structurally characterized. Furthermore, complex 2 can serve as an efficient precatalyst for Kumada-Corriu-type cross-coupling reactions.

  1. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. (United States)

    Le Foll, Bernard; Collo, Ginetta; Rabiner, Eugenii A; Boileau, Isabelle; Merlo Pich, Emilio; Sokoloff, Pierre


    The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction.

  2. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands

    Directory of Open Access Journals (Sweden)

    Jansen Gert


    Full Text Available Abstract Background G-protein-coupled receptors (GPCRs play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro systems. Caenorhabditis elegans is a soil-dwelling, bacteria-feeding nematode that uses GPCRs expressed in chemosensory neurons to detect bacteria and environmental compounds, making this an ideal system for studying in vivo GPCR-ligand interactions. We sought to test this by functionally expressing two medically important mammalian GPCRs, somatostatin receptor 2 (Sstr2 and chemokine receptor 5 (CCR5 in the gustatory neurons of C. elegans. Results Expression of Sstr2 and CCR5 in gustatory neurons allow C. elegans to specifically detect and respond to somatostatin and MIP-1α respectively in a robust avoidance assay. We demonstrate that mammalian heterologous GPCRs can signal via different endogenous Gα subunits in C. elegans, depending on which cells it is expressed in. Furthermore, pre-exposure of GPCR transgenic animals to its ligand leads to receptor desensitisation and behavioural adaptation to subsequent ligand exposure, providing further evidence of integration of the mammalian GPCRs into the C. elegans sensory signalling machinery. In structure-function studies using a panel of somatostatin-14 analogues, we identified key residues involved in the interaction of somatostatin-14 with Sstr2. Conclusion Our results illustrate a remarkable evolutionary plasticity in interactions between mammalian GPCRs and C. elegans signalling machinery, spanning 800 million years of evolution. This in vivo system, which imparts novel avoidance behaviour on C. elegans, thus provides a simple means of studying and screening interaction of GPCRs with extracellular agonists, antagonists and intracellular binding partners.

  3. Synthesis, Spectroscopy and Crystal Structure of a New Copper Complex Builtup by Cationic (Dimethylphosphorylmethanaminium Ligands

    Directory of Open Access Journals (Sweden)

    Manuela E. Richert


    Full Text Available A new transition metal complex of the mono-protonated ligand (dimethylphosphorylmethanamine (dpmaH+ was obtained by equimolar reaction of copper(II chloride dihydrate and dpma in concentrated hydrochloric acid. The asymmetric unit of the title structure, [CuCl2(C3H11NOP4][CuCl4]2, consists of one half of a fourfold charged trans-dichloridotetrakis[(dimethylphosphorylmethanaminium]copper(II complex with the copper atom located on an inversion centre and one tetrachloridocuprate(II dianion found in a general position. The copper centre in the cationic complex shows a tetragonally distorted octahedral environment composed of four oxygen atoms in a square plane and two trans-coordinated chlorido ligands. This 4+2-coordination causes elongated Cu-Cl distances because of the Jahn-Teller effect. The geometry of the tetrachloridocuprate(II dianion is best described as a seriously distorted tetrahedron. Analysis of the hydrogen bonding scheme by graph-set theory shows three patterns of rings in the title compound. The cationic copper complex reveals intramolecular hydrogen bonds between two aminium groups and the two axial chlorido ligands. Further hydrogen bonding among the cations and anions, more precisely between four aminium groups and the chlorido ligands of four adjacent tetrachloridocuprate(II anions, lead to a chain-type structure. Comparing the coordination chemistry of the title structure with an analogue cobalt(II compound only disclose differences in hydrogen bonding pattern resulting in an unusual chain propagation. Besides the crystal structure received spectroscopic data are in accordance with appropriate literature.

  4. Chronic lead poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Knight, H.D.; Burau, R.G.


    Chronic lead poisoning in horses was manifested as anorexia, loss of body weight, muscular weakness, anemia, laryngeal hemiplegia, and, terminally, inhalation pneumonia. Some deaths were sudden and unexplained. The lead content in liver specimens from 10 horses was greater than that considered indicative of lead intoxication; however, the lead content of blood was equivocal. The most conclusive laboratory finding was increased urine lead concentration after chelation therapy. The concentration of lead in a sample of vegetation considered to be representative of what a horse would eat if he was grazing in the area sampled was 325 ppM (oven-dry basis). It was determined that a 450-kg horse grazing grass of this lead content would consume 2.9 Gm of lead daily (6.4 mg/kg of body weight), an amount considered toxic for horses. Leaching lowered the calcium content of the forage but failed to reduce the lead concentration of the plants significantly, thus opening the possibility that winter rains might have influenced the onset of poisoning. Airborne fallout from a nearby lead smelter was proposed as the primary mode of pasture contamination.

  5. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. (United States)

    Giansante, Carlo; Infante, Ivan; Fabiano, Eduardo; Grisorio, Roberto; Suranna, Gian Paolo; Gigli, Giuseppe


    Colloidal quantum dots (QDs) stand among the most attractive light-harvesting materials to be exploited for solution-processed optoelectronic applications. To this aim, quantitative replacement of the bulky electrically insulating ligands at the QD surface coming from the synthetic procedure is mandatory. Here we present a conceptually novel approach to design light-harvesting nanomaterials demonstrating that QD surface modification with suitable short conjugated organic molecules permits us to drastically enhance light absorption of QDs, while preserving good long-term colloidal stability. Indeed, rational design of the pendant and anchoring moieties, which constitute the replacing ligand framework leads to a broadband increase of the optical absorbance larger than 300% for colloidal PbS QDs also at high energies (>3.1 eV), which could not be predicted by using formalisms derived from effective medium theory. We attribute such a drastic absorbance increase to ground-state ligand/QD orbital mixing, as inferred by density functional theory calculations; in addition, our findings suggest that the optical band gap reduction commonly observed for PbS QD solids treated with thiol-terminating ligands can be prevalently ascribed to 3p orbitals localized on anchoring sulfur atoms, which mix with the highest occupied states of the QDs. More broadly, we provide evidence that organic ligands and inorganic cores are inherently electronically coupled materials thus yielding peculiar chemical species (the colloidal QDs themselves), which display arising (opto)electronic properties that cannot be merely described as the sum of those of the ligand and core components.

  6. Ligands targeting the excitatory amino acid transporters (EAATs). (United States)

    Dunlop, John; Butera, John A


    This review provides an overview of ligands for the excitatory amino acid transporters (EAATs), a family of high-affinity glutamate transporters localized to the plasma membrane of neurons and astroglial cells. Ligand development from the perspective of identifying novel and more selective tools for elucidating transporter subtype function, and the potential of transporter ligands in a therapeutic setting are discussed. Acute pharmacological modulation of EAAT activity in the form of linear and conformationally restricted glutamate and aspartate analogs is presented, in addition to recent strategies aimed more toward modulating transporter expression levels, the latter of particular significance to the development of transporter based therapeutics.

  7. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. (United States)

    Pushechnikov, Alexei; Lee, Melissa M; Childs-Disney, Jessica L; Sobczak, Krzysztof; French, Jonathan M; Thornton, Charles A; Disney, Matthew D


    Herein, we describe the design of high affinity ligands that bind expanded rCUG and rCAG repeat RNAs expressed in myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 3. These ligands also inhibit, with nanomolar IC(50) values, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bisbenzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions for ligands that bind the internal loop displayed in these hairpins. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG repeat hairpin with a K(d) of 13 nM. When compared to a series of related RNAs, the pentamer binds to rCUG repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG repeats shows incremental gains with increasing valency, while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the modularly assembled ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC(50) values, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data for the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed

  8. Receptor activator for nuclear factor-κB ligand signaling promotes progesterone-mediated estrogen-induced mammary carcinogenesis


    Boopalan, Thiyagarajan; Arumugam, Arunkumar; Parada, Jacqueline; Saltzstein, Edward; Lakshmanaswamy, Rajkumar


    Breast cancer is a leading cause of cancer-related death in women. Prolonged exposure to the ovarian hormones estrogen and progesterone increases the risk of breast cancer. Although estrogen is known as a primary factor in mammary carcinogenesis, very few studies have investigated the role of progesterone. Receptor activator for nuclear factor-κB (NF-κB) ligand (RANKL) plays an important role in progesterone-induced mammary carcinogenesis. However, the molecular mechanism underlying RANKL-ind...

  9. Combined processing of lead concentrates (United States)

    Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.


    A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.

  10. Lead Levels in Utah Eagles (United States)

    Arnold, Michelle


    Lead is a health hazard to most animals, causing adverse effects to the nervous and reproductive systems if in sufficient quantity. Found in most fishing jigs and sinkers, as well as some ammunition used in hunting, this metal can poison wildlife such as eagles. Eagles are raptors, or predatory birds, and their lead exposure would most likely comes from their food -- a fish which has swallowed a sinker or lead shot in carrion (dead animal matter). As part of an ongoing project to investigate the environment lead levels in Utah, the bone lead levels in the wing bones of eagles have been measured for eagle carcasses found throughout Utah. The noninvasive technique of x-ray fluorescence was used, consisting of a Cd-109 radioactive source to activate lead atoms and a HPGe detector with digital electronics to collect the gamma spectra. Preliminary results for the eagles measured to date will be presented.

  11. Role of ligand-dependent GR phosphorylation and half-life in determination of ligand-specific transcriptional activity. (United States)

    Avenant, Chanel; Ronacher, Katharina; Stubsrud, Elisabeth; Louw, Ann; Hapgood, Janet P


    A central question in glucocorticoid mechanism of action via the glucocorticoid receptor (GR) is what determines ligand-selective transcriptional responses. Using a panel of 12 GR ligands, we show that the extent of GR phosphorylation at S226 and S211, GR half-life and transcriptional response, occur in a ligand-selective manner. While GR phosphorylation at S226 was shown to inhibit maximal transcription efficacy, phosphorylation at S211 is required for maximal transactivation, but not for transrepression efficacy. Both ligand-selective GR phosphorylation and half-life correlated with efficacy for transactivation and transrepression. For both expressed and endogenous GR, in two different cell lines, agonists resulted in the greatest extent of phosphorylation and the greatest extent of GR downregulation, suggesting a link between these functions. However, using phosphorylation-deficient GR mutants we established that phosphorylation of the GR at S226 or S211 does not determine the rank order of ligand-selective GR transactivation. These results are consistent with a model whereby ligand-selective GR phosphorylation and half-life are a consequence of upstream events, such as ligand-specific GR conformations, which are maintained in the phosphorylation mutants.

  12. Undue Lead Absorption and Lead Poisoning in Children: An Overview. (United States)

    Lin-Fu, J. S.

    The toxic effects of lead, a useful metal ubiquitous in the human environment, have long been known. The occupational hazards of lead poisoning were well established by the early 19th century, but plumbism in children caused by paint ingestion was not reported until the turn of the century. Even in 1924, the child was said to live in a "lead…

  13. Taking the Lead : Gender, Social Context and Preference to Lead

    NARCIS (Netherlands)

    Hong, A.P.C.I.; Schaafsma, J.; van der Wijst, P.J.


    Previous research has demonstrated that women tend to emerge as leaders less often than men. In the present study, we examined to what extent women's and men's preference to lead is influenced by social context. It was hypothesized that women have a less strong preference to lead than men in a compe

  14. Archives of Atmospheric Lead Pollution (United States)

    Weiss, Dominik; Shotyk, William; Kempf, Oliver

    Environmental archives such as peat bogs, sediments, corals, trees, polar ice, plant material from herbarium collections, and human tissue material have greatly helped to assess both ancient and recent atmospheric lead deposition and its sources on a regional and global scale. In Europe detectable atmospheric lead pollution began as early as 6000years ago due to enhanced soil dust and agricultural activities, as studies of peat bogs reveal. Increased lead emissions during ancient Greek and Roman times have been recorded and identified in many long-term archives such as lake sediments in Sweden, ice cores in Greenland, and peat bogs in Spain, Switzerland, the United Kingdom, and the Netherlands. For the period since the Industrial Revolution, other archives such as corals, trees, and herbarium collections provide similar chronologies of atmospheric lead pollution, with periods of enhanced lead deposition occurring at the turn of the century and since 1950. The main sources have been industry, including coal burning, ferrous and nonferrous smelting, and open waste incineration until c.1950 and leaded gasoline use since 1950. The greatest lead emissions to the atmosphere all over Europe occurred between 1950 and 1980 due to traffic exhaust. A marked drop in atmospheric lead fluxes found in most archives since the 1980s has been attributed to the phasing out of leaded gasoline. The isotope ratios of lead in the various archives show qualitatively similar temporal changes, for example, the immediate response to the introduction and phasing out of leaded gasoline. Isotope studies largely confirm source assessments based on lead emission inventories and allow the contributions of various anthropogenic sources to be calculated.

  15. Teratogen update: lead and pregnancy. (United States)

    Bellinger, David C


    This review focuses on the impacts of lead exposure on reproductive health and outcomes. High levels of paternal lead exposure (>40 microg/dl or >25 microg/dl for a period of years) appear to reduce fertility and to increase the risks of spontaneous abortion and reduced fetal growth (preterm delivery, low birth weight). Maternal blood lead levels of approximately 10 microg/dl have been linked to increased risks of pregnancy hypertension, spontaneous abortion, and reduced offspring neurobehavioral development. Somewhat higher maternal lead levels have been linked to reduced fetal growth. Some studies suggest a link between increased parental lead exposure and congenital malformations, although considerable uncertainty remains regarding the specific malformations and the dose-response relationships. Common methodological weaknesses of studies include potential exposure misclassifications due to the frequent unavailability of exposure biomarker measurements at biologically appropriate times and uncertainty regarding the best exposure biomarker(s) for the various outcomes. A special concern with regard to the pregnant woman is the possibility that a fetus might be exposed to lead mobilized from bone stores as a result of pregnancy-related metabolic changes, making fetal lead exposure the result of exposure to exogenous lead during pregnancy and exposure to endogenous lead accumulated by the woman prior to pregnancy. By reducing bone resorption, increased calcium intake during the second half of pregnancy might reduce the mobilization of lead from bone compartments, even at low blood lead levels. Subgroups of women who incurred substantial exposures to lead prior to pregnancy should be considered to be at increased risk.

  16. Recovery of indium and lead from lead bullion

    Institute of Scientific and Technical Information of China (English)


    Lead and indium were recovered by electrolysis and nonequilibrium solvent extraction process from lead bullion.The effects of current density,electrolytic period and circle amnant of electrolyte on the electrochemical dissolution of lead and indium were investigated.The effects of extraction phase ratio and mixing time on solvent extraction of indium and striping phase ratio and stripping stage on the loaded organic phase stripping were also investigated.The experimental results indicate that under optimum conditions,the purity of lead deposited on cathode is 98.5% and the deposit rate of lead is 99.9%,the dissolution rate of indium is 94.28%,the extraction rate of indium is 98.69%,the stripping rate of indium is almost 100%,and the impurity elements,such as Zn,Fe and Sn can be removed.

  17. Safe Leads and Lead Changes in Competitive Team Sports

    CERN Document Server

    Clauset, A; Redner, S


    We investigate the time evolution of lead changes within individual games of competitive team sports. Exploiting ideas from the theory of random walks, the number of lead changes within a single game follows a Gaussian distribution. We show that the probability that the last lead change and the time of the largest lead size are governed by the same arcsine law, a bimodal distribution that diverges at the start and at the end of the game. We also determine the probability that a given lead is "safe" as a function of its size $L$ and game time $t$. Our predictions generally agree with comprehensive data on more than 1.25 million scoring events in roughly 40,000 games across four professional or semi-professional team sports, and are more accurate than popular heuristics currently used in sports analytics.

  18. Lead Poisoning in Wild Birds (United States)

    Lahner, Lesanna L.; Franson, J. Christian


    Lead in its various forms has been used for thousands of years, originally in cooking utensils and glazes and more recently in many industrial and commercial applications. However, lead is a potent, potentially deadly toxin that damages many organs in the body and can affect all animals, including humans. By the mid 1990s, lead had been removed from many products in the United States, such as paint and fuel, but it is still commonly used in ammunition for hunting upland game birds, small mammals, and large game animals, as well as in fishing tackle. Wild birds, such as mourning doves, bald eagles, California condors, and loons, can die from the ingestion of one lead shot, bullet fragment, or sinker. According to a recent study on loon mortality, nearly half of adult loons found sick or dead during the breeding season in New England were diagnosed with confirmed or suspected lead poisoning from ingestion of lead fishing weights. Recent regulations in some states have restricted the use of lead ammunition on certain upland game hunting areas, as well as lead fishing tackle in areas frequented by common loons and trumpeter swans. A variety of alternatives to lead are available for use in hunting, shooting sports, and fishing activities.

  19. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)


    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  20. Anion binding by protonated forms of the tripodal ligand tren. (United States)

    Bazzicalupi, Carla; Bencini, Andrea; Bianchi, Antonio; Danesi, Andrea; Giorgi, Claudia; Valtancoli, Barbara


    The interaction of the protonated forms of tris(2-aminoethyl)amine (tren) with NO(3)(-), SO(4)(2-), TsO(-), PO(4)(3-), P(2)O(7)(4-), and P(3)O(10)(5-) was studied by means of potentiometric and microcalorimetric measurements in a 0.10 M NMe(4)Cl aqueous solution at 298.1 +/- 0.1 K, affording stability constants and the relevant energetic terms DeltaH degrees and TDeltaS degrees of complexation. Thermodynamic data show that these anion complexation processes are mainly controlled by electrostatic forces, although hydrogen-bond interactions and solvation effects also contribute to complex stability, leading, in some cases, to special DeltaH degrees and TDeltaS degrees contributions. The crystal structures of [H(3)L][NO(3)](3) and [H(3)L][TsO](3) evidence a preferred tridentate coordination mode of the triprotonated ligands in the solid state. Accordingly, the H(3)L(3+) receptor binds a single oxygen atom of both NO(3)(-) and TsO(-) by means of its three protonated fingers, although in the crystal structure of [H(3)L][TsO](3), one conformer displaying bidentate coordination was also found. Modeling studies performed on the [H(3)L(NO(3))](2+) complex suggested that the tridentate binding mode is the preferred one in aqueous solution, while in the gas phase, a different complex conformation in which the receptor interacts with all three oxygen atoms of NO(3)(-) is more stable.

  1. Fpocket: An open source platform for ligand pocket detection

    Directory of Open Access Journals (Sweden)

    Le Guilloux Vincent


    Full Text Available Abstract Background Virtual screening methods start to be well established as effective approaches to identify hits, candidates and leads for drug discovery research. Among those, structure based virtual screening (SBVS approaches aim at docking collections of small compounds in the target structure to identify potent compounds. For SBVS, the identification of candidate pockets in protein structures is a key feature, and the recent years have seen increasing interest in developing methods for pocket and cavity detection on protein surfaces. Results Fpocket is an open source pocket detection package based on Voronoi tessellation and alpha spheres built on top of the publicly available package Qhull. The modular source code is organised around a central library of functions, a basis for three main programs: (i Fpocket, to perform pocket identification, (ii Tpocket, to organise pocket detection benchmarking on a set of known protein-ligand complexes, and (iii Dpocket, to collect pocket descriptor values on a set of proteins. Fpocket is written in the C programming language, which makes it a platform well suited for the scientific community willing to develop new scoring functions and extract various pocket descriptors on a large scale level. Fpocket 1.0, relying on a simple scoring function, is able to detect 94% and 92% of the pockets within the best three ranked pockets from the holo and apo proteins respectively, outperforming the standards of the field, while being faster. Conclusion Fpocket provides a rapid, open source and stable basis for further developments related to protein pocket detection, efficient pocket descriptor extraction, or drugablity prediction purposes. Fpocket is freely available under the GNU GPL license at

  2. The Foundations of Protein-Ligand Interaction (United States)

    Klebe, Gerhard

    For the specific design of a drug we must first answer the question: How does a drug achieve its activity? An active ingredient must, in order to develop its action, bind to a particular target molecule in the body. Usually this is a protein, but also nucleic acids in the form of RNA and DNA can be target structures for active agents. The most important condition for binding is at first that the active agent exhibits the correct size and shape in order to optimally fit into a cavity exposed to the surface of the protein, the "bindingpocket". It is further necessary for the surface properties of the ligand and protein to be mutually compatible to form specific interactions. In 1894 Emil Fischer compared the exact fit of a substrate for the catalytic centre of an enzyme with the picture of a "lock-and-key". Paul Ehrlich coined in 1913 "Corpora non agunt nisi fixata", literally "bodies do not work when they are not bound". He wanted to imply that active agents that are meant to kill bacteria or parasites must be "fixed" by them, i.e. linked to their structures. Both concepts form the starting point for any rational concept in the development of active pharmaceutical ingredients. In many respects they still apply today. A drug must, after being administered, reach its target and interact with a biological macromolecule. Specific agents have a large affinity and sufficient selectivity to bind to the macromolecule's active site. This is the only way they can develop the desired biological activity without side-effects.

  3. Antioxidation and DNA-binding properties of binuclear lanthanide(III) complexes with a Schiff base ligand derived from 8-hydroxyquinoline-7-carboxaldehyde and benzoylhydrazine. (United States)

    Liu, Yongchun; Zhang, Kejun; Wu, Yun; Zhao, Junying; Liu, Jianning


    8-Hydroxyquinoline-7-carboxaldehyde (8-HQ-7-CA), Schiff-base ligand 8-hydroxyquinoline-7-carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO(3))(H(2)O)(2)](2) were prepared from the ligand and equivalent molar amounts of Ln(NO(3))·6H(2)O (Ln=La(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+), Ho(3+), Er(3+), Yb(3+), resp.). Ligand acts as dibasic tetradentates, binding to Ln(III) through the phenolate O-atom, N-atom of quinolinato unit, and C=N and -O-C=N- groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O-atoms leading to a central four-membered (LnO)(2) ring. Ligand and all of the Ln(III) complexes can strongly bind to CT-DNA through intercalation with the binding constants at 10(5)-10(6) M(-1). Moreover, ligand and all of the Ln(III) complexes have strong abilities of scavenging effects for hydroxyl (HO·) radicals. Both the antioxidation and DNA-binding properties of Ln(III) complexes are much better than that of ligand.

  4. Series of dinuclear and tetranuclear lanthanide clusters encapsulated by salen-type and β-diketionate ligands: single-molecule magnet and fluorescence properties. (United States)

    Sun, Wen-Bin; Han, Bing-Lu; Lin, Po-Heng; Li, Hong-Feng; Chen, Peng; Tian, Yong-Mei; Murugesu, Muralee; Yan, Peng-Fei


    Three dinuclear [Ln2H2OL(1)2(acac)2]·solvent (1, Ln = Gd, solvent = 2CH2Cl2; 2, Ln = Tb, no solvent; 3, Ln = Er, solvent = (C2H5)2O), and two tetranuclear lanthanide clusters [Ln4(μ3-OH)2L(2)2(acac)6]·2(solvent) (4, Ln = Tb, solvent = CH3OH; 5, Ln = Dy, solvent = CH3CN) were characterized in terms of structure, fluorescence and magnetism. The dinuclear lanthanide complexes were constructed by a rigid salen-type ligand H2L(1) = N,N'-bis(salicylidene)-o-phenylenediamine and β-diketonate (acac = acetylacetonate) ligands, while the tetranuclear clusters were formed from the flexible ligand H2L(2) = N,N'-bis(salicylidene)-1,2-ethanediamine. Crystal structure analysis indicates that the rigid ligand favors the double-decker sandwich structure (Ln2L(1)2), in which the two lanthanide ions have different coordination numbers and geometry, while the more flexible ligand (H2L(2)) leads to planar tetranuclear clusters. The relationship between their respective magnetic anisotropy and ligand-field geometries and their fluorescence properties was investigated. The Dy and Tb-containing clusters exhibit typical visible fluorescence properties, and single-molecule magnet behavior is seen in complex 5.

  5. Evaluation and comparison of n-alkyl chain and polar ligand bonded stationary phases for protein separation in reversed-phase liquid chromatography. (United States)

    Ding, Ling; Guo, Zhimou; Xiao, Yuansheng; Xue, Xingya; Zhang, Xiuli; Liang, Xinmiao


    Protein retention is very sensitive to the change of solvent composition in reversed-phase liquid chromatography for so called "on-off" mechanism, leading to difficulty in mobile phase optimization. In this study, a novel 3-chloropropyl trichlorosilane ligand bonded column was prepared for protein separation. The differences in retention characteristics between the 3-chloropropyl trichlorosilane ligand bonded column and n-alkyl chain modified (C2, C4, C8) stationary phases were elucidated by the retention equation l nk=a+cC(B). Retention parameters (a and c) of nine standard proteins with different molecular weights were calculated by using homemade software. Results showed that retention times of nine proteins were similar on four columns, but the 3-chloropropyl trichlorosilane ligand bonded column obtained the lowest retention parameter values of larger proteins. It meant that their retention behavior affected by acetonitrile concentration would be different due to lower |c| values. More specifically, protein elution windows were broader, and retentions were less sensitive to the change of acetonitrile concentration on the 3-chloropropyl trichlorosilane ligand bonded column than that on other columns. Meanwhile, the 3-chloropropyl trichlorosilane ligand bonded column displayed distinctive selectivity for some proteins. Our results indicated that stationary phase with polar ligand provided potential solutions to the "on-off" problem and optimization in protein separation.

  6. Unique advantages of organometallic supporting ligands for uranium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Paula L. [Univ. of California, Los Angeles, CA (United States); Garcia, Evan [Univ. of California, Los Angeles, CA (United States)


    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  7. Steered molecular dynamics simulations of protein-ligand interactions

    Institute of Scientific and Technical Information of China (English)

    XU; Yechun; SHEN; Jianhua; LUO; Xiaomin; SHEN; Xu; CHEN; Ka


    Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dynamics (SMD) is a complementary approach to experimental techniques in investigating the biochemical processes occurring at microsecond or second time scale, thus SMD may provide dynamical and kinetic processes of ligand-receptor binding and unbinding, which cannot be accessed by the experimental methods. In this article, the methodology of SMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of our own examples. One is associated with the simulations of binding and unbinding processes between huperzine A and acetylcholinesterase, and the other is concerned with the unbinding process of α-APA from HIV-1 reverse transcriptase.

  8. Specific activity of radioiodine-labelled human chorionic gonadotropin ligand

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M. (South African Inst. for Medical Research, Sandringham. National Inst. for Virology); Kay, G.W.; Van der Walt, L.A. (South African Inst. for Medical Research, Johannesburg. Dept. of Pathology)


    The article deals with the determination of the specific activity of radioiodine-labelled human chorionic gonadotropin ligand. The iodiation of human chorionic gonadotropin and the counting efficiency of /sup 125/I are discussed.

  9. Fluorescent ligand for human progesterone receptor imaging in live cells. (United States)

    Weinstain, Roy; Kanter, Joan; Friedman, Beth; Ellies, Lesley G; Baker, Michael E; Tsien, Roger Y


    We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.

  10. Synthesis and Catalytic Activity of Two New Cyclic Tetraaza Ligands

    Directory of Open Access Journals (Sweden)

    Burkhard König


    Full Text Available Two new chiral cyclic tetraaza ligands were synthesized and characterized. Their catalytic activity was tested in the asymmetric addition of diethylzinc to benzaldehyde. The expected secondary alcohol was obtained in moderate yields, but with very low enantioselectivity.

  11. Observations on the ligand selectivity of the melanocortin 2 receptor. (United States)

    Veo, Kristopher; Reinick, Christina; Liang, Liang; Moser, Emily; Angleson, Joseph K; Dores, Robert M


    The melanocortin 2 receptor (MC2R) is unique in terms of ligand selectivity and in vitro expression in mammalian cell lines as compared to the other four mammalian MCRs. It is well established that ACTH is the only melanocortin ligand that can activate the ACTH receptor (i.e., melanocortin 2 receptor). Recent studies have provided new insights into the presence of a common binding site for the HFRW motif common to all melanocortin ligands. However, the activation of the melanocortin 2 receptor requires an additional amino acid motif that is only found in the sequence of ACTH. This mini-review will focus on these two topics and provide a phylogenetic perspective on the evolution of MC2R ligand selectivity.

  12. CD40 ligand immunotherapy in cancer: an efficient approach. (United States)

    Kuwashima, N; Kageyama, S; Eto, Y; Urashima, M


    Cancer cells do not elicit a clinically sufficient anti-tumor immune response that results in tumor rejection. Recently, many investigators have been trying to enhance anti-tumor immunity and encouraging results have been reported. This review will discuss current anti-cancer immunotherapy; interleukin-2 therapy, tumor vaccine secreting Granulocyte macrophage-colony stimulating factor, dendritic cells fused with tumor cells, and CD40 ligand immunotherapy. Moreover, we introduce our two kinds of CD40 ligand immuno-genetherapy; (1) oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium (published in BLOOD 2000), (2) cancer vaccine transfected with CD40 ligand ex vivo for neuroblastoma (unpublished). Both approaches resulted in a high degree of protection against the tumor progression and they are simple and safe in the murine system.

  13. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands

    Directory of Open Access Journals (Sweden)

    Leo Veenman


    Full Text Available The 18 kDa translocator protein (TSPO is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.

  14. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands. (United States)

    Veenman, Leo; Vainshtein, Alex; Yasin, Nasra; Azrad, Maya; Gavish, Moshe


    The 18 kDa translocator protein (TSPO) is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO's importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles' membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.

  15. Novel peptide ligand with high binding capacity for antibody purification

    DEFF Research Database (Denmark)

    Lund, L. N.; Gustavsson, P. E.; Michael, R.


    Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most ......-aggregated IgG, indicating that the ligand could be used both as a primary purification step of IgG as well as a subsequent polishing step. (C) 2012 Elsevier B.V. All rights reserved....

  16. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch


    Butler, Ethan B.; Xiong, Yong; Wang, Jimin; Strobel, Scott A.


    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6Å crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for ho...

  17. Increased CD40 ligand in patients with acute anterior uveitis

    DEFF Research Database (Denmark)

    Øgard, Carsten; Sørensen, Torben Lykke; Krogh, Erik


    The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis.......The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis....

  18. Tailoring the Properties of Metallic Clusters by Ligand Coatings


    Fresch, Barbara


    Tuning the properties of metallic clusters using different protecting ligand shells is an important step toward the application-orientated design of nanoparticles for nano-electronics and catalysis. An attractive property of these materials is the ability to engineer ligand shells composed of different molecules that influence the electronic structure of the system due to their chemical interaction with the metal core. Sometimes properties are not simply additive, and cooperative effects emer...

  19. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa


    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  20. Delivering carbide ligands to sulfide-rich clusters. (United States)

    Reinholdt, Anders; Herbst, Konrad; Bendix, Jesper


    The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands. Electrochemical experiments show the Ru≡C ligand to exert a relatively large electron-withdrawing effect compared with PPh3, effectively shifting redox potentials.

  1. Lead-free primary explosives (United States)

    Huynh, My Hang V.


    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  2. Experience with intravascular lead extraction

    Institute of Scientific and Technical Information of China (English)

    MA Jian; TANG Kai; WANG Fang-zheng; ZHANG Shu; HUANG Cong-xin


    @@ With the increase of clinical use of cardiac pacemaker, a certain kinds of severe leads-related complications (especially infection) have presented in a few patients who underwent pacemaker implantation. The best way to manage this problem is to remove the transvenous leads.1,2 The technique for percutaneous removal of transvenous leads have undergone considerable development in western countries over the past 2 decades. However, there was scarce data on the application of this technique in China. This article reports the results of transvenous extraction of 171 permanent pacemaker leads with the standard lead extraction devices and intravascular countertraction technique during the period from January 1996 to May 2005 in the Center of Arrhythmia Diagnosis and Treatment, Fu Wai Hospital, Beijing, China.

  3. Agonists and Antagonists of TGF-β Family Ligands. (United States)

    Chang, Chenbei


    The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.

  4. Phage Selection of Chemically Stabilized α-Helical Peptide Ligands. (United States)

    Diderich, Philippe; Bertoldo, Davide; Dessen, Pierre; Khan, Maola M; Pizzitola, Irene; Held, Werner; Huelsken, Joerg; Heinis, Christian


    Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins.

  5. Riboswitch structure in the ligand-free state. (United States)

    Liberman, Joseph A; Wedekind, Joseph E


    Molecular investigations of riboswitches bound to small-molecule effectors have produced a wealth of information on how these molecules achieve high affinity and specificity for a target ligand. X-ray crystal structures have been determined for the ligand-free state for representatives of the preQ₁-I, S-adenosylmethionine I, lysine, and glycine aptamer classes. These structures in conjunction with complimentary techniques, such as in-line probing, NMR spectroscopy, Förster resonance energy transfer, small-angle scattering, and computational simulations, have demonstrated that riboswitches adopt multiple conformations in the absence of ligand. Despite a number of investigations that support ligand-dependent folding, mounting evidence suggests that free-state riboswitches interact with their effectors in the sub-populations of largely prefolded states as embodied by the principle of conformational selection, which has been documented extensively for protein-mediated ligand interactions. Fundamental riboswitch investigations of the bound and free states have advanced our understanding of RNA folding, ligand recognition, and how these factors culminate in communication between an aptamer and its expression platform. An understanding of these topics is essential to comprehend riboswitch gene regulation at the molecular level, which has already provided a basis to understand the mechanism of action of natural antimicrobials.

  6. Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. (United States)

    Ngo, Tony; Ilatovskiy, Andrey V; Stewart, Alastair G; Coleman, James L J; McRobb, Fiona M; Riek, R Peter; Graham, Robert M; Abagyan, Ruben; Kufareva, Irina; Smith, Nicola J


    Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.

  7. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study. (United States)

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam


    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

  8. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth


    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  9. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli. (United States)

    Liu, Yan; Mémet, Sylvie; Saban, Ricardo; Kong, Xiangpeng; Aprikian, Pavel; Sokurenko, Evgeni; Sun, Tung-Tien; Wu, Xue-Ru


    During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC.

  10. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp(3) Central Chirality for Catalytic Asymmetric Transformations. (United States)

    Xu, Zheng; Xu, Li-Wen


    Recently, academic chemists have renewed their interest in the development of 1,1'-binaphthalene-2,2'-diol (BINOL)-derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL-derived atropisomers bearing both axial and sp(3) central chirality, the so-called Ar-BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar-BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL-derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions.

  11. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth of pancreatic cancers both in vitro and in vivo. (United States)

    Itami, A; Watanabe, G; Shimada, Y; Hashimoto, Y; Kawamura, J; Kato, M; Hosotani, R; Imamura, M


    Peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed largely in adipose tissues and plays an important role in adipocyte differentiation. Several studies have recently shown that ligands of PPARgamma could lead to growth inhibition in some malignancies. In our study, we focused on pancreatic cancers, because the prognosis of advanced pancreatic cancer has not significantly improved due to its resistance to various chemotherapeutic regimens, so that a novel strategy should be required. We show here that PPARgamma is expressed in 5 pancreatic cancer cell lines detected in both mRNA and protein level as well as in human primary and metastatic pancreatic carcinomas examined by immunohistochemical studies. A specific ligand of PPARgamma, troglitazone, led to G1 accumulation with the increase in p27(Kip1), but not p21(Waf1/Cip1) and inhibited cellular proliferation in a pancreatic cancer cell line, Panc-1. The overexpression of PPARgamma in a pancreatic cancer cell line, KMP-3, caused lipid accumulation, which suggested cell growth in some cancers might be inhibited, at least in part, through terminal differentiation in the adipogenic lineage. In addition, implanted Panc-1 tumors in nude mice showed significant inhibition of tumor growth, when treated with pioglitazone, another specific ligand of PPARgamma. Our results suggest that ligands of PPARgamma may be a novel therapeutic agent for the treatment of pancreatic carcinomas.

  12. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth


    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  13. Lead arthropathy: a cause of delayed onset lead poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Peh, W.C.G. [Dept. of Diagnostic Radiology, Univ. of Hong Kong, Queen Mary Hospital (Hong Kong); Reinus, W.R. [Mallinckrodt Inst. of Radiology, Univ. School of Medicine, St. Louis, MO (United States)


    Patients who suffer gun shot wounds often have retained bullet fragments within their bodies. These are usually of no clinical consequence. We describe three patients with retained bullets within their hip joints. One of these patients, who had extensive ground intra-articular bullet fragments and secondary osteoarthritis of the hip, presented with signs, symptoms, and laboratory data consistent with lead intoxication. The bullet und metallic fragments were removed surgically with good clinical response. Two patients whose bullets were implanted entirely within the femoral head and whose joints showed smaller degrees of lead fragmentation had no symptoms of lead intoxication. The degree of intra-articular fragmentation of the bullet and the surface area of lead exposed to synovial fluid are emphasized as decisive factors with respect to appropriate therapy. (orig.)

  14. Lead levels of Culex mosquito larvae inhabiting lead utilizing factory

    Institute of Scientific and Technical Information of China (English)

    Kitvatanachai; S; Apiwathnasorn; C; Leemingsawat; S; Wongwit; W; Overgaard; HJ


    Objective:To determine lead level primarily in Culex quinquefasciatus(Cx.quinquefasciatus), and Culex gelidus(Cx.gelidus) larvae inhabiting lead consuming factories,and to putatively estimate eco-toxicological impact of effluents from the firms.Methods:Third instars larvae were sampled by standard dipping method and lead concentrations in the larvae and their respective surrounding factory aquatic environments were determined through standard atomic absorption spectrophotometry(AAS).Results:Cx.quinquefasciatus was the most abundant species followed by Cx.gelidus.The levels of lead were higher in the Cx.quinquefasciatus(1.08-47.47μg/g),than in the wastewaters surface(0.01-0.78 μg/mL) from the factories or closer areas around factories. Other species were not reaching the.criteria for lead determination.Conclusions:The Cx. quinquefasciatus larvae can bio-accumulate the metal and can potentially serve as a biomarker of lead contamination,to complemente conventional techniques.

  15. Integration of screening and identifying ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy



    Authors: Yalin Tang, Qian Shang, Junfeng Xiang, Qianfan Yang, Qiuju Zhou, Lin Li, Hong Zhang, Qian Li, Hongxia Sun, Aijiao Guan, Wei Jiang & Wei Gai ### Abstract This protocol presents the screening of ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy. A detailed description of sample preparation and analysis process is provided. NMR spectroscopies described here are 1H NMR, diffusion-ordered spectroscopy (DOSY), relaxation-edited NMR, ...

  16. electronic Ligand Builder and Optimisation Workbench (eLBOW): A tool for ligand coordinate and restraint generation

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Nigel; Grosse-Kunstleve, Ralf; Adams, Paul


    The electronic Ligand Builder and Optimisation Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It's designed to be a flexible procedure using simple and fast quantum chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow for the attainment of a number of diverse goals including geometry optimisation and generation of restraints.

  17. 3-Benzyl-1,3-oxazolidin-2-ones as mGluR2 positive allosteric modulators: Hit-to lead and lead optimization. (United States)

    Duplantier, Allen J; Efremov, Ivan; Candler, John; Doran, Angela C; Ganong, Alan H; Haas, Jessica A; Hanks, Ashley N; Kraus, Kenneth G; Lazzaro, John T; Lu, Jiemin; Maklad, Noha; McCarthy, Sheryl A; O'Sullivan, Theresa J; Rogers, Bruce N; Siuciak, Judith A; Spracklin, Douglas K; Zhang, Lei


    The discovery, synthesis and SAR of a novel series of 3-benzyl-1,3-oxazolidin-2-ones as positive allosteric modulators (PAMs) of mGluR2 is described. Expedient hit-to-lead work on a single HTS hit led to the identification of a ligand-efficient and structurally attractive series of mGluR2 PAMs. Human microsomal clearance and suboptimal physicochemical properties of the initial lead were improved to give potent, metabolically stable and orally available mGluR2 PAMs.

  18. mRAISE: an alternative algorithmic approach to ligand-based virtual screening (United States)

    von Behren, Mathias M.; Bietz, Stefan; Nittinger, Eva; Rarey, Matthias


    Ligand-based virtual screening is a well established method to find new lead molecules in todays drug discovery process. In order to be applicable in day to day practice, such methods have to face multiple challenges. The most important part is the reliability of the results, which can be shown and compared in retrospective studies. Furthermore, in the case of 3D methods, they need to provide biologically relevant molecular alignments of the ligands, that can be further investigated by a medicinal chemist. Last but not least, they have to be able to screen large databases in reasonable time. Many algorithms for ligand-based virtual screening have been proposed in the past, most of them based on pairwise comparisons. Here, a new method is introduced called mRAISE. Based on structural alignments, it uses a descriptor-based bitmap search engine (RAISE) to achieve efficiency. Alignments created on the fly by the search engine get evaluated with an independent shape-based scoring function also used for ranking of compounds. The correct ranking as well as the alignment quality of the method are evaluated and compared to other state of the art methods. On the commonly used Directory of Useful Decoys dataset mRAISE achieves an average area under the ROC curve of 0.76, an average enrichment factor at 1 % of 20.2 and an average hit rate at 1 % of 55.5. With these results, mRAISE is always among the top performing methods with available data for comparison. To access the quality of the alignments calculated by ligand-based virtual screening methods, we introduce a new dataset containing 180 prealigned ligands for 11 diverse targets. Within the top ten ranked conformations, the alignment closest to X-ray structure calculated with mRAISE has a root-mean-square deviation of less than 2.0 Å for 80.8 % of alignment pairs and achieves a median of less than 2.0 Å for eight of the 11 cases. The dataset used to rate the quality of the calculated alignments is freely available at

  19. The importance of hydration thermodynamics in fragment-to-lead optimization. (United States)

    Ichihara, Osamu; Shimada, Yuzo; Yoshidome, Daisuke


    Using a computational approach to assess changes in solvation thermodynamics upon ligand binding, we investigated the effects of water molecules on the binding energetics of over 20 fragment hits and their corresponding optimized lead compounds. Binding activity and X-ray crystallographic data of published fragment-to-lead optimization studies from various therapeutically relevant targets were studied. The analysis reveals a distinct difference between the thermodynamic profile of water molecules displaced by fragment hits and those displaced by the corresponding optimized lead compounds. Specifically, fragment hits tend to displace water molecules with notably unfavorable excess entropies-configurationally constrained water molecules-relative to those displaced by the newly added moieties of the lead compound during the course of fragment-to-lead optimization. Herein we describe the details of this analysis with the goal of providing practical guidelines for exploiting thermodynamic signatures of binding site water molecules in the context of fragment-to-lead optimization.

  20. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  1. Lead- induced genotoxicity in wheat

    Directory of Open Access Journals (Sweden)

    Elena Truta


    Full Text Available The changes induced in cytogenetic parameters from root meristems of Triticum aestivum cv. Maruca seedlings have been studied after treatment with lead acetate and lead nitrate solutions, at four concentrations (10, 25, 50, 100 μM containing 2.07, 5.18, 10.36, respectively 20.72 μg ml-1 Pb2+. Lead induced mitosis disturbances in root meristematic cells of wheat seedlings, expressed mainly in decrease of mitotic index and changes in preponderance of division phases. This heavy metal has genotoxic effects, expressed in the occurrence of many chromosomal aberrations in all Pb2+ treated variants. Pb2+ nitrate shows a more pronounced genotoxic potential than lead acetate trihydrate.

  2. Lead outside your comfort zone. (United States)

    Frisina, M E


    Successful leaders use their passion, values, and personal mission to create and maintain influence. Learn to define and develop a context that allows you to successfully lead nursing and non-nursing departments.

  3. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Sarah L. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Giorgio, Todd D., E-mail: [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN (United States)


    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  4. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties (United States)

    Supuran, Claudiu T.


    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC50 values around 10−8M against isozyme CA II, and 10−7 M against isozyme CAI. PMID:18472784

  5. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties. (United States)

    Supuran, C T


    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC(50) values around 10(-8)M against isozyme CA II, and 10(-7) M against isozyme CAI.

  6. Ligand and Metalloligand Design for Macrocycles, Multimetallic Arrays, Coordination Polymers and Assemblies


    E. C. Constable; Housecroft, C. E.


    This overview of ligand design focuses on three areas: (i) principles of ligand binding, the formation of complexes, and popular strategies for ligand synthesis; (ii) ligand design in macrocyclic complexes, coordination polymers and networks and metallopolygons, and assembly strategies based upon the use of metalloligand building blocks; (iii) ligand design for the extraction and transport of metals. This area of coordination chemistry is too large to permit a comprehensive survey in the spac...

  7. An unsymmetrical coordination environment leading to two slow relaxation modes in a Dy2 single-molecule magnet. (United States)

    Lin, Po-Heng; Sun, Wen-Bin; Yu, Mang-Fei; Li, Guang-Ming; Yan, Peng-Fei; Murugesu, Muralee


    A Dy(2) single-molecule magnet was isolated using a mixed ligand strategy in which the Dy(III) ions adopt distinct coordination environments. This leads to two unique relaxation modes due to a single-ion type relaxation mechanism. Energy barriers were obtained from individually fitting the overlapping peaks.

  8. Leading to distraction: Driver distraction, lead car, and road environment. (United States)

    Kountouriotis, G K; Merat, N


    Driver distraction is strongly associated with crashes and near-misses, and despite the attention this topic has received in recent years, the effect of different types of distracting task on driving performance remains unclear. In the case of non-visual distractions, such as talking on the phone or other engaging verbal tasks that do not require a visual input, a common finding is reduced lateral variability in steering and gaze patterns where participants concentrate their gaze towards the centre of the road and their steering control is less variable. In the experiments presented here, we examined whether this finding is more pronounced in the presence of a lead car (which may provide a focus point for gaze) and whether the behaviour of the lead car has any influence on the driver's steering control. In addition, both visual and non-visual distraction tasks were used, and their effect on different road environments (straight and curved roadways) was assessed. Visual distraction was found to increase variability in both gaze patterns and steering control, non-visual distraction reduced gaze and steering variability in conditions without a lead car; in the conditions where a lead car was present there was no significant difference from baseline. The lateral behaviour of the lead car did not have an effect on steering performance, a finding which indicates that a lead car may not necessarily be used as an information point. Finally, the effects of driver distraction were different for straight and curved roadways, indicating a stronger influence of the road environment in steering than previously thought.

  9. α-Tocopherols modify the membrane dipole potential leading to modulation of ligand binding by P-glycoprotein. (United States)

    Davis, Sterenn; Davis, Benjamin M; Richens, Joanna L; Vere, Kelly-Ann; Petrov, Peter G; Winlove, C Peter; O'Shea, Paul


    α-Tocopherol (vitamin E) has attracted considerable attention as a potential protective or palliative agent. In vitro, its free radical-scavenging antioxidant action has been widely demonstrated. In vivo, however, vitamin E treatment exhibits negligible benefits against oxidative stress. α-Tocopherol influences lipid ordering within biological membranes and its derivatives have been suggested to inhibit the multi-drug efflux pump, P-glycoprotein (P-gp). This study employs the fluorescent membrane probe, 1-(3-sulfonatopropyl)-4-[β[2-(di-n-octylamino)-6-naphthyl]vinyl] pyridinium betaine, to investigate whether these effects are connected via influences on the membrane dipole potential (MDP), an intrinsic property of biological membranes previously demonstrated to modulate P-gp activity. α-Tocopherol and its non-free radical-scavenging succinate analog induced similar decreases in the MDP of phosphatidylcholine vesicles. α-Tocopherol succinate also reduced the MDP of T-lymphocytes, subsequently decreasing the binding affinity of saquinavir for P-gp. Additionally, α-tocopherol succinate demonstrated a preference for cholesterol-treated (membrane microdomain enriched) cells over membrane cholesterol-depleted cells. Microdomain disruption via cholesterol depletion decreased saquinavir's affinity for P-gp, potentially implicating these structures in the influence of α-tocopherol succinate on P-gp. This study provides evidence of a microdomain dipole potential-dependent mechanism by which α-tocopherol analogs influence P-gp activity. These findings have implications for the use of α-tocopherol derivatives for drug delivery across biological barriers.

  10. α-Tocopherols modify the membrane dipole potential leading to modulation of ligand binding by P-glycoprotein


    Davis, Sterenn; Davis, Benjamin M.; Richens, Joanna L.; Vere, Kelly-Ann; Petrov, Peter G.; Winlove, C. Peter; O’Shea, Paul


    α-Tocopherol (vitamin E) has attracted considerable attention as a potential protective or palliative agent. In vitro, its free radical-scavenging antioxidant action has been widely demonstrated. In vivo, however, vitamin E treatment exhibits negligible benefits against oxidative stress. α-Tocopherol influences lipid ordering within biological membranes and its derivatives have been suggested to inhibit the multi-drug efflux pump, P-glycoprotein (P-gp). This study employs the fluorescent memb...

  11. Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice (United States)

    Zhang, Zhu-Qin; Ren, Si-Chong; Tan, Ying; Li, Zuo-Zhi; Tang, Xiaoqiang; Wang, Ting-Ting; Hao, De-Long; Zhao, Xiang; Chen, Hou-Zao; Liu, De-Pei


    Sirt6 is a member of the class III histone deacetylase family which is associated with aging and longevity. Sirt6 deficient mice show an aging-like phenotype, while male transgenic mice of Sirt6 show increased longevity. Sirt6 acts as a tumor suppressor and deficiency of Sirt6 leads to cardiac hypertrophy and heart failure. Whether Sirt6 is involved in atherosclerosis development, the major cause of cardiovascular diseases, is unknown. We found that the expression of Sirt6 is lower in human atherosclerotic plaques than that in controls. When Sirt6+/−ApoE−/− and ApoE−/− mice are fed with high fat diet for 16 weeks, Sirt6+/−ApoE−/− mice show increased plaque fromation and exhibit feature of plaque instability. Furthermore, Sirt6 downregulation increases expression of NKG2D ligands, which leads to increased cytokine expression. Blocking NKG2D ligand almost completely blocks this effect. Mechanistically, Sirt6 binds to promoters of NKG2D ligand genes and regulates the H3K9 and H3K56 acetylation levels. PMID:27045575

  12. Lead extraction. Indications and techniques. (United States)

    Byrd, C L; Schwartz, S J; Hedin, N


    Each of the extraction techniques and their ancillary tools was reported as used successfully; however, until now, no technique has been successful when used in more than a few isolated instances. The technique for intravascular countertraction and the associated tools described in this paper were devised and selected in an attempt to develop one technique to be used on all patients, with all types of leads, and with a very low complication rate. Its versatility permitted single or multiple lead extractions combined with the precision of selecting and extracting a specific lead. In our experience, as well as the experience of others, the techniques described in this paper have proved to be superior by minimizing the inherent risk and morbidity, allowing us to expand the indications for lead removal beyond septicemia and free-floating leads, to include infection, abandonment of pockets, and replacement of malfunctioning or fractured leads. Intravascular countertraction was a consistently safe and efficacious method of removing transvenous pacemaker leads regardless of the duration of the implant, thus permitting extractions in patients not considered candidates for a more extensive surgical procedure. Intravascular countertraction encompasses surgical and fluoroscopic techniques possessed by most physicians experienced in pacemaker and automatic implantable cardioverter defibrillator implants. However, there is a learning curve, predicating caution for the inexperienced physician. In addition, advanced surgical skills may be needed in handling associated conditions such as debridement and primary closure of chronically inflamed tissues, especially in submuscular pockets and sinus tracts in the neck. Although the potential for a cardiovascular complication is small, it does exist, and cardiovascular surgical backup is a recommended precaution.

  13. Coarse-grained molecular dynamics simulations of protein-ligand binding. (United States)

    Negami, Tatsuki; Shimizu, Kentaro; Terada, Tohru


    Coarse-grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein-ligand binding processes. We chose two protein-ligand systems, the levansucrase-sugar (glucose or sucrose), and LinB-1,2-dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand-binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse-grained (CG) ligand molecules revealed potential ligand-binding sites on the protein surfaces other than the real ligand-binding sites. The ligands bound most strongly to the real ligand-binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase-sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand-binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein-ligand binding processes.

  14. A grand unified model for liganded gold clusters (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi


    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  15. Conformational dynamics of a ligand-free adenylate kinase.

    Directory of Open Access Journals (Sweden)

    Hyun Deok Song

    Full Text Available Adenylate kinase (AdK is a phosphoryl-transfer enzyme with important physiological functions. Based on a ligand-free open structure and a ligand-bound closed structure solved by crystallography, here we use molecular dynamics simulations to examine the stability and dynamics of AdK conformations in the absence of ligands. We first perform multiple simulations starting from the open or the closed structure, and observe their free evolutions during a simulation time of 100 or 200 nanoseconds. In all seven simulations starting from the open structure, AdK remained stable near the initial conformation. The eight simulations initiated from the closed structure, in contrast, exhibited large variation in the subsequent evolutions, with most (seven undergoing large-scale spontaneous conformational changes and approaching or reaching the open state. To characterize the thermodynamics of the transition, we propose and apply a new sampling method that employs a series of restrained simulations to calculate a one-dimensional free energy along a curved pathway in the high-dimensional conformational space. Our calculated free energy profile features a single minimum at the open conformation, and indicates that the closed state, with a high (∼13 kcal/mol free energy, is not metastable, consistent with the observed behaviors of the unrestrained simulations. Collectively, our simulations suggest that it is energetically unfavorable for the ligand-free AdK to access the closed conformation, and imply that ligand binding may precede the closure of the enzyme.

  16. Mapping of ligand-binding cavities in proteins. (United States)

    Andersson, C David; Chen, Brian Y; Linusson, Anna


    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs.

  17. Cloud computing for protein-ligand binding site comparison. (United States)

    Hung, Che-Lun; Hua, Guan-Jie


    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  18. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods

    Directory of Open Access Journals (Sweden)

    Xing Du


    Full Text Available Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed.

  19. Efficient mapping of ligand migration channel networks in dynamic proteins. (United States)

    Lin, Tu-Liang; Song, Guang


    For many proteins such as myoglobin, the binding site lies in the interior, and there is no obvious route from the exterior to the binding site in the average structure. Although computer simulations for a limited number of proteins have found some transiently open channels, it is not clear if there exist more channels elsewhere or how the channels are regulated. A systematic approach that can map out the whole ligand migration channel network is lacking. Ligand migration in a dynamic protein resembles closely a well-studied problem in robotics, namely, the navigation of a mobile robot in a dynamic environment. In this work, we present a novel robotic motion planning inspired approach that can map the ligand migration channel network in a dynamic protein. The method combines an efficient spatial mapping of protein inner space with a temporal exploration of protein structural heterogeneity, which is represented by a structure ensemble. The spatial mapping of each conformation in the ensemble produces a partial map of protein inner cavities and their inter-connectivity. These maps are then merged to form a super map that contains all the channels that open dynamically. Results on the pathways in myoglobin for gaseous ligands demonstrate the efficiency of our approach in mapping the ligand migration channel networks. The results, obtained in a significantly less amount of time than trajectory-based approaches, are in agreement with previous simulation results. Additionally, the method clearly illustrates how and what conformational changes open or close a channel.

  20. Cloud Computing for Protein-Ligand Binding Site Comparison

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung


    Full Text Available The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  1. Kinetics of Receptor-Ligand Interactions in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Mian Long; Shouqin Lü; Ganyun Sun


    Receptor-ligand interactions in blood flow are crucial to initiate the biological processes as inflammatory cascade,platelet thrombosis, as well as tumor metastasis. To mediate cell adhesions, the interacting receptors and ligands must be anchored onto two apposing surfaces of two cells or a cell and a substratum, i.e., the two-dimensional (2D) binding, which is different from the binding of a soluble ligand in fluid phase to a receptor, i.e., three-dimensional (3D) binding. While numerous works have been focused on 3D kinetics of receptor-ligand interactions in immune systems, 2D kinetics and its regulations have less been understood, since no theoretical framework and experimental assays have been established until 1993. Not only does the molecular structure dominate 2D binding kinetics, but the shear force in blood flow also regulates cell adhesions mediated by interacting receptors and ligands. Here we provided the overview of current progresses in 2D bindings and regulations. Relevant issues of theoretical frameworks, experimental measurements, kinetic rates and binding affinities, and force regulations,were discussed.

  2. Protein-Ligand Docking Based on Beta-Shape (United States)

    Kim, Chong-Min; Won, Chung-In; Kim, Jae-Kwan; Ryu, Joonghyun; Bhak, Jong; Kim, Deok-Soo

    Protein-ligand docking is to predict the location and orientation of a ligand with respect to a protein within its binding site, and has been known to be essential for the development of new drugs. The protein-ligand docking problem is usually formulated as an energy minimization problem to identify the docked conformation of the ligand. A ligand usually docks around a depressed region, called a pocket, on the surface of a protein. Presented in this paper is a docking method, called BetaDock, based on the newly developed geometric construct called the β-shape and the β-complex. To cope with the computational intractability, the global minimum of the potential energy function is searched using the genetic algorithm. The proposed algorithm first locates initial chromosomes at some locations within the pocket recognized according to the local shape of the β-shape. Then, the algorithm proceeds generations by taking advantage of powerful properties of the β-shape to achieve an extremely fast and good solution. We claim that the proposed method is much faster than other popular docking softwares including AutoDock.

  3. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei, E-mail:


    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  4. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available Prolyl oligopeptidase (POP is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana. Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.

  5. TAK1 contributes to the enhanced responsiveness of LTB(4)-treated neutrophils to Toll-like receptor ligands. (United States)

    Gaudreault, Éric; Paquet-Bouchard, Carine; Fiola, Stéphanie; Le Bel, Manon; Lacerte, Patricia; Shio, Marina Tiemi; Olivier, Martin; Gosselin, Jean


    Pattern-recognition receptors such as Toll-like receptors (TLRs) are essential sensors implicated in the early and efficient innate immune response against pathogens. We have previously demonstrated that leukotriene B(4)(LTB(4)) has the capacity to enhance leukocyte responses to TLR9 ligands and to control viral infection. In this report, we provide evidence that LTB(4) treatment of human neutrophils leads to a potentiation in proinflammatory cytokine secretion induced by various myeloid differentiation factor 88-dependent TLR agonists. LTB(4) failed to enhance TLR mRNA levels as well as expression of TLR2 and TLR4 receptors, suggesting that LTB(4) acts through intracellular mechanism(s) to potentiate neutrophil responses to TLR ligands. We found that while IRAK can be activated by LTB(4), this process is dispensable to LTB(4) to potentiate neutrophil responses to TLR ligands since pretreatment of neutrophils with IRAK1/4 inhibitor did not affect its potentiating effects. However, our data clearly show that LTB(4) treatment of neutrophils led to the phosphorylation of downstream signaling molecules, TAK1 and p38, a process found essential to observe an increased secretion of cytokines by neutrophils activated with TLR ligands. Pretreatment of neutrophils with TAK1 or p38 kinase inhibitors strongly repressed the effect of LTB(4) on cytokine synthesis by neutrophils stimulated with LTA, LPS or CpG. The same pattern was observed in agonist-treated human embryonic kidney 293 cells transfected with TAK1-targeting siRNA where secretion of IL-8 was significantly reduced to basal levels. These results indicate that TAK1 and p38 kinases appear to be central in the 'priming effect' of LTB(4) on neutrophils to enhance response to TLR ligands.

  6. Stabilization of coordinatively unsaturated Ir4 clusters with bulky ligands: a comparative study of chemical and mechanical effects. (United States)

    Okrut, Alexander; Gazit, Oz; de Silva, Namal; Nichiporuk, Rita; Solovyov, Andrew; Katz, Alexander


    The synthesis and characterization of new cluster compounds represented by the series Ir(4)(CO)(12-x)L(x) (L = tert-butyl-calix[4]-arene(OPr)(3)(OCH(2)PPh(2)); x = 2 and 3) is reported using ESI mass spectrometry, NMR spectroscopy, IR spectroscopy and single-crystal X-ray diffraction. Thermally driven decarbonylation of the cluster compound series represented by x = 1-3 according to the formula above is followed via FTIR and NMR spectroscopies, and dynamic light scattering in toluene solution. The propensity of these clusters to decarbonylate in solution is shown to be directly correlated with number density of adsorbed calixarene phosphine ligands and controlled via Pauli repulsion between metal d and CO 5σ orbitals. The tendency for cluster aggregation unintuitively follows a trend that is exactly opposite to the cluster's propensity to decarbonylate. No cluster aggregation is observed for clusters consisting of x = 3, even after extensive decarbonylation via loss of all bridging CO ligands and coordinative unsaturation. Some of the CO lost during thermal treatment via decarbonylation can be rebound to the coordinatively unsaturated cluster consisting of x = 3. In contrast, the clusters consisting of x = 1 and x = 2 both aggregate into large nanoparticles when treated under identical conditions. Clusters in which the calixarene phosphine ligand is replaced with a sterically less demanding PPh(2)Me ligand 6 lead to significantly less coordinative unsaturation upon thermal treatment. Altogether, these data support a mechanical model of accessibility in coordinatively unsaturated metal clusters in solution, which hinges on having at least three sterically bulky organic ligands per Ir(4) core.

  7. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. (United States)

    Hauser, Frank; Grimmelikhuijzen, Cornelis J P


    In this review we trace the evolutionary connections between GnRH receptors from vertebrates and the receptors for adipokinetic hormone (AKH), AKH/corazonin-related peptide (ACP), and corazonin from arthropods. We conclude that these G protein-coupled receptors (GPCRs) are closely related and have a common evolutionary origin, which dates back to the split of Proto- and Deuterostomia, about 700 million years ago. We propose that in the protostomian lineage, the ancestral GnRH-like receptor gene duplicated as did its GnRH-like ligand gene, followed by diversification, leading to (i) a corazonin receptor gene and a corazonin-like ligand gene, and (ii) an AKH receptor gene and an AKH-like ligand gene in the Mollusca and Annelida. Subsequently, the AKH receptor and ligand genes duplicated once more, yielding the situation that we know from arthropods today, where three independent hormonal systems exist, signalling with AKH, ACP, and corazonin. Our model for the evolution of GnRH signaling in the Protostomia is a striking example of receptor-ligand co-evolution. This model has been developed using several bioinformatics tools (TBLASTN searches, phylogenetic tree analyses), which also helped us to annotate six novel AKH preprohormones and their corresponding AKH sequences from the following molluscs: the sea hare Aplysia californica (AKH sequence: pQIHFSPDWGTamide), the sea slug Tritonia diomedea (pQIHFSPGWEPamide), the fresh water snail Bithynia siamensis goniomphalos (pQIHFTPGWGSamide), the owl limpet Lottia gigantea (pQIHFSPTWGSamide), the oyster Crassostrea gigas (pQVSFSTNWGSamide), and the freshwater pearl mussel Hyriopsis cumingii (pQISFSTNWGSamide). We also found AKHs in the tardigrade Hysibius dujardini (pQLSFTGWGHamide), the rotifer Brachionus calycifloros (pQLTFSSDWSGamide), and the penis worm Priapulus caudatus (pQIFFSKGWRGamide). This is the first report, showing that AKH signaling is widespread in molluscs.

  8. Long-Range Conformational Response of a PDZ Domain to Ligand Binding and Release: A Molecular Dynamics Study. (United States)

    Lu, Cheng; Knecht, Volker; Stock, Gerhard


    The binding of a ligand to a protein may induce long-range structural or dynamical changes in the biomacromolecule even at sites physically well separated from the binding pocket. A system for which such behavior has been widely discussed is the PDZ2 domain of human tyrosine phosphatase 1E. Here, we present results from equilibrium trajectories of the PDZ2 domain in the free and ligand-bound state, as well as nonequilibrium simulations of the relaxation of PDZ2 after removal of its peptide ligand. The study reveals changes in inter-residue contacts, backbone dihedral angles, and C(α) positions upon ligand release. Our findings show a long-range conformational response of the PDZ2 domain to ligand release in the form of a collective shift of the secondary structure elements α2, β2, β3, α1-β4, and the C terminal loop relative to the rest of the protein away from the N-terminus, and a shift of the loops β2-β3 and β1-β2 in the opposite direction. The shifts lead to conformational changes in the backbone, especially in the β2-β3 loop but also in the β5-α2 and the α2-β6 loop, and are accompanied by changes of inter-residue contacts mainly within the β2-β3 loop as well as between the α2 helix and other segments. The residues showing substantial changes of inter-residue contacts, backbone conformations, or C(α) positions are considered "key residues" for the long-range conformational response of PDZ2. By comparing these residues with various sets of residues highlighted by previous studies of PDZ2, we investigate the statistical correlation of the various approaches. Interestingly, we find a considerable correlation of our findings with several works considering structural changes but no significant correlations with approaches considering energy flow or networks based on inter-residue energies.

  9. Synthesis, structure characterization and biological activity of selected metal complexes of sulfonamide Schiff base as a primary ligand and some mixed ligand complexes with glycine as a secondary ligand (United States)

    Sharaby, Carmen M.; Amine, Mona F.; Hamed, Asmaa A.


    The current work reports synthesis of metal complexes and mixed ligand complexes of a novel sulfonamide Schiff base ligand (HL) resulted from the condensation of sulfametrole [N‧-(4-methoxy-1,2,5-thiadiazol-3-yl]sulfanilamide and acetyl-acetone as a primary ligand and glycine as a secondary ligand. The metal complexes and mixed ligand complexes of HL Schiff base ligand were synthesized and characterized using different physicochemical studies as elemental analyses, mass spectra, conductivity measurement, IR spectra, 1H NMR spectra, UV-vis Spectra, solid reflectance, magnetic susceptibility, thermal analyses (TGA and DTA) and their microbial and anticancer activities. The spectroscopic data of the complexes suggest their 1:2(L1:M) complex structures and 1:2:2(L1:L2:M) mixed ligand complex structures, where L1 = HL and L2 = glycine. Also, the spectroscopic studies suggested the octahedral structure for all complexes. The synthesized Schiff base, its metal and mixed ligand complexes were screened for their bacterial, antifungal and anticancer activity. The activity data show that the metal complexes and mixed ligand complexes exhibited promising microbial and anticancer activities than their parent HL Schiff base ligand, also the data show that the mixed ligand complexes more effective than the metal complexes.

  10. Critical role of the H6-H7 loop in the conformational adaptation of all-trans retinoic acid and synthetic retinoids within the ligand-binding site of RARalpha. (United States)

    Mailfait, S; Thoreau, E; Belaiche, D; Formstecher And B Sablonniè, P


    The pleiotropic effects of the natural and synthetic retinoids are mediated by the activation of the two subfamilies of nuclear receptors, the retinoic acid receptors (RARs) and the retinoic X receptors (RXRs). At the molecular level, these events begin with the specific ligand recognition by a nuclear receptor subtype. The adaptation of ligands to the receptor binding site leads to an optimal number of interactions for binding and selectivity which justifies elucidation of the structural requirements of the ligand binding pocket. To explore the contribution of H6-H7 loop folding in the ligand-induced conformational changes explained by the mouse-trap model, four RARalpha mutants were constructed. Ligand binding and transactivation studies revealed that three residues from the H6-H7 loop (Gly(301), Phe(302) and Gly(303)) are critical for the conformational adaptation of both synthetic agonists and antagonists. Model building and analysis of both RARalpha-ATRA and RARalpha-CD367 complexes demonstrate that accommodation of CD367 results in a less tight contact of the saturated ring of this ligand with the amino acid side chains of the receptor ligand-binding pocket compared with that of ATRA. According to the flexibility of the agonists tested (ATRA>TTNPB=Am580> CD367), we observed a decrease in binding that was dependent on ligand structure rigidity. In contrast, the binding and transactivating activities of the L266A mutant confirmed the structural constraints imposed by synthetic ligands on binding affinity for the receptor and revealed that subtle local rearrangements induced by specific conformational adaptation changes result in different binding affinities. Our results illustrate the dynamic nature of the interaction between RARalpha and its ligands and demonstrate the critical role of the H6-H7 loop in the binding of both synthetic retinoid agonists and antagonists.

  11. Lead poisoning by contaminated flour. (United States)

    Hershko, C; Eisenberg, A; Avni, A; Grauer, F; Acker, C; Hamdallah, M; Shahin, S; Moreb, J; Richter, E; Weissenberg, E


    Between October 1982 and June 1983, 43 patients were identified with symptomatic lead poisoning in three Arab villages of the Nablus district. Because of the clustering of clinical poisoning by household units, investigation was focussed on potential sources common to all members of the households. After excluding water, olive oil and a variety of foodstuff, lead in high concentrations was discovered in locally ground flour in all affected households. The source of poisoning was lead poured into the fissures between the metal housing and the driveshaft of the millstone. Significant lead contamination of freshly ground flour was demonstrated in 23% of the 146 community flour mills operating in West Bank villages. Since the completion of these studies, similar outbreaks of lead poisoning caused by contaminated flourmills have been identified in the Upper Galilee and in Spain. As the methods of milling in the Mediterranean area are similar, a coordinated international effort is needed in order to eliminate this health hazard from countries where similar community stone mills are still in use.

  12. Efficient and lightweight current leads (United States)

    Bromberg, L.; Dietz, A. J.; Michael, P. C.; Gold, C.; Cheadle, M.


    Current leads generate substantial cryogenic heat loads in short length High Temperature Superconductor (HTS) distribution systems. Thermal conduction, as well as Joule losses (I2R) along the current leads, comprises the largest cryogenic loads for short distribution systems. Current leads with two temperature stages have been designed, constructed and tested, with the goal of minimizing the electrical power consumption, and to provide thermal margin for the cable. We present the design of a two-stage current lead system, operating at 140 K and 55 K. This design is very attractive when implemented with a turbo-Brayton cycle refrigerator (two-stage), with substantial power and weight reduction. A heat exchanger is used at each temperature station, with conduction-cooled stages in-between. Compact, efficient heat exchangers are challenging, because of the gaseous coolant. Design, optimization and performance of the heat exchangers used for the current leads will be presented. We have made extensive use of CFD models for optimizing hydraulic and thermal performance of the heat exchangers. The methodology and the results of the optimization process will be discussed. The use of demountable connections between the cable and the terminations allows for ease of assembly, but require means of aggressively cooling the region of the joint. We will also discuss the cooling of the joint. We have fabricated a 7 m, 5 kA cable with second generation HTS tapes. The performance of the system will be described.

  13. αβ T cell receptor germline CDR regions moderate contact with MHC ligands and regulate peptide cross-reactivity. (United States)

    Attaf, Meriem; Holland, Stephan J; Bartok, Istvan; Dyson, Julian


    αβ T cells respond to peptide epitopes presented by major histocompatibility complex (MHC) molecules. The role of T cell receptor (TCR) germline complementarity determining regions (CDR1 and 2) in MHC restriction is not well understood. Here, we examine T cell development, MHC restriction and antigen recognition where germline CDR loop structure has been modified by multiple glycine/alanine substitutions. Surprisingly, loss of germline structure increases TCR engagement with MHC ligands leading to excessive loss of immature thymocytes. MHC restriction is, however, strictly maintained. The peripheral T cell repertoire is affected similarly, exhibiting elevated cross-reactivity to foreign peptides. Our findings are consistent with germline TCR structure optimising T cell cross-reactivity and immunity by moderating engagement with MHC ligands. This strategy may operate alongside co-receptor imposed MHC restriction, freeing germline TCR structure to adopt this novel role in the TCR-MHC interface.

  14. The quest for molecular quasi-species in ligand-activity space and its application to directed enzyme evolution. (United States)

    Mannervik, Bengt; Runarsdottir, Arna


    We propose that the proper evolving unit in enzyme evolution is not a single "fittest molecule", but a cluster of related variants denoted a "quasi-species". A distribution of variants provides genetic variability and thereby reduces the risk of inbreeding and evolutionary dead-ends. Different matrices of substrates or activity modulators will lead to different selection criteria and divergent evolutionary trajectories. We provide examples from our directed evolution of glutathione transferases illustrating the interplay between libraries of enzyme variants and ligand matrices in the identification of quasi-species. The ligand matrix is shown to be crucial to the outcome of the search for novel activities. In this sense the experimental system resembles the biological environment in governing the evolution of enzymes.

  15. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin. (United States)

    Johnston, Ryne C; Zhou, Jing; Smith, Jeremy C; Parks, Jerry M


    Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and

  16. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    -depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.

  17. Effect of ligands on thermal dissipation from gold nanorods. (United States)

    Alper, Joshua; Hamad-Schifferli, Kimberly


    Thermal interface conductance was measured for soluble gold nanorods (NRs) coated with mercaptocarboxylic acids (HS-(CH(2))(n)COOH, n = 5, 10, 15), thiolated polyethylene glycols (MW = 356, 1000, 5000), and HS-(CH(2))(15)-COOH-coated NRs further coated with alternating layers of poly(diallyldimethylammonium chloride) and poly(sodium styrenesulfonate). Ferguson analysis determined ligand thickness. The thermal-diffusion-dominated regime of transient absorption spectra was fit to a continuum heat diffusion finite element model to obtain the thermal interface conductance, G, which varied with ligand chemistry but not molecule length. The results suggest that the ability to exclude water from the NR surface governs ligand G values.

  18. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands. (United States)

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka


    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  19. Advances Towards The Discovery of GPR55 Ligands. (United States)

    Morales, Paula; Jagerovic, Nadine


    The G-protein-coupled receptor 55 (GPR55) was identified in 1999. It was proposed as a novel member of the endocannabinoid system due to the fact that some endogenous, plant-derived and synthetic cannabinoid ligands act on GPR55. However, the complexity of the cellular downstream signaling pathways related to GPR55 activation delayed the discovery of selective GPR55 ligands. It was only a few years ago that the high throughput screening of libraries of pharmaceutical companies and governmental organizations allowed to identify selective GPR55 agonists and antagonists. Since then, several GPR55 modulator scaffolds have been reported. The relevance of GPR55 has been explored in diverse physiological and pathological processes revealing its role in inflammation, neuropathic pain, bone physiology, diabetes and cancer. Considering GPR55 as a new promising therapeutic target, there is a clear need for new selective and potent GPR55 modulators. This review will address a current structural update of GPR55 ligands.

  20. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V


    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  1. Coordination chemistry of N-heterocyclic nitrenium-based ligands. (United States)

    Tulchinsky, Yuri; Kozuch, Sebastian; Saha, Prasenjit; Mauda, Assaf; Nisnevich, Gennady; Botoshansky, Mark; Shimon, Linda J W; Gandelman, Mark


    Comprehensive studies on the coordination properties of tridentate nitrenium-based ligands are presented. N-heterocyclic nitrenium ions demonstrate general and versatile binding abilities to various transition metals, as exemplified by the synthesis and characterization of Rh(I) , Rh(III) , Mo(0) , Ru(0) , Ru(II) , Pd(II) , Pt(II) , Pt(IV) , and Ag(I) complexes based on these unusual ligands. Formation of nitrenium-metal bonds is unambiguously confirmed both in solution by selective (15) N-labeling experiments and in the solid state by X-ray crystallography. The generality of N-heterocyclic nitrenium as a ligand is also validated by a systematic DFT study of its affinity towards all second-row transition and post-transition metals (Y-Cd) in terms of the corresponding bond-dissociation energies.

  2. GPCR biased ligands as novel heart failure therapeutics. (United States)

    Violin, Jonathan D; Soergel, David G; Boerrigter, Guido; Burnett, John C; Lark, Michael W


    G protein-coupled receptors have been successfully targeted by numerous therapeutics including drugs that have transformed the management of cardiovascular disease. However, many GPCRs, when activated or blocked by drugs, elicit both beneficial and adverse pharmacology. Recent work has demonstrated that in some cases, the salutary and deleterious signals linked to a specific GPCR can be selectively targeted by "biased ligands" that entrain subsets of a receptor's normal pharmacology. This review briefly summarizes the advances and current state of the biased ligand field, focusing on an example: biased ligands targeting the angiotensin II type 1 receptor. These compounds exhibit unique pharmacology, distinct from classic agonists or antagonists, and one such molecule is now in clinical development for the treatment of acute heart failure.

  3. Xanthene and Xanthone Derivatives as G-Quadruplex Stabilizing Ligands

    Directory of Open Access Journals (Sweden)

    Alessandro Altieri


    Full Text Available Following previous studies on anthraquinone and acridine-based G-quadruplex ligands, here we present a study of similar aromatic cores, with the specific aim of increasing G-quadruplex binding and selectivity with respect to duplex DNA. Synthesized compounds include two and three-side chain xanthone and xanthene derivatives, as well as a dimeric “bridged” form. ESI and FRET measurements suggest that all the studied molecules are good G-quadruplex ligands, both at telomeres and on G-quadruplex forming sequences of oncogene promoters. The dimeric compound and the three-side chain xanthone derivative have been shown to represent the best compounds emerging from the different series of ligands presented here, having also high selectivity for G-quadruplex structures with respect to duplex DNA. Molecular modeling simulations are in broad agreement with the experimental data.

  4. Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters. (United States)

    Wang, Jinan; Shao, Qiang; Cossins, Benjamin P; Shi, Jiye; Chen, Kaixian; Zhu, Weiliang


    The calculation of protein-ligand binding free energy (ΔG) is of great importance for virtual screening and drug design. Molecular dynamics (MD) simulation has been an attractive tool to investigate this scientific problem. However, the reliability of such approach is affected by many factors including electrostatic interaction calculation. Here, we present a practical protocol using quantum mechanics/molecular mechanics (QM/MM) calculations to generate polarizable QM protein charge (QMPC). The calculated QMPC of some atoms in binding pockets was obviously different from that calculated by AMBER ff03, which might significantly affect the calculated ΔG. To evaluate the effect, the MD simulations and MM/GBSA calculation with QMPC for 10 protein-ligand complexes, and the simulation results were then compared to those with the AMBER ff03 force field and experimental results. The correlation coefficient between the calculated ΔΔG using MM/GBSA under QMPC and the experimental data is .92, while that with AMBER ff03 force field is .47 for the complexes formed by streptavidin or its mutants and biotin. Moreover, the calculated ΔΔG with QMPC for the complexes formed by ERβ and five ligands is positively related to experimental result with correlation coefficient of .61, while that with AMBER ff03 charge is negatively related to experimental data with correlation coefficient of .42. The detailed analysis shows that the electrostatic polarization introduced by QMPC affects the electrostatic contribution to the binding affinity and thus, leads to better correlation with experimental data. Therefore, this approach should be useful to virtual screening and drug design.

  5. Application of the quantum mechanical IEF/PCM-MST hydrophobic descriptors to selectivity in ligand binding. (United States)

    Ginex, Tiziana; Muñoz-Muriedas, Jordi; Herrero, Enric; Gibert, Enric; Cozzini, Pietro; Luque, F Javier


    We have recently reported the development and validation of quantum mechanical (QM)-based hydrophobic descriptors derived from the parametrized IEF/PCM-MST continuum solvation model for 3D-QSAR studies within the framework of the Hydrophobic Pharmacophore (HyPhar) method. In this study we explore the applicability of these descriptors to the analysis of selectivity fields. To this end, we have examined a series of 88 compounds with inhibitory activities against thrombin, trypsin and factor Xa, and the HyPhar results have been compared with 3D-QSAR models reported in the literature. The quantitative models obtained by combining the electrostatic and non-electrostatic components of the octanol/water partition coefficient yield results that compare well with the predictive potential of standard CoMFA and CoMSIA techniques. The results also highlight the potential of HyPhar descriptors to discriminate the selectivity of the compounds against thrombin, trypsin, and factor Xa. Moreover, the graphical representation of the hydrophobic maps provides a direct linkage with the pattern of interactions found in crystallographic structures. Overall, the results support the usefulness of the QM/MST-based hydrophobic descriptors as a complementary approach for disclosing structure-activity relationships in drug design and for gaining insight into the molecular determinants of ligand selectivity. Graphical Abstract Quantum Mechanical continuum solvation calculations performed with the IEF/PCM-MST method are used to derived atomic hydrophobic descriptors, which are then used to discriminate the selectivity of ligands against thrombin, trypsin and factor Xa. The descriptors provide complementary view to standard 3D-QSAR analysis, leading to a more comprehensive understanding of ligand recognition.

  6. Mapping the Conformational Dynamics of E-selectin upon Interaction with its Ligands

    KAUST Repository

    Aleisa, Fajr A


    Selectins are key adhesion molecules responsible for initiating a multistep process that leads a cell out of the blood circulation and into a tissue or organ. The adhesion of cells (expressing ligands) to the endothelium (expressing the selectin i.e.,E-selectin) occurs through spatio-temporally regulated interactions that are mediated by multiple intra- and inter-cellular components. The mechanism of cell adhesion is investigated primarily using ensemble-based experiments, which provides indirect information about how individual molecules work in such a complex system. Recent developments in single-molecule (SM) fluorescence detection allow for the visualization of individual molecules with a good spatio-temporal resolution nanometer spatial resolution and millisecond time resolution). Furthermore, advanced SM fluorescence techniques such as Förster Resonance Energy Transfer (FRET) and super-resolution microscopy provide unique opportunities to obtain information about nanometer-scale conformational dynamics of proteins as well as nano-scale architectures of biological samples. Therefore, the state-of-the-art SM techniques are powerful tools for investigating complex biological system such as the mechanism of cell adhesion. In this project, several constructs of fluorescently labeled E-selectin will be used to study the conformational dynamics of E-selectin binding to its ligand(s) using SM-FRET and combination of SM-FRET and force microscopy. These studies will be beneficial to fully understand the mechanistic details of cell adhesion and migration of cells using the established model system of hematopoietic stem cells (HSCs) adhesion to the selectin expressing endothelial cells (such as the E-selectin expressing endothelial cells in the bone marrow).

  7. Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins.

    Directory of Open Access Journals (Sweden)

    Carolina Gomez-Diaz

    Full Text Available Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z-11-octadecenyl acetate (cis-vaccenyl acetate [cVA] in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.

  8. Chronic lead intoxication; Chronische Bleiintoxikation

    Energy Technology Data Exchange (ETDEWEB)

    Wieseler, B.; Leng, G. [Duesseldorf Univ. (Germany). Inst. fuer Hygiene; Lenz, S.; Schultz, C. [Klinikum Remscheid GmbH, Remscheid (Germany); Wilhelm, M. [Bochum Univ. (Germany). Inst. fuer Hygiene, Sozial- und Umweltmedizin


    The case of a female 68 years old patient is described. Here, a chronic lead intoxication was diagnosed after a two year old medical history with increasing attacks of colic-like abdominal pain often described as life-threatening. After repeated hospitalizations and intensive search for the cause of the symptoms, porphyria and anemia was found to be a sign of a chronic lead poisoning. The blood lead concentrations were always about a level of 600 {mu}g/L. The source of exposure could not be found by now. Neither home inspection nor environmental investigations have shown a recent source of lead intake by the patient. However, a possible occupational source of lead exposure at a blast furnace was established by anamnesis for 1952 to 1962. Thus, osteoporosis induced lead mobilisation was suspected. Noticeable are the results of the six abdominal survey radiographies taken during hospitalization within one year; three radiographies were taken following clinical admission and three before discharge of the patient. In comparison, the course shows a chronic relapsing alimentary supply from metallic particles of unknown genesis. The patient was treated with the sodium salt of 2,3-dimercapto-1-propansulfonic acid (DMPS, Dimaval{sup TM}). She was free of complain afterwards. Following therapy, the blood lead concentrations fell under a level of 400 {mu}m/L, but after several weeks the lead level raised up to the original level of 600 {mu}g/L. (orig.) [Deutsch] Es wird eine 68jaehrige Patientin vorgestellt, bei der nach fast zweijaehriger Krankengeschichte, die gekennzeichnet war durch rezidivierende, teils als lebensbedrohlich geschilderte Bauchkoliken, eine chronische Bleiintoxikation diagnostiziert wurde. Erst nach wiederholten stationaeren Krankenhausaufenthalten mit intensiver Suche nach der Krankheitsursache wurden das Krankheitsbild und die Laborwerte durch Zusatzuntersuchungen ergaenzt, so dass sich in der festgestellten Porphyrie und Anaemie die Diagnose der

  9. OPAL 96 Blocks Lead Glass

    CERN Multimedia

    This array of 96 lead glass bricks formed part of the OPAL electromagnetic calorimeter. One half of the complete calorimeter is shown in the picture above. There were 9440 lead glass counters in the OPAL electromagnetic calorimeter. These are made of Schott type SF57 glass and each block weighs about 25 kg and consists of 76% PbO by weight. Each block has a Hamamatsu R2238 photomultiplier glued on to it. The complete detector was in the form of a cylinder 7m long and 6m in diameter. It was used to measure the energy of electrons and photons produced in LEP interactions.

  10. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory. (United States)

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard


    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  11. Ligand Receptor-Mediated Regulation of Growth in Plants. (United States)

    Haruta, Miyoshi; Sussman, Michael R


    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  12. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  13. The OECD/NEA TDB review of selected organic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W. [Paul Scherrer Institut, Laboratory for Waste Management, 5232 Villigen PSI (Switzerland); Anderegg, G. [Swiss Federal Institute of Technology - ETH, Zuerich, 8092 Zuerich (Switzerland); Puigdomenech, I. [Swedish Nuclear Fuel and Waste Management Co. - SKB, Box 5864, 10240 Stockholm (Sweden); Rao, L. [Glenn T. Seaborg Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Tochiyama, O. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan)


    Within the scope of the OECD Nuclear Energy Agency (NEA) Thermochemical Data Base (TDB) Project a comprehensive review of selected organic ligands has been carried out by an international team of experts. The selected ligands are oxalate, citrate, ethylenediamine-tetra-acetate (EDTA) and {alpha}- iso-saccharinate (isa), and the elements considered in the review are U, Np, Pu, Am, Tc, Ni, Se and Zr, as well as the necessary basic data concerning protonation of the ligands and interactions with the major competing cations Na, K, Mg and Ca. As a remarkable result, this review on organic ligands showed that the pragmatic ionic strength correction procedure, the Specific ion Interaction Theory (SIT), chosen as the default method for all NEA TDB reviews, can be applied successfully also to organic ligands. The SIT interaction parameters derived from ligand protonation data for different media, e.g. NaCl and KCl, pass the consistency test when applied to other systems evaluated in the organics review, e.g. solubility data. Hence, the thermodynamic constants selected in this NEA TDB organics review can be used in real world applications, provided that SIT is used in the speciation calculations. Figure: Weighted multi-dimensional least squares SIT regression plot for the first protonation equilibrium of oxalate, ox{sup 2-} + H{sup +} {r_reversible} Hox{sup -}, in Li{sup +}, Na{sup +}, K{sup +} and Et{sub 4}N{sup +} (tetraethylammonium) media. All data can be fitted with a common parameter log{sub 10}K{sub 1}{sup 0} = (4.25 {+-} 0.01). (authors)

  14. Evaluation of nanoparticle-ligand distributions to determine nanoparticle concentration. (United States)

    Uddayasankar, Uvaraj; Shergill, Ravi T; Krull, Ulrich J


    The concentration of nanoparticles in solution is an important, yet challenging, parameter to quantify. In this work, a facile strategy for the determination of nanoparticle concentration is presented. The method relies on the quantitative analysis of the inherent distribution of nanoparticle-ligand conjugates that are generated when nanoparticles are functionalized with ligands. Validation of the method was accomplished by applying it to gold nanoparticles and semiconductor nanoparticles (CdSe/ZnS; core/shell). Poly(ethylene glycol) based ligands, with functional groups that quantitatively react with the nanoparticles, were incubated with the nanoparticles at varying equivalences. Agarose gel electrophoresis was subsequently used to separate and quantify the nanoparticle-ligand conjugates of varying valences. The distribution in the nanoparticle-ligand conjugates agreed well with that predicted by the Poisson model. A protocol was then developed, where a series of only eight different ligand amounts could provide an estimate of the nanoparticle concentration that spans 3 orders of magnitude (1 μM to 1 mM). For the gold nanoparticles and semiconductor nanoparticles, the measured concentrations were found to deviate by only 7% and 2%, respectively, from those determined by UV-vis spectroscopy. The precision of the assay was evaluated, resulting in a coefficient of variation of 5-7%. Finally, the protocol was used to determine the extinction coefficient of alloyed semiconductor nanoparticles (CdSxSe1-x/ZnS), for which a reliable estimate is currently unavailable, of three different emission wavelengths (525, 575, and 630 nm). The extinction coefficient of the nanoparticles of all emission wavelengths was similar and was found to be 2.1 × 10(5) M(-1)cm(-1).

  15. Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells. (United States)

    Mancini, Johanna; Rousseau, Philippe; Castor, Katherine J; Sleiman, Hanadi F; Autexier, Chantal


    Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells.

  16. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    E Butler; J Wang; Y Xiong; S Strobel


    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  17. Rhodium catalyzed asymmetric Pauson-Khand reaction using SDP ligands

    Institute of Scientific and Technical Information of China (English)


    The activity and enantiocontrol ability of the chiral catalysts prepared from spiro diphosphine ligands, SDP, and rhodium precursor were investigated in the asymmetric catalytic Pauson-Khand reaction. The results showed that SDP ligands were very effective in Rh-catalyzed Pauson-Khand reaction, and their complexes with rhodium could convert a variety of 1,6-enyne compounds into bicyclopentone derivatives under CO atmosphere in high yields with good enantioselectivities. The SbF6- was found to be a suitable counter anion of the catalyst, and 1,2-dichloroethane was the best choice of the solvent for Pauson-Khand reaction.

  18. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye


    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  19. Two ligands for a GPCR, proton vs lysolipid

    Institute of Scientific and Technical Information of China (English)

    Dong-soon IM


    Recently, two different chemicals have been matched as ligands with the same Gprotein-coupled receptor (GPCR). Double-pairing of OGR1 family GPCRs with proton and lysolipid raises several questions. First, whether both are the real ligands for the GPCRs. Second, whether modulation of a GPCR by two chemicals could be possible. Third, one of the chemicals is proton. Proton-sensing not only is a new action mode of GPCR activation, but also it could be generalized in other GPCRs.In this review, I'd like to summarize the issue and discuss questions with pharmacological criteria.

  20. Isothermal Titration Calorimetry: Assisted Crystallization of RNA-Ligand Complexes. (United States)

    Da Veiga, Cyrielle; Mezher, Joelle; Dumas, Philippe; Ennifar, Eric


    The success rate of nucleic acids/ligands co-crystallization can be significantly improved by performing preliminary biophysical analyses. Among suitable biophysical approaches, isothermal titration calorimetry (ITC) is certainly a method of choice. ITC can be used in a wide range of experimental conditions to monitor in real time the formation of the RNA- or DNA-ligand complex, with the advantage of providing in addition the complete binding profile of the interaction. Following the ITC experiment, the complex is ready to be concentrated for crystallization trials. This chapter describes a detailed experimental protocol for using ITC as a tool for monitoring RNA/small molecule binding, followed by co-crystallization.

  1. Benzodiazepine receptor ligands: a patent review (2006 -- 2012)



    Introduction: Ligands at the benzodiazepine site of the GABAA receptor (GABAA-R) act by modulating the effect of GABAA (g-aminobutyric acid). The selective modulator effects of such ligands are related to the a-subunits type (i.e., a1, a2, a3, and a5), being shown that the a1 subunit is associated with sedative, anticonvulsant and amnesic effects; whereas the a2 and a3 subunits mediate anxiolytic and myorelaxant effects. Recently it was shown the involvement of a5 subunit in...

  2. Development of catalysts and ligands for enantioselective gold catalysis. (United States)

    Wang, Yi-Ming; Lackner, Aaron D; Toste, F Dean


    During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely

  3. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing


    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  5. How to lead complex situations

    DEFF Research Database (Denmark)

    Hansen, Michael Pingel


    The military leader is experiencing increasingly more complex situations, whether it is as leader in a foreign combat environment or in the home-based public administration. Complex situations like these call for a special set of managerial responses and a special way of leading organisations...

  6. Leading in a Technological Age (United States)

    Yadgir, Sheri A.


    Technology is advancing more rapidly than at any time in history since the beginning of the Industrial Revolution. In fact, experts say that the world is leaving the Industrial Age of the 20th century and entering an Information Age that will lead into the future. These advances mean that important changes are being made in all areas of life--and…

  7. Electrokinetics removal of lead from lead-contaminated red soils

    Institute of Scientific and Technical Information of China (English)

    刘云国; 李欣; 曾光明; 黄宝荣; 张慧智


    Ex-situ electroremediation tests were conducted on the lead-contaminated red soils to find out the optimum condition for the most efficient removal of lead pollution from the red soil,and to examine the relation of the pH of the soil with the electroremediation efficiency.The results show that the electroremediation technology is efficient to remedy Pb contaminated red soils,and the removal efficiency can be enhanced by controlling pH value in the cathode reservoir with HNO3.The average removal efficiency of Pb is enhanced from 24.5% to 79.5%,and the energy consumption reaches 285kW·h per m3 red soil.


    Directory of Open Access Journals (Sweden)



    Full Text Available BACKGROUND AND OBJECTIVES: Posterior wall myocardial infarction is not uncommon acute myocardial infarction and has got its own therapeutic and prognostic implications. Management of Posterior wall myocardial infarction differs from inferior wall myocardial infarction alone. The presence of posterior wall myocardial infarction is known to increase the incidence of cardiogenic shock, arrhythmias and conduction blocks in case of myocardial infarction. Hence the present study was taken up to find out the incidence, clinical profile and complications of posterior wall myocardial infarction in a rural hospital using simple non-invasive investigations like 15 lead electrocardiography and echocardiography. METHODS: A prospective study was conducted on 50 patients of inferior wall myocardial infarction out of 228 Acute Myocardial Infarction proved by ECG standard and posterior leads (v7, v8, v9 were taken at the time of admission and repeated as necessary. A detailed case history was taken and a detailed physical examination was done at the time of admission and during follow up. For recording ECG 12 lead (3 standard leads, 3 augmented limb leads, 6 precordial leads machine was used. The recordings were made at 25 mm/ sec. speed and 1mV=10mm. Posterior leads were taken by using 3 precordial leads fixing on the posterior axillary (v7, infrascapular (v8 and paraspinal (v9 regions all in a same line with the 5th ICS anteriorly. RESULTS: Out of 50 cases of inferior wall myocardial infarction (IWMI studied only 13 (26% had ST elevation in posterior leads indicating posterior wall myocardial infarction (PWMI. Our study showed that complications and mortality was higher in patients of IWMI with PWMI compared to IWMI without PWMI. Out of 50 patients 33 (66% were males indicating a male predominance. Syncope was present in 18% of PWMI and 14% in overall IWMI. Palpitation was seen in 53% of PWMI and 21% of IWMI without PWMI. Smoking history was present in 14% of

  9. Lead time TTO: leading to better health state valuations? (United States)

    Attema, Arthur E; Versteegh, Matthijs M; Oppe, Mark; Brouwer, Werner B F; Stolk, Elly A


    Preference elicitation tasks for better than dead (BTD) and worse than dead (WTD) health states vary in the conventional time trade-off (TTO) procedure, casting doubt on uniformity of scale. 'Lead time TTO' (LT-TTO) was recently introduced to overcome the problem. We tested different specifications of LT-TTO in comparison with TTO in a within-subject design. We elicited preferences for six health states and employed an intertemporal ranking task as a benchmark to test the validity of the two methods. We also tested constant proportional trade-offs (CPTO), while correcting for discounting, and the effect of extending the lead time if a health state is considered substantially WTD. LT-TTO produced lower values for BTD states and higher values for WTD states. The validity of CPTO varied across tasks, but it was higher for LT-TTO than for TTO. Results indicate that the ratio of lead time to disease time has a greater impact on results than the total duration of the time frame. The intertemporal ranking task could not discriminate between TTO and LT-TTO.

  10. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities (United States)

    Jayalakshmi, V.; Rama Krishna, N.


    We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR intensity data on reversibly forming weak complexes. In this approach, the global minimum for the bound-ligand conformation is obtained by a hybrid structure refinement method involving CORCEMA calculation of intensities and simulated annealing optimization of torsion angles of the bound ligand using STD-NMR intensities as experimental constraints and the NOE R-factor as the pseudo-energy function to be minimized. This method is illustrated using simulated STD data sets for typical carbohydrate and peptide ligands. Our procedure also allows for the optimization of side chain torsion angles of protein residues within the binding pocket. This procedure is useful in refining and improving initial models based on crystallography or computer docking or other algorithms to generate models for the bound ligand (e.g., a lead compound) within the protein binding pocket compatible with solution STD-NMR data. This method may facilitate structure-based drug design efforts.

  11. Molecular Docking Explains Atomic Interaction between Plant-originated Ligands and Oncogenic E7 Protein of High Risk Human Papillomavirus Type 16

    Directory of Open Access Journals (Sweden)

    Satish Kumar


    Full Text Available Cervical cancer caused by Human papillomavirus (HPV is one of the leading causes of cancer mortality in women worldwide, particularly in the developing countries. In the last few decades, various compounds from plant origin such as Curcumin, Epigallocatechin gallate (EGCG, Jaceosidin, Resveratrol etc. have been used as anti cancer therapeutic agents. Different studies have shown these plant-originated compounds are able to suppress HPV infection. The E6 and E7 oncoproteins of high-risk HPV play a key role in HPV related cancers. In this study, we explored these ligands from plants origin against E7 oncoprotein of high risk HPV 16, which is known to inactivate tumor suppressor pRb protein. A robust homology model of HPV 16 E7 was built to foresee the interaction mechanism of E7 oncoprotein with these ligands using structure-based drug designing approach. Docking studies demonstrate the interaction of these ligands with pRb binding site of E7 protein by residues Tyr52, Asn53, Val55, Phe57, Cys59, Ser63, Thr64, Thr72, Arg77, Glu80 and Asp81 and help restoration of pRb functioning. This in silico based atomic interaction between these ligands and E7 protein may assist in validating the plant-originated ligands as effective drugs against HPV.

  12. Synthesis, characterization, electrochemical behavior and antibacterial/antifungal activities of [Cd(lX2] complexes with a Schiff base ligand

    Directory of Open Access Journals (Sweden)

    Montazerozohori Morteza


    Full Text Available A new symmetrical bidentate Schiff base ligand (L was applied for the synthesis of some new cadmium coordination compounds with general formula of [Cd(LX2] in which X is halide and pseudo-halide. The ligand and all cadmium complexes were characterized by some techniques such as elemental analysis, FT-IR, 1H, 13C NMR, UV-Visible and molar conductance. Electrochemical behavior of ligand and Cd(II complexes were investigated by cyclic voltammetry method. Morphology and shape of [Cd(LCl2] particles were depicted by SEM. Antimicrobial properties such as antibacterial and antifungal activities of the complexes as compared with ligand were checked against three Gram-negative bacteria; Escherichia coli (ATCC 25922, Pseudomunase aeroginosa (ATCC 9027 and Salmonella Spp. and two Gram-positive bacteria; Staphylococcus aureus (ATCC 6538 and Corynebacterium renale and three fungal strains including Aspergillus Niger, Penicillium chrysogenum and Candida albicans. The results revealed appropriate antibacterial and antifungal activities for all compounds, and it was also found that the coordination of ligand to Cd (II lead to an increase in the antimicrobial activities in most of cases.

  13. Lead and Drinking Water from Private Wells (United States)

    ... type="submit" value="Submit" /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

  14. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Venu Gopal Jonnalagadda


    Full Text Available Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  15. Manganese(I-Based CORMs with 5-Substituted 3-(2-PyridylPyrazole Ligands

    Directory of Open Access Journals (Sweden)

    Ralf Mede


    Full Text Available The reaction of [(OC5MnBr] with substituted 3-(2-pyridylpyrazoles 2-PyPzRH (1a-l in methanol or diethyl ether yields the yellow to orange manganese(I complexes [(OC3Mn(Br(2-PyPzRH] (2a-l, the substituents R being phenyl (a, 1-naphthyl (b, 2-anthracenyl (c, 1-pyrenyl (d, 4-bromophenyl (e, 3-bromophenyl (f, duryl (g, 2-pyridyl (h, 2-furanyl (i, 2-thienyl (j, ferrocenyl (k, and 1-adamantyl (l. The carbonyl ligands are arranged facially, leading to three chemically different CO ligands due to different trans-positioned Lewis donors. The diversity of the substituent R demonstrates that this photoCORM backbone can easily be varied with a negligible influence on the central (OC3MnBr fragment, because the structural parameters and the spectroscopic data of this unit are very similar for all these derivatives. Even the ferrocenyl complex 2k shows a redox potential for the ferrocenyl subunit which is identical to the value of the free 5-ferrocenyl-3-(2-pyridylpyrazole (1k. The ease of variation of the starting 5-substituted 3-(2-pyridylpyrazoles offers a modular system to attach diverse substituents at the periphery of the photoCORM complex.

  16. Modulation of Intersystem Crossing Rate by Minor Ligand Modifications in Cyclometalated Platinum(II) Complexes. (United States)

    Shafikov, Marsel Z; Kozhevnikov, Dmitry N; Bodensteiner, Michael; Brandl, Fabian; Czerwieniec, Rafał


    Photophysical properties of four new platinum(II) complexes comprising extended ppy (Hppy = 2-phenylpyridine) and thpy (Hthpy = 2-(2'-thienyl)pyridine) cyclometalated ligands and acetylacetonate (acac) are reported. Substitution of the benzene ring of Pt-ppy complexes 1 and 2 with a more electron-rich thiophene of Pt-thpy complexes 3 and 4 leads to narrowing of the HOMO-LUMO gap and thus to a red shift of the lowest energy absorption band and phosphorescence band, as expected for low-energy excited states of the intraligand/metal-to-ligand charge transfer character. However, in addition to these conventional spectral shifts, another, at first unexpected, substitution effect occurs. Pt-thpy complexes 3 and 4 are dual emissive showing fluorescence about 6000 cm(-1) (∼0.75 eV) higher in energy relative to the phosphorescence band, while for Pt-ppy complexes 1 and 2 only phosphorescence is observed. For dual-emissive complexes 3 and 4, ISC rates kISC are estimated to be in order of 10(9)-10(10) s(-1), while kISC of Pt-ppy complexes 1 and 2 is much faster amounting to 10(12) s(-1) or more. The relative intensities of the fluorescence and phosphorescence signals of Pt-thpy complexes 3 and 4 depend on the excitation wavelength, showing that hyper-intersystem crossing (HISC) in these complexes is observably significant.

  17. Bending crystals. Solid state photomechanical properties of transition metal complexes containing semiquinonate ligands

    Indian Academy of Sciences (India)

    Cortlandt G Pierpont


    The properties of transition metal complexes containing catecholate and radical semiquinonate ligands have often been found to be unusual and unexpected. Crystals of Rh(CO)2(3,6-DBSQ), containing the 3,6-di-tert-butyl-1,2-semiquinonate ligand, form as long thin needles that are observed to bend reversibly upon irradiation with NIR light. Crystallographic characterization reveals a stacked solid state lattice with planar molecules aligned with metal atoms atop one another. Electronic spectra recorded in the solid state and in solution show an intense band at 1600 nm that maps the energy dependence of crystal bend angle. The transition is a property of the stacked assembly, rather than of an individual complex molecule, and appears associated with an MLCT process that transfers charge from an antibonding band formed by interacting Rh $d_{z}^{2}$ orbitals to the vacant quinone * orbital. Related observations have been made on the [Co(-pyz)(3,6-DBSQ)(3,6-DBCat)] polymer. Photomechanical properties appear associated with electronic transitions that lead to a physical change in axial length of a linear polymer, coupled with a soft solid state lattice that permits axial contraction/expansion without crystal fracture.

  18. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

    Directory of Open Access Journals (Sweden)

    Schroeder Michael


    Full Text Available Abstract Background Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results We present LIGSITEcsc, an extension and implementation of the LIGSITE algorithm. LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcsc performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at

  19. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  20. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long, E-mail:


    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  1. Digallane with redox-active diimine ligand: dualism of electron-transfer reactions. (United States)

    Fedushkin, Igor L; Skatova, Alexandra A; Dodonov, Vladimir A; Chudakova, Valentina A; Bazyakina, Natalia L; Piskunov, Alexander V; Demeshko, Serhiy V; Fukin, Georgy K


    The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.

  2. Functionalization of Krebs-type polyoxometalates with N,O-chelating ligands: a systematic study. (United States)

    Artetxe, Beñat; Reinoso, Santiago; San Felices, Leire; Vitoria, Pablo; Pache, Aroa; Martín-Caballero, Jagoba; Gutiérrez-Zorrilla, Juan M


    The first organic derivatives of 3d-metal-disubstituted Krebs-type polyoxometalates have been synthesized under mild bench conditions via straightforward replacement of labile aqua ligands with N,O-chelating planar anions on either preformed or in situ-generated precursors. Nine hybrid clusters containing carboxylate derivatives of five- or six-membered aromatic N-heterocycles as antenna ligands have been obtained as pure crystalline phases and characterized by elemental and thermal analyses, infrared spectroscopy, and single-crystal X-ray diffraction. They all show the general formula [{M(II)L(H2O)}2(WO2)2(B-β-XW9O33)2](n-) and can be classified as follows: 1-SbM, where L = 1H-imidazole-4-carboxylate (imc), X = Sb(III), n = 12, and M(II) = Mn, Co, Ni, Zn; 1-TeM, where L = imc, X = Te(IV), n = 10, and M(II) = Mn, Co; 2-SbNi, where L = 1H-pyrazole-3-carboxylate (pzc), X = Sb(III), n = 12, and M(II) = Ni; and 3-SbM, where L = pyrazine-2-carboxylate (pyzc), X =Sb(III), n = 12, and M(II) = Co, Zn. The 3d-metal-disubstituted tungstotellurate(IV) skeleton of compounds 1-TeM is unprecedented in polyoxometalate chemistry. The stability of these hybrid Krebs-type species in aqueous solution has been confirmed by (1)H NMR spectroscopy performed on the diamagnetic 1-SbZn and 3-SbZn derivatives. Our systematic study of the reactivity of disubtituted Krebs-type polyoxotungstates toward diazole-, pyridine-, and diazinecarboxylates demonstrates that organic derivatization is strongly dependent on the nature of the ligand, as follows: imc displays a "universal ligand" character, as functionalization takes place regardless of the external 3d metal and heteroatom; pzc and pyzc show selectivity toward specific 3d metals; pyridazine-3-carboxylate and pyrimidine-4-carboxylate promote partial decomposition of specific precursors, leading to [M(II)L2(H2O)2] complexes; and picolinate is inert under all conditions tested.

  3. Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3 of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Hossinur Rahman


    Full Text Available Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3 to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3 in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacter chemoreceptor for multiple ligands. In conclusion, this study

  4. Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: a powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands. (United States)

    Chen, Yanmei; Li, Lei; Chen, Zhou; Liu, Yonglu; Hu, Hailiang; Chen, Wenqian; Liu, Wei; Li, Yahong; Lei, Tao; Cao, Yanyuan; Kang, Zhenghui; Lin, Miaoshui; Li, Wu


    An efficient strategy for the synthesis of a wide variety of coordination complexes has been developed. The synthetic protocol involves a solvothermal in situ metal-ligand reaction of picolinaldehyde, ammonium acetate, and transition-metal ions, leading to the generation of 12 coordination complexes supported by a novel class of substituted 1-pyridineimidazo[1,5-a]pyridine ligands (L1-L5). The ligands L1-L5 were afforded by metal-mediated controllable conversion of the aldehyde group of picolialdehyde into a ketone and secondary, tertiary, and quaternary carbon centers, respectively. Complexes of various nuclearities were obtained: from mono-, di-, and tetranuclear to 1D chain polymers. The structures of the in situ formed complexes could be controlled rationally via the choice of appropriate starting materials and tuning of the ratio of the starting materials. The plausible mechanisms for the formation of the ligands L1-L5 were proposed.

  5. Leading Hadron Production at HERA

    Directory of Open Access Journals (Sweden)

    Buniatyan Armen


    Full Text Available Data from the recent measurements of very forward baryon and photon production with the H1 and ZEUS detectors at electron-proton collider HERA are presented and compared to the theoretical calculations and Monte Carlo models. Results are presented of the production of leading protons, neutrons and photons in deep inelastic scattering (ep → e' pX, ep → e'nX, ep → e'γX as well as the leading neutron production in the photoproduction of dijets (ep → ejjXn. The forward baryon and photon results from the H1 and ZEUS Experiments are compared also with the models of the hadronic interactions of high energy Cosmic Rays. The sensitivity of the HERA data to the differences between the models is demonstrated.

  6. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands (United States)

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.


    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  7. Ligand and ensemble effects in adsorption on alloy surfaces

    DEFF Research Database (Denmark)

    Liu, Ping; Nørskov, Jens Kehlet


    Density functional theory is used to study the adsorption of carbon monoxide, oxygen and nitrogen on various Au/Pd(111) bimetallic alloy surfaces. By varying the Au content in the surface we are able to make a clear separation into geometrical (or ensemble) effects and electronic (or ligand...

  8. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme


    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  9. Ligand-targeted particulate nanomedicines undergoing clinical evaluations: current status

    NARCIS (Netherlands)

    Meel, van der Roy; Vehmeijer, Laurens J.C.; Kok, Robbert J.; Storm, Gert; Gaal, van Ethlinn V.B.


    Since the introduction of Doxil® on the market nearly 20 years ago, a number of nanomedicines have become part of treatment regimens in the clinic. With the exception of antibody–drug conjugates, these nanomedicines are all devoid of targeting ligands and rely solely on their physicochemical propert

  10. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A


    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  11. Optimal Overlay of Ligands with Flexible Bonds Using Differential Evolution

    DEFF Research Database (Denmark)

    Pedersen, Christian Storm; Kristensen, Thomas Greve

    When designing novel drugs, the need arise to screen databases for structures resembling active ligands, e.g. by generating a query meta-structure which summarizes these. We propose a flexible bond method for making a meta-structure and present Monte Carlo, Nelder-Mead and Differential Evolution ...

  12. Local Innate Responses to TLR Ligands in the Chicken Trachea

    Directory of Open Access Journals (Sweden)

    Neda Barjesteh


    Full Text Available The chicken upper respiratory tract is the portal of entry for respiratory pathogens, such as avian influenza virus (AIV. The presence of microorganisms is sensed by pathogen recognition receptors (such as Toll-like receptors (TLRs of the innate immune defenses. Innate responses are essential for subsequent induction of potent adaptive immune responses, but little information is available about innate antiviral responses of the chicken trachea. We hypothesized that TLR ligands induce innate antiviral responses in the chicken trachea. Tracheal organ cultures (TOC were used to investigate localized innate responses to TLR ligands. Expression of candidate genes, which play a role in antiviral responses, was quantified. To confirm the antiviral responses of stimulated TOC, chicken macrophages were treated with supernatants from stimulated TOC, prior to infection with AIV. The results demonstrated that TLR ligands induced the expression of pro-inflammatory cytokines, type I interferons and interferon stimulated genes in the chicken trachea. In conclusion, TLR ligands induce functional antiviral responses in the chicken trachea, which may act against some pathogens, such as AIV.

  13. Multifunctional ligand for use as a diagnostic or therapeutic pharmaceutical (United States)

    Katti, Kattesh V.; Volkert, Wynn A.; Ketring, Alan R.; Singh, Prahlad R.


    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises either a phosphorous or germanium core and at least two hydrazine groups forming a ligand for bonding to a metal extending from the phosphorous or germanium core.

  14. Programmed death ligand 2 in cancer-induced immune suppression.

    NARCIS (Netherlands)

    Rozali, E.N.; Hato, S.V.; Robinson, B.W.; Lake, R.A.; Lesterhuis, W.J.


    Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1), with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1 pathw

  15. The imidazoline receptors and ligands in pain modulation

    Directory of Open Access Journals (Sweden)

    Nurcan Bektas


    Full Text Available Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2 receptors are steady new drug targets for analgesics. Even if the mechanism of I2receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies.

  16. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith


    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  17. Photocontrol over cooperative porphyrin self-assembly with phenylazopyridine ligands. (United States)

    Hirose, Takashi; Helmich, Floris; Meijer, E W


    The cooperative self-assembly of chiral zinc porphyrins is regulated by a photoresponsive phenylazopyridine ligand. Porphyrin stacks depolymerize into dimers upon axial ligation and the strength of the coordination is regulated by its photoinduced isomerization, which shows more than 95 % conversion ratio for both photostationary states.

  18. Supramolecular coordination and antimicrobial activities of constructed mixed ligand complexes (United States)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Abou-Dobara, M. I.; Seyam, H. A.


    A novel series of copper(II) and palladium(II) with 4-derivatives benzaldehyde pyrazolone (Ln) were synthesized. The mixed ligand complexes were prepared by using 1,10-phenanthroline (Phen) as second ligand. The structure of these complexes was identified and confirm by elemental analysis, molar conductivity, UV-Vis, IR and 1H NMR spectroscopy and magnetic moment measurements as well as thermal analysis. The ligand behaves as a neutral bidentate ligand through ON donor sites. ESR spectra show the simultaneous presence of a planar trans and a nearly planar cis isomers in the 1:2 ratio for all N,O complexes [Cu(Ln)2]Cl2ṡ2H2O. Schiff bases (Ln) were tested against bacterial species; namely two Gram positive bacteria (Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Klebsiella pneumoniae) and fungal species (Aspergillus niger, Fusarium oxysporium, Penicillium italicum and Alternaria alternata). The tested compounds have antibacterial activity against S. aureus, B. cereus and K. pneumoniae.

  19. Titanium complex formation of organic ligands in titania gels. (United States)

    Nishikiori, Hiromasa; Todoroki, Kenta; Setiawan, Rudi Agus; Teshima, Katsuya; Fujii, Tsuneo; Satozono, Hiroshi


    Thin films of organic ligand-dispersing titania gels were prepared from titanium alkoxide sols containing ligand molecules by steam treatment without heating. The formation of the ligand-titanium complex and the photoinduced electron transfer process in the systems were investigated by photoelectrochemical measurements. The complex was formed between the 8-hydroxyquinoline (HQ) and titanium species, such as the titanium ion, on the titania nanoparticle surface through the oxygen and nitrogen atoms of the quinolate. A photocurrent was observed in the electrodes containing the complex due to the electron injection from the LUMO of the complex into the titania conduction band. A bidentate ligand, 2,3-dihydroxynaphthalene (DHN), formed the complex on the titania surface through dehydration between its two hydroxyl groups of DHN and two TiOH groups of the titania. The electron injection from the HOMO of DHN to the titania conduction band was observed during light irradiation. This direct electron injection was more effective than the two-step electron injection.

  20. Synthesis and Characterization of Heteropoly Coordination Compounds Containing Optical Ligands

    Institute of Scientific and Technical Information of China (English)


    @@Introduction   The heteropolyanion phase transfer chemistry created by Pope M. T. In 1984 has opened up a new field for heteropoly compound research[1-3]. But substituting coordination water molecules by organic optically active ligand has not been reported in literatures until 1997[4].