WorldWideScience

Sample records for alkane liquids cluster

  1. Pulse radiolysis studies on liquid alkanes and related polymers

    Tagawa, S.; Hayashi, N.; Yoshida, Y.; Washio, M.; Tabata, Y.

    1989-01-01

    Absorption spectra of alkane radical cations, alkane excited states, and alkyl radicals and electrons in irradiated neat liquid alkanes at room temperature were assigned on subnanosecond and nanosecond time scale after an electron pulse. Two broad visible and near-infrared absorption bands of alkane excited states and radical cations, and UV absorption band of alkyl radicals was observed in neat n-alkanes. In neat cyclohezane and trans-decalin, very broad visible absorption band mainly due to alkane excited states and UV absorption band of alkyl radicals were observed. In neat neopentane and isooctane, visible absorption bands were not observed, although UV absorption bands of alkyl radicals were observed. The wavelengths of absorptive peaks of alkane radical cations and excited states become longer with increasing the number of carbon atoms of n-alkanes. The lifetimes of alkane radical cations become shorter with decreasing the number of carbon atoms of n-alkanes and are shorter than those of electrons in neat alkanes. The main processes of the alkyl radical formation finish within the time resolution of our system (about 20 ps). The alkyl radicals are produced mainly from excited radicals cations and partly from higher excited states, the lowest excited states, radical cations, and thermal hydrogen atoms, In irradiated ethylene-propylene copolymers, broad absorption bands of excited states and tail parts of absorption bands of radical cations and electrons were observed in visible and near-infrared region, although UV absorption of alkyl radicals was not confirmed lack of transparency of polymer films. (author)

  2. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  3. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    Alonso, Victor; Garcia, Mario [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.es [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Garcia De La Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain)

    2011-07-10

    Highlights: {yields} LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. {yields} UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. {yields} For the latter mixtures, UCST increases with the size of the alkyl group attached. {yields} Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  4. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    Alonso, Victor; Garcia, Mario; Gonzalez, Juan Antonio; Garcia De La Fuente, Isaias; Cobos, Jose Carlos

    2011-01-01

    Highlights: → LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. → UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. → For the latter mixtures, UCST increases with the size of the alkyl group attached. → Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  5. Unimolecular H2 elimination during the liquid phase radiolysis and photolysis of alkane - alkane mixtures

    Wojnarovits, L.; Foeldiak, G.

    1980-01-01

    Unimolecular H 2 elimination from alkanes was investigated in cyclopentane-cyclohexane, n-hexane-cyclohexane and cyclohexane-cyclooctane mixtures during fluradiolysis and 7.6 eV photolysis. During the radiolysis of all systems, and when the fluorescence shift law allowed it, during the photolysis as well, inhibited H 2 detachment was observed from the first component and sensitized hydrogen molecule elimination from the second. It has been concluded that the same excited state (the lowest singlet, S 1 ) is responsible for the H 2 elimination during radiolysis and photolysis and this is that one that gives rise to fluorescence in the experiments of other authors. The H 2 and H elimination from alkanes generally have different excited precursors. The direct population of S 1 by γ-irradiation is of limited importance and this intermediate is mainly produced in ''charge neutralization'' processes. (author)

  6. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  7. Quaternary (liquid + liquid) equilibrium data for the extraction of toluene from alkanes using the ionic liquid [EMim][MSO4

    Corderí, Sandra; Calvar, Noelia; Gómez, Elena; Domínguez, Ángeles

    2014-01-01

    Highlights: • EMim[MSO 4 ] was proposed as solvent for the extraction of toluene from alkanes. • The quaternary system {heptane + cyclohexane + toluene + [EMim][MSO 4 ]} was evaluated. • The extraction of toluene would be facilitated in the presence of one alkane. • Experimental LLE data were successfully correlated with the NRTL model. - Abstract: (Liquid + liquid) equilibrium (LLE) studies for the extraction of aromatics from alkanes present in the petroleum fractions are important to develop theoretical/semiempirical (liquid + liquid) equilibrium models, which are used in the design of extraction processes. In this work, the ionic liquid 1-ethyl-3-methylimidazolium methylsulfate, [EMim][MSO 4 ], was evaluated as potential solvent for the separation of toluene from heptane and cyclohexane. The LLE data for the quaternary system {heptane (1) + cyclohexane (2) + toluene (3) + [EMim][MSO 4 ] (4)} were experimentally determined at T = 298.15 K and atmospheric pressure. Moreover, the LLE data for the ternary systems {heptane or cyclohexane (1) + toluene (2) + [EMim][MSO 4 ] (3)} were also determined. Solute distribution ratios and selectivities were calculated and analysed in order to evaluate the capability of the ionic liquid to accomplish the separation target. A comparison between the solute distribution ratios and selectivities for the quaternary and the ternary systems was also made. Finally, the experimental tie-line data were correlated with the NRTL model

  8. Separation of benzene from alkanes by solvent extraction with 1-ethylpyridinium ethylsulfate ionic liquid

    Gomez, Elena; Dominguez, Irene; Calvar, Noelia; Dominguez, Angeles

    2010-01-01

    The (liquid + liquid) equilibrium (LLE) data for ternary mixtures {alkane + benzene + 1-ethylpyridinium ethylsulfate ([EPy][EtSO 4 ])} at T = (283.15 and 298.15) K and atmospheric pressure are presented. The alkanes used were hexane and heptane. The cloud point method was used to determinate the binodal curve, and the tie-line compositions were obtained by density measurements. The LLE data obtained were used to calculate distribution coefficients and selectivity values. The consistency of tie-line data was ascertained by applying the Othmer-Tobias and Hand equations. Correlation of the experimental tie-lines was conducted through the use of NRTL equation, which provides good correlation of the experimental data. The results show that [EPy][EtSO 4 ] can be used as an alternative solvent in liquid extraction processes for the removal of benzene from its mixtures with alkanes.

  9. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  10. The (gas + liquid) critical properties and phase behaviour of some binary alkanol (C2-C5) + alkane (C5-C12) mixtures

    Morton, David W.; Lui, Matthew P.W.; Young, Colin L.

    2003-01-01

    Previously, the investigation of the (gas + liquid) critical properties of (alkanol + alkane) mixtures has focussed on (primary alkanol + straight chain alkane) mixtures. The experimental data available for (alkanol + alkane) mixtures, which include secondary or tertiary alcohols and/or branched chain alkanes, are extremely limited. This work extends the existing body of data on (alkanol + alkane) mixtures to include mixtures containing these components. Here the (gas + liquid) critical temperatures of 29 {alkanol (C 2 -C 5 ) + alkane (C 5 -C 12 )} mixtures are reported. All the (gas + liquid) critical lines for the binary mixtures studied are continuous, indicating they obey either Type I or Type II phase behaviour

  11. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  12. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis

    Liu, Peng; Le, Jiawei; Wang, Lanlan; Pan, Tieying; Lu, Xilan; Zhang, Dexiang

    2016-01-01

    Highlights: • Curve-fitting method was used to quantify the accurate contents of structural carbon. • Effect of carbon structure in coal with different rank on formation of pyrolysis tar was studied. • Numerical interrelation between carbon types in coal structure and tar yield is elaborated. • Effect of carbon structure on formation of liquid alkane during coal pyrolysis is discussed. - Abstract: The relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis were discussed extensively. The pyrolysis tests were carried out in a tube reactor at 873 K and keep 15 min. The carbon distribution in coals was investigated by solid state "1"3C nuclear magnetic resonance (N.M.R.). The curve-fitting method was used to quantify the accurate contents of structural carbon. The alkanes in coal tar were analyzed by Gas Chromatograph–Mass Spectrometer (GC–MS). The results show that oxygen-linked aromatic carbon decreases with the increasing of coal rank. The aliphatic carbon contents of Huainan (HN) coal are 44.20%, the highest among the four coals. The carbon types in coal structure have a significant influence on the formation of tar and liquid alkane. The coal tar yields are related to the aliphatic substituted aromatic carbon, CH_2/CH_3 ratio and oxygen-linked carbon in coal so that the increasing order of tar yield is Inner Mongolia lignite (IM, 6.30 wt.%) < Sinkiang coal (SK, 7.55 wt.%) < Shenmu coal (SM, 12.84 wt.%) < HN (16.29 wt.%). The highest contents of oxygen-linked aromatic carbon in IM lead to phenolic compound of 41.06% in IM-tar. The contents of alkane in SM-tar are the highest because the appropriate CH_2/CH_3 ratio and the highest aliphatic side chains on aromatic rings in SM leading to generate aliphatic hydrocarbon with medium molecular weight easily. The mechanism on formation of tar and liquid alkane plays an important role in guiding the industrialization of pyrolysis-based poly-generation producing tar with high

  13. (Liquid + liquid) equilibrium for binary systems of N-formylmorpholine with alkanes

    Wang Zhengrong; Xia Shuqian; Ma Peisheng; Liu Tao; Han Kewei

    2012-01-01

    Highlights: ► The LLE data of four binary systems containing N-formylmorpholine were measured. ► Both NRTL and UNIQUAC models can fit the experimental data well. ► The new group interaction parameters of UNIFAC (Do) were regressed from the LLE data. ► The estimated result shows that the group interaction parameters and methods are reliable. - Abstract: (Liquid + liquid) equilibrium (LLE) data were determined for four binary systems containing N-formylmorpholine (NFM) and alkanes (3-methylpentane, heptane, nonane, and 2,2,4-trimethylpentane) over the temperature range from around 300 K to near 420 K using a set of newly designed equilibrium equipment. The compositions of both light and heavy phases were analyzed by gas chromatography. The mutual solubility increased as the temperature increased for all these systems. The binary (liquid + liquid) equilibrium data were correlated by the NRTL and UNIQUAC equations with temperature-dependent parameters. Both models correlate the experimental results well. Furthermore, the UNIFAC (Do) group contribution model was used to correlate and estimate the LLE data for NFM containing systems. Two methods of group division for NFM were used. NFM is treated as a single group: NFM group (method I) or divided into two groups: CHO and C 4 H 8 NO (method II), respectively. The group interaction parameters for CH 2 –NFM, or CH 2 –CHO and CH 2 –C 4 H 8 NO were fitted from the experimental LLE data. The UNIFAC (Do) model correlates the experimental data well. In addition, in order to develop UNIFAC (Do) group contribution model to estimate the LLE data of (NFM + cycloalkane) systems, some literature LLE data were used. The group interaction parameters for c-CH 2 –NFM, c-CH 2 –CHO and c-CH 2 –C 4 H 8 NO were correlated. Then these group interaction parameters were used to estimate the phase equilibrium data of binary systems in the literature by the UNIFAC (Do) model. The results showed that the estimated values are in

  14. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.

    2005-01-01

    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  15. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    Szeto, Kaï Chung; Hardou, Lucie; Merle, Nicolas; Basset, Jean-Marie; Thivolle-Cazat, Jean; Papaioannou, Charalambos; Taoufik, Mostafa

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product

  16. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    Szeto, Kaï Chung

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product is unprecedented, asymmetrically distributed towards heavier alkanes. This journal is © 2012 The Royal Society of Chemistry.

  17. Molecular dynamics simulation studies of mid-size liquid n-Alkanes, C12–C160

    Kwon, Tae Woo; Lee, Song Hi

    2015-01-01

    In this study, we report the results of molecular dynamics simulations (MD) for model systems of mid-size liquid n-alkanes (C 12 –C 160 ) at several temperatures (⁓2700 K) in canonical ensembles to calculate structural and dynamic properties (viscosity η, self-diffusion constant D, and monomeric friction constant ζ). For the small n-alkanes for n ≤ 80, the chains are clearly ≥ 1, which leads to the conclusion that the liquid n-alkanes are far away from the Rouse regime, but for the n-alkanes for n ≥ 120, the chains are ⁓ 1 and they are Gaussian. It is found that the long chains of these n-alkanes at high temperatures show abnormalities in density, viscosity, and monomeric friction constant. The mass and temperature dependences of structural and dynamic properties (η, D, and ζ) are discussed

  18. A nonequilibrium simulation method for calculating tracer diffusion coefficients of small solutes in n-alkane liquids and polymers

    van der Vegt, N.F.A.; Briels, Willem J.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    The tracer diffusion coefficients of methane in n-alkane liquids of increasing chain length were calculated by measuring the friction from short time nonequilibrium molecular dynamics simulations. The frictional constant was calculated from the exponentially decaying distance between two methane

  19. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water

    Zhang, Qing; Wang, Tiejun; Xu, Ying; Zhang, Qi; Ma, Longlong

    2014-01-01

    Graphical abstract: MCM-41-modified Ni/HZSM-5 catalyst was developed by impregnation method with high catalytic performance for sorbitol hydrogenation in water. Appropriate amount of MCM-41 addition can distinctly promote the improvement in the surface structure and modulation of acidic sites of the catalyst. The scission of C–O bond in the sorbitol molecule into liquid alkanes was easily carried out on the catalyst containing more Lewis acidic sites. - Highlights: • Ni/HZSM-5 promoted with MCM-41 is active for sorbitol hydrogenation to liquid alkanes. • Lewis acidic sites of Ni/HZSM-5 can be modulated by pure silica MCM-41. • MCM-41 added can distinctly decrease carbon deposition on the catalyst surface. - Abstract: Liquid fuels derived from renewable biomass are of great importance on the potential substitution for diminishing fossil fuels. The conversion of sorbitol (a product of biomass-derived glucose hydrogenation) into liquid alkanes such as pentane and hexane over the Ni/HZSM-5 catalysts with or without MCM-41 addition was investigated in the presence of hydrogen in water medium. The production distribution of sorbitol hydrogenation can be controlled by adjusting the acidity of the catalyst. The scission of C–C bond in the sorbitol molecule into light C 1 –C 4 alkanes was mainly carried out over Ni/HZSM-5 containing strong Brønsted acid sites, while C–O bond scission into heavier alkanes was dominated over the catalysts added by MCM-41 containing weak Lewis acid sites. The sorbitol conversion and total liquid alkanes selectivity were found to be 67.1% and 98.7% over 2%Ni/HZSM-5 modified by 40 wt% of MCM-41, whereas the corresponding value was 40% and 35.6% over 2%Ni/HZSM-5 in the absence of MCM-41. The effect of MCM-41 on the structure, acidity, and reducibility of Ni/HZSM-5 was investigated by using XRD, Py-IR, IR, and H 2 -TPR. Meanwhile, the resistance of carbon deposition over the catalyst modified by MCM-41 was studied by using TG

  20. Extraction of toluene from aliphatic compounds using an ionic liquid as solvent: Influence of the alkane on the (liquid + liquid) equilibrium

    Gonzalez, Emilio J.; Calvar, Noelia; Dominguez, Irene; Dominguez, Angeles

    2011-01-01

    Research highlights: → An ionic liquid was analyzed as solvent for extraction of toluene from alkanes. → Liquid-liquid equilibrium data were measured at 298.15 K and atmospheric pressure. → Selectivity and solute distribution ratio were obtained and compared with literature. → The Othmer-Tobias equation was used to ascertain the experimental LLE data. → Experimental data were correlated using NRTL and UNIQUAC models. - Abstract: In this paper, the feasibility of using 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid, [EMim][ESO 4 ], as solvent for the extraction of toluene from aliphatic compounds (hexane, heptane, octane, or nonane) was analyzed. (Liquid + liquid) equilibrium (LLE) data for the ternary systems {alkane (1) + toluene (2) + [EMim][ESO 4 ] (3)} were measured at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio were calculated from the experimental LLE data, and the obtained values were compared to those previously reported using other ionic liquids and sulfolane. The degree of consistency of the experimental LLE data was ascertained using the Othmer-Tobias equation. Finally, the experimental LLE data were satisfactorily correlated with NRTL and UNIQUAC models.

  1. Thermodynamic modeling of saturated liquid compositions and densities for asymmetric binary systems composed of carbon dioxide, alkanes and alkanols

    Bayestehparvin, Bita; Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2015-01-01

    Highlights: • Phase behavior of the binary systems containing largely different components. • Equation of state modeling of binary polar and non-polar systems by utilizing different mixing rules. • Three different mixing rules (one-parameter, two-parameters and Wong–Sandler) coupled with Peng–Robinson equation of state. • Two-parameter mixing rule shows promoting results compared to one-parameter mixing rule. • Wong–Sandler mixing rule is unable to predict saturated liquid densities with sufficient accuracy. - Abstract: The present study mainly focuses on the phase behavior modeling of asymmetric binary mixtures. Capability of different mixing rules and volume shift in the prediction of solubility and saturated liquid density has been investigated. Different binary systems of (alkane + alkanol), (alkane + alkane), (carbon dioxide + alkanol), and (carbon dioxide + alkane) are considered. The composition and the density of saturated liquid phase at equilibrium condition are the properties of interest. Considering composition and saturated liquid density of different binary systems, three main objectives are investigated. First, three different mixing rules (one-parameter, two parameters and Wong–Sandler) coupled with Peng–Robinson equation of state were used to predict the equilibrium properties. The Wong–Sandler mixing rule was utilized with the non-random two-liquid (NRTL) model. Binary interaction coefficients and NRTL model parameters were optimized using the Levenberg–Marquardt algorithm. Second, to improve the density prediction, the volume translation technique was applied. Finally, Two different approaches were considered to tune the equation of state; regression of experimental equilibrium compositions and densities separately and spontaneously. The modeling results show that there is no superior mixing rule which can predict the equilibrium properties for different systems. Two-parameter and Wong–Sandler mixing rule show promoting

  2. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  3. (Liquid + liquid) equilibria for the ternary mixtures (alkane + toluene + ionic liquid) at T = 298.15 K: Influence of the anion on the phase equilibria

    Seoane, Raquel G.; Gómez, Elena; González, Emilio J.; Domínguez, Ángeles

    2012-01-01

    Highlights: ► [BMpyr][NTF 2 ] and [BMpyr][TFO] were studied as solvents to extract aromatics from alkanes. ► (Liquid + liquid) equilibrium data were measured at 298.15 K for six ternary systems. ► Selectivity and solute distribution ratio were calculated and compared. ► The influence of the structure of anion of the ionic liquid was analyzed. ► Experimental data were satisfactorily correlated using NRTL model. - Abstract: (Liquid + liquid) equilibrium data for the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMpyr][NTf 2 ], and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMpyr][TFO], with toluene, and heptane or cyclohexane were determined at T = 298.15 K and atmospheric pressure. In order to check if these ILs can be used as potential solvents for the extraction of toluene from aliphatic compounds, the ability of the ILs as solvents was evaluated in terms of selectivity and solute distribution ratio. The experimental data were correlated accurately with the Non Random Two-Liquid model.

  4. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels

    Shaohui Sun

    2018-04-01

    Full Text Available An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C5–C20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  5. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  6. (Liquid + liquid) equilibria of binary systems containing hyperbranched polymer Boltorn (registered) H2004 - Experimental study and modelling in terms of lattice-cluster theory

    Domanska, Urszula; Paduszynski, Kamil; Zolek-Tryznowska, Zuzanna

    2011-01-01

    (Liquid + liquid) phase equilibria (LLE) of binary mixtures containing hyperbranched polymer Boltorn (registered) H2004 and n-alkanes (n-hexane, n-heptane, n-octane, and n-decane) were studied over the temperature range from about (260 up to 360) K. The polymer is partially miscible with n-alkanes and the solubility decreases with an increase of the chain length of the solvent. Corresponding LLE phase diagrams including spinodal and binodal (liquid + liquid) coexistence curves were calculated in terms of the statistical mechanics - based on the lattice-cluster theory, based only on the upper critical solution temperature, and the polymer chain architecture. The results show semi-qualitative agreement of predicted and experimental equilibrium compositions and temperatures. Boltorn (registered) H2004 reveals complete miscibility in the liquid phase with alcohols (C 1 -C 8 ), aromatic hydrocarbons (benzene, toluene, and thiophene), and ethers (methyl tetra-butyl ether, ethyl tetra-butyl ether, and tetrahydrofurane).

  7. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.

    Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin

    2014-09-08

    Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study of Liquid Alkanes Production from Biomass-Derived Carbohydrates by Aldol-Condensation and Hydrogenation Processes

    Navadol Laosiripojana

    2010-10-01

    Full Text Available This research aims to synthesis liquid alkanes from biomass-derived hydroxyl methyl furfural (HMF and furfural by aldol-condensation and hydrogenation processes over several catalysts i.e. TiO2, TiO2-ZrO2, Pd/Al2O3 and Pd/CeO2. It was found that the catalysts make significant impact on the selectivity and yield of alkanes product. It is noted that Pd/Al2O3 provided the highest alkane yield and selectivity. The aldol-condensation and hydrogenation of HMF over Pd/Al2O3 provide high C12 selectivity whereas the aldol-condensation and hydrogenation of furfural over Pd/Al2O3 provide high C8 selectivity. The effects of reaction temperature, reaction pressure and reaction time were then studied. The effect of inlet furfural to acetone molar ratio was also determined. It was also found that the optimized conditions to maximize the yield of alkane production from the aldol-condensation/hydrogenation of HMF and furfural are (i at 53oC and 24 hr for aldol-condenstation of HMF, (ii 80oC and 24 hr for aldol-condenstation of furfural, and (iii 120oC for 6 hr with HMF to acetone molar ratio of 3:1 and furfural to acetone molar ratio of 4:1 in the presence of Pd/Al2O3 (calcined at 500oC for hydrogenation reaction.

  9. (Liquid + liquid) equilibrium at T = 298.15 K for ternary mixtures of alkane + aromatic compounds + imidazolium-based ionic liquids

    Domínguez, Irene; Requejo, Patricia F.; Canosa, José; Domínguez, Ángeles

    2014-01-01

    Highlights: • The LLE ternary phase diagrams with 2 imidazolium-based ionic liquids were measured. • The LLE data were experimental determined at T = 298.15 K and p = 1 atm. • Mixtures of (octane or nonane) and (benzene or toluene or ethylbenzene) were studied. • LLE experimental data were correlated with NRTL and UNIQUAC thermodynamic models. - Abstract: Ionic liquids, with their unique and tunable properties, can be an advantageous alternative as extractive solvents in separation processes involving systems containing aliphatic and aromatic hydrocarbons. In this work, (liquid + liquid) equilibrium (LLE) data for the ternary systems {nonane (1) + benzene (2) + 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf 2 ] (3)}, {octane (1) + benzene (2) + 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf 2 ] (3)}, and {nonane (1) + aromatic compound (benzene or toluene or ethylbenzene) (2) + [PMim][NTf 2 ] (3)} were determined at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio, derived from the equilibrium data, were used to determine if this ionic liquid can be considered as a potential solvent for the separation of aromatic compounds (benzene, toluene, and ethylbenzene) from alkanes (octane and nonane). The experimental data were satisfactorily correlated with NRTL and UNIQUAC models

  10. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates

    Chheda, Juben N.; Dumesic, James A. [University of Wisconsin-Madison, Department of Chemical and Biological Engineering, Madison, WI 53706 (United States)

    2007-05-30

    We present results for the conversion of carbohydrate feedstocks to liquid alkanes by the combination of dehydration, aldol-condensation/hydrogenation, and dehydration/hydrogenation processing. With respect to the first dehydration step, we demonstrate that HMF can be produced in good selectivity from abundantly available polysaccharides (such as inulin, sucrose) containing fructose monomer units using a biphasic batch reactor system. The reaction system can be optimized to achieve good yields to 5-hydroxymethylfurfural (HMF) from fructose by varying the contents of aqueous-phase modifiers such as dimethylsulfoxide (DMSO) and 1-methyl-2-pyrrolidinone (NMP). Regarding the aldol-condensation/hydrogenation step, we present the development of stable, solid base catalysts in aqueous environments. We address the effects of various reaction parameters such as the molar ratio of reactants and temperature on overall product yield for sequential aldol-condensation and hydrogenation steps. Overall, our results show that it is technically possible to convert carbohydrate feedstocks to produce liquid alkanes by the combination of dehydration, aldol-condensation/hydrogenation, and dehydration/hydrogenation processing; however, further optimization of these processes is required to decrease the overall number of separate steps (and reactors) required in this conversion. (author)

  11. Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes.

    Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A

    2013-01-14

    Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ critical point.

  12. Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts

    Li, Yuping; Huang, Xiaoming; Zhang, Qian; Chen, Lungang; Zhang, Xinghua; Wang, Tiejun; Ma, Longlong

    2015-01-01

    Highlights: • The C_8−C_1_4 alkane yield of 82.9% was obtained in the two-step hydrogenation/HDO process. • Protonation effect from methanol solvent increased F_2A conversion in the two-step process. • The rate-determining step was acyl C=O bond hydrogenation in the first step of F_2A hydrogenation. • The acidic centers from SiO_2−ZrO_2 activated the acyl and oxygen atoms of intermediates. • Acidity of SiO_2−ZrO_2 and Pt active centers of 1 wt%Pt/SiO_2−ZrO_2 resulted stable HDO performance. - Abstract: Direct HDO process for difurfurylidene acetone dimer (F_2A) conversion to liquid alkanes (C_8−C_1_4) at 260 °C in a batch reactor was investigated over different material supported 1 wt%Pt catalysts, including SAPO-11, HZSM-5, SiO_2−Al_2O_3, MCM-22, and home-made SiO_2−ZrO_2. C_8−C_1_4 alkanes of 55.8% was obtained over the optimized 1 wt%Pt/SiO_2−ZrO_2 due to its proper pore size of 9.0 nm and moderate acidic centers, together with more than 10% carbon yield of the oxygenated hydrocarbons, including C_1_1−C_1_3 chain alcohols & ketones and the hydrogenated F_2A dimers with furan ring (H-F_2A dimers). To improve the liquid alkane yield, a two-step process for F_2A conversion was also investigated, which included low-temperature hydrogenation at 50 °C over Raney Ni catalyst in a batch reactor and the subsequent high-temperature hydrodeoxygenation (HDO) at 280 °C over 1 wt%Pt/SiO_2−ZrO_2 in a fixed-bed reactor. The selectivity of 1,5-di(tetrahydro-2-furanyl)-3-pentanol (II-c) was the highest of 83.0% among the hydrogenated intermediates of H-F_2A dimers due to the protonation effect of methanol as the solvent and the hydrogenation of C=C bonds by Ni active centers. In the same time, the high content of this saturated alcohol H-dimer of II-C increased the solubility and stability of the intermediates in methanol solvent. High carbon yield of C_8−C_1_4 alkanes of 82.9%(mol) was obtained after oxygen atom removal from H-F_2A dimers via

  13. Liquid–liquid extraction of toluene from alkane with pyridinium based ionic liquid ([BPy][NO3] and [HPy][NO3]) at 298.15 K and atmospheric pressure

    Enayati, Mobin; Mokhtarani, Babak; Sharifi, Ali; Anvari, Sanam; Mirzaei, Mojtaba

    2016-01-01

    Highlights: • Extraction of toluene from alkane with pyridinium based ionic liquid was studied. • The ionic liquids [BPy][NO 3 ] and [HPy][NO 3 ] were used. • The effect of alkane chain length on selectivity of toluene was evaluated. • The effect of alkyl chain length of ionic liquids on toluene selectivity was investigated. • The experimental data were correlated with the NRTL model. - Abstract: The focus of this paper is to study the liquid−liquid extraction process for the separation of toluene from alkane employing the ionic liquids N-butylpyridinium nitrate, [BPy][NO 3 ], and N-hexylpyridinium nitrate, [HPy][NO 3 ], as a new solvents. New experimental data for the ternary systems of {[BPy][NO 3 ] (1) + heptane, or octane, or decane (2) + toluene (3)} and {[HPy][NO 3 ] (1) + heptane, or octane, or decane (2) + toluene (3)} at T = 298.15 K and atmospheric pressure are reported. The Othmer-Tobias and Hand correlation are examined to check the reliability of the experimental LLE data. The toluene distribution ratios and selectivity were calculated form the experimental data. The selectivity values are higher than unity which indicates the ILs, [BPy][NO 3 ] and [HPy][NO 3 ], used in this work are potential solvents to separate toluene from alkane. Besides, the effect of the alkane chain length in the selectivity values was evaluated. In addition, the result of the NRTL thermodynamic modeling shows, the experimental data were satisfactorily correlated.

  14. Solvent extraction of thiophene from n-alkanes (C7, C12, and C16) using the ionic liquid [C8mim][BF4

    Alonso, Luisa; Arce, Alberto; Francisco, Maria; Soto, Ana

    2008-01-01

    In the last years, new strict environmental regulations to reduce sulfur content in liquid fuels have been established. Thiophene derivates can be considered as the key substances to be separated from liquid fuel oils. This paper reports the ability of the ionic liquid 1-methyl-3-octylimidazolium tetrafluoroborate to act as solvent in the (liquid + liquid) extraction of thiophene from aliphatic hydrocarbons. Tie-line data have been determined for ternary systems containing the ionic liquid, thiophene, and some n-alkanes at T = 298.15 K. Extraction process has been analyzed by means of thiophene distribution ratio and selectivity. The solute distribution coefficient decreases and the selectivity increases as the chain length of n-alkane increases. The use of 1-methyl-3-octylimidazolium tetrafluoroborate as potential solvent for separation of thiophene from n-alkanes is feasible using the necessary quantity of solvent. A correlation of the equilibrium data reported here has also been made, using the NRTL activity coefficient model, in order to facilitate their use in simulation and design processes

  15. Alkane Metathesis

    Basset, Jean-Marie

    2015-03-29

    Catalytic activation of alkanes which directly transforms light alkanes into higher homologs is a major area in organometallic chemistry and petrochemical chemistry. This transformation is a chemical challenge considering the inertness of the sp3 carbon-hydrogen bond. It is generally accepted that this catalytic process involves the formation of olefins. This reaction is defined as alkane metathesis. To date, two catalytic systems of alkane metathesis exist: (i) a single catalytic system prepared by surface organometallic chemistry, acting as multifunctional-supported catalyst which transforms any alkanes into a mixture of their lower and higher homologs and (ii) the other catalytic systems employing a tandem strategy with two different metals, one metal for alkane (de)hydrogenation and another for olefin metathesis in which the activity of these catalysts is essentially driven by the performance of the (de)hydrogenation steps. In this book chapter, we would focus on the evolution of these two classes of catalysts by looking at their specific reactivity of the catalysts towards alkanes, comparing their performances and studying the mechanism.

  16. Spectral analysis of the light emitted from streamers in chlorinated alkane and alkene liquids

    Ingebrigtsen, S; Bonifaci, N; Denat, A; Lesaint, O

    2008-01-01

    We have studied the time-averaged optical emission from fast positive and negative non-breakdown streamers under pulsed divergent field conditions in five chlorocarbon liquids, namely, dichloromethane, 1,2-dichloroethane, tetrachloromethane, trichloroethene and tetrachloroethene. We have accumulated light emitted from the first 10-15 μm trail of a few thousand streamers. We have also briefly studied single breakdown arcs in tetrachloromethane. Atomic lines of hydrogen, chlorine and carbon as well as excited states of C 2 radicals (Swan bands) have been observed, with sufficient resolution for evaluating line and band-shapes. The characteristic broadening, shift and asymmetry of atomic lines varied significantly between the liquids. Differences between the two streamer polarities were comparatively small. Densities of electrons and neutrals in the illuminated phase have been deduced from broadening of atomic lines, atomic excitation temperatures from absolute line intensities and rotational and vibrational temperatures from the Swan bands. The gas densities of the propagating streamers were generally very high (∼10% of critical) and with a high degree of ionization (∼1 per mille ). Dichloromethane and 1,2-dichloroethane produced re-illuminating streamers with densities close to atmospheric conditions, in agreement with a rapid pressure relaxation. Rotational temperatures were high and in the range 2 x 10 3 -6 x 10 3 K for the different liquids. Results can be interpreted to suggest a partial local thermodynamic equilibrium in the streamer plasmas.

  17. Heat and Mass Transfer during Solid-Liquid Phase Transition of n-Alkanes in the C{sub 16} to C{sub 19} Range

    Holmen, Rune

    2002-07-01

    The main goal of this project has been to study heat and mass transfer during solid-liquid phase transition of n-alkanes in the in the C{sub 16} to C{sub 19} range. Phase transitions of both mixtures and pure components have been investigated. All experiments and simulations have been performed without any convection. Thermal conductivities have been determined at the melting point for solid and liquid unbranched alkanes ranging from C{sub 16} to C{sub 19}. An assessment of the error of the method has been performed. The measurements of solid conductivities are in accordance with measurements reported previously and confirm the applicability of the method. Liquid conductivities are higher than extrapolated values from the literature. The enhanced conductivity is believed to be caused by structural changes close to the melting point which is not taken into account when extrapolating values from the literature. Experiments have been performed for the purpose of investigating the freezing of mixtures of n-alkanes in the C{sub 16}-C{sub 19} range. The positions of the solid-liquid interfaces have been measured as freezing occurred. Calculations of the ratio of liquid and solid conductivities show that the solid structure of mixtures of the investigated n-alkanes is predominantly in a rotator structure at the temperatures investigated. There are indications of a transformation into an orthorhombic structure at lower temperatures. The temperatures on the solid-liquid interface have been measured, and compared with calculated values from chapter 4. The temperature of the interface is represented better by the measured interfacial temperatures than by the calculated interfacial temperatures. The experimental results indicate that the diffusion of heat is the limiting mechanism of phase transition. This result in a homogeneous liquid composition. A numerical model has been developed in order to simulate the experimental freezing of mixtures. The model represents the results

  18. Alkane Metathesis

    Basset, Jean-Marie; Callens, Emmanuel; Riache, Nassima

    2015-01-01

    metal for alkane (de)hydrogenation and another for olefin metathesis in which the activity of these catalysts is essentially driven by the performance of the (de)hydrogenation steps. In this book chapter, we would focus on the evolution of these two

  19. Prediction of the vapor–liquid equilibria and speed of sound in binary systems of 1-alkanols and n-alkanes with the simplified PC-SAFT equation of state

    Liang, Xiaodong; Thomsen, Kaj; Yan, Wei

    2013-01-01

    (or other derivative properties) with satisfactory accuracy over wide temperature, pressure and composition conditions. This work presents the prediction of the vapor–liquid equilibria and speed of sound in binary mixtures of 1-alkanols and n-alkanes using the simplified PC-SAFT equation of state...... of sound with a satisfactory accuracy for 1-alkanols and n-alkanes binary systems within the PC-SAFT framework....

  20. Predictive Local Composition Models for Solid/Liquid Equilibrium in n-Alkane Systems: Wilson Equation for Multicomponent Systems

    Coutinho, João A.P.; Stenby, Erling Halfdan

    1996-01-01

    The predictive local composition model is applied to multicomponent hydrocarbon systems with long-chain n-alkanes as solutes. The results show that it can successfully be extended to highorder systems and accurately predict the solid appearance temperature, also known as cloud point, in solutions...

  1. Analysis of final products from the liquid alkanes radiolysis at low dose, low temperature and high dose rate

    Tilquin, B.; Doncker, J. de.

    1991-01-01

    Yields of final products (dimers) from the radiolysis of n-hexane and 2,3-dimethylbutane are studied by capillary chromatographic techniques for trace analysis. Reaction of intermediates with the products, the alkane molecules or impurities, is reduced by using low dose (1 kGy), low temperature (195 K) and high dose rate (LINAC). Temperature is the most important experiment variable; by reducing the temperature, reactions with significant activation energies do not compete with radical-radical termination reactions. Products from LINAC radiolysis provide information about active species (reactive fragment, allylic radical...) which deserve a more detailed examination by direct methods [fr

  2. Do protein crystals nucleate within dense liquid clusters?

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  3. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  4. Catalytic conversion of light alkanes

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  5. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  6. Modeling of the (liquid + liquid) equilibrium of polydisperse hyperbranched polymer solutions by lattice-cluster theory

    Enders, Sabine; Browarzik, Dieter

    2014-01-01

    Graphical abstract: - Highlights: • Calculation of the (liquid + liquid) equilibrium of hyperbranched polymer solutions. • Description of branching effects by the lattice-cluster theory. • Consideration of self- and cross association by chemical association models. • Treatment of the molar-mass polydispersity by the use of continuous thermodynamics. • Improvement of the theoretical results by the incorporation of polydispersity. - Abstract: The (liquid + liquid) equilibrium of solutions of hyperbranched polymers of the Boltorn type is modeled in the framework of lattice-cluster theory. The association effects are described by the chemical association models CALM (for self association) and ECALM (for cross association). For the first time the molar mass polydispersity of the hyperbranched polymers is taken into account. For this purpose continuous thermodynamics is applied. Because the segment-molar excess Gibbs free energy depends on the number average of the segment number of the polymer the treatment is more general than in previous papers on continuous thermodynamics. The polydispersity is described by a generalized Schulz–Flory distribution. The calculation of the cloud-point curve reduces to two equations that have to be numerically solved. Conditions for the calculation of the spinodal curve and of the critical point are derived. The calculated results are compared to experimental data taken from the literature. For Boltorn solutions in non-polar solvents the polydispersity influence is small. In all other of the considered cases polydispersity influences the (liquid + liquid) equilibrium considerably. However, association and polydispersity influence phase equilibrium in a complex manner. Taking polydispersity into account the accuracy of the calculations is improved, especially, in the diluted region

  7. n-Alkane adsorption to polar silica surfaces.

    Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A

    2010-03-21

    The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.

  8. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  9. Experimental equivalent cluster-size distributions in nano-metric volumes of liquid water

    Grosswendt, B.; De Nardo, L.; Colautti, P.; Pszona, S.; Conte, V.; Tornielli, G.

    2004-01-01

    Ionisation cluster-size distributions in nano-metric volumes of liquid water were determined for alpha particles at 4.6 and 5.4 MeV by measuring cluster-size frequencies in small gaseous volumes of nitrogen or propane at low gas pressure as well as by applying a suitable scaling procedure. This scaling procedure was based on the mean free ionisation lengths of alpha particles in water and in the gases measured. For validation, the measurements of cluster sizes in gaseous volumes and the cluster-size formation in volumes of liquid water of equivalent size were simulated by Monte Carlo methods. The experimental water-equivalent cluster-size distributions in nitrogen and propane are compared with those in liquid water and show that cluster-size formation by alpha particles in nitrogen or propane can directly be related to those in liquid water. (authors)

  10. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2014-01-01

    We have performed large-scale Lennard-Jones molecular dynamics simulations of homogeneous vapor-to-liquid nucleation, with 10 9 atoms. This large number allows us to resolve extremely low nucleation rates, and also provides excellent statistics for cluster properties over a wide range of cluster sizes. The nucleation rates, cluster growth rates, and size distributions are presented in Diemand et al. [J. Chem. Phys. 139, 74309 (2013)], while this paper analyses the properties of the clusters. We explore the cluster temperatures, density profiles, potential energies, and shapes. A thorough understanding of the properties of the clusters is crucial to the formulation of nucleation models. Significant latent heat is retained by stable clusters, by as much as ΔkT = 0.1ε for clusters with size i = 100. We find that the clusters deviate remarkably from spherical—with ellipsoidal axis ratios for critical cluster sizes typically within b/c = 0.7 ± 0.05 and a/c = 0.5 ± 0.05. We examine cluster spin angular momentum, and find that it plays a negligible role in the cluster dynamics. The interfaces of large, stable clusters are thinner than planar equilibrium interfaces by 10%−30%. At the critical cluster size, the cluster central densities are between 5% and 30% lower than the bulk liquid expectations. These lower densities imply larger-than-expected surface areas, which increase the energy cost to form a surface, which lowers nucleation rates

  11. Reflectance spectroscopy of organic compounds: 1. Alkanes

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  12. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  13. Pd/Nb2O5/SiO2 catalyst for the direct hydrodeoxygenation of biomass-related compounds to liquid alkanes under mild conditions.

    Shao, Yi; Xia, Qineng; Liu, Xiaohui; Lu, Guanzhong; Wang, Yanqin

    2015-05-22

    A simple Pd-loaded Nb2 O5 /SiO2 catalyst was prepared for the hydrodeoxygenation of biomass-related compounds to alkanes under mild conditions. Niobium oxide dispersed in silica (Nb2 O5 /SiO2 ) as the support was prepared by the sol-gel method and characterized by various techniques, including N2 adsorption, XRD, NH3 temperature-programmed desorption (TPD), TEM, and energy-dispersive X-ray spectroscopy (EDAX) atomic mapping. The characterization results showed that the niobium oxide species were amorphous and well dispersed in silica. Compared to commercial Nb2 O5 , Nb2 O5 /SiO2 has significantly more active niobium oxide species exposed on the surface. Under mild conditions (170 °C, 2.5 MPa), Pd/10 %Nb2 O5 /SiO2 was effective for the hydrodeoxygenation reactions of 4-(2-furyl)-3-buten-2-one (aldol adduct of furfural with acetone), palmitic acid, tristearin, and diphenyl ether (model compounds of microalgae oils, vegetable oils, and lignin), which gave high yields (>94 %) of alkanes with little CC bond cleavage. More importantly, owing to the significant promotion effect of NbOx species on CO bond cleavage and the mild reaction conditions, the CC cleavage was considerably restrained, and the catalyst showed an excellent activity and stability for the hydrodeoxygenation of palmitic acid with almost no decrease in hexadecane yield (94-95 %) in a 150 h time-on-stream test. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alkane dimers interaction

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk

    2010-01-01

    The interaction energies of a series of n-alkane dimers, from methane to decane, have been investigated with Density Functional Theory (DFT), using the MGGA-M06-L density functional. The results are compared both to the available wavefunction-based values as well as to dispersion corrected DFT...... values. The MGGA-M06-L density functional is a semi-local functional designed and has proven to provide accurate estimates of dispersion interactions for several systems at moderate computational cost. In the present application, it reproduces the trends obtained by the more expensive wavefunction...

  15. Auger spectra of alkanes

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  16. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  17. Partial Molar Volumes of Air-Component Gases in Several Liquid n-Alkanes and 1-Alkanols at 313.15 K

    Izák, Pavel; Cibulka, I.; Heintz, A.

    1995-01-01

    Roč. 109, č. 2 (1995), s. 227-234 ISSN 0378-3812 Keywords : data density * partial molar volume * gas -liquid mixture Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.024, year: 1995

  18. Separation of toluene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T = 298.15 K and atmospheric pressure

    Gonzalez, Emilio J.; Calvar, Noelia; Gonzalez, Begona; Dominguez, Angeles

    2010-01-01

    In this paper, the separation of toluene from aliphatic hydrocarbons (heptane, or octane, or nonane) was analyzed by solvent extraction with 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid, [EMpy][ESO 4 ]. Liquid-liquid equilibrium (LLE) data for the ternary systems {heptane (1) + toluene (2) + [EMpy][ESO 4 ] (3)}, {octane (1) + toluene (2) + [EMpy][ESO 4 ] (3)}, and {nonane (1) + toluene (2) + [EMpy][ESO 4 ] (3)} were obtained by measurements at T = 298.15 K and atmospheric pressure. The selectivity, % removal of aromatic, and solute distribution ratio, obtained from experimental equilibrium results, were used to determine the ability of [EMpy][ESO 4 ] as a solvent. The degree of consistency of the experimental LLE values was ascertained using the Othmer-Tobias and Hand equations. The experimental results for the ternary systems were correlated with the NRTL model. Finally, the results obtained were compared with other ionic liquids and other solvents.

  19. Separation of benzene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at several temperatures and atmospheric pressure: Effect of the size of the aliphatic hydrocarbons

    Gonzalez, Emilio J.; Calvar, Noelia; Gomez, Elena; Dominguez, Angeles

    2010-01-01

    The ionic liquid 1-ethyl-3-methylpyridinium ethylsulfate, [EMpy][ESO 4 ], was studied for the separation of benzene from aliphatic hydrocarbons (octane or nonane) by solvent extraction through the determination of the (liquid + liquid) equilibrium (LLE) of the ternary systems: {octane (1) + benzene (2) + [EMpy][ESO 4 ] (3)} and {nonane (1) + benzene (2) + [EMpy][ESO 4 ] (3)} at T = (283.15 and 298.15) K and atmospheric pressure. Binodal curves were determined using the 'cloud point' method, and tie-line compositions were obtained by density measurements. The values of selectivity and distribution coefficient, derived from the tie-line data, were used to decide if this ionic liquid can be used as potential solvent for the separation of benzene from aliphatic hydrocarbons using liquid extraction. These results were analyzed and compared to those previously reported for the systems {hexane + benzene + [EMpy][ESO 4 ]} and {heptane + benzene + [EMpy][ESO 4 ]}. The experimental results show that this ionic liquid is suitable for the extraction of benzene from mixtures containing octane and nonane. The consistency of tie-line data was ascertained by applying the Othmer-Tobias and Hand equations. The experimental results for the ternary systems were well correlated with the NRTL model. No literature data were found for the mixtures discussed in this paper.

  20. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  1. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-01-01

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process

  2. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    Chen, Wanghua; Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), UMR 7647, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Pareige, Philippe; Castro, Celia [Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR 6634, CNRS, Av. de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Xu, Tao; Grandidier, Bruno; Stiévenard, Didier [Institut d' Electronique et de Microélectronique et de Nanotechnologies (IEMN), UMR 8520, CNRS, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France)

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  3. Proofs of cluster formation and transitions in liquid metals and alloys

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  4. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    Hoffmann, K.

    1999-01-01

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  5. Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    Typel, S.; Wolter, H.H.; Roepke, G.; Blaschke, D.

    2014-01-01

    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium-dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons. (orig.)

  6. Wetting of alkanes on water

    Bertrand, E.; Bonn, D.; Meunier, J.; Shahidzadeh, N. [Ecole Normale Superieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231, Cedex 05 Paris (France); Broseta, D.; Ragil, K. [Institut Francais du Petrole, 1-4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Dobbs, H.; Indekeu, J.O. [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    2002-04-01

    The wetting behavior of oil on water (or brine) has important consequences for the transport properties of oil in water-containing porous reservoirs, and consequently for oil recovery. The equilibrium wetting behavior of model oils composed of pure alkanes or alkane mixtures on brine is reviewed in this paper. Intermediate between the partial wetting state, in which oil lenses coexist on water with a thin film of adsorbed alkane molecules, and the complete wetting state, in which a macroscopically thick oil layer covers the water, these systems display a third, novel wetting state, in which oil lenses coexist with a mesoscopic (a few-nanometers-thick) oil film. The nature and location of the transitions between these wetting regimes depend on oil and brine compositions, temperature and pressure.

  7. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  8. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  9. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Martina eCappelletti

    2015-05-01

    Full Text Available Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from butane metabolism. Two gene clusters, prmABCD and smoABCD – coding for soluble di-iron monooxgenases (SDIMOs involved in gaseous n-alkanes oxidation – were detected in the BCP1 genome. By means of reverse transcriptase-quantitative PCR (RT-qPCR analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids or during the cell growth on rich medium (Luria Bertani broth. The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane and/or liquid (n-hexane short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.

  10. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  11. Statistical nature of cluster emission in nuclear liquid-vapour phase coexistence

    Ma, Y G; Han, D D; Shen, W Q; Cai, X Z; Chen, J G; He, Z J; Long, J L; Ma, G L; Wang, K; Wei, Y B; Yu, L P; Zhang, H Y; Zhong, C; Zhou, X F; Zhu, Z Y

    2004-01-01

    The emission of nuclear clusters is investigated within the framework of the isospin-dependent lattice gas model and the classical molecular dynamics model. It is found that the emission of an individual cluster which is heavier than proton is almost Poissonian except near the transition temperature at which the system is leaving the liquid-vapour phase coexistence and thermal scaling is observed by the linear Arrhenius plots which are made from the average multiplicity of each cluster versus the inverse of temperature in the liquid-vapour phase coexistence. The slopes of the Arrhenius plots, i.e. the 'emission barriers', are extracted as a function of the mass or charge number and fitted by the formula embodied with the contributions of the surface energy and Coulomb interaction. Good agreements are obtained in comparison with the data for low-energy conditional barriers. In addition, the possible influences of the source size, Coulomb interaction and 'freeze-out' density and related physical implications are discussed

  12. Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids

    Seeger, Zoe L.; Kobayashi, Rika; Izgorodina, Ekaterina I.

    2018-05-01

    The prediction of physicochemical properties of ionic liquids such as conductivity and melting point would substantially aid the targeted design of ionic liquids for specific applications ranging from solvents for extraction of valuable chemicals to biowaste to electrolytes in alternative energy devices. The previously published study connecting the interaction energies of single ion pairs (1 IP) of ionic liquids to their thermodynamic and transport properties has been extended to larger systems consisting of two ion pairs (2 IPs), in which many-body and same-ion interactions are included. Routinely used cations, of the imidazolium and pyrrolidinium families, were selected in the study coupled with chloride, tetrafluoroborate, and dicyanamide. Their two ion pair clusters were subjected to extensive configuration screening to establish most stable structures. Interaction energies of these clusters were calculated at the spin-ratio scaled MP2 (SRS-MP2) level for the correlation interaction energy, and a newly developed scaled Hartree-Fock method for the rest of energetic contributions to interaction energy. A full geometry screening for each cation-anion combination resulted in 192 unique structures, whose stability was assessed using two criteria—widely used interaction energy and total electronic energy. Furthermore, the ratio of interaction energy to its dispersion component was correlated with experimentally observed melting points in 64 energetically favourable structures. These systems were also used to test the correlation of the dispersion contribution to interaction energy with measured conductivity.

  13. Fermi liquid, clustering, and structure factor in dilute warm nuclear matter

    Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.

    2018-02-01

    Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.

  14. Ion clustering in aqueous salt solutions near the liquid/vapor interface

    J.D. Smith

    2016-03-01

    Full Text Available Molecular dynamics simulations of aqueous NaCl, KCl, NaI, and KI solutions are used to study the effects of salts on the properties of the liquid/vapor interface. The simulations use the models which include both charge transfer and polarization effects. Pairing and the formation of larger ion clusters occurs both in the bulk and surface region, with a decreased tendency to form larger clusters near the interface. An analysis of the roughness of the surface reveals that the chloride salts, which have less tendency to be near the surface, have a roughness that is less than pure water, while the iodide salts, which have a greater surface affinity, have a larger roughness. This suggests that ions away from the surface and ions near the surface affect the interface in opposite ways.

  15. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  16. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.

    2011-08-01

    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  17. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  18. Hydrothermal conversion of cellulose to alkanes with in-situ hydrogen

    Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)], Email: tanz@uwaterloo.ca

    2011-07-01

    A recently study examined the probability of hydrothermal conversion of cellulose to alkanes with in-situ H2 instead of external H2. This paper discusses the results of that study. The study researched the effects of volumetric ratios of initial input water to the reactor (W/R) and of selected catalysts on the alkane yields and composition. It was found that with the proper W/R ratios, the reforming of steam in the steam gas phase would automatically produce in-situ H2 and the key was to maintain the right balance of steam phase and liquid phase in the reactor. All the study results conclude that direct hydrothermal conversion of cellulose to alkanes with in-situ H2 is technically feasible. In addition, the application of this technology would protect the alkane bio-oil production biomass from the impact of unstable external supply of H2.

  19. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  20. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  1. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R., E-mail: wolfgang.hess@biologie.uni-freiburg.de [Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg, Freiburg (Germany)

    2014-07-14

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  2. Discrimination of neutrons and γ-rays in liquid scintillators based of fuzzy c-means clustering

    Luo Xiaoliang; Liu Guofu; Yang Jun

    2011-01-01

    A novel method based on fuzzy c-means (FCM) clustering for the discrimination of neutrons and γ-rays in liquid scintillators was presented. The neutrons and γ-rays in the environment were firstly acquired by the portable real-time n-γ discriminator and then discriminated using fuzzy c-means clustering and pulse gradient analysis, respectively. By comparing the results with each other, it is shown that the discrimination results of the fuzzy c-means clustering are consistent with those of the pulse gradient analysis. The decrease in uncertainty and the improvement in discrimination performance of the fuzzy c-means clustering were also observed. (authors)

  3. Tunable Quantum Spin Liquidity in Mo3O13 Cluster Mott Insulators

    Akbari-Sharbaf, Arash; Ziat, Djamel; Verrier, Aime; Quilliam, Jeffrey A.; Sinclair, Ryan; Zhou, Haidong D.; Sun, Xuefeng F.

    A study of a tunable quantum spin liquid (QSL) phase in the compound Li2In1- x ScxMo3O8 (x = 0.2, 0.4, 0.6, 0.8, 1) will be presented. Crystal structure of these compounds can be viewed as Mo ions arranged on an asymmetric Kagome lattice (KL), with two different Mo-Mo bond lengths, separated by nonmagnetic layers composed of Li, In, and Sc ions. Using X-ray diffraction spectroscopy, muon spin relaxation spectroscopy, bulk magnetic susceptibility and specific heat measurements we show that by changing the composition of the nonmagnetic layers we can drive the system from an ordered antiferromagnetic state to a quantum spin liquid state. The mechanism responsible for the tunability of the magnetic phase in this class of materials may be associated with the degree of asymmetry of the KL controlled by the composition of the nonmagnetic layers. For high degree of asymmetry the constraint on the electronic distribution leads to a configuration of Mo3O8 clusters with net spin-1/2 per cluster arrange on a triangular lattice and long range antiferromagnetic order. For low degree of asymmetry the electronic distribution leads to a magnetic phase with QSL character. We acknowledge support from NSERC and CFREF.

  4. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance

    2013-01-01

    Background Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response. Results To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae. Conclusions Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for

  5. Extraction of pentylbenzene from high molar mass alkanes (C14 and C17) by N-methyl-2-pyrrolidone

    Fandary, Mohamed S.; Al-Jimaz, Adel S.; Al-Kandary, Jasem A.; Fahim, Mohamed A.

    2006-01-01

    Equilibrium tie line data have been determined for the two ternary liquid systems: {tetradecane, or heptadecane + pentylbenzene + N-methyl-2-pyrrolidone (NMP)} over a temperature range of (298 to 328) K. The two systems studied exhibit type I liquid + liquid phase diagram. The effect of temperature and n-alkane chain length upon solubility, selectivity, and distribution coefficients were investigated experimentally

  6. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  7. Hydrodynamics of vapor-liquid annular dispersed flows in channels with heated rod clusters under unsteady conditions

    Kroshilin, A.E.; Kroshilin, V.E.; Nigmatulin, B.I.

    1984-01-01

    A one-dimensional unsteady hydrodynamic model of vapour-liquid disperse-annular flows in channels with heated fuel rod clusters has been constructed. Regularities in the appearance of critical heat transfer due to the dryout of a near-wall liquid film on rod surfaces in such channels are investigated. The model developed takes into account the main flow regularities in the channels with heated rod clusters. The calculations made have shown that the time before crisis appearance agrees satisfactorily with the experimental data

  8. Generalized liquid drop model and fission, fusion, alpha and cluster radioactivity and superheavy nuclei

    Royer, G.

    2012-01-01

    A particular version of the liquid drop model taking into account both the mass and charge asymmetries, the proximity energy, the rotational energy, the shell and pairing energies and the temperature has been developed to describe smoothly the transition between one and two-body shapes in entrance and exit channels of nuclear reactions. In the quasi-molecular shape valley where the proximity energy is optimized, the calculated l-dependent fusion and fission barriers, alpha and cluster radioactivity half-lives as well as actinide half-lives are in good agreement with the available experimental data. In this particular deformation path, double-humped potential barriers begin to appear even macroscopically for heavy nuclear systems due to the influence of the proximity forces and, consequently, quasi-molecular isomeric states can survive in the second minimum of the potential barriers in a large angular momentum range

  9. Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition

    Bettini, L.G.; Piseri, P.; De Giorgio, F.; Arbizzani, C.; Milani, P.; Soavi, F.

    2015-01-01

    Highlights: • We exploited Supersonic Cluster Beam Deposition for the fabrication of a flexible, planar micro-supercapacitor featuring nanostructured carbon electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. • The micro-supercapacitor operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 . • The micro-supercapacitor features long cycling stability over 2x10 4 cycle on flat and bent configuration. -- Graphical abstract: Display Omitted -- Abstract: Power generation and storage in electronics require flexible, thin micro-electrochemical energy storage/conversion systems. Micro-supercapacitors (μSCs) with double-layer capacitance carbon electrodes are attracting much attention for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. Supersonic Cluster Beam Deposition (SCBD) is an effective strategy for the development of nanostructured, binder-free porous carbon electrodes on temperature sensitive substrates including polymers. We exploited SCBD for the development of a flexible, planar μSC featuring nanostructured carbon (ns-C) electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. The electrochemical performance at different temperatures of the μSC which operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 with long cycling stability over 2 × 10 4 cycles is here reported and discussed

  10. Thermodiffusion in multicomponent n-alkane mixtures.

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  11. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Conor Blake Smith

    2013-12-01

    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with alkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter. Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.

  12. Metathesis of alkanes and related reactions

    Basset, Jean-Marie

    2010-02-16

    (Figure Presented) The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of aluminasupported tungsten hydride, W(H)3/Al 2O3, which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of

  13. Metathesis of alkanes and related reactions.

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  14. Structural Insights into Diversity and n-Alkane Biodegradation Mechanisms of Alkane Hydroxylases

    Yurui eJi

    2013-03-01

    Full Text Available Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps and compare typical enzymes from various classes with regard to their three dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyses, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments.

  15. Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals.

    Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin

    2017-10-23

    The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. clusters

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  17. clusters

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  18. On the thermodynamics of the liquid-solid transition in a small cluster

    Zhukov, Alexander V.; Kraynyukova, Anastasiya S.; Cao Jianshu

    2007-01-01

    Physics of phase transformations in finite systems has a long history, but there are many unresolved issues. Although there is a satisfactory qualitative picture of the phase transformations within an isolated small cluster, the experimentally observed dependence of the melting temperature on the cluster size contradicts the prediction of classical results. No clear physical picture of such a transformation exists for a condensed cluster in contact with gaseous environment. We propose a thermodynamic theory, which generalize previous results to the case of cluster with fluctuating number of constituent particles (open cluster). In this case, phase transition occurs because of size change during the nucleation/evaporation process. This allows us to explain the underlying physics of recent simulations and experiments. Although we used the grand canonical approach, our main results can be applied to isolated clusters. Particularly, we give simple arguments to explain the deviations of the cluster melting temperature dependence on cluster size from classical results

  19. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed

  20. Oxidative dehydrogenation of light alkanes

    Meiswinkel, A.; Thaller, C.; Bock, M.; Alvarado, L. [Linde AG, Pullach (Germany); Hartmann, D.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany)

    2012-07-01

    The demand of light olefins increases steadily and the current steam cracking production is highly energy demanding. This motivates the development of alternative production processes like the oxidative dehydrogenation (ODH) of light alkanes operating at comparably low temperatures. Multi-component oxides are reported to show excellent catalytic performance in the ODH. Especially, MoVTeNbO oxides present high activity and selectivity in ODH of ethane. Synthesis of MoVTeNb oxides was done by a hydrothermal method. Qualitative and quantitative phase analysis were performed by X-ray diffraction and Rietveld refinement. Surface compositions were determined by Low energy ion scattering (LEIS). Catalytic tests were carried out in a fixed bed plug flow reactor using ethane and oxygen diluted in helium, as gaseous feed. Based on laboratory investigations a first upscale to a bench-top-pilot unit was performed in order to evaluate the large scale and long term feasibility of the process under technically relevant conditions. MoVTeNb oxides show high activity combined with excellent selectivity in the ODH of ethane to ethylene (S > 95% at X < 40%). Phase analysis reveals the presence of M1, M2 and amorphous phases. Literature reports the crystalline M1 phase as essential for the performance. Indeed, the crystalline M1 phase impacts on the activity via exposing V on the surface being apparently vital to achieve an active material. A correlation of the apparent activation energy with the surface vanadium composition of the catalysts is noticed, however, surprisingly with no major impact on the ethene selectivity. As this material was identified as most promising for a technical application a scale up from less than 1g to 50g of catalyst was performed in a bench-top-pilot unit. The reaction has a significant adiabatic temperature rise and the handling of the reaction heat is a major challenge for process engineering. Furthermore different diluent media such as Helium, Nitrogen

  1. CLUSTER ANALYSIS OF LIQUIDITY MEASURES IN A STOCK MARKET USING HIGH FREQUENCY DATA

    Salighehdar, Amin; Liu, Yang; Bozdog, Dragos; Florescu, Ionut

    2017-01-01

    Liquidity is one of the crucial factors in economy which reflects smooth operation of the markets. In a liquid market, traders are able to transact large quantities of security quickly with minimal trading cost and price impact. Many researchers have investigated the relationship between market liquidity and trading activity of a financial market. According to the existing literature, liquidity can measure different market characteristics such as trading time, tightness, depth, and resiliency...

  2. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  3. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Zongze eShao

    2013-05-01

    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  4. Application of [HMim][NTf2], [HMim][TfO] and [BMim][TfO] ionic liquids on the extraction of toluene from alkanes: Effect of the anion and the alkyl chain length of the cation on the LLE

    Corderí, Sandra; González, Emilio J.; Calvar, Noelia; Domínguez, Ángeles

    2012-01-01

    Highlights: ► Several ionic liquids were studied as solvent to extract toluene from heptane and cyclohexane. ► (Liquid + liquid) equilibrium data were measured at 298.15 K and atmospheric pressure. ► Selectivity and solute distribution ratio were calculated and compared with those found in literature for sulfolane. ► Experimental data were correlated using NRTL and UNIQUAC thermodynamic models. - Abstract: In this paper, the separation of toluene from the aliphatic hydrocarbons heptane and cyclohexane employing the ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [HMim][NTf 2 ], 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, [HMim][TfO] and 1-butyl-3-methylimidazolium trifluoromethanesulfonate, [BMim][TfO], as solvents was studied and discussed. Liquid–liquid equilibrium data for the ternary systems {heptane, or cyclohexane + toluene + [HMim][NTf 2 ], or [HMim][TfO], or [BMim][TfO]} and {heptane + cyclohexane + [HMim][NTf 2 ], or [HMim][TfO], or [BMim][TfO]} were measured at T = 298.15 K and atmospheric pressure. The degree of consistency of the tie-lines was tested using the Othmer–Tobias equation. The solute distribution ratio and selectivity, derived from the experimental tie-lines, were used to determine if these ionic liquids can be used as potential solvents on the extraction of toluene from aliphatic hydrocarbons; a comparison with literature data where sulfolane is used as solvent was also included. Finally, the experimental data were correlated with the NRTL and UNIQUAC thermodynamic models.

  5. Vapor phase nucleation of the short-chain n-alkanes (n-pentane, n-hexane and n-heptane): Experiments and Monte Carlo simulations

    Ogunronbi, Kehinde E.; Sepehri, Aliasghar; Chen, Bin; Wyslouzil, Barbara E.

    2018-04-01

    We measured the nucleation rates of n-pentane through n-heptane in a supersonic nozzle at temperatures ranging from ca. 109 K to 168 K. For n-pentane and n-hexane, these are the first nucleation rate measurements that have been made, and the trends in the current data agree well with those in the earlier work of Ghosh et al. [J. Chem. Phys. 132, 024307 (2010)] for longer chain alkanes. Complementary Monte Carlo simulations, using the transferable potentials for phase equilibria-united atom potentials, suggest that despite the high degree of supercooling, the critical clusters remain liquid like under experimental conditions for n-pentane through n-heptane, but adopt more ordered structures for n-octane and n-nonane. For all three alkanes, the experimental and simulated nucleation rates are offset by ˜3 orders of magnitude when plotted as a function of ln S/(Tc/T - 1)1.5. Explicitly accounting for the surface tension difference between the real and model substances, or alternatively using the Hale [Phys. Rev. A 33, 4156 (1986); Metall. Mater. Trans. A 23, 1863 (1992)] scaling parameter, Ω, consistent with the model potential, increases the offset to ˜6 orders of magnitude.

  6. In situ detection of anaerobic alkane metabolites in subsurface environments

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  7. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  8. Hydrogen Bonding to Alkanes: Computational Evidence

    Hammerum, Steen; Olesen, Solveig Gaarn

    2009-01-01

    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which is...

  9. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir

    Mbadinga, Serge Maurice; Li, Kai-Ping; Zhou, Lei; Wang, Li-Ying; Yang, Shi-Zhong; Liu, Jin-Feng; Mu, Bo-Zhong [East China Univ. of Science and Technology, Shanghai (China). State Key Lab. of Bioreactor Engineering and Inst. of Applied Chemistry; Gu, Ji-Dong [Hong Kong Univ. (China). School of Biological Sciences

    2012-10-15

    Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 C for 528 days with a mixture of long-chain n-alkanes (C{sub 15}-C{sub 20}). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO{sub 2}-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis. (orig.)

  10. Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry.

    Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen

    2012-08-15

    The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Crystallisation and chain conformation of long chain n-alkanes

    Gorce, J.

    2000-06-01

    Hydrocarbon chains are a basic component in a number of systems as diverse as biological membranes, phospholipids and polymers. A better understanding of the physical properties of n-alkane chains should provide a better understanding of these more complex systems. With this aim, vibrational spectroscopy has been extensively used. This technique, sensitive to molecular details, is the only one able to both identify and quantify conformational disorder present in paraffinic systems. To achieve this, methyl deformations have been widely used as ''internal standards'' for the normalisation of peak areas. However, in the case of n-alkanes with short chain length, such as n-C 44 H 90 for example, the infrared spectra recorded at liquid nitrogen temperature and reported here show the sensitivity of these latter peaks to the various crystal structures formed. Indeed, the main frequencies of the symmetric methyl bending mode were found between 1384 cm -1 and 1368 cm -1 as a function of the crystal form. Changes in the frequency of the first order of the L.A.M. present in the Raman spectra were also observed. At higher temperatures, non all-trans conformers, inferred from different infrared bands present in the wagging mode region, were found to be essentially placed at the end of the n-alkane chains. At the monoclinic phase transition, the concentration of end-gauche conformers, proportional to the area of the infrared band at 1342 cm -1 , increases abruptly. On the contrary, in the spectra recorded at liquid nitrogen temperature no such band is observed. We also studied the degree of disorder in two purely monodisperse long chain n-alkanes, namely n-C 198 H 398 and n-C 246 H 494 . The chain conformation as well as the tilt angle of the chains from the crystal surfaces were determined by means of low frequency Raman spectroscopy and S.A.X.S. measurements on solution-crystallised samples. The increase in the number of end-gauche conformers which was expected to occur with

  12. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  13. Dynamic lifetimes of cagelike water clusters immersed in liquid water and their implications for hydrate nucleation studies

    Guo, G.J.; Zhang, Y.G.; Li, M.; Wu, C.H. [Chinese Academy of Sciences, Inst. of Geology and Geophysics, Beijing (China). Key Laboratory of the Study of Earth' s Deep Interior

    2008-07-01

    In hydrate research fields, the hydrate nucleation mechanism still remains as an unsolved question. The static lifetimes of cagelike water clusters (CLWC) immersed in bulk liquid water have recently been measured by performing molecular dynamics simulations in the methane-water system, during which the member-water molecules of CLWCs are not allowed to exchange with their surrounding water molecules. This paper presented a study that measured the dynamic lifetimes of CLWCs permitting such water exchanges. The study involved re-analysis of previous simulation data that were used to study the effect of methane adsorption on the static lifetimes of a dodecahedral water cluster (DWC). The dynamic lifetimes of the DWC were calculated. The results of lifetime measurements of DWC in different systems were provided. The implications of this study for hydrate nucleation were also discussed. It was found that the dynamic lifetimes of CLWCs were not less than the static lifetimes previously obtained, and their ratio increased with the lifetime values. The results strengthened that CLWCs are metastable structures in liquid water and the occurrence probability of long-lived CLWCs will increase if one uses the dynamic lifetimes instead of the static lifetimes. 13 refs., 1 tab., 3 figs.

  14. The wetting behavior of alkanes on water

    Ragil, Karine; Broseta, Daniel; Kalaydjian, Francois [Institut Francais du Petrole, BP 311, 92852 Rueil Malmaison Cedex (France); Bonn, Daniel; Meunier, Jacques [ENS, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Indekeu, Joseph [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    1998-06-06

    This paper presents recent experimental and theoretical results concerning the wetting behavior of n-alkanes on water as a function of thermodynamic conditions (i.e., temperature, pressure, etc.). The transition from lenses to a macroscopically thick film, that takes place when the temperature is increased, occurs for n-alkanes on water in a manner very different from that encountered in other fluid systems. For n-pentane on water, ellipsometric measurements reveal that the growth of the pentane layer to a macroscopically thick film occurs in a continuous manner, for a temperature ({approx}53C) corresponding to a change in the sign of the Hamaker constant. A theoretical approach based on the Cahn-Landau theory, which takes into account long-range (van der Waals) forces, enables us to explain the mechanism of this continuous wetting transition. This transition is preceded (at a lower temperature) by a discontinuous transition from a thin film (of adsorbed molecules) to a thick (but not macroscopically thick) film. The latter transition was not visible for pentane on water (it should occur below the freezing temperature for water), but we expect to observe it for longer alkanes (e.g., hexane) on water. Work is underway to examine the wetting behavior of oil/brine systems more representative of reservoir conditions

  15. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  16. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  17. Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures

    von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.

    2007-01-01

    Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...

  18. Deposition of radiation energy in solids as visualized by the distribution, structure and properties of alkyl radicals in γ-irradiated n-alkane single crystals

    Gillbro, T.; Lund, A.

    1976-01-01

    This paper summarizes results obtained earlier from ESR studies of γ-irradiated n-alkane single crystals. It also contains some new experimental results that serve to give a more complete picture of the deposition of radiation energy in solid alkanes. The experiments performed with solid n-alkanes have thus far provided structural data that permit the nature and even the conformation of alkyl radicals to be clearly understood. Two types of radical exist namely, one where the unpaired electron is located next to the end methyl group and one with the unpaired electron in the interior of the chain. The first type has a conformation which differs from that of the undamaged molecule. Microwave saturation data show that there is a difference in relaxation properties of these radicals which can be understood in terms of a difference in mobility. Relative yield measurements give the distribution of isomeric alkyl, the result differing from that obtained using product analysis in liquids. For protiated n-alkanes n-alkyl is lacking and the 2-alkyl concentration is higher than expected. For deuterated n-alkanes the ESR spectrum is mainly that of radicals with the unpaired electron located in the interior of the carbon chain. This isotope effect is again contrary to observations in liquid n-alkanes. The broad lines observed in protiated alkanes irradiated at 77 K and deuterated alkanes irradiated at 4.2 K are not believed to arise from strong spin-spin interactions. They are thought instead to arise from distorted crystal and radical structures relating to the damaged regions of the crystals. (Auth.)

  19. Competitive and successive reactions in the position cluster and energy state of positronium in the liquids

    Didierjean, F.

    1991-10-01

    By combining two independent positron annihilation techniques, it is shown that, in polar solvents, the halogenated compounds inhibit positronium formation by quasi-free electron scavenging followed by positron capture. This sequence occurs before halide detachment intervenes. Studying mixtures of solutes allows both to confirm the existence of these successive reactions and to stress the influence, towards positronium formation, of the trap depth for the electron captured by nitrates, whether ion associated or not, in methanol. Finally, experiments in the presence of a magnetic field allow to conclude that the formed positronium is very rapidly thermalized, then localised in a potential well in the liquids, the so-called bubble [fr

  20. Polymerizable Ionic Liquid Crystals Comprising Polyoxometalate Clusters toward Inorganic-Organic Hybrid Solid Electrolytes

    Takeru Ito

    2017-07-01

    Full Text Available Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1, were successfully hybridized with heteropolyanions of [PW12O40]3− (PW12 to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10−4 S·cm−1 order under humidified conditions at 313 K.

  1. Shale gas opportunities. Dehydrogenation of light alkanes

    Patcas, F.C.; Dieterle, M.; Rezai, A.; Asprion, N. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    The discovery and use of shale gas in North America has become a game changer for the chemical industry by access to a cheaper feedstock compared to conventional oil. Increased number of ethane crackers spurred increasing interest in light alkanes dehydrogenation. Several companies have announced their interest in new propane dehydrogenation units in North America. BASF is developing light alkanes dehydrogenation technologies for two decades now. BASF developed jointly with Linde the isothermal C3 dehydrogenation process. The latest dehydrogenation catalyst development at BASF focused on a supported and steam resistant Pt-Sn catalyst which yielded excellent selectivity and activity. Intense research work both internally as well as in cooperation with universities contributed to the understanding of the relationship between the surface structure and catalyst performances like activity, selectivity and coking resistance. Using such type of catalysts BASF developed an autothermal propane dehydrogenation as well as a butane dehydrogenation process. The most recent catalyst development was a dehydrogenation catalyst coated on a honeycomb monolith to improve catalyst usage and pressure drop. This will probably be the first industrial usage of catalytic monoliths in a chemical synthesis process. (orig.) (Published in summary form only)

  2. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H...

  3. Theoretical insights into the interaction between RunPt13-n (n=4, 7 and 9) clusters and [BMIM]+ based ionic liquids: Effect of anion.

    Cheng, Ping; Yang, Yongpeng; Huang, Shiping

    2017-06-01

    Density functional theory has been performed to systematically study the interactions between Ru n Pt 13-n (n=4, 7 and 9) clusters and [BMIM] + based ionic liquids. Ionic liquids [BMIM][Br], [BMIM][BF 4 ], [BMIM][PF 6 ], [BMIM][CF 3 SO 3 ], and [BMIM][NTf 2 ] have different effects on the stability of Ru 7 Pt 6 . Ionic liquids with median size anions of PF 6 - and CF 3 SO 3 - can better improve the stability of Ru 7 Pt 6 than those with the small anions of Br - and BF 4 - and large anion of NTf 2 - . Based on negative relaxation energies, the stabilities of Ru 4 Pt 9 , Ru 7 Pt 6 , and Ru 9 Pt 4 are all enhanced after interacting with [BMIM][CF 3 SO 3 ]. The stability enhanced degree is in agreement with the interaction strength. For Ru 7 Pt 6 -n{[BMIM][CF 3 SO 3 ]} (n=1, 2, 3, 4), the interaction between ionic liquid and cluster plays the primary role in stabilizing the cluster in Ru 7 Pt 6 -[BMIM][CF 3 SO 3 ]. With the increase of the number of [BMIM][CF 3 SO 3 ], the role of the interaction in stabilizing the cluster is getting weaker, while the role of steric protection is getting more important. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on

  5. Extraction of pentylbenzene from high molar mass alkanes (C{sub 14} and C{sub 17}) by N-methyl-2-pyrrolidone

    Fandary, Mohamed S. [Chemical Engineering Department, College of Technological Studies, P.O. Box 3242, Salmyiah 22033 (Kuwait)]. E-mail: mfandary@yahoo.com; Al-Jimaz, Adel S. [Chemical Engineering Department, College of Technological Studies, P.O. Box 3242, Salmyiah 22033 (Kuwait); Al-Kandary, Jasem A. [Chemical Engineering Department, College of Technological Studies, P.O. Box 3242, Salmyiah 22033 (Kuwait); Fahim, Mohamed A. [Chemical Engineering Department, University of Kuwait, P.O. Box 5969, Safat 13060 (Kuwait)

    2006-04-15

    Equilibrium tie line data have been determined for the two ternary liquid systems: {l_brace}tetradecane, or heptadecane + pentylbenzene + N-methyl-2-pyrrolidone (NMP){r_brace} over a temperature range of (298 to 328) K. The two systems studied exhibit type I liquid + liquid phase diagram. The effect of temperature and n-alkane chain length upon solubility, selectivity, and distribution coefficients were investigated experimentally.

  6. Cluster-cluster clustering

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  7. Fast on-line analysis of process alkane gas mixtures by NIR spectroscopy

    Boelens, H. F. M.; Kok, W. T.; de Noord, O. E.; Smilde, A. K.

    2000-01-01

    Proper operation of a molecular sieve process for the separation of iso- and cyclo-alkanes front normal alkanes requires the fast online detection of normal alkanes breaking through the column. The feasibility of using near-infrared (NIR) spectroscopy for this application was investigated. Alkane

  8. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    Gomez, S.L.; Lenart, V.M.

    2015-01-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n 2 increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  9. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    Gomez, S.L.; Lenart, V.M., E-mail: sgomez@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Fisica; Turchiello, R.T. [Universidade Federal Tecnologica do Parana (UFTPR), Ponta Grossa, PR (Brazil). Dept. de Fisica; Goya, G.F. [Department of Condensed Matter Physics, Aragon Institute of Nanoscience, Zaragoza (Spain)

    2015-10-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n{sub 2} increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  10. Alkane oxidation by Pseudomonas oleovorans : genes and proteins

    van Beilen, Jan Berthold

    1994-01-01

    This thesis deals with the molecular genetics and biochemistry of oxidation of medium chainlength alkanes by P. oleovorans, as part of a program to develop biotechnological processes, based on oxygenases.

  11. The existence of a plastic phase and a solid-liquid dynamical bistability region in small fullerene cluster (C60)7: molecular dynamics simulation

    Piatek, A; Dawid, A; Gburski, Z

    2006-01-01

    We have simulated (by the molecular dymanics (MD) method) the dynamics of fullerenes (C 60 ) in an extremely small cluster composed of only as many as seven C 60 molecules. The interaction is taken to be the full 60-site pairwise additive Lennard-Jones (LJ) potential which generates both translational and anisotropic rotational motions of each molecule. Our atomically detailed MD simulations discover the plastic phase (no translations but active reorientations of fullerenes) at low energies (temperatures) of the (C 60 ) 7 cluster. We provide the in-depth evidence of the dynamical solid-liquid bistability region in the investigated cluster. Moreover, we confirm the existence of the liquid phase in (C 60 ) 7 , the finding of Gallego et al (1999 Phys. Rev. Lett. 83 5258) obtained earlier on the basis of Girifalco's model, which assumes single-site only and spherically symmetrical interaction between C 60 molecules. We have calculated the translational and angular velocity autocorrelation functions and estimated the diffusion coefficient of fullerene in the liquid phase

  12. Thermodynamic properties of (an ester + an alkane). XVIII. Experimental HmEandVmE values for (an alkyl butanoate + an alkane) at T = 318.15 K

    Ortega, J.; Navas, A.; Sabater, G.; Ascanio, M.; Placido, J.

    2007-01-01

    This work presents the experimental values of H m E andV m E obtained at a temperature of 318.15 K and atmospheric pressure for a group of 24 binary mixtures comprised of the first four alkyl butanoates (methyl to butyl) with six odd alkanes, from heptane to heptadecane. All the mixtures are endothermic, and present a regular increase in H m E with the molecular weight of the saturated hydrocarbon, while, for a same alkane, the enthalpic effects diminish with increasing alcoholic chain of the butanoate. The variation in V m E occurs in the same direction. In this paper the structural behaviour of these systems and the influence of temperature on excess properties are analysed. Experimental data are correlated with a suitable polynomial equation which is given as a function of concentration and temperature, that permits a simultaneous correlation to be established with other properties of the mixture, such as (vapour + liquid) equilibria; and acceptable results are obtained. Finally, an estimation of H m E is made with two known versions of the UNIFAC model. In the version by Dang and Tassios [J. Dang, D.P. Tassios, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 22-31.], a method is proposed that considers the interaction parameters as a function of the butanoate alkanolic chain. The estimations obtained for H m E are good

  13. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  14. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  15. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  16. Interaction of proteins with ionic liquid, alcohol and DMSO and in situ generation of gold nano-clusters in a cell.

    Nandi, Somen; Parui, Sridip; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2018-06-01

    In this review, we give a brief overview on how the interaction of proteins with ionic liquids, alcohols and dimethyl sulfoxide (DMSO) influences the stability, conformational dynamics and function of proteins/enzymes. We present experimental results obtained from fluorescence correlation spectroscopy on the effect of ionic liquid or alcohol or DMSO on the size (more precisely, the diffusion constant) and conformational dynamics of lysozyme, cytochrome c and human serum albumin in aqueous solution. The interaction of ionic liquid with biomolecules (e.g. protein, DNA etc.) has emerged as a current frontier. We demonstrate that ionic liquids are excellent stabilizers of protein and DNA and, in some cases, cause refolding of a protein already denatured by chemical denaturing agents. We show that in ethanol-water binary mixture, proteins undergo non-monotonic changes in size and dynamics with increasing ethanol content. We also discuss the effect of water-DMSO mixture on the stability of proteins. We demonstrate how large-scale molecular dynamics simulations have revealed the molecular origin of this observed phenomenon and provide a microscopic picture of the immediate environment of the biomolecules. Finally, we describe how favorable interactions of ionic liquids may be utilized for in situ generation of fluorescent gold nano-clusters for imaging a live cell.

  17. Alkane inducible proteins in Geobacillus thermoleovorans B23

    Kato Tomohisa

    2009-03-01

    Full Text Available Abstract Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21 and superoxide dismutase (P24 whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.

  18. C14–22 n-Alkanes in Soil from the Freetown Layered Intrusion, Sierra Leone: Products of Pt Catalytic Breakdown of Natural Longer Chain n-Alkanes?

    John F. W. Bowles

    2018-03-01

    Full Text Available Soil above a platinum-group element (PGE-bearing horizon within the Freetown Layered Intrusion, Sierra Leone, contains anomalous concentrations of n-alkanes (CnH2n+2 in the range C14 to C22 not readily attributable to an algal or lacustrine origin. Longer chain n-alkanes (C23 to C31 in the soil were derived from the breakdown of leaf litter beneath the closed canopy humid tropical forest. Spontaneous breakdown of the longer chain n-alkanes to form C14–22 n-alkanes without biogenic or abiogenic catalysts is unlikely as the n-alkanes are stable. In the Freetown soil, the catalytic properties of the PGE (Pt in particular may lower the temperature at which oxidation of the longer chain n-alkanes can occur. Reaction between these n-alkanes and Pt species, such as Pt2+(H2O2(OH2 and Pt4+(H2O2(OH4 can bend and twist the alkanes, and significantly lower the Heat of Formation. Microbial catalysis is a possibility. Since a direct organic geochemical source of the lighter n-alkanes has not yet been identified, this paper explores the theoretical potential for abiogenic Pt species catalysis as a mechanism of breakdown of the longer n-alkanes to form C14–22 alkanes. This novel mechanism could offer additional evidence for the presence of the PGE in solution, as predicted by soil geochemistry.

  19. Packing properties 1-alkanols and alkanes in a phospholipid membrane

    Westh, Peter

    2006-01-01

    We have used vibrating tube densitometry to investigate the packing properties of four alkanes and a homologous series of ten alcohols in fluid-phase membranes of dimyristoyl phosphatidylcholine (DMPC). It was found that the volume change of transferring these compounds from their pure states int...... into the membrane core, which is loosely packed. In this region, they partially occupy interstitial (or free-) volume, which bring about a denser molecular packing and generate a negative contribution to Vm(puremem)....... into the membrane, Vm(puremem), was positive for small (C4-C6) 1-alkanols while it was negative for larger alcohols and all alkanes. The magnitude of Vm(puremem) ranged from about +4 cm3/mol for alcohols with an alkyl chain about half the length of the fatty acids of DMPC, to -10 to -15 cm3/mol for the alkanes...

  20. Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons.

    Llovell, F; Marcos, R M; Vega, L F

    2013-05-02

    In a previous paper (Llovell et al. J. Phys. Chem. B, submitted for publication), the free-volume theory (FVT) was coupled with the soft-SAFT equation of state for the first time to extend the capabilities of the equation to the calculation of transport properties. The equation was tested with molecular simulations and applied to the family of n-alkanes. The capability of the soft-SAFT + FVT treatment is extended here to other chemical families and mixtures. The compositional rules of Wilke (Wilke, C. R. J. Chem. Phys. 1950, 18, 517-519) are used for the diluted term of the viscosity, while the dense term is evaluated using very simple mixing rules to calculate the viscosity parameters. The theory is then used to predict the vapor-liquid equilibrium and the viscosity of mixtures of nonassociating and associating compounds. The approach is applied to determine the viscosity of a selected group of hydrofluorocarbons, in a similar manner as previously done for n-alkanes. The soft-SAFT molecular parameters are taken from a previous work, fitted to vapor-liquid equilibria experimental data. The application of FVT requires three additional parameters related to the viscosity of the pure fluid. Using a transferable approach, the α parameter is taken from the equivalent n-alkane, while the remaining two parameters B and Lv are fitted to viscosity data of the pure fluid at several isobars. The effect of these parameters is then investigated and compared to those obtained for n-alkanes, in order to better understand their effect on the calculations. Once the pure fluids are well characterized, the vapor-liquid equilibrium and the viscosity of nonassociating and associating mixtures, including n-alkane + n-alkane, hydrofluorocarbon + hydrofluorocarbon, and n-alkane + hydrofluorocarbon mixtures, are calculated. One or two binary parameters are used to account for deviations in the vapor-liquid equilibrium diagram for nonideal mixtures; these parameters are used in a

  1. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  2. On the relation between Zenkevich and Wiener indices of alkanes

    ZARKO BOSKOVIC

    2004-04-01

    Full Text Available A relatively complicated relation was found to exist between the quantity U, recently introduced by Zenkevich (providing a measure of internal molecular energy, and the Wiener index W (measuring molecular surface area and intermolecular forces. We now report a detailed analysis of this relation and show that, in the case of alkanes, its main features are reproduced by the formula U = –aW + b + gn1; where n1 is the number of methyl groups, and a, b and g are constants, depending only on the number of carbon atoms. Thus, for isomeric alkanes with the same number of methyl groups, U and W are linearly correlated.

  3. Prediction of the Flash Point of Binary and Ternary Straight-Chain Alkane Mixtures

    X. Li

    2014-01-01

    Full Text Available The flash point is an important physical property used to estimate the fire hazard of a flammable liquid. To avoid the occurrence of fire or explosion, many models are used to predict the flash point; however, these models are complex, and the calculation process is cumbersome. For pure flammable substances, the research for predicting the flash point is systematic and comprehensive. For multicomponent mixtures, especially a hydrocarbon mixture, the current research is insufficient to predict the flash point. In this study, a model was developed to predict the flash point of straight-chain alkane mixtures using a simple calculation process. The pressure, activity coefficient, and other associated physicochemical parameters are not required for the calculation in the proposed model. A series of flash points of binary and ternary mixtures of straight-chain alkanes were determined. The results of the model present consistent experimental results with an average absolute deviation for the binary mixtures of 0.7% or lower and an average absolute deviation for the ternary mixtures of 1.03% or lower.

  4. Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement

    G. Roest

    2017-09-01

    Full Text Available The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2–C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7 % with an interquartile range (IQR of 0.5–1.3 %, below the US Environmental Protection Agency's (EPA current estimates. However, storage tanks contributed 17 % of methane emissions, 55 % of ethane, 82 % percent of propane, 90 % of n-butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0 % (IQR of 0.7–1.6 % relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

  5. Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement

    Roest, Geoffrey; Schade, Gunnar

    2017-09-01

    The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2-C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7 % with an interquartile range (IQR) of 0.5-1.3 %, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17 % of methane emissions, 55 % of ethane, 82 % percent of propane, 90 % of n-butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0 % (IQR of 0.7-1.6 %) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

  6. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture

    Bo Liang

    2016-09-01

    Full Text Available In the present study, the microbial community and functional gene composition of a long-term active alkane-degrading methanogenic culture was established after two successive enrichment culture transfers and incubated for a total period of 1750 days. Molecular analysis was conducted after the second transfer (incubated for 750 days for both the active alkanes-degrading methanogenic enrichment cultures (T2-AE and the background control (T2-BC. A net increase of methane as the end product was detected in the headspace of the enrichment cultures amended with long-chain n-alkanes and intermediate metabolites, including octadecanoate, hexadecanoate, isocaprylate, butyrate, isobutyrate, propionate, acetate and formate were measured in the liquid cultures. The composition of microbial community shifted through the successive transfers over time of incubation. Sequences of bacterial and archaeal 16S rRNA gene (16S rDNA and mcrA functional gene indicated that bacterial sequences affiliated to Thermodesulfovibrio spp. and Anaerolineaceae and archaeal sequences falling within the genus Methanoculleus were the most frequently encountered and thus represented the dominant members performing the anaerobic degradation of long-chain n-alkanes and methanogenesis. In addition, the presence of assA functional genes encoding the alkylsuccinate synthase α subunit indicated that fumarate addition mechanism could be considered as a possible initial activation step of n-alkanes in the present study. The succession pattern of microbial communities indicates that Thermodesulfovibrio spp. could be a generalist participating in the metabolism of intermediates, while Anaerolineaceae plays a key role in the initial activation of long-chain n-alkane biodegradation.

  7. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  8. Thermodynamic parameters for the adsorption of volatile n-alkane ...

    alkanes hexane to nonane on ground dried water hyacinth (E. crassipes) root biomass were studied between 40 and 70°C column temperature using inverse gas chromatography, before and after treatment of the root biomass with mineral acid ...

  9. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721.10163 Section 721.10163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...)(2) of this section. (2) The significant new uses are: (i) Industrial, commercial, and consumer...

  10. Theoretical study of n-alkane adsorption on metal surfaces

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko

    2004-01-01

    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  11. Modeling of the branching influence on liquid–liquid equilibrium of binary and ternary polymer solutions by lattice–cluster theory

    Browarzik, Dieter; Langenbach, Kai; Enders, Sabine; Browarzik, Christina

    2013-01-01

    Highlights: ► Liquid–liquid equilibrium (LLE) is calculated with the lattice–cluster theory (LCT). ► Equations of the LCT are reduced to only three geometrical parameters. ► Branching influence on the LLE is modeled for binary and ternary polymer solutions. ► Branched and linear solvents and polymers are compared in their influence on LLE. ► Solutions of branched polymers in branched solvents show the best miscibility. -- Abstract: The liquid–liquid equilibrium (LLE) of ternary model systems of the type solvent A + polymer B + solvent C is treated in the framework of lattice–cluster theory (LCT). There are a linear and a branched type of A-molecules as well as a linear and two types of strongly branched polymer molecules. The C-molecules are assumed to occupy only one lattice site. For nine binary and six ternary polymer solutions the branching influence on LLE is discussed. Currently, the LCT is the most useful model to take the architecture of the molecules into account. However, particularly for ternary systems the model is not comfortable because of the very numerous terms of the Gibbs energy. Using some relationships between the geometrical parameters of the model a considerable simplification is possible. In this paper the new and simpler equations of the LCT are presented. For comparison with experimental data critical temperatures of solutions of linear and branched polyethylene samples in diphenyl ether are calculated

  12. Crystallization features of normal alkanes in confined geometry.

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  13. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes.

    Kondratyuk, Nikolay D; Norman, Genri E; Stegailov, Vladimir V

    2016-11-28

    Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.

  15. Distribution and sources of n-alkanes in surface sediments of Taihu Lake, China

    Yu Yunlong

    2016-03-01

    Full Text Available The last study on n-alkanes in surface sediments of Taihu Lake was in 2000, only 13 surface sediment samples were analysed, in order to have a comprehensive and up-to-date understanding of n-alkanes in the surface sediments of Taihu Lake, 41 surface sediment samples were analyzed by GC-MS. C10 to C37 were detected, the total concentrations of n-alkanes ranged from 2109 ng g−1 to 9096 ng g−1 (dry weight. There was strong odd carbon predominance in long chain n-alkanes and even carbon predominance in short chain n-alkanes. When this finding was combined with the analysis results of wax n-alkanes (WaxCn, carbon preference index (CPI, unresolved complex mixture (UCM, hopanes and steranes, it was considered that the long chain n-alkanes were mainly from terrigenous higher plants, and that the short chain n-alkanes mainly originated from bacteria and algae in the lake, compared with previous studies, there were no obvious anthropogenic petrogenic inputs. Terrestrial and aquatic hydrocarbons ratio (TAR and C21−/C25+ indicated that terrigenous input was higher than aquatic sources and the nearshore n-alkanes were mainly from land-derived sources. Moreover, the distribution of short chain n-alkanes presented a relatively uniform pattern, while the long chain n-alkanes presented a trend that concentrations dropped from nearshore places to the middle of lake.

  16. Image Charge Effects in the Wetting Behavior of Alkanes on Water with Accounting for Water Solubility

    Kirill A. Emelyanenko

    2016-03-01

    Full Text Available Different types of surface forces, acting in the films of pentane, hexane, and heptane on water are discussed. It is shown that an important contribution to the surface forces originates from the solubility of water in alkanes. The equations for the distribution of electric potential inside the film are derived within the Debye-Hückel approximation, taking into account the polarization of the film boundaries by discrete charges at water-alkane interface and by the dipoles of water molecules dissolved in the film. On the basis of above equations we estimate the image charge contribution to the surface forces, excess free energy, isotherms of water adsorption in alkane film, and the total isotherms of disjoining pressure in alkane film. The results indicate the essential influence of water/alkane interface charging on the disjoining pressure in alkane films, and the wettability of water surface by different alkanes is discussed.

  17. Study of the ionization of alkane-electron scavenger reactant mixtures irradiated by 60Co gamma rays

    Bonnet, Jacques.

    1977-01-01

    This study deals with ionization of alkane-electron scavenger reactant mixtures, irradiated by 60 Co γ-rays. It is shown that the extrapolated free-ion yields (extrapolated yield method) decrease with the reactant concentration. On the basis of ONSAGER model and theoretical treatment of MOZUMDER, the cross sections of epithermal electron attachment in hexane, cyclohexane, 2,2-dimethylbutane, cyclopentane, 2,2,4-trimethylpentane for CCl 4 , C 7 F 14 , C 6 H 5 Br, C 6 H 5 Cl, C 6 F 14 , (C 6 H 5 ) 2 are determined. A comparison between gas-phase and liquid-phase cross sections is established [fr

  18. Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant

    N. Vijayanand

    2014-06-01

    Conclusion: The presence of micro and macro nutrients, vitamins, growth hormones and other constituents in the seaweed extract might be very much useful to the crops but their level should be appropriate to enhance growth and productivity. It may be concluded that liquid seaweed extracts could serve as cost effective eco-friendly product for sustainable agriculture.

  19. Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan

    Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei

    2018-03-01

    n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the

  20. Evidence for radical anion formation during liquid secondary ion mass spectrometry analysis of oligonucleotides and synthetic oligomeric analogues: a deconvolution algorithm for molecular ion region clusters.

    Laramée, J A; Arbogast, B; Deinzer, M L

    1989-10-01

    It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.

  1. Thermodynamics of the hydrophobic effect. III. Condensation and aggregation of alkanes, alcohols, and alkylamines.

    Matulis, D

    2001-10-18

    Knowledge of the energetics of the low solubility of non-polar compounds in water is critical for the understanding of such phenomena as protein folding and biomembrane formation. Solubility in water can be considered as one leg of the three-part thermodynamic cycle - vaporization from the pure liquid, hydration of the vapor in aqueous solution, and aggregation of the substance back into initial pure form as an immiscible phase. Previous studies on the model compounds n-alkanes, 1-alcohols, and 1-aminoalkanes have noted that the thermodynamic parameters (Gibbs free energy, DeltaG; enthalpy, DeltaH; entropy, DeltaS; and heat capacity, DeltaC(p)) associated with these three processes are generally linear functions of the number of carbons in the alkyl chains. Here we assess the accuracy and limitations of the assumption of additivity of CH(2) group contributions to the thermodynamic parameters for vaporization, hydration, and aggregation. Processes of condensation from pure gas to liquid and aqueous solution to aggregate are compared. Hydroxy, amino, and methyl headgroup contributions are estimated, liquid and solid aggregates are distinguished. Most data in the literature were obtained for compounds with short aliphatic hydrocarbon tails. Here we emphasize long aliphatic chain behavior and include our recent experimental data on long chain alkylamine aggregation in aqueous solution obtained by titration calorimetry and van't Hoff analysis. Contrary to what is observed for short compounds, long aliphatic compound aggregation has a large exothermic enthalpy and negative entropy.

  2. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Platycladi cacumen by Ultra-performance Liquid Chromatography Coupled with Hierarchical Cluster Analysis.

    Shan, Mingqiu; Li, Sam Fong Yau; Yu, Sheng; Qian, Yan; Guo, Shuchen; Zhang, Li; Ding, Anwei

    2018-01-01

    Platycladi cacumen (dried twigs and leaves of Platycladus orientalis (L.) Franco) is a frequently utilized Chinese medicinal herb. To evaluate the quality of the phytomedcine, an ultra-performance liquid chromatographic method with diode array detection was established for chemical fingerprinting and quantitative analysis. In this study, 27 batches of P. cacumen from different regions were collected for analysis. A chemical fingerprint with 20 common peaks was obtained using Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A). Among these 20 components, seven flavonoids (myricitrin, isoquercitrin, quercitrin, afzelin, cupressuflavone, amentoflavone and hinokiflavone) were identified and determined simultaneously. In the method validation, the seven analytes showed good regressions (R ≥ 0.9995) within linear ranges and good recoveries from 96.4% to 103.3%. Furthermore, with the contents of these seven flavonoids, hierarchical clustering analysis was applied to distinguish the 27 batches into five groups. The chemometric results showed that these groups were almost consistent with geographical positions and climatic conditions of the production regions. Integrating fingerprint analysis, simultaneous determination and hierarchical clustering analysis, the established method is rapid, sensitive, accurate and readily applicable, and also provides a significant foundation for quality control of P. cacumen efficiently. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater.

    Bowman, Kimberly S; Nobre, M Fernanda; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2013-04-01

    Two strictly anaerobic bacterial strains, designated IP3-3(T) and SBP-1, were isolated from groundwater contaminated by chlorinated alkanes and alkenes at a Superfund Site located near Baton Rouge, Louisiana (USA). Both strains reductively dehalogenate a variety of polychlorinated aliphatic alkanes, including 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane and 1,2,3-trichloropropane, when provided with hydrogen as the electron donor. To clarify their taxonomic position, strains IP3-3(T) and SBP-1 were characterized using a polyphasic approach. Both IP3-3(T) and SBP-1 are mesophilic, non-spore-forming, non-motile and Gram-stain-negative. Cells of both strains are irregular cocci with diameters of 0.4-1.1 µm. Both are resistant to ampicillin and vancomycin. The genomic DNA G+C contents of strains IP3-3(T) and SBP-1 are 55.5±0.4 and 56.2±0.2 mol% (HPLC), respectively. Major cellular fatty acids include C18 : 1ω9c, C16 : 0, C14 : 0 and C16 : 1ω9c. 16S rRNA gene sequence based phylogenetic analyses indicated that the strains cluster within the phylum Chloroflexi most closely related to but distinct from the species Dehalogenimonas lykanthroporepellens (96.2 % pairwise similarity) and Dehalococcoides mccartyi (90.6 % pairwise similarity). Physiological and chemotaxonomic traits as well as phylogenetic analysis support the conclusion that these strains represent a novel species within the genus Dehalogenimonas for which the name Dehalogenimonas alkenigignens sp. nov. is proposed. The type strain is IP3-3(T) ( = JCM 17062(T) = NRRL B-59545(T)).

  4. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  5. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  6. Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992

    NONE

    1992-12-31

    The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficult to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.

  7. Use of FPGA embedded processors for fast cluster reconstruction in the NA62 liquid krypton electromagnetic calorimeter

    Badoni, D.; Bizzarri, M.; Bonaiuto, V.; Checcucci, B.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Papi, A.; Piccini, M.; Salamon, A.; Salina, G.; Santovetti, E.; Sargeni, F.; Venditti, S.

    2014-01-01

    The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K+→π+ ν bar nu with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K+→π+ π0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests.

  8. Use of FPGA embedded processors for fast cluster reconstruction in the NA62 liquid krypton electromagnetic calorimeter

    Badoni, D; Fucci, A; Paoluzzi, G; Salamon, A; Salina, G; Bizzarri, M; Bonaiuto, V; Simone, N De; Federici, L; Sargeni, F; Checcucci, B; Papi, A; Piccini, M; Santovetti, E; Venditti, S

    2014-01-01

    The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K + →π +  ν ν-bar with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K + →π +  π 0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests

  9. Clustering of near clusters versus cluster compactness

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  10. Optimized reaction mechanism rate rules for ignition of normal alkanes

    Cai, Liming

    2016-08-11

    The increasing demand for cleaner combustion and reduced greenhouse gas emissions motivates research on the combustion of hydrocarbon fuels and their surrogates. Accurate detailed chemical kinetic models are an important prerequisite for high fidelity reacting flow simulations capable of improving combustor design and operation. The development of such models for many new fuel components and/or surrogate molecules is greatly facilitated by the application of reaction classes and rate rules. Accurate and versatile rate rules are desirable to improve the predictive accuracy of kinetic models. A major contribution in the literature is the recent work by Bugler et al. (2015), which has significantly improved rate rules and thermochemical parameters used in kinetic modeling of alkanes. In the present study, it is demonstrated that rate rules can be used and consistently optimized for a set of normal alkanes including n-heptane, n-octane, n-nonane, n-decane, and n-undecane, thereby improving the predictive accuracy for all the considered fuels. A Bayesian framework is applied in the calibration of the rate rules. The optimized rate rules are subsequently applied to generate a mechanism for n-dodecane, which was not part of the training set for the optimized rate rules. The developed mechanism shows accurate predictions compared with published well-validated mechanisms for a wide range of conditions.

  11. Thermodynamic properties of (an ester + an alkane). XVIII. Experimental H{sub m}{sup E}andV{sub m}{sup E} values for (an alkyl butanoate + an alkane) at T = 318.15 K

    Ortega, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria (Spain)], E-mail: jortega@dip.ulpgc.es; Navas, A.; Sabater, G.; Ascanio, M.; Placido, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria (Spain)

    2007-11-15

    This work presents the experimental values of H{sub m}{sup E}andV{sub m}{sup E} obtained at a temperature of 318.15 K and atmospheric pressure for a group of 24 binary mixtures comprised of the first four alkyl butanoates (methyl to butyl) with six odd alkanes, from heptane to heptadecane. All the mixtures are endothermic, and present a regular increase in H{sub m}{sup E} with the molecular weight of the saturated hydrocarbon, while, for a same alkane, the enthalpic effects diminish with increasing alcoholic chain of the butanoate. The variation in V{sub m}{sup E} occurs in the same direction. In this paper the structural behaviour of these systems and the influence of temperature on excess properties are analysed. Experimental data are correlated with a suitable polynomial equation which is given as a function of concentration and temperature, that permits a simultaneous correlation to be established with other properties of the mixture, such as (vapour + liquid) equilibria; and acceptable results are obtained. Finally, an estimation of H{sub m}{sup E} is made with two known versions of the UNIFAC model. In the version by Dang and Tassios [J. Dang, D.P. Tassios, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 22-31.], a method is proposed that considers the interaction parameters as a function of the butanoate alkanolic chain. The estimations obtained for H{sub m}{sup E} are good.

  12. Thermodynamic properties of (an ester+an alkane). XVII. Experimental HmE and VmE values for (an alkyl propanoate+an alkane) at 318.15K

    Ortega, J.; Espiau, F.; Toledo, F.J.; Dieppa, R.

    2005-01-01

    In this article, we record the experimental values of H m E and V m E , obtained at a temperature of T=318.15K and atmospheric pressure for a set of 30 binary mixtures comprised of five alkyl propanoates (methyl to pentyl) with six odd alkanes (heptane to heptadecane). The net values obtained for these properties are the result of different effects of the selected compounds on the mixing process. These effects and the variation with temperature are studied. The H m E are positive in all cases and increase with the saturated hydrocarbon chain and diminish with the alkanolic portion of the ester. The variation in V m E is similar to that occurring in the H m E . For the data correlation, a new form of polynomial equation is used in which the variable is the so-called active fraction which, in turn, is a function of the concentration of the mixture, giving acceptable estimations for simultaneous correlations between the values of Gibbs function obtained in the isobaric (liquid+vapour) equilibria and the enthalpies of the mixture, for some of the mixtures studied. The results are explained with the molecular model proposed for (ester+alkane) mixtures. Finally, the application of two versions of the UNIFAC groups contribution method to estimate enthalpies of the mixtures does not give satisfactory results, although the modified UNIFAC gives somewhat better results

  13. Simultaneous determination of 19 flavonoids in commercial trollflowers by using high-performance liquid chromatography and classification of samples by hierarchical clustering analysis.

    Song, Zhiling; Hashi, Yuki; Sun, Hongyang; Liang, Yi; Lan, Yuexiang; Wang, Hong; Chen, Shizhong

    2013-12-01

    The flowers of Trollius species, named Jin Lianhua in Chinese, are widely used traditional Chinese herbs with vital biological activity that has been used for several decades in China to treat upper respiratory infections, pharyngitis, tonsillitis, and bronchitis. We developed a rapid and reliable method for simultaneous quantitative analysis of 19 flavonoids in trollflowers by using high-performance liquid chromatography (HPLC). Chromatography was performed on Inertsil ODS-3 C18 column, with gradient elution methanol-acetonitrile-water with 0.02% (v/v) formic acid. Content determination was used to evaluate the quality of commercial trollflowers from different regions in China, while three Trollius species (Trollius chinensis Bunge, Trollius ledebouri Reichb, Trollius buddae Schipcz) were explicitly distinguished by using hierarchical clustering analysis. The linearity, precision, accuracy, limit of detection, and limit of quantification were validated for the quantification method, which proved sensitive, accurate and reproducible indicating that the proposed approach was applicable for the routine analysis and quality control of trollflowers. © 2013.

  14. Abundance of macroalgal organic matter in biofilms: Evidence from n-alkane biomarkers

    Garg, A; Bhosle, N.B.

    carbon (OC), organic nitrogen (ON), chlorophyll a, diatoms and bacterial numbers on the titanium panels generally increased over the period of immersion. Total lipids and n-alkane concentration also showed similar trends. n-alkanes from C sub(12) to C sub...

  15. Study of factors that influence complex-formation of n-alkanes with crystal carbamide

    Dorodnova, V.S.; Korzhov, Yu.A.; Martynenko, A.G.

    1982-01-01

    Studies effect of temperature, solid phase content in the suspension and amount of MeOH on extent of n-alkane extraction during carbamide deparaffinization. A most thorough extraction of n-alkanes is achieved with a graduated temperature regimen of complex-formation.

  16. SUBSTRATE-SPECIFICITY OF THE ALKANE HYDROXYLASE SYSTEM OF PSEUDOMONAS-OLEOVORANS GPO1

    van Beilen, J.B.; Kingma, Jacob; Witholt, Bernard

    1994-01-01

    We have studied the hydroxylation of a wide range of linear, branched and cyclic alkanes and alkylbenzenes by the alkane hydroxylase system of Pseudomonas oleovorans GPo1 in vivo and in vitro. In vivo hydroxylation was determined with whole cells of the recombinant PpS8141; P. putida PpS81 carrying

  17. The use of n-alkane markers to estimate the intake and apparent ...

    However, the effect of the higher recovery of the dosed marker needs further investigation. The estimates of apparent dry matter digestibility corresponded well with measured values, provided the factor for the incomplete faecal recovery of the internal alkanes was included in the calculation. It was concluded that the alkane ...

  18. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines.

    Tang, Xinxin; Jia, Xiangqing; Huang, Zheng

    2018-03-21

    Alkanes, the main constituents of petroleum, are attractive feedstocks for producing value-added chemicals. Linear aldehydes and amines are two of the most important building blocks in the chemical industry. To date, there have been no effective methods for directly converting n-alkanes to linear aldehydes and linear amines. Here, we report a molecular dual-catalyst system for production of linear aldehydes via regioselective carbonylation of n-alkanes. The system is comprised of a pincer iridium catalyst for transfer-dehydrogenation of the alkane using t-butylethylene or ethylene as a hydrogen acceptor working sequentially with a rhodium catalyst for olefin isomerization-hydroformylation with syngas. The system exhibits high regioselectivity for linear aldehydes and gives high catalytic turnover numbers when using ethylene as the acceptor. In addition, the direct conversion of light alkanes, n-pentane and n-hexane, to siloxy-terminated alkyl aldehydes through a sequence of Ir/Fe-catalyzed alkane silylation and Ir/Rh-catalyzed alkane carbonylation, is described. Finally, the Ir/Rh dual-catalyst strategy has been successfully applied to regioselective alkane aminomethylation to form linear alkyl amines.

  19. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  20. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  1. Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes.

    Hilger, Bettina; Fromme, Hermann; Völkel, Wolfgang; Coelhan, Mehmet

    2011-04-01

    Log octanol-water partition coefficients (log Kow) of 40 synthesized polychlorinated n-alkanes (PCAs) with different chlorination degrees were determined using reversed-phase high performance liquid chromatography (RP-HPLC). In addition, log Kow values of a technical mixture namely Cereclor 63L as well as 15 individual in house synthesized C10, C11, and C12 chloroalkanes with known chlorine positions were estimated. Based on these results, the effects of chain length, chlorination degree, and structure were explored. The estimated log Kow values ranged from 4.10 (polychlorinated n-decanes with 50.2% chlorine content) to 11.34 (polychlorinated n-octacosanes with 54.8% chlorine content) for PCAs and from 3.82 (1,2,5,6,9,10-hexachlorodecane) to 7.75 (1,1,1,3,9,11,11,11-octachlorododecane) for the individual chloroalkanes studied. The results showed that log Kow value was influenced linearly at a given chlorine content by chain length, while a polynominal effect was observed in dependence on the chlorination degree of an alkane chain. Chlorine substitution pattern influenced markedly the log Kow value of chloroalkanes.

  2. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  3. Investigation of density inhomogeneities in liquids by positron annihilation

    Vass, Sz.

    1990-11-01

    The case of positronium diffusion and annihilation in micellar solutions as well as in liquid normal alkanes is discussed. The traps are assumed to be the structural sparse density regions in these liquids. The traps in micellar solutions are the micelles, in alkanes they are found around the terminal -CH 3 groups. The surface tension inside the micellar core (one of the basic parameters of micellization) is determined around the site of o-Ps solubilization. The o-Ps diffusivity parameters are determined in both systems. (K.A.) 48 refs.; 4 figs

  4. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology.

    Brown, Leslie; Earle, Martyn J; Gîlea, Manuela A; Plechkova, Natalia V; Seddon, Kenneth R

    2017-08-10

    Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).

  5. Modeling of Alkane Oxidation Using Constituents and Species

    Bellan, Jasette; Harstad, Kenneth G.

    2010-01-01

    It is currently not possible to perform simulations of turbulent reactive flows due in particular to complex chemistry, which may contain thousands of reactions and hundreds of species. This complex chemistry results in additional differential equations, making the numerical solution of the equation set computationally prohibitive. Reducing the chemical kinetics mathematical description is one of several important goals in turbulent reactive flow modeling. A chemical kinetics reduction model is proposed for alkane oxidation in air that is based on a parallel methodology to that used in turbulence modeling in the context of the Large Eddy Simulation. The objective of kinetic modeling is to predict the heat release and temperature evolution. This kinetic mechanism is valid over a pressure range from atmospheric to 60 bar, temperatures from 600 K to 2,500 K, and equivalence ratios from 0.125 to 8. This range encompasses diesel, HCCI, and gas-turbine engines, including cold ignition. A computationally efficient kinetic reduction has been proposed for alkanes that has been illustrated for n-heptane using the LLNL heptane mechanism. This model is consistent with turbulence modeling in that scales were first categorized into either those modeled or those computed as progress variables. Species were identified as being either light or heavy. The heavy species were decomposed into defined 13 constituents, and their total molar density was shown to evolve in a quasi-steady manner. The light species behave either in a quasi-steady or unsteady manner. The modeled scales are the total constituent molar density, Nc, and the molar density of the quasi-steady light species. The progress variables are the total constituent molar density rate evolution and the molar densities of the unsteady light species. The unsteady equations for the light species contain contributions of the type gain/loss rates from the heavy species that are modeled consistent with the developed mathematical

  6. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves.

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-28

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  7. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-01

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  8. Degradation of Hydrocarbons by Members of the Genus Candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica

    Klug, M. J.; Markovetz, A. J.

    1967-01-01

    Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked. PMID:6025303

  9. Characterization and utilization of hydrotreated products produced from the Whiterocks (Utah) tar sand bitumen-derived liquid

    Tsai, C.H.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.

    1991-12-31

    The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the mined and crushed ore from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor. The purpose was to determine the extent of upgrading as a function of process operating variable. A sulfided nickel-molybendum on alumina hydrodenitrogenation catalyst was used in all experiments. Moderately severe operating conditions were employed; that is, high reaction temperature (617--680 K) high reactor pressure (11.0--17.1 MPa) and low liquid feed rate (0.18--0.77 HSV); to achieve the desired reduction in heteroatom content. Detailed chemical structures of the bitumen-derived liquid feedstock and the hydrotreated total liquid products were determined by high resolution gas chromatography - mass spectrometry analyses. The compounds identified in the native bitumen included isoprenoids; bicyclic, tricycle, and tetracyclic terpenoids; steranes; hopanes; and perhydro-{beta}-carotenes. In addition, normal and branched alkanes and alkenes and partially dehydrogenated hydroaromatics were identified in the bitumen-derived liquid. The dominant pyrolysis reactions were: (1) the dealkylation of long alkyl side chains to form {alpha} - and isoolefins; and (2) the cleavage of alkyl chains linking aromatic and hydroaromatic clusters. Olefinic bonds were not observed in the hydrotreated product and monoaromatic hydrocarbons were the predominant aromatic species. The properties of the jet fuel fractions from the hydrotreated products met most of the jet fuel specifications. The cetane indices indicated these fractions would be suitable for use as diesel fuels.

  10. Characterization and utilization of hydrotreated products produced from the Whiterocks (Utah) tar sand bitumen-derived liquid

    Tsai, C.H.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.

    1991-01-01

    The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the mined and crushed ore from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor. The purpose was to determine the extent of upgrading as a function of process operating variable. A sulfided nickel-molybendum on alumina hydrodenitrogenation catalyst was used in all experiments. Moderately severe operating conditions were employed; that is, high reaction temperature (617--680 K) high reactor pressure (11.0--17.1 MPa) and low liquid feed rate (0.18--0.77 HSV); to achieve the desired reduction in heteroatom content. Detailed chemical structures of the bitumen-derived liquid feedstock and the hydrotreated total liquid products were determined by high resolution gas chromatography - mass spectrometry analyses. The compounds identified in the native bitumen included isoprenoids; bicyclic, tricycle, and tetracyclic terpenoids; steranes; hopanes; and perhydro-{beta}-carotenes. In addition, normal and branched alkanes and alkenes and partially dehydrogenated hydroaromatics were identified in the bitumen-derived liquid. The dominant pyrolysis reactions were: (1) the dealkylation of long alkyl side chains to form {alpha} - and isoolefins; and (2) the cleavage of alkyl chains linking aromatic and hydroaromatic clusters. Olefinic bonds were not observed in the hydrotreated product and monoaromatic hydrocarbons were the predominant aromatic species. The properties of the jet fuel fractions from the hydrotreated products met most of the jet fuel specifications. The cetane indices indicated these fractions would be suitable for use as diesel fuels.

  11. Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications

    Kontogeorgis, Georgios; Dimitrios, Tassios

    1997-01-01

    Several methods for the estimation of the critical temperature T-c, the critical pressure P-c, and the acentric factor omega for long-chain n-alkanes are reviewed and evaluated for the prediction of vapor pressures using Corresponding States (CS) methods, like the Lee-Kesler equation and the cubic....... Anselme, Correlation of the critical properties of alkanes and alkanols, Fluid Phase Equilibria, 56 (1990) 153-169; W. Hu, J. Lovland and P. Vonka. Generalized vapor pressure equations for n-alkanes, 1-alkenes, and 1-alkanols, Presented at the 11th Int. Congress of Chemical Engineering, Chemical Equipment...

  12. Clusters in simple fluids

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  13. Novel extension of the trap model for electrons in liquid hydrocarbons

    Jamal, M.A.; Watt, D.E.

    1981-01-01

    A novel extension for the trap model of electron mobilities in liquid hydrocarbons is described. The new model assumes: (a) two main types of electron trap exist in liquid hydrocarbons, one is deep and the second is shallow; (b) these traps are the same in all liquid alkanes. The difference in electron mobilities in different alkanes is accounted for by the difference in the frequency of electron trapping in each state. The probability of trapping in each state has been evaluated from the known structures of the normal alkanes. Electron mobilities in normal alkanes (C 3 -C 10 ) show a very good correlation with the probability of trapping in deep traps, suggesting that the C-C bonds are the main energy sinks of the electron. A mathematical formula which expresses the electron mobility in terms of the probability of trapping in deep traps has been found from the Arrhenius relationship between electron mobilities and probability of trapping. The model has been extended for branched alkanes and the relatively high electron mobilities in globular alkanes has been explained by the fact that each branch provides some degree of screening to the skeleton structure of the molecule resulting in reduction of the probability of electron interaction with the molecular skeleton. (author)

  14. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  15. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    Alonso, Hernan; Roujeinikova, Anna

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the no...

  17. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures

    P. C. M. Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios M.

    2018-01-01

    and the asymptotic one near the critical point. Although several crossover EOSs have been developed in the last decades their use in modeling industrial processes is rather limited. In this work, we use the crossover Soave–Redlich–Kwong (CSRK) to describe phase equilibrium and critical properties of pure n......-alkanes and methane/n-alkane binary mixtures and compare the results to two other modeling approaches of the SRK EOS. In the case of the pure fluids, CSRK gives an accurate overall description of the phase equilibrium and critical properties; nevertheless, a minor increase in the deviation of the saturation pressure...

  19. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco

    2016-11-21

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.

  20. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp; Behler, Jörg

    2016-01-01

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  1. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp, E-mail: philipp.marquetand@univie.ac.at [Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna (Austria); Behler, Jörg [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum (Germany)

    2016-05-21

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  2. Soot emissions from turbulent diffusion flames burning simple alkane fuels

    Canteenwalla, P.M.; Johnson, M.R. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Thomson, K.A.; Smallwood, G.J. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology

    2007-07-01

    A classic problem in combustion involves measurement and prediction of soot emissions from turbulent diffusion flames. Very high-sensitivity measurements of particulate matter (PM) from very low-sooting diffusion flames burning methane and other simple alkane fuels have been enabled from recent advances in laser-induced incandescence (LII). In order to quantify soot emissions from a lab-scale turbulent diffusion flame burner, this paper presented a study that used LII to develop a sampling protocol. The purpose of the study was to develop an experimentally based model to predict PM emissions from flares used in industry using soot emissions from lab-scale flares. Quantitative results of mass of soot emitted per mass of fuel burned were presented across a range of flow conditions and fuels. The experiment used digital imaging to measure flame lengths and estimate flame residence times. Comparisons were also made between current measurements and results of previous researchers for soot in the overfire region. The study also considered the validity applicability of buoyancy based models for predicting and scaling soot emissions. The paper described the experimental setup including sampling system and flame length imaging. Background information on soot yield and a comparison of flame residence time definitions were provided. The results and discussion of results were also presented. It was concluded that the results highlighted the subjective nature of flame length measurements. 10 refs., 4 figs.

  3. Analysis of polychlorinated n-alkanes in environmental samples.

    Santos, F J; Parera, J; Galceran, M T

    2006-10-01

    Polychlorinated n-alkanes (PCAs), also known as chlorinated paraffins (CPs), are highly complex technical mixtures that contain a huge number of structural isomers, theoretically more than 10,000 diastereomers and enantiomers. As a consequence of their persistence, tendency to bioaccumulation, and widespread and unrestricted use, PCAs have been found in aquatic and terrestrial food webs, even in rural and remote areas. Recently, these compounds have been included in regulatory programs of several international organizations, including the US Environmental Protection Agency and the European Union. Consequently, there is a growing demand for reliable methods with which to analyze PCAs in environmental samples. Here, we review current trends and recent developments in the analysis of PCAs in environmental samples such as air, water, sediment, and biota. Practical aspects of sample preparation, chromatographic separation, and detection are covered, with special emphasis placed on analysis of PCAs using gas chromatography-mass spectrometry. The advantages and limitations of these techniques as well as recent improvements in quantification procedures are discussed.

  4. Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater.

    Key, Trent A; Bowman, Kimberly S; Lee, Imchang; Chun, Jongsik; Albuquerque, Luciana; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2017-05-01

    A strictly anaerobic, Gram-stain-negative, non-spore-forming bacterium designated NSZ-14T, isolated from contaminated groundwater in Louisiana (USA), was characterized using a polyphasic approach. Strain NSZ-14T reductively dehalogenated a variety of polychlorinated aliphatic alkanes, producing ethene from 1,2-dichloroethane, propene from 1,2-dichloropropane, a mixture of cis- and trans-1,2-dichloroethene from 1,1,2,2-tetrachloroethane, vinyl chloride from 1,1,2-trichloroethane and allyl chloride (3-chloro-1-propene) from 1,2,3-trichloropropane. Formate or hydrogen could both serve as electron donors. Dechlorination occurred between pH 5.5 and 7.5 and over a temperature range of 20-37 °C. Major cellular fatty acids included C18 : 1ω9c, C14 : 0 and C16 : 0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the strain clusters within the class Dehalococcoidia of the phylum Chloroflexi, most closely related to but distinct from type strains of the species Dehalogenimonas alkenigignens (97.63 % similarity) and Dehalogenimonas lykanthroporepellens (95.05 %). A complete genome sequence determined for strain NSZ-14T revealed a DNA G+C content of 53.96 mol%, which was corroborated by HPLC (54.1±0.2 mol% G+C). Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA-DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strain NSZ-14T represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas formicexedens sp. nov. is proposed. The type strain is NSZ-14T (=HAMBI 3672T=JCM 19277T=VKM B-3058T). An emended description of Dehalogenimonas alkenigignens is also provided.

  5. Flash kinetics in liquefied noble gases: Studies of alkane activation and ligand dynamics at rhodium carbonyl centers, and a search for xenon-carbene adducts

    Yeston, Jake Simon [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    A general introduction is given to place the subsequent chapters in context for the nonspecialist. Results are presented from a low temperature infrared (IR) flash kinetic study of C-H bond activation via photoinduced reaction of Cp*Rh(CO)2 (1) with linear and cyclic alkanes in liquid krypton and liquid xenon solution. No reaction was observed with methane; for all other hydrocarbons studied, the rate law supports fragmentation of the overall reaction into an alkane binding step followed by an oxidative addition step. For the binding step, larger alkanes within each series (linear and cyclic) interact more strongly than smaller alkanes with the Rh center. The second step, oxidative addition of the C-H bond across Rh, exhibits very little variance in the series of linear alkanes, while in the cyclic series the rate decreases with increasing alkane size. Results are presented from an IR flash kinetic study of the photoinduced chemistry of Tp*Rh(CO)2 (5; Tp* = hydridotris(3,5-dimethylpyrazolyl)borato) in liquid xenon solution at –50 °C. IR spectra of the solution taken 2 μs after 308 nm photolysis exhibit two transient bands at 1972-1980 cm-1 and 1992-2000 cm-1, respectively. These bands were assigned to (η3-Tp*)Rh(CO)•Xe and (η2-Tp*)Rh(CO)•Xe solvates on the basis of companion studies using Bp*Rh(CO)2 (9; Bp* = dihydridobis(3,5-dimethyl pyrazolyl)borato). Preliminary kinetic data for reaction of 5 with cyclohexane in xenon solution indicate that both transient bands still appear and that their rates of decay correlate with formation of the product Tp*Rh(CO)(C6H11)(H). The preparation and reactivity of the new complex Bp*Rh(CO)(pyridine) (11) are described. The complex reacts with CH3I to yield the novel Rh carbene hydride complex HB(Me2pz)2Rh(H)(I)(C5H5N)(C(O)Me) (12), resulting from formal addition of CH

  6. Identification and use of an alkane transporter plug-in for application in biocatalysis and whole-cell biosensing of alkanes

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia

    2014-01-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially rele...

  7. Contamination profiles of short-chain polychlorinated n-alkanes in foodstuff samples from Japan

    Matsukami, Hidenori; Kurunthachalam, S; Ohi, Etsumasa; Takasuga, Takumi [Shimadzu Techno Research, Inc., Kyoto (Japan); Iino, Fukuya; Nakanishi, Junko [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2004-09-15

    Polychlorinated n-alkanes (PCAs) are group of chemicals manufactured by chlorination of liquid n-paraffin or paraffin wax that contain 30 to 70% chlorine by weight. Large amounts of PCAs are widely used as plasticizers for vinyl chloride, lubricants, paints, and flame retardants and number of other industrial applications. Annual global production of PCAs is approximately 300 kilo tones, with a majority having medium-carbon-chain (C14-C19) length. According to the investigation made by Kagaku Kogyo Nippon-Sha, the annual consumption of PCAs in Japan was about 83,000 tons in between 1986-2001. Short-carbon-chain (C10-C13) has been placed on the Priority Substance List under Canadian Environmental Protection Act and on the Environmental Protection Agency Toxic Release Inventory in the USA due to its potential to act as tumor promoters in mammals. Data on environment levels of PCAs is meager, nevertheless, PCAs have been measured at relatively high concentrations in biota from Sweden, biota, sediment from Canada and marine biota and human milk from the Canadian Arctic. In our earlier study, we reported concentrations of short-chain PCAs from sewage treatment plant (STP) collected from Tama River, Tokyo and river water and sediment from Tokyo and Osaka. STP influent water contained greater shortchain PCAs concentrations than STP effluent. In addition, some river water and sediment samples contained detectable concentrations of short-chain PCAs, which was similar to other industrial countries. However, there is no study conducted to explore the contamination profiles of short-chain PCAs in human foodstuff samples. In the present study, we analyzed eleven foodstuff samples that were purchased from various supermarkets in order to know the short-chain PCAs concentrations in the foodstuff and possible human total daily intake (TDI) amounts.

  8. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    Alan Riga, D.

    1998-01-01

    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    Alan Riga, D. [Professor of Chemistry, Cleveland State University and TechCon Inc., 6325 Aldenham Dr., Cleveland, OH 44143-3331 (United States)

    1998-12-21

    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Some aspects of electron dynamics in solid alkanes

    Cheng, I.I.; Funabashi, K.

    1975-01-01

    The excess electron mobility in 3-methylpentane (3MP) is in the range of 0.02-0.1 cm 2 /v.s. for 4.2-85 0 K. The mobility is nearly independent of temperature below 35 0 K, while the activation energy is about 0.01 eV for 35 0 K-85 0 K. The magnitude of mobility and its temperature dependence are consistent with the hopping and tunneling motion of electron between trapped (or localized) states. The decay kinetics of the absorption spectrum of trapped electrons in 3MP also suggest the presence of many trapping sites, and a small mean free path of retrapping for a quasi-free electron. It is conjectured that the electron-transport in 3MP glass is the phonon-assisted hopping or tunneling and the mean free path (or the mobility) at the quasi-free state is not as large as 100 A (or 150 cm 2 /v.s.). The mean free path of scattering for an excess electron at the quasi-free level in various alkane glasses can be found approximately from measurement of attenuation constants for electron beams (Chang and Berry). The relationship of these attenuation constants with V 0 (quasi-free state) will be discussed. The effect of electron-phonon coupling on the effective mass of excess electrons will also be discussed in terms of a simple model. The effective mass is a sensitive function of the ratio of the relaxation energy to the phonon energy

  11. Liquid membrane process for uranium recovery

    Valint, P.L. Jr.

    1982-01-01

    An improved liquid membrane emulsion extraction process for recovering uranium from a WPPA feed solution containing uranyl cations wherein said feed is contacted with a water-in-oil emulsion which extracts and captures the uranium in the interior aqueous phase thereof, wherein the improvement comprises the presence of an alkane diphosphonic acid uranium complexing agent in the interior phase of the emulsion. This improvement results in greater extraction efficiency

  12. Electron localization in liquid hydrocarbons: The Anderson model

    Hug, Gordon L.; Mozumder, A.

    2008-01-01

    Anderson's model is applied for initial localization in liquid hydrocarbons (particularly n-alkanes) in conjunction with certain results of scaling theory. Medium connectivity is calculated using experimental X-ray data on liquid structure, from which critical disorder (W/V) c is computed, where W is diagonal disorder and V is the transfer energy. Actual W prevailing in the liquid is computed from anisotropic molecular polarizability. V is estimated by a heuristic procedure originating in scaling theory. These values are used to compute the percentage of initially delocalized states available for low-energy electrons in alkane liquids. This percentage decreases monotonically from methane (100%) to n-pentane and beyond (0%). In ethane and propane, the initial states are highly delocalized (97.6% and 83.9%, respectively). Subsequent trapping changes the situation as evidenced in mobility studies. Butane presents a partially, intermediate delocalized case (53.2%)

  13. Cyclooctane metathesis catalyzed by silica-supported tungsten pentamethyl [(ΞSiO)W(Me)5]: Distribution of macrocyclic alkanes

    Riache, Nassima

    2014-10-03

    Metathesis of cyclic alkanes catalyzed by the new surface complex [(ΞSiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula CnH2n are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.

  14. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy

    Bush, Rosemary T.; McInerney, Francesca A.

    2013-09-01

    Long chain (C21 to C37) n-alkanes are among the most long-lived and widely utilized terrestrial plant biomarkers. Dozens of studies have examined the range and variation of n-alkane chain-length abundances in modern plants from around the world, and n-alkane distributions have been used for a variety of purposes in paleoclimatology and paleoecology as well as chemotaxonomy. However, most of the paleoecological applications of n-alkane distributions have been based on a narrow set of modern data that cannot address intra- and inter-plant variability. Here, we present the results of a study using trees from near Chicago, IL, USA, as well as a meta-analysis of published data on modern plant n-alkane distributions. First, we test the conformity of n-alkane distributions in mature leaves across the canopy of 38 individual plants from 24 species as well as across a single growing season and find no significant differences for either canopy position or time of leaf collection. Second, we compile 2093 observations from 86 sources, including the new data here, to examine the generalities of n-alkane parameters such as carbon preference index (CPI), average chain length (ACL), and chain-length ratios for different plant groups. We show that angiosperms generally produce more n-alkanes than do gymnosperms, supporting previous observations, and furthermore that CPI values show such variation in modern plants that it is prudent to discard the use of CPI as a quantitative indicator of n-alkane degradation in sediments. We also test the hypotheses that certain n-alkane chain lengths predominate in and therefore can be representative of particular plant groups, namely, C23 and C25 in Sphagnum mosses, C27 and C29 in woody plants, and C31 in graminoids (grasses). We find that chain-length distributions are highly variable within plant groups, such that chemotaxonomic distinctions between grasses and woody plants are difficult to make based on n-alkane abundances. In contrast

  15. The fate of primary cations in radiolysis of alkanes as studied by ESR

    Iwasaki, M.; Toriyama, K.; Nunome, K.

    1983-01-01

    The structures and reactions of alkane cations (RH + ) have been studied by ESR to elucidate the fate of primary cations in radiolysis of alkanes. Radical cations of prototype alkanes such as C 2 H 6 , C 3 H 8 , iso-C 4 H 10 and neo-C 5 H 12 etc. as well as their partially deuterated analogues were stabilized in irradiated frozen matrices such as SF 6 , CFCl 2 CF 2 Cl and CFCl 3 having a higher ionization potential than that of these alkanes contained as dilute solutes. RH + in SF 6 and in CFCl 2 CF 2 Cl converts into alkyl radicals by deprotonation probably through bimolecular reactions, whereas RH + in CFCl 3 unimolecularily decomposes into olefinic cations by H 2 and/or CH 4 elimination reactions. It is further found that the electronic structures of propane and isobutane cations in halocarbon matrices are different from those in SF 6 and the difference is drastically reflected in the site preference of their deprotonation reactions. The results are discussed in relation to the mechanisms of pairwise formation of alkyl radicals in low temperature radiolysis of neat alkanes and its suppression by addition of electron scavengers. (author)

  16. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  17. Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases

    Groenestijn, J.W. van; Lake, M.E.

    1999-01-01

    Biological techniques are highly cost-effective for the treatment of off-gases containing low concentrations of pollutants (<5 g/m3). They may also be attractive for the elimination of higher concentrations of explosive hydrocarbons (when compared to incineration). Conventional techniques such as

  18. Effect of gas-liquid-crystal transitions in oxygen clusters on electric and magnetic activity of localized states in In2O3-SrO ceramic

    Okunev, V. D.; Szymczak, R.; Szymczak, H.; Aleshkevych, P.; Glot, A. B.; Bondarchuk, A. N.

    2015-10-01

    It has been shown that the overlap of tails of the density of states of the valence and conduction bands leads to the formation of a "negative" gap in the In2O3-SrO ceramic with disordered structure and oxygen clusters in nanovoids. Two types of magnetism are observed. One of them caused by the formation of (dangling bond + O- 2 center) complexes has been found in samples saturated with oxygen. The other is associated with the presence of dangling bonds in oxygen-depleted samples. At T conductivity of samples. The effects caused by magnetic phase transitions in clusters of crystal oxygen are manifested at T < 54.8 K. The variations of the resistance of samples in the interval T = 5-300 K correspond to Mott's law under the dependence of the local activation energy for electron hopping on the state of oxygen clusters.

  19. Cluster headache

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  20. Effects of surfactants on bacteria and the bacterial degradation of alkanes in crude oil

    Bruheim, Per

    1998-12-31

    This thesis investigates the effects of surfactants on the bacterial degradation of alkanes in crude oil. Several alkane oxidising Gram positive and Gram negative were tested for their abilities to oxidise alkanes in crude oil emulsified with surfactants. The surfactants used to make the oil in water emulsions were either of microbial or chemical origin. Oxidation rates of resting bacteria oxidising various crude oil in water emulsions were measured by Warburg respirometry. The emulsions were compared with non-emulsified oil to see which was the preferred substrate. The bacteria were pregrown to both the exponential and stationary phase of growth before harvesting and preparation for the Warburg experiments. 123 refs., 4 figs., 14 tabs.

  1. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  2. The Optical Resolution of Chiral Tetrahedrone-type Clusters Contai- ning SCoFeM (M=Mo or W) Using High Performance Liquid Chromatography Chiral Stationary Phase

    2002-01-01

    Amylose tris (phenylcarbamate) chiral stationary phase (ATPC-CSP) was prepared and used for optical resolution of clusters 1 and 2. n-Hexane/2-propanol ( 99/1; v/v) were found to be the most suitable mobile phase on ATPC-CSP.

  3. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

  4. The effect of n-alkane selection depth on the quality of denormalizate

    Dorodnova, V.S.; Bayburskaya, E.L.; Martynenko, A.G.

    1982-01-01

    The effect of n-alkane selection depth from crude diesel fuel on the quality of denormalization on a carbamide deparaffination G-64 device at the Gorknefteorgsintez Production Association. Diesel fuel with o.c. 210/sup 0/, c.c. 315/sup 0/, 828 kg/m/sup 3/ density, -25, n/sup 20/ D 1.4620, aniline point 66.9/sup 0/ and n-alkane content 14.7% was used. The regime of the stage of complex formation was maximal approximation of industrial conditions: ratio Cr: ben. 1:2.6 mass. no, complex formation 25/sup 0/, length of contact 30 min, levels of washing, 2; methanol, 2.0% in Cr. Changing the quantity of carbamide aided the various extraction depths of n-alkanes from the Cr. Following distillation of the solution the following parameters were examined: refraction, density, aniline point, diesel index; Obtained: the dependencies for changes in these indicators depending on the depth of the selection of n-alkanes from the potential or from their content in the denormalizate; as well as the dependence of the component composition of paraffins on the degree of their extraction from the Cr. To simultaneously obtain paraffins and diesel fuel of export quality with a diesel index no lower than 55, it is necessary to guarantee up to 50% (no higher) of paraffin selection from the potential Cr containing 14.7% n-alkanes; the sediment content of n-alkanes in the denormalizate must be found at the 7.4% level.

  5. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121: in silico insights.

    Jain, Chakresh Kumar; Gupta, Money; Prasad, Yamuna; Wadhwa, Gulshan; Sharma, Sanjeev Kumar

    2014-07-01

    The degradation of hydrocarbons plays an important role in the eco-balancing of petroleum products, pesticides and other toxic products in the environment. The degradation of hydrocarbons by microbes such as Geobacillus thermodenitrificans, Burkhulderia, Gordonia sp. and Acinetobacter sp. has been studied intensively in the literature. The present study focused on the in silico protein engineering of alkane monooxygenase (ladA)-a protein involved in the alkane degradation pathway. We demonstrated the improvement in substrate binding energy with engineered ladA in Burkholderia thailandensis MSMB121. We identified an ortholog of ladA monooxygenase found in B. thailandensis MSMB121, and showed it to be an enzyme involved in an alkane degradation pathway studied extensively in Geobacillus thermodenitrificans. Homology modeling of the three-dimensional structure of ladA was performed with a crystal structure (protein databank ID: 3B9N) as a template in MODELLER 9v11, and further validated using PROCHECK, VERIFY-3D and WHATIF tools. Specific amino acids were substituted in the region corresponding to amino acids 305-370 of ladA protein, resulting in an enhancement of binding energy in different alkane chain molecules as compared to wild protein structures in the docking experiments. The substrate binding energy with the protein was calculated using Vina (Implemented in VEGAZZ). Molecular dynamics simulations were performed to study the dynamics of different alkane chain molecules inside the binding pockets of wild and mutated ladA. Here, we hypothesize an improvement in binding energies and accessibility of substrates towards engineered ladA enzyme, which could be further facilitated for wet laboratory-based experiments for validation of the alkane degradation pathway in this organism.

  6. Crystal structures of eight mono-methyl alkanes (C26–C32 via single-crystal and powder diffraction and DFT-D optimization

    Lee Brooks

    2015-09-01

    Full Text Available The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S-9-methylpentacosane, C26H54; (S-9-methylheptacosane and (S-11-methylheptacosane, C28H58; (S-7-methylnonacosane, (S-9-methylnonacosane, (S-11-methylnonacosane and (S-13-methylnonacosane, C30H62; and (S-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  7. Toxics release inventory: List of toxic chemicals within the polychlorinated alkanes category and guidance for reporting

    NONE

    1995-02-01

    Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. On November 30, 1994 EPA added 286 chemicals and chemical categories. Six chemical categories (nicotine and salts, strychnine and salts, polycyclic aromatic compounds, water dissociable nitrate compounds, diisocyanates, and polychlorinated alkanes) are included in these additions. At the time of the addition, EPA indicated that the Agency would develop, as appropriate, interpretations and guidance that the Agency determines are necessary to facilitate accurate reporting for these categories. This document constitutes such guidance for the polychlorinated alkanes category.

  8. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  9. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae

    Kang, Min-Kyoung; Zhou, Yongjin J.; Buijs, Nicolaas A.

    2017-01-01

    Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore...... detected in other AD expressed yeast strains. Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20 mg/L/OD600 and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells. Conclusions: We demonstrated in vivo enzyme activities...

  10. n-Alkanes in surficial sediments of Visakhapatnam harbour, east coast of India

    Punyu, V.R.; Harji, R.R.; Bhosle, N.B.; Sawant, S.S.; Venkat, K.

    -alkanes mainly at C15, C17 and C19 Keywords. Sediments; lipids; n-alkanes; Visakhapatnam harbour. J. Earth Syst. Sci. 122, No. 2, April 2013, pp. 467–477 c© Indian Academy of Sciences 467 468 V R Punyu et al while terrestrial plants exhibit predominance of long... steel plant, a fertilizer plant and a lead and zinc smelter in the vicinity are discharged into this harbour. The harbour handles items such as man- ganese and iron ore, coal and oil products. Added to this, it receives most of the urban run...

  11. Evaluation of n-alkanes and their carbon isotope enrichments (d13C) as diet composition markers

    Derseh, M.B.; Pellikaan, W.F.; Tolera, A.; Hendriks, W.H.

    2011-01-01

    Plant cuticular n-alkanes have been successfully used as markers to estimate diet composition and intake of grazing herbivores. However, additional markers may be required under grazing conditions in botanically diverse vegetation. This study was conducted to describe the n-alkane profiles and the

  12. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  13. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    2010-07-01

    ...-alkane, branched and linear. 721.10103 Section 721.10103 Protection of Environment ENVIRONMENTAL..., branched and linear. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS No...

  14. Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14...

  15. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  16. Excess molar volumes of the ternary system {methylcyclohexane (1)+cyclohexane (2)+n-alkanes (3)} at T=298.15 K

    Iloukhani, Hossein; Rezaei-Sameti, Mahdi

    2005-01-01

    Densities were experimentally determined in the whole range of composition at T=298.15 K for the ternary system {methylcyclohexane (1)+cyclohexane (2)+n-alkanes (3)} and for the seven corresponding binary systems. The n-alkanes include n-hexane, n-heptane, and n-octane. Excess molar volumes, V E , were calculated for the binaries and ternaries systems. The V 123 E data are positive over the entire range of composition for the systems {methylcyclohexane (1)+cyclohexane (2)+n-heptane (3) or n-octane (3)} at three fixed compositions (f m =X 1 /X 2 ). For the system {methylcyclohexane (1)+cyclohexane (2)+n-hexane (3)}, the V E values showed positive for f m =0.3 and negative for f m =3. The V E data exhibit, an inversion in sign in the mixture containing f m =1 for later ternary system. Several empirical expressions are used to predict and correlate the ternary excess molar volumes from experimental results on the constituted binaries and analyzed to gain insight about liquid mixture interactions

  17. QSPR models based on molecular mechanics and quantum chemical calculations. 1. Construction of Boltzmann averaged descriptors for alkanes, alcohols, diols, ethers and cyclic compounds

    Dyekjær, Jane Dannow; Rasmussen, Kjeld; Jonsdottir, Svava Osk

    2002-01-01

    Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann-averaged by sele......Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann...

  18. Weighted Clustering

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  19. Use of limonene in countercurrent chromatography: a green alkane substitute.

    Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain

    2013-05-07

    Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.

  20. [Influence of liquid or solid culture conditions on the volatile components of mycelia of Isariacateinannulata].

    Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin

    2011-12-01

    To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.

  1. The Calculation of Standard Enthalpies of Formation of Alkanes: Illustrating Molecular Mechanics and Spreadsheet Programs

    Hawk, Eric Leigh

    1999-02-01

    How group increment methods may be used to predict standard enthalpies of formation of alkanes is outlined as an undergraduate computational chemistry experiment. The experiment requires input and output data sets. Although users may create their own data sets, both sets are provided. The input data set contains experimentally determined gas-phase standard enthalpies of formation and calculated steric energies for 10 alkanes. The steric energy for an alkane is calculated via a Molecular Mechanics approach employing Allinger's MM3 force field. Linear regression analysis on data contained in the input data set generates the coefficients that are used with the output data set to calculate standard enthalpies of formation for 15 alkanes. The average absolute error for the calculated standard enthalpies of formation is 1.22 kcal/mol. The experiment is highly suited to those interested in incorporating more computational chemistry in their curricula. In this regard, it is ideally suited for a physical chemistry laboratory, but it may be used in an organic chemistry course as well.

  2. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  3. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (puse of n-alkanes as biomarkers of ecosystem development is a promising method.

  4. Time-Resolved WAXD and SAXS Investigations on Butyl Branched Alkane at Elevated Pressures

    Rastogi, A.; Hobbs, J.K.; Rastogi, S.

    2002-01-01

    The crystallization behavior and the morphological aspect of the butyl branched alkane C96H193CH(C4H9)C94H189 have been investigated using time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) at atmospheric and elevated pressures. The solution crystallized sample

  5. Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite

    Akhtar, M. N.; Al-Yassir, N.; Al-Khattaf, S.; Čejka, Jiří

    2012-01-01

    Roč. 179, č. 1 (2012), s. 61-72 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkane aromatization * ZSM-11 * GaHZSM-11 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.980, year: 2012

  6. Excess Molar Volumes of (an Alkane + 1-Chloroalkane) at T = 298.15 K

    Kovács, Éva; Aim, Karel; Linek, Jan

    2001-01-01

    Roč. 33, č. 1 (2001), s. 33-45 ISSN 0021-9614 R&D Projects: GA ČR GA203/00/0600 Institutional research plan: CEZ:AV0Z4072921 Keywords : alkane * binary mixtures * densities Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.956, year: 2001

  7. Transient TAP approach to investigate adsorption and diffusion of small alkanes in porous sulfated zirconia

    Galinsky, M.; Breitkopf, C. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik

    2011-07-01

    Sulfated zirconias have attracted an interest as catalysts due to their ability to isomerize alkanes at low temperatures, e.g., under thermodynamically favored conditions. However, the fast deactivation during the reaction remains a problem. To improve the catalytic performance of such porous catalysts, it is necessary to understand all steps in the catalytic cycle, namely diffusion and adsorption in more detail. The transient TAP method was applied to investigate sorption and diffusion phenomena of different alkanes in three different morphologically structured sulfated zirconias to elucidate their catalytic performances in the n-butane isomerization. New theoretical models were developed to describe the experimental results of TAP single-pulse experiments. The application of these models to pulse response curves allowed the extraction of adsorption and desorption rate constants as well as diffusion coefficients. Via introducing a second sorption center, the new adsorption model is able to reproduce the sorption behavior for larger alkanes quantitatively better than former models, especially in the low-temperature region. Moreover, the heterogeneous distribution of active centers was taken into account. Temperature dependent measurements have been performed to calculate heats of adsorption for various alkanes at the two assumed adsorption sites. The impact of these values on the catalytic properties is discussed. With the help of the new diffusion model, the diffusion coefficients for the inter- and intrapellet volume could be determined. These values are used in a numerical simulation to check whether the reaction rate for the isomerization at the investigated sulfated zirconias is diffusion limited. (orig.)

  8. Cluster management.

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  9. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  10. Viscosity and surface tension of binary systems of N,N-dimethylformamide with alkan-1-ols at different temperatures

    Mohammad, Abubaker A.; Alkhaldi, Khaled H.A.E.; AlTuwaim, Mohammad S.; Al-Jimaz, Adel S.

    2013-01-01

    Highlights: ► Physical properties of binary mixtures of DMF+1-pentanol, 1-hexanol, or 1-heptanol. ► Viscosity and surface tension were measured. ►Δη, Δσ σ and G ∗E were calculated using the experimental data. ► H σ and S σ were determined using the surface tension data. ► Semi-empirical relations were used to estimate the viscosity of liquid mixtures. - Abstract: Viscosity η and surface tension σ were measured for binary mixtures of N,N-dimethylformamide DMF with pentan-1-ol, hexan-1-ol, and heptan-1-ol at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure over the entire mole fraction range. Deviations in viscosity Δη and surface tension Δσ were calculated using experimental results. Moreover, the values of the excess Gibbs free energy of activation G ∗E , surface enthalpy H σ and surface entropy S σ of these mixtures were determined. Viscosity measurements of the binary systems were correlated with Grunberg and Nissan, the three-body and four-body McAllister expressions. Viscosity deviation, surface tension deviation and excess Gibbs energy of activation functions were fitted to the method of Redlich–Kister (R–K) polynomial to estimate the coefficients and standard deviations. The effects of chain length of alkan-1-ols and temperature on the thermodynamic properties of binary systems were studied.

  11. In situ sensing of subsurface contamination--part I: near-infrared spectral characterization of alkanes, aromatics, and chlorinated hydrocarbons.

    Klavarioti, Maria; Kostarelos, Konstantinos; Pourjabbar, Anahita; Ghandehari, Masoud

    2014-05-01

    There is an imperative need for a chemical sensor capable of remote, in situ, long-term monitoring of chemical species at sites containing toxic chemical spills, specifically at chemical waste dumps, landfills, and locations with underground storage tanks. In the current research, a series of experiments were conducted measuring the near-infrared optical absorption of alkanes, aromatics, and chlorinated hydrocarbons. A spectral library was then developed to characterize the optical spectra of liquid hydrocarbons. Near-infrared analysis was chosen due to compatibility with optical fibers. The goal was to differentiate between classes of hydrocarbons and to also discriminate between compounds within a class of similar molecular structures. It was observed that unique absorption spectra can be obtained for each hydrocarbon, and this uniqueness can be used to discriminate between hydrocarbons from different families. Statistical analyses, namely, principal component analysis (PCA) and correlation coefficient (Spearman and Pearson methods), were attempted to match absorption spectra from an unknown hydrocarbon with the database with limited success. An algorithm was subsequently written to identify the characteristic peaks of each hydrocarbon that could be used to match data from an unknown chemical species with the database.

  12. Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin

    Frederick eDowell

    2016-01-01

    Full Text Available The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico, are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, sediments (above 60˚C covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed Mat Mound were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in-situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  13. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  14. Liquids and liquid mixtures

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  15. Prediction of (liquid + liquid) equilibrium for binary and ternary systems containing ionic liquids with the bis[(trifluoromethyl)sulfonyl]imide anion using the ASOG method

    Robles, Pedro A.; Cisternas, Luis A.

    2015-01-01

    Highlights: • ASOG model was used to predict LLE data for ionic liquid systems. • Twenty five binary and seven ternary systems that include the NTf 2 anion were used. • New group interaction parameters were determined. • The results are satisfactory, with rms deviations of about 3%. - Abstract: Ionic liquids are neoteric, environmentally friendly solvents (as they do not produce emissions) composed of large organic cations and relatively small inorganic anions. They have favorable physical properties, such as negligible volatility and a wide range of liquid existence. (Liquid + liquid) equilibrium (LLE) data for systems including ionic liquids, although essential for the design, optimization and operation of separation processes, remain scarce. However, some recent studies have presented ternary LLE data involving several ionic liquids and organic compounds such as alkanes, alkenes, alkanols, ethers and aromatics, as well as water. In this work, the ASOG model for the activity coefficient is used to predict LLE data for 25 binary and 07 ternary systems at 101.3 kPa and several temperatures; all the systems are formed by ionic liquids including the bis[(trifluoromethyl)sulfonyl]imide (NTf 2 ) anion plus alkanes, alkenes, cycloalkanes, alkanols, water, thiophene and aromatics. New group interaction parameters were determined using a modified Simplex method, minimizing a composition-based objective function of experimental data obtained from the literature. The results are satisfactory, with rms deviations of approximately 3%

  16. Measurement and modelling of high pressure density and interfacial tension of (gas + n-alkane) binary mixtures

    Pereira, Luís M.C.; Chapoy, Antonin; Burgass, Rod; Tohidi, Bahman

    2016-01-01

    Highlights: • (Density + IFT) measurements are performed in synthetic reservoir fluids. • Measured systems include CO_2, CH_4 and N_2 with n-decane. • Novel data are reported for temperatures up to 443 K and pressures up to 69 MPa. • Predictive models are tested in 16 (gas + n-alkane) systems. • Best modelling results are achieved with the Density Gradient Theory. - Abstract: The deployment of more efficient and economical extraction methods and processing facilities of oil and gas requires the accurate knowledge of the interfacial tension (IFT) of fluid phases in contact. In this work, the capillary constant a of binary mixtures containing n-decane and common gases such as carbon dioxide, methane and nitrogen was measured. Experimental measurements were carried at four temperatures (313, 343, 393 and 442 K) and pressures up to 69 MPa, or near the complete vaporisation of the organic phase into the gas-rich phase. To determine accurate IFT values, the capillary constants were combined with saturated phase density data measured with an Anton Paar densitometer and correlated with a model based on the Peng–Robinson 1978 equation of state (PR78 EoS). Correlated density showed an overall percentage absolute deviation (%AAD) to measured data of (0.2 to 0.5)% for the liquid phase and (1.5 to 2.5)% for the vapour phase of the studied systems and P–T conditions. The predictive capability of models to accurately describe both the temperature and pressure dependence of the saturated phase density and IFT of 16 (gas + n-alkane) binary mixtures was assessed in this work by comparison with data gathered from the literature and measured in this work. The IFT models considered include the Parachor, the Linear Gradient Theory (LGT) and the Density Gradient Theory (DGT) approaches combined with the Volume-Translated Predictive Peng–Robinson 1978 EoS (VT-PPR78 EoS). With no adjustable parameters, the VT-PPR78 EoS allowed a good description of both solubility and

  17. Isotopic clusters

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  18. Cluster Headache

    ... a role. Unlike migraine and tension headache, cluster headache generally isn't associated with triggers, such as foods, hormonal changes or stress. Once a cluster period begins, however, drinking alcohol ...

  19. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cluster Headache

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  1. Categorias Cluster

    Queiroz, Dayane Andrade

    2015-01-01

    Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...

  2. Meaningful Clusters

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  3. Horticultural cluster

    SHERSTIUK S.V.; POSYLAYEVA K.I.

    2013-01-01

    In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.

  4. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  5. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Matsubara, Hiroki; Kikugawa, Gota; Ohara, Taku; Bessho, Takeshi; Yamashita, Seiji

    2015-01-01

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T c ) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs

  6. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  7. Catalytic oxidative conversion of alkanes to olefines and oxygenates

    Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    All of the direct reaction schemes described and the corresponding process schemes are still in an exploratory state. Ethylene by oxidative coupling of methane could become competitive if process schemes are developed with significantly less expenditures for separation of the product from unconverted feed. No encouragement for formaldehyde from methane can be presently derived from the existing knowledge. Liquid-phase oxidation of methane to methanol appears to be attractive but no final judgement is possible at present. Oxidative dehydrogenation of ethylene and propane look promising although further catalyst improvement is required. Acetic acid from ethane and acrylonitrile from propane have a certain potential as an alternative to present technology. The outlook for acrolein and acrylic acid from propane is less favourable; new concepts for catalyst design are necessary. (orig.)

  8. Cluster Matters

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....

  9. $^{8}$Be, $^{12}$C, $^{16}$O, $^{20}$Ne, $^{24}$Mg, and $^{32}$S nuclei and alpha clustering within a generalized liquid drop model

    Royer, G; Eudes, P

    2015-01-01

    The potential energy governing the shape and the entrance and decay channels of the 12 C, 16 O, 20 Ne, 24 Mg, and 32 S 4n-nuclei has been determined within a generalized liquid drop model. Different three-dimensional and planar shapes have been investigated: linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid, square pyramid, hexagon, octahedron, octogon and cube. The rms radii of the linear chains are higher than the experimental rms radii of the ground states. The binding energies of the planar shapes at the contact point are lower than the ones of the three-dimensional configurations. The a particle plus A-4 daughter configuration leads always to the lowest potential barrier relatively to the sphere configuration.

  10. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  11. Gas condensate--raw material for producing liquid paraffin hydrocarbons

    Aliyeva, R.B.; Alikishi-Zade, G.Yu.; Kuliyev, A.M.; Leonidov, A.N.; Pereverzev, A.N.

    1980-01-01

    The problem of efficient utilization of gas condensates as raw material for removal of a valuable product, liquid paraffins, is examined. A classification of gas condensates is given which is used as raw material for removing these hydrocarbons: gas condensate with high content of n-alkanes (25-40 mass percent), with average content (18-25 mass percent), with low content (12-18 mass percent), light weight fractions compositions, which do not contain fractions up to 200/sup 0/, and also, content ofless than 12% n-alkanes. Gas condensate I-III groups are 30% of the total reserve of gas condensate. Liquid paraffins hydrocarbons, produced from fractions of diesel fuel, which has been removed from Shatlyk gas condensate under conditions which simulate virtual processes of caramide deparaffinization meet all requirements without additional refining.

  12. Comparison of quantification methods for the analysis of polychlorinated alkanes using electron capture negative ionization mass spectrometry.

    Rusina, T.; Korytar, P.; de Boer, J.

    2011-01-01

    Four quantification methods for short-chain chlorinated paraffins (SCCPs) or polychlorinated alkanes (PCAs) using gas chromatography electron capture negative ionisation low resolution mass spectrometry (GC-ECNI-LRMS) were investigated. The method based on visual comparison of congener group

  13. Comparison of quantification methods for the analysis of polychlorinated alkanes using electron capture negative ionisation mass spectrometry

    Rusina, T.; Korytar, P.; Boer, de J.

    2011-01-01

    Four quantification methods for short-chain chlorinated paraffins (SCCPs) or polychlorinated alkanes (PCAs) using gas chromatography electron capture negative ionisation low resolution mass spectrometry (GC-ECNI-LRMS) were investigated. The method based on visual comparison of congener group

  14. Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau

    Xia Zhonghuan; Xu Baiqing; Wu Guangjian; Zhu Liping; Muegler Ines; Gleixner, Gerd; Sachse, Dirk

    2009-01-01

    The hydrogen isotopic composition (δD) of leaf water used for biosynthesis of n-alkanes can be modified by climate. Therefore, the δD can be considered as potential paleolimatic proxy to explore. We compared measured δD values of alkanes (n-C 25 to n-C 31 ) extracted from a short sediment profile spanning the past 50 years with a 7-year resolution from Lake Yamzho, southern Tibetan Plateau. Climatic control was reconstructed using meteorological records of the nearby Langkazi and Lhasa weather stations. We found that the δD values of the n-alkanes correlated with the mean annular air temperature and significantly correlated with the mean growing season air temperature. On the other hand, the δD values show poor correlations with both rainfall amount and relative humidity. These results indicate that stable isotope composition of n-alkanes could be an excellent proxy for paleotemperature reconstruction. (author)

  15. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  16. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman

    Elshafie, Abdulkadir [Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman)], E-mail: Elshafie@squ.edu.om; AlKindi, Abdulaziz Yahya [Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman); Al-Busaidi, Sultan [Oman Refinery Company Laboratories, LLC, P.O. Box 3568 Ruwi PC112 (Oman); Bakheit, Charles [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman); Albahry, S.N. [Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36 Al Khod, Muscat (Oman)

    2007-11-15

    Ten fungal species isolated from tar balls collected from the beaches of Oman were tested for their abilities to grow and degrade n-alkanes and crude oil. The abilities of Aspergillus niger, A. ochraceus and Penicillium chrysogenum to degrade n-alkanes (C13-C18), crude oil were compared and their mycelial biomass was measured. Significant differences were found in the utilization of C15, C16, C17 and C18 by the three fungi. Similarly, significant differences we found in the amount of biomass produced by the three fungi growing on C13, C17, C18 and crude oil. The correlation coefficient of biomass and oil utilization was not statistically significant for Aspergillus niger, significant for Aspergillus terreus and highly significant for P. chrysogenum.

  17. Developing Selective Oxidation Catalysts of Light Alkanes:. from Fundamental Understanding to Rational Design

    Fu, Gang; Yi, Xiaodong; Huang, Chuanjing; Xu, Xin; Weng, Weizheng; Xia, Wensheng; Wan, Hui-Lin

    Selective oxidation of light alkanes remains to be a great challenge for the wider use of alkanes as feedstocks. To achieve high activity and at the same time high selectivity, some key issues have to be addressed: (1) the stability of the desired products with respect to the reactants; (2) the roles of the active components in the catalysts, the structure and the functionality of the active centers; (3) the reducibility of the metal cations, the Lewis acid sites and their synergic effects with the basic sites of the lattice oxygen anions; (4) spatial isolation of the active centers; and (5) the mechanisms for the formation and transformation of the intermediates and their kinetic controls. In this contribution, we took selective oxidation of propane to acrolein as our target reaction, and reviewed mainly our own work, trying to provide some thinking and answers to these five questions.

  18. Application of statistical experimental methodology to optimize bioremediation of n-alkanes in aquatic environment

    Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Mohajeri, Leila; Mohajeri, Soraya; Kutty, Shamsul Rahman Mohamed; Isa, Mohamed Hasnain

    2010-01-01

    Response surface methodology (RSM) was employed to optimize nitrogen and phosphorus concentrations for removal of n-alkanes from crude oil contaminated seawater samples in batch reactors. Erlenmeyer flasks were used as bioreactors; each containing 250 mL dispersed crude oil contaminated seawater, indigenous acclimatized microorganism and different amounts of nitrogen and phosphorus based on central composite design (CCD). Samples were extracted and analyzed according to US-EPA protocols using a gas chromatograph. During 28 days of bioremediation, a maximum of 95% total aliphatic hydrocarbons removal was observed. The obtained Model F-value of 267.73 and probability F < 0.0001 implied the model was significant. Numerical condition optimization via a quadratic model, predicted 98% n-alkanes removal for a 20-day laboratory bioremediation trial using nitrogen and phosphorus concentrations of 13.62 and 1.39 mg/L, respectively. In actual experiments, 95% removal was observed under these conditions.

  19. Total internal reflection second-harmonic generation: probing the alkane water interface

    Conboy, J.C.; Daschbach, J.L.; Richmond, G.L.

    1994-01-01

    Total internal reflection Second-Harmonic Generation (SHG) has been used to study a series of neat n-alkane/water interfaces. Polarization and incident angular-dependent measurements of the SH response show good agreement with theoretical predictions. Analysis of the incident and polarization angular-dependent SH response allows for determination of the nonlinear optical properties of molecules comprising the interfacial region. Based on Kleinman symmetry, the measured surface nonlinear susceptibilities suggest a high degree of interfacial order for octane and decane with less order indicated by the odd carbon n-alkanes examined, heptane and nonane. The SH response in reflection and transmission has been measured under a Total Internal Reflection (TIR) of the fundamental. The measured nonlinear susceptibilities in each case are found to be identical. (orig.)

  20. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds

    Sun, Miao; Zhang, Jizhe; Putaj, Piotr; Caps, Valerie; Lefè bvre, Fré dé ric; Pelletier, Jeremie; Basset, Jean-Marie

    2014-01-01

    Heteropoly compounds (HPC) have revealed their potential to generate catalyst for selectively converting light alkanes to oxygenated products. There are various structures in which they are active the primary structure being that of the heteropolyanion itself, the secondary structure is the three-dimensional arrangements of polyanions, and the tertiary structure representing the manner in which the secondary structure assembles into solid particles. There are also a huge variety of elements inside the HPA. The heteropoly acids can have acidity, which varies dramatically depending on composition. This complexity of situation makes it very difficult to really have a predictive vision of their ability to activate and functionalize alkanes. However, a large amount of data reported suggests that the initial formula of the precatalyst is pivotal to direct the selectivity of the reaction toward different oxygenates. Inclusion of alternative transition metal atoms as addenda is highly influential with iron, vanadium, and antimony being particularly outstanding.

  1. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  2. High Selectivity of Alkanes Production by Calcium Basic Soap Thermal Decarboxylation

    Neonufa Godlief F.

    2018-01-01

    Full Text Available Renewable fuel production from vegetable oil and fat or its fatty acids by direct decarboxylation has been widely reported. An innovative approach to produce drop-in fuel via thermal catalytic decarboxylation of basic soap derived from palm stearin reported in this research. The catalytic effect of the calcium and magnesium metals in the basic soap and its decarboxylation on drop-in fuel yield and product distribution was studied. The catalytic effect was tested in the temperature range up to 370°C and atmospheric pressure for 5 hours in a batch reactor. It has been proved that the calcium basic soap decarboxylation, effectively produce the drop-in fuel in carbon ranges C8 – C20, in which more than 78% selectivity toward alkane. Whereas, only 70% selectivity toward alkane has been resulted from the magnesium basic soap decarboxylation.

  3. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman

    Elshafie, Abdulkadir; AlKindi, Abdulaziz Yahya; Al-Busaidi, Sultan; Bakheit, Charles; Albahry, S.N.

    2007-01-01

    Ten fungal species isolated from tar balls collected from the beaches of Oman were tested for their abilities to grow and degrade n-alkanes and crude oil. The abilities of Aspergillus niger, A. ochraceus and Penicillium chrysogenum to degrade n-alkanes (C13-C18), crude oil were compared and their mycelial biomass was measured. Significant differences were found in the utilization of C15, C16, C17 and C18 by the three fungi. Similarly, significant differences we found in the amount of biomass produced by the three fungi growing on C13, C17, C18 and crude oil. The correlation coefficient of biomass and oil utilization was not statistically significant for Aspergillus niger, significant for Aspergillus terreus and highly significant for P. chrysogenum

  4. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    Wang, S.-K.; Mamontov, Eugene; Bai, M.; Hansen, F.Y.; Taub, H.; Copley, J.R.D.; Garcia Sakai, V.; Gasparovic, Goran; Jenkins, Timothy; Tyagi, M.; Herwig, Kenneth W.; Neumann, D.A.; Montfrooij, W.; Volkmann, U.G.

    2010-01-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a 'fast' motion corresponding to uniaxial rotation about the long molecular axis; and a 'slow' motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  5. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds

    Sun, Miao

    2014-01-22

    Heteropoly compounds (HPC) have revealed their potential to generate catalyst for selectively converting light alkanes to oxygenated products. There are various structures in which they are active the primary structure being that of the heteropolyanion itself, the secondary structure is the three-dimensional arrangements of polyanions, and the tertiary structure representing the manner in which the secondary structure assembles into solid particles. There are also a huge variety of elements inside the HPA. The heteropoly acids can have acidity, which varies dramatically depending on composition. This complexity of situation makes it very difficult to really have a predictive vision of their ability to activate and functionalize alkanes. However, a large amount of data reported suggests that the initial formula of the precatalyst is pivotal to direct the selectivity of the reaction toward different oxygenates. Inclusion of alternative transition metal atoms as addenda is highly influential with iron, vanadium, and antimony being particularly outstanding.

  6. Ligand-accelerated activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI)-nitrido complex.

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Yiu, Shek-Man; Lau, Tai-Chu

    2012-09-03

    Kinetic and mechanistic studies on the intermolecular activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI) nitride were performed. The initial, rate-limiting step, the hydrogen atom transfer (HAT) from the alkane to Ru(VI)≡N, generates Ru(V)=NH and RC·HCH(2)R. The following steps involve N-rebound and desaturation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers

    Dyekjær, Jane Dannow; Jonsdottir, Svava Osk

    2003-01-01

    Quantitative Structure-Property Relationship (QSPR) models for prediction of various thermodynamic properties of simple organic compounds have been developed. A number of new descriptors are proposed and used alongside with descriptors available within the Codessa program. An important feature...... for alkanes, alcohols, diols, ethers, and oxyalcohols, including cyclic alkanes and alcohols. Several good models, having good predictability, have been developed. To enhance the applicability of the QSPR models, simpler expressions for each descriptor have also been developed. This allows for the prediction...

  8. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  10. Data Clustering

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  11. Mechanism of trans-vinylene groups formation in the radiolysis of polyethylene and n-alkanes

    Borzov, S.M.; Sukhov, F.F.; Slovokhotova, N.A.

    1984-01-01

    Infrared spectra of polyethylene and some n-alkanes were studied after their irradiation at 20 K with 1-MeV electrons and subsequent heating to 160 K. The mechanism of trans-vinylene groups formation is suggested, which takes into account the decay of excited states of molecules in primary processes and the intra-chain recombination of free radicals in post-irradiation reactions. (author)

  12. Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea

    Harvey, H. Rodger; Taylor, Karen A.

    2017-10-01

    The Hanna Shoal region represents an important northern gateway for transport and deposition in the Chukchi Sea. This study determined the concentration and distribution of organic contaminants (aliphatic hydrocarbon and polycyclic aromatic hydrocarbons, PAHs) in surface sediments from 34 sites across Hanna Shoal. Up to 31 total PAHs, including parent and alkyl homologues were detected with total concentrations ranging from a low of 168 ng g-1 the western flank of Hanna Shoal (station H34) to 1147 ng g-1 at station in Barrow Canyon (station BarC5). Alkyl PAHs were more abundant than parent structures and accounted for 53-64% of the summed concentrations suggesting overall at background levels (< 1600 ng g-1) in sediments. Alkane (C15-C33) hydrocarbons ranged from 4.3 μg g-1 on the southern flank of Hanna shoal to 31 μg g-1 at a northern station. Sediments were often dominated by short chain (C15-C22) alkanes with overall terrestrial aquatic ratios (TAR) for the region averaging 0.20. Based on the ratio of Fl/(Fl+ Py) and BaF/(Baf+BeP) verses (BA/BA+Ch) in sediments, PAHs are largely derived from petrogenic sources with minor amounts of mixed combustion sources. A diversity of PAHs were detected in the northern whelk Neptunea heros foot muscle with total concentrations ranging from 0.14 to 1.5 μg g-1 dry tissue wt. Larger (and presumably older) animals showed higher levels of PAH per unit muscle tissue, suggesting that animals may bioaccumulate PAHs over time, with low but increasing concentrations also present in internal and external eggs. Alkane hydrocarbons were also higher in whelks with distributions similar to that seen in sediments. The mussel Muscularus discors collected in Barrow Canyon showed constrained distributions and substantially lower concentrations of both PAHs and alkanes than the surrounding surface sediments.

  13. A novel growth mode of alkane films on a SiO2 surface

    Mo, H.; Taub, H.; Volkmann, U.G.

    2003-01-01

    on the SiO2 surface with the long-axis of the C32 molecules oriented parallel to the interface followed by a C32 monolayer with the long-axis perpendicular to it. Finally, preferentially oriented bulk particles nucleate having two different crystal structures. This growth model differs from that found...... previously for shorter alkanes deposited from the vapor phase onto solid surfaces....

  14. Modelling and parameter estimation in reactive continuous mixtures: the catalytic cracking of alkanes - part II

    F. C. PEIXOTO

    1999-09-01

    Full Text Available Fragmentation kinetics is employed to model a continuous reactive mixture of alkanes under catalytic cracking conditions. Standard moment analysis techniques are employed, and a dynamic system for the time evolution of moments of the mixture's dimensionless concentration distribution function (DCDF is found. The time behavior of the DCDF is recovered with successive estimations of scaled gamma distributions using the moments time data.

  15. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ?drop-in? biofuels. Some microo...

  16. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  17. Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast

    Ahmed El Nemr

    2016-06-01

    Full Text Available Aromatic hydrocarbons and n-alkanes were analyzed in shellfish collected from 13 different sites along the Egyptian Red Sea coast. All samples were analyzed for n-alkanes (C8–C40 and polycyclic aromatic hydrocarbons (EPA list of PAHs. n-Alkanes in shellfish samples from 13 locations were found to be in the range of 71.0–701.1 ng/g with a mean value of 242.2 ± 192.1 ng/g dry wt. Different indices were calculated for the n-alkanes to assess their sources. These were carbon preference index (CPI, average chain length (ACL, terrigenous/aquatic ratio (TAR, natural n-alkane ratio (NAR and proxy ratio (Paq. Most of the collected samples of n-alkanes were discovered to be from natural sources. Aromatic hydrocarbons (16 PAHs from 13 sites varied between 1.3 and 160.9 ng/g with an average of 47.9 ± 45.5 ng/g dry wt. Benzo(apyrine (BaP, a cancer risk assessment, was calculated for the PAHs and resulted in ranges between 0.08 and 4.47 with an average of 1.25 ng/g dry wt.

  18. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations.

    Huarte-Bonnet, Carla; Paixão, Flávia R S; Ponce, Juan C; Santana, Marianela; Prieto, Eduardo D; Pedrini, Nicolás

    2018-06-01

    The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  20. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  1. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.

    Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2017-12-22

    A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (hydrodeoxygenation, high density (0.8415 g mL -1 ) and low-freezing-point (<223 K) branched alkanes with 18, 23 carbons within lubricant range were also obtained over a Pd/NbOPO 4 catalyst. These highly branched alkanes can be directly used as transportation fuels or additives. This work opens a new strategy for the synthesis of highly branched alkanes with low freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  4. Quantitative Analysis and Comparison of Four Major Flavonol Glycosides in the Leaves of Toona sinensis (A. Juss.) Roemer (Chinese Toon) from Various Origins by High-Performance Liquid Chromatography-Diode Array Detector and Hierarchical Clustering Analysis

    Sun, Xiaoxiang; Zhang, Liting; Cao, Yaqi; Gu, Qinying; Yang, Huan; Tam, James P.

    2016-01-01

    Background: Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asian area. Its dried leaves are applied in the treatment of many diseases; however, few investigations have been reported for the quantitative analysis and comparison of major bioactive flavonol glycosides in the leaves harvested from various origins. Objective: To quantitatively analyze four major flavonol glycosides including rutinoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-α-L-rhamnoside, and kaempferol-3-O-α-L-rhamnoside in the leaves from different production sites and classify them according to the content of these glycosides. Materials and Methods: A high-performance liquid chromatography-diode array detector (HPLC-DAD) method for their simultaneous determination was developed and validated for linearity, precision, accuracy, stability, and repeatability. Moreover, the method established was then employed to explore the difference in the content of these four glycosides in raw materials. Finally, a hierarchical clustering analysis was performed to classify 11 voucher specimens. Results: The separation was performed on a Waters XBridge Shield RP18 column (150 mm × 4.6 mm, 3.5 μm) kept at 35°C, and acetonitrile and H2O containing 0.30% trifluoroacetic acid as mobile phase was driven at 1.0 mL/min during the analysis. Ten microliters of solution were injected and 254 nm was selected to monitor the separation. A strong linear relationship between the peak area and concentration of four analytes was observed. And, the method was also validated to be repeatable, stable, precise, and accurate. Conclusion: An efficient and reliable HPLC-DAD method was established and applied in the assays for the samples from 11 origins successfully. Moreover, the content of those flavonol glycosides varied much among different batches, and the flavonoids could be considered as biomarkers to control the quality of Chinese Toon. SUMMARY Four major flavonol glycosides in the leaves

  5. Thermodynamic basis for cluster kinetics

    Hu, Lina; Bian, Xiufang; Qin, Xubo

    2006-01-01

    Due to the inaccessibility of the supercooled region of marginal metallic glasses (MMGs) within the experimental time window, we study the cluster kinetics above the liquidus temperature, Tl, to acquire information on the fragility of the MMG systems. Thermodynamic basis for the stability...... of locally ordered structure in the MMG liquids is discussed in terms of the two-order-parameter model. It is found that the Arrhenius activation energy of clusters, h, is proportional to the chemical mixing enthalpy of alloys, Hchem. Fragility of the MMG forming liquids can be described by the ratio...

  6. Cluster evolution

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  7. Nuclear magnetic resonance study of alkane conformational statistics

    Burnell, E. Elliott; Weber, Adrian C. J.; de Lange, Cornelis A.; Meerts, W. Leo; Dong, Ronald Y.

    2011-12-01

    NMR spectra of ethane, propane, and n-butane as solutes in the nematic liquid crystals 4-n-pentyl-4'-cyanobiphenyl (5CB) and Merck ZLI 1132 (1132) are investigated over a wide temperature range. The ratios of dipolar couplings of ethane to propane are constant over the entire temperature range. Assuming that this constancy applies to the butane conformers facilitates the separation of probability from order parameter. This separation allows the investigation of conformational distribution without the need of invoking any model for the anisotropic intermolecular potential. The results give an order matrix that is consistent with that predicted from model potentials that describe the orientational potential in terms of short-range size and shape effects. The isotropic intermolecular potential contribution to the trans-gauche energy difference Etg is found to be temperature dependent with the values and variation in agreement with that found when the same results are analyzed using the chord model for anisotropic interactions [A. C. J. Weber and E. E. Burnell, Chem. Phys. Lett. 506, 196 (2011)]. The fit obtained for 9 spectra in 5CB (63 dipolar couplings) has an RMS difference between experimental and calculated dipolar couplings of 2.7 Hz, while that for the 16 spectra in 1132 (112 couplings) is 6.2 Hz; this excellent fit with nine adjustable parameters suggests that the assumption of equal temperature dependencies of the order parameters for ethane, propane, and each conformer of butane is correct. Also the fit parameters (Etg and the methyl angle increase) obtained for 1132 and 5CB agree. The results indicate that the chord model, which was designed to treat hydrocarbon chains, is indeed the model of choice for these chains. The temperature variation of Etg provides a challenge for theoreticians. Finally, even better fits to the experimental dipolar couplings are obtained when the energy in the Boltzmann factor is used for scaling ethane to butane results. However

  8. Structural Exploration of the Two HBI Alkanes in the Chinese Maoming Oil Shale

    Liao, J.; Lu, H.; Wang, Q.; Zhou, Y., Sr.

    2017-12-01

    The Maoming oil shale is notable for its high rate of oil production and abundant biomarker compounds. Apart from the odd-numbered C31 and C33botryococcanes dominant and characteristic, two highly branched isoprenoid (HBI) alkanes (Fig. 1) were exclusively occurred (Brassell et al., 1986). The first identification of the two HBI alkanes in the Maoming oil shale was based on a comparison with the mass spectrum of C20 HBI (2,6,10-trimethyl-7-(3-methylbutyl)dodecane) (Yon et al., 1982; Rowland et al., 1985 ) from Rozel Point crude oil. Brassell et al (1986) thought that the characteristic ions at m/z 308 and 336 could be indicative of an additional C10 alkyl side chain on top of the characteristic ions of m/z 168 and 197 for the C20-HBI. However, the structural speculation seemed suspicious for not only their mass spectrum but also their co-chromatography results were not identical to the later synthesized C30 HBI alkane (Rowland and Robson, 1990). In addition, the source attribution of diatoms indicated by two C30 HBIs was inconsistent with the species of B race of Botryococcus braunii indicated by the dominant distribution of botryococcanes. Thus, the thirty-year-old structural assignment of the two C30 HBI alkanes may require confirmation. At first, the monomers of two HBIs were prepared by preparative gas chromatography. The HR-EI MS (436.5003) illustrated a formula of C31H64 rather than carbon numbered C30 HBIs. Moreover, two novel polymethyl alkane structures (I, II) could be yielded by 1D and 2D NMR results (Fig. 2), which completely different from that of previously speculated C30-HBIs (Fig. 2). According to the elucidated structure, the characteristic ions at m/z 308, 336, 434 and other irons at m/z 127, 211, 225, 281, 336 were mainly corresponded to relevant cleavages. Hence, their mass spectra were basically consistent with the structure determined from the NMR data. The new structural skeleton in our results for the two compounds does not support the

  9. Solids precipitation in crude oils, gas-to-liquids and their blends

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  10. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-01-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. - Highlights: • Phytoremediation of aged-hydrocarbon polluted soils may be improved using arbuscular mycorrhizal fungi. • Inoculation of wheat with R. irregularis improved dissipation of PAH and alkanes. • Dissipation resulted from adsorption and bioaccumulation in wheat and mainly from biodegradation in soil. • Biodegradation was due to a stimulation of rhizosphere bacteria and an induction of root peroxidase. - Inoculation of wheat by an arbuscular mycorrhizal fungus improves biodegradation of alkanes and polycyclic aromatic hydrocarbons in an aged

  11. Separation of thiophene from heptane with ionic liquids

    Domańska, Urszula; Lukoshko, Elena Vadimovna; Królikowski, Marek

    2013-01-01

    Highlights: ► The ternary (liquid + liquid) equilibria in 1-butyl-1-methylpyrrolidinium-based ILs was measured. ► High selectivity and distribution ratio for the extraction of thiophene was found. ► [BMPYR][TCM] was proposed as entrainer for the separation process. ► Extraction of sulphur-compounds from alkanes was proposed. -- Abstract: Ionic liquids (ILs) are well known novel green solvents, which can be used for removing sulfur compounds from gasoline and diesel oils. Ternary (liquid + liquid) equilibrium data are presented for mixtures of {ionic liquid (1) + thiophene (2) + heptane (3)} at T = 298.15 K and ambient pressure to analyze the performance of the ionic liquid (IL) in the extraction of thiophene from the alkanes. Three pyrrolidinium-based ionic liquids have been studied: 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, ([BMPYR][FAP]), 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB] and 1-butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM]. The results are discussed in terms of the selectivity and distribution ratio of separation of related systems. The immiscibility in the binary liquid systems of (thiophene + heptane) with all used ILs was observed. The [TCM] − anion in comparison with [TCB] − and [FAP] − anions shows much higher selectivity and slightly lower distribution ratio for extraction of thiophene. The non-random two liquid NRTL model was used successfully to correlate the experimental tie-lines and to calculate the phase composition error in mole fraction in the ternary systems. The average root mean square deviation (RMSD) of the phase composition was 0.047. The densities of [BMPYR][TCM] in temperature range from (298.15 to 348.15) K were measured. The data presented here show that the [BMPYR][TCM] ionic liquid can be used as an alternative solvent for the separation of thiophene from the hydrocarbon stream using solvent liquid–liquid extraction at ambient conditions

  12. Clustering Dycom

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  13. Clustering analysis

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  14. Cluster analysis

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  15. Cluster editing

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  16. Secretive production of long-chain fatty acids, triacylglycerols and n-alkane-2-ones by fermentation processes; Hakkoho ni yoru ekitai nenryo no seisan wa kanoka (shishitsu no bunpi seisan)

    Fukui, S. [University of Fukuyama, Hiroshima (Japan). Faculty of Engineering

    1995-10-20

    Secretive production of lipids, which are useful source for engine-driving fuel, by microbial process using carbohydrate biomasses as substrate has been investigated in our laboratory. This review consists of four parts concerning breedings and selection of lipid-secretive microorganisms : (1) breedings of long-chain fatty acid-secretive strains from Candida lipolytica L-1 by a step-wise mutagenesis process, (2) selection of a triacylglycerol (TG)-secretive and accumulative yeast strain Trichosporon sp. SH45Y, (3) breedings of mutants, SH45Y-derivatieves, having potent ability to produce TG secretively from glucose, a typical biomass charbohydrate, and (4) selection of microorganisms which produce liquid-n-alkane in culture medium by utilizing long-chain fatty acids and TG; a strain of Penicillium decumbens can produce liquid alkalis with a yield of approximately 60 % in weight from palm kernel oil, a commercial TG. 10 refs., 7 figs., 7 tabs.

  17. Occupational Clusters.

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  18. Fuzzy Clustering

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  19. Cluster generator

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  20. Cluster Bulleticity

    Massey, Richard; Kitching, Thomas; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  1. Cluster headache

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Abstract Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur ...

  2. Biodegradation of n-alkanes on oil-seawater interfaces at different temperatures and microbial communities associated with the degradation.

    Lofthus, Synnøve; Netzer, Roman; Lewin, Anna S; Heggeset, Tonje M B; Haugen, Tone; Brakstad, Odd Gunnar

    2018-04-01

    Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical-chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil-seawater interfaces over a large temperature interval.

  3. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase.

    Yuuki Hayashi

    Full Text Available Aldehyde deformylating oxygenase (AD is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD.

  4. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  6. Critical wetting of n-alkanes on water; Mouillage critique des alcanes sur l`eau

    Ragil, K

    1996-10-18

    This study concerns the wetting properties of n-alkanes on water under thermodynamic equilibrium conditions, a problem that is interesting for the petroleum industry as well as for the fundamental understanding of wetting phenomena. An experimental study using ellipsometry reveals that pentane on water undergoes a continuous or critical wetting transition at a temperature equal to 53.1 deg. C. This is the first experimental observation of such a transition, confirming theoretical predictions made on this subject over ten years. This transition is characterized by a continuous and reversible evolution of the thickness of the film of pentane with temperature from a thick (but finite film) to a macroscopic film. The critical wetting transition occurs when the Hamaker constant of the system, which gives the net interaction between the two interfaces bounding the wetting layer of pentane in terms of the van der Waals forces, changes sign. A theoretical approach based on the Cahn-Landau theory, which takes into account long range forces (van der Waals forces), enables us to explain the mechanism of the critical wetting transition and to show that a first-order wetting transition should precede it. Because of their similar dispersive properties, linear alkanes could all be able to show such a succession of transitions. An ellipsometry study performed on a brine/hexane/vapor system confirms that a discontinuous transition from a thin microscopic film to a thick but finite adsorbed film takes place. THis study demonstrates that the wetting of alkanes on water is determined by subtle interplay between short range and long range forces, which can lead to an intermediary state between partial and complete wetting. (author)

  7. Influence of compost amendments on the diversity of alkane degrading bacteria in hydrocarbon contaminated soils

    Michael eSchloter

    2014-03-01

    Full Text Available Alkane degrading microorganisms play an important role for bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the diversity of alkane monooxygenase gene (alkB harboring bacteria in oil-contaminated soil originated from an industrial zone in Celje, Slovenia, to improve our understanding about the bacterial community involved in alkane degradation and the effects of amendments. Soil without any amendments (control soil and soil amended with compost of different maturation stages, i 1 year and ii 2 weeks, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12 and 36 weeks of incubation. By using quantitative real-time PCR higher number of alkB genes could be detected in soil samples with compost compared to the control soil after 6, 12 and 36 weeks mainly if the less maturated compost was added. To get an insight into the composition of the alkB harboring microbial communities, we performed next generation sequencing of alkB gene fragment amplicons. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soil after 6, 12 and 36 weeks again with stronger effects of the less maturated compost. Comparison of communities detected in different samples and time points based on principle component analysis revealed that the addition of compost in general stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost compared to the control soils. In addition alkB harboring proteobacteria like Shewanella or Hydrocarboniphaga as well as proteobacteria of the genus Agrobacterium responded positively to the addition of compost to soil The amendment of the less maturated compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla mainly at the early sampling

  8. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes are important in terms of the possible 'oxidative overprinting' of alkane isotopic signatures produced at depth, possibly obscuring typical microbial isotopic signals.

  9. Growth of n-alkane films on a single-crystal substrate

    Wu, Z. U.; Ehrlich, S. N.; Matthies, B.

    2001-01-01

    The structure and growth mode of alkane films (n-C/sub n/H/sub 2n+2/; n=4, 6, 7) adsorbed on a Ag(111) surface have been investigated by synchrotron X-ray scattering. New models are proposed for the butane (n=4) and hexane (n=6) monolayer and butane bilayer structures. Specular reflectivity scans...... reveal that growth of all films is preempted between two and three layers by nucleation of bulk particles oriented with a single bulk crystal plane parallel to the film. In the case of butane, the bulk particles also have a fixed azimuthal relationship with the film resulting in complete epitaxy....

  10. Updated European Union Risk Assessment Report of Alkanes, C10-13, Chloro

    2008-01-01

    A risk assessment of alkanes, C10-13, chloro (short-chain chlorinated paraffins or SCCPs) produced in accordance with Council Regulation (EEC) 793/93 was published in October 1999 . Subsequent marketing and use restrictions for two uses (metal working and use for fat liquoring of leather) have come into force in the European Union through Directive 2002/45/EC . This Directive also states that all remaining uses of short-chain chlorinated paraffins will be reviewed by the European Commission ...

  11. Precursor of fragment radicals in the radiolysis of normal alkanes. [Gamma radiation

    Isildar, M; Schuler, R H [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1978-01-01

    It is found that the yields of fragment radicals produced in the radiolysis of n-hexane are not significantly affected by the changes in the ion recombination processes that occur when HI is added to the system. From this observation it is concluded that in the radiolysis of normal alkanes, carbon-carbon bond rupture results predominantly either from high energy processes that do not directly involve ionic precursors or, more likely, from the dissociation of the initial ions at very early times (< 10/sup -11/s) before a substantial fraction of the geminate ions undergo neutralization.

  12. A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES USING MOLECULAR DESCRIPTORS

    B. Souyei

    2013-12-01

    Full Text Available A quantitative structure–property relationship (QSPR study is carried out to develop correlations that relate the molecular structures of organic compounds (Aliphatic Alkanes to their normal boiling point (NBP and two correlations were proposed for constitutionals and connectivity indices Models. The correlations are simple in application with good accuracy, which provide an easy, direct and relatively accurate way to calculate NBP. Such calculation gives us a model that gives results in remarkable correlations with the descriptors of blokes constitutionals (CON, and connectivity indices (CI (R2 = 0.950, δ = 0.766 (R2 = 0.969, δ = 0.782 respectively.

  13. Evaporation rate of nucleating clusters.

    Zapadinsky, Evgeni

    2011-11-21

    The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.

  14. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  15. Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point

    O’Connor, William E.; Warzoha, Ronald; Weigand, Rebecca; Fleischer, Amy S.; Wemhoff, Aaron P.

    2014-01-01

    Highlights: • Liquid-phase thermal properties for five phase change materials were estimated. • Various liquid phase and phase transition thermal properties were measured. • The thermal diffusivity was found using a best path to prediction approach. • The thermal diffusivity predictive method shows 15% agreement for organic PCMs. - Abstract: Organic phase change materials (PCMs) are a popular choice for many thermal energy storage applications including solar energy, building envelope thermal barriers, and passive cooling of portable electronics. Since the extent of phase change during a heating or cooling process is dependent upon rapid thermal penetration into the PCM, accurate knowledge of the thermal diffusivity of the PCM in both solid and liquid phases is crucial. This study addresses the existing gaps in information for liquid-phase PCM properties by examining an approach that determines the best path to prediction (BPP) for the thermal diffusivity of both alkanes and unsaturated acids. Knowledge of the BPP will enable researchers to explore the influence of PCM molecular structure on bulk thermophysical properties, thereby allowing the fabrication of optimized PCMs. The BPP method determines which of the tens of thousands of combinations of 22 different available theoretical techniques provides best agreement with thermal diffusivity values based on reported or measured density, heat capacity, and thermal conductivity for each of five PCMs (heneicosane, tricosane, tetracosane, oleic acid, and linoleic acid) in the liquid phase near the melting point. Separate BPPs were calibrated for alkanes based on heneicosane and tetracosane, and for the unsaturated acids. The alkane and unsaturated acid BPPs were then tested on a variety of similar materials, showing agreement with reported/measured thermal diffusivity within ∼15% for all materials. The alkane BPP was then applied to find that increasing the length of alkane chains decreases the PCM thermal

  16. Effect of solid phase on the selectivity of alkyl radical formation by gamma-irradiation of branched alkanes

    Koizumi, Hitoshi; Hashino, Masatoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi

    1992-01-01

    ESR and electron spin echo measurements of alkyl radicals generated by γ-irradiation of glassy and crystalline branched alkanes C 10 ∼ C 13 have been carried out to elucidate the effect of molecular structure and solid phase on the selectivity of alkyl radical formation. Alkyl radicals generated and stabilized at 77 K in the glassy alkanes are secondary penultimate radicals. Tertiary radicals and secondary radicals other than the penultimate one are not generated either by hydrogen abstraction or from ionized or excited molecules. In the crystalline alkanes, however, a small amount of secondary internal radicals are generated in addition to the predominant formation of the secondary penultimate radicals. It is concluded that the detachment of C-H hydrogen preferentially takes place at the location where the motion of carbon atoms assisting the detachment of the C-H hydrogen easily occurs. (author)

  17. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    Chen, Bingjie

    2016-06-23

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  19. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  20. Light alkane (mixed feed selective dehydrogenation using bi-metallic zeolite supported catalyst

    Zeeshan Nawaz

    2009-12-01

    Full Text Available Light alkanes are the important intermediates of many refinery processes and their catalytic dehydrogenation gives corresponding alkenes. The aim behind this experimentation is to investigate reaction behavior of mixed alkanes during direct catalytic dehydrogenation and emphasis has been given to enhance propene. Bi-metallic zeolite supported catalyst Pt-Sn/ZSM-5 was prepared by sequentional impregnation method and characterized by BET, EDS and XRD. Direct dehydrogenation reaction is highly endothermic and its conversion is thermodynamically limited. Results showed that the increase in temperature increases the conversion to some extent but there is no overall effect on selectivity of propene. Increase in time-on-stream (TOS remarkably improves propene selectivity at the expense of lower conversion. The performances of bi-metallic zeolite based catalyst largely affected by coke deposition. The presence of butane and ethane adversely affected propane conversion. Optimum propene selectivity is about 48 %, obtained at 600 oC and time-on-stream 10 h.

  1. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    Monisha Rastogi

    2015-05-01

    Full Text Available The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  2. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    Rastogi, Monisha [School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001 (India); Vaish, Rahul, E-mail: rahul@iitmandi.ac.in [School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001 (India); Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  3. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  4. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative tests on the biodegradation of secondary alkane sulphonate, using 14C-labelled preparations

    Loetzsch, K.; Neufahrt, A.; Taeuber, G.

    1979-01-01

    The biodegradability of 14 C-labelled and unlabelled secondary alkane sulphonates (SAS) and an unlabelled alkyl benzene sulphonate as well as ar ring-labelled sodium-4-(dodecyl-(4'))-benzene sulphonate (LAS) was tested over a period of 12 days with slight germ introduction under aerobic conditions (Hach apparatus). In the 'one-pot method' (simultaneous determination of MBAS, DOC and BSB) with the unlabelled A-surfactants, it was shown that biodegradation of both substances started at different speeds and is almost finished after 15 days in the case of SAS and after 30 days in the case of LAS. The tests with radioactively labelled secondary alkane sulphonate showed that the greater part of the surfactant carbon is quickly degraded to CO 2 . It therefore behaves like uniformly labelled stearate or like a stearyl alcohol ethoxylate uniformly labelled in the alkyl chain. Both were included in the tests as reference substances. The dissimilation processes of the ring-labelled linear alkyl benzene sulphonate are delayed. Here, CO 2 formation started only after a few days. (orig.) [de

  6. The structure of n-alkane binary mixtures adsorbed on graphite

    Espeau, Philippe; White, John W.; Papoular, Robert J.

    2005-01-01

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A 1-x B x try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations

  7. The structure of n-alkane binary mixtures adsorbed on graphite

    Espeau, Philippe [Laboratoire de Chimie Physique et Minerale, Faculte de Pharmacie, Universite Rene Descartes-Paris V, F-75006 Paris (France)]. E-mail: philippe.espeau@univ-paris5.fr; White, John W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Papoular, Robert J. [Laboratoire Leon Brillouin, CEA-CEN Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2005-12-15

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A{sub 1-x}B {sub x} try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations.

  8. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.

    Nakagawa, Yoshinao; Liu, Sibao; Tamura, Masazumi; Tomishige, Keiichi

    2015-04-13

    The total hydrodeoxygenation of carbohydrate-derived molecules to alkanes, a key reaction in the production of biofuel, was reviewed from the aspect of catalysis. Noble metals (or Ni) and acid are the main components of the catalysts, and group 6 or 7 metals such as Re are sometimes added as modifiers of the noble metal. The main reaction route is acid-catalyzed dehydration plus metal-catalyzed hydrogenation, and in some systems metal-catalyzed direct CO dissociation is involved. The appropriate active metal, acid strength, and reaction conditions depend strongly on the reactivity of the substrate. Reactions that use Pt or Pd catalysts supported on Nb-based acids or relatively weak acids are suitable for furanic substrates. Carbohydrates themselves and sugar alcohols undergo CC dissociation easily. The systems that use metal-catalyzed direct CO dissociations can give a higher yield of the corresponding alkane from carbohydrates and sugar alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  10. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-08

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.

  11. Using Amines and Alkanes as Thermal-Runaway Retardants for Lithium-Ion Battery

    Shi, Yang

    Thermal runaway imposes major challenges to large-scale lithium-ion batteries (LIBs). The working temperature of a LIB is usually around room temperature. However, upon mechanical abuse such as an impact or nail penetration, LIB cell components may fail and internal short circuits could be formed. As a result, a series of exothermic electrochemical reactions and decompositions would take place and the local temperature can rapidly increase. In this thesis, a few novel techniques are investigated to mitigate thermal runaway of LIBs. Mechanically triggered approach has been employed. Thermal-runaway retardant (TRR) is encapsulated in mechanically responsive packages made of materials inert to the battery environment, and upon external mechanical loadings the packages can be broken apart and release the TRR. This mechanism allows for the use of aggressive chemicals to suppress the short circuit discharge and reduce the subsequent exothermic phenomena, immediately after the battery is damaged even before temperature increase begins. The best TRR candidates are identified to be amines and alkanes. Among amines, secondary amines and tertiary amines perform better than primary amines. The reduction in electrolyte ionic conductivity and the displacement of electrolyte are the thermal-runaway-mitigation mechanisms of the secondary and the tertiary amines, respectively. Pentadecane is the best candidate among the alkanes under investigation, with the major working mechanism being electrolyte displacement. Impact tests on large pouch cells and high-energy battery chemistry were also performed; the results were quite encouraging.

  12. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    Chen, Bingjie; Togbé , Casimir; Wang, Zhandong; Dagaut, Philippe; Sarathy, Mani

    2016-01-01

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  13. Clustering Dycom

    Minku, Leandro L.; Hou, Siqing

    2017-01-01

    baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number

  14. Shock tube measurements of the rate constants for seven large alkanes+OH

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  15. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites

    Bian, Xin-Yu; Maurice Mbadinga, Serge; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  16. Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst.

    Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S; Cheng, Ziwei; Xu, Bingjun; Saha, Basudeb; Vlachos, Dionisios G

    2017-08-24

    Renewable jet-fuel-range alkanes are synthesized by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. Ir-ReO x /SiO 2 with a Re/Ir molar ratio of 2:1 exhibits the best performance, achieving a combined alkanes yield of 82-99 % from C 12 -C 15 furylmethanes. The catalyst can be regenerated in three consecutive cycles with only about 12 % loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high activity of Ir-ReO x /SiO 2 arises from a synergy between Ir and ReO x , whereby the acidic sites of partially reduced ReO x activate the C-O bonds of the saturated furans and alcoholic groups while the Ir sites are responsible for hydrogenation with H 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cooperative catalysis for the direct hydrodeoxygenation of vegetable oils into diesel-range alkanes over Pd/NbOPO4.

    Xia, Qineng; Zhuang, Xiaojing; Li, Molly Meng-Jung; Peng, Yung-Kang; Liu, Guoliang; Wu, Tai-Sing; Soo, Yun-Liang; Gong, Xue-Qing; Wang, Yanqin; Tsang, Shik Chi Edman

    2016-04-14

    Near quantitative carbon yields of diesel-range alkanes were achieved from the hydrodeoxygenation of triglycerides over Pd/NbOPO4 under mild conditions with no catalyst deactivation: catalyst characterization and theoretical calculations suggest that the high hydrodeoxygenation activity originated from the synergistic effect of Pd and strong Lewis acidity on the unique structure of NbOPO4.

  18. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the eastern Atlantic

    Sinninghe Damsté, J.S.; Schefuß, E.; Ratmeyer, V.; Stuut, J-B.W.; Jansen, J.H.F.

    2003-01-01

    Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived

  19. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal

    Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.

    2017-11-01

    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  20. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  1. Thermodynamic study of alkane-α,ω-diamines - evidence of odd-even pattern of sublimation properties

    Fulem, Michal; Růžička, K.; Červinka, C.; Bazyleva, A.; Della Gatta, G.

    2014-01-01

    Roč. 371, Jun (2014), s. 93-105 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alkane-diamines * odd–even effect * vapor pressure * sublimation and vaporization thermodynamic properties * statistical thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.200, year: 2014

  2. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  3. Formation of clusters (ions solvated with products of radiolysis) during irradiation of certain chloralkanes in the condensed phase

    Sukhov, F.F.; Karatun, A.A.; Slovokhotova, N.A.

    1983-01-01

    Using the infrared spectroscopy method, the radiolysis of the 2-chloropropane and 2-chloro-2-methylpropane was investigated in various phase states and in argon matrix at 15 and 77 K. A conclusion is drawn that the reaction of the radiation dehydrochlorination in the chloralkanes investigated occurs under certain conditions in the vicinity of ions, mostly; as this takes place, unique clusters composed of radiolysis products, i.e. ions solvated with complexes of alkane and hydrogen chloride are being formed. (author)

  4. Variation in the Apparent Biosynthetic Fractionation for N-alkane δD Among Terrestrial Plants: Patterns, Mechanisms, and Implications

    Johnson, J. E.; Tipple, B. J.; Betancourt, J. L.; Ehleringer, J. R.; Leavitt, S. W.; Monson, R. K.

    2016-12-01

    Long-chain normal alkanes (n-alkanes) are a component of the leaf cuticle of all terrestrial plants. Since the hydrogen in the n-alkanes is derived from the hydrogen in plants' water sources and is non-exchangeable, the stable hydrogen isotopic composition (δD) of the n-alkanes provides information about the δD of environmental waters. While this relationship creates opportunities for using n-alkane δD for process-based reconstructions of δD of environmental waters, progress in this direction is currently constrained by the observation that terrestrial plants exhibit a startlingly wide range of apparent biosynthetic fractionations. To understand the mechanisms responsible for variation in the apparent biosynthetic fractionations, we compared measurements and models of δD for n-C29 in a water-limited ecosystem where the timing of primary and secondary cuticle deposition is closely coupled to water availability (Tumamoc Hill, Tucson, Arizona, USA). During the 2014-2015 hydrologic year, the most widespread and abundant plant species at this site exhibited δD for n-C29 varying over a total range of 102‰. Discrete samples of leaf water collected at the same time as the n-C29 samples exhibited δD varying over a total range of only 53‰, but a continuous model of leaf water through the annual cycle predicted δD varying over a total range of 190‰. These results indicate that the observed variation in the apparent biosynthetic fractionation for n-C29 δD could be primarily attributable to leaf water dynamics that are temporally uncoupled from primary and secondary cuticle deposition. If a single biosynthetic fractionation does describe the relationship between the δD of n-alkanes and leaf water during intervals of cuticle deposition, it will facilitate process-based interpretations of n-alkane δD values in ecological, hydrological, and climatological studies of modern and ancient terrestrial environments.

  5. Effect of Thermal Maturation on n-alkanes and Kerogen in Preserved Organic Matter: Implications for Paleoenvironment Biomarkers

    Craven, O. D.; Longbottom, T. L.; Hockaday, W. C.; Blackaby, E.

    2017-12-01

    Understanding the effects of maturity on biomarkers is vital in assessing biomarker reliability in mature sediments. It is well known for n-alkanes that increased maturity shortens chain lengths and decreases the odd over even preference however, the amount of change in these variables has not been determined for different maturities and types of preserved organic matter. For this reason, it is difficult to judge the trustworthiness of even lightly matured samples for paleoenvironment reconstruction. Another complication is the difficulty of accurately determining maturity as many maturity indicators are error-prone or not appropriate at low maturities. Using hydrous pyrolysis, we artificially matured black shale samples with type I (lacustrine) and type II (marine) kerogen to measure changes in n-alkane length and odd over even preference. Whole rock samples underwent hydrous pyrolysis for 72 hours, at 250 °C, 300 °C, 325 °C, 350 °C, and 375 °C to cover a wide maturity range. From the immature and artificially matured samples, the bitumen was extracted and the saturate fraction was separated using column chromatography. The saturate fraction was analyzed for n-alkanes using gas chromatography-mass spectroscopy. Kerogen structural changes were also measured using solid-state 13C NMR to relate changes in n-alkane biomarkers to changes in kerogen structure. Results show that for type I bitumen the n-alkanes did not change at low maturities considered premature in terms of oil generation (<325 °C). The NMR spectra of the type I kerogen support the lack of change, at low maturities no changes in the aliphatic portion (Fal) were observed, however, after 325 °C Fal decreased with increasing maturity. The loss of Fal indicates kerogen contributing hydrocarbons to bitumen that cause changes in n-alkane measurements. The type II kerogen's Fal also decreased with increasing maturity, but unlike the type I kerogen Fal loss started at low maturities. The differences

  6. Cluster forcing

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...... or management. Both the Accelerate Wales and the Accelerate Cluster programmes target this issue by trying to establish networks between companies that can be used to supply knowledge from research institutions to manufacturing companies. The paper concludes that public sector interventions can make...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...

  7. Regional Innovation Clusters

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  8. Cluster analysis

    Mucha, Hans-Joachim; Sofyan, Hizir

    2000-01-01

    As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

  9. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  10. Alkanes from Bioderived Furans by using Metal Triflates and Palladium-Catalyzed Hydrodeoxygenation of Cyclic Ethers.

    Song, Hai-Jie; Deng, Jin; Cui, Min-Shu; Li, Xing-Long; Liu, Xin-Xin; Zhu, Rui; Wu, Wei-Peng; Fu, Yao

    2015-12-21

    Using a metal triflate and Pd/C as catalysts, alkanes were prepared from bioderived furans in a one-pot hydrodeoxygenation (HDO) process. During the reaction, the metal triflate plays a crucial role in the ring-opening HDO of furan compounds. The entire reaction process has goes through two major phases: at low temperatures, saturation of the exocyclic double bond and furan ring are catalyzed by Pd/C; at high temperatures, the HDO of saturated furan compounds is catalyzed by the metal triflate. The reaction mechanism was verified by analyzing the changes of the intermediates during the reaction. In addition, different metal triflates, solvents, and catalyst recycling were also investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Density and Compressibility of Multicomponent n-Alkane Mixtures up to 463 K and 140 MPa

    Regueira, Teresa; Glykioti, Maria-Lito; Stenby, Erling Halfdan

    2017-01-01

    Density measurements of two ternary alkane mixtures (methane/n-butane/n-decane and methane/n-butane/n-dodecane) and two multicomponent mixtures composed of methane/n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane were performed in the temperature range from (278.15 to 463.15) K and pressures ......–Redlich–Kwong (SRK), Peng–Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR) were used for predicting the experimental density values as well as the excess volumes....... to 140 MPa. The isothermal compressibility values of these mixtures were obtained by differentiation from a Tait-type fitting of experimental densities as a function of temperature and pressure. Excess volume of the studied mixtures was also determined. Four different equations of state, that is, Soave...

  12. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  13. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    Bravo-Perez, Graciela; Alvarez-Idaboy, J. Raul; Jimenez, Annia Galano; Cruz-Torres, Armando

    2005-01-01

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO 3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  14. Molecular adsorption of alkanes on platinum surfaces: A predictive theoretical model

    Stinnett, J.A.; Madix, R.J.

    1996-01-01

    The adsorption probabilities of methane and propane on Pt(111), and propane on Pt(110)-(1x2) have been successfully predicted for a wide range of incident energies and angles with classical stochastic trajectory simulations, using a pairwise additive Morse methyl endash platinum potential previously developed from the measured trapping probabilities of ethane on Pt(111). These predictions, along with those for ethane adsorption on Pt(110)endash(1x2), comprise a unified model for the molecular adsorption of alkanes on platinum surfaces. The simulations show the initial trapping probabilities of methane and propane on Pt(111) are determined to within approximately 10% by the fate of the first bounce. They also indicate that at normal incidence on Pt(111) energy conversions from perpendicular translational motion to both cartwheeling rotation and lattice phonons play increasingly important roles in increasing the trapping probability as the alkane increases in size and molecular weight. For methane itself excitation of parallel translational momentum after the first bounce serves as the most effective energy storage mechanism which facilitates trapping, whereas for propane cartwheel rotational motion plays the dominant role. Excessive excitation of these modes of motion, however, can cause scattering on subsequent bounces by reconversion of the energy into perpendicular translational energy. Collisions of methane with the hollow and bridge sites on the Pt(111) surface appear less effective in trapping than do atop sites. The simulations also suggest excitation of the C endash C endash C bending mode of propane has little effect on the trapping of propane on platinum surfaces for beam energies below 55 kJ/mol. copyright 1996 American Institute of Physics

  15. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  16. Low temperature hydrogenolysis of waxes to diesel range gasoline and light alkanes: Comparison of catalytic properties of group 4, 5 and 6 metal hydrides supported on silica-alumina

    Norsic, Sébastien

    2012-01-01

    A series of metal hydrides (M = Zr, Hf, Ta, W) supported on silica-alumina were studied for the first time in hydrogenolysis of light alkanes in a continuous flow reactor. It was found that there is a difference in the reaction mechanism between d 0 metal hydrides of group 4 and d 0 ↔ d 2 metal hydrides of group 5 and group 6. Furthermore, the potential application of these catalysts has been demonstrated by the transformation of Fischer-Tropsch wax in a reactive distillation set-up into typical gasoline and diesel molecules in high selectivity (up to 86 wt%). Current results show that the group 4 metal hydrides have a promising yield toward liquid fuels.

  17. X-ray reflectivity study of thermal capillary waves on liquid surfaces

    Ocko, B.M.; Wu, X.Z.; Sirota, E.B.; Sinha, S.K.; Deutsch, M.

    1994-01-01

    X-ray reflectivity measurements have been carried out at the liquid/vapor interface of normal alkanes. The reflectivities over a large temperature range of different chain lengths (C20 and C36) provide a critical test of the various capillary wave models. Our data are most consistent with the hybrid model which allows for a molecular size dependent cutoff q max for the capillary waves and an intrinsic interface width σ 0

  18. Nuclear clustering - a cluster core model study

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  19. Radiolysis of hydrocarbons in liquid phase (Modern state of problem)

    Saraeva, V.V.

    1986-01-01

    Problems of ionizing radiation effect on hydrocarbons and hydrocarbon systems in a liquid phase are considered. Modern representations on the mechanism of hydrocarbon radiolysis are presented. Electron moderation and ion-electron pair formation, behaviour of charged particles, excited states, radical formation and their reactions are discussed. Behaviour of certain hydrocarbon classes: alkanes, cyclic hydrocarbons, olefines, aromatic hydrocarbons as well as different hydrocarbon mixtures is considered in detail. Radiation-chemical changes in organic coolants and ways of increasing radiation resistance are considered. Polyphenyl compounds are noted to be most perspective here

  20. Molecular sieve isolation technique for use in stable carbon isotope analysis of individual long-chain n-alkanes in crude oil

    Yamada, Keita; Kon, Makoto; Naraoka, Hiroshi; Ishiwatari, Ryoshi; Uzaki, Minoru.

    1994-01-01

    An isolation procedure of microgram amounts of long-chain n-alkanes from crude oil using molecular sieve was examined for its applicability to stable carbon isotope analysis by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The procedure examined is as follows: molecular sieve (type 5A, 200 mg) in 1 ml of isooctane solvent are mixed with a saturated hydrocarbon fraction extracted from an appropriate amount (approx. 20 mg) of crude oil and stayed at room temperatures for more than 3 hours. Long-chain n-alkanes are isolated by extraction with n-hexane after dissolution of the resulting molecular sieve with 47% hydrofluoric acid solution. The recoveries were 90±6% for C 15 -C 34 n-alkanes when their total amounts applied do not exceed 1.4 mg. No effect of the isolation procedure on carbon isotope ratios of n-alkanes was observed. (author)

  1. Direct hydrodeoxygenation of cellulose and xylan to lower alkanes on ruthenium catalysts in subcritical water

    Osaka, Yuriko; Ikeda, Yoichi; Hashizume, Daisuke; Iwamoto, Masakazu

    2013-01-01

    Nano particles of Ru, Rh, Pd, Ir, Pt, and Au, protected by polyvinyl pyrrolidone (PVP), were applied to the hydrodeoxygenation of cellulose and xylan in water and 5 MPa H 2 at 543 K. The distributions of products generated from cellulose and xylan were roughly similar to each other under the present reaction conditions, and therefore, the former was intensively studied. The Ru-PVP catalyst afforded mainly methane and lower alkanes, rather than producing water soluble organic compounds, such as diols and alcohols, that were formed with the use of the other catalysts. The changes in the product distributions with reaction temperature and time indicated that the reaction consisted of two consecutive reactions: cellulose or xylan → water soluble compounds → hydrogenolysis. The first transformation was promoted in subcritical water, and the second step was catalyzed by the Ru catalyst. The Ru catalyst that was supported on CeO 2 , γ-Al 2 O 3 , or activated carbon yielded a similar product distribution to that on Ru-PVP; however, the loading of Ru on TiO 2 , ZrO 2 , SiO 2 –Al 2 O 3 , or SiO 2 resulted in the increment of diols. After the reaction a small portion of the CeO 2 and most of the SiO 2 –Al 2 O 3 and SiO 2 were dissolved in water, and a portion of the Al 2 O 3 was transformed to boehmite AlO(OH) from the γ-alumina. Little change in the catalytic activity however was observed upon the reuse of Ru/Al 2 O 3 in the second run. Highlights: •One-path hydrodeoxygenation of cellulose and xylan to methane and lower alkanes was studied. •Ru-PVP catalysts gave the best yields among Ru-, Rh-, Pd-, Ir-, Pt-, and Au-PVP. •The reaction pathways were cellulose → water soluble compounds → hydrogenolysis. •The catalytic activity of Ru was greatly dependent on the supports

  2. Even-odd alternation of the formation of dimer isomers in irradiated polycrystalline alkanes: evidence from product analysis

    Baudson, T.; Tilquin, B.

    1984-01-01

    Recent ESR studies on n-alkanes from n-C 11 to n-C 25 have shown that a prominent chain end (-CH 2 -CH 2 ) alkyl radical is formed in odd members of the series. In this preliminary discussion of our study, we shall report the capillary chromatogram in the dimer isomers range for n-alkanes ranging from n-C 11 to n-C 17 irradiated at 80 kGy. Dimer isomers, produced in part by the combination of chain end radicals, are eluted at the end chromatogram. The combination of two chain end radicals gives the dimer (D 11 ) isomer eluted at the last place. It is shown that dimers produced by the combination of chain end alkyl radicals are more important for the odd members of the series than for the even members. (author)

  3. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A study of binuclear zirconium hydride catalysts of the hydrogenolysis of alkanes by the density functional theory method

    Ustynyuk, L. Yu.; Fast, A. S.; Ustynyuk, Yu. A.; Lunin, V. V.

    2012-06-01

    Binuclear hydride centers containing two Zr(IV) atoms are suggested as promising catalysts for the hydrogenolysis of alkanes under mild conditions ( T model compounds L2(H)Zr(X)2Zr(H)L2 (X = H, L = OSi≡ ( 4a), X = L = OMe ( 4d)), L(H)Zr(O)2Zr(H)L (L = OSi≡ ( 4b), Cp( 4c)) and (≡SiO)2(H)Zr-O-Zr(H)(OSi≡)2 ( 4e and 4f) with the propane molecule were studied using the density functional theory method. The results show that centers of the 4a, 4e, and 4f types and especially 4b are promising catalysts of the hydrogenolysis of alkanes due to a high degree of unsaturation of two Zr atoms and their sequential participation in the splitting of the C-C bond and hydrogenation of ethylene formed as a result of splitting.

  5. Excess enthalpies of binary mixtures of 1-hexene with some branched alkanes at the temperature 298.15 K

    Wang, Zhaohui; Benson, George C.; Lu, Benjamin C.-Y.

    2004-01-01

    Measurements of excess molar enthalpies at the temperature 298.15 K in a flow microcalorimeter are reported for the five binary mixtures formed by mixing 1-hexene with the branched alkanes: 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and 2,2,4-trimethylpentane. Smooth Redlich-Kister representations of the results are described. It was found that the Liebermann-Fried model also provided good representations of the results

  6. Potencial discriminatório dos N-alcanos em plantas forrageiras tropicais por análises multivariadas Discriminatory potential of the N-alkanes in tropical forages by multivariate analysis

    Cristiano Côrtes

    2005-08-01

    ânia 1 and legumes (Arachis pintoi Koprov & Gregory. cv. Amarillo and Glycine wightii Verdc. was evaluated. The forages were sampled in Spring, Summer and Winter, with four replications per species per season. The n-alkanes C24 to C35, using C32 and C34 as internal markers, were considered in the analyses. Concentrations of n-alkanes in these species and their respective fractions (leaf blade, top and bottom portions of the stem and dead matter for grasses; leaves, top and bottom of stem and dead matter for legumes were evaluated by multivariate analysis. The discriminatory potential of n-alkanes was determined by the canonical variables analysis. The species and their respective fractions were divided into groups by cluster analysis. N-alkanes with the smallest potential discriminatory potential were: C26, C29, C25, C27 and C28 (spring, C26, C28, C27, C30 and C29 (summer and C28, C26, C25, C29 and C27 (winter. The n-alkanes in the spring and winter samples allowed discrimination of Coast-cross leaf blade from the top and bottom stems portions of this grass and between grass and legumes. It was possible to discriminate fractions of nutritional importance of Brachiaria brizantha, leaf blade and higher portion of stem in the summer. The multivariate analysis, the canonical variables and the cluster analysis are good procedures to be used in n-alkanes studies for herbivores diets discriminating.

  7. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps.

    Rubin-Blum, Maxim; Antony, Chakkiath Paul; Borowski, Christian; Sayavedra, Lizbeth; Pape, Thomas; Sahling, Heiko; Bohrmann, Gerhard; Kleiner, Manuel; Redmond, Molly C; Valentine, David L; Dubilier, Nicole

    2017-06-19

    Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that, in contrast to all previously known Cycloclasticus, the symbiotic Cycloclasticus appears to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the μM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons.

  8. Cluster headache

    Ducros Anne

    2008-07-01

    Full Text Available Abstract Cluster headache (CH is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye. It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments and to reduce the number of daily attacks (prophylactic treatments. Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the

  9. Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater

    Bredholt, H.; Bruheim, P.; Eimhjellen, K. [Norwegian Univ. of Scince and Technology, Trondheim (Norway); Josefsen, K.; Vatland, A. [SINTEF SI, Oslo (Norway). Industrial Chemistry Div.

    1998-04-01

    A Rhodococcus species, which has proven to be the best of 99 oil-emulsifying bacteria isolated from seawater, was characterized. This bacterium produced very stable oil-in-water emulsions from different crude oils with various content of aliphatic and aromatic compounds, by utilizing C{sub 1}1 and C{sub 3}3 n-alkanes as carbon and energy sources. Bacteria that produce stable emulsions are often able to adhere strongly to hydrocarbons or hydrophobic surfaces. It was at these surfaces that extensive emulsification of the residual oil and accumulation of acidic oxidation products occurred. The acidic products were consumed in a second step. This step was characterized by linear growth and an increasing number of cells growing in the water phase. The most extensive emulsification occurred at the end of the exponential phase. There was no evidence of surfactants at the end of the exponential phase, however, a polymeric compound with emulsifying activity, tightly bound to the oil droplets, was isolated, suggesting that the emulsification resulted from the release of the hydrophobic cell surface discarded during growth limitations. 38 refs., 7 figs.

  10. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    NONE

    1998-12-31

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methane oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.

  11. Alkane and crude oil degrading bacteria from the petroliferous soil of India

    Roy, I.; Mishra, A.K.; Ray, A.K.

    1991-01-01

    It has been estimated that approximately 0.5 percent of transported crude oil finds its way into seawater, largely through accidental spills and discharge of ballast and wash water from oil tankers. Some microorganisms are well known for their ability to degrade a variety of hydrocarbons present in crude oil. Oil spills at sea or on land have demonstrated the hydrocarbon-degrading potential of these organisms. Under laboratory conditions, nitrogen may be supplied in soluble form (inorganic salts of ammonia or nitrate of urea). Since most natural aquatic environments are deficient in utilizable forms of nitrogen, it is necessary to add the same exogeneously, but because of rapid dilution the added source of nitrogen does not remain effective. The need for nitrogen supplements may be overcome by appropriate choice of microbes with the genetic capacity to fix molecular nitrogen. In this paper the authors are reporting the isolation of a strain of Pseudomonas stutzeri from the petroliferous soil of India. This strain has the capacity to degrade alkane and crude oil and to fix nitrogen

  12. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-03-02

    Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.

  13. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    J. Lee-Taylor

    2012-08-01

    Full Text Available The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere. Gas phase oxidation schemes are generated for the C8–C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA formation for various preexisting organic aerosol concentration (COA. As expected, simulation results show that (i SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii SOA yield decreases with decreasing COA, (iii SOA production rates increase with increasing COA and (iv the number of oxidation steps (i.e. generations needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA, suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA with large yields. The limitations of the model are discussed.

  14. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    Saxena, Priyank

    In order to enhance the fuel efficiency of an engine and to control pollutant formation, an improved understanding of the combustion chemistry of the fuels at a fundamental level is paramount. This knowledge can be gained by developing detailed reaction mechanisms of the fuels for various combustion processes and by studying combustion analytically employing reduced-chemistry descriptions. There is a need for small detailed reaction mechanisms for alkane and alcohol fuels with reduced uncertainties in their combustion chemistry that are computationally cheaper in multidimensional CFD calculations. Detailed mechanisms are the starting points in identifying reduced-chemistry descriptions of combustion processes to study problems analytically. This research includes numerical, experimental and analytical studies. The first part of the dissertation consists of numerical and experimental studies of ethanol flames. Although ethanol has gained popularity as a possible low-pollution source of renewable energy, significant uncertainties remain in its combustion chemistry. To begin to address ethanol combustion, first a relatively small detailed reaction mechanism, commonly known as the San Diego Mech, is developed for the combustion of hydrogen, carbon monoxide, formaldehyde, methane, methanol, ethane, ethylene, and acetylene, in air or oxygen-inert mixtures. This mechanism is tested for autoignition, premixed-flame burning velocities, and structures and extinction of diffusion flames and of partially premixed flames of many of these fuels. The reduction in uncertainties in the combustion chemistry can best be achieved by consistently updating a reaction mechanism with reaction rate data for the elementary steps based on newer studies in literature and by testing it against as many experimental conditions as available. The results of such a testing for abovementioned fuels are reported here along with the modifications of reaction-rate parameters of the most important

  15. Modification by SiO2 of Alumina Support for Light Alkane Dehydrogenation Catalysts

    Giyjaz E. Bekmukhamedov

    2016-10-01

    Full Text Available Due to the continuously rising demand for C3–C5 olefins it is important to improve the performance of catalysts for dehydrogenation of light alkanes. In this work the effect of modification by SiO2 on the properties of the alumina support and the chromia-alumina catalyst was studied. SiO2 was introduced by impregnation of the support with a silica sol. To characterize the supports and the catalysts the following techniques were used: low-temperature nitrogen adsorption; IR-spectroscopy; magic angle spinning 29Si nuclear magnetic resonance; temperature programmed desorption and reduction; UV-Vis-, Raman- and electron paramagnetic resonance (EPR-spectroscopy. It was shown that the modifier in amounts of 2.5–7.5 wt % distributed on the support surface in the form of SiOx-islands diminishes the interaction between the alumina support and the chromate ions (precursor of the active component. As a result, polychromates are the compounds predominantly stabilized on the surface of the modified support; under thermal activation of the catalyst and are reduced to the amorphous Cr2O3. This in turn leads to an increase in the activity of the catalyst in the dehydrogenation of isobutane.

  16. SAXS study of transient pre-melting in chain-folded alkanes

    Ungar, G.; Wills, H.H.

    1990-01-01

    A pronounced pre-melting effect is observed in chain-folded crystals of pure monodisperse n-alkane C 246 H 494 . The effect is reversible on a short time scale, but at longer times the once-folded chain crystals are irreversibly lost as slow chain extension proceeds by solid diffusion well below the melting point. The melting process is thus monitored by rapid time-resolved small-angle X-ray (SAXS) measurements, using synchrotron radiation. The results show that the observed pronounced broadening of the DSC melting endotherm for chain-folded crystals is entirely due to genuine pre-melting of lamellar surfaces. Although a significant portion of material is already molten below the final melting point of chain-folded crystals T F , no recrystallization in the chain-extended form can occur until the cores of the crystalline lamellae melt at T F . Pre-melting of extended chain crystals is significantly less pronounced than that of folded chain crystals

  17. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  19. Brightest Cluster Galaxies in REXCESS Clusters

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  20. Partitional clustering algorithms

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  1. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes

  2. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  3. LIQUID-LIQUID EXTRACTION COLUMNS

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  4. Liquid Ventilation

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  5. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  6. Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride

    Riache, Nassima; Callens, Emmanuel; Espinas, Jeff; Dé ry, Alexandre; Samantaray, Manoja; Dey, Raju; Basset, Jean-Marie

    2015-01-01

    Metathesis of linear alkanes catalyzed by the well-defined precursor (≡Si-O-WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.

  7. Emission of Methane and Heavier Alkanes From the La Brea Tar Pits Seepage Area, Los Angeles

    Etiope, G.; Doezema, L. A.; Pacheco, C.

    2017-11-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles, California, due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) to the atmosphere, in addition to anthropogenic fossil fuel and biogenic sources. We measured the CH4 flux by closed-chamber method from the La Brea Tar Pits park (0.1 km2), one of the largest seepage sites in Los Angeles. The gas seepage occurs throughout the park, not only from visible oil-asphalt seeps but also diffusely from the soil, affecting grass physiology. About 500 kg CH4 d-1 is emitted from the park, especially along a belt of enhanced degassing that corresponds to the 6th Street Fault. Additional emissions are from bubble plumes in the lake within the park (order of 102-103 kg d-1) and at the intersection of Wilshire Boulevard and Curson Avenue (>130 kg d-1), along the same fault. The investigated area has the highest natural gas flux measured thus far for any onshore seepage zone in the USA. Gas migration, oil biodegradation, and secondary methanogenesis altered the molecular composition of the original gas accumulated in the Salt Lake Oil Field (>300 m deep), leading to high C1/C2+ and i-butane/n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modeling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) versus biogenic sources of methane, on local and global scales.

  8. Semifluorinated Alkane Eye Drops for Treatment of Dry Eye Disease Due to Meibomian Gland Disease.

    Steven, Philipp; Augustin, Albert J; Geerling, Gerd; Kaercher, Thomas; Kretz, Florian; Kunert, Kathleen; Menzel-Severing, Johannes; Schrage, Norbert; Schrems, Wolfgang; Krösser, Sonja; Beckert, Michael; Messmer, Elisabeth M

    2017-11-01

    Meibomian gland disease is generally accepted as the leading cause for evaporative dry eye disease (DED). In a previous study, perfluorohexyloctane, a semifluorinated alkane, has been demonstrated to significantly increase tear film breakup time and to reduce corneal fluorescein staining in patients with evaporative DED, thereby vastly reducing dry eye-related symptoms. This study was set up to evaluate perfluorohexyloctane in a larger population of patients with Meibomian gland dysfunction. Seventy-two patients with Meibomian gland disease and associated dry eye received 1 drop of perfluorohexyloctane 4 times daily during an observational, prospective, multicenter, 6-8-week study. Clinical assessment included best-corrected visual acuity, intraocular pressure, Schirmer test I, tear film breakup time, anterior and posterior blepharitis assessment, number of expressible Meibomian glands, meibum quality and quantity, ocular surface fluorescein staining, lid margin and symptom assessment, and Ocular Surface Disease Index (OSDI © ). From the 72 patients recruited, 61 completed the trial per protocol. Nine patients did not apply the medication as recommended and 2 patients were lost to follow-up. Tear film breakup time, corneal and conjunctival fluorescein staining, number of expressible Meibomian glands, and severity of anterior and posterior blepharitis significantly improved after 6-8 weeks of perfluorohexyloctane application. In addition, symptoms improved as demonstrated by a significant decrease of OSDI-values from 37 (±13) to 26 (±16). In concordance with previous findings, 6-8 weeks of topical application of perfluorohexyloctane significantly improves clinical signs of Meibomian gland disease and associated mild to moderate DED.

  9. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A

    2015-08-13

    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Hopane, sterane and n-alkane distributions in shallow sediments hosting high arsenic groundwaters in Cambodia

    Dongen, Bart E. van; Rowland, Helen A.L.; Gault, Andrew G.; Polya, David A.; Bryant, Charlotte; Pancost, Richard D.

    2008-01-01

    The presence of elevated As in ground waters exploited for drinking water and irrigation in South-East Asia is causing serious impacts on human health. A key mechanism that causes the mobilization of As in these waters is microbially mediated reductive transformation of As-bearing Fe(III) hydrated oxides and the role of degradable organic matter (OM) in this process is widely recognized. A number of different types of OM that drive As release in these aquifers have been suggested, including petroleum derived hydrocarbons naturally seeping into shallow sediments from deeper thermally mature source rocks. However, the amount of information on the characteristics of the OM in South-East Asian aquifers is limited. Here the organic geochemical analyses of the saturated hydrocarbon fractions and radiocarbon analysis, of two additional sites in SE Asia are reported. The results show that the OM in a given sedimentary horizon likely derives from multiple sources including naturally occurring petroleum. The importance of naturally occurring petroleum as one of the sources was clearly indicated by the n-alkane CPI of approximately 1, the presence of an unresolved complex mixture, and hopane (dominated by 17α(H),21β(H) hopanes) and sterane distribution patterns. The results also indicate that the OM in these aquifers varies tremendously in content, character and potential bioavailability. Furthermore, the presence of petroleum derived OM in sediments at both sites doubles the number of locations where their presence has been observed in association with As-rich, shallow aquifers, suggesting that the role of petroleum derived OM in microbially mediated As release might occur over a wider range of geographical locations than previously thought

  11. Structures of butyl ions formed by electron impact ionization of isomeric butyl halides and alkanes

    Shold, D.M.; Ausloos, P.

    1978-01-01

    Using a pulsed ion cyclotron resonance (ICR) spectrometer, it is demonstrated that at pressures of about 10 -6 Torr and at observation times ranging from 10 -3 to 0.5 s, isobutane, neopentane, 2,2-dimethylbutane, isobutyl halides, and tert-butyl halides form C 4 H 9 + ions having the tertiary structure. In n-alkanes, 2-methylbutane, 3-methylpentane, n-butyl halides, and sec-butyl halides, both sec-C 4 H 9 + and t-C 4 H 9 + ions are observed, the sec-C 4 H 9 + ions surviving without rearrangement for at least 0.1 s. However, in the case of the halides, a collision-induced isomerization of the sec-C 4 H 9 + to the t-C 4 H 9 + ions occurs. The efficiency of this process increases with the basicity of the alkyl halide. Radiolysis experiments carried out at atmospheric pressures indicate, in agreement with ICR and solution experiments, that at times as short as 10 -10 s the majority of the i-C 4 H 9 + ions from isobutyl bromide rearrange to the t-C 4 H 9 + structure. On the other hand, in the radiolysis of both n-hexane and 3-methylpentane, the abundance of t-C 4 H 9 + relative to sec-C 4 H 9 + is substantially smaller than that observed in the ICR experiments, and decreases with decreasing collision interval. It is suggested that about 90% of the i-C 4 H 9 + can rearrange to t-C 4 H 9 + by simple 1,2-hydride shift without involving secondary or protonated methylcyclopropane structures as intermediates. 4 figures, 2 tables

  12. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    Wang, Zhandong

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth\\'s troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. The results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances. © 2015 The Combustion Institute.

  13. Diversity among galaxy clusters

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  14. The detection of neutron clusters

    Marques, F.M.; Labiche, M.; Orr, N.A.; Angelique, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire] [and others

    2001-11-01

    A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of {sup 11}Li, {sup 14}Be and {sup 15}B beams by a C target. Some 6 events were observed that exhibit the characteristics of a multi-neutron cluster liberated in the breakup of {sup 14}Be, most probably in the channel {sup 10}Be+{sup 4}n. The various backgrounds that may mimic such a signal are discussed in detail. (author)

  15. Subsidizing Liquidity

    Malinova, Katya; Park, Andreas

    2015-01-01

    the breakdown of trading fees between liquidity demanders and suppliers matters. Posted quotes adjust after the change in fee composition, but the transaction costs for liquidity demanders remain unaffected once fees are taken into account. However, as posted bid-ask spreads decline, traders (particularly......Facing increased competition over the last decade, many stock exchanges changed their trading fees to maker-taker pricing, an incentive scheme that rewards liquidity suppliers and charges liquidity demanders. Using a change in trading fees on the Toronto Stock Exchange, we study whether and why...... retail) use aggressive orders more frequently, and adverse selection costs decrease....

  16. What Makes Clusters Decline?

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...... but being quick to withdraw in times of crisis....

  17. Clustering of correlated networks

    Dorogovtsev, S. N.

    2003-01-01

    We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting formulas allow one to determine the nature of the clustering of a network.

  18. Relevant Subspace Clustering

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  19. Liquidity Runs

    Matta, R.; Perotti, E.

    2016-01-01

    Can the risk of losses upon premature liquidation produce bank runs? We show how a unique run equilibrium driven by asset liquidity risk arises even under minimal fundamental risk. To study the role of illiquidity we introduce realistic norms on bank default, such that mandatory stay is triggered

  20. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India.

    Kang, Mingjie; Fu, Pingqing; Aggarwal, Shankar G; Kumar, Sudhanshu; Zhao, Ye; Sun, Yele; Wang, Zifa

    2016-12-01

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C 19 C 33 ), n-fatty acids (C 12 C 30 ) and n-alcohols (C 16 C 32 ) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst

    Abhishek Dhar

    2017-12-01

    Full Text Available The catalysts γ-alumina (GA, the reference catalyst and Pt doped γ-alumina (PGA-s were synthesized using a simple sol-gel technique, in which at first preparation of porous base (GA, then impregnation of platinum salt over the base and finally reduction of platinum in the surface of the support were done. These catalysts prepared in different mole ratios of Pt:Al as 2:1, 1:1 and 1:2 are named as PGA-1, PGA-2 and PGA-3 respectively. The isomerization of n-alkanes (n-hexane, n-heptane and n-octane were investigated over the synthesized catalysts. The 2-methyl pentane (2-MP, 2,2-dimethyl pentane (2,2-DMP and 2,3-dimethyl hexane (2,3-DMH are the major products of respective isomerization of n-hexane, n-heptane and n-octane, besides a small amount of other branched isomers are also produced. The product distribution is comparable to that reported for Pt based other catalysts. The optimal mole ratios of Pt:Al is 1:1 (PGA-2 gives quite good catalytic activity for isomerization of n-alkane. Even through in reusability study, PGA-2 gives better performance than others. We have mainly focused on kinetic study, reaction mechanism behind isomerization and calculated the order of reactions and activation energies of the isomerization reactions in the present work. Keywords: Isomerization, n-alkanes, Catalyst, Reaction mechanism, Kinetics study, Activation energy

  4. Determination of activity coefficients at infinite dilution of water and organic solutes (polar and non-polar) in the Ammoeng 100 ionic liquid at T = (308.15, 313.5, 323.15, and 333.15) K

    Reddy, Prashant; Chiyen, Kaleng J.; Deenadayalu, Nirmala; Ramjugernath, Deresh

    2011-01-01

    Highlights: → Activity coefficients at infinite dilution in the ionic liquid Ammoeng 100. → Twenty-seven solutes investigated at T = (308.15, 313.15, 323.15, and 333.15) K. → Ammoeng 100 not suited to aromatic/aliphatic and alkane/alcohol separations. - Abstract: Activity coefficients at infinite dilution (γ 13 ∞ ) have been determined for 27 solutes, viz. water and organic compounds (n-alkanes, cycloalkanes, 1-alkenes, 1-alkynes, aromatics, alcohols, and ketones) in the ionic liquid Ammoeng 100, by gas-liquid chromatography at four different temperatures, T = (308.15, 313.15, 323.15, and 333.15) K. Columns with different phase loadings (20 to 24)% of the ionic liquid in the stationary phase were employed to obtain γ 13 ∞ values at each temperature investigated. Partial molar excess enthalpies at infinite dilution (ΔH 1 E,∞ ) were calculated for the solutes from the temperature dependency relationship of the ln(γ 13 ∞ ) values for the temperature range in this study. The uncertainties in the determinations of the γ 13 ∞ and ΔH 1 E,∞ values are 6% and 10%, respectively. Selectivity values at infinite dilution (S ij ∞ ), have been computed from the γ 13 ∞ values to assess the potential candidacy of the Ammoeng 100 ionic liquid for the separation of alkane/alcohol mixtures. The results from this study have been compared to those available for several ionic liquids from previous investigations.

  5. Managing liquidity

    Pokutta, Sebastian; Schmaltz, Christian

    2011-01-01

    Large banking groups face the question of how to optimally allocate and generate liquidity: in a central liquidity hub or in many decentralized branches. We translate this question into a facility location problem under uncertainty. We show that volatility is the key driver behind (de......-)centralization. We provide an analytical solution for the 2-branch model and show that a liquidity center can be interpreted as an option on immediate liquidity. Therefore, its value can be interpreted as the price of information, i.e., the price of knowing the exact demand. Furthermore, we derive the threshold...... above which it is advantageous to open a liquidity center and show that it is a function of the volatility and the characteristic of the bank network. Finally, we discuss the n-branch model for real-world banking groups (10-60 branches) and show that it can be solved with high granularity (100 scenarios...

  6. Hydrogen production from glucose in ionic liquids

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    Depletion of oil and gas reserves and growing global warming concerns have created a world-wide interest in new concepts for future sustainable energy supplies. The development of effective ways to produce hydrogen from biomass is expected to be one important contribution to such a goal [1]. Nowadays, three main processes are considered for future industrial application, namely: gasification of biomass [2], reforming in supercritical water [3] and aqueous phase reforming [4,5]. Other technologies such as enzymatic decomposition of sugars or steam reforming of bio-oils suffer from low hydrogen production rates and/or complex processing requirements and can probably not be considered for industrial applications in the closer future [6,7]. On the other hand, either the gasification of biomass, which is typically carried out at temperatures above 800 C using Ni or Fe catalysts [8,9,10,11], or the reforming in supercritical water, which is typically carried out in presence of Ru catalyst at pressures of 300bar and temperatures ranging from 500 to 700 C [12], suffer of poor energetic efficiency as a lot of energy is required to run the reactions. More recently, an alternative to the two aforementioned high temperature processes has been proposed as ''aqueous phase reforming'' (APR) by Dumesic and coworkers [13,14,15,16,17]. They achieved the reforming of polyols (such as ethylene glycol, glycerol and sorbitol) using heterogeneous catalysts at temperatures between 200 and 250 C and pressure typically between 15-50bar.The temperature level of the reaction allows generating hydrogen with low amounts of CO in a single reactor. The process typically forms 35 % of hydrogen, 40 % of CO2 and 25 % of combined alkanes. The high amount of formed alkanes originates eventually from CO hydrogenation and Fischer-Tropsch (F-T) reaction [18,19,20,21], those are thermodynamically favored in the above mentioned conditions. However, heterogeneously catalyzed APR

  7. Cluster ion beam facilities

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  8. [Bis(TrimethylsilylMethyl]Lithium and -Sodium: Solubility in Alkanes and Complexes with O- and N- Donor Ligands

    Markus von Pilgrim

    2017-06-01

    Full Text Available In contrast to alkyl compounds of lithium, which play an important role in organometallic chemistry, the corresponding heavier alkali metal compounds are less investigated. These compounds are mostly insoluble in inert solvents or undergo solvolysis in coordinating solvents due to their high reactivity. An exception from this typical behavior is demonstrated by bis(trimethylsilylmethylsodium. This study examines alkane solutions of bis(trimethylsilylmethyllithium and -sodium by NMR spectroscopic and cryoscopic methods. In addition, structural studies by X-ray crystallography of the corresponding compounds coordinated by O- and N- ligands (tetrahydrofuran and tetramethylethylenediamine present possible structural motifs of the uncoordinated compounds in solution.

  9. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  10. PREFACE: Nuclear Cluster Conference; Cluster'07

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  11. Problems of selectivity in liquid-phase oxidation

    Emanuel, N M

    1978-07-01

    Based on a kinetic analysis of a generalized scheme for radical-chain process and on published experimental results, factors determining the selectivities of various liquid-phase oxidations of organic compounds are examined, including the kinetic chain length, molecular and chain decomposition of products, and competing routes in the initiated oxidation or autoxidation of hydrocarbons to peroxides. Also discussed are selective inhibition of undesirable routes in chain reactions, e.g., styrene and acetaldehyde co-oxidation; activation of molecular oxygen by variable-valence metal compounds used as homogeneous catalysts; modeling of fermentative processes by oxidation of hydrocarbons in complex catalytic systems, e.g., hydroxylation of alkanes, epoxidation or carbonylation of olefins, or oxidation of alcohols and ketones to acids; and the mechanisms of heterogeneous catalysis in liquid-phase reactions, e.g., oxidation of alkylaromatic hydrocarbons to peroxides and co-oxidation of propylene and acetaldehyde.

  12. 钯/聚苯胺复合团簇的可见光辅助溶致液晶模板合成及对乙醇的电催化%Synthesis of Palladium/Polyaniline Composite Cluster via Visible Light Assisted Lyotropic Liquid Crystal Template Mothod and Their Electrocatalytic Oxidation of Ethanol

    谭德新; 王艳丽; 卞玲; 汪猛

    2017-01-01

    Palladium (Pd)/polyaniline (PANI) composite cluster was synthesized in a quaternary system of brinecyclohexane-surfactant-cosurfactant with hexagonal lyotropic liquid crystal as template under soft visible-lightassisted condition.The samples were characterized by FESEM,TEM,SAED,PXRD,FT-IR spectroscopy and UVvisible spectroscopy.Electrochemical performance of Pd/PANI nanocomposites for ethanol oxidation was also investigated.The results show that monodisperse Pd/PANI composite cluster has the average diameter of 412 nm.Pd nanoparticles with the average diameter of (21 ± 1) nm are uniformly distributed in the PANI matrix.These Pd/ PANI composite clusters exhibit remarkable electrocatalytic activity,anti-poisoning property and electrochemical stability for ethanol oxidation.%构建盐水、环己烷、表面活性剂和助表面活性剂四元体系,采用可见光辅助溶致液晶模板法制备钯/聚苯胺(Pd/PANI)复合团簇,用FESEM、TEM、SAED、PXRD、FT-IR、UV-vis等技术进行了表征,并研究了Pd/PANI复合团簇对乙醇的电化学性能.结果表明,Pd/PANI复合团簇的平均粒径为412 nm,呈单分散性,Pd纳米粒子的粒径为(21±1)nm,以聚集体形式分散在PANI基体中;Pd/PANI复合团簇对乙醇展示了良好的电催化活性、抗中毒性和电化学稳定性.

  13. Evaporation-driven clustering of microscale pillars and lamellae

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young, E-mail: hyk@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-02-15

    As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.

  14. Terrestrial environmental changes around the Gulf of Aden over the last 210 kyr deduced from the sediment n-alkane record: Implications for the dispersal of Homo sapiens

    Isaji, Yuta; Kawahata, Hodaka; Ohkouchi, Naohiko; Murayama, Masafumi; Tamaki, Kensaku

    2015-03-01

    We analyzed long-chain (C25-C36) n-alkanes and pollen grains in sediments from the Gulf of Aden covering the last 212 kyr to reconstruct the surrounding terrestrial environment, a critical region for the dispersal of Homo sapiens. Substantial increases in the flux of n-alkanes during 200-185, 120-95, and 70-50 ka were interpreted to indicate enhanced vegetation biomass in the Arabian Peninsula and the northern part of the Horn of Africa or increase in lithogenic material inputs. Periods of enhanced n-alkane flux occurred during or immediately after pluvial episodes, indicating that the increased precipitation may have induced substantially enhanced vegetation biomass, creating favorable conditions for Homo sapiens. Additionally, vegetation may have increased due to moderate precipitation unrecorded by speleothems or in accordance with the lowering of sea level, indicating that the dispersal might have been possible even after the shift to an arid environment indicated by the speleothems.

  15. Management of cluster headache

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe...... or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness...... and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment...

  16. Symmetries of cluster configurations

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  17. Anaerobic Coculture of Microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C Enhances Generation of n-Alkane-Rich Biofuels after Pyrolysis

    Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-01-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH4 production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils. PMID:23183975

  18. Seasonal variation of the particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban aerosol of Guangzhou, China.

    Tang, X L; Bi, X H; Sheng, G Y; Tan, J H; Fu, J M

    2006-06-01

    Seasonal aerosol samples have been collected by Andersen Hi-Vol pumping system equipped with a five stage cascade impactor and a backup filter (size range: 10-7.2 microm, 7.2-3.0 microm, 3.0-1.5 microm, 1.5-0.95 microm, 0.95-0.49 microm, gas chromatography and PAHs were measured using gas chromatography/mass spectrometry analysis. The bimodal log-normal distributions of n-alkanes and semi-volatile PAHs were found, while for non-volatile PAHs that was unimodal, so much as the mode of semi-volatile PAHs was similar with that of the particles. The n-alkanes and PAHs were preferably associated with fine particles. C (max) (carbon number maximum) (C(22)-C(26)), CPI (carbon preference index) (1.12-1.21), U/R (unresolved to resolved components ratio) (7.42-10.7), wax% (0.9-3.12%) and the diagnostic ratios for PAHs revealed that vehicular emission was the major source of these organic compounds during the study periods, while the contribution of epicuticular waxes emitted by terrestrial plants was minor. CPI(2) (values for petrogenic hydrocarbons), CPI(3) (values for biogenic n-alkanes) and wax% revealed that the natural preferentially accumulated in the larger aerosol while the anthropogenic in the smaller. In addition, the different MMDs (mass median diameters) for n-alkanes and PAHs were observed in different seasons. The MMDs for n-alkanes and PAHs were higher in autumn/winter than those in spring/summer. The seasonal effect was related to the hydrocarbon content in the individual particulate fractions, showing a preferential association of n-alkanes and PAHs with larger particles in the autumn/winter season.

  19. Cluster Decline and Resilience

    Østergaard, Christian Richter; Park, Eun Kyung

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963......-2011. Our longitudinal study reveals that technological lock-in and exit of key firms have contributed to impairment of the cluster’s resilience in adapting to disruptions. Entrepreneurship has a positive effect on cluster resilience, while multinational companies have contradicting effects by bringing...... in new resources to the cluster but being quick to withdraw in times of crisis....

  20. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  1. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    Wang, Hao; Dong, Xinglong; Lin, Junzhong; Teat, Simon J.; Jensen, Stephanie; Cure, Jeremy; Alexandrov, Eugeny V.; Xia, Qibin; Tan, Kui; Wang, Qining; Olson, David H.; Proserpio, Davide M.; Chabal, Yves J.; Thonhauser, Timo; Sun, Junliang; Han, Yu; Li, Jing

    2018-01-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  2. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks

    Seungtaik Hwang

    2018-03-01

    Full Text Available Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n-alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n-butane was observed, followed by an increase for n-pentane, and another decrease for n-hexane. This observation was confirmed by uptake measurements with n-butane/n-pentane mixtures, which yield faster uptake of n-pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n-pentane concentrations exceeding the (eventually attained equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n-alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  3. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  4. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks.

    Hwang, Seungtaik; Gopalan, Arun; Hovestadt, Maximilian; Piepenbreier, Frank; Chmelik, Christian; Hartmann, Martin; Snurr, Randall Q; Kärger, Jörg

    2018-03-15

    Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n- alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n- butane was observed, followed by an increase for n- pentane, and another decrease for n- hexane. This observation was confirmed by uptake measurements with n- butane/ n -pentane mixtures, which yield faster uptake of n- pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n- pentane concentrations exceeding the (eventually attained) equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n- alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  5. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    Wang, Hao [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Dong, Xinglong [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Lin, Junzhong [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Teat, Simon J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Jensen, Stephanie [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Cure, Jeremy [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Alexandrov, Eugeny V. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Xia, Qibin [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; South China University of Technology, Guangzhou (China). School of Chemistry and Chemical Engineering; Tan, Kui [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Wang, Qining [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Olson, David H. [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Proserpio, Davide M. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Università degli Studi di Milano, Milano (Italy). Dipartimento di Chimica; Chabal, Yves J. [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Thonhauser, Timo [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Department of Chemistry; Sun, Junliang [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Han, Yu [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Li, Jing [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology

    2018-05-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  6. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    Wang, Hao

    2018-04-25

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  7. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. LIQUID COAL CHARACTERISTIC ANALYSIS WITH FOURIER TRANSFORM INFRA RED (FTIR AND DIFFERENTIAL SCANNING CALORIMETER (DSC

    ATUS BUKU

    2017-02-01

    Full Text Available The aim of this study is to identify the value of compounds contained in liquid coal by using Fourier Transform Infra-Red (FTIR and Differential Scanning Calorimeter (DSC. FTIR was used to analyse the components contained in liquid coal, while the DSC is done to observe the heat reaction to the environment. Based on the Fourier Transform Infra-Red (FTIR test results it is shown that the compound contained in the liquid Coal consisting of alkanes, alkenes and alkyne. These compounds are similar compounds. The alkanes, alkenes and alkynes compounds undergo complete combustion reaction with oxygen and would produce CO2 and water vapour [H2O (g]. If incomplete combustion occurs, the reaction proceeds in the form of Carbon Monoxide CO gas or solid carbon andH2O. Combustion reaction that occurs in all these three compounds also produces a number of considerable energy. And if it has higher value of Carbon then the boiling point would be higher. From the Differential Scanning Calorimetric (DSC test results obtained some of the factors that affect the reaction speed, which are the temperature, the reaction mixture composition, and pressure. Temperature has a profound influence in coal liquefaction, because if liquid coal heated with high pressure, the carbon chain would break down into smaller chains consisting of aromatic chain, hydro-aromatic, or aliphatic. This then triggers a reaction between oil formation and polymerization reactions to form solids (char.

  9. Heritability of the Structures and 13C Fractionation in Tomato Leaf Wax Alkanes: A Genetic Model System to Inform Paleoenvironmental Reconstructions

    Amanda L. D. Bender

    2017-06-01

    Full Text Available Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs between two interfertile Solanum (tomato species: S. lycopersicum cv M82 (hereafter cv M82 and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso- to total alkanes. Between Solanum pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2–1.4‰ over n-alkanes. The broad-sense heritability values (H2 of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13–0.19, suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments

  10. Nucleation, growth and habit modification of n-alkanes and homologous mixtures in the absence and presence of flow improving additives

    Taggart, Audrey M.

    1996-01-01

    A detailed study has been performed on the nucleation, growth and habit modification of n-alkanes and homologous mixtures in the absence and presence of flow improving additives in an attempt to gain a clearer appreciation of the interaction mechanisms behind wax / additive crystallisation. Kinetic and structural assessment of melt phase n-alkanes illustrate the different crystallographic forms present within the homologous series. Studies demonstrate the alternating behaviour of the even and odd numbered homologues which converges as a function of increasing molecular weight. Greater crystal lattice stabilities were found for those n-alkanes which have an even carbon number and which crystallise into the triclinic crystal structure. Solid state phase behaviour of the n-alkanes was found to vary depending on the number and parity of n. Nucleation kinetic studies of n-alkanes and homologous mixtures from model diesel fuel solvents (dodecane, m-xylene, decalin, pristane and a dewaxed fuel) are assessed using turbidity as the method of crystallite detection. Saturation temperatures are found to be related to both alkane structure and molecular chain length for all solvent systems. N-alkane solubilities are lower for n-alkane like solvents. The width of the meta stable zone varies as a function of solvent in order of dodecane ≅ pristane 19 H 40 and solvent m-xylene. Wax precipitation from distillate fuels in the presence of flow improving additives (di-alkyl di-amino xylene, phthalic acid and sulphobenzene acid derivatives and high molecular weight polymers) reveal responsive wax crystal nucleator and growth inhibitor additives. The crystal morphology of heptacosane, C 27 H 56 to simulate a model wax crystal is assessed in addition to its response to blocker 'tailor made' additives: methyl substituted C 27 H 56 and di-alkyl substituted phenyl additives [additive (A) and (B)]. Pure C 27 H 56 reveals a thin lozenge shaped platelet. All additives studied induce growth

  11. Simple addition of silica to an alkane solution of Wilkinson WMe6 or Schrock W alkylidyne complex give active complex for saturated and unsaturated hydrocarbons metathesis

    Callens, Emmanuel

    2015-08-24

    Addition of PDA silica to a solution of the Wilkinson WMe6 as well as the Schrock W neopentilidyne tris neopentyl complex catalyzes linear or cyclic alkanes to produce respectively a distribution of linear alkanes from methane up to triacontane or a mixture of cyclic and macrocyclic hydrocarbons. This single catalytic system transforms also linear α-olefins into higher and lower homologues via isomerization/metathesis mechanism (ISOMET). This complex is also efficient towards functionalized olefins. Unsaturated fatty acid esters (FAEs) are converted into diesters corresponding to self-metathesis products.

  12. Polycyclic aromatic hydrocarbons (PAHs) and n-Alkanes in beaked sea snake Enhydrina schistose (Daudin, 1803) from the Mandovi Estuary, Goa

    Mote, S.; RanjeetKumar; Naik, B.G.; Ingole, B.S.

    , occur in high abundances (Voris H K 1985; Aaron Lobo et al. 2004) Present study demonstrates the tissue specific distribution of 15 EPA priority PAHs and 27 n-alkanes compounds in two individuals of E. schistose. We used GC-MS for analysis, which... in 20 ml dichloromethane/hexane (1:3 v/v) with surrogate internal standard (SIS) 20 ppm-200μl Tetracosane-d50 for alkane, 5ppm-200μl Chrysene-d12 for PAHs were spiked and transferred to 5% H2O deactivated silica gel column (1 cm i.dx 9 cm). Elution...

  13. Heritability of the structures and 13C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions

    Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.

    2017-06-01

    Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects

  14. Liquid explosives

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  15. Comprehensive cluster analysis with Transitivity Clustering.

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  16. On the atomistic mechanisms of alkane (methane-pentane) separation by distillation: a molecular dynamics study.

    Zahn, Dirk

    2007-11-01

    Insights into the liquid-vapor transformation of methane-pentane mixtures were obtained from transition path sampling molecular dynamics simulations. This case study of the boiling of non-azeotropic mixtures demonstrates an unprejudiced identification of the atomistic mechanisms of phase separation in the course of vaporization which form the basis of distillation processes. From our simulations we observe spontaneous segregation events in the liquid mixture to trigger vapor nucleation. The formation of vapor domains stabilizes and further promotes the separation process by preferential evaporation of methane molecules. While this discrimination holds for all mixtures of different composition studied, a full account of the boiling process requires a more complex picture. At low methane concentration the nucleation of the vapor domains includes both methane and pentane molecules. The pentane molecules, however, tend to form small aggregates and undergo rapid re-condensation within picoseconds to nanoseconds scales. Accordingly, two aspects of selectivity accounting for methane-pentane separation in the course of liquid-vapor transformations were made accessible to molecular dynamics simulations: spontaneous segregation in the liquid phase leading to selective vapor nucleation and growth favoring methane vaporization and selective re-condensation of pentane molecules.

  17. Validation of a δ2Hn-alkane-δ18Ohemicellulose based paleohygrometer: Implications from a climate chamber experiment

    Hepp, Johannes; Kathrin Schäfer, Imke; Tuthorn, Mario; Wüthrich, Lorenz; Zech, Jana; Glaser, Bruno; Juchelka, Dieter; Rozanski, Kazimierz; Zech, Roland; Mayr, Christoph; Zech, Michael

    2017-04-01

    Leaf wax-derived biomarkers, e.g. long chain n-alkanes and fatty acids, and their hydrogen isotopic composition are proved to be of a value in paleoclimatology/-hydrology research. However, the alteration of the isotopic signal as a result of the often unknown amount of leaf water enrichment challenges a direct reconstruction of the isotopic composition of paleoprecipitation. The coupling of ^2H/^1H results of leaf wax-derived biomarkers with 18O/16O results of hemicellulose-derived sugars has the potential to overcome this limitation and additionally allows reconstructing relative air humidity (RH) (Zech et al., 2013). This approach was recently validated by Tuthorn et al. (2015) by applying it to topsoil samples along a climate transect in Argentina. Accordingly, the biomarker-derived RH values correlate significantly with modern actual RH values from the respective study sites, showing the potential of the established 'paleohygrometer' approach. However, a climate chamber validation study to answer open questions regarding this approach, e.g. how robust biosynthetic fractionation factors are, is still missing. Here we present coupled δ2Hn-alkane-δ18Ohemicellulose results obtained for leaf material from a climate chamber experiment, in which Eucalyptus globulus, Vicia faba and Brassica oleracea were grown under controlled conditions (Mayr, 2003). First, the 2H and 18O enrichment of leaf water strongly reflects actual RH values of the climate chambers. Second, the biomarker-based reconstructed RH values correlate well with the actual RH values of the respective climate chamber, validating the proposed 'paleohygrometer' approach. And third, the calculated fractionation factors between the investigated leaf biomarkers (n-C29 and n-C31 for alkanes; arabinose and xylose for hemicellulose) and leaf water are close to the expected once reviewed from the literature (+27\\permil for hemicellulose; -155\\permil for n-alkanes). Nevertheless, minor dependencies of these

  18. Changes in the n-alkane composition of avocado pulp oil ( Persea americana, Mill. during fruit ripening

    Giuffrè, A. M.

    2005-03-01

    Full Text Available The n-alkane composition of Avocado pulp oil (cv. Hass was investigated during fruit ripening. Three samples of fruit were harvested on March 3, 2003, March 18, 2003 and April 2, 2003. Glass gravity column chromatography was employed to separate n-alkanes from other minor components contained in the unsaponifiable fraction. Gas chromatography was used to analyze the eluate. Fourteen compounds were detected ranging from n -C21 to n -C34; mainly n -C24, followed by n -C25 and then by n -C23. Quantities of n -C21, n -C22, n -C23, n -C27 and n -C28 progressively increased during ripening, whereas n -C24, n -C25, n -C26, n -C29, n -C30 and n -C34 decreased from the first harvest date to the third harvest date. While odd-numbered carbon n-alkanes increased (52.38 %, 52.85 % and 53.06 % for the three samples respectively, even-numbered carbon n-alkanes decreased as the fruit ripened (47.62 %, 47.15 % and 46.94 %. The total n-alkane content decreased during ripening, from 25.20 mg/Kg (first harvest date to 16.77 mg/Kg (third harvest date. In order to minimize.Se ha analizado la composición en hidrocarburos lineales saturados del aceite de la pulpa de aguacate (variedad Hass. Tres muestras fueron recolectadas: el 3 de marzo 2003, el 18 de marzo 2003 y el 2 de abril 2003. La separación de los hidrocarburos lineales saturados se realizó mediante fraccionamiento del insaponificable por cromatografía gravimétrica de adsorción en columna y la determinación de los mismos hidrocarburos por cromatografía gaseosa. 14 compuestos fueron detectados del n- C21 al n- C34. El n- C24 fue el mayoritario, seguido del n- C25 y el n- C23. El porcentaje de n- C21, n- C22, n- C23, n- C27 y n- C28, aumentó durante la maduración, mientras que el porcentaje de n- C24, n- C25, n- C26, n- C29, n- C30 y C34 disminuyó desde el 3 de marzo 2003 hasta el 2 de abril 2003. Los hidrocarburos lineales saturados con número impar de átomos de carbono aumentaron (52.38 %, 52

  19. A theoretical study of cluster radioactivity in platinum isotopes

    Joseph, Deepthy Maria; Ashok, Nithu; Joseph, Antony [University of Calicut, Department of Physics, Malappuram, Kerala (India)

    2018-01-15

    The probable cluster decay modes in platinum isotopes are predicted with the help of effective liquid drop model. The calculated half-lives are compared with those of universal decay law model and with the experimental data. The investigation affirms the decisive role of neutron magicity in the phenomenon of cluster radioactivity. It is found that the probability of cluster emission decreases with the increase in the neutron number of parent nucleus. Geiger-Nuttall plots of the probable decay modes show linear behaviour, which in turn leads to the equation for logarithmic half-life for the clusters emitted from Pt isotopes. (orig.)

  20. PREFACE: Functionalized Liquid Liquid Interfaces

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  1. LMC clusters: young

    Freeman, K.C.

    1980-01-01

    The young globular clusters of the LMC have ages of 10 7 -10 8 y. Their masses and structure are similar to those of the smaller galactic globular clusters. Their stellar mass functions (in the mass range 6 solar masses to 1.2 solar masses) vary greatly from cluster to cluster, although the clusters are similar in total mass, age, structure and chemical composition. It would be very interesting to know why these clusters are forming now in the LMC and not in the Galaxy. The author considers the 'young globular' or 'blue populous' clusters of the LMC. The ages of these objects are 10 7 to 10 8 y, and their masses are 10 4 to 10 5 solar masses, so they are populous enough to be really useful for studying the evolution of massive stars. The author concentrates on the structure and stellar content of these young clusters. (Auth.)

  2. Star clusters and associations

    Ruprecht, J.; Palous, J.

    1983-01-01

    All 33 papers presented at the symposium were inputted to INIS. They dealt with open clusters, globular clusters, stellar associations and moving groups, and local kinematics and galactic structures. (E.S.)

  3. Cluster beam injection

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  4. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate using gas-liquid chromatography at T = (313.15, 323.15, and 333.15) K

    Olivier, Eugene; Letcher, Trevor M.; Naidoo, Paramespri; Ramjugernath, Deresh

    2010-01-01

    Activity coefficients at infinite dilution were determined for 24 solutes: n-alkanes, alk-1-enes, alk-1-ynes, cycloalkanes, alkylbenzenes and alcohols in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate, [OMIM][PF 6 ], by gas-liquid chromatography at three different temperatures T = (313.15, 323.15, and 333.15) K. The partial molar excess enthalpy values at infinite dilution were calculated from the experimental data over the same temperature range. Capacities and selectivities at infinite dilution for the systems hexane/benzene and methanol/benzene were determined from the experimental data and compared to the literature values for other ionic liquids, as well as for industrial molecular solvents. The influence of the cation and anion of the ionic liquid on the activity coefficient is discussed, as well as the usefulness of [OMIM][PF 6 ] in separating organic liquids.

  5. Clustering at high redshifts

    Shaver, P.A.

    1986-01-01

    Evidence for clustering of and with high-redshift QSOs is discussed. QSOs of different redshifts show no clustering, but QSOs of similar redshifts appear to be clustered on a scale comparable to that of galaxies at the present epoch. In addition, spectroscopic studies of close pairs of QSOs indicate that QSOs are surrounded by a relatively high density of absorbing matter, possibly clusters of galaxies

  6. Optimal Liquidation under Stochastic Liquidity

    Becherer, Dirk; Bilarev, Todor; Frentrup, Peter

    2016-01-01

    We solve explicitly a two-dimensional singular control problem of finite fuel type for infinite time horizon. The problem stems from the optimal liquidation of an asset position in a financial market with multiplicative and transient price impact. Liquidity is stochastic in that the volume effect process, which determines the inter-temporal resilience of the market in spirit of Predoiu, Shaikhet and Shreve (2011), is taken to be stochastic, being driven by own random noise. The optimal contro...

  7. Cluster Physics with Merging Galaxy Clusters

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  8. A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane

    Harstad, Kenneth G.; Bellan, Josette

    2011-01-01

    The reduction of elementary or skeletal oxidation kinetics to a subgroup of tractable reactions for inclusion in turbulent combustion codes has been the subject of numerous studies. The skeletal mechanism is obtained from the elementary mechanism by removing from it reactions that are considered negligible for the intent of the specific study considered. As of now, there are many chemical reduction methodologies. A methodology for deriving a reduced kinetic mechanism for alkane oxidation is described and applied to n-heptane. The model is based on partitioning the species of the skeletal kinetic mechanism into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement of the species ensemble. For modeling purposes, the heavy species are mathematically decomposed into constituents, which are similar but not identical to groups in the group additivity theory. From analysis of the LLNL (Lawrence Livermore National Laboratory) skeletal mechanism in conjunction with CHEMKIN II, it is shown that a similarity variable can be formed such that the appropriately non-dimensionalized global constituent molar density exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures that is of interest for predicting n-heptane oxidation. Furthermore, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable. The light species ensemble is partitioned into quasi-steady and unsteady species. The reduced model is based on concepts consistent with those of Large Eddy Simulation (LES) in which functional forms are used to replace the small scales eliminated through filtering of the governing equations; in LES, these small scales are unimportant as far as the overwhelming part of dynamic energy is concerned. Here, the scales thought unimportant for recovering the thermodynamic energy are removed. The concept is tested by

  9. Investigation and Applications of In-Source Oxidation in Liquid Sampling-Atmospheric Pressure Afterglow Microplasma Ionization (LS-APAG) Source.

    Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu

    2017-06-01

    A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H] + was observed in the case of individual alkanes (C 5 -C 19 ) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. Graphical Abstract ᅟ.

  10. Size selected metal clusters

    First page Back Continue Last page Overview Graphics. The Optical Absorption Spectra of Small Silver Clusters (5-11) ... Soft Landing and Fragmentation of Small Clusters Deposited in Noble-Gas Films. Harbich, W.; Fedrigo, S.; Buttet, J. Phys. Rev. B 1998, 58, 7428. CO combustion on supported gold clusters. Arenz M ...

  11. The Durban Auto Cluster

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities...

  12. Marketing research cluster analysis

    Marić Nebojša

    2002-01-01

    Full Text Available One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  13. Marketing research cluster analysis

    Marić Nebojša

    2002-01-01

    One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  14. Minimalist's linux cluster

    Choi, Chang-Yeong; Kim, Jeong-Hyun; Kim, Seyong

    2004-01-01

    Using barebone PC components and NIC's, we construct a linux cluster which has 2-dimensional mesh structure. This cluster has smaller footprint, is less expensive, and use less power compared to conventional linux cluster. Here, we report our experience in building such a machine and discuss our current lattice project on the machine

  15. Range-clustering queries

    Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.

    2017-01-01

    In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute

  16. Cosmology with cluster surveys

    Abstract. Surveys of clusters of galaxies provide us with a powerful probe of the den- sity and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter w. Upcoming Sunyaev–. Zel'dovich (SZ) surveys would provide us large yields of clusters to ...

  17. Activity coefficients at infinite dilution for solutes in the trioctylmethylammonium bis(trifluoromethylsulfonyl)imide ionic liquid using gas-liquid chromatography

    Gwala, Nobuhle V.; Deenadayalu, Nirmala; Tumba, Kaniki; Ramjugernath, Deresh

    2010-01-01

    The activity coefficient at infinite dilution (γ 13 ∞ ) for 30 solutes: alkanes, alkenes, cycloalkanes, alkynes, ketones, alcohols, and aromatic compounds was determined from gas-liquid chromatography (glc) measurements at three temperatures (303.15, 313.15, and 323.15) K. The ionic liquid: trioctylmethylammonium bis(trifluoromethylsulfonyl)imide, was used as the stationary phase. For each temperature, γ 13 ∞ values were determined using two columns with different mass percent packing of the ionic liquid. The selectivity (S 12 ∞ ) value was calculated from the γ 13 ∞ to determine the suitability of the solvent as a potential entrainer for extractive distillation in the separation of an hexane/benzene mixture, indicative of a typical industrial separation problem for benchmarking purposes.

  18. Physicochemical properties of fatty acid based ionic liquids

    Rocha, Marisa A.A.; Bruinhorst, Adriaan van den; Schröer, Wolffram; Rathke, Bernd; Kroon, Maaike C.

    2016-01-01

    Highlights: • Effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. • Fatty acid based ionic liquids were synthesized and characterized. • Densities and viscosities at different temperatures have been measured. • The thermal operating window and thermal phase behavior have been evaluated. - Abstract: In this work a series of fatty acid based ionic liquids has been synthesized and characterized. Densities and viscosities at different temperatures have been measured in the temperature range from (293.15 to 363.15) K. The thermal operating window and thermal phase behavior have been evaluated. The effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. It has been observed that the density (T = 298.15 K) decreases with the following sequence: methyltrioctylammonium 4-ethyloctanoate > methyltrioctylammonium oleate ≈ tetrahexylammonium oleate > tetraoctylammonium oleate, with no detectable dependency of the thermal expansion coefficients on the total number of carbons in the ionic liquid. An almost linear correlation between the molar volumes and the total number of carbons of the alkanes together with the studied ionic liquids was found. The experimental viscosity data were correlated using the Vogel–Fulcher–Tammann (VFT) equation, where a maximum relative deviation of 1.4% was achieved. The ionic liquid with branched alkyl chains on the anion presents the highest viscosity, and methyltrioctylammonium oleate has the highest viscosity compared to the rest of the oleate based ionic liquids. The short and long-term stability were evaluated for all ionic liquids, their long-term decomposition temperatures were found to be significantly lower than their short-term decomposition temperatures. From the long-term thermal analysis was concluded that the highest temperature at which these ionic liquids can be kept is 363 K. In addition, the thermal

  19. Cluster decay of 218U isotope

    Shivakumaraswamy, G.; Umesh, T.K.

    2012-01-01

    The phenomenon of spontaneous emission of charged particles heavier than alpha particle and lighter than a fission fragment from radioactive nuclei without accompanied by the emission of neutrons is known as cluster radioactivity or exotic radioactivity. The process of emission of charged particles heavier than alpha particle and lighter than a fission fragment is called exotic decay or cluster decay. The phenomenon of cluster radioactivity was first predicted theoretically by Sandulescu et al in 1980. Rose and Jones made first experimental observations of 14 C emission from 223 Ra in 1984. Several cluster decay modes in trans-lead region have been experimentally observed. The half-life values for different modes of cluster decay from different isotopes of uranium have been calculated using different theoretical models such as the analytical super asymmetric model (ASAFM), Preformed cluster model (PCM) and Coulomb and Proximity potential model (CPPM) etc. Recently some semi-empirical formulae, i.e, single line of universal curve (UNIV), Universal decay law (UDL) for both alpha and cluster radioactivity have also been proposed to explain cluster decay data. The alpha decay half-life of 218-219 U isotopes has been experimentally measured in 2007. The half-life values for different cluster decay modes of 218 U isotopes have been calculated PCM model. Recently in 2011, the half-life values have also been calculated for some cluster decay modes of 222-236 U isotopes using the effective liquid drop description with the varying mass asymmetry (VMAS) shape and effective inertial coefficient. In the light of this, in the present work we have studied the cluster radioactivity of 218 U isotope. The logarithmic half-lives for few cluster decay modes from 218 U isotope have been calculated by using three different approaches, i.e, UNIV proposed by Poenaru et al in 2011, UDL proposed by Qi et al in 2009 and the CPPM model proposed by Santhosh et al in 2002. The CPPM based

  20. Cluster analysis for applications

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  1. Liquidity risk and contagion for liquid funds

    Darolles , Serge; Dudek , Jeremy; Le Fol , Gaëlle

    2014-01-01

    Fund managers face liquidity problems but they have to distinguish the market liquidity risk implied by their assets and the funding liquidity risk. This latter is due to both the liquidity mismatch between assets and liabilities and the redemption risk due to the possible outflows from clients. The main contribution of this paper is the analysis of contagion looking at common market liquidity problems to detect funding liquidity problems. Using the CDS Bond Spread basis as a liquidity indica...

  2. Difference equation model for isothermal gas chromatography expresses retention behavior of homologues of n-alkanes excluding the influence of holdup time

    Wu, Liejun; Chen, Yongli; Caccamise, Sarah A.L.; Li, Qing X.

    2012-01-01

    A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st–5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows the quadratic equation for C3–C30 n-alkanes at column temperatures of 24–260 °C. The first and second order forward differences of the expression (Δlog Δtz and Δ2log Δtz, respectively) are linear and constant, respectively, which validates the DE model. This DE model lays a necessary foundation for further developing a retention model to accurately describe the relationship between the adjusted retention time and z of n-alkanes. PMID:22939376

  3. Rhodium trichloride as a homogeneous catalyst for isotopic hydrogen exchange. Comparison with heterogeneous rhodium in the deuteriation of aromatic compounds and alkanes

    Blake, M R; Garnett, J L; Gregor, I K; Hannan, W; Hoa, K; Long, M A [New South Wales Univ., Kensington (Australia)

    1975-12-03

    The use of rhodium trichloride as a homogeneous catalyst for the exchange of aromatic compounds and alkanes is described; comparison of the results with corresponding data from heterogeneous rhodium metal and other homogeneous systems, e.g., platinum and iridium, supports the proposal that specific type of ..pi..-complex mechanisms are common to all such exchange systems.

  4. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from Southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs.

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-09-01

    The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.

  5. Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges

    Regueira Muñiz, Teresa; Varzandeh, Farhad; Stenby, Erling Halfdan

    2017-01-01

    Isobaric heat capacity of six n-alkanes, i.e. n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane and n-hexadecane, was determined with a Calvet type differential heat-flux calorimeter at 0.1 and 10 MPa in a broad temperature range. The measured isobaric heat capacity data were combined...

  6. Alkane Activation at Ambient Temperatures: Unusual Selectivities, C-C, C-H Bond Scission versus C-C Bond Coupling

    Trionfetti, C.; Agiral, A.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2008-01-01

    Activating bonds: A cold plasma generated by dielectric barrier discharge in a microreactor converts alkanes (C1–C3) at atmospheric pressure. Large amounts of products with higher molecular weight than the starting hydrocarbons are observed showing that C-H activation at lower T favourably leads to

  7. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    Trautmann, Danika; Beyer, Peter D.; Al-Babili, Salim

    2013-01-01

    Alh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate

  8. Enhanced selectivity in non-heme iron catalysed oxidation of alkanes with peracids : evidence for involvement of Fe(IV)=O species

    Berg, Tieme A. van den; Boer, Johannes W. de; Browne, Wesley R.; Roelfes, Gerard; Feringa, Bernard

    2004-01-01

    Catalytic alkane oxidation with high selectivity using peracids and an (N4Py)Fe complex is presented and the role of [(N4Py)Fe(IV)=O]2+ species, molecular oxygen and hydroxyl radicals in the catalysis is discussed.

  9. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  10. Hidden Liquidity

    Cebiroglu, Gökhan; Horst, Ulrich

    2012-01-01

    We cross-sectionally analyze the presence of aggregated hidden depth and trade volume in the S&P 500 and identify its key determinants. We find that the spread is the main predictor for a stock’s hidden dimension, both in terms of traded and posted liquidity. Our findings moreover suggest that large hidden orders are associated with larger transaction costs, higher price impact and increased volatility. In particular, as large hidden orders fail to attract (latent) liquidity to the market, hi...

  11. Clusters in nuclei

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  12. Spatial cluster modelling

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  13. Clusters and how to make it work : Cluster Strategy Toolkit

    Manickam, Anu; van Berkel, Karel

    2014-01-01

    Clusters are the magic answer to regional economic development. Firms in clusters are more innovative; cluster policy dominates EU policy; ‘top-sectors’ and excellence are the choice of national policy makers; clusters are ‘in’. But, clusters are complex, clusters are ‘messy’; there is no clear

  14. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  15. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes

    Ueno, N.; Sugita, K.; Seki, K.; Inokuchi, H.

    1986-01-01

    This paper describes the results of low-energy electron transmission and secondary-electron emission experiments on thin films of long-chain alkanes deposited on metal substrates. The spectral changes due to crystal-melt phase transition were measured in situ in both experiments. The ground-state energy V 0 of the quasifree electron in crystalline state was determined to be 0.5 +- 0.1 eV. The value of V 0 for the molten state was found to be negative. Further, in the crystalline state evidence is found for a direct correspondence between the transmission maxima and the high value of the density of states in the conduction bands

  16. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    Polshettiwar, Vivek

    2012-02-10

    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Source apportionment of PAHs and n-alkanes bound to PM1 collected near the Venice highway.

    Valotto, Gabrio; Rampazzo, Giancarlo; Gonella, Francesco; Formenton, Gianni; Ficotto, Silvia; Giraldo, Giorgia

    2017-04-01

    n-Alkanes and polycyclic aromatic hydrocarbons (PAHs) bound to atmospheric particulate matter (PM 1 ) were investigated in a traffic site located in an urban area of Venice Province (Eastern Po Valley, Italy) during the cold season. Considering the critical situation affecting the Veneto Region concerning the atmospheric pollution and the general lack of information on PM 1 composition and emission in this area, this experimental study aims at determining the source profile, their relative contributions and the dispersion of finer particles. Four sources were identified and quantified using the Positive Matrix Factorization receptor model: (1) mixed combustions related to the residential activities, (2) agricultural biomass burning in addition to the resuspension of anthropogenic and natural debris carried by the wind, (3) gasoline and (4) diesel traffic-related combustions. The role of local atmospheric circulation was also investigated to identify the pollutant sources. Copyright © 2016. Published by Elsevier B.V.

  18. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    Polshettiwar, Vivek; Pasha, Farhan Ahmad; De Mallmann, Aimery; Norsic, Sé bastien; Thivolle-Cazat, Jean; Basset, Jean-Marie

    2012-01-01

    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  20. Computer simulation on generation of nitrogen clusters

    Yano, Katsuki

    1975-01-01

    Numerical calculations were made for supersonic flow of nitrogen gas accompanied by homogeneous condensation through a nozzle. It was demonstrated that nitrogen clusters are generated in a nozzle and, by comparing the experimental results, the surface tension of the clusters was obtained at 0.68 sigmasub(infinity) and the condensation coefficient at 0.1--0.2, where sigmasub(infinity) is the surface tension of plane surface of liquid nitrogen. Numerical results calculated with the above values show that large clusters are produced under conditions of high degree of saturation and high temperature in a gas reservoir, and also when a nozzle with small open angle and/or large throat is used. These results agree well with the experimental results. (auth.)