WorldWideScience

Sample records for alkaline storage battery

  1. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  2. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  3. Battery energy storage technologies

    Science.gov (United States)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  4. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  5. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  6. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  7. Storage Reliability of Reserve Batteries

    Science.gov (United States)

    2007-11-02

    batteries – Environmental concerns, lack of business – Non-availability of some critical materials • Lithium Oxyhalides are systems of choice – Good...exhibit good corrosion resistance to neutral electrolytes (LiAlCl4 in thionyl chloride and sulfuryl chloride ) • Using AlCl3 creates a much more corrosive...Storage Reliability of Reserve Batteries Jeff Swank and Allan Goldberg Army Research Laboratory Adelphi, MD 301-394-3116 jswank@arl.army.mil ll l

  8. Polyvinyl alcohol membranes as alkaline battery separators

    Science.gov (United States)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  9. Lightweight bipolar storage battery

    Science.gov (United States)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  10. Calculation of buffer batteries with voltage-adding storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, R.V.; Koloskov, A.A.; Ratner, G.B.; Sharov, V.N.

    1982-01-01

    A technique is proposed for buffer storage batteries of the NKG type with voltage-adding storage batteries. These batteries (B) guarantee comparatively narrow range of change in the voltage for load with discharge of the storage batteries of the main B to the assigned minimum voltage. The purpose of the calculation is to determine the number of voltage-adding B and the number of storage batteries in each of them. The initial data for calculation are minimum and maximum values of voltage for load and storage batteries of the main B. Expressions have been obtained for determining the depth of the discharge and the final expression for determining the depth of the discharge and the final discharge voltage of the storage batteries of each voltage-adding B. The necessary formulas are presented and the order for making the calculation is given.

  11. A method for making an electrode for an alkaline storage cell

    Energy Technology Data Exchange (ETDEWEB)

    Yanagikhara, N.; Isitobi, M.; Ivaki, T.; Matsumoto, I.

    1983-07-21

    A paste forming active mass is applied to a foam metallic base, which is then etched into the surface of the base filling the pores. The etching is performed in a specific mode. The alkaline storage battery electrode produced in this way has high electrical characteristics. Its manufacturing is mechanized.

  12. 46 CFR 112.55-10 - Storage battery charging.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel...

  13. Determination of the density of zinc powders for alkaline battery

    Institute of Scientific and Technical Information of China (English)

    Beatriz Ares Tejero; David Guede Carnero

    2007-01-01

    The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.

  14. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  15. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2016-01-26

    An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.

  16. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  17. 14 CFR 27.1353 - Storage battery design and installation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  18. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez;

    2013-01-01

    systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal......An increase in number of distributed generation (DG) units in power system allows the possibility of setting-up and operating micro-grids. In addition to a number of technical advantages, micro-grid operation can also reduce running costs by optimally scheduling the generation and/or storage...

  19. Manganese Dioxide with High Specific Surface Area for Alkaline Battery

    Institute of Scientific and Technical Information of China (English)

    HUANG You-ju; LIN Yu-li; LI Wei-shan

    2012-01-01

    The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature.The prepared sample was characterized with X-ray diffraction(XRD),scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET) surface analysis,Fourier transform infrared(FTIR) spectrometry,cyclic voltammetry,altemative current(AC) impedance test and battery discharge test.It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area.The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution,and exhibits larger discharge capacity than EMD,especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.

  20. 14 CFR 23.1353 - Storage battery design and installation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 23... Equipment Electrical Systems and Equipment § 23.1353 Storage battery design and installation. (a) Each storage battery must be designed and installed as prescribed in this section. (b) Safe cell...

  1. Federal Tax Incentives for Battery Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Investments in renewable energy can be more attractive with the contribution of two key federal tax incentives. NREL provides basic information about the investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction, which may apply to battery storage systems owned by a private party (i.e., a tax-paying business).

  2. The Utility Battery Storage Systems Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  3. Battery energy storage market feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  4. A method for making electrodes for an alkaline storage cell

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Khirosava, N.; Khokasono, K.

    1983-07-21

    A strip like porous base with nonporous edges is used to make the cadmium electrodes for a nickel cadmium storage battery. An anode active mass is applied to both sides of the base and then is electrochemically formed. Then the strip is rlled, regulating the thickness of the mass and roasting the edge at high pressure. The strip is cut into measured length electrodes.

  5. Electrical energy storage for the grid: a battery of choices.

    Science.gov (United States)

    Dunn, Bruce; Kamath, Haresh; Tarascon, Jean-Marie

    2011-11-18

    The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

  6. Factors on Storage Performance of MH-Ni Battery

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhong; Jia Chunming; Xing Zhiqiang; Li Li; Ma Yijun

    2004-01-01

    The open voltage of batteries shows different status after MH-Ni batteries are stored for a period of time.Some batteries with 0, 0.9 ~ 1.1V and above 1.1 V were chosen to study their corresponding internal resistances, open voltages and the reduction of capacities, etc.On the basis of battery reaction principle, battery samples were analyzed,and factors causing different storage performance were found out.Therefore, some references on the improvement of battery storage performance were provided.

  7. Fabrication of a three-electrode battery using hydrogen-storage materials

    Science.gov (United States)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  8. Utility Battery Storage Systems Program report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  9. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  10. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    Energy Technology Data Exchange (ETDEWEB)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  11. Electrical characterization of the Magellan batteries after storage

    Science.gov (United States)

    Deligiannis, Frank; Perrone, D.; Distefano, Sal; Timmerman, Paul

    1993-01-01

    Two 22 cell batteries designed by Martin Marietta were tested. The batteries were rated at 26.5 Amp-Hr. The battery design is characterized by the following: Gates Aerospace 42B030AB15, 11 pos/12 neg, Pellon 2536 separator, passivated pos/teflonated neg. The tests can be summarized as follows: (1) no noticeable capacity loss after storage period; and (2) batteries exhibited larger non-uniformity of cell voltages during constant current charge.

  12. Pilhas alcalinas: um dispositivo útil para o ensino de Química Alkaline battery: a useful device in the teaching of chemistry

    Directory of Open Access Journals (Sweden)

    Elaine Y. Matsubara

    2007-08-01

    Full Text Available This paper presents the alkaline battery (MnO2/Zn as a useful device in the teaching of chemistry. The preparation of the battery, the materials used in the preparation of the MnO2 electrode, the mechanism of energy storage and the parameters often used in the understanding of general batteries are discussed in detail. In addition, a schedule and a questionnaire that can be applied in an experimental class have been developed, which allow the assembly of an alkaline battery, its discharge using a galvanostatic or a load-resistance procedure, and the elaboration of a report based on the main text. This experimental class has been offered in the chemistry course of FFCLRP.

  13. Battery technologies for large-scale stationary energy storage.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2011-01-01

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  14. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  15. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...... storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series connected medium voltage batteries with a nominal power of 5MVA to act as a battery charger/discharger....

  16. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper discusses...... the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...

  17. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  18. Method of dosing electrolyte in a sealed storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, R.V.; Akbulatova, A.D.; Mel' nikova, T.A.; Perugina, T.P.

    1981-01-01

    A method is proposed for dosing electrolyte in a sealed storage battery by weighing the storage battery before pouring in the electrolyte, pouring in the electrolyte, forming, removing the surplus electrolyte, repeated weighing, calculation for the difference in the weight of the quantity of the remaining electrolyte and correction for the weight of the quantity of electrolyte according to theoretical calculations. In order to improve accuracy after repeated weighing, a measurement is made of the magnitude of free gas space of the storage battery and a volume of electrolyte is added until it reaches 90-95% of the degree of filling of the pores included in the volume of the gas space.

  19. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  20. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    to hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage...... ratings can enhance the overall system eciency. This work is divided in two parts, "Control of DC-AC Grid Converters" and "Medium Voltage Grid Converters for Energy Storage". The rst part starts with a brief review of control strategies applied to grid connected DC-AC converters. A control implementation...... was realized for a 100 kW active rectier to be used in a 6 kV battery energy storage test bench. In the second part, dierent solutions for power converters to interface energy storage units to medium voltage grid are given. A new modular multilevel converter concept is introduced, where the energy storage...

  1. A method for connecting electrodes in a storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Toda, K.; Karasava, S.

    1983-07-14

    The electrode units, placed into the body of a storage battery (AB), are electrically connected by welding connecting elements which pass through the partitions in the body. The processing is conducted with heating and pressure simultaneously.

  2. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  3. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  4. Secondary batteries with multivalent ions for energy storage.

    Science.gov (United States)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-14

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  5. Optimal bidding strategy of battery storage in power markets considering performance based regulation and battery cycle life

    DEFF Research Database (Denmark)

    He, Guannan; Chen, Qixin; Kang, Chongqing

    2016-01-01

    Large-scale battery storage will become an essential part of the future smart grid. This paper investigates the optimal bidding strategy for battery storage in power markets. Battery storage could increase its profitability by providing fast regulation service under a performance-based regulation...

  6. Battery energy storage market feasibility study -- Expanded report

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  7. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  8. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  9. A method for connecting electrodes in a storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T.; Nakadzima, T.; Toda, K.

    1983-07-14

    Groups of electrodes are placed in the body of a storage battery (AB) divided by partitions. The storage cells are connected using connecting elements passed through openings in the partitions. The elements to be connected are heated with pressure which melts them.

  10. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  11. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  12. Towards greener and more sustainable batteries for electrical energy storage.

    Science.gov (United States)

    Larcher, D; Tarascon, J-M

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  13. Towards greener and more sustainable batteries for electrical energy storage

    Science.gov (United States)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  14. Laboratory study on the behaviour of spent AA household alkaline batteries in incineration.

    Science.gov (United States)

    Almeida, Manuel F; Xará, Susana M; Delgado, Julanda; Costa, Carlos A

    2009-01-01

    The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1h at 1273K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to a filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300K taking into account the composition of the batteries. This analysis was done

  15. Coated magnetic particles in electrochemical systems: Synthesis, modified electrodes, alkaline batteries, and paste electrodes

    Science.gov (United States)

    Unlu, Murat

    Magnetic field effects on electrochemical reactions have been studied and shown to influence kinetics and dynamics. Recently, our group has introduced a novel method to establish magnetic field effects by incorporating inert, magnetic microparticles onto the electrode structure. This modification improved several electrochemical systems including modified electrodes, alkaline batteries, and fuel cells. This dissertation describes the applicability of magnetic microparticles and the understanding of magnetic field effects in modified electrodes, alkaline batteries, and paste electrodes. Magnetic effects are studied on electrodes that are coated with an ion exchange polymer that embeds chemically inert, commercial, magnetic microparticles. The flux (electrolysis current) of redox probe to the magnetically modified system is compared to a similar non-magnetic electrode. Flux enhancements of 60% are achieved at magnetically modified electrode as compared to non-magnetic controls. In addition to modifying electrode surfaces, the incorporation of magnetic microparticles into the electrode material itself establishes a 20% increase in flux. Possible magnetic field effects are evaluated. Study of samarium cobalt modified electrolytic manganese dioxide, EMD electrodes further establish a magnetic effect on alkaline cathode performance. Magnetic modification improves alkaline battery performance in primary and secondary applications. The reaction mechanism is examined through voltammetric methods. This work also includes coating protocols to produce inert magnetic microparticles with high magnetic content. Magnetite powders are encapsulated in a polymer matrix by dispersion polymerization. Composite particles are examined in proton exchange membrane fuel cells to study carbon monoxide tolerance.

  16. Recycling of waste lead storage battery by vacuum methods.

    Science.gov (United States)

    Lin, Deqiang; Qiu, Keqiang

    2011-07-01

    Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance.

  17. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries, wet. 173.159 Section 173.159... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery fluid (wet batteries), may not be packed with other materials except as provided in paragraphs (g)...

  18. 智能蓄电池%Smart storage battery

    Institute of Scientific and Technical Information of China (English)

    成建生; 孙业梅; 刘家骏

    2011-01-01

    蓄电池组管理方案主要有集中检测方案、分布检测方案和分布/集中检测方案,但这些方案都没有解决好蓄电池组连线复杂、售后管理等问题.在各种研究的基础上,首先提出了智能蓄电池这一概念,即在每节蓄电池上加装一个检测装置,采用短距离通讯技术,实现对蓄电池的工作数据与蓄电池管理系统的数据交换,并利用网络通讯技术达到远程数据的传输,有效实现企业对售出的蓄电池实时跟踪服务,提高企业的售后服务水平,为蓄电池组管理系统的研究提供了一种新的思路.%The storage battery management plans may include centralized detection plans, distribution detection plans and centralized/distribution detection plans. But these plans can't resolve commendably the problems about the complicated wiring and after-sale management. The smart storage battery was firstly brought forward based on all kinds of research about storage battery. The smart storage battery could realize the data switching of storage battery and its management system by the way of short distance communication technology, and the remote data transmission by internet communication, which afforded the enterprise a real-time follow-up service, and improved the ability of after-sales service of enterprise. A new way for smart storage battery management system research was proposed.

  19. An alloy used in making lead storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, T.; Fukunaga, K.; Takakhasi, K.

    1982-11-29

    Electrode lattices of a lead, tin and zinc alloy in which the tin content is 0.3 to 3.0 percent by mass and the zinc content is 0.01 to 0.15 percent by mass are used in a lead storage battery. After casting the article is cooled and then is heat treated at 50 to 200C. The lattice may be made in the form of a through, drawn grid. The alloy is also used for making the electrodes. The storage battery has a low autodischarge and a long service life.

  20. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  1. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    Science.gov (United States)

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  2. Process control of the EUS battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Harke, R.; Pierschke, T.; Schroeder, M. [EUS GmbH, Gelsenkirchen (Germany)

    1999-07-01

    The process control of the EUS battery energy storage system (BESS) is presented which is used to improve the utilization of regenerative energies. This multifunctional energy storage system includes three different functions: (i) Uninterruptible power supply (UPS); (ii) Improvement of power quality; (iii) Peak load shaving. UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power under consideration of an increase of system perturbation of electric grids. Peak load shaving means in this case the use of regenerative produced power stored in a battery for high peak load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. The batteries consist of standard OCSM cells with positive tubular plates and negative copper grids but modified according to the special demand of an multifunctional application. This paper is based on two examples where multifunctional energy storage systems have started operation recently in Germany: one system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 3,5 MW wind farm in Bocholt. At each of both places a 1,2 MWh (1h-rate) lead acid battery has been installed. (orig.)

  3. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lawder, M. T.; Suthar, B.; Northrop, P. W. C.; De, S.; Hoff, C. M.; Leitermann, O.; Crow, M. L.; Santhanagopalan, S.; Subramanian, V. R.

    2014-05-07

    The current electric grid is an inefficient system that wastes significant amounts of the electricity it produces because there is a disconnect between the amount of energy consumers require and the amount of energy produced from generation sources. Power plants typically produce more power than necessary to ensure adequate power quality. By taking advantage of energy storage within the grid, many of these inefficiencies can be removed. Advanced modeling is required when using battery energy storage systems (BESS) for grid storage in order to accurately monitor and control the storage system. Battery management systems (BMS) control how the storage system will be used and a BMS that utilizes advanced physics-based models will offer for much more robust operation of the storage system. The paper outlines the current state of the art for modeling in BMS and the advanced models required to fully utilize BMS for both lithium-ion batteries and vanadium redox-flow batteries. In addition, system architecture and how it can be useful in monitoring and control is discussed. A pathway for advancing BMS to better utilize BESS for grid-scale applications is outlined.

  4. A lattice for a lead storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, S.; Fukunaga, K.; Kumano, Y.

    1983-07-13

    Lattices for a lead storage cell are made of a lead alloy which contains (in percent by mass): 0.05 to 0.3 strontium; 0.02 to 0.1 aluminum; 0.05 to 3.0 tin and 0.01 to 3.0 cadmium. The storage cell has low autodischarge and a long service life.

  5. Type Analysis of Storage Battery Used on Urban Rail Vehicle%城轨车辆用蓄电池选型分析

    Institute of Scientific and Technical Information of China (English)

    阎纯洁

    2015-01-01

    文章简述了城轨车辆蓄电池的主要用途,介绍了城市轨道交通车辆普遍应用的铅酸酸性蓄电池和隔镍碱性蓄电池的优、缺点,并对城轨车辆蓄电池选型提出建议。%This paper introduces the main use of the storage battery on urban rail vehicle, and the advantage and disadvan-tage of properly used Lead acid storage battery and Nickel cadmium alkaline storage battery. And gives opinion on type choosing of urban rail vehicle storage battery.

  6. Magnesium-antimony liquid metal battery for stationary energy storage.

    Science.gov (United States)

    Bradwell, David J; Kim, Hojong; Sirk, Aislinn H C; Sadoway, Donald R

    2012-02-01

    Batteries are an attractive option for grid-scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 °C) magnesium-antimony (Mg||Sb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCl(2)-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use of low-cost materials results in a promising technology for stationary energy storage applications.

  7. A method for making electrodes for lead storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ivaki, T.; Kobayasi, K.

    1983-06-04

    Powder, acid resistant thermoplastic resin is applied to a greased electrode of a lead storage battery. The electrode is heated until the resin melts, cooled, producing a film of hardened resin with fine cracks in the absence of pores. The electrode has a long service life with cycling.

  8. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery.

  9. Photovoltaic System Test Platform with Integrated Battery Energy Storage Emulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Stroe, Daniel-Ioan

    2017-01-01

    In this work, we present a hybrid simulation and a real-time test platform for developing control systems for photovoltaic (PV) inverters with integrated battery energy storage (BES). The platform consists of a dual-stage single-phase PV inverter system, DC coupled with a full-bridge grid connected...... or directly to a physical PV array. The platform enables real-time testing of PV+BES control systems, including battery (BMS) and energy management systems (EMS), for a variety of battery technologies, which can be modelled in detail and emulated by the full-bridge grid connected inverter. Such flexibility...... is difficult to achieve with real BES systems, due to electrical safety and cost constrains of high power charge regulators and battery packs....

  10. Batteries for storage of wind-generated energy

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  11. Progress in electrochemical storage for battery systems

    Science.gov (United States)

    Ford, F. E.; Hennigan, T. J.; Palandati, C. F.; Cohn, E.

    1972-01-01

    Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas.

  12. A method for making electrodes for an alkaline storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Isikava, T.; Ivaki, T.; Matsumoto, I.; Yanagikhara, N.

    1983-02-16

    The surface of a porous of a foam metal plate filled with an active mass is covered by a mixture of a fiberous material with an electrolyte resistant powder of a thermoplastic resin. Heating the plate to a temperature close to the melting point of the resin, the powder and fiberous material is melted. Fibers of polyacrylnitrile or carbon and polyethylene powder are used. The produced electrode has a long service life.

  13. A method for making nickel electrodes for alkaline storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Okhira, T.; Inaba, K.; Kumano, Y.; Yamaga, M.

    1983-07-14

    A nitrate or chloride of ruthenium is added to an aqueous NiNO3 solution and then a porous plate is submerged into it, which serves as the electrode base. Electrolysis is then performed using the plate as the cathode. The electrode is caked. It has excellent electrical characteristics.

  14. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  15. Hybrid energy storage: the merging of battery and supercapacitor chemistries.

    Science.gov (United States)

    Dubal, D P; Ayyad, O; Ruiz, V; Gómez-Romero, P

    2015-04-07

    The hybrid approach allows for a reinforcing combination of properties of dissimilar components in synergic combinations. From hybrid materials to hybrid devices the approach offers opportunities to tackle much needed improvements in the performance of energy storage devices. This paper reviews the different approaches and scales of hybrids, materials, electrodes and devices striving to advance along the diagonal of Ragone plots, providing enhanced energy and power densities by combining battery and supercapacitor materials and storage mechanisms. Furthermore, some theoretical aspects are considered regarding the possible hybrid combinations and tactics for the fabrication of optimized final devices. All of it aiming at enhancing the electrochemical performance of energy storage systems.

  16. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    Science.gov (United States)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  17. Battery energy-storage systems — an emerging market for lead/acid batteries

    Science.gov (United States)

    Cole, J. F.

    Although the concept of using batteries for lead levelling and peak shaving has been known for decades, only recently have these systems become commercially viable. Changes in the structure of the electric power supply industry have required these companies to seek more cost-effective ways of meeting the needs of their customers. Through experience gained, primarily in the USA, batteries have been shown to provide multiple benefits to electric utilities. Also, lower maintenance batteries, more reliable electrical systems, and the availability of methods to predict costs and benefits have made battery energy-storage systems more attractive. Technology-transfer efforts in the USA have resulted in a willingness of electric utilities to install a number of these systems for a variety of tasks, including load levelling, peak shaving, frequency regulation and spinning reserve. Additional systems are being planned for several additional locations for similar applications, plus transmission and distribution deferral and enhanced power quality. In the absence of US champions such as the US Department of Energy and the Electric Power Research Institute, ILZRO is attempting to mount a technology-transfer programme to bring the benefits of battery energy-storage to European power suppliers. As a result of these efforts, a study group on battery energy-storage systems has been established with membership primarily in Germany and Austria. Also, a two-day workshop, prepared by the Electric Power Research Institute was held in Dublin. Participants included representatives of several European power suppliers. As a result, ESB National Grid of Ireland has embarked upon a detailed analysis of the costs and benefits of a battery energy-storage system in their network. Plans for the future include continuation of this technology-transfer effort, assistance in the Irish effort, and a possible approach to the European Commission for funding.

  18. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias;

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...... ratio. The dc-dc converter controls the battery charge/discharge current while the grid converter controls the common dc-link voltage and the grid current. The applied control structures and the hardware implementation of both converters are presented, together with their interaction. Experimental...

  19. Ulceration Caused by a Small Alkaline Battery: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Fatih Tekin

    2017-03-01

    Full Text Available Small alkaline or lithium-ion batteries, which are commonly referred to as watch batteries or button cells, may cause potentially dangerous organ injuries and tissue damage if swallowed. This condition, which is commonly seen in children, may cause damage, particularly in the respiratory and gastrointestinal tracts, as well as in the nose, external ear canal, and middle and inner ears. Ulceration due toxin contact is a very rare condition. In this study, we present the case of an 18-month-old male who swallowed a cell which caused damage in the medial femoral area after harmlessly passing through the entire gastrointestinal tract. The battery caused skin necrosis with the contribution of the electrolytic effect of stool in a diaper is an infrequent case and avoidable with only the parents' attention. Usually, swallowing watch batteries does not cause any symptoms or findings, and it easily excreted in stool. However, serious injuries and even deaths in cases involving the nasal cavities, outer and inner ear, esophagus, stomach, intestines, and neighboring organs have been reported in the literature. It is important to acknowledge the negative consequences and signs and symptoms of such conditions, and note that the battery may stick to body parts such as genital, medial femoral, anal, and intergluteal regions that remain in the diaper-covered area and may cause skin ulcerations due to the electrolytic characteristics of the stool.

  20. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  1. Process for the recycling of alkaline and zinc-carbon spent batteries

    Science.gov (United States)

    Ferella, Francesco; De Michelis, Ida; Vegliò, Francesco

    In this paper a recycling process for the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries is proposed. Laboratory tests are performed to obtain a purified pregnant solution from which metallic zinc (purity 99.6%) can be recovered by electrolysis; manganese is recovered as a mixture of oxides by roasting of solid residue coming from the leaching stage. Nearly 99% of zinc and 20% of manganese are extracted after 3 h, at 80 °C with 10% w/v pulp density and 1.5 M sulphuric acid concentration. The leach liquor is purified by a selective precipitation of iron, whereas metallic impurities, such as copper, nickel and cadmium are removed by cementation with zinc powder. The solid residue of leaching is roasted for 30 min at 900 °C, removing graphite completely and obtaining a mixture of Mn 3O 4 and Mn 2O 3 with 70% grade of Mn. After that a technical-economic assessment is carried out for a recycling plant with a feed capacity of 5000 t y -1 of only alkaline and zinc-carbon batteries. This analysis shows the economic feasibility of that plant, supposing a battery price surcharge of 0.5 € kg -1, with a return on investment of 34.5%, gross margin of 35.8% and around 3 years payback time.

  2. Energy storage: Redox Flow Batteries Go Organic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Sprenkle, Vincent L.

    2016-02-19

    Access to sustainable and affordable energy is the foundation for the economic growth of our current society and its future prosperity. Energy harvested from renewable resources, such as solar and wind, although currently at a small fraction, is on a steady trajectory of increasing installation accompanied with falling cost. Driven also by the need to reduce the carbon footprint from electricity generation, they could provide a clean and sustainable energy future. The caveat, however, is the intermittent and fluctuating nature of the renewables, which threatens the stability of the grid when its share surpasses 20% of the overall energy capacity. 1 Besides the on-demand power generation, electrical energy storage is another potentially cost-effective way to provide massive energy storage for not only renewable energy integration, but to balance the mismatch between supply and demand, and the improvement of grid reliability and efficiency also.

  3. Battery outgassing sensor for electric drive vehicle energy storage systems

    Science.gov (United States)

    Beshay, Manal; Chandra Sekhar, Jai Ganesh; Kempen, Lothar U.

    2011-06-01

    Lithium-ion batteries have been proven efficient as high power density and low self-discharge rate energy storage systems, specifically in electrical drive vehicles. An important safety factor associated with these systems is the potential hazardous release and outgassing of toxic chemical vapors such as hydrogen fluoride (HF) and hydrogen sulfides (H2S), and relatively elevated levels of carbon dioxide (CO2). The release and accumulation of such gases emphasizes an in-line monitoring need. Intelligent Optical Systems, Inc. (IOS) has identified a viable approach for the development of an onboard optical sensor array that can be used to monitor battery outgassing. This paper discusses the potential of developing a battery outgas sensing approach that will meet sensitivity and response time requirements.

  4. Energy Storage: Batteries and Fuel Cells for Exploration

    Science.gov (United States)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  5. Nanostructured Ion Storage Electrode Materials for Lithium Batteries and Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    S.R.S.Prabaharan

    2007-01-01

    1 Results Performance of lithium-ion batteries, electrochemical capacitors, and other electric-energy storage devices is not only determined simply by macroscopic chemical composition of their electrode, but also strongly affected by shape and size of the active materials. Nanostructured materials are distinguished from conventional polycrystalline materials by the nanometer size of the structural units that compose them, and they often exhibit properties that are drastically different from the conventi...

  6. Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing

    Science.gov (United States)

    de Souza, Cleusa Cristina Bueno Martha; Tenório, Jorge Alberto Soares

    This paper describes the leaching experiments and the electrowinning tests to recover Zn and Mn from spent household alkaline batteries. After the dismantling of the batteries, the black powder was analyzed and found to contain 21 wt.% Zn and 45%wt. Mn. Therefore, it was considered that recovery of these metals would be interesting due to their relatively large amounts in this kind of waste. Batch laboratory experiments were carried out to develop an acid leaching procedure and to determine appropriate leaching conditions to maximize zinc extraction and to study the leaching behavior of Mn. An experimental study was undertaken to evaluate the feasibility of simultaneous recovery of zinc and particulate manganese dioxide using a laboratory cell. The results from these electrowinning experiments are also presented in this paper.

  7. Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries

    Science.gov (United States)

    Veloso, Leonardo Roger Silva; Rodrigues, Luiz Eduardo Oliveira Carmo; Ferreira, Daniel Alvarenga; Magalhães, Fernando Silva; Mansur, Marcelo Borges

    A hydrometallurgical route is proposed in this paper for the selective separation of zinc and manganese from spent alkaline batteries. The recycling route comprises the following steps: (1) batteries dismantling to separate the spent batteries dust from other components (iron scraps, plastic and paper), (2) grinding of the batteries dust to produce a black homogeneous powder, (3) leaching of the powder in two sequential steps, "neutral leaching with water" to separate potassium and produce a KOH solution, followed by an "acidic leaching with sulphuric acid" to remove zinc and manganese from the powder, and (4) selective precipitation of zinc and manganese using the KOH solution (pH around 11) produced in the neutral leaching step. For the acidic leaching step, two alternative routes have been investigated (selective leaching of zinc and total leaching) with regard to the following operational variables: temperature, time, sulphuric acid concentration, hydrogen peroxide concentration and solid/liquid ratio. The results obtained in this study have shown that the proposed route is technically simple, versatile and provides efficient separation of zinc and manganese.

  8. Alkaline rechargeable zinc-air battery; Alkalische wiederaufladbare Zink-Luft Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.; Holzer, F.; Masanz, G.; Boss, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schlatter, C.; Comninellis, C. [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1996-11-01

    Because of its high energy density, compatibility with aqueous electrolytes and the low toxicity of its active materials, the zinc-air battery system is an interesting candidate for electric vehicle applications. The use of O{sub 2} from the air as a reactant requires a partially open cell construction and a technologically challenging air interface. This report describes the research and development program at the Paul Scherrer Institute which finally led to the demonstration of a durable, electrically rechargeable zinc-oxygen battery. In a first phase the research program was focused on the development of bifunctional oxygen diffusion electrodes and pasted zinc electrodes. The current-potential behaviour and the cycle life performance of anodes and cathodes was tested in single electrode measurements (three-electrode arrangements) as well as in complete monopolar zinc-oxygen and zinc-air cells. La{sub 0.6}Ca{sub 0.4}CoO{sub 3}-activated bifunctional oxygen diffusion electrodes in combination with pasted zinc electrodes of ca 100 mAh/cm{sup 2} showed a maximum cycle life of ca. 450 cycles (6 h charge, 3 h discharge). In the second phase of the project we optimized the structure of the pasted zinc electrode to improve the available capacity and peak power of the battery system. Based on the mass of the cell components, a specific peak power of 275 W/kg with O{sub 2} and 200 W/kg with air was calculated for complete batteries. In the specific power range of 100-30 W/kg, values between 70 and 150 Wh/kg are expected for the specific energy. The cycle life of bifunctional oxygen electrodes operated at different oxygen reduction and evolution currents in pure oxygen and in air containing different concentrations of CO{sub 2} was determined. In collaboration with the Federal Inst. of Technology, Lausanne, a bipolar filter-press-type electrically rechargeable Zn/O{sub 2} battery delivering a peak power of ca. 100 W has been developed. (author) 20 figs., 2 tabs., 25 refs.

  9. Second Use of PEV Batteries: A Massive Storage Resource for Revolutionizing the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Pesaran, Ahmad; Wood, Eric; Smith, Kandler

    2015-05-27

    The market penetration of plug-in electric vehicles (PEVs) and deployment of grid-connected energy storage systems are both presently impeded by the high cost of batteries. Battery second use (B2U) strategies-in which a single battery first serves an automotive application, then is redeployed into a secondary market-could help address both issues by reducing battery costs to the primary repurposed PEV batteries to serve grid applications for energy storage. The authors view this as of significant importance, as our expectation is that such batteries will be both cheap and plentiful. Understanding the dynamics of B2U will be important for customers and utilities in need of storage to understand when and where such batteries will be applicable. It will also be important for suppliers of other energy storage technologies, as repurposed PEV batteries could pose a significant threat to their business model.

  10. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass....... This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage...... devices are presented. It is concluded that not only should the energy storage devices of a FCHEV be sized by their power and energy requirements, but the battery lifetime should also be considered. Two energy-management strategies, which sufficiently divide the load power between the fuel cell stack...

  11. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  12. Second life battery energy storage systems:converter topology and redundancy selection

    OpenAIRE

    Mukherjee, N.; Strickland, D

    2014-01-01

    Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on ...

  13. Hybrid supercapacitor-battery materials for fast electrochemical charge storage.

    Science.gov (United States)

    Vlad, A; Singh, N; Rolland, J; Melinte, S; Ajayan, P M; Gohy, J-F

    2014-03-07

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles--bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents.

  14. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.;

    2015-01-01

    must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is investigated in the present work. This paper proposes a method for determining firstly, the optimal rating...... of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...

  15. Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes

    Science.gov (United States)

    Suresh Kannan, A. R.; Muralidharan, S.; Sarangapani, K. B.; Balaramachandran, V.; Kapali, V.

    Several attempts are being made to avoid the use of mercury-bearing zinc/zinc alloys as anodes in alkaline power sources. The work presented here suggests the possible use of some ternary alloys based on zinc of purity 99.9 to 99.95 wt.% as anodes in 10 M NaOH solution with sodium citrate, sodium stannate and calcium oxide as complexing agents and inhibitors. The corrosion of zinc and its alloys in 10 M NaOH solution is under cathodic control; in other alkaline electrolytes, it is under anodic control. Anode efficiency of up to 99.0% is achieved. The corrosion rates of zinc and its alloys are found to be comparable with those of mercury-bearing zinc in the chosen electrolytes. It is concluded that both dry cells and Zn-air batteries can be constructed with the above anodes and alkaline electrolytes. Thus, the presence of mercury, either in the anode or in the electrolyte, is avoided.

  16. Economic Analysis Case Studies of Battery Energy Storage with SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  17. Dynamic analysis of a photovoltaic power system with battery storage capability

    Science.gov (United States)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  18. Rechargeability and economic aspects of alkaline zinc-manganese dioxide cells for electrical storage and load leveling

    Energy Technology Data Exchange (ETDEWEB)

    Ingale, ND; Gallaway, JW; Nyce, M; Couzis, A; Banerjee, S

    2015-02-15

    Batteries based on manganese dioxide (MnO2) cathodes are good candidates for grid-scale electrical energy storage, as MnO2 is low-cost, relatively energy dense, safe, water-compatible, and non-toxic. Alkaline Zn-MnO2 cells, if cycled at reduced depth of discharge (DOD), have been found to achieve substantial cycle life with battery costs projected to be in the range of $100 to 150 per kWh (delivered). Commercialization of rechargeable Zn-MnO2 batteries has in the past been hampered due to poor cycle life. In view of this, the work reported here focuses on the long-term rechargeability of prismatic MnO2 cathodes at reduced DOD when exposed to the effects of Zn anodes and with no additives or specialty materials. Over 3000 cycles is shown to be obtainable at 10% DOD with energy efficiency >80%. The causes of capacity fade during long-term cycling are also investigated and appear to be mainly due to the formation of irreversible manganese oxides in the cathode. Analysis of the data indicates that capacity loss is rapid in the first 250 cycles, followed by a regime of stability that can last for thousands of cycles. A model has been developed that captures the behavior of the cells investigated using measured state of charge (SOC) data as input. An approximate economic analysis is also presented to evaluate the economic viability of Zn-MnO2 batteries based on the experiments reported here. (C) 2014 Elsevier B.V. All rights reserved.

  19. A method for connecting electrodes in a storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Toda, K.; Karasava, S.

    1983-07-14

    Groups of electrodes are placed into a common casing for the storage battery (AB) divided by partitions. The groups are electrically connected, inserting connecting elements into openings in the partitions and melting them with compression and heating. One of the connecting elements is made in the form of a cylinder with a flat face, while the other is made in the form of a cylinder with a head which has the form of a segment turned by its convex side towards the flat face of the first cylinder in the cross section.

  20. Vanadium Flow Battery for Energy Storage: Prospects and Challenges.

    Science.gov (United States)

    Ding, Cong; Zhang, Huamin; Li, Xianfeng; Liu, Tao; Xing, Feng

    2013-04-18

    The vanadium flow battery (VFB) as one kind of energy storage technique that has enormous impact on the stabilization and smooth output of renewable energy. Key materials like membranes, electrode, and electrolytes will finally determine the performance of VFBs. In this Perspective, we report on the current understanding of VFBs from materials to stacks, describing the factors that affect materials' performance from microstructures to the mechanism and new materials development. Moreover, new models for VFB stacks as well as structural design will be summarized as well. Finally, the challenges, the overall cost evaluation, and future research directions will be briefly proposed.

  1. Modelling challenges for battery materials and electrical energy storage

    Science.gov (United States)

    Muller, Richard P.; Schultz, Peter A.

    2013-10-01

    Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high

  2. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    Science.gov (United States)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The

  3. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    Science.gov (United States)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  4. Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Desai, D; Wei, X; Steingart, DA; Banerjee, S

    2014-06-15

    Preferred orientation of zinc deposits during charging is shown to significantly improve performance and cycle life in flow-assisted alkaline zinc batteries, which has not been demonstrated earlier. The preferred orientation of zinc deposits was investigated using X-ray diffraction (XRD). Compact zinc is found to have (11 (2) over bar2) preferred orientation on brass, which contributes to similar to 60% of the texture. The effect of charging current and zincate concentration on morphology was investigated in a rotating hull cell and correlated with anodic efficiency. Compact zinc deposits are found to have a fine-grained, bright finish and the highest anodic efficiency. Electrochemical impedance spectroscopy (EIS) proves that compact zinc corresponds to the minimum in the half-cell resistance. Morphological control using compact zinc could be accomplished using innovations such as pulse charging or enhanced mass-transfer to improve anode performance without affecting the cathode. (C) 2014 Elsevier B.V. All rights reserved.

  5. Battery Energy Storage System for PV Output Power Leveling

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2014-01-01

    Full Text Available Fluctuating photovoltaic (PV output power reduces the reliability in power system when there is a massive penetration of PV generators. Energy storage systems that are connected to the PV generators using bidirectional isolated dc-dc converter can be utilized for compensating the fluctuating PV power. This paper presents a grid connected energy storage system based on a 2 kW full-bridge bidirectional isolated dc-dc converter and a PWM converter for PV output power leveling. This paper proposes two controllers: a current controller using the d-q synchronous reference and a phase-shift controller. The main function of the current controller is to regulate the voltage at the high-side dc, so that the voltage ratio of the high-voltage side (HVS with low-voltage side (LVS is equal to the transformer turns ratio. The phase-shift controller is employed to manage the charging and discharging modes of the battery based on PV output power and battery voltage. With the proposed system, unity power factor and efficient active power injection are achieved. The feasibility of the proposed control system is investigated using PSCAD simulation.

  6. Recovery of pure ZnO nanoparticles from spent Zn-MnO₂ alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Kumar, Kamal; Kumar, Parveen; Kumar, Pawan; Sharma, Amit L; Gupta, Bina; Bharadwaj, Lalit M

    2011-12-15

    The recovery of pure ZnO (zinc oxide) nanoparticles from spent Zn-Mn dry alkaline batteries is reported. Spent batteries were dismantled to separate the contained valuable metals of the cell electrodes in the form of black powder. Treatment of this black powder with 5 mol L(-1) HCl produced leach liquor, primarily containing 2.90 g L(-1) Zn and 2.02 g L(-1) Mn. Selective and quantitative liquid-liquid extraction of Zn(II) was then carried out in three counter current steps by using Cyanex 923 (0.10 mol L(-1) in n-hexane). Zn(II) distributed in the organic phase as complex ZnCl(2)·2R (R = Cyanex 923 molecule). The metal loaded organic phase was subjected to combust at 600 °C to yield pure ZnO nanoparticles (40-50 nm). Important characteristics of the synthesized nanoparticles were investigated by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and atomic force microscopy (AFM).

  7. The output of lead storage battery in China accounts for 1/3 in the world

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>China has now become the world largest manu- facturer and exporter of lead storage battery, with its output taking 1/3 in the world.Accord- ing to incomplete statistics,there are about 1500 lead storage battery manufacturers in China and the output has been growing at a

  8. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, Mohammed G.; Hartel, Pieter H.

    2010-01-01

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  9. Life cycle assessment of primary control provision by battery storage systems and fossil power plants

    OpenAIRE

    Koj, Jan Christian; Stenzel, Peter; Schreiber, Andrea; Hennings, Wilfried; Zapp, Petra; Wrede, Gunnar; Hahndorf, Ina

    2015-01-01

    Increasing renewable energy generation influences the reliability of electric power grids. Thus, there is a demand for new technical units providing ancillary grid services. Intermittent renewable energy sources can be balanced by energy storage devices, especially battery storage systems. By battery systems grid efficiency and reliability as well as power quality can be increased. A further characteristic of battery systems is the ability to respond rapidly and precisely to frequency deviati...

  10. Development of power storage system. Advanced battery power storage system. (The development results and research plan in 1988 fiscal year)

    Energy Technology Data Exchange (ETDEWEB)

    Kouda, Atsushi; Yazawa, Tetsuo

    1988-07-01

    The research and trial manufacture of 1kW battery on the electrode and battery construction, development of 10kW battery module, capacity enlarging and trial manufacturing as to four type batteries, that is, Na-S battery, Zn-Cl battery, Zn-Br battery and redox flow type battery were forwarded as the items to be developed in Japan for the advanced battery power storage system. The research and development of system technology was started in 1980 to verify the operating and controlling characteristics and the protection system. The technology of the 60kW class module for 1,000kW class battery system was established in 1987 and the total system research and development is forwarding. The 1,000kW class system test is continued; the 60kW class module batteries of Na-S battery and Zn-Br battery are operated; the fabrication of 1,000kW class pilot plant is initiated; and the reliability and safety of the power system are verified in 1988. (1 fig, 2 tabs)

  11. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    OpenAIRE

    Pinto, Claudio; Barreras, Jorge Varela; Castro, Ricardo; Schaltz, Erik; Andreasen, Søren Juhl; Araujo, Rui Esteves

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operatin...

  12. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2016-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re......Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...

  13. Development of power storage system. Review of development for advanced battery technique in Yuasa Battery Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Yuasa Battery Co., Ltd. selected the ceramic battery (Na/S) for power storage to establish the basic technique, to enlarge the capacity and to develop the 50kW/400kWh battery system. The ceramic battery is one where Na and S are combined and the beta alumina, that is, a special solid hydrolyte is utilized as the Na ion conductor. The battery system under development consists of 1120 batteries in which each nominal capacity is 540Wh, and which are connected to series and parallel and is put in a insulating electric furnace. The 76-77% energy efficiency in the constant power charging and discharging per every 8 hours specified, was established at the initial test of NO. 1 50kW/400kW power system. Other tests are conducting. (1 fig, 1 tab, 2 photo)

  14. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., DG-1269 ``Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear... lead-acid storage batteries in nuclear power plants. DATES: Submit comments by May 13, 2013....

  15. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants.'' The guide... with regard to the maintenance, testing, and replacement of vented lead-acid storage batteries...

  16. Characterization of the products attained from a thermal treatment of a mix of zinc-carbon and alkaline batteries.

    Science.gov (United States)

    Kuo, Yi-Ming; Lin, Chitsan; Wang, Jian-Wen; Huang, Kuo-Lin; Tsai, Cheng-Hsien; Wang, Chih-Ta

    2016-01-01

    This study applies a thermal separation process (TSP) to recover Fe, Mn, and Zn from hazardous spent zinc-carbon and alkaline batteries. In the TSP, the batteries were heated together with a reducing additive and the metals in batteries, according to their boiling points and densities, were found to move into three major output materials: slag, ingot (mainly Fe and Mn), and particulate (particularly Zn). The slag well encapsulated the heavy metals of interest and can be recycled for road pavement or building materials. The ingot had high levels of Fe (522,000 mg/kg) and Mn (253,000 mg/kg) and can serve as an additive for stainless steel-making processes. The particulate phase had a Zn level of 694,000 mg/kg which is high enough to be directly sold for refinement. Overall, the TSP effectively recovered valuable metals from the hazardous batteries.

  17. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    Science.gov (United States)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  18. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, María V., E-mail: plapimu@yahoo.com.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Falco, Lorena R., E-mail: mlfalco@quimica.unlp.edu.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Peluso, Miguel A., E-mail: apelu@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Sambeth, Jorge E., E-mail: sambeth@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Thomas, Horacio J. [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina)

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  19. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    Science.gov (United States)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  20. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    Science.gov (United States)

    Belardi, G; Lavecchia, R; Medici, F; Piga, L

    2012-10-01

    The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357°C and 906°C the boiling point of mercury and zinc and 1564°C the melting point of Mn(2)O(3). Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400°C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000°C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200°C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.

  1. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  2. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System

    Science.gov (United States)

    Chong, Lee Wai; Wong, Yee Wan; Rajkumar, Rajprasad Kumar; Isa, Dino

    2016-11-01

    This paper proposes an optimal control strategy for a standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System to prolong battery lifespan by reducing the dynamic stress and peak current demand of the battery. Unlike the conventional methods which only use either filtration based controller (FBC) or fuzzy logic controller (FLC), the proposed control strategy comprises of a low-pass filter (LPF) and FLC. Firstly, LPF removes the high dynamic components from the battery demand. FLC minimizes the battery peak current demand while constantly considering the state-of-charge of the supercapacitor. Particle swarm optimization (PSO) algorithm optimizes the membership functions of the FLC to achieve optimal battery peak current reduction. The proposed system is compared to the conventional system with battery-only storage and the systems with conventional control strategies (Rule Based Controller and FBC). The proposed system reduces the battery peak current, battery peak power, maximum absolute value of the rate of change of power and average absolute value of the rate of change of power by 16.05%, 15.19%, 77.01%, and 95.59%, respectively as compared to the conventional system with battery-only storage. Moreover, he proposed system increases the level of supercapacitor utilization up to 687.122% in comparison to the conventional control strategies.

  3. Toroidal cell and battery. [storage battery for high amp-hour load applications

    Science.gov (United States)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  4. Sodium-sulfur batteries for spacecraft energy storage

    Science.gov (United States)

    Dueber, R. E.

    1986-01-01

    Power levels for future space missions will be much higher than are presently attainable using nickel-cadmium and nickel-hydrogen batteries. Development of a high energy density rechargeable battery is essential in being able to provide these higher power levels without tremendous weight penalties. Studies conducted by both the Air Force and private industry have identified the sodium-sulfur battery as the best candidate for a next generation battery system. The advantages of the sodium-sulfur battery over the nickel-cadmium battery are discussed.

  5. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  6. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    Science.gov (United States)

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature.

  7. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    Science.gov (United States)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  8. Second life battery energy storage system for enhancing renewable energy grid integration

    OpenAIRE

    Koch-Ciobotaru, Cosmin; Saez-de Ibarra, Andoni; Martinez-Laserna, Egoitz; Stroe, Daniel-Ioan; Swierczynski, Maciej; Rodríguez Cortés, Pedro

    2015-01-01

    Connecting renewable power plants to the grid must comply with certain codes and requirements. One requirement is the ramp rate constraint, which must be fulfilled in order to avoid penalties. As this service becomes compulsory with an increased grid penetration of renewable, all possible solutions must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is i...

  9. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  10. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin;

    2015-01-01

    The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric...

  11. Balancing autonomy and utilization of solar power and battery storage for demand based microgrids

    Science.gov (United States)

    Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  12. Balancing Autonomy and Utilization of Solar Power and Battery Storage for Demand Based Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  13. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  14. The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development

    OpenAIRE

    Crabtree, George

    2014-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and i...

  15. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  16. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  17. The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development

    CERN Document Server

    Crabtree, George

    2014-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  18. Characterization of alkaline-earth oxide additions to the MnO{sub 2} cathode in an aqueous secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Minakshi, Manickam, E-mail: minakshi@murdoch.edu.au [Extractive Metallurgy, Murdoch University, Murdoch, WA 6150 (Australia); Blackford, Mark [Institute of Materials Engineering, ANSTO, Lucas Heights, NSW 2234 (Australia); Ionescu, Mihail [Institute for Environment Research, ANSTO, Lucas Heights, NSW 2234 (Australia)

    2011-05-19

    Highlights: > Adding MgO in MnO{sub 2} cathode enhances the battery discharge capacity. > Mechanism appears to be different with those of our previously published results. > Capacity fade with subsequent cycling is reduced only for MgO but not for BaO. > Transferred the primary battery into a secondary while using LiOH as electrolyte. - Abstract: The effect of alkaline-earth oxide additions on aqueous rechargeable battery is investigated using microscopic and spectroscopic techniques. The alkaline-earth oxide additions such as magnesium oxide (MgO) and barium oxide (BaO) were physically mixed to the manganese dioxide (MnO{sub 2}) cathode of a cell comprising zinc as an anode and aqueous lithium hydroxide as the electrolyte. The results showed that such additions greatly improved the discharge capacity of the battery (from 145 to 195 for MgO and 265 mAh/g for BaO). Capacity fade with subsequent cycling is reduced only for MgO but not for BaO. With an aim to understand the role of these additives and its improvement in cell performance, we have used microscopy, spectroscopy, ion beam analysis and diffraction based techniques to study the process. Transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy analysis (EDS) results showed evidence of crystalline MnO{sub 2} particles for MgO as additive, whereas, MnO{sub 2} particles with diffused structure leading to mixture of phases is observed for BaO additives which is in agreement with X-ray diffraction (XRD) data. This work relates to improvement in the electrochemical behaviour of the Zn-MnO{sub 2} battery while the MgO additive helps to reduce the formation of manganese and zinc such as hetaerolite that hinders the lithium intercalation.

  19. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany

    Directory of Open Access Journals (Sweden)

    Alexander Zeh

    2016-09-01

    Full Text Available The application of stationary battery storage systems to German electrical grids can help with various storage services. This application requires controlling the charge and discharge power of such a system. For example, photovoltaic (PV home storage, uninterruptible power supply, and storage systems for providing ancillary services such as primary control reserves (PCRs represent battery applications with positive profitability. Because PCRs are essential for stabilizing grid frequency and maintaining a robust electrical grid, German transmission system operators (TSOs released strict regulations in August 2015 for providing PCRs with battery storage systems as part of regulating the International Grid Control Cooperation (IGCC region in Europe. These regulations focused on the permissible state of charge (SoC of the battery during nominal and extreme conditions. The concomitant increased capacity demand oversizing may result in a significant profitability reduction, which can be attenuated only by using an optimal parameterization of the control algorithm for energy management of the storage systems. In this paper, the sizing optimization is achieved and a recommendation for a control algorithm that includes the appropriate parameters for the requirements in the German market is given. Furthermore, the storage cost is estimated, including battery aging simulations for different aging parameter sets to allow for a realistic profitability calculation.

  20. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  1. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    Science.gov (United States)

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  2. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2015-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re......Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...

  3. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  4. Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

    OpenAIRE

    Arindam Chakraborty; Musunuri, Shravana K.; Anurag K. Srivastava; Kondabathini, Anil K.

    2012-01-01

    Integration of STATCOM with energy storage devices plays an imperative role in improving the power system operation and control. Significant research has been done in this area for practical realization of benefits of the integration. This paper, however, pays particular importance to the performance improvement for the transients as is achievable by STATCOM with battery-powered storage systems. Application of STATCOM with storage in regard to intermittent renewable energy sources such as win...

  5. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    OpenAIRE

    BAROTE, L.; MARINESCU, C.

    2012-01-01

    This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG), driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropri...

  6. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  7. Alkaline manganese--zinc battery. [2000 Ah, 100 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Naumenko, V.A.; Lyapuntsova, T.G.; Lidorenko, N.S.; Lebedeva, E.S.; Penkova, L.F.; Aleshin, V.N.

    1975-02-12

    The battery described consisted of flat electrodes assembled in a pack. Cathodes were enclosed in perforated metal frames, while the anodes were metal plates coated with zinc. The batteries had capacities of about 2000 Ah and power--weight ratios of 100 Wh/kg and were resistant to shock and vibration. (RWR)

  8. Battery Energy Storage System battery durability and reliability under electric utility grid operations: Analysis of 3 years of real usage

    Science.gov (United States)

    Dubarry, Matthieu; Devie, Arnaud; Stein, Karl; Tun, Moe; Matsuura, Marc; Rocheleau, Richard

    2017-01-01

    Battery Energy Storage Systems (BESSs) show promise to help renewable energy sources integration onto the grid. These systems are expected to last for a decade or more, but the actual battery degradation under different real world conditions is still largely unknown. In this paper we analyze 3 years of usage of a lithium titanate BESS installed and in operation on an island power system in Hawai'i. The BESS was found to be operational 90% of the time and stored a cumulative 1.5 GWh of energy, which represents more than 5000 equivalent full cycles on the cells. This paper presents a statistical analysis of the BESS usage, develops a representative duty cycle, and provides an initial estimate of BESS degradation. The battery duty cycle was characterized based on 5 parameters: pulses duration, pulses intensity (current), SOC swing range, SOC event ramp rate, and temperature.

  9. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    Energy Technology Data Exchange (ETDEWEB)

    Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  10. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  11. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  12. Smart materials for energy storage in Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Ashraf E Abdel-Ghany

    2016-01-01

    Full Text Available Advanced lithium-ion batteries contain smart materials having the function of insertion electrodes in the form of powders with specific and optimized electrochemical properties. Different classes can be considered: the surface modified active particles at either positive or negative electrodes, the nano-composite electrodes and the blended materials. In this paper, various systems are described, which illustrate the improvement of lithium-ion batteries in term of specific energy and power, thermal stability and life cycling.

  13. Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2010-02-01

    With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

  14. Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic + diesel) power systems

    Science.gov (United States)

    Shaahid, S. M.; Elhadidy, M. A.

    2005-09-01

    An important element of hybrid photo- voltaic(PV) + diesel sytem is battery storage. Size of battery storage plays a role in optimum operation of the hybrid system. Emphasis needs to be placed on this issue. In this perspective, hourly solar radiation data, for the period 1986 93 recorded at Dhahran, Saudi Arabia, have been analyzed to investigate the optimum size of battery storage capacity for hybrid (PV + diesel) power systems. Various sizing configurations have been simulated. The monthly average daily values of solar global radiation range from 3.61 to 7.96kWh/m2. As a case study, hybrid systems considered in the present analysis consist of 225m2 PV array area (panels/modules) supplemented with battery storage unit and diesel backup generators (to meet the load requirements of a typical residential building with annual electrical energy demand of 35,200kWh). The monthly average energy generated from the aforementioned hybrid system for different scenarios has been presented. More importantly, the study explores the influence of variation of battery storage capacity on hybrid power generation. The results exhibit a trade-off between size of the storage capacity and diesel power to be generated to cope with annual load distribution. Concurrently, the energy to be generated from the diesel generator and the number of operational hours of the diesel system to meet the load demand have been also addressed.The study shows that for optimum operation of diesel system, storage capacity equivalent to 12 18h of maximum monthly average hourly demand need to be used. It has been found that in the absence of battery bank, ˜58% of the load needs to be provided by the diesel system. However, use of 12h of battery storage (autonomy) reduces diesel energy generation by ˜49% and the number of hours of operation of the diesel system get reduced by about ˜82%. The findings of this study can be employed as a tool for sizing of battery storage for PV/diesel systems for other

  15. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  16. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan;

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  17. Pre-Study for a Battery Storage for a Kinetic Energy Storage System

    OpenAIRE

    2015-01-01

    This bachelor thesis investigates what kind of battery system that is suitable for an electric driveline equipped with a mechanical fly wheel, focusing on a battery with high specific energy capacity. Basic battery theory such as the principle of an electrochemical cell, limitations and C-rate is explained as well as the different major battery systems that are available. Primary and secondary cells are discussed, including the major secondary chemistries such as lead acid, nickel cadmium (Ni...

  18. Comparing the Net Cost of CSP-TES to PV Deployed with Battery Storage

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, Jennie; Mehos, Mark; Denholm, Paul

    2016-05-31

    Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs provides a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.

  19. Comparing the net cost of CSP-TES to PV deployed with battery storage

    Science.gov (United States)

    Jorgenson, Jennie; Mehos, Mark; Denholm, Paul

    2016-05-01

    Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs provides a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.

  20. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand;

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  1. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  2. Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles

    OpenAIRE

    Cong Zhang; Haitao Min; Yuanbin Yu; Dai Wang; Justin Luke; Daniel Opila; Samveg Saxena

    2016-01-01

    Range anxiety and battery cycle life are two major factors which restrict the development of electric vehicles. Battery degradation can be reduced by adding supercapacitors to create a Hybrid Energy Storage System. This paper proposes a systematic approach to configure the hybrid energy storage system and quantifies the battery degradation for electric vehicles when using supercapacitors. A continuous power-energy function is proposed to establish supercapacitor size based on national househo...

  3. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation.

  4. Battery cycle life balancing in a microgrid through flexible distribution of energy and storage resources

    Science.gov (United States)

    Khasawneh, Hussam J.; Illindala, Mahesh S.

    2014-09-01

    In this paper, a microgrid consisting of four fuel cell-battery hybrid Distributed Energy Resources (DERs) is devised for an industrial crusher-conveyor load. Each fuel cell was accompanied by a Li-ion battery to provide energy storage support under islanded condition of the microgrid since the fuel cells typically have poor transient response characteristics. After carrying out extensive modeling and analysis in MATLAB®, the battery utilization was found to vary significantly based on the DER's 'electrical' placement within the microgrid. This paper presents, under such conditions, a variety of battery life balancing solutions through the use of the new framework of Flexible Distribution of EneRgy and Storage Resources (FDERS). It is based on an in-situ reconfiguration approach through 'virtual' reactances that help in changing the 'electrical' position of each DER without physically displacing any component in the system. Several possible approaches toward balancing the battery utilization are compared in this paper taking advantage of the flexibility that FDERS offers. It was observed that the estimated battery life is dependent on factors such as cycling sequence, pattern, and occurrence.

  5. In situ La, Ce, and Nd L-edge X-ray absorption fine structure study of an intermetallic metal hydride electrode in an operating alkaline battery

    Energy Technology Data Exchange (ETDEWEB)

    Tryk, D.A.; Bae, I.T.; Scherson, D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Chemistry; Antonio, M.R. [Argonne National Lab., IL (United States). Chemistry Division; Jordan, G.W.; Huston, E.L. [Energizer Power Systems, Gainesville, FL (United States)

    1995-05-01

    The X-ray absorption fine structure of a technologically important MmL{sub 5} intermetallic compound (Mm = La{sub 0.52}Ce{sub 0.34}Nd{sub 0.10}Pr{sub 0.04}, L{sub 5} Ni{sub 3.5}Ca{sub 0.8}Mn{sub 0.3}Al{sub 0.4}) in the form of a hydrogen storage cathode was recorded in situ in the region 5440-6290 eV using an electrochemical cell which is essentially a fully functioning alkaline battery. Significant differences were observed in the X-ray absorption near edge structure (XANES) of all of the absorption edges (La, Ce, and Nd) between the uncharged and fully charged states. In particular, a clear increase in the intensity of the La and Nd L{sub III}-edge resonances (due to 2P{sub 3/2} {r_arrow} 5d electronic transitions) was found upon charging the cell. This phenomenon was attributed to an increase in the density of empty d-like states near the Fermi level following hydrogen injection into the lattice. Furthermore, the behavior of the Ca L{sub II,III}-edges of this battery material upon charging was nearly the same as that observed for the gas phase hydrogenation of the Ce{sub 2}Fe{sub 17} and Ce{sub 2}Fe{sub 14}B intermetallics reported in the literature.

  6. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency......The large grid integration of variable wind power adds to the imbalance of a power system. This necessitates the need for additional reserve power for regulation. In Denmark, the growing wind penetration aims for an expedited change of displacing the traditional generators which are currently...... simulations is modelled. Further, it is analysed for regulation services using the case of a typical windy day in the West Denmark power system. The power deviations with other control areas in an interconnected system are minimised by the faster up and down regulation characteristics of the EV battery...

  7. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    Science.gov (United States)

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-01

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.

  8. Battery energy storage: A preliminary assessment of national benefits (the Gateway Benefits Study)

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Labs., Albuquerque, NM (United States); Zaininger, H. [Zaininger Engineering Co., San Jose, CA (United States); Hurwitch, J.; Badin, J. [Energetics, Inc., Columbia, MD (United States)

    1993-12-01

    Preliminary estimates of national benefits from electric utility applications of battery energy storage through the year 2010 are presented along with a discussion of the particular applications studied. The estimates in this report were based on planning information reported to DOE by electric utilities across the United States. Future studies are planned to refine these estimates as more application-specific information becomes available.

  9. Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper proposes a control scheme which minimizes the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What distinguishes approach presented here from conventional strategies is that not only the price of electricity is considered...

  10. Bidirectional Five-Level Power Processing Interface for Low Voltage Battery Energy Storage System

    Science.gov (United States)

    Huang, Jain-Yi; Jou, Hurng-Liahng; Wu, Kuen-Der; Lin, You-Si; Wu, Jinn-Chang

    A bidirectional five-level power processing interface for low voltage battery energy storage system (BESS) is developed in this paper. This BESS consists of a bidirectional five-level DC-AC converter, a bidirectional dual boost/buck DC-DC converter and a battery set. This five-level DC-AC converter includes a bidirectional full-bridge converter and a bidirectional dual buck DC-DC converter. The five-level power processing interface can charge power to the battery set form the utility or discharge the power from the battery set to the utility depending on the demanded operation of user. A hardware prototype is developed to verify the performance of this BESS. Experimental results show the performance of the developed BESS is as expected.

  11. Batteries for energy storage. Examples, strategies, solutions; Batterien als Energiespeicher. Beispiele, Strategien, Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Fahlbusch, Eckhard (ed.)

    2015-07-01

    This book presents the variety of battery technologies and describes their mobile and stationary applications and uses. The major social project of the energy transition requires a holistic approach that takes into account especially the issues of energy saving and efficiency in addition to the power generation and distribution from renewable resources. In addition, the book provides an outlook on the further development possibilities of battery technology and battery applications. Improved battery technology is an important factor to help electromobility and stationary applications of batteries as distributed energy storage breakthrough. Not least, the importance and the need for the recycling of batteries and the variety of battery technologies are presented that have the greatest importance in terms of resource conservation and resource security. [German] Dieses Buch stellt die Vielfalt der Batterietechnologien vor und beschreibt ihre mobilen und stationaeren Anwendungs- und Einsatzmoeglichkeiten. Das gesellschaftliche Grossprojekt der Energiewende bedarf einer ganzheitlichen Betrachtung, die neben der Energiegewinnung und -verteilung aus Erneuerbaren Ressourcen besonders Fragen der Energiespeicherung und -effizienz beruecksichtigt. Daneben bietet das Buch einen Ausblick auf die weiteren Entwicklungsmoeglichkeiten der Batterietechnologien und Batterieanwendungen. Eine verbesserte Batterietechnik ist ein wichtiger Faktor, um der Elektromobilitaet und der stationaeren Anwendung von Batterien als dezentrale Energiespeicher zum Durchbruch zu verhelfen. Nicht zuletzt werden die Bedeutung und die Notwendigkeit des Recyclings von Batterien und der Vielfalt von Batterietechnologien dargestellt, die im Hinblick auf die Ressourcenschonung und die Ressourcensicherheit groesste Bedeutung haben.

  12. A Techno-Commercial Assessment of Residential and Bulk Battery Energy Storage

    Science.gov (United States)

    Nadkarni, Aditya

    2013-01-01

    Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.

  13. An investigation of zincite from spent anodic portions of alkaline batteries: An industrial mineral approach for evaluating stock material for recycling potential

    Science.gov (United States)

    Barrett, Heather A.; Borkiewicz, Olaf; Krekeler, Mark P. S.

    The mineralogy of anodic portions of spent alkaline batteries from a leading brand (Duracell) that had been equilibrated in ambient air for approximately 4 months was investigated to determine if material generated from this low energy process may be suitable stock material for recycling. Powder X-ray diffraction (XRD) identified the bulk of the ambient air oxidized anodic material as zincite (ZnO). Scanning electron microscopy investigation indicates a variety of textures of zincite are present with euhedral hexagonal prisms being the most common crystal form. Energy dispersive spectroscopy (EDS) analysis indicates that there are no minor amounts of Mn within the zincite. Transmission electron microscopy investigation indicates a variety of textures exist in the zinc oxide. Impurities in the batteries. A promising applications of zincite are numerous, including the development of new solar cell materials. The spent alkaline battery waste stream may serve as promising resource for driving further development of this sector of the economy.

  14. Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.

  15. Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Francesco Ferella

    2010-01-01

    Full Text Available The paper is focused on the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Metals are extracted by sulphuric acid leaching in the presence of citric acid as reducing agent. Leaching tests are carried out according to a 24 full factorial design, and empirical equations for Mn and Zn extraction yields are determined from experimental data as a function of pulp density, sulphuric acid concentration, temperature, and citric acid concentration. The highest values experimentally observed for extraction yields were 97% of manganese and 100% of zinc, under the following operating conditions: temperature 40∘C, pulp density 20%, sulphuric acid concentration 1.8 M, and citric acid 40 g L-1. A second series of leaching tests is also performed to derive other empirical models to predict zinc and manganese extraction. Precipitation tests, aimed both at investigating precipitation of zinc during leaching and at evaluating recovery options of zinc and manganese, show that a quantitative precipitation of zinc can be reached but a coprecipitation of nearly 30% of manganese also takes place. The achieved results allow to propose a battery recycling process based on a countercurrent reducing leaching by citric acid in sulphuric solution.

  16. A NEW THERMAL PROCESS FOR THE RECOVERY OF METALS FROM ZINC-CARBON AND ALKALINE SPENT BATTERIES

    Directory of Open Access Journals (Sweden)

    Girolamo Belardi

    2014-01-01

    Full Text Available The aim of this study is the thermal recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries containing 40.9% of Mn and 30.1% of Zn after a preliminary physical treatment. Separation of the metals is carried out on the basis of their different phase change temperatures, the boiling point of zinc being 906�C and 1564�C that of Mn3O4, the main Mn-bearing phase in the mixture. After wet comminution and sieving to remove the anodic collectors and most of the chlorides contained in the mixture, chemical and X-Ray Powder Diffraction (XRPD analyses were performed. The mixture was heated in CO2 atmosphere and the temperature raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture. Other tests were carried out by addition to the mixture of activated charcoal (95% C or of the automotive shredder residue (fluff containing 45% C.A zinc product was obtained suitable, after refining, for the production of new batteries. The treatment residue consisted of manganese and iron oxides that could be used to produce manganese-iron alloys. From these results, an integrated process for the recovery of the two metals was proposed.

  17. A NEW THERMAL PROCESS FOR THE RECOVERY OF METALS FROM ZINC-CARBON AND ALKALINE SPENT BATTERIES

    Directory of Open Access Journals (Sweden)

    Girolamo Belardi

    2014-01-01

    Full Text Available The aim of this study is the thermal recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries containing 40.9% of Mn and 30.1% of Zn after a preliminary physical treatment. Separation of the metals is carried out on the basis of their different phase change temperatures, the boiling point of zinc being 906°C and 1564°C that of Mn3O4, the main Mn-bearing phase in the mixture. After wet comminution and sieving to remove the anodic collectors and most of the chlorides contained in the mixture, chemical and X-Ray Powder Diffraction (XRPD analyses were performed. The mixture was heated in CO2 atmosphere and the temperature raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture. Other tests were carried out by addition to the mixture of activated charcoal (95% C or of the automotive shredder residue (fluff containing 45% C.A zinc product was obtained suitable, after refining, for the production of new batteries. The treatment residue consisted of manganese and iron oxides that could be used to produce manganese-iron alloys. From these results, an integrated process for the recovery of the two metals was proposed.

  18. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs...... with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... investment profitability. Moreover, the information about the BESS State of Health (SOH), at every point, is very important since the performance of the Li-ion BESS is changing with its age. In applications, the replacement of the BESS takes place usually before the end of their actual life, depending...

  19. A multifunctional energy-storage system with high-power lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R. [Sonnenschein GmbH, Buedingen (Germany). EXIDE German Group Research and Development Centre; Schroeder, M.; Stephanblome, T. [EUS Gesellschaft fuer Innovative Energieumwandlung und -Speicherung mbH, Gelsenkirchen (Germany); Handschin, E. [Dortmund Univ. (Germany)

    1999-03-01

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application. (orig.)

  20. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  1. Handbook for handling and storage of nickel-cadmium batteries: Lessons learned

    Science.gov (United States)

    Ford, Floyd E.; Rao, Gopalakrishna M.; Yi, Thomas Y.

    1994-01-01

    The handbook provides guidelines for the handling and storage of conventional NiCd flight batteries. The guidelines are based on many years of experience with ground and in-flight handling of batteries. The overall goal is to minimize the deterioration and irreversible effects of improper handling of NiCd flight batteries on flight performance. A secondary goal is to provide the reader with an understanding, in nonanalytical terms, of the degradation mechanisms of NiCd cells and how these mechanisms are affected by improper ground handling of flight hardware. Section 2 provides the reader with a brief introduction to NiCd cells. The effects of the environment on NiCd batteries are discussed in Section 3, and Section 4 contains 12 guidelines for battery handling and storage with supporting rationale for each guideline. The appendix provides a synopsis of NiCd cell design and evolution over 30 years of space flight on Goddard Space Flight Center (GSFC) satellites, along with a chronological review of key events that influenced the design of NiCd cells being flown today.

  2. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    Science.gov (United States)

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  3. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  4. Storage/Turnover rate of inorganic carbon and its dissolvable part in the profile of saline/alkaline soils.

    Science.gov (United States)

    Wang, Yugang; Wang, Zhongyuan; Li, Yan

    2013-01-01

    Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m(-2) yr(-1) and 1.34 to 5.33 g C m(-2) yr(-1) respectively for saline soil, and from 1.43 to 4.9 g C m(-2) yr(-1) and 0.79 to 1.27 g C m(-2) yr(-1)respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile.

  5. NREL Screens Universities for Solar and Battery Storage Potential

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    In support of the U.S. Department of Energy's SunShot initiative, NREL provided solar photovoltaic (PV) screenings in 2016 for eight universities seeking to go solar. NREL conducted an initial technoeconomic assessment of PV and storage feasibility at the selected universities using the REopt model, an energy planning platform that can be used to evaluate RE options, estimate costs, and suggest a mix of RE technologies to meet defined assumptions and constraints. NREL provided each university with customized results, including the cost-effectiveness of PV and storage, recommended system size, estimated capital cost to implement the technology, and estimated life cycle cost savings.

  6. Modeling and Optimal Operation of Distributed Battery Storage in Low Voltage Grids

    OpenAIRE

    Fortenbacher, Philipp; Mathieu, Johanna L.; Andersson, Göran

    2016-01-01

    Due to high power in-feed from photovoltaics, it can be expected that more battery systems will be installed in the distribution grid in near future to mitigate voltage violations and thermal line and transformer overloading. In this paper, we present a two-stage centralized model predictive control scheme for distributed battery storage that consists of a scheduling entity and a real-time control entity. To guarantee secure grid operation, we solve a robust multi-period optimal power flow (O...

  7. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable e

  8. Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

    Directory of Open Access Journals (Sweden)

    Arindam Chakraborty

    2012-01-01

    Full Text Available Integration of STATCOM with energy storage devices plays an imperative role in improving the power system operation and control. Significant research has been done in this area for practical realization of benefits of the integration. This paper, however, pays particular importance to the performance improvement for the transients as is achievable by STATCOM with battery-powered storage systems. Application of STATCOM with storage in regard to intermittent renewable energy sources such as wind power generation is also discussed in the paper. At the beginning of this paper, an overall review of the STATCOM and energy storage systems are elaborated. A brief overview of the advantages of using STATCOM in conjunction to energy storage systems in achieving power system stability is presented. In the second part of the paper, a typical transient stability model of a STATCOM is presented. The dynamics of real and reactive power responses of the integrated system to transients is studied. The study is aimed at showing that the combination of STATCOM and battery energy storage significantly improves the performance of the system. The final results show that the STATCOM reactive power/voltage control helps in transient stability enhancement.

  9. Deep Discharge Reconditioning and Shorted Storage of Batteries. [nickel cadmium batteries

    Science.gov (United States)

    Ritterman, P. F.

    1982-01-01

    The identification and measurement of hydrogen recombination in sealed nickel-cadium cells makes deep reconditioning on a battery basis safe and feasible. Deep reconditioning improves performance and increases life of nickel-cadium batteries in geosynchronous orbit applications. The hydrogen mechanism and supporting data are presented. Parameter cell design experiments are described which led to the definition of nickel-cadium cells capable of high rate overdischarge without detriment to specific energy. Nickel-cadium calls of identical optimum design were successfully cycled for 7 seasons in simulation of geosynchronous orbit at 75 percent depth-of-discharge with extensive midseason and end-of-season overdischarge at rates varying from C/20 to C/4. Destructive physical analysis and cyclin data indicated no deterioration or the development of dangerous pressures as a result of the cycling with overdischarge.

  10. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan; Anderson, Kate

    2016-11-21

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape of the load profile is the most significant predictor of the size of the battery.

  11. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan; Anderson, Katie

    2016-11-01

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape of the load profile is the most significant predictor of the size of the battery.

  12. A low cost, high energy density, and long cycle life potassium-sulfur battery for grid-scale energy storage.

    Science.gov (United States)

    Lu, Xiaochuan; Bowden, Mark E; Sprenkle, Vincent L; Liu, Jun

    2015-10-21

    A potassium-sulfur battery using K(+) -conducting beta-alumina as the electrolyte to separate a molten potassium metal anode and a sulfur cathode is presented. The results indicate that the battery can operate at as low as 150 °C with excellent performance. This study demonstrates a new type of high-performance metal-sulfur battery that is ideal for grid-scale energy-storage applications.

  13. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  14. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  15. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  16. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system

    Science.gov (United States)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per; Silvestro, Federico

    2014-05-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs are compared with experimental measurements during a discharge-charge sequence.

  17. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  18. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    Science.gov (United States)

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  19. Economic Analysis and Optimal Sizing for behind-the-meter Battery Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Kintner-Meyer, Michael CW; Yang, Tao; Balducci, Patrick J.

    2016-07-18

    This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity for behind-the-meter BSS. In the proposed method, a linear programming is first formulated only using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizing have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions of the Continental United States. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but can also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.

  20. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    BAROTE, L.

    2012-05-01

    Full Text Available This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG, driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. The main purpose is to supply 230 V / 50 Hz domestic appliances through a single-phase inverter. The experimental waveforms, compared to the simulation results, show a good prediction of the electrical variable parameters. Furthermore, it can be seen that the results validate the stability of the supply.

  1. Stationary battery storage of energy transition a central component; Stationaere Batteriespeicher der Energiewende eine zentrale Komponente

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Lux, Stephan [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2017-01-15

    In a regenerative energy system with strong fluctuations in electricity production, the importance of short-term storage is increasing - on the one hand, in order to optimal need-oriented use of the energy supply, on the other hand, at any time to ensure a high network quality. The present overview of stationary battery storage shows how important it will be especially in the area of larger storage facilities with direct link to regenerative power plants, as a district storage or in the industry. [German] In einem regenerativen Energiesystem mit starken Fluktuationen der Stromproduktion nimmt die Bedeutung der Kurzzeitspeicherung zu - einerseits, um das Energieangebot bedarfsgerecht optimal zu nutzen, andererseits, um zu jedem Zeitpunkt eine hohe Netzqualitaet zu gewaehrleisten. Der vorliegende Ueberblick ueber stationaere Batteriespeicher zeigt, wie wichtig vor allem der Bereich groesserer Speicher in direkter Koppelung mit regenerativen Kraftwerken, als Quartiersspeicher oder im Gewerbe sein wird.

  2. Optimal operation strategy of battery energy storage system to real-time electricity price in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...... system (BESS) in relation to the real-time electricity price in order to achieve the maximum profits of the BESS. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may represent the future of electricity...

  3. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    OpenAIRE

    Abd Essalam BADOUD; Mabrouk KHEMLICHE

    2013-01-01

    Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid batte...

  4. Different energy management strategies of Hybrid Energy Storage System (HESS) using batteries and supercapacitors for vehicular applications

    OpenAIRE

    ALLEGRE, Anne-Laure; TRIGUI, Rochdi; Bouscayrol, Alain

    2010-01-01

    The energy storage is a key issue for traction applications like Electric Vehicles (EVs) or Hybrid Electric Vehicles (HEVs). Indeed, it needs a higher power and energy density, a right size, a long lifetime and a low cost. A Hybrid Energy Storage System (HESS) using batteries and supercapacitors seems to be an appropriate device to fulfill these constraints. The objective of the paper is to propose different energy management strategies of HESS using batteries and supercapacitors. Four elabor...

  5. Laboratory-scale evaluation of secondary alkaline zinc batteries for electric vehicles

    Science.gov (United States)

    Striebel, Kathryn A.; McLarnon, Frank R.; Cairns, Elton J.

    Two types of secondary zinc cell have been evaluated in our laboratory to assess their suitability to power an electric van. Single cells were charged and discharged with constant-current cycles as well as with controlled-power discharge profiles, scaled to the predicted mass of a full-size battery. Both cells were able to meet the requirements for power discharge specified by the so-called Simplified Federal Urban Driving Schedule (SFUDS) early in life (the first 15 cycles). The Zn/air cell achieved an average of 72 SFUDS repetions (7.2 h) per discharge. The Zn/NiOOH cell achieved an average of 51 SFUDS repetitions (5.1 h) per discharge. The bifunctional air electrodes did not reach oxygen-evolution potentials during the 8-s regenerative breaking portions of the SFUDS cycle.

  6. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    Science.gov (United States)

    Trouong, Long V.; Wolff, Frederic J.; Dravid, Narayan V.; Li, Ponlee

    2000-01-01

    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues.

  7. Simulation of an isolated Wind Diesel System with battery energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.; Alzola, R. Pena [Department of Electrical, Electronic and Control Engineering, Spanish University for Distance Education, 28040 UNED Madrid (Spain)

    2011-02-15

    The subject of this paper is to present the modelling and simulation of an isolated Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the consumer Load, a Ni-MH battery based Energy Storage System (BESS) and a Dump Load (DL). The BESS consists of a battery bank and a power converter which performs the DC/AC conversion to interface the battery with the isolated grid. The Ni-MH battery high power capability, low maintenance, resistance to abuse and absence of hazardous substances make it the best choice for WDHS. The modelling of the previously mentioned components is presented and the performance of the WDHS is tested through dynamic simulation. Simulation results with graphs for the frequency and voltage of the Isolated Power System, active powers generated/absorbed by the different elements and the battery voltage/current/state of charge are presented for load and wind speed changes. The simulation results for the BESS/no BESS cases are compared and show a remarkable improvement in the system dynamics due to the use of the BESS. (author)

  8. Operation of Battery Energy Storage System in Demand Side using Local Load Forecasting

    Science.gov (United States)

    Hida, Yusuke; Yokoyama, Ryuichi; Shimizukawa, Jun; Iba, Kenji; Tanaka, Kouji; Seki, Tomomichi

    Recently, the various political movements, which reduce CO2-emission, have been proposed against global warming. Therefore, battery energy storage systems (BESSs) such as NAS (sodium and sulfur) battery are attracting attention around the world. The first purpose of BESS was the improvement of load factors. The second purpose is the improvement of power quality, especially against voltage-sag. The recent interest is oriented to utilize BESS to mitigate the intermittency of renewable energy. NAS battery has two operation modes. The first one is a fixed pattern operation, which is time-schedule in advance. The second mode is the load following operation. Although this mode can perform more the flexible operation by adjusting the change of load, it has the risks of shortage/surplus of battery energy. In this paper, an accurate demand forecasting method, which is based on multiple regression models, is proposed. Using this load forecasting, the more advanced control of load following operation for NAS battery is proposed.

  9. Cadmium in blood and urine related to present and past exposure. A study of workers in an alkaline battery factory.

    Science.gov (United States)

    Hassler, E; Lind, B; Piscator, M

    1983-11-01

    Blood and urinary cadmium concentrations together with cadmium in air concentrations from the breathing zone of 18 male workers in an alkaline battery factory were determined at regular intervals for 11 consecutive weeks. Nine of the workers examined were smokers and nine non-smokers. Smokers and non-smokers did not differ in age or years of employment. Cadmium in air concentrations varied, but no definite trend was observed. The concentrations of cadmium in the blood and urine were found to be stable. Exposure to airborne cadmium was identical for smokers and non-smokers but average cadmium concentrations in the blood and urine of smokers were approximately twice as high as those in non-smokers. For the whole group, urinary cadmium was significantly correlated with years of employment, but no correlation was found between blood cadmium concentrations and exposure. For non-smokers, the correlation between cadmium in blood and years of employment was statistically significant (p less than 0.001). This finding indicated that blood concentrations of cadmium reflect body burden in non-smokers at current low exposure levels.

  10. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries

    Science.gov (United States)

    Shangguan, Enbo; Guo, Litan; Li, Fei; Wang, Qin; Li, Jing; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi

    2016-09-01

    A new nanocomposite formulation of the iron-based anode for alkaline secondary batteries is proposed. For the first time, FeS nanoparticles anchored on reduced graphene oxide (RGO) nanosheets are synthesized via a facile, environmentally friendly direct-precipitation approach. In this nanocomposite, FeS nanoparticles are anchored uniformly and tightly on the surface of RGO nanosheets. As an alkaline battery anode, the FeS@RGO electrode delivers a superior high-rate charge/discharge capability and outstanding cycling stability, even at a condition without any conductive additives and a high electrode loading of ∼40 mg cm-2. At high charge/discharge rates of 5C, 10C and 20C (6000 mA g-1), the FeS@RGO electrode presents a specific capacity of ∼288, 258 and 220 mAh g-1, respectively. Moreover, the FeS@RGO electrode exhibits an admirable long cycling stability with a superior capacity retention of 87.6% for 300 cycles at a charge/discharge rate of 2C. The excellent electrochemical properties of the FeS@RGO electrode can be stemmed from the high specific surface area, peculiar electric conductivity and robust sheet-anchored structure of the FeS@RGO nanocomposite. By virtue of its superior fast charge/discharge properties, the FeS@RGO nanocomposite is suitable as an advanced anode material for high-performance alkaline secondary batteries.

  11. Design and Construction of a Test Bench to Characterize Efficiency and Reliability of High Voltage Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Blank, Tobias; Thomas, Stephan; Roggendorf, Christoph;

    2010-01-01

    Stationary battery energy storage systems are widely used for uninterruptible power supply systems. Furthermore, they are able to provide grid services. This yields in rising installed power and capacity. One possibility uses high voltage batteries. This results in an improvement of the overall...... system efficiency. High voltage batteries may be advantageous for future medium voltage DC-grids as well. In all cases, high availability and reliability is indispensable. Investigations on the operating behavior of such systems are needed. For this purpose, a test bench for high voltage storage systems...... was built to analyze these processes for different battery technologies. A special safety infrastructure for the test bench was developed due to the high voltage and the storable energy of approximately 120 kWh. This paper presents the layout of the test bench for analyzing high voltage batteries with about...

  12. Hysteresis in the context of hydrogen storage and lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert

    2009-07-21

    The processes of reversible storage of hydrogen in a metal by loading and unloading and of charging and discharging of lithium-ion batteries have many things in common. The both processes are accompanied by a phase transition and loading and unloading run along different paths, so that hysteretic behavior is observed. For hydrogen storage we consider a fine powder of magnesium (Mg) particles and lithium storage is studied for iron phosphate (FePO{sub 4}) particles forming the cathode of a lithium-ion battery. The mathematical models describe phase transitions and hysteresis exclusively in a single particle and on that basis they can predict the observed hysteretic plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. However, measurements reveal that this is qualitatively not reflected by the mentioned hysteretic plots of loading and unloading. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation is resolved in this article. It is shown that if each of the individual particles homogeneously distributes the supplied matter, nevertheless the many particle ensemble exhibits phase transition and hysteresis, because one of the two phases is realized in some part of the particles while the remaining part is in the other phase. (orig.)

  13. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  14. Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions. [Metal--air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.W.T.; Srinivasan, S.

    1977-01-01

    The slowness of the oxygen evolution reaction is one of the main reasons for significant energy losses in water electrolysis cells and secondary air--metal batteries. To date, data on the kinetics of this reaction on alloys and intermetallic compounds are sparse. In this work, mechanically polished alloys of nickel with Ir, Ru or W and Ni--Ti intermetallic compounds were studied as oxygen electrodes. Since the oxygen evolution reaction always takes place on oxide-film covered surfaces, the nature of oxide films formed on these alloys were investigated using cyclic voltametric techniques. Steady-state potentiostatic and slow potentiodynamic (at 0.1 mV/s) methods were employed to obtain the electrode kinetic parameters for the oxygen evolution reaction in 30 wt. percent KOH at 80/sup 0/C, the conditions normally used in water electrolysis cells. The peaks for the formation or reduction of oxygen-containing layers appearing on the pure metals are not always found on the alloys. The maximum decreases in oxygen overpotential at an apparent current density of 20 mA cm/sup -2/ (as compared with that on Ni) were found for the alloys of 50Ni--50Ir and 75Ni--25Ru and the intermetallic compound Ni/sub 3/Ti, these decreases being about 40, 30, and 20 mV, respectively. On the long-term polarization in the potential region of oxygen evolution, the oxygen-containing layers on Ni--Ir or Ni--Ru alloys are essentially composed of nickel oxides instead of true mixed oxide films of two components. The present work confirms that, possibly because of coverage by oxide films, there is no direct dependence of the electrocatalytic activities of the alloys on their electronic properties. 11 figures, 1 table.

  15. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  16. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  17. Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage

    KAUST Repository

    Wessells, Colin D.

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes. © 2012 American Chemical Society.

  18. Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications

    Directory of Open Access Journals (Sweden)

    Nadia Belmonte

    2017-03-01

    Full Text Available In this paper, hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e., energy storage for a family house and a mobile system (i.e., an unmanned aerial vehicle will be investigated. The stationary systems, designed for off-grid applications, were sized for photovoltaic energy production in the area of Turin, Italy, to provide daily energy of 10.25 kWh. The mobile systems, to be used for high crane inspection, were sized to have a flying range of 120 min, one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view, the fuel cell and the electrolyzer, being niche products, result in being more expensive with respect to the Li-ion batteries. On the other hand, the life cycle assessment (LCA results show the lower burdens of both technologies.

  19. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.

    Science.gov (United States)

    Wessells, Colin D; McDowell, Matthew T; Peddada, Sandeep V; Pasta, Mauro; Huggins, Robert A; Cui, Yi

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes.

  20. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  1. A Voltage Controller in Photo-Voltaic System with Battery Storage and Applications

    Directory of Open Access Journals (Sweden)

    Rajendra Aparnathi

    2013-12-01

    Full Text Available This paper work is the new voltage controller in photo-voltaic system for Stand-Alone Applications with battery energy storage. The output of the PV array is unregulated DC supply due to change in weather conditions. The maximum power is tracked with respect to temperature and irradiance levels by using DC-DC converter. The perturbation and observes algorithm is applied for maximum power point tracking (MPPT purpose. This algorithm is selected due to its ability to withstand against any parameter variation and having high efficiency. The solar cell array powers the steady state energy and the battery compensates the dynamic energy in the system. The aim of the control strategy is to control the SEPIC converter and bi-direction DC-DC converter to operate in suitable modes according to the condition of solar cell and battery, so as to coordinate the two sources of solar cell and battery supplying power and ensure the system operates with high efficiency and behaviours with good dynamic performance.

  2. The use of battery storage for increasing the hosting capacity of the grid for renewable electricity production

    OpenAIRE

    2014-01-01

    This paper defines a step-by-step systematic decision making process to define operant conditions and applications for which battery storage is an option for electrical power grids. The set of rules is based on a number of research studies performed by the authors focusing mainly on sub-transmission grids. Battery storage is expensive so the focus in this paper is on comparing storage with other ways of achieving the same increase in the hosting capacity (HC) of grid. The approach is to find ...

  3. A Capacity Design Method of Distributed Battery Storage for Controlling Power Variation with Large-Scale Photovoltaic Sources in Distribution Network

    Science.gov (United States)

    Kobayashi, Yasuhiro; Sawa, Toshiyuki; Gunji, Keiko; Yamazaki, Jun; Watanabe, Masahiro

    A design method for distributed battery storage capacity has been developed for evaluating battery storage advantage on demand-supply imbalance control in distribution systems with which large-scale home photovoltaic powers connected. The proposed method is based on a linear storage capacity minimization model with design basis demand load and photovoltaic output time series subjective to battery management constraints. The design method has been experimentally applied to a sample distribution system with substation storage and terminal area storage. From the numerical results, the developed method successfully clarifies the charge-discharge control and stored power variation, satisfies peak cut requirement, and pinpoints the minimum distributed storage capacity.

  4. A method for making a cadmium anode for a hermetically sealed alkaline storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Y.; Yosikhira, Y.

    1983-07-14

    Metallic cadmium powder and a glue solution are added to CdO powder. The compound is applied to a current tap and dried. The powder form metallic cadmium is prepared from a mixture of zinc and nickel powder which is dispersed in a solution of cadmium salts. As a result of the replacement reaction, a spongy metallic cadmium is produced which contains nickel. The sponge is ground. The obtained powder is used as an additive for the CdO.

  5. A method for making a cadmium anode for an alkaline storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M.; Tsuda, S.

    1983-07-14

    A cobalt compound and a binder are added to CdO and nickel powder. The acquired mass is applied to a current tap, pressed, dried and then formed in an aqueous NaOH solution. The diameter of the particles of the starting powder of CdO and nickel is up to 5 micrometers. Besides the cobalt compound, a nickel compound may also be introduced into the electrode. After forming the volume of CO(OH)2 and Ni(OH)2 with respect to the CdO is 0.5 to 15 percent by mass. The electrode has a long service life.

  6. A method for making a cadmium anode for an alkaline storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M.; Ogava, K.; Okami, K.

    1983-07-14

    CdO powder is mixed with an electricity conducting substance. The mixture is processed in an aqueous solution of NaOH, placing it in a porous vessel. The CdO is reduced to metallic cadmium. Then the composition is washed and dried. A binder is added to it. The obtained mass is applied to a porous current tap, producing an electrode.

  7. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  8. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    The increased grid-penetration levels of energy produced by renewable sources, which have almost no inertia, might have a negative impact on the reliable and stable operation of the power system. Various solutions for mitigating the aforementioned problem were proposed in the literature. The aim...... of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  9. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    Science.gov (United States)

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-12-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered.

  10. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  11. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes.

    Science.gov (United States)

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R; Pradhan, Padmanava; Jadhav, Swapnil R; Dubey, Madan; John, George; Ajayan, Pulickel M

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered.

  12. Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery

    Directory of Open Access Journals (Sweden)

    Yunfeng Jiang

    2016-07-01

    Full Text Available A fractional derivative system identification approach for modeling battery dynamics is presented in this paper, where fractional derivatives are applied to approximate non-linear dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF method commonly used in the identification of continuous-time models is extended to allow the estimation of fractional derivative coefficents and parameters of the battery models by monitoring a charge/discharge demand signal and a power storage/delivery signal. In particular, the model is combined by individual fractional differential models (FDMs, where the parameters can be estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the fractional derivative model can be utilized to predict the dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO 4 in real-time. The results indicate that a FDM can accurately capture the dynamics of the energy storage and delivery of the battery over a large operating range of the battery. It is also shown that the fractional derivative model exhibits improvements on prediction performance compared to standard integer derivative model, which in beneficial for a battery management system.

  13. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  14. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  15. Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles

    Directory of Open Access Journals (Sweden)

    Cong Zhang

    2016-11-01

    Full Text Available Range anxiety and battery cycle life are two major factors which restrict the development of electric vehicles. Battery degradation can be reduced by adding supercapacitors to create a Hybrid Energy Storage System. This paper proposes a systematic approach to configure the hybrid energy storage system and quantifies the battery degradation for electric vehicles when using supercapacitors. A continuous power-energy function is proposed to establish supercapacitor size based on national household travel survey statistics. By analyzing continuous driving action in standard driving cycles and special driving phases (start up and acceleration, the supercapacitor size is calculated to provide a compromise between the capacitor size and battery degradation. Estimating the battery degradation after 10 years, the battery capacity loss value decreases 17.55% and 21.6%, respectively, under the urban dynamometer driving schedule and the US06. Furthermore, the battery lifespan of the continuous power-energy configured system is prolonged 28.62% and 31.39%, respectively, compared with the battery alone system.

  16. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  17. 千网水平蓄电池%Thousand Net Level Storage Battery

    Institute of Scientific and Technical Information of China (English)

    郁百超; 郭隆

    2012-01-01

    千网水平电池源自美国航天局有关复合材料的一项专利技术,以玻璃纤维为芯体,外面包敷铅合金,编织成网构成蓄电池的双极性极板,并将传统电池极板的竖直码放改为水平码放;与传统铅酸蓄电池相比,比能量、比功率、循环寿命等都有重大突破,由于其优良的结构,可30C以上倍率大电流快速充、放电,因此受到各国电动汽车研究机构的广泛关注,势必引发二次电池的一场技术革命,现产品广泛应用于美国电动汽车、智能电网、清洁能源系统储能等领域。%The thousand net level battery is a patented technology from the U.S. space agency on composite materials, with glass fiber core body wrapped in lead alloy, woven into a network to constitute the battery bipolar plate. The vertical stacking of traditional batteries plates was changed to the level stacking. Compared to the traditional lead-acid batteries, the specific energy, specific power, cycle life are among the major breakthroughs. Because of its fine structure, it can be charged and discharged rapidly at high current ratio above 30C, thus arousing widespread concern in electric vehicle research institutions of many countries. This will surely leads to a second technological revolution of battery. The product is now widely used in the United States electric vehicles, smart grid, clean energy systems, energy storage and other fields.

  18. Battery energy storage systems for electric utility, industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.W.; Zrebiec, R.S.; Delmerico, R.W. [GE Power Systems Engineering, Schenectady, NY (United States); Hunt, G. [GNB Industrial Battery, Lombard, IL (United States)

    1996-11-01

    Voltage depressions and power interruptions are rapidly becoming two of the hottest topics in the field of power quality. Of particular interest is the need to supply a dependable, efficient and controllable source of real and reactive power, which is available instantly to support a large (> .5 MVA) load, even if the utility connection is lost. This paper describes a versatile solution to this problem for utility, industrial and commercial applications using battery energy storage systems (BESS). BESS has the potential to provide other substantial benefits in terms of improved voltage and energy management in conjunction with this protection from interruptions.

  19. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    Science.gov (United States)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  20. The hybrid energy storages based on batteries and ultracapacitors for contact microwelding

    Directory of Open Access Journals (Sweden)

    Bondarenko Yu. V.

    2014-08-01

    Full Text Available Micro resistance welding is an effective way to reliably join small-scale parts. It is widely used in electronics and instrument-making. The important particularities of micro resistance welding are pulse character of energy consumption, non-linear load and special form of current pulses. So, these particularities of welding process cause negative influence on the mains. One of the known ways to avoid it is to use autonomous power supplies for micro resistance welding machines. The important task for building autonomous power supplies is to choose effective energy storages, which have high capacity and small internal resistance, and which are capable to be charged and deliver energy to load very quickly. The solution of this task is seen in using hybrid energy storages, which include accumulators and ultracapacitors. The accumulators are able to provide high energy capacitance and the ultracapacitors are able to provide fast energy delivery. The possibility of application of hybrid energy storages, based on accumulator batteries and ultracapacitors, in micro resistance welding machines is confirmed with computer simulation. Two variants of hybrid energy storages are proposed. These hybrid energy storages have high power and dynamic characteristics, which are sufficient to generate current pulses for welding according to necessary settings.

  1. Study on capacity fading of 18650 type LiCoO2-based lithium ion batteries during storage

    Science.gov (United States)

    Zheng, Liu-Qun; Li, Shu-Jun; Zhang, Deng-Feng; Lin, Hai-Jun; Miao, Yan-Yue; Chen, Shou-Wei; Liu, Hai-Bin

    2015-05-01

    The capacity fading of LiCoO2-based lithium ion batteries during storage was studied. The discharging capacity fading is attributed to the decreasing in the charging capacity at the constant current stage. After 300 cycles, the ratio of the charging capacity of batteries at the constant current stage to the total charging capacity decreases from 87.2 to 71.2%. The bounce-back voltage is closely related to the internal resistance when the battery is discharged to the cut-off voltage of 3.0 V. Batteries were disassembled in the fully discharged state, and then a assembled again in order to deeply understand the causes of the capacity fading of the cathode and anode. The results shows that the SEI film thickness increasing, breaking or repairing process at the anode could be responsible for the high bounce-back voltage, the increase of the internal resistance and the capacity fading during storage.

  2. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film.

    Science.gov (United States)

    Liu, Jilei; Chen, Minghua; Zhang, Lili; Jiang, Jian; Yan, Jiaxu; Huang, Yizhong; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2014-12-10

    The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a highly promising candidate for next generation flexible energy storage systems.

  3. Comparison of alkaline- and fungi-assisted wet-storage of corn stover.

    Science.gov (United States)

    Cui, Zhifang; Shi, Jian; Wan, Caixia; Li, Yebo

    2012-04-01

    Storage of lignocellulosic biomass is critical for a year-round supply of feedstock for a biorefinery. Compared with dry storage, wet storage is a promising alternative technology, providing several advantages including reduced dry matter loss and fire risk and improved feedstock digestibility after storage. This study investigated the concurrent pretreatment and wet-storage of corn stover with the assistance of NaOH or a lignin-degrading fungus, Ceriporiopsis subvermispora, during a 90-d period. Compared with ensilage, adding NaOH or inoculation with C. subvermispora significantly enhanced the enzymatic degradability of corn stover by 2-3-fold after 90-d wet storage. Lignin and xylan removal during NaOH pretreatment and wet-storage were influenced by NaOH loading and moisture. NaOH pretreatment retarded the production of organic acids during storage and the acetate release correlated with lignin and xylan removal. Further study is needed to reduce cellulose degradation during the late stage of fungal treatment.

  4. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    OpenAIRE

    Yuanbin Yu; Dongdong Zhang; Haitao Min; Yi Tang; Tao Zhu(GCAP-CASPER, Physics Department, Baylor University, One Bear Place, # 97316, Waco, TX 76798-7316, U.S.A.)

    2016-01-01

    This paper presents a new method for battery degradation estimation using a power-energy (PE) function in a battery/ultracapacitor hybrid energy storage system (HESS), and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC) coupled directly with DC-link is adopted for a hybrid electric city bus (HECB). In the purpose of presenting the quantitative relationship between s...

  5. Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in terms of maximum economic profitability, taking into account its operating constraints. Dynamic simulations are carried out within the DIgSILENT PowerFactory 2016 software environment in order to analyse the plant response in case of network frequency contingencies, comparing the pure hydroelectric plant with the hybrid one, in which the primary reserve is partially or completely supplied by the storage system. Results confirm that the battery storage system response to frequency perturbations is clearly faster and more accurate during the transient phase compared to a traditional plant, since time delays due to hydraulic and mechanical regulations are overpassed. A case study, based on data from an existing hydropower plant and referring to the Italian context in terms of operational constraints and ancillary service remuneration, is presented.

  6. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  7. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.

    Science.gov (United States)

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-02-04

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.

  8. A New Topology and Control Strategy for a Hybrid Battery-Ultracapacitor Energy Storage System

    Directory of Open Access Journals (Sweden)

    Changle Xiang

    2014-04-01

    Full Text Available This study investigates a new hybrid energy storage system (HESS, which consists of a battery bank and an ultra-capacitor (UC bank, and a control strategy for this system. The proposed topology uses a bi-directional DC-DC converter with a lower power rating than those used in the traditional HESS topology. The proposed HESS has four operating modes, and the proposed control strategy chooses the appropriate operating mode and regulates the distribution of power between the battery bank and the UC bank. Additionally, the control system prevents surges during mode switching and ensures that both the battery bank and the bi-directional DC-DC converter operate within their power limits. The proposed HESS is used to improve the performance of an existing power-split hybrid electric vehicle (HEV. A method for calculating the parameters of the proposed HESS is presented. A simulation model of the proposed HESS and control strategy was developed, and a scaled-down experimental platform was constructed. The results of the simulations and the experiments provide strong evidence for the feasibility of the proposed topology and the control strategy. The performance of the HESS is not influenced by the power limits of the bi-directional DC-DC converter.

  9. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g‑1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  10. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  11. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    Science.gov (United States)

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7-based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V(4+)/V(3+), V(3+)/V(2+), and Sn(4+)/Sn(2+) redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g(-1) for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  12. Low-Temperature Hydrogen Storage Alloy and Its Application in Ni-MH Battery

    Institute of Scientific and Technical Information of China (English)

    陶明大; 陈云贵; 吴朝玲; 付春艳; 涂铭旌

    2004-01-01

    Rare earth compositions, La, Ce and Pr in Mm(NiCoMnAl)5 hydrogen storage alloy, were arranged by uniform design method. The discharge performances and kinetics parameters including capacity, exchange current density, symmetry factor and hydrogen diffusion coefficient of the alloy at -40 ℃, were tested in standard tri-electrode cell. And linear regression method was used to analyze the effect of rare earth compositions on the performances of hydrogen storage alloys. The results show that the capacities of the alloys are positively correlative to the square of Ce content at -40 ℃ and under both 0.4 and 0.2C rate. The kinetics parameters and hydrogen diffusion coefficient indicate that the low-temperature performances of the alloys are mainly controlled by hydrogen diffusion process, and the surface electrochemical reaction affects the low-temperature performances to a certain extent. The low-temperature discharge capacities of the battery were also tested. The results show excellent low-temperature performances.The battery delivers 69.6% of its room-temperature capacity at -40 ℃ and 0.2C rate, 77.7% at -40 ℃ and 0.4C rate, 59.1% at -45 ℃ and 0.2C rate.

  13. A Voltage Controller in Photo-Voltaic System with Battery Storage for Stand-Alone Applications

    Directory of Open Access Journals (Sweden)

    Ganesh Dharmireddy

    2012-01-01

    Full Text Available This paper proposes the new voltage controller in photo-voltaic system for Stand-Alone Applications with battery energy storage. The output of the PV array is unregulated DC supply due to change in weather conditions. The maximum power is tracked with respect to temperature and irradiance levels by using DC-DC converter. The perturbation and observes algorithm is applied for maximum power point tracking (MPPT purpose. This algorithm is selected due to its ability to withstand against any parameter variation and having high efficiency. The solar cell array powers the steady state energy and the battery compensates the dynamic energy in the system. The aim of the control strategy is to control the SEPIC converter and bi-direction DC-DC converter to operate in suitable modes according to the condition of solar cell and battery, so as to coordinate the two sources of solar cell and battery supplying power and ensure the system operates with high efficiency and behaviors with good dynamic performance. The output of DC-DC converter is converted to AC voltage by using inverter.  The AC output voltage and frequency are regulated. A closed loop voltage control for inverter is done by using unipolar sine wave pulse width modulation (SPWM. The regulated AC voltage is fed to AC standalone loads or grid integration. The overall system is designed, developed and validated by using MATLAB-SIMULINK. The simulation results demonstrate the effective working of MPPT algorithm, control strategy and voltage controller with SPWM technique for inverter in AC standalone load applications.

  14. Research of heat treatment of low-Co AB5 type hydrogen storage alloys for MH-Ni batteries

    Institute of Scientific and Technical Information of China (English)

    GUO Jinghong; CHEN Demin; LIU Guozhong; YANG Ke; MA Jun

    2003-01-01

    The effects of low-Co AB5 type hydrogen storage alloys prepared by quenching and annealing on the performances of MH-Ni batteries were investigated, and the characteristics of the low-Co AB5 type hydrogen storage alloys were compared with those of the high-Co AB5 type hydrogen storage alloy as well. The results showed that the faster the cooling of the low-Co hydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and the longer cycle life of the battery are, but the electrochemical discharge capacity and high-rate discharge ability are reduced. The high-rate discharge ability and charge retention of MH-Ni batteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to those for the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, but a little inferior in the cycle life.

  15. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  16. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  17. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    Science.gov (United States)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  18. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    Science.gov (United States)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  19. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    OpenAIRE

    Hina Fathima; K. Palanisamy

    2015-01-01

    Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The ...

  20. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  1. Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries

    Science.gov (United States)

    Eom, Ji-Yong; Jung, In-Ho; Lee, Jong-Hoon

    The effects of vinylene carbonate (VC) on high temperature storage of high voltage Li-ion batteries are investigated. 1.3 M of LiPF 6 dissolved in ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) of 3:3:4 volume ratio is used as original electrolyte for 18650 cylindrical cells with LiCoO 2 cathode and graphite anode. VC is then added to electrolyte. At the initial stage of the high temperature storage, higher open-circuit voltage (OCV) is maintained when increasing the VC concentration. As the storage time increases, OCV of higher VC concentration drops gradually, and then the gas evolution takes place abruptly. Gas analysis shows methane (CH 4) decreases with increase of the VC concentration due to formation of stable solid electrolyte interface (SEI) layer on the graphite. Since the residual VC after formation of the SEI layer decomposes on the cathode surface, carbon dioxide (CO 2) dramatically increases on the cathode with the VC concentration, leaving poly(VC) film at the anode surface, as suggested by XPS test results.

  2. Molten-Salt Batteries for Medium and Large-Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Yang, Zhenguo (Gary)

    2014-12-01

    This chapter discusses two types of molten salt batteries. Both of them are based on a beta-alumina solid electrolyte and molten sodium anode, i.e., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. The chapter first reviews the basic electrochemistries and materials for various battery components. It then describes the performance of state-of-the-art batteries and future direction in material development for these batteries.

  3. Coordinated Control Scheme of Battery Energy Storage System (BESS) and Distributed Generations (DGs) for Electric Distribution Grid Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei

    2012-01-01

    This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...

  4. A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Qiao Zhang

    2016-01-01

    Full Text Available In this paper, a simple and efficient rule based energy management system for battery and supercapacitor hybrid energy storage system (HESS used in electric vehicles is presented. The objective of the proposed energy management system is to focus on exploiting the supercapacitor characteristics and on increasing the battery lifetime and system efficiency. The role of the energy management system is to yield battery reference current, which is subsequently used by the controller of the DC/DC converter. First, a current controller is designed to realize load current distribution between battery and supercapacitor. Then a voltage controller is designed to ensure the supercapacitor SOC to fluctuate within a preset reasonable variation range. Finally, a commercial experimental platform is developed to verify the proposed control strategy. In addition, the energy efficiency and the cost analysis of the hybrid system are carried out based on the experimental results to explore the most cost-effective tradeoff.

  5. Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

  6. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  7. Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system

    Institute of Scientific and Technical Information of China (English)

    Jun-yi LIANG; Jian-long ZHANG; Xi ZHANG; Shi-fei YUAN; Cheng-liang YIN

    2013-01-01

    To solve the low power density issue of hybrid electric vehicular batteries,a combination of batteries and ultracapacitors(UCs)could be a solution.The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems(HESSs).This paper presents a parallel hybrid electric vehicle(HEV)equipped with an internal combustion engine and an HESS.An advanced energy management strategy(EMS),mainly based on fuzzy logic,is proposed to improve the fuel economy of the HEV and the endurance of the HESS.The EMS is capable of determining the ideal distribution of output power among the internal combustion engine,battery,and UC according to the propelling power or regenerative braking power of the vehicle.To validate the effectiveness of the EMS,numerical simulation and experimental validations are carried out.The results indicate that EMS can effectively control the power sources to work within their respective efficient areas.The battery load can be mitigated and prolonged battery life can be expected.The electrical energy consumption in the HESS is reduced by 3.91%compared with that in the battery only system.Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle.

  8. Battery Energy Storage Sizing When Time of Use Pricing Is Applied

    Directory of Open Access Journals (Sweden)

    Guido Carpinelli

    2014-01-01

    Full Text Available Battery energy storage systems (BESSs are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs.

  9. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...... with a typical stand-alone wind energy system during wind speed variation as well as transient performance under variable load. The investigated system consists of a variable speed wind turbine with permanent magnet synchronous generator (PMSG), diode rectifier bridge, buck-boost converter, bidirectional charge...... controller, transformer, inverter, ac loads and VRB (to store a surplus of wind energy and to supply power during a wind power shortage). The main purpose is to supply domestic appliances through a single phase 230V, 50Hz inverter. Simulations are accomplished in order to validate the stability of the supply....

  10. Battery energy storage sizing when time of use pricing is applied.

    Science.gov (United States)

    Carpinelli, Guido; Khormali, Shahab; Mottola, Fabio; Proto, Daniela

    2014-01-01

    Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs.

  11. Dimers of cyclic carbonates: chirality recognition in battery solvents and energy storage.

    Science.gov (United States)

    Kollipost, Franz; Hesse, Susanne; Lee, Juhyon J; Suhm, Martin A

    2011-08-21

    Dimers of ethylene carbonate and propylene carbonate are created in supersonic jet expansions and characterized by FTIR spectroscopy. Fermi resonances are switched on and off by dimerization. There is a unique centrosymmetric dimer of ethylene carbonate in a pronounced case of complementary chirality synchronization, contributing to its energy storage capacity at melting. Two chiral propylene carbonate molecules combine in more intricate ways. If they have the same handedness, one of them is forced into an axial conformation and the binding partner stays in the more stable equatorial structure. If they have opposite handedness, centrosymmetric dimers of either axial or equatorial conformations are formed. This suggests the usefulness of chirality control in elucidating ionic transport mechanisms in battery solvents and asymmetric catalysis in such solvents.

  12. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  13. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  14. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  15. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  16. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.

    Science.gov (United States)

    Huang, Hui; Feng, Tong; Gan, Yongping; Fang, Mingyu; Xia, Yang; Liang, Chu; Tao, Xinyong; Zhang, Wenkui

    2015-06-10

    The further development of electrode materials with high capacity and excellent rate capability presents a great challenge for advanced lithium-ion batteries. Herein, we demonstrate a battery-capacitive synchronous lithium storage mechanism based on a scrupulous design of TiC/NiO core/shell nanoarchitecture, in which the TiC nanowire core exhibits a typical double-layer capacitive behavior, and the NiO nanosheet shell acts as active materials for Li(+) storage. The as-constructed TiC/NiO (32 wt % NiO) core/shell nanoarchitecture offers high overall capacity and excellent cycling ability, retaining above 507.5 mAh g(-1) throughout 60 cycles at a current density of 200 mA g(-1) (much higher than theoretical value of the TiC/NiO composite). Most importantly, the high rate capability is far superior to that of NiO or other metal oxide electrode materials, owing to its double-layer capacitive characteristics of TiC nanowire and intrinsic high electrical conductivity for facile electron transport during Li(+) storage process. Our work offers a promising approach via a rational hybridization of two electrochemical energy storage materials for harvesting high capacity and good rate performance.

  17. A Simple Operating Strategy of Small-Scale Battery Energy Storages for Energy Arbitrage under Dynamic Pricing Tariffs

    Directory of Open Access Journals (Sweden)

    Enrico Telaretti

    2015-12-01

    Full Text Available Price arbitrage involves taking advantage of an electricity price difference, storing electricity during low-prices times, and selling it back to the grid during high-prices periods. This strategy can be exploited by customers in presence of dynamic pricing schemes, such as hourly electricity prices, where the customer electricity cost may vary at any hour of day, and power consumption can be managed in a more flexible and economical manner, taking advantage of the price differential. Instead of modifying their energy consumption, customers can install storage systems to reduce their electricity bill, shifting the energy consumption from on-peak to off-peak hours. This paper develops a detailed storage model linking together technical, economic and electricity market parameters. The proposed operating strategy aims to maximize the profit of the storage owner (electricity customer under simplifying assumptions, by determining the optimal charge/discharge schedule. The model can be applied to several kinds of storages, although the simulations refer to three kinds of batteries: lead-acid, lithium-ion (Li-ion and sodium-sulfur (NaS batteries. Unlike literature reviews, often requiring an estimate of the end-user load profile, the proposed operation strategy is able to properly identify the battery-charging schedule, relying only on the hourly price profile, regardless of the specific facility’s consumption, thanks to some simplifying assumptions in the sizing and the operation of the battery. This could be particularly useful when the customer load profile cannot be scheduled with sufficient reliability, because of the uncertainty inherent in load forecasting. The motivation behind this research is that storage devices can help to lower the average electricity prices, increasing flexibility and fostering the integration of renewable sources into the power system.

  18. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S.

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  19. Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries

    Science.gov (United States)

    Liu, Jie; Wang, Dapeng; Zhang, Daquan; Gao, Lixin; Lin, Tong

    2016-12-01

    The synergistic effects of carboxymethyl cellulose (CMC) and zinc oxide (ZnO) have been investigated as alkaline electrolyte additives for the AA5052 aluminium alloy anode in aluminium-air battery by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of CMC and ZnO effectively retards the self-corrosion of AA5052 alloy in 4 M NaOH solution. A complex film is formed via the interaction between CMC and Zn2+ ions on the alloy surface. The carboxyl groups adsorbed on the surface of aluminium make the protective film more stable. The cathodic reaction process is mainly suppressed significantly. AA5052 alloy electrode has a good discharge performance in the applied electrolyte containing the composite CMC/ZnO additives.

  20. Primary Frequency Regulation with Li-Ion Battery Energy Storage System - Evaluation and Comparison of Different Control Strategies

    DEFF Research Database (Denmark)

    Thorbergsson, Egill; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2013-01-01

    The increased grid penetration levels of renewable sources are at the expense of the conventional power plants. This means that the grid support functions, traditionally achieved by the conventional power plants, need to be provided by new technologies. Since grid support with energy storage...... market. The revenues and degradation of the Lithium-ion batteries are obtained by simulations. Furthermore, an energy management strategy based on variable state-of-charge (SOC) set-point is evaluated. Preliminary, the influence of different state-of-charge levels on the cycle lifetime is estimated...... different degradation levels of the Lithium-ion batteries were observed. Furthermore, it was found that the economic benefits are declining by increasing the batteries' SOC set-point....

  1. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices

    Science.gov (United States)

    Jung, Hoeguk; Wang, Haifeng; Hu, Tingshu

    2014-12-01

    This paper considers some control design problems in a power system driven by battery/supercapacitor hybrid energy storage devices. The currents in the battery and the supercapacitor are actively controlled by two bidirectional buck-boost converters. Two control objectives are addressed in this paper: one is to achieve robust tracking of two reference variables, the battery current and the load voltage, the other is to achieve smooth transition of these variables during load switch. Based on the state-space averaged model we newly developed, the control design problems are converted into numerically efficient optimization problems with linear matrix inequality (LMI) constraints. An experimental system is constructed to validate the control design methods.

  2. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage

    DEFF Research Database (Denmark)

    Sun, Kai; Zhang, Li; Xing, Yan

    2011-01-01

    Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based...... on improved dc bus signaling is proposed for a modular photovoltaic (PV) generation system with battery energy storage elements. In this paper, the modular PV generation system is composed of three modular dc/dc converters for PV arrays, two grid-connected dc/ac converters, and one dc/dc converter for battery......, grid-connected inversion, and islanding with constant voltage (CV) generation.The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information...

  3. Dispatching of Wind/Battery Energy Storage Hybrid Systems Using Inner Point Method-Based Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Deyou Yang

    2016-08-01

    Full Text Available The application of large scale energy storage makes wind farms more dispatchable, which lowers operating risks to the grid from interconnected large scale wind farms. In order to make full use of the flexibility and controllability of energy storage to improve the schedulability of wind farms, this paper presents a rolling and dispatching control strategy with a battery energy storage system (BESS based on model predictive control (MPC. The proposed control scheme firstly plans expected output, i.e., dispatching order, of a wind/battery energy storage hybrid system based on the predicted output of the wind farm, then calculates the order in the predictive horizon with the receding horizon optimization and the limitations of energy storage such as state of charge and depth of charge/discharge to maintain the combination of active output of the wind farm and the BESS to track dispatching order at the extreme. The paper shows and analyses the effectiveness of the proposed strategy with different sizes of capacity of the BESS based on the actual output of a certain actual wind farm in the northeast of China. The results show that the proposed strategy that controls the BESS could improve the schedulability of the wind farm and maintain smooth output of wind/battery energy storage hybrid system while tracking the dispatching orders. When the capacity of the BESS is 20% or the rated capacity of the wind farm, the mean dispatching error is only 0.153% of the rated capacity of the wind farm.

  4. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  5. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A.; Barney, D.L.; Steunenberg, R.K.

    1978-11-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at industrial subcontractors' laboratories on high-temperature batteries during the period October 1977--September 1978 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary-energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium--aluminum alloy, and molten LiCl--KCl electrolyte. During this fiscal year, cell and battery development work continued at ANL, Eagle--Picher Industries, Inc., the Energy Systems Group of Rockwell International, and Gould Inc. Related work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations. A major event was the initiation of a subcontract with Eagle--Picher Industries to develop, design, and fabricate a 40-kWh battery (Mark IA) for testing in an electric van. Conceptual design studies on a 100-MWh stationary-energy-storage module were conducted as a joint effort between ANL and Rockwell International. A significant technical advance was the development of multiplate cells, which are capable of higher performance than bicells. 89 figures, 57 tables.

  6. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    Science.gov (United States)

    Ippolito, N M; Belardi, G; Medici, F; Piga, L

    2016-05-01

    The aim of the study is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, on the basis of the different phase change temperatures of the two metal-bearing phases. ASR (Automotive Shredder Residue), containing 68% of carbon, was added to the mixture to act as a reductant to metallic Zn of the zinc-bearing phases. The mixture was subsequently heated in different atmospheres (air, CO2 and N2) and at different temperatures (900°C, 1000°C and 1200°C) and stoichiometric excess of ASR (300%, 600% and 900%). Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, TGA/DTA, SEM and XRD. The results show that recovery of 99% of zinc (grade 97%) is achieved at 1000°C in N2 with a stoichiometric excess of car-fluff of 900%. This product could be suitable for production of new batteries after refining by hydrometallurgical way. Recovery of Mn around 98% in the residue of the treatment is achieved at any temperature and atmosphere tested with a grade of 57% at 900% excess of car-fluff. This residue is enriched in manganese oxide and could be used in the production of iron-manganese alloys.

  7. Storage battery comprising negative plates of a wedge shaped configuration. [for preventing shape change induced malfunctions

    Science.gov (United States)

    Bogner, R. S.; Farris, C. D. (Inventor)

    1974-01-01

    An improved silver-zinc battery particularly suited for use in an environment where battery operation is subjected to multiple charge/discharge cycling over extended periods is described. The battery seperator system, containing a highly absorbent material continguous with the surfaces of the plates and multiple semi-permeable membranes interposed between the plates, is also characterized.

  8. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...... and nonlinear local loads. The simulation results which implemented in MATLAB/SIMULINK software verify the effectiveness of the system....

  9. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

  10. Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

    2014-08-01

    Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of β"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

  11. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    Science.gov (United States)

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.

  12. Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems.

    Science.gov (United States)

    Kim, Jung-Hwan; Kim, Jeong-Hoon; Choi, Keun-Ho; Yu, Hyung Kyun; Kim, Jong Hun; Lee, Joo Sung; Lee, Sang-Young

    2014-08-13

    The facilitation of ion/electron transport, along with ever-increasing demand for high-energy density, is a key to boosting the development of energy storage systems such as lithium-ion batteries. Among major battery components, separator membranes have not been the center of attention compared to other electrochemically active materials, despite their important roles in allowing ionic flow and preventing electrical contact between electrodes. Here, we present a new class of battery separator based on inverse opal-inspired, seamless nanoscaffold structure ("IO separator"), as an unprecedented membrane opportunity to enable remarkable advances in cell performance far beyond those accessible with conventional battery separators. The IO separator is easily fabricated through one-pot, evaporation-induced self-assembly of colloidal silica nanoparticles in the presence of ultraviolet (UV)-curable triacrylate monomer inside a nonwoven substrate, followed by UV-cross-linking and selective removal of the silica nanoparticle superlattices. The precisely ordered/well-reticulated nanoporous structure of IO separator allows significant improvement in ion transfer toward electrodes. The IO separator-driven facilitation of the ion transport phenomena is expected to play a critical role in the realization of high-performance batteries (in particular, under harsh conditions such as high-mass-loading electrodes, fast charging/discharging, and highly polar liquid electrolyte). Moreover, the IO separator enables the movement of the Ragone plot curves to a more desirable position representing high-energy/high-power density, without tailoring other battery materials and configurations. This study provides a new perspective on battery separators: a paradigm shift from plain porous films to pseudoelectrochemically active nanomembranes that can influence the charge/discharge reaction.

  13. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  14. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    Science.gov (United States)

    Abdoulaye, D.; Koalaga, Z.; Zougmore, F.

    2012-02-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  15. Reference compensation method for enabling dispatchability of the wind power generation using battery energy storage system

    Directory of Open Access Journals (Sweden)

    Youngho Cho

    2016-01-01

    Full Text Available Due to intermittent characteristics of wind power generation, battery energy storage system (BESS has been exploited for decreasing the adverse impact of wind power output on the grid. This paper focuses on the BESS operation strategy called reference compensation for dispatchable wind. By adaptively compensating a reference signal that is typically set to be an average forecasted wind power for certain duration, the BESS maintains its SOC within a proper range, avoiding the non-compliant BESS when it is required to be charged or discharged because it is already fully charged or discharged, respectively, due to the unavoidable forecast errors. The proposed method has been applied to the real world wind farm data which is scaled down for the simulation in order to demonstrate its effectiveness of the proposed method. Simulation results demonstrate that the proposed method can decrease the operation suspension due to non-functioning BESS and keep the BESS on, and help thus enable the wind dispatchability.

  16. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    Muhamad Zalani Daud

    2014-01-01

    Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  17. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    Science.gov (United States)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  18. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  19. Implementation of a real option in a sustainable supply chain: an empirical study of alkaline battery recycling

    Science.gov (United States)

    Cucchiella, Federica; D'Adamo, Idiano; Gastaldi, Massimo; Lenny Koh, S. C.

    2014-06-01

    Green supply chain management (GSCM) has emerged as a key approach for enterprises seeking to become environmentally sustainable. This paper aims to evaluate and describe the advantages of a GSCM approach by analysing practices and performance consequences in the battery recycling sector. It seeks to integrate works in supply chain management (SCM), environmental management, performance management and real option (RO) theory into one framework. In particular, life cycle assessment (LCA) is applied to evaluate the environmental impact of a battery recycling plant project, and life cycle costing (LCC) is applied to evaluate its economic impact. Firms, also understanding the relevance of GSCM, have often avoided applying the green principles because of the elevated costs that such management involved. Such costs could also seem superior to the potential advantages since standard performance measurement systems are internally and business focused; for these reasons, we consider all the possible value deriving also by uncertainty associated to a green project using the RO theory. This work is one of the few and pioneering efforts to investigate GSCM practices in the battery recycling sector.

  20. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.

    Science.gov (United States)

    Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo

    2017-01-25

    Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H2O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N(1)-ferrocenylmethyl-N(1),N(1),N(2),N(2),N(2)-pentamethylpropane-1,2-diaminium dibromide, (FcN2Br2, 3.1 M in H2O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN2Br2/MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm(2). Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm(2) with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm(2). These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.

  1. A Battery Energy Storage Power Conversion System Research%一种电池储能功率转换系统研究

    Institute of Scientific and Technical Information of China (English)

    秦立新

    2013-01-01

    电池储能系统适合于电网调频调峰以及重要负荷应急保障等场合。在电池储能系统中,功率转换系统是储能电池与电网能量交互的接口。研究了一种适合大容量应用的电池储能并网逆变器的电路和控制策略,实现了电池充放电功率控制和电网侧功率四象限控制。构建了电池储能实验平台来验证提出的理论和方法。%A battery energy storage system is suitable for load peak regulation and frequency modulation in the power grid as well as the important load emergency safeguard etc. Power conversion system in battery energy storage systems is the energy interactive interface between storage batteries and power grid. The circuit and control strategy of a battery energy storage grid-connected inverter for larger power applications are researched. The battery charge and discharge power control and grid-side power four-quadrant control are realized. A battery energy storage experiment platform is built to verify the proposed theory and method.

  2. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad

    The high cost of lithium ion batteries is a major impediment to the increased market share of plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). The reuse of PHEV/EV propulsion batteries in second use applications following the end of their automotive service life may have the potential to offset the high initial cost of these batteries today. Accurately assessing the value of such a strategy is exceedingly complex and entails many uncertainties. This paper takes a first step toward such an assessment by estimating the impact of battery second use on the initial cost of PHEV/EV batteries to automotive consumers and exploring the potential for grid-based energy storage applications to serve as a market for used PHEV/EV batteries. It is found that although battery second use is not expected to significantly affect today's PHEV/EV prices, it has the potential to become a common component of future automotive battery life cycles and potentially to transform markets in need of cost-effective energy storage. Based on these findings, the authors advise further investigation focused on forecasting long-term battery degradation and analyzing second-use applications in more detail.

  3. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  4. Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility.

    Science.gov (United States)

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    Dental erosion, and specifically its symptoms, has long been studied in Japan as an occupational dental disease. However, in recent years, few studies have investigated the development of this disease or labor hygiene management aimed at its prevention. As a result, interest in dental erosion is comparatively low, even among dental professionals. Our investigation at a lead storage battery factory in 1991 found that the work environmental sulfuric acid density was above the tolerable range (1.0mg/m(3)) and that longterm workers had dental erosion. Therefore, workers handling sulfuric acid were given an oral examination and rates of dental erosion by tooth type, rates of erosion by number of working years and rates of erosion by sulfuric acid density in the work environment investigated. Where dental erosion was diagnosed, degree of erosion was identified according to a diagnostic criterion. No development of dental erosion was detected in the maxillary teeth, and erosion was concentrated in the anterior mandibular teeth. Its prevalence was as high as 20%. Rates of dental erosion rose precipitously after 10 working years. The percentages of workers with dental erosion were 42.9% for 10-14 years, 57.1% for 15-19 years and 66.7% for over 20 years with 22.5% for total number of workers. The percentages of workers with dental erosion rose in proportion to work environmental sulfuric acid density: 17.9% at 0.5-1.0, 25.0% at 1.0-4.0 and 50.0% at 4.0-8.0mg/m(3). This suggests that it is necessary to evaluate not only years of exposure to sulfuric acid but also sulfuric acid density in the air in factory workers.

  5. Obtainment of Hg-free Mn/Zn solutions from spent alkaline batteries; Obtencion de soluciones de Mn/Zn libres de Hg provenientes de pilas alcalinas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nicolas, L.; Espinosa-Ramirez, I. [Instituto Politecnico Nacional, UPALM, Mexico, D.F. (Mexico)]. E-mail: lepeni@hotmail.com; Aguilar, M. [Instituto de Fisica, UNAM, Mexico, D.F. (Mexico); Palacios-Beas, E. [Instituto Politecnico Nacional, UPALM, Mexico, D.F. (Mexico)

    2009-09-15

    As in many other countries, the excessive consumption of alkaline batteries in Mexico has generated highly contaminating wastes, with heavy metal contents such as Mn, Zn, Fe, Hg, Cu and Ni, among others. This has caused a large degree of environmental degradation with repercussions for the health of living beings. Because there are no regulations regarding the disposal of spent batteries, they are thrown out with the rest of the domestic wastes or directly into nature, ending up in open-air landfills or containers where they are incinerated, thereby contaminating the planet's environment, soil and springs. The present work studies the obtainment of solutions of Hg-free Mn and Zn (Mn/Zn {>=} 1) from spent alkaline batteries for use in synthesis of (Mn,Zn)Fe{sub 2}O{sub 4} ferrite by a wet method. The effect is analyzed of the dissolution medium (H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}, HCl and HCl/NO{sub 3}) temperature and time on the percentage of dissolution of the metals present in the electrode material, characterized by atomic absorption (AA) spectroscopy and x-ray diffraction (XRD). The results of the investigation indicate that the best dissolution conditions are MD=H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}, T=50 degrees Celsius and t =30 min, where 94.1 and 90.7 % (w/w) of Mn and Zn are obtained, respectively, with Mn/Zn = 1.51. The mercury content was determined to be 3.91%, higher than that stated by the battery specifications, which is recovered by dissolving with HCl/HNO{sub 3} in the residual solid. [Spanish] En Mexico como en muchos otros paises, el consumo excesivo de pilas alcalinas ha generado desechos altamente contaminantes, con contenidos de metales pesados como Mn, Zn, Fe, Hg, Cu y Ni entre otros, que han provocado un gran deterioro en el medio ambiente repercutiendo en la salud de los seres vivos. Dado que no se tiene una regulacion en cuanto a la disposicion de pilas gastadas, estas se desechan con el resto de las residuos domesticos o directamente

  6. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  7. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte

    Science.gov (United States)

    Han, Jia-Jun; Li, Ning; Zhang, Tian-Yun

    The cyclic voltammetry indicated that the oxygen reduction reaction (ORR) proceeded by the four-electron pathway mechanism on larger Ag particles (174 nm), and that the ORR proceeded by the four-electron pathway and the two-electron pathway mechanisms on finer Ag particles (4.1 nm), simultaneously. The kinetics towards ORR was measured at a rotating disk electrode (RDE) with Ag/C electrode. The number of exchanged electrons for the ORR was found to be close to four on larger Ag particles (174 nm) and close to three on finer Ag particles (4.1 nm). The zinc-air battery with Ag/C catalysts (25.9 nm) was fabricated and examined.

  8. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Science.gov (United States)

    1980-05-01

    The lead/acid battery cycle from mining and milling of raw materials through recycling of scrap batteries and disposal of wastes is described. Material flows and emissions for various phases of the total cycle are estimated for per megawatt hour of installed capacity and for a scenario of three million lead/acid electric vehicles on the road by the year 2000.

  9. Study on Degradation and Recovery of AB5-Type Hydrogen Storage Alloy Used in Ni-MH Batteries

    Institute of Scientific and Technical Information of China (English)

    王荣; 阎杰; 周震; 周作祥; 邓斌; 高学平

    2002-01-01

    The influences of deeply overdischarge on the negative electrode alloy of Ni/MH battery were studied. After overdischarge, La(OH)3 and Al(OH)3 are found to form in the negative electrode through XRD analysis. The hydrogen storage alloy powder from spent Ni/MH batteries was recovered by chemical and melting method according to degradation mechanism. The structure of recovered alloy was measured by XRD. The experimental results demonstrate that the alloy structure is CaCu5 type. The constant-current charge/discharge test was carried out to the original alloy and the recovered alloy. It is found that their discharge capacities are almost the same, but the discharge potential of the recovered alloy is higher than that of the original alloy. The results of cyclic lifetime test demonstrate that the capacity degradation of the recovered alloy is slower than that of the original one.

  10. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.

    Science.gov (United States)

    Ding, Yu; Yu, Guihua

    2016-04-04

    Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology.

  11. γ-Fe₂O₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage.

    Science.gov (United States)

    Tian, Lei-Lei; Zhang, Ming-Jian; Wu, Chao; Wei, Yi; Zheng, Jia-Xin; Lin, Ling-Piao; Lu, Jun; Amine, Khalil; Zhuang, Quan-Chao; Pan, Feng

    2015-12-02

    Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g(-1) at the 100 mA g(-1) rate, stable cyclic capacity of 1077.9 mAh g(-1) at the same rate after 140 cycles, and rate capability of 538.8 mAh g(-1) at 2400 mA g(-1). This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li(+) diffusion paths. The mechanism of this hybrid anode material was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li(+) insertion in cation vacancies, spinel-to-rocksalt transformation, Li(+) intercalation of Li(1.75+x)Fe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.

  12. Final report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-11

    Voltage sags, swells and momentary power interruptions lasting a few cycles to several seconds are common disturbances on utility power distribution systems. These disturbances are a result of normal utility recloser switching activity due in part to distribution system short circuits from natural causes such as lightning, rodents, traffic accidents, and current overloads. Power disturbances pose serious problems for many customers with critical, voltage sensitive equipment. Faults can interrupt a manufacturing process, cause PLC`s to initialize their programmed logic and restart equipment out of sequence, create computer data errors, interrupt communications, lockup PC keyboards and cause equipment to malfunction. These momentary disturbances result in billions of dollars of lost productivity annually due to downtime, cleanup, lost production and the loss of customer confidence in the business. This report describes prototype development work for a factory assembled 2 MW/10 Second Battery Energy Storage System. The system design includes (1) a modular battery energy storage system comprised of several strings of batteries-each string provided with an integral Power Conversion System (PCS), (2) an Electronic Selector Device (ESD) comprised of a solid state static switch with sensing and power switching controls, and utility interconnection termination bus bars, and (3) a separate isolation transformer to step-up PCS output voltage to interface directly with the distribution transformer serving the industrial or commercial customer. The system monitors the utility distribution system voltage for voltage sags, swells, and interruptions, switches the customer`s critical loads from utility power to the energy stored in the systems batteries and provides up to 2 MVA until the disturbance clears or up to 10 seconds. Once the ESD sensing circuits have confirmed that the utility is again stable, it seamlessly returns the critical load to the utility. 22 figs., 1 tab.

  13. Application of valve-regulated lead-acid batteries for storage of solar electricity in stand-alone photovoltaic systems in the northwest areas of China

    Science.gov (United States)

    Hua, Shounan; Zhou, Qingshen; Kong, Delong; Ma, Jianping

    Photovoltaic (PV) installations for solar electric power generation are being established rapidly in the northwest areas of China, and it is increasingly important for these power systems to have reliable and cost effective energy storage. The lead-acid battery is the more commonly used storage technology for PV systems due to its low cost and its wide availability. However, analysis shows that it is the weakest component of PV power systems. Because the batteries can be over discharged, or operated under partial state of charge (PSOC), their service life in PV systems is shorter than could be expected. The working conditions of batteries in remote area installations are worse than those in situations where technical support is readily available. Capacity-loss in lead-acid batteries operated in remote locations often occurs through sulfation of electrodes and stratification of electrolyte. In northwest China, Shandong Sacred Sun Power Sources Industry Co. Ltd. type GFMU valve-regulated lead-acid (VRLA) batteries are being used in PV power stations. These batteries have an advanced grid structure, superior leady paste, and are manufactured using improved plate formation methods. Their characteristics, and their performance in PV systems, are discussed in this paper. The testing results of GFMU VRLA batteries in the laboratory have shown that the batteries could satisfy the demands of the International Electrotechnical Commission (IEC) standards for PV systems.

  14. Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al-Zn-Mg alloys

    Institute of Scientific and Technical Information of China (English)

    Rocio Ochoa; Alfredo Flores; Jesus Torres

    2016-01-01

    The aluminothermic reduction of zinc oxide (ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the sur-face tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the alu-minothermic reduction rate of ZnO was analyzed at the following values:0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO par-ticles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450-500 mesh. The re-sults show an increase in Zn concentration in the prepared alloys up to 5.43wt%for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.

  15. Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al-Zn-Mg alloys

    Science.gov (United States)

    Ochoa, Rocio; Flores, Alfredo; Torres, Jesus

    2016-04-01

    The aluminothermic reduction of zinc oxide (ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450-500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.

  16. Effects of state of charge on the degradation of LiFePO{sub 4}/graphite batteries during accelerated storage test

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yong [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); He, Yan-Bing; Qian, Kun [Engineering Laboratory for Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Li, Baohua, E-mail: libh@mail.sz.tsinghua.edu.cn [Engineering Laboratory for Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Wang, Xindong [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, Jianling, E-mail: lijianling@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miao, Cui; Kang, Feiyu [Engineering Laboratory for Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-08-05

    Highlights: • Degradation of LiFePO{sub 4}/graphite batteries under different state of charge at 55 °C is investigate. • Side reactions caused by self-discharge are the main reason for performance fade during storage. • The detailed degradation mechanism is proven by post-mortem analysis. • Increased electrode resistance in LiFePO{sub 4} cathode suggests that side reactions also happen at positive electrode. - Abstract: In this paper, the degradation of LiFePO{sub 4}/graphite batteries during 10 months of storage under different temperatures and states of charge (SOCs) is studied. The effects of SOC during storage process are systematically investigated using electrochemical methods and post-mortem analysis. The results show that at elevated temperature of 55 °C, higher stored SOC results in more significant increase in bulk resistance (R{sub b}) and charge-transfer resistance (R{sub ct}) of full battery, whereas the rate-discharge capability of stored battery is unchanged. The side reactions at the electrode/electrolyte interface caused by self-discharge are the main reasons for the performance fading during storage. For LiFePO{sub 4} cathode, long-time storage does not influence the framework structure under various SOCs. The existence of little irreversible capacity loss and impedance increase indicates that side reactions also occur at the positive electrode. For graphite anode, only a little capacity loss is found upon storage. There is a significant increase in impedance and a small amount of Fe deposition on graphite anode after storage at 100% SOC and 55 °C. The lithium ion loss arises from side reactions taking place at the graphite anode, which is responsible for the capacity degradation of battery during the storage process. XPS analysis confirms that a deposit layer composed of Li{sub 2}CO{sub 3} and LiF is formed on the surface of anode.

  17. A study around the improvement of electrochemical activity of MnO{sub 2} as cathodic material in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ghaemi, M.; Gholami, A. [Department of Chemistry, Science Faculty, Tarbiat Modares University, Tehran (Iran); Moghaddam, R.B. [Department of Chemistry, K.N. Toosi University of Technology, 15875-4416 Tehran (Iran)

    2008-03-10

    An optimized combination of reduction by methane and sulfuric acid digestion was developed to improve the electrochemical activity of manganese dioxide at a battery set. Chemical manganese dioxide, CMD, and electrolytic manganese dioxide, EMD, which have been destroyed after discharge cycling process in potential window of 900-1650 mV versus Hg/HgO, were reduced in a furnace with a flow of methane at 300 and 250{sup o}C correspondingly. Thereafter, the reduced samples, CMDr and EMDr, were digested in a solution of sulfuric acid with optimized concentration and temperature. It was found that digested samples, CMDro and EMDro, typically show more stability in cycling, higher capacity and more reversible redox reaction. Alternatively, we reported about the effect of digestion temperature on electrochemical and structural properties of the samples. Digestion at temperatures 60 and 98{sup o}C in 1.5 M sulfuric acid as superior concentration was preferred after comparative experiments in the range 40-98{sup o}C. The samples which were digested in 60{sup o}C (CMDro1 and EMDro1) showed superior electrochemical activity at the early stages of discharge cycling. By contrast, the samples which were obtained at 98{sup o}C (CMDro2 and EMDro2) showed more stability and were superior to the former samples in final stages of discharge cycling process. Afterward, the electrochemical behavior of the pretreated samples was investigated by means of cyclic voltammetry technique and discharge cumulative capacity profiles. Also X-ray diffraction was employed to verify the responses of voltammetric methods. In XRD patterns, peak at 2{theta} = 28.6 which is due to {beta}-MnO{sub 2} type was the strongest signal as temperature 98{sup o}C was selected for digestion. After digestion at 60{sup o}C, the characteristic peaks at 2{theta} = 38 and 42 were amplified which are attributed to formation of {gamma}-MnO{sub 2}. Interestingly enough, the results according to the XRD patterns were in good

  18. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  19. FlexRay总线在电池储能系统中的应用%Application of FlexRay Bus in Battery Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    马建业; 黄梅; 王占国; 刘彪; 盛大双

    2014-01-01

    当前大规模储能电池管理系统内部通信总线普遍采用CAN总线,使用FlexRay总线作为其内部总线替代传统的CAN总线,能较好地满足大规模电池储能系统( BESS)内部通信的要求。分析CAN总线用于大规模储能电池管理系统存在的不足以及FlexRay总线的优势。在BESS通信架构的基础上,介绍储能电池管理系统的通信架构,讨论FlexRay总线在大规模储能电池管理系统中的应用及主要方案。运用Network Designer与CANoe. FlexRay仿真验证FlexRay通信系统在大规模储能电池管理系统中应用的可行性,结果表明,与CAN总线相比,FlexRay总线用于储能电池管理系统中可以取得更好的效果。%CAN bus is normally used as internal bus in the large-scale Battery Energy Storage System ( BESS ) at present. FlexRay used as internal bus replacing CAN bus can well meet the requirements of internal communications in the large-scale battery energy storage system. The shortage of CAN bus which is used in the large-scale battery energy storage system and the superiority of FlexRay bus are analysed. Based on the simple introduction of the communication architecture of battery energy storage system, the communication architecture of energy storage battery management system is introduced by focus, and the feasibility of the application and major scheme of the FlexRay communication protocol in large-scale energy storage battery management system are discussed. Network Designer and CANoe. FlexRay are used to simulate the feasibility of FlexRay communication system used in the large-scale battery energy storage system. Simulation results prove that FlexRay bus used in energy storage battery management system can achieve good effects compared with CAN bus.

  20. Comparative life cycle assessment of battery storage systems for stationary applications.

    Science.gov (United States)

    Hiremath, Mitavachan; Derendorf, Karen; Vogt, Thomas

    2015-04-21

    This paper presents a comparative life cycle assessment of cumulative energy demand (CED) and global warming potential (GWP) of four stationary battery technologies: lithium-ion, lead-acid, sodium-sulfur, and vanadium-redox-flow. The analyses were carried out for a complete utilization of their cycle life and for six different stationary applications. Due to its lower CED and GWP impacts, a qualitative analysis of lithium-ion was carried out to assess the impacts of its process chains on 17 midpoint impact categories using ReCiPe-2008 methodology. It was found that in general the use stage of batteries dominates their life cycle impacts significantly. It is therefore misleading to compare the environmental performance of batteries only on a mass or capacity basis at the manufacturing outlet ("cradle-to-gate analyses") while neglecting their use stage impacts, especially when they have different characteristic parameters. Furthermore, the relative ranking of batteries does not show a significant dependency on the investigated stationary application scenarios in most cases. Based on the results obtained, the authors go on to recommend the deployment of batteries with higher round-trip efficiency, such as lithium-ion, for stationary grid operation in the first instance.

  1. Control of second-life hybrid battery energy storage system based on modular boost-multilevel buck converter

    OpenAIRE

    Mukherjee, Nilanjan; Strickland, Dani

    2015-01-01

    To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacit...

  2. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    verified for an interconnected power system operation where the power exchange deviations between two control areas are significantly minimised. The extent of electric vehicle penetration in the power distribution systems also depends on the support of smart control strategies to facilitate the safe......In the recent years, the electric vehicles (EVs) have drawn great attention world wide as a feasible solution for clean transportation. The electric vehicle technology is not new as it was introduced in the mid 19th century. The low battery capacity, driving range and superior gasoline cars had...... resulted in the demise of electric cars in the 1930s. However, with the advancement of new high density battery technologies and power electronic converters, it is now viable to produce electric cars of higher efficiency and driving range. The performance and durability of the battery technology...

  3. Design of battery storage power station for power balance%用于电力平衡的蓄电池储能电站的设计

    Institute of Scientific and Technical Information of China (English)

    孟彦京; 刘圆圆; 商晓英

    2013-01-01

    利用蓄电池储能电站调整负荷来保持电力平衡,是解决电力供需矛盾的一种有效途径.建立蓄电池储能电站,蓄电池的选型很重要,因为电池是电站的核心元件.根据机组调峰容量比的概念,建立了调荷容量的数学模型,再结合蓄电池组的调荷容量比,以满足电网综合调荷容量比最小为目标,计算出蓄电池组容量.储能电站的设计中,往往忽略蓄电池连接方式的选择问题,通过多种蓄电池组并串联方案的比较,找出最佳的蓄电池组连接方式,完成锂离子蓄电池储能电站的宏观设计.%It is an effective measure to use battery storage power station to regulate load and keep power balance. For setting up battery storage station, the type selection of batteries which are heart components of the power station is important. The mathematical model of load regulation capacity was built according to the ratio of peak regulation capacity. Then, combined with load regulation capacity ratio of batteries, the capacity of batteries was computed to minimize the integrate load regulation capacity ratio of electricity grid. In design of storage power station, the choice of connection mode is often neglected. Through comparing several schemes of serial-parallel batteries, the best scheme was found to finish the whole design of lithium-ion battery storage power station.

  4. Design of a Battery Intermediate Storage System for Rep-Rated Pulsed Power Loads

    Science.gov (United States)

    2013-04-01

    Abstract—The U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor ...developing a rapid charger for a 60-kJ capacitor bank capable of charging a 4800- µF capacitor to 5-kV in roughly five seconds. This system needs to...U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor will be charged with

  5. Electrical energy storage. Rapid and highly efficient energy storage beyond of batteries; Elektrische Energiespeicherung. Schnelle und hocheffiziente Energiespeicherung jenseits von Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Presser, Volker [INM - Leibniz-Institut fuer Neue Materialien gGmbH, Saarbruecken (Germany). Juniorforschungsgruppe Energie-Materialien; Balducci, Andrea [Muenster Univ. (Germany). MEET-Inst. fuer Physikalische Chemie

    2013-02-15

    Due to the reliable and robust technology, super-capacitors are used for the highly efficient storage of electrical energy. This is based on their long-living components. As yet, there are a lot of open questions especially in the range of complex processes at the solid-liquid surface as well as related to possible and real mechanisms of degradation. Renewable energies require enhanced reaction rates and a robust performance. Under this aspect, super-capacitors have a great potential within the range of the integration of renewable energies. Thus, the former sharply defined border between super-capacitors and batteries vanishes. Due to the particularly high energy densities, hybrid capacitors as well as pseudo-capacitors may open up new fields of application such as the personal electromobility.

  6. Integrating end-user and grid focused batteries and long-term power-to-gas storage for reaching a 100 % renewable energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Hlusiak, Markus; Breyer, C. [Reiner Lemoine Institut gGmbH, Berlin (Germany)

    2012-07-01

    This paper presents results of modelling cost optimised electricity generation systems for renewable energy shares varying from 0 % to 100 % on an hourly timescale. The model takes into account generation from solar photovoltaics (PV), wind, hydro, biogas and natural gas fuelled power plants. Storage is incorporated as short-term storage in batteries and biogas bladders and long-term storage via renewable power methane (RPM) and biomethane. Gridparity enabled PV-battery systems are taken into account to model electricity end-user behaviour. We use localised hourly solar insolation, wind and hydro power output, and electricity demand data. Results include optimum component sizing as well as levelised cost of electricity (LCOE). Impacts of changing storage technology prices are investigated.

  7. 几种新技术铅蓄电池的研究进展%Research Progress of Several New Technologies Lead Storage Batteries

    Institute of Scientific and Technical Information of China (English)

    柳颖

    2016-01-01

    Lead acid battery has the disadvantages of low energy, short cycle life and high power performance.The development of new technology and new structure has greatly improved the performance of battery, and expanded the application field of the battery.This article introduced the research and development, industrialization and application of several new technologies of lead storage batteries.%铅蓄电池存在比能量低、循环寿命短、高功率性能差等缺点,相关新技术、新结构的开发,极大地改善了电池性能,拓展了电池应用领域.文章介绍了几种铅蓄电池新技术的研究开发、产业化及应用情况.

  8. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.

    Science.gov (United States)

    Hu, Yuantai; Xue, Huan; Hu, Ting; Hu, Hongping

    2008-01-01

    This paper studies the performance of an energy harvester with a piezoelectric bimorph (PB) and a real electrochemical battery (ECB), both are connected as an integrated system through a rectified dc-dc converter (DDC). A vibrating PB can scavenge energy from the operating environment by the electromechanical coupling. A DDC can effectively match the optimal output voltage of the harvesting structure to the battery voltage. To raise the output power density of PB, a synchronized switch harvesting inductor (SSHI) is used in parallel with the harvesting structure to reverse the voltage through charge transfer between the output electrodes at the transition moments from closed-to open-circuit. Voltage reversal results in earlier arrival of rectifier conduction because the output voltage phases of any two adjacent closed-circuit states are just opposite each other. In principle, a PB is with a smaller, flexural stiffness under closed-circuit condition than under open-circuit condition. Thus, the PB subjected to longer closed-circuit condition will be easier to be accelerated. A larger flexural velocity makes the PB to deflect with larger amplitude, which implies that more mechanical energy will be converted into an electric one. Nonlinear interface between the vibrating PB and the modulating circuit is analyzed in detail, and the effects of SSHI and DDC on the charging efficiency of the storage battery are researched numerically. It was found that the introduction of a DDC in the modulating circuit and an SSHI in the harvesting structure can raise the charging efficiency by several times.

  9. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Johns, William H.

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  10. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    Science.gov (United States)

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-01

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  11. A novel coordinated control strategy considering power smoothing for a hybrid photovoltaic/battery energy storage system

    Institute of Scientific and Technical Information of China (English)

    DAUD Muhamad Zalani; MOHAMED Azah; HANNAN M A

    2016-01-01

    This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage (PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.

  12. Application of a LiFePO4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results

    Directory of Open Access Journals (Sweden)

    Fabio Massimo Gatta

    2016-10-01

    Full Text Available This paper presents an experimental application of LiFePO4 battery energy storage systems (BESSs to primary frequency control, currently being performed by Terna, the Italian transmission system operator (TSO. BESS performance in the primary frequency control role was evaluated by means of a simplified electrical-thermal circuit model, taking into account also the BESS auxiliary consumptions, coupled with a cycle-life model, in order to assess the expected life of the BESS. Numerical simulations have been carried out considering the system response to real frequency measurements taken in Italy, spanning a whole year; a parametric study taking into account different values of governor droop and of BESS charge/discharge rates (C-rates was also performed. Simulations, fully validated by experimental results obtained thus far, evidenced a severe trade-off between expected lifetime and overall efficiency, which significantly restricts the choice of operating parameters for frequency control.

  13. Capacity determination of a battery energy storage system based on the control performance of load leveling and voltage control

    Directory of Open Access Journals (Sweden)

    Satoru Akagi

    2016-01-01

    Full Text Available This paper proposes a method to determine the combined energy (kWh and power (kW capacity of a battery energy storage system and power conditioning system capacity (kVA based on load leveling and voltage control performances. Through power flow calculations, a relationship between the capacity combination and the control performance is identified and evaluated. A tradeoff relationship between the capacity combination and control performance is confirmed, and the proper capacity combination for operation is determined based on the evaluated relationship. In addition, the control performance of the capacity combination is evaluated through the power flow calculation, confirming that the proposed method is effective for determining the optimized capacity combination.

  14. Distributed Control of Battery Energy Storage Systems for Voltage Regulation in Distribution Networks with High PV Penetration

    DEFF Research Database (Denmark)

    Zeraati, Mehdi; Golshan, Mohamad Esmaeil Hamedani; Guerrero, Josep M.

    2017-01-01

    issues of distribution networks. In this paper, the battery energy storage (BES) systems are used in order to solve the voltage rise during the peak PV generation as well as the voltage drop while meeting the peak load. A coordinated control strategy is proposed to regulate the charge/discharge of BESs...... using a combination of the local droop based control method and a distributed control scheme which ensures the voltages of feeder remain within allowed limits. Therefore, two different consensus algorithms are used: The first algorithm determines the BESs participation in voltage regulation in terms......The voltage rise problem in low voltage (LV) distribution networks with high penetration of photovoltaic (PV) resources is one of the most important challenges in the development of these renewable resources since it may prevent the maximum PV penetration considering the reliability and security...

  15. The relationship between blood lead levels and morbidities among workers employed in a factory manufacturing lead-acid storage battery.

    Science.gov (United States)

    Kalahasthi, Ravi Babu; Barman, Tapu; Rajmohan, H R

    2014-01-01

    The present study was carried out to find the relationship between blood lead levels (BLLs) and morbidities among 391 male workers employed in a factory manufacturing lead-acid storage batteries. A predesigned questionnaire was used to collect information on subjective health complaints and clinical observation made during a clinical examination. In addition to monitoring of BLL, other laboratory parameters investigated included hematological and urine-δ-aminolevulinic acid levels. Logistic regression method was used to evaluate the relationship between BLL and morbidities. The BLL among workers was associated with an odd ratio of respiratory, gastrointestinal (GI), and musculoskeletal (MSD) morbidities. Mean corpuscular hemoglobin and packed cell volume variables were associated with respiratory problems. The variables of alcohol consumption and hematological parameters were associated with GI complaints. Systolic blood pressure was related to MSD in workers exposed to Pb during the manufacturing process.

  16. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance.

    Science.gov (United States)

    Li, Xifei; Hu, Yuhai; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang

    2013-12-21

    How to tune graphene nanosheets (GNSs) with various morphologies has been a significant challenge for lithium ion batteries (LIBs). In this study, three types of GNSs with varying size, edge sites, defects and layer numbers have been successfully achieved. It was demonstrated that controlling GNS morphology and microstructure has important effects on its cyclic performance and rate capability in LIBs. Diminished GNS layer number, decreased size, increased edge sites and increased defects in the GNS anode can be highly beneficial to lithium storage and result in increased electrochemical performance. Interestingly, GNSs treated with a hydrothermal approach delivered a high reversible discharge capacity of 1348 mA h g(-1). This study demonstrates that the controlled design of high performance GNS anodes is an important concept in LIB applications.

  17. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity.

    Science.gov (United States)

    Boesenberg, Ulrike; Marcus, Matthew A; Shukla, Alpesh K; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  18. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  19. Simulation of Ni-MH Batteries via an Equivalent Circuit Model for Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2016-01-01

    Full Text Available Impedance measurement was conducted at the entire cell level for studying of the Ni-MH rechargeable batteries. An improved equivalent circuit model considering diffusion process is proposed for simulation of battery impedance data at different charge input levels. The cell capacity decay was diagnosed by analyzing the ohmic resistance, activation resistance, and mass transfer resistance of the Ni-MH cells with degraded capacity. The capacity deterioration of this type, Ni-MH cell, is considered in relation to the change of activation resistance of the nickel positive electrodes. Based on the report and surface analysis obtained from the energy dispersive X-ray spectroscopy, the composition formula of metal-hydride electrodes can be closely documented as the AB5 type alloy and the “A” elements are recognized as lanthanum (La and cerium (Ce. The capacity decay of the Ni-MH cell is potentially initiated due to starved electrolyte for the electrochemical reaction of active materials inside the Ni-MH battery, and the discharge product of Ni(OH2 at low state-of-charge level is anticipated to have more impeding effects on electrode kinetic process for higher power output and efficient energy delivery.

  20. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina;

    2013-01-01

    and improving the predictability of the intermittent renewables but also of providing the ancillary services in the future energy markets. However, this is currently difficult to achieve due to high prices of the energy storage systems and difficulties with accurate prediction of the energy storage systems...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....

  1. Nickel electrode for alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Charkey, A.; Januszkiewicz, S.

    1985-10-08

    A nickel electrode including a conductive support and a layer on the support including a mixture of a nickel active material and a graphite diluent containing a spinel type oxide, the spinel type oxide having the formula M/sub 2/Co/sub 2/O/sub 4/, where M/sub 2/ is Co, Ni, Mn, Fe, Cu, Zn or Cd, or combinations thereof, and having a weight which is in the range of 1-30 percent of the weight of the diluent.

  2. "Supergreen" Renewables: Integration of Mineral Weathering Into Renewable Energy Production for Air CO2 Removal and Storage as Ocean Alkalinity

    Science.gov (United States)

    Rau, G. H.; Carroll, S.; Ren, Z. J.

    2015-12-01

    Excess planetary CO2 and accompanying ocean acidification are naturally mitigated on geologic time scales via mineral weathering. Here, CO2 acidifies the hydrosphere, which then slowly reacts with silicate and carbonate minerals to produce dissolved bicarbonates that are ultimately delivered to the ocean. This alkalinity not only provides long-term sequestration of the excess atmospheric carbon, but it also chemically counters the effects of ocean acidification by stabilizing or raising pH and carbonate saturation state, thus helping rebalance ocean chemistry and preserving marine ecosystems. Recent research has demonstrated ways of greatly accelerating this process by its integration into energy systems. Specifically, it has been shown (1) that some 80% of the CO2 in a waste gas stream can be spontaneously converted to stable, seawater mineral bicarbonate in the presence of a common carbonate mineral - limestone. This can allow removal of CO2 from biomass combustion and bio-energy production while generating beneficial ocean alkalinity, providing a potentially cheaper and more environmentally friendly negative-CO2-emissions alternative to BECCS. It has also been demonstrated that strong acids anodically produced in a standard saline water electrolysis cell in the formation of H2 can be reacted with carbonate or silicate minerals to generate strong base solutions. These solutions are highly absorptive of air CO2, converting it to mineral bicarbonate in solution. When such electrochemical cells are powered by non-fossil energy (e.g. electricity from wind, solar, tidal, biomass, geothermal, etc. energy sources), the system generates H2 that is strongly CO2-emissions-negative, while producing beneficial marine alkalinity (2-4). The preceding systems therefore point the way toward renewable energy production that, when tightly coupled to geochemical mitigation of CO2 and formation of natural ocean "antacids", forms a high capacity, negative-CO2-emissions, "supergreen

  3. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro

    2012-10-23

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  4. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.

  5. The long term storage performance of MH/Ni battery%MH/Ni电池的长期储存性能

    Institute of Scientific and Technical Information of China (English)

    邱钟明; 谈健; 吴爱深

    2012-01-01

    将MH/Ni电池在室温下以不同的荷电态(SOC)进行长期储存,对储存前后的电池性能进行测试.长期储存后,电池的内阻变化较大,储存24个月后的平均内阻增加43.46%,平均容量恢复率为90.33%.长期储存对MH/Ni电池的容量、放电平台及循环寿命都会产生不利的影响.%MH/Ni battery was stored for long term under normal temperature with different state of charge(SOC) ,the battery performance before and after storage was tested. When stored for long term, the internal resistance change of the battery was larger, the average increasing ratio of the internal resistance within 24 months storage was above 43.46%, the average capacity recovery ratio was 90.33% . The long term storage was unfavorable for the capacity,discharge voltage plateaus and cycle life of the battery.

  6. The long term charged storage performance of Li-ion battery%锂离子电池的长期荷电贮存性能

    Institute of Scientific and Technical Information of China (English)

    王洪; 杨驰; 王大兴; 郭春泰

    2011-01-01

    Li-ion battery was long term (5 ~ 10 a) stored under normal temperature with different state of charge (SOC), the performance of battery before and after storage was teated. When the battery was stored for a long time, the internal resistance improved, the average internal resistance increasing ratio was above 79.95 %, polymer Li-ion battery had a lower internal resistance increasing ratio. The capacity recovery performance of Li-ion battery stored for a long time was fine, the average capacity recovery ratio with 10 a storage could reach to 88% .Long term storage had unfavorable effect to the capacity,platform and cycle life of the battery.%将锂离子电池在常温下以不同的荷电态(SOC)长期(5-10 a)贮存,对贮存前后的电池性能进行测试.长期贮存后,电池的内阻增加,10 a贮存后的内阻平均增加率高达79.95%,聚合物锂离子电池的内阻增加稍低.锂离子电池长期贮存后,容量恢复性能较好,10 a贮存容量平均恢复率可迭88%.长期贮存对电池的容量、平台和循环寿命都会产生不利的影响.

  7. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    Science.gov (United States)

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  8. Optimization of Performance Characteristics of Hybrid Wind Photovoltaic System with Battery Storage

    Directory of Open Access Journals (Sweden)

    C. Kathirvel

    2014-03-01

    Full Text Available This study concentrates on the Design and Implementation of a multi source hybrid Wind-Photovoltaic stand alone system with proposed energy management strategy. The method of investigation concerned with the definition of the system topology, interconnection of the various sources with maximum energy transfer, optimum control and energy management in order to maintain the DC bus voltage into a fixed value. An Energy management strategy was proposed using the Fuzzy logic controller such that enhancement in the performance of the system and optimization can be done. The Fuzzy logic controller takes the input from Solar (irradiation, Wind (speed, Power demand and the battery voltage which controls the respective subsystem and formulates into different operational modes of energy management. The role of Fuzzy threshold controller is to adjust continuously the threshold value for optimal performance based on expected wind, solar conditions, battery voltage and power demand. It is shown that when the fuzzy logic controller is used, the proposed DC bus voltage regulation strategy with different modes of operation have fast response and efficient operation which leads to a reduced operating cost.

  9. Self-healing Li-Bi liquid metal battery for grid-scale energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ning, XH; Phadke, S; Chung, B; Yin, HY; Burke, P; Sadoway, DR

    2015-02-01

    In an assessment of the performance of a Li vertical bar LiCl-LiF vertical bar Bi liquid metal battery, increasing the current density from 200 to 1250 mA cm(-2) results in a less than 30% loss in specific discharge capacity at 550 degrees C. The charge and discharge voltage profiles exhibit two distinct regions: one corresponding to a Li-Bi liquid alloy and one corresponding to the two-phase mixture of Li-Bi liquid alloy and the intermetallic solid compound, Li3Bi. Full cell prototypes of 0.1 Ah nameplate capacity have been assembled and cycled at 3 C rate for over a 1000 cycles with only 0.004% capacity fade per cycle. This is tantamount to retention of over 85% of original capacity after 10 years of daily cycling. With minimal changes in design, cells of 44.8 Ah and 134 Ah capacity have been fabricated and cycled at C/3 rate. After a hundred cycles and over a month of testing, no capacity fade is observed. The coulombic efficiency of 99% and energy efficiency of 70% validate the ease of scalability of this battery chemistry. Post mortem cross sections of the cells in various states of charge demonstrate the total reversibility of the Li3Bi solid phase formed at high degrees of lithiation. (C) 2014 Elsevier B.V. All rights reserved.

  10. State of Charge Balancing Control of a Multi-Functional Battery Energy Storage System Based on a 11-Level Cascaded Multilevel PWM Converter

    DEFF Research Database (Denmark)

    Wang, Songcen; Teodorescu, Remus; Máthé, Lászlo

    2015-01-01

    This paper focuses on modeling and SOC (State of Charge) balancing control of lithium-ion battery energy storage system based on cascaded multilevel converter for both grid integration and electric vehicle propulsion applications. The equivalent electrical circuit model of lithium-ion battery...... is adopted to control active power and reactive power independently, and the zero-sequence voltage injection and a sorting and select algorithm are employed for SOC balancing control. The simulation results have been carried out with PLECS Simulation Software and are presented to validate the SOC control...

  11. Fuzzy Logic based Coordinated Control of Battery Energy Storage System and Dispatchable Distributed Generation for Microgrid

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan;

    2015-01-01

    Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...

  12. Modeling Zinc-Air Batteries with Aqueous Electrolytes

    OpenAIRE

    Clark, Simon; Stamm, Johannes; Horstmann, Birger; Latz, Arnulf

    2016-01-01

    Emerging markets such as electric mobility and renewable power generation are driving a demand for high-performance electrochemical energy storage. Zinc-air batteries are a promising technology due to their high theoretical specific energy, use of cheap materials, and superior operational safety. But they suffer from effects such as poor cycling stability and self-discharge due to carbonate formation in the alkaline electrolyte. The EU Horizon 2020 project Zinc Air Secondary (ZAS!) aims to o...

  13. Primary battery design and safety guidelines handbook

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E.; Trout, J. Barry

    1994-12-01

    This handbook provides engineers and safety personnel with guidelines for the safe design or selection and use of primary batteries in spaceflight programs. Types of primary batteries described are silver oxide zinc alkaline, carbon-zinc, zinc-air alkaline, manganese dioxide-zionc alkaline, mercuric oxide-zinc alkaline, and lithium anode cells. Along with typical applications, the discussions of the individual battery types include electrochemistry, construction, capacities and configurations, and appropriate safety measures. A chapter on general battery safety covers hazard sources and controls applicable to all battery types. Guidelines are given for qualification and acceptance testing that should precede space applications. Permissible failure levels for NASA applications are discussed.

  14. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    Science.gov (United States)

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity.

  15. Design Principles for Nickel/Hydrogen Cells and Batteries

    Science.gov (United States)

    Thaller, Lawrence H.; Manzo, Michelle A.; Gonzalez-Sanabria, Olga D.

    1987-01-01

    Individual-pressure-vessel (IPV) nickel/hydrogen cells and bipolar batteries developed for use as energy-storage subsystems for satelite applications. Design principles applied draw upon extensive background in separator technology, alkaline-fuel-cell technology and several alkaline-cell technology areas. Principals are rather straightforward applications of capillary-force formalisms, coupled with slowly developing data base resulting from careful post-test analyses. Based on preconceived assumptions relative to how devices work and how to be designed so they display longer cycle lives at deep discharge.

  16. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.

    Science.gov (United States)

    Grützke, Martin; Krüger, Steffen; Kraft, Vadim; Vortmann, Britta; Rothermel, Sergej; Winter, Martin; Nowak, Sascha

    2015-10-26

    Shredding of the cells is often the first step in lithium-ion battery (LIB) recycling. Thus, LiNi1/3 Mn1/3 Co1/3 O2 (NMC)/graphite lithium-ion cells from a field-tested electric vehicle were shredded and transferred to tinplate or plastic storage containers. The formation of hazardous compounds within, and being released from, these containers was monitored over 20 months. The tinplate cans underwent fast corrosion as a result of either residual charge in the active battery material, which could not fully be discharged because of contact loss to the current collector, or redox reactions between the tinplate surface and metal parts of the shredded material. The headspace compositions of the containers were investigated at room temperature and 150 °C using headspace-gas chromatography-mass spectrometry (HS-GC-MS). Samples of the waste material were also collected using microwave-assisted extraction and the extracts were analyzed over a period of 20 months using ion chromatography-electrospray ionization-mass spectrometry (IC-ESI-MS). LiPF6 was identified as a conducting salt, whereas dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate were the main solvent components. Cyclohexylbenzene was also detected, which is an additive for overcharge protection. Diethyl carbonate, fluoride, difluorophosphate and several ionic and non-ionic alkyl (fluoro)phosphates were also identified. Importantly, dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were quantified using HS-GC-MS through the use of an internal standard. DMFP, DEFP, and related compounds are known as chemical warfare agents, and the presence of these materials is of great interest. In the case of this study, these hazardous materials are present but in manageable low concentrations. Nonetheless, the presence of such compounds and their potential release during an accident that may occur during shredding or recycling of large amounts of LIB waste should be considered.

  17. Cooperative Management of a Lithium-Ion Battery Energy Storage Network: A Distributed MPC Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huazhen; Wu, Di; Yang, Tao

    2016-12-12

    This paper presents a study of cooperative power supply and storage for a network of Lithium-ion energy storage systems (LiBESSs). We propose to develop a distributed model predictive control (MPC) approach for two reasons. First, able to account for the practical constraints of a LiBESS, the MPC can enable a constraint-aware operation. Second, a distributed management can cope with a complex network that integrates a large number of LiBESSs over a complex communication topology. With this motivation, we then build a fully distributed MPC algorithm from an optimization perspective, which is based on an extension of the alternating direction method of multipliers (ADMM) method. A simulation example is provided to demonstrate the effectiveness of the proposed algorithm.

  18. Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-01-01

    Full Text Available The role of Demand Side Management (DSM with Distributed Energy Storage (DES has been gaining attention in recent studies due to the impact of the latter on energy management in the smart grid. In this work, an Energy Scheduling and Distributed Storage (ESDS algorithm is proposed to be installed into the smart meters of Time-of-Use (TOU pricing consumers possessing in-home energy storage devices. Source of energy supply to the smart home appliances was optimized between the utility grid and the DES device depending on energy tariff and consumer demand satisfaction information. This is to minimize consumer energy expenditure and maximize demand satisfaction simultaneously. The ESDS algorithm was found to offer consumer-friendly and utility-friendly enhancements to the DSM program such as energy, financial, and investment savings, reduced/eliminated consumer dissatisfaction even at peak periods, Peak-to-Average-Ratio (PAR demand reduction, grid energy sustainability, socio-economic benefits, and other associated benefits such as environmental-friendliness.

  19. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage

    Science.gov (United States)

    Li, Guolong; Yang, Ze; Jiang, Yan; Zhang, Wuxing; Huang, Yunhui

    2016-03-01

    A hybrid aqueous rechargeable battery with Na3V2(PO4)3 as cathode and metal Zn as anode has been proposed. Na3V2(PO4)3 is co-incorporated by carbon and reduced graphene oxide. The battery delivers a capacity of 92 mAh g-1 at a current density of 50 mA g-1 with a high and flat operating voltage of 1.42 V. It exhibits a capacity of 60 mAh g-1 at a high current density of 2000 mA g-1, indicative of excellent rate capability. Such inexpensive and safe battery shows an energy density as high as 112 Wh kg-1, demonstrating that it is potential for future application in large-scale energy storage.

  20. Comparative analysis of photovoltaic power storage systems by means of batteries and hydrogen in remote areas of the Amazon region in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, Andre Luis; Silva Pinto, Cristiano da [FEM/UNICAMP, Sao Paulo (Brazil). School of Mechanical Engineering; Neves, Newton Pimenta Jr. [IFGW/UNICAMP, Sao Paulo (Brazil). Lab. of Hydrogen

    2010-07-01

    This study analyzes the photovoltaic power storage comparing the traditional lead-acid batteries with electrolytic hydrogen where the gas is reconverted to power in a fuel cell. In order to design the two systems a load profile of the Brazilian Amazon communities was used as well as some practical operational data of equipment tested in the laboratory. A mathematical model was developed, implemented in a spreadsheet that considers the several devices and their efficiencies in order to specify and match the systems components. The results were employed to evaluate the economic viability of the two systems in remote communities. Considering the present conditions, it was verified that the battery system is slightly cheaper. However, it was also observed that a minor cost reduction in the electrolyser, as well as in the buffer and fuel cell would make the hydrogen system very competitive, becoming the best option for photovoltaic power storage with important benefits to the environment. (orig.)

  1. Connection Programme and Application of Battery Storage Trasporter%换电仓运输车的接驳方案与实践

    Institute of Scientific and Technical Information of China (English)

    方金顺; 邓国成

    2012-01-01

    介绍了换电仓运输车与换电站内换电仓周转平台之间实现换电仓装卸接驳的方案以及实现接驳功能的三个关键装置,并根据接驳功能方案试制了一套接驳装置,最后通过接驳试验对方案进行了完善。%The battery storage transporter and the programme of connection battery storage with the platform in power station were introduced in this paper.It also focus on three main devices which can realize the connection function and the improvemeng of this programme through connection experiment.

  2. Discussion on the online monitoring and controlling technology for the storage battery pack%蓄电池组在线监测技术探讨

    Institute of Scientific and Technical Information of China (English)

    吴玉柱

    2011-01-01

    介绍了蓄电池监测技术的发展及现状,论述无人值守变电站蓄电池监测系统的特点和要求,并据此提出详细方案,给出了基于以上要求蓄电池组在线监测系统的构成、工作原理和组建方法。%This article introduces the history and current situation of the monitoring and controlling technology for the storage battery. It discussed the features and requirements of the storage battery monitoring and controlling system which is applied to the unattended transformer substation. It also provided a detailed solution based on the requirements hereinbefore, including the system architecture, operational principle and the way to set it up.

  3. 混合储能超级电容与蓄电池能量分配策略研究%Energy Allocation Strategy of Super Capacitor and Storage Battery Based on Hybrid Energy Storage

    Institute of Scientific and Technical Information of China (English)

    曹华锋; 白迪; 赵志刚

    2016-01-01

    According to the hybrid energy storage capacity of micro grid, a dynamic control strategy for the DC⁃DC converter is pro⁃posed. This strategy can prevent the battery from the depth of discharge, reduce the battery charge and discharge frequency, extend the battery life. The effectiveness of the proposed strategy is verified by simulation.%针对超级电容与蓄电池的混合储能,提出了一种电池端DC-DC变换器动态控制策略。该策略可以防止电池出现深度放电,降低蓄电池的充放电频率,延长电池使用寿命,并通过仿真验证了其有效性。

  4. Analysis and optimization of the battery energy storage systems for frequency control in autonomous microgrids, by means of hardware-in-the-loop simulations

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Marinescu, C.

    2012-01-01

    This paper presents an original hardware-in-the-loop (HIL) solution for real-time testing and optimization of the frequency control mechanism in autonomous microgrids (MG), when battery energy storage systems (BESS) are integrated along classical and RES-based generators to stabilize the frequency...... in terms of active power, and therefore the need of improving the MG power reserve by adding energy storage systems is often demanded. The proposed HIL solution aims to improve the design of the BESS frequency control systems according to the MG characteristics, being based on aggregated models...

  5. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  6. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  7. 超级电容蓄电池混合模组%Study on mixed model of super capacitive storage battery

    Institute of Scientific and Technical Information of China (English)

    郭兆正; 于鹏

    2011-01-01

    Certain limits of storage battery are pointed out, and a new method for the mixed model combing super capacitor with storage battery is proposed. The new method is simple in design, easy to operate and effective to implove the lifetime of storage battery by using the control circuit. Thus, the efficiency of the mixed model is improved, and this method is particularly applicable in designing the circuit of electricity- motored bikes. The control method for the mixed model is proposed for the control circuit of electricity - motored bikes and tested by computer simulation experiments. The electric current's waveform is illustrted for the super capacitor and storage battery under the control circuit.%指出了蓄电池的某些局限性,提出超级电容与蓄电池组成混合模组的方法.这种方法简单实用,可以改善蓄电池使用环境,形成的控制电路便于提高蓄电池使用寿命,提高混合模组功率密度,特别适合于设计电动自行车的电源电路.介绍了混合模组的控制策略,根据对混合模组在电动车中应用工况的分析,设计了控制电路.应用计算机仿真说明了混合模组控制器的具体实现.给出了控制器作用下超级电容和蓄电池模组的电流波形.

  8. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  9. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    Science.gov (United States)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  10. Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations

    Science.gov (United States)

    Sk, Mahasin Alam; Manzhos, Sergei

    2016-08-01

    We present an ab initio study of sodium storage mechanism in disodium terephthalate (Na2TP) which is a very promising anode material for organic sodium (Na)-ion batteries with reported experimental capacities of ∼255 mAh g-1, previously attributed to Na attachment to the two carboxylate groups (coordinating to oxygen atoms). We show here that the inserted Na atoms prefer to bind at carboxylate sites at low Na concentrations and are dominant for insertion of up to one Na atom per molecule; for higher Na concentrations, the hexagonal sites (on the aromatic ring) become dominant. We confirm that the Na2TP crystal can store a maximum of two Na atoms per molecule, as observed in experiments. Our current results are intriguing as we reveal that the Na binding at carboxylate sites contributes to the initial part of Na2TP sodiation curve and the Na binding at hexagonal sites contributes to the second part of the curve. The inserted Na atoms donate electrons to empty states in the conduction band. Moreover, we show that the Na diffusion barriers in clean Na2TP can be as low as 0.23 eV. We also show that there is significant difference in the mechanism of Na interaction between individual molecules and the crystal.

  11. Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-29

    Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

  12. An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-02-01

    Full Text Available Battery energy storage systems (BESSs with proportional-integral (PI control methods have been widely studied in microgrids (MGs. However, the performance of PI control methods might be unsatisfactory for BESSs due to the nonlinear characteristics of the system. To overcome this problem, an energy-based (EB control method is applied to control the converter of a BESS in this study. The EB method is a robust nonlinear control method based on passivity theory with good performance in both transient and steady states. The detailed design process of the EB method in the BESS by adopting an interconnection and damping assignment (IDA strategy is described. The design process comprises three steps: the construction of the port-controlled Hamiltonian model, the determination of the equilibrium point and the solution of the undetermined matrix. In addition, integral action is combined to eliminate the steady state error generated by the model mismatch. To establish the correctness and validity of the proposed method, we implement several case simulation studies based on a test MG system and compare the control performance of the EB and PI methods carefully. The case simulation results demonstrate that the EB method has better tracking and anti-disturbance performance compared with the classic PI method. Moreover, the proposed EB method shows stronger robustness to the uncertainty of system parameters.

  13. Optimal Scheduling of a Battery Energy Storage System with Electric Vehicles’ Auxiliary for a Distribution Network with Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2015-09-01

    Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.

  14. Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs for Enhancing the Resiliency of Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-02-01

    Full Text Available The resiliency of power systems can be enhanced during emergency situations by using microgrids, due to their capability to supply local loads. However, precise prediction of disturbance events is very difficult rather the occurrence probability can be expressed as, high, medium, or low, etc. Therefore, a fuzzy logic-based battery energy storage system (BESS operation controller is proposed in this study. In addition to BESS state-of-charge and market price signals, event occurrence probability is taken as crisp input for the BESS operation controller. After assessing the membership levels of all the three inputs, BESS operation controller decides the operation mode (subservient or resilient of BESS units. In subservient mode, BESS is fully controlled by an energy management system (EMS while in the case of resilient mode, the EMS follows the commands of the BESS operation controller for scheduling BESS units. Therefore, the proposed hybrid microgrid model can operate in normal, resilient, and emergency modes with the respective objective functions and scheduling horizons. Due to the consideration of resilient mode, load curtailment can be reduced during emergency operation periods. Numerical simulations have demonstrated the effectiveness of the proposed strategy for enhancing the resiliency of hybrid microgrids.

  15. Using A Battery Storage Wind / PV Hybrid Power Supply System Based Stand-Alone PSO To Determine The Most Appropriate.

    Directory of Open Access Journals (Sweden)

    Amam Hossain Bagdadee

    2014-08-01

    Full Text Available Wind / PV hybrid power systems, completed in time and geography, both economical and reliable than PV or wind turbine, but the hybrid system wind / PV to increase capacity. Installation of experience with traditional power design and optimization of design and operation cannot be seen with. To solve the problem in a comprehensive objective function to present the objective function of the solar wind. And reliability of the storage cells can be calculated with an investment of erosion format system resources, including the number of solar cells and batteries, but the type and amount of solar wind to change. As well as to improve not only to make the results more accurate investment costs and reliability cost of conversion optimization problems several optimization problems today.Improved optimization algorithms, PSO are used to solve nonlinear hybrid analysis is any integer optimization problem on the basis of PSO algorithm standard techniques then there is the first step convergence factor is applied to improve the detection performance of both migration are used to improve the ability of the algorithm to find the best in the whole world.

  16. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery.

    Science.gov (United States)

    Li, Xiuwan; Yang, Zhibo; Fu, Yujun; Qiao, Li; Li, Dan; Yue, Hongwei; He, Deyan

    2015-02-24

    Germanium is a highly promising anode material for lithium-ion batteries as a consequence of its large theoretical specific capacity, good electrical conductivity, and fast lithium ion diffusivity. In this work, Co3O4 nanowire array fabricated on nickel foam was designed as a nanostructured current collector for Ge anode. By limiting the voltage cutoff window in an appropriate range, the obtained Ge anode exhibits excellent lithium storage performance in half- and full-cells, which can be mainly attributed to the designed nanostructured current collector with good conductivity, enough buffering space for the volume change, and shortened ionic transport length. More importantly, the assembled Ge/LiCoO2 full-cell shows a high energy density of 475 Wh/kg and a high power density of 6587 W/kg. A high capacity of 1184 mA h g(-1) for Ge anode was maintained at a current density of 5000 mA g(-1) after 150 cycles.

  17. Control of Dvr with Battery Energy Storage System Using Srf Theory

    Directory of Open Access Journals (Sweden)

    B.Kavitha

    2015-04-01

    Full Text Available One of the best solutions to improve power quality is the dynamic voltage restorer (DVR. DVR is a kind of custom power devices that can inject active/reactive power to the power grids. This can protect loads from disturbances such as sag and swell. Usually DVR installed between sensitive loads feeder and source in distribution system. Its features include lower cost, smaller size, and its fast dynamic response to the disturbance. In this project SRF technique is used for conversion of voltage from rotating vectors to the stationary frame. SRF technique is also referred as park’s transformation. In this the reference load voltage is estimated using the unit vectors. The real power exchanged at the DVR output ac terminal is provided by the DVR input dc terminal by an external energy source or energy storage system. In this project three phase parallel or series load may be used along with SRF technique to compensate voltage sag and voltage swell. And also wind generator is also used as a load. This project presents the simulation of DVR system using MATLAB/SIMULINK.

  18. The lightest organic radical cation for charge storage in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S.; Su, Liang; Brushett, Fikile; Cheng, Lei; Liao, Chen; Ferrandon, Magali S.; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K.; Curtiss, Larry A.; Shkrob, Ilya A.; Moore, Jeffrey S.; Zhang, Lu

    2016-08-25

    Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, we find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.

  19. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction

    Science.gov (United States)

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-02-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g-1 is achieved at a current density of 50 mA g-1. It also shows a greatly improved cycle life (~215 mAh g-1 after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g-1). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  20. Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua

    2016-05-11

    Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.

  1. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  2. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress

    OpenAIRE

    Gómez-Galera, Sonia; Sudhakar, Duraialagaraja; Ana M. Pelacho; Capell, Teresa; Christou, Paul

    2012-01-01

    Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilizati...

  3. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

  4. Field tests experience from 1.6MW/400kWh Li-ion battery energy storage system providing primary frequency regulation service

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina;

    2013-01-01

    Lithium-ion battery energy storage systems (BESSs) represent suitable alternatives to conventional generating units for providing primary frequency regulation on the Danish market. This paper presents aspects concerning the operation of the BESSs in the Danish energy market while providing upwards...... primary frequency regulation. Moreover, the paper presents the experience form field tests dedicated to the evaluation of the BESSs’ performance degradation. For this purpose, capacity measurements, Hybrid Pulse Power Characterization (HPPC) measurements, and AC impedance measurements were performed...... on the BESS demonstrator located in Western Denmark and initial results are introduced and discussed. These measurements can be used to validate models for battery ageing during realistic operation or to develop the diagnostic tools for the BESS....

  5. Study of the preparation of NI–Mn–Zn ferrite using spent NI–MH and alkaline Zn–Mn batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Guoxi, E-mail: xuhuidao1983@hotmail.com; Xi, Yuebin; Xu, Huidao, E-mail: xuhuidao1983@163.com; Wang, Lu

    2016-01-15

    Magnetic nanoparticles of Ni–Mn–Zn ferrite have been prepared by a sol–gel method making use of spent Ni–MH and Zn–Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The M{sub s} values increase and the H{sub c} values decrease as the size of the Ni–Mn–Zn ferrite particles increases. - Highlights: • Ni–Mn–Zn ferrites could be prepared using spentbatteries as raw materials. • This work could provide an environmentally friendly process to recycle spent batteries. • The process could reduce cost and secondary pollution of spent batteries recycling. • The magnetic property of the ferrite could be controlled by changing the temperature.

  6. Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations

    Energy Technology Data Exchange (ETDEWEB)

    SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

    2000-06-08

    Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

  7. Study on the influence of storage life expectancy of the Valve Regulated Lead-Acid - VRLA battery; Estudo sobre a influencia da estocagem na expectativa de vida util da bateria chumbo-acida regulada por valvula - VRLA

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A. Pinhel [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil)], Email: pinhel@furnas.com.br; Rosolem, Maria de F.N.C.; Santos, G.R. dos; Frare, P.T.; Arioli, V.T.; Beck, R.F. [Telecomunicacoes do CPqD, Campinas, SP (Brazil)], Emails: mfatima@cpqd.com.br, glauco@cpqd.com.br, pfrare@cpqd.com.br, varioli@cpqd.com.br, raul@cpqd.com; Soares, L.A., Email: luiz.las@gmail.com

    2009-07-01

    When valve regulated lead-acid (VRLA) batteries are acquired and are not placed in operation immediately and remain stored in open circuit, they can loose autonomy and life. In these cases the current practice recommends, that the batteries receive quarterly recharges, which is often unfeasible. Given this scenario, Furnas by the CPqD, decided to verify the real impact of stockpiling in the expectancy of VRLAs battery life to establish the veracity of practice adopted or establish new procedures. The influences of time, the temperature of the local storage and application of charges are evaluated. It was also studied the application of techniques for measuring the internal resistance battery (conductance and impedance) for degradation monitoring and identification of the need for application of charges. As final products, it was developed novel diagnostic techniques that allow more accurate monitoring of the storage process.

  8. Flywheel energy storage for spacecraft

    Science.gov (United States)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems have been studied to determine their potential for use in spacecraft. This system was found to be superior to alkaline secondary batteries and regenerative fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the capability of generating extremely high power for short durations.

  9. Anion exchange membranes for fuel cells and flow batteries : transport and stability of model systems

    OpenAIRE

    Marino, Michael G

    2015-01-01

    Polymeric anion exchange materials in membrane form can be key components in emerging energy storage and conversions systems such as the alkaline fuel cell and the RedOx flow battery. For these applications the membrane properties need to include good ionic conductivity and sufficient chemical stability, two aspects, that are not sufficiently understood in terms of materials science. Materials fulfilling both criteria are currently not available. The transport of ions and water in a model...

  10. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress.

    Science.gov (United States)

    Gómez-Galera, Sonia; Sudhakar, Duraialagaraja; Pelacho, Ana M; Capell, Teresa; Christou, Paul

    2012-04-01

    Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilization. Transgenic plants developed secondary tillers and set seeds when grown in standard soil although iron concentration remained similar in leaves and seeds compared to wild type. However, when grown in alkaline soil transgenic plants exhibited enhanced growth, yield and iron concentration in leaves compared to the wild type plants which were severely stunted. Transgenic plants took up iron more efficiently from alkaline soil compared to wild type, indicating an enhanced capacity to increase iron mobility ex situ. Interestingly, all the additional iron accumulated in vegetative tissues, i.e. there was no difference in iron concentration in the seeds of wild type and transgenic plants. Our data suggest that iron uptake from the rhizosphere can be enhanced through expression of HvYS1 and confirm the operation of a partitioning mechanism that diverts iron to leaves rather than seeds, under stress.

  11. Reaproveitamento de óxidos de manganês de pilhas descartadas para eletrocatálise da reação de redução de oxigênio em meio básico Use of manganese oxides recovered from spent batteries in electrocatalysis of oxygen reduction reaction in alkaline medium

    Directory of Open Access Journals (Sweden)

    Daniel C. Rascio

    2010-01-01

    Full Text Available The oxygen reduction reaction was studied in alkaline media using manganese oxides obtained from spent batteries as electrocatalysts. Three processes were used to recover manganese oxides from spent batteries. The particles obtained were in the range from 8 to 11 nm. The electrochemical experiments indicated a good electrocatalytic activity toward oxygen reduction using the different samples and showing approximately a direct transference of 4 electrons during the process. Even though all the processes were efficient, the best result was observed for the prepared sample using reactants of low cost.

  12. Wind Farm Reliability Evaluation Considering Operation Characteristics of Battery Energy Storage Devices%计及电池储能设备运行特性的风电场可靠性评估

    Institute of Scientific and Technical Information of China (English)

    孟虹年; 谢开贵

    2012-01-01

    Based on time series model of output power of wind farm containing battery energy storage system, two series models to assess reliability of the wind farm containing power-type battery energy storage system and energy-type battery energy storage system are built respectively. Taking RTBS as calculation example, the reliability improvement extents of wind farm by the two kinds of battery energy storage systems are analyzed while three kinds of energy storage strategies are applied, and the impacts of operation parameters of energy storage system on reliability of wind power generation system are further analyzed. Calculation results of RBTS show that under the same capacity of battery energy storage system the reliability improvement extents of wind farm are not identical; under the same energy storage strategy the energy-type battery energy storage system can improve wind farm reliability better; operation parameter variation of battery energy storage system affects reliability index of wind farm a certain extent.%在含电池储能设备风电场功率时序模型的基础上,建立了含功率型和能量型电池储能设备的风电场可靠性时序评估模型。使用RBTS发电系统作为算例,分析了2类电池设备在不同储能策略下对风电系统可靠性改善的程度,并进一步分析了储能设备自身的运行参数对风电系统可靠性影响。算例结果表明:在具有同样设备容量的情况下,3种储能策略对可靠性的改善不尽相同;在同一储能策略下,能量型电池储能设备对系统的可靠性改善更佳;同时,设备运行参数变化对系统可靠性指标也有一定的影响。

  13. Impact of Battery Energy Storage System Operation Strategy on Power System: An Urban Railway Load Case under a Time-of-Use Tariff

    Directory of Open Access Journals (Sweden)

    Hyeongig Kim

    2017-01-01

    Full Text Available Customer-owned battery energy storage systems (BESS have been used to reduce electricity costs of energy storage owners (ESOs under a time-of-use (TOU tariff in Korea. However, the current TOU tariff can unintentionally induce customer’s electricity usage to have a negative impact on power systems. This paper verifies the impact of different BESS operation strategies on power systems under a TOU tariff by analyzing the TOU tariff structure and the customer’s load pattern. First, several BESS operation strategies of ESO are proposed to reduce the electricity cost. In addition, a degradation cost calculation method for lithium ion batteries is considered for the ESO to determine the optimal BESS operation strategy that maximizes both electricity cost and annual investment cost. The optimal BESS operation strategy that maximizes ESO’s net benefit is illustrated by simulation using an urban railway load data from Namgwangju Station, Korea. The results show that BESS connected to urban railway loads can negative impact power system operation. This is due to the high BESS degradation costs and lack of incentive of differential rates in TOU tariff that can effectively induce proper demand response.

  14. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.

    Science.gov (United States)

    Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan

    2015-04-01

    Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.

  15. 碱锰电池用大功率无汞锌粉的雾化装置%Atomization device of high power mercury-free zinc powder for alkaline Zn/MnO2 battery

    Institute of Scientific and Technical Information of China (English)

    张健; 张杰

    2011-01-01

    设计了自由降落式喷嘴雾化装置,采用六孔啧料架,通过改进喷射孔间距、喷射角,降低雾化能耗,增加锌粉比表面积,提高碱锰电池的大功率性能.在0.8 MPa的气压下,获得粒径小于150μm的锌粉超过80%;不规则形态的锌粉比表面积达0.013 m2/g,体积平均粒径达141 μm.用该锌粉制备的LR6电池的1 500 mW、650 mW脉冲放电次数达130次.%A free fall nozzle atomization was designed. The device had a six hole ejection mechanism, by improving the ejection hole spacing and the ejection angle, the device decreased the atomization energy consumption,increased the specific surface area of the obtained zinc powder,which led to the improving of high power performance of the alkaline Zn/MnO2 battery.Over 80% of the zinc powder obtained at the pressure of 0.8 Mpa had a particle size less than 150 μm.The specific surface area of the zinc powder of irregular morphology reached to 0.013 m /g with an volume average particle size distribution of 141 μm.When pulse discharged with 1 500 mW,650 mW,the discharge times of LR6 battery produced by this zinc powder reached to 130.

  16. Binary cooperative NiCo2O4 on the nickel foams with quasi-two-dimensional precursors: a bridge between 'supercapacitor' and 'battery' in electrochemical energy storage.

    Science.gov (United States)

    Peng, Tao; Qian, Zhongyu; Wang, Jun; Qu, Liangti; Wang, Peng

    2015-02-28

    Some inorganic quasi-two-dimensional nanomaterials such as cobalt-nickel hydroxides are kinetically facile for a capacitive charge storage process. However, high performance capacitive charge storage needs a balance of the ionic and electronic transporting, and to build up an integrated architecture on substrates step by step and utilize the interface better is still a key challenge. As the interfacial assembly has conflicted with our goals for high-performance capacitive charge storage process, we identify theoretically and experimentally binary cooperative nanoscale interfacial materials to solve the problem. Co-Ni-hydroxide precursors were prepared by hybrid quasi-two-dimensional nanosheets and hetero-oriented nanocrystallines walls. Followed by dip-dry and annealing, NiCo2O4 could adhere to the nickel foams robustly with a solution-based surface treatment. Moreover, an unusual phenomenon in the electrochemical test inspired us to establish a bridge between 'supercapacitor' and 'battery'. The bridged gap highlights a new design idea for high-performance energy storage.

  17. A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies

    Directory of Open Access Journals (Sweden)

    Jason Moore

    2016-08-01

    Full Text Available This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique, it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California and high penetration rates of residential solar photovoltaics (PV (Germany. Therefore, Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.

  18. Secondary battery systems for energy storage in smart grids%智能电网储能用二次电池体系

    Institute of Scientific and Technical Information of China (English)

    陶占良; 陈军

    2012-01-01

    储能用二次电池体系在风能、太阳能等可再生能源发电、智能电网建设等方面有着广阔的应用前景.本文对铅酸电池、钠硫电池、液流电池和锂离子电池的工作原理、特点、国内外研究现状、应用情况及发展趋势进行了综述,提出了制约储能电池发展瓶颈问题,储能电池需关注长寿命、低成本、高安全、大容量、高功率、快速充放电和环境适应性等性能指标,展望了储能二次电池体系未来的发展趋势.%Secondary batteries that store and convert electrochemical energy show broad application prospects in renewable energy systems such as wind and solar energy, and in the construction of smart grids. This paper describes the basic working principles, properties, research and development, stationary applications and advances of lead-acid, sodium sulfur, redox flow, and lithium-ion batteries. Important problems currently limiting the development of these batteries are highlighted. Energy storage batteries need to focus on the areas of long life, low cost, high safety, high capacity, high power, fast charging/discharging and environmental adaptability. The future research topics are suggested.

  19. Application of online desulphuration maintenance techonology for the storage battery in power system%蓄电池在线除硫养护技术在电力系统的应用实践

    Institute of Scientific and Technical Information of China (English)

    徐征显

    2012-01-01

    Application experiences and skills of storage battery online desulphuration maintenance techonology in communication storage battery units of Tongren Power Supply Bureau are introduced.%介绍蓄电池在线除硫养护技术在铜仁供电局通信蓄电池组上的应用经验,通过实际测试数据对比,论证了在线除硫技术推广应用的可行性。

  20. Technical development of power storage system. Situation and problems of technical development of new battery in Meidensha

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The prototype of a 1 kW-zinc bromide battery constructed in FY 1983 comprises the laminated battery stacks in the upper part and two pumps and two tanks for positive and negative electrodes in the lower part and these apparatuses are connected with piping. Two stacks (approx. 25 V x 10 A each) are connected in parallel to obtain a capacity of 1 kW (25 V x 40 A). The energy efficiency is 80% or more. The battery was scaled up to 10 kW in FY 1984 to 1986 and to 60 kW in FY 1987. The area of electrode in the 60 kW-battery was doubled to 1600 cm. Thirty cells are laminated in a stack. The voltage is 50 V. The stacks are piled up in two layers of 24 cells each which are connected in parallel to make a submodule. Two submodules connected in series show 50 kW (100 V x 500 A). A half part of the battery system was installed in a pit to prevent the electrolyte solution from flowing out of the building. The energy efficiency in daily operation reaches 78.2% and the transient response to the stepwise changing instruction of D.C. power reached approximately 0.6 seconds. (6 figs, 4 tabs, 3 photos)

  1. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  2. 抑制风电功率波动的电池储能系统自适应控制策略设计%Inhibition of wind power fluctuations of battery energy storage system adaptive control strategy design

    Institute of Scientific and Technical Information of China (English)

    李军徽; 高天宇; 赵冰; 严干贵; 焦健

    2015-01-01

    为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。%It is necessary to improve the friendly of the battery energy storage system for large scale grid connected wind system and reduce the negative impact of the wind power fluctuation on the power grid. Based on the battery charged state and wind electric power measurements and the slow time constant and battery energy storage system power identification, we proposed an adaptive control strategy for calming wind power fluctuations. Verified by simulation, this strategy can effectively avoid the fluctuation of battery charged state, prolong the service life of battery, so as to reduce the capacity of the battery energy storage system, maximize the role of battery energy storage system.

  3. Electrocatalysis for dioxygen reduction by a μ-oxo decavanadium complex in alkaline medium and its application to a cathode catalyst in air batteries

    Science.gov (United States)

    Dewi, Eniya Listiani; Oyaizu, Kenichi; Nishide, Hiroyuki; Tsuchida, Eishun

    The redox behavior of a decavanadium complex [(VO) 10(μ 2-O) 9(μ 3-O) 3(C 5H 7O 2) 6] ( 1) was studied using cyclic voltammetry under acidic and basic conditions. The reduction potential of V(V) was found at less positive potentials for higher pH electrolyte solutions. The oxygen reduction at complex 1 immobilized on a modified electrode was examined using cyclic voltammetry and rotating ring-disk electrode techniques in the 1 M KOH solutions. On the basis of measurements using a rotating disk electrode (RDE), the complex 1 was found to be highly active for the direct four-electron reduction of dioxygen at -0.2 V versus saturated calomel electrode (SCE). The complex 1 as a reduction catalyst of O 2 with a high selectivity was demonstrated using rotating ring-disk voltammograms in alkaline solutions. The application of complex 1 as an oxygen reduction catalyst at the cathode of zinc-air cell was also examined. The zinc-air cell with the modified electrode showed a stable discharge potential at approximately 1 V with discharge capacity of 80 mAh g -1 which was about five times larger than that obtained with the commonly used manganese dioxide catalyst.

  4. Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System.

    Science.gov (United States)

    Winsberg, Jan; Janoschka, Tobias; Morgenstern, Sabine; Hagemann, Tino; Muench, Simon; Hauffman, Guillaume; Gohy, Jean-François; Hager, Martin D; Schubert, Ulrich S

    2016-03-16

    The combination of a polymer-based 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) catholyte and a zinc anode, together with a cost-efficient size-exclusion membrane, builds a new type of semi-organic, "green," hybrid-flow battery, which features a high potential range of up to 2 V, high efficiencies, and a long life time.

  5. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.

    Science.gov (United States)

    Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E

    2017-02-22

    Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m(-2) -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m(-3) -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources.

  6. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage.

    Science.gov (United States)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y; Mei, Donghai; Lemmon, John P; Sprenkle, Vincent L; Liu, Jun

    2014-01-01

    Commercial sodium-sulphur or sodium-metal halide batteries typically need an operating temperature of 300-350 °C, and one of the reasons is poor wettability of liquid sodium on the surface of beta alumina. Here we report an alloying strategy that can markedly improve the wetting, which allows the batteries to be operated at much lower temperatures. Our combined experimental and computational studies suggest that addition of caesium to sodium can markedly enhance the wettability. Single cells with Na-Cs alloy anodes exhibit great improvement in cycling life over those with pure sodium anodes at 175 and 150 °C. The cells show good performance even at as low as 95 °C. These results demonstrate that sodium-beta alumina batteries can be operated at much lower temperatures with successfully solving the wetting issue. This work also suggests a strategy to use liquid metals in advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation.

  7. Novel PVA/SiO2 Alkaline Micro-porous Polymer Electrolytes for Polymer Ni-MH Batteries%用于聚合物镍氢电池的新型PVA/SiO2碱性微孔聚合物电解质

    Institute of Scientific and Technical Information of China (English)

    陆霞; 吴仁香; 李波波; 朱云峰; 李李泉

    2013-01-01

    New po1y(vinyl alcohol)/silica (designated as PVA/SiO2) alkaline micro-porous polymer electrolytes (AMPEs)were prepared by soaking PVA/SiO2 micro-porous composite membranes,obtained by solution casting of PVA/PEG/SiO2 membrane in acetone solution,into an electrolyte solution of 6 mol/L KOH aqueous solution.The morphology and structure of PVA/SiO2 composite polymer membranes were characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD).The SEM photographs showed that the nano-SiO2 filler content was a crucial issue for the well-dispersed and optimal-sized pores which could storage charge carrier durably.Meanwhile,the crystalline of PVA decreased effectively for a large number of crystal defects and free volume appeared in the interface of inorganic particles and polymer for the addition of nann-SiO2 filler.The electrochemical properties of the AMPEs were measured by the alternating current impedance (AC impedance) and the cyclic voltammetry (CV) techniques.The results indicated that the PVA/SiO2 AMPEs containing 5 ωnano-SiO2 filler exhibited good performances at room temperature,such as 1.62 × 10-2 S·cm-1 for ionic conductivity and 2.20 V for electrochemical stability window.What's more,we used the gravimetric method to obtain the electrolyte uptake of various PVA/SiO2 composite micro-porous polymer membranes.From the data,we learned that the maximum electrolyte uptake could reach to 102.7% and it had very relevance to the size of pores in PVA/SiO2 composite polymer membranes,andthen influenced the ionic conductivity.Each polymer Ni-MH battery was assembled by three parts:the new AMPE,Mg-based hydrogen storage alloy and the commercial sintered Ni(OH)2/NiOOH electrode,in which each part did for electrolyte and diaphragm,negative electrode and positive electrode,respectively.The cycle experiments of the batteries exhibited a high first-cycle discharge capacity of 613 mAh·g-1 and stable discharge capacities about 330 mAh·g-1 for the

  8. A Storage Reliability Evaluation Method of Lithium Battery Based on Capability Degenerate Data%基于性能退化数据的锂离子电池贮存可靠性评估方法

    Institute of Scientific and Technical Information of China (English)

    黄燕; 宋保维; 谢亚丽

    2011-01-01

    The high power lithium batteries often display few failures but more energy loss in storage. Their energy parameters and metrical data are indeterminate and incomplete. In order to evaluate the storage reliability of the battery, this paper presents a method, in which a fuzzy membership function is established to estimate the incomplete data of the battery based on normal data. The storage reliability of the battery can be obtained with this method. Comparison of several groups of battery data proved that the method is effective and practical.%大功率锂离子二次电池在贮存过程中通常出现失效数较少但性能退化较普遍的现象,而且测量所得的电池数据不确定和不完整.为评估电池贮存可靠度,该文提出了一种根据正常电池数据建立模糊隶属函数处理不完整数据的方法,通过该方法得到电池的贮存可靠度.通过多组数据计算,证明了该方法的有效性和实用性.

  9. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    Energy Technology Data Exchange (ETDEWEB)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  10. Application and Current Development of Battery Energy Storage Technology in China and Overseas Countries%国内外电池储能技术的应用及发展现状

    Institute of Scientific and Technical Information of China (English)

    赵书奇; 廖强强; 周国定; 张利中; 刘宇; 支玉清

    2015-01-01

    随着可再生能源的迅猛发展以及对供电可靠性要求的不断提高,电池储能技术在电力系统中的应用日益增多。讨论了铅酸电池、铅炭电池、钠硫电池、全钒液流电池、锂离子电池的性能特点,并介绍了不同电池储能技术在电力系统中的应用。%With the rapid development of renewable energy and the continuous improvement of the power supply reliability, battery energy storage technology has been wildly used in electrical power system. The article discusses about features and characteristics of lead acid battery, lead carbon battery, sodium sulfur battery, all vanadium redox flow battery, lithium ion battery. It also introduces electrical power system applications of different batter energy storage technologies.

  11. Store solar power and demand-based consumption. A small market survey of PV battery storage systems; Solarstrom speichern und bedarfsgerecht verbrauchen. Eine kleine Marktuebersicht ueber PV-Batteriespeichersysteme

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Eric

    2013-10-15

    Rising electricity prices and falling tariff rates for PV systems make the use of energy storage more interesting. Currently on the market more than 50 companies offer different solution variants. The trend is the use of PV systems with battery storage of cheaper lead batteries to the more expensive lithium-ion batteries with capacities from 2 to 50 kWh. [German] Die steigenden Strompreise und fallenden Verguetungssaetze fuer PV-Anlagen machen den Einsatz von Stromspeichern zunehmend interessanter. Derzeit positionieren sich auf dem Markt ueber 50 Firmen mit unterschiedlichen Loesungsvarianten. Der Trend geht zum Einsatz von PV-Batteriespeichersystemen mit preisguenstigeren Blei-Batterien zu den kostenintensiveren Lithium-Ionen-Akkumulatoren mit Speicherkapazitaeten von 2 bis 50 kWh.

  12. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  13. Estimating the Size of the Renewable Energy Generators in an Isolated Solar-Biodiesel Microgrid with Lead-Acid Battery Storage

    Directory of Open Access Journals (Sweden)

    GRAMA Alin

    2015-10-01

    Full Text Available Climate change, fossil fuel decline, expensive power grid extensions focused the attention of scientist in developing electrical power systems that use as primary resources renewable energy generators. Romania has a high renewable energy potential and presents interest in developing renewable energy microgrids using: solar energy, wind energy, biomass Hydro, etc. The paper presents a method of estimating the size of the renewable energy generators in an isolated solar-biodiesel microgrid with lead-acid battery storage. The mathematical model is first presented and then an algorithm is developed to give an estimation of the size of the microgrid. The microgrid is installed in the region of Oradea, Romania. The results are validated through comparison with existing sizing software programs like: PV*Sol and PVSyst.

  14. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  15. 铅蓄电池行业重金属污染防治研究%Study on Pollution Prevention and Control of Heavy Metal in Lead Storage Battery Industry

    Institute of Scientific and Technical Information of China (English)

    孙晓峰

    2012-01-01

      In recent years, the lead pol ution accidents of lead storage battery industry had taken place frequently, and caused a serious impact on environment and human health. The Ministry of Environmental Protection carried out an environmental protection special inspection on lead storage battery industry at the beginning of 2011. From the view of the whole production course of lead storage battery industry and from the industry structure, technical equipment, end-treatment and environmental management, the paper puts forward the prevention and control measures of lead pol ution in lead storage battery industry, so as to provide the references for pol ution prevention and control work of heavy metal in lead storage battery industry.%  近年来,铅蓄电池行业铅污染事故频发,对环境和人体健康造成了严重危害。各级政府高度重视,环境保护部于2011年初开展铅蓄电池行业环保专项检查工作。本文从铅蓄电池行业的生产全过程出发,从产业结构、技术装备、末端治理、环境管理等方面提出铅蓄电池行业铅污染防治措施,为铅蓄电池行业重金属污染防治工作提供了参考依据。

  16. 规模化电池储能系统的无功功率控制策略研究%Research on reactive power control strategy for large-scale battery energy storage systems

    Institute of Scientific and Technical Information of China (English)

    徐明; 李相俊; 贾学翠; 惠东

    2013-01-01

    无功功率补偿是电池储能系统并网运行时的重要应用.电池储能系统主要包括电池组、变流器以及设备监控系统等.电池储能用变流器可向电网提供无功功率.文章提出了规模化电池储能电站中各储能机组间的无功功率分配方法.采用仿真软件对电池储能系统的无功功率分配策略进行仿真分析,并基于张北储能试验基地的电池储能机组实例验证了控制策略的有效性.%Reactive power compensation is an important application for grid connected battery energy storage systems.The battery energy storage system mainly includes a battery pack,power converter system (PCS) and monitoring system.The PCS can provide reactive power to the grid.In this paper,a reactive power allocation method for the large-scale battery energy storage station has been proposed based on multiple paralleled battery energy storage systems.The proposed reactive power allocation strategy of BESS has been simulated and the effectiveness of the control strategy verified by experimental test based on BESS located at Zhangbei energy storage test base.

  17. 钙质添加剂对密封可充锌镍电池性能的影响%Effects of calcium additive agents to the performance of sealed alkaline rechargeable nickel-zinc battery

    Institute of Scientific and Technical Information of China (English)

    谭志勇; 杨占红; 倪霞; 申松胜

    2012-01-01

    Calcium additive could react with Zn(OH)42- to form Ca[Zn(OH)3]2 with stable electrochemical performance, which could prolong the life of zinc anode, improve the high temperature storage performance of nickel-zinc battery, enhance the charge retention rate and prolong the discharge time. The capacity of zinc anode with calcium additive hardly reduced in 100 cycles. The charge retention rate of battery with Ca(0H)2,calcium lignosulfonate and without calcium additive was 68.69%,57.05% and 52.32%,respectively,the discharge time was 34.00 min,39.09 min and 31.29 min,respectively.%钙质添加剂与锌酸根形成难溶的Ca[Zn(OH)3]2,可延长锌负极的寿命,改善锌镍电池的高温存放性能,提高荷电保持率并延长放电时间.加入钙质添加剂的锌负极循环100次的容量几乎不衰减.添加氢氧化钙、木质素磺酸钙及无钙质添加剂的电池,荷电保持率分别为68.69%、57.05%和52.32%,放电时间分别为34.00 min、39.09 min和31.29 min.

  18. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  19. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  20. Merits of flywheels for spacecraft energy storage

    Science.gov (United States)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  1. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices. © 2011 The Royal Society of Chemistry.

  2. Atomically thin Co3O4 nanosheet-coated stainless steel mesh with enhanced capacitive Na+ storage for high-performance sodium-ion batteries

    Science.gov (United States)

    Dou, Yuhai; Wang, Yunxiao; Tian, Dongliang; Xu, Jiantie; Zhang, Zhijia; Liu, Qiannan; Ruan, Boyang; Ma, Jianmin; Sun, Ziqi; Xue Dou, Shi

    2017-03-01

    Capacitive storage (e.g., double layer capacitance and pseudocapacitance) with Na+ stored mainly at the surface or interface of the active materials rather than inserted into the bulk crystal is an effective approach to achieve high rate capability and long cycle life in sodium-ion batteries (SIBs). Herein, atomically thin Co3O4 nanosheets are successfully synthesized and grown directly on the stainless steel mesh as an anode material for SIBs. This anode delivers a high average capacity of 509.2 mAh g-1 for the initial 20 cycles (excluding the first cycle) at 50 mA g-1, presents excellent rate capability with an average capacity of 427.0 mAh g-1 at 500 mA g-1, and exhibits high cycling stability, which significantly outperforms the electrode prepared from conventional Co3O4 nanostructures, the electrode prepared by conventional casting method, and previously reported Co3O4 electrodes. The superior electrochemical performance is mainly attributable to the atomic thickness of the Co3O4 nanosheets and the direct growth method in electrode processing, which lead to remarkably enhanced surface redox pseudocapacitance and interfacial double layer capacitance. This Na+ capacitive storage mechanism provides a promising strategy for the development of electrode materials with high energy and power densities and ultralong cycle life for SIBs.

  3. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    Science.gov (United States)

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  4. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated- Temperature Li-ion Storage

    Science.gov (United States)

    Tang, Jialiang; Pol, Vilas G.

    2016-02-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

  5. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated-Temperature Li-ion Storage.

    Science.gov (United States)

    Tang, Jialiang; Pol, Vilas G

    2016-02-05

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

  6. Reputation-based Joint Scheduling of Households Appliances and Storage in a Microgrid with a Shared Battery

    DEFF Research Database (Denmark)

    AlSkaif, Tarek; Hernández, Adriana Carolina Luna; Guerrero Zapata, Manel

    2017-01-01

    Due to the decreasing revenues from the surplus renewable energy injected into the grid, mechanisms promoting self-consumption of this energy are becoming increasingly important. Demand Response (DR) and local storage are among the widely used mechanisms for reaching higher self-consumption levels...... consumption and the energy that each household can receive from the storage unit. The scheduling problem is formulated as a Mixed Integer Linear Programming (MILP) with the objective of minimizing the amount and price of energy absorbed from the main grid. The MILP problem is coded in GAMS and solved using...

  7. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has

  8. Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Gunho; Park, Jounghwan; Lee, Jinuk [Energy Business Division, Samsung SDI Co. Ltd., Sungsung-Dong, Cheonan-Si, Chungcheongnam-Do 330-300 (Korea); Kim, Sinja; Jung, Inho [Corporate R and D Center, Samsung SDI Co. Ltd., Sungsung-Dong, Cheonan-Si, Chungcheongnam-Do 330-300 (Korea)

    2007-12-06

    Thermal storage of prismatic Li-ion cell with different types of anodes has been performed at 60 C for 15 days to 30 days. The results were compared for two anodes: natural-like graphite (NLG) with styrene-butadiene rubber (SBR, 2.5 wt.%) binder and artificial graphite (AG) with polyvinylidene fluoride (PVdF, 6 wt.%) as binder. The storage-capacity fading behavior of the commercial Li-ion cell was studied by dissection the storage cells and analyzing their electrodes and solid electrolyte interphase (SEI), allows lithium-ion transfer but prevents electron migration using SEM, DSC, FT-IR, XRD and impedance analysis. Side-reaction and transformation of the passivation film on NLG anode contributed the capacity loss. Self-discharge of NLG cell due to high specific surface area was one of the main factors for capacity fading. Impedance analysis revealed that the interfacial resistance at NLG anode was larger than that of the AG anode. The increase of lithium alkylcarbonate and lithium carbonate due to reductive decomposition of electrolyte with storage time decreased the charge and increased the interfacial resistance. (author)

  9. Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries

    Science.gov (United States)

    Kwak, Gunho; Park, Jounghwan; Lee, Jinuk; Kim, Sinja; Jung, Inho

    Thermal storage of prismatic Li-ion cell with different types of anodes has been performed at 60 °C for 15 days to 30 days. The results were compared for two anodes: natural-like graphite (NLG) with styrene-butadiene rubber (SBR, 2.5 wt.%) binder and artificial graphite (AG) with polyvinylidene fluoride (PVdF, 6 wt.%) as binder. The storage-capacity fading behavior of the commercial Li-ion cell was studied by dissection the storage cells and analyzing their electrodes and solid electrolyte interphase (SEI), allows lithium-ion transfer but prevents electron migration using SEM, DSC, FT-IR, XRD and impedance analysis. Side-reaction and transformation of the passivation film on NLG anode contributed the capacity loss. Self-discharge of NLG cell due to high specific surface area was one of the main factors for capacity fading. Impedance analysis revealed that the interfacial resistance at NLG anode was larger than that of the AG anode. The increase of lithium alkylcarbonate and lithium carbonate due to reductive decomposition of electrolyte with storage time decreased the charge and increased the interfacial resistance.

  10. Reputation-based joint scheduling of households appliances and storage in a microgrid with a shared battery

    NARCIS (Netherlands)

    Alskaif, T.A.; C. Luna, Adriana; Guerreo Zapata, Manel; Guerrero, Josep M.; Bellalta, Boris

    2017-01-01

    Due to the decreasing revenues from the surplus renewable energy injected into the grid, mechanisms promoting self-consumption of this energy are becoming increasingly important. Demand response (DR) and local storage are among the widely used mechanisms for reaching higher self-consumption levels.

  11. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  12. Laboratory discharge studies of a 6 V alkaline lantern-type battery Eveready Energizer no. 528, under various ambient temperatures (-15 deg C and + 22 deg C) and loads (30 omega and 60 omega)

    Science.gov (United States)

    Ahrens, S. T.

    1984-01-01

    The voltages of two Eveready No. 528 batteries, one the test battery, the other the control battery, were simultaneously recorded as they were discharged across 30 omega loads using a dual chart recorder. The test battery was initially put in a freezer at -15 + or - 3 C. After its voltage had fallen to .6 V, it was brought back out into the room at 22 + or - 3 C. A second run was made with 60 omega loads. Assuming a 3.0 V cut-off, the total energy output of the test battery at -15 C was 26 WHr 30 omega and 35 WHr 60 omega, and the corresponding numbers for the control battery at 22 C were 91 WHr and 100 WHr. When the test battery was subsequently allowed to warm up, the voltage rose above 4 V and the total energy output rose to 80 WHr 30 omega and 82 WHR 60 omega.

  13. Hydrogen storage for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.

    1979-01-01

    Results of an analysis of hydrogen-fueled automobiles are presented as a part of a continuing study conducted by Lawrence Livermore Laboratory (LLL) on Energy Storage Systems for Automobile Propulsion. The hydrogen is stored either as a metal hydride at moderate pressure in TiFe/sub 0/ /sub 9/Mn/sub 0/ /sub 1/H/sub x/ and at low pressure in MgH/sub x/ catalyzed with 10 wt % Ni, or it is stored in hollow glass microspheres at pressures up to about 400 atm. Improved projections are given for the two hydrides, which are used in combination to take advantage of their complementary properties. In the dual-hydride case and in the microsphere case where Ti-based hydride is used for initial operation, hydrogen is consumed in an internal-combustion engine; whereas in the third case, hydrogen from Ti-based hydride is used with air in an alkaline fuel cell/Ni-Zn battery combination which powers an electric vehicle. Each system is briefly described; and the results of the vehicle analysis are compared with those for the conventional automobile and with electric vehicles powered by Pb-acid or Ni-Zn batteries. Comparisons are made on the basis of automobile weight, initial user cost, and life-cycle cost. In this report, the results are limited to those for the 5-passenger vehicle in the period 1985-1990, and are provided as probable and optimistic values.

  14. 可规模储能的沉积型单液流电池研究进展%Progress of Studies on Deposit-typed Single Flow Batteries for Large-scale Energy Storage

    Institute of Scientific and Technical Information of China (English)

    文越华; 程杰; 徐艳; 曹高萍; 杨裕生

    2011-01-01

    与全钒等双液流电池相比,沉积型单液流电池不使用离子交换膜等昂贵材料,结构简化,比能量提高,适合于不同规模的储能场合,研究渐多.本文介绍了沉积型单液流电池的原理与特点及其结构组成,以笔者实验室工作为主,综述了各沉积型单液流电池新体系的研究进展及存在的问题,并指出目前单液流电池待解决的问题是高比容量、高稳定性电极材料和电堆结构的优化设计及放大.%Compared with double flow batteries such as the all-vanadium redox flow battery,the deposit-typed single flow battery is characterized by no ion exchange membrane, simplified battery structure and higher energy density. It is suitable for different large-scale energy storage fields. More attention has been focused on deposit-typed single flow batteries. This paper introduces the principle and characteristics of deposit-typed single flow batteries. The battery fabrication is also described. The up-to date research evolution on various novel deposit-typed single flow battery systems and existing problems are reviewed based on the works of the authors' laboratory. It is pointed out that the research of high specific capacity electrode materials with long stability and optimal design of the structure and magnification of cell stacks will be the most important issues in near future.

  15. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  16. Electrochemical Batteries: Flywheels for temporary energy storage; Baterias electromecanicas: volantes de inercia para el almacenamiento temporal de energia

    Energy Technology Data Exchange (ETDEWEB)

    Pena Alzola, R.; Sebastian Fernandez, R.

    2008-07-01

    In the Electromechanical batteries (EMB) a flywheel stores mechanical energy that interchanges in form of electrical energy by means of an electrical machine with a bidirectional power converter. EMB are suitable whenever numerous charge and recharge cycles (hundred of thousands) are needed with medium to high power (kW to MW) during short periods (seconds). The materials of the flywheel, the type of the electrical machine, the type of the bearings and the atmosphere inside the housing determine the energy efficiency of the EMB. EMB are commercially available with more than a dozen of manufacturers. Amongst the applications of BEM are: uninterrupted power supplies, hybrid power systems, power grids feeding trains, hybrid vehicles and space satellites. (Author) 15 refs.

  17. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application

    Science.gov (United States)

    Li, Xifei; Liu, Jian; Zhang, Yong; Li, Yongliang; Liu, Hao; Meng, Xiangbo; Yang, Jinli; Geng, Dongsheng; Wang, Dongniu; Li, Ruying; Sun, Xueliang

    2012-01-01

    A floating catalyst chemical vapor deposition method has been developed to synthesize carbon nanotubes doped with a high concentration of nitrogen. Their electrochemical performance as anodes for lithium ion batteries (LIBs) in comparison to pristine carbon nanotubes (CNTs) has been investigated. X-ray photoelectron spectroscopy results indicated that the nitrogen content reaches as high as 16.4 at.%. Bamboo-like compartments were fabricated as shown by high resolution transmission electron microscopy. High concentration nitrogen doped carbon nanotubes (HN-CNTs) show approximately double reversible capacity of CNTs: 494 mAh g-1 vs. 260 mAh g-1, and present a much better rate capability than CNTs. The significantly superior electrochemical performance could be related to the high electrical conductivity and the larger number of defect sites in HN-CNTs for anodes of LIBs.

  18. Engineering study of a 20 MW lead--acid battery energy storage demonstration plant. Final report for the period ending October 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    The Research and Engineering Operation of Bechtel Corporation conducted an engineering study of a 20-MW lead--acid battery energy storage demonstration plant. Ten alternative designs were evaluated. Basically, the configurations proposed for the demonstration plants are those of the mature plants which would follow. The designs of the individual plants are based on the cell designs and the means used to house the cells. Initially, proposed cell designs from five manufacturers were considered. To conform with the level of effort allowed for this engineering study, two manufacturers' cells (one open-tank design and one sealed cell design) were selected by ERDA and Bechtel as being representative. These designs formed the basis for the detailed evaluation conducted in this study. The plant and battery configurations evaluated in the study are a large open-tank cell, configured in rows and housed in four buildings; a sealed cell, configured in a single layer of close packed rows in a single building; a sealed cell, configured in a three-tiered arrangement in a single building; and a sealed cell, configured with groups of cells housed in weatherproof modules and placed outdoors. Annual operating costs based on these mature plant costs show lead--acid load-leveling plants are generally not economically competitive with the alternatives when no consideration is given to their other possible benefits to the power system. However, application of credits (e.g., transmission line or spinning reserve credits) can make such plants economically competitive with gas turbine peaking units in specific situations. 46 figures, 25 tables. (RWR)

  19. Final report on the development of a 250-kW modular, factory-assembled battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D. [Omnion Power Engineering Corp., East Troy, WI (United States); Nerbun, W. [AC Battery Corp., East Troy, WI (United States); Corey, G. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1998-08-01

    A power management energy storage system was developed for stationary applications such as peak shaving, voltage regulation, and spinning reserve. Project activities included design, manufacture, factory testing, and field installation. The major features that characterize the development are the modularity of the production, its transportability, the power conversion method that aggregates power on the AC side of the converter, and the use of commonly employed technology for system components. 21 figs.

  20. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  1. Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Javier Marcos

    2014-10-01

    Full Text Available The variations in irradiance produced by changes in cloud cover can cause rapid fluctuations in the power generated by large photovoltaic (PV plants. As the PV power share in the grid increases, such fluctuations may adversely affect power quality and reliability. Thus, energy storage systems (ESS are necessary in order to smooth power fluctuations below the maximum allowable. This article first proposes a new control strategy (step-control, to improve the results in relation to two state-of-the-art strategies, ramp-rate control and moving average. It also presents a method to quantify the storage capacity requirements according to the three different smoothing strategies and for different PV plant sizes. Finally, simulations shows that, although the moving-average (MA strategy requires the smallest capacity, it presents more losses (2–3 times more and produces a much higher number of cycles over the ESS (around 10 times more, making it unsuitable with storage technologies as lithium-ion. The step-control shown as a better option in scenery with exigent ramp restrictions (around 2%/min and distributed generation against the ramp-rate control in all ESS key aspects: 20% less of capacity, up to 30% less of losses and a 40% less of ageing. All the simulations were based on real PV production data, taken every 5 s in the course of one year (2012 from a number of systems with power outputs ranging from 550 kW to 40 MW.

  2. Completion of the 200kW power conditioner for Miyakojima battery energy storage system of Okinawa Electric Power Co; Okinawa Denryoku (kabu) Miyakojima 200kW denchi denryoku chozoyo denryoku henkan sochi no kansei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Toshiba delivered the 200kW power conditioner for a Na-S (NAS) battery energy storage system (BESS) to Miyako PV generation demonstration research laboratory of Okinawa Electric Power Co. This power conditioner performs charge/discharge of the NAS battery and additional static var control (SVC) and governor-free control under a condition where both PV cell and NAS battery are connected with a DC circuit. Operation control of the whole BESS and data collection can be carried out by commands from Okinawa island through PHS telephone line. The demonstration study of this system on load leveling by BESS and output fluctuation control for new energy generation is in joint promotion by Toshiba and Okinawa Electric Power Co. (translated by NEDO)

  3. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  4. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  5. Electrochemistry of Some New Alkaline Battery Electrodes

    Science.gov (United States)

    1976-02-01

    Charging Efficiencies for AFAPL and Aircraft Cells 20 4. Slow Scan Cyclic Voltametry of 30% KOH Solutions at the Nickel Hydroxide Electrode 21 5...in our laboratory has offered a partial explanation for this effect. Using cyclic voltametric studies it was revealed that presence of cobalt...observed between charge and discharge peak potentials. In the presence of Ca. 10% cobalt hydroxide, this difference is only 75 mV. The cyclic voltametric

  6. Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries

    Science.gov (United States)

    Shan, Hui; Xiong, Dongbin; Li, Xifei; Sun, Yipeng; Yan, Bo; Li, Dejun; Lawes, Stephen; Cui, Yanhua; Sun, Xueliang

    2016-02-01

    Three dimensional self-assembled graphene aerogel (GA) anode materials with some surface defects have been successfully generated through a facile hydrothermal procedure using graphene oxide as precursor. The morphologies and textural properties of as-obtained GA were investigated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman and other spectroscopy techniques. The surface defects and electrical conductivities of GA can be controlled by adjusting the hydrothermal reaction time. The results indicate that GA with a reaction time of 6 h exhibits extremely high reversible capacity (1430 mAh g-1 at the current density of 100 mA g-1) and superior rate capability (587 mAh g-1 at 800 mA g-1) with excellent cycling stability (maintaining a reversible capacity of 960 mAh g-1 at 100 mA g-1 after 100 cycles). It is demonstrated that the 3D porous network with increased defect density, as well as the considerable electrical conductivity, results in the excellent electrochemical performance of the as-made GA anodes in lithium-ion batteries.

  7. 电池储能系统在跟踪风电计划出力中的需求分析%An analysis for the need of a battery energy storage system in tracking wind power schedule output

    Institute of Scientific and Technical Information of China (English)

    靳文涛; 李蓓; 谢志佳

    2013-01-01

      电池储能系统(battery energy storage system,BESS)在风储联合应用中具有多种功能,利用电池储能系统提高风电并网调度运行能力是当前研究的热点之一。文章基于我国北方某风电场历史运行数据与预测数据,依据预测误差评价指标和风电场预报考核指标的综合评价方法对风电场预测数据进行分析研究,归纳了预测误差的概率分布特征;提出利用电池储能系统提高风电跟踪计划出力能力,统计并量化出电池储能系统用于跟踪计划出力场合的作用范围;通过仿真验证电池储能系统在风储联合系统中提高风电跟踪计划出力控制策略的有效性和可行性。%There are variety of applications of battery energy storage system(battery energy storage system, BESS) used in the combined system of wind power and energy storage, and improving grid-connected wind power operation ability under dispatch by using battery energy storage system is currently one of the research focus. Based on forecast and historical operation data of a wind farm in northern China, this article reports an analysis on the wind farm forecast data to obtain the forecast error probability distribution characteristics by using an evaluation method combining the prediction error indicators and wind farm forecast assessment indicators. A battery energy storage system is then proposed to improve the ability to track wind power schedule output, followed by statistical analyses and quantification of the scope of racking schedule output. Finally, simulation verifications are performed of the effectiveness and viability of the control strategy for improving the ability of wind power tracking schedule output.

  8. Spacecraft Energy Storage Systems

    OpenAIRE

    Robinson, Wilf; Hanks, James; Spina, Len; Havenhill, Doug; Gisler, Gary; Ginter, Steve; Brault, Sharon

    1997-01-01

    Flywheel Energy Storage Systems represent an exciting alternative to traditional battery storage systems used to power satellites during periods of eclipse. The increasing demand for reliable communication and data access is driving explosive growth in the number of satellite systems being developed as well as their performance requirements. Power on orbit is the key to this performance, and batteries are becoming increasingly unattractive as an energy storage media. Flywheel systems offer ve...

  9. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Science.gov (United States)

    Doucette, Reed T.; McCulloch, Malcolm D.

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors.

  10. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg(-1). The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  11. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-02-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg‑1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  12. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  13. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    2014-01-01

    Full Text Available Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV- wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  14. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode.

    Science.gov (United States)

    Kang, Wenpei; Tang, Yongbing; Li, Wenyue; Yang, Xia; Xue, Hongtao; Yang, Qingdan; Lee, Chun-Sing

    2015-01-07

    Porous hierarchical NiMn2O4/C tremella-like nanostructures are obtained through a simple solvothermal and calcination method. As the anode of lithium ion batteries (LIBs), porous NiMn2O4/C nanostructures exhibit a superior specific capacity and an excellent long-term cycling performance even at a high current density. The discharge capacity can stabilize at 2130 mA h g(-1) within 350 cycles at a current density of 1000 mA g(-1). After a long-term cycling of 1500 cycles, the capacity is still as high as 1773 mA h g(-1) at a high current density of 4000 mA g(-1), which is almost five times higher than the theoretical capacity of graphite. The porous NiMn2O4/C hierarchical nanostructure provides sufficient contact with the electrolyte and fast three-dimensional Li(+) diffusion channels, and dramatically improves the capacity of NiMn2O4/C via interfacial storage.

  15. Dental erosion and sulfuric ion exposure levels in individuals working with sulfuric acid in lead storage battery manufacturing plant measured with mouth-rinse index.

    Science.gov (United States)

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    To investigate dental erosion in employees working with sulfuric acid at a lead storage battery manufacturing plant and level of personal exposure to sulfuric ions, we measured sulfuric ion concentrations in the mouth rinse of those employees. We also measured exposure levels from air samples obtained from 2 employees from the same plant who did not work with sulfuric acid using a portable air sampler. At the same time, we collected and compared their mouth rinses with those from other employees. More specifically, we measured and compared sulfuric ion, calcium, and magnesium concentrations, along with pH levels from the mouth rinse of these two groups. Positive correlations were found between sulfuric ion and calcium concentrations (r=0.61, p<0.005), calcium and magnesium concentrations (r=0.61, p<0.005), Ca/Mg and calcium concentrations (r=0.64, p<0.005), and sulfuric ion and magnesium concentrations (r=0.55, p<0.005). Negative correlations were found between sulfuric ion concentrations and pH levels (r=-0.31, p<0.01), and magnesium concentrations and pH levels (r=-0.32, p<0.01). This suggests that mouth rinse from employees working with sulfuric acid could function as an indicator of sulfuric ion concentration in the work environment. Furthermore, this could lead to the development of a more accurate indicator of individual exposure.

  16. Clusters of α-LiFeO2 nanoparticles incorporated into multi-walled carbon nanotubes: a lithium-ion battery cathode with enhanced lithium storage properties.

    Science.gov (United States)

    Rahman, Md Mokhlesur; Glushenkov, Alexey M; Chen, Zhiqiang; Dai, Xiujuan J; Ramireddy, Thrinathreddy; Chen, Ying

    2013-12-14

    We report the preparation of a novel nanocomposite architecture of α-LiFeO2-MWCNT based on clusters of α-LiFeO2 nanoparticles incorporated into multiwalled carbon nanotubes (MWCNTs). The composite represents a promising cathode material for lithium-ion batteries. The preparation of the nanocomposite is achieved by combining a molten salt precipitation process and a radio frequency oxygen plasma for the first time. We demonstrate that clusters of α-LiFeO2 nanoparticles incorporated into MWCNTs are capable of delivering a stable and high reversible capacity of 147 mA h g(-1) at 1 C after 100 cycles with the first cycle Coulombic efficiency of ~95%. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 101 mA h g(-1) at a high current rate of 10 C. Both rate capability and cycling stability are not simply a result of introduction of functionalized MWCNTs but most likely originate from the unique composite structure of clusters of α-LiFeO2 nanoparticles integrated into a network of MWCNTs. The excellent electrochemical performance of this new nanocomposite opens up new opportunities in the development of high-performance electrode materials for energy storage application using the radio frequency oxygen plasma technique.

  17. Evaluation of airborne lead levels in storage battery workshops and some welding environments in Kumasi metropolis in Ghana.

    Science.gov (United States)

    Dartey, E; Adimado, A A; Agyarko, K

    2010-05-01

    Airborne lead levels were assessed in nine workshops, three each from battery, electronic repair, and welding sources within the Kumasi Metropolis in Ghana. Samples were collected at 0, 2.5, and 5.0 m away from the emission source at the workshops during working hours and another at 5.0 m during break hours. Airborne lead particulates were collected and analyzed using the filter membrane technique and flame atomic absorption spectrophotometry, respectively. There were significant differences (p < or = 0.05) among the air lead levels from the workshops. Workshop 3b produced the highest significant values of air lead concentrations of 2,820.31 +/- 53.89, 2,406.74 +/- 71.87, 754.55 +/- 72.52, and 549.01 +/- 67.30 microg/m(3) at distances of 0, 2.5, 5.0, and 5.0 m (break-time measurement), respectively, while workshop 1w significantly produced the lowest air lead concentration values of 261.06 +/- 21.60, 190.92 +/- 36.90, 86.43 +/- 16.26, and 61.05 +/- 3.88 microg/m(3) at distances of 0, 2.5, 5.0, and 5.0 m (break-time measurement), respectively. The air lead levels reduced with distance from emission source at the workshops. At all the distances of measurement at working hours, the airborne lead levels were higher than the World Health Organization standard of 50 microg/m(3) and exceeded the threshold limit values of 100 to 150 microg/m(3) recommended in most jurisdictions. Workers and people in the immediate environs were exposed to air lead levels that were too high by most international standards, thus posing a serious threat to their health.

  18. Batteries and fuel cells: Design, employment, chemistry

    Science.gov (United States)

    Euler, K.-J.

    The history of electrochemical current sources is considered along with primary cells, standard cells, high-energy primary cells, high-energy storage batteries, and fuel cells. Aspects of battery research and development are also discussed, taking into account general considerations related to technological development projects, the introduction of mathematical methods into battery research, resistance measurements, autoradiography and other radiochemical methods, color photography as an aid in research, electron microscopy, X-ray and electron diffraction, spin resonance methods, and electrical measurements involving powders. Attention is given to zinc/manganese dioxide cells, zinc/mercury cells, zinc/silver oxide primary cells, cells utilizing atmospheric oxygen, lead-acid batteries, nickel-iron and nickel-cadmium storage batteries, zinc/silver storage batteries, dry cells with organic depolarizers, dry cells with solid electrolyte, and storage batteries utilizing hydrogen.

  19. Nb-doped rutile TiO2 mesocrystals with enhanced lithium storage properties for lithium ion battery.

    Science.gov (United States)

    Wei, Mingdeng; Lin, Tongbin; Zhang, Weifeng; Wu, Nae-Lih

    2017-02-22

    A homogeneous Nb-doped rutile TiO2 mesocrystal material was synthesized successfully via a facile hydrothermal route. The incorporation of Nb5+ not only promotes the crystallization for the building subunits of the rutile TiO2 mesocrystal but also improves the electrochemical performance at higher current rates. For instance, a capacity of 96.3 mA h g-1 at a current density as high as 40 C and an excellent long-term cycling stability with a capacity loss of ca. 0.006% per cycle at 5 C can be achieved when an appropriate amount of Nb5+ was doped into rutile TiO2 mesocrystal. The reason resulting in the improvement of rate capability might be attributed to the enhancement of electronic conductivity, Li-ion diffusion kinetic and surface storage property for the Nb-doped rutile TiO2 mesocrystal.

  20. Analysis on Economic Operation of Energy Storage Based on Second-Use Batteries%基于梯级利用电池的储能系统经济运行分析

    Institute of Scientific and Technical Information of China (English)

    张金国; 焦东升; 王小君; 朱洁; 和敬涵; 巩超

    2014-01-01

    The recycling of batteries that were out of service is one of problems urgently needed to be solved for sustainable development of new energy resources. Based on the combination of energy storage system composed of second-use batteries with high-power fast charging station, an optimal capacity allocation method of fast charging station, in which the second-use of electric vehicle (EV) batteries is taken into account, is proposed. According to typical load of fast charging station and based on synthetical analysis on the cost for the construction, operation and maintenance of energy storage system composed of second-use batteries and considering the revenue from standing over the upgrading and renovation of distribution network and the economic value from the revenue due to reducing network loss and peak load shifting, an economic benefit model of the energy storage system composed of second-use batteries is established and solved by genetic algorithm. Cast study results show that allocating energy storage system composed of second-use batteries in EV fast charging station can reduce the capacity of the transformer and bring economic benefit for power grid enterprises.%电动汽车退运电池的回收利用是新能源可持续发展迫切需要解决的问题,将梯级利用电池储能系统与大功率快速充电站相结合,提出了一种考虑动力电池梯级利用的快速充电站容量优化配置方法。基于快速充电站负荷规律,综合分析梯级利用储能系统建设运维成本、延缓配电网升级改造收益、降低网损收益及移峰填谷等方面的经济价值,建立储能系统的经济效益模型,并引入遗传算法对模型进行优化。算例结果表明,在电动汽车快速充电站配置梯级利用储能系统,可减小变压器容量,能为电网企业带来较好的经济效益。

  1. The battery as a thermal storage. Impacts on the air conditioning of interior spaces, the thermal architecture and the operation strategy of electric-powered vehicles; Die Batterie als thermischer Speicher. Auswirkungen auf die Innenraumklimatisierung, die thermische Architektur und die Betriebsstrategie von Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvy, Claude [Forschungsgesellschaft Kraftfahrwesen mbH, Aachen (Germany); Jeck, Peter; Gissing, Joerg; Lichius, Thomas; Baltzer, Sidney; Eckstein, Lutz [RWTH Aachen Univ. (Germany). Inst. fuer Kraftfahrzeuge

    2012-11-01

    In this paper the use of the electric traction battery as a thermal storage unit is analysed by means of simulations. The stored thermal energy is exclusively used in this work to heat the passenger cabin. For this scenario two alternative concepts are being compared to a conventional operational mode, without the use of the battery as a thermal storage. On the one hand the stored heat is directly used for cabin heating with an liquid/air heat exchanger. On the other hand a heat pump raises the temperature level. First the holistic modeling approach and the detailed architectures are presented. Then these models are simulated for a winter scenario and the results are discussed. (orig.)

  2. Technique for measuring internal resistance of storage battery based on differential equation%基于微分方程的蓄电池内阻测量技术

    Institute of Scientific and Technical Information of China (English)

    安凯

    2014-01-01

    A method for measuring internal resistance of a storage battery based on differential equation was presented. The fol owing steps were comprised: a square wave generator was connected; measuring voltages at two ends of the square wave generator at the moment when the connected square wave generator was about to be disconnected;voltages at two ends of the square wave generator when the disconnected square wave generator was about to be connected and voltage at the moment of the connection of the disconnected square wave generator;and calculating ohm internal resistance value and polarization resistance value of the storage battery through a formula to judge the failure degree of the storage battery. The change of the internal resistance of the storage battery was more accurately so as to judge the failure degree of the storage battery more accurately. Compared with the prior measurement method, the calculation method of the invention was simpler and more convenient, and the measurement result was more reliable.%提出一种基于微分方程的蓄电池内阻测量方法,通过连接方波发生器,测定方波发生器接通情况下即将断开瞬间其两端的电压,方波发生器断开时即将接通瞬间其两端的电压,方波发生器断开情况下接通瞬间的电压,并通过公式计算获得蓄电池的欧姆内阻值和极化电阻值,用以判定蓄电池的失效程度。本方法能够更精确地反映蓄电池内阻的变化,从而更准确地判断蓄电池的失效程度。与原有测量方法相比较,该方法的计算更加简便,测量结果更加可靠。

  3. Comparative analysis of thermal storage cooling and storage battery cooling using photovoltaic generation. Part 2. Research on architectural systematization of energy conversion devices; Taiyoko hatsuden ni yoru chikunetsu reibo to chikuden reibo ni tsuite. 2. Energy henkan no kenchiku system ka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, N.; Kimura, G.; Fukao, S.; Shimizu, T.; Sunaga, N.; Tsunoda, M.; Muro, K.; Yamanaka, S. [Tokyo Metropolitan University, Tokyo (Japan)

    1996-10-27

    For use in energy self-sufficient buildings, a system was studied capable of retaining for its own use the excess of power produced by a photovoltaic power generation system without releasing it to the commercial system. Summertime cooling was considered. The storage battery cooling system was provided with two solar cell systems and, in the daytime, one was used for cooling and the other for charging batteries for nighttime cooling. In the cold heat storage cooling system, cold heat accumulators (red bricks) were provided in the wall and floor, and under the floor, and the floor was a grating for proper ventilation between the room and underfloor space. With the solar cell-driven air conditioner out of operation, cold heat was fed to the room from the underfloor cold heat accumulators by a fan. In storage battery cooling, solar power covered 60% of what the air conditioner used. In the presence of sufficient power in storage, the air conditioner stayed on at night without buying commercial power, when the room temperature was 25{degree}C. In the cold heat accumulation cooling, 50% of the air conditioner power consumption was covered by solar power. It is recommended to install cold heat accumulators not in the room but in a separate space, such as the underfloor space, where they are exposed to the cooling cold air direct from an air conditioner for future retrieval of cold heat. 2 refs., 9 figs., 3 tabs.

  4. 钛酸锂电池在兆瓦级储能系统中的应用分析%Analysis for the applications of lithium titanate battery in the MW-class energy storage systems

    Institute of Scientific and Technical Information of China (English)

    黄任飞

    2015-01-01

    Compared with traditional lithium-ion battery, a battery using lithium titanate anode shows the performance of fast charging and high rate discharge capability, long calendar life, while the cost per A·h is relatively high. It analyses the requirements of a typical power-type MW-class energy storage system for the scope of the C-rate and capacity. Considering the advantages of lithium titanate battery for high power applications, it is concluded that obvious less high-rate lithium titanate battery is needed in a power-type system compared with traditional lithium-ion battery. It can translate into the competitive advantage of the energy storage system.%相对于传统型的锂离子电池,钛酸锂电池具有充放电响应速度快、倍率特性好、寿命长等优点,但钛酸锂电池单位容量的成本较高。本文从储能系统应用需求层面分析典型功率型储能系统对电池倍率和容量的要求,结合钛酸锂电池的特点,得出高倍率的钛酸锂电池应用于功率型储能系统相对于能量型锂电池,可以大幅度减少电池配置数量的结论,因此可发挥钛酸锂电池的竞争优势。

  5. 增大飞轮电池储能的控制方法研究%Research on Control Method of Increasing Flywheel Battery's Energy Storage

    Institute of Scientific and Technical Information of China (English)

    郭永吉

    2013-01-01

    In the charging of flywheel battery,the id =0 vector control method is often be used.As for the maximum output voltage of the inverter and the motor maximum current,the maximum speed of permanent magnet synchronous motor is restricted.So the energy storage of the flywheel battery is affected.To solve this problem,the weakening control was did when motor's speed was over the base speed.The stator current was controlled to run along intersection track of voltage limit circle and the current limit circle,and the motor torque can be larger in the weakening.The simulation comparison shows that the weakening control can effectively improve the maximum speed of permanent magnet synchronous motor.So the speed of flywheel can be broaden and its stored energy is increased.%飞轮电池充电时,常采用id=0的矢量控制策略对它的永磁同步电机进行控制.受逆变器最大输出电压和电机最大电流条件的约束,飞轮电池永磁同步电机的最高转速很快受到限制,这影响了飞轮电池的最大存储能量.针对这一问题,对永磁同步电机在基速以上进行弱磁控制,使电机的定子电流沿着电压极限圆与电流极限圆的交点轨迹运行,在弱磁的同时保证电机有较大的输出转矩.通过仿真对比表明,加入弱磁控制能够有效提高永磁同步电机的最高转速,拓宽飞轮的转速范围,增大飞轮电池充电时的存储能量.

  6. Capacity Optimal Modeling of Hybrid Energy Storage Systems Considering Battery Life%计及电池使用寿命的混合储能系统容量优化模型

    Institute of Scientific and Technical Information of China (English)

    韩晓娟; 程成; 籍天明; 马会萌

    2013-01-01

    为光伏电站配置适当容量的储能系统,可有效提高光伏发电的电能质量和经济效益。以电池-超级电容器混合储能系统为基础,采用雨流计算法计算电池放电深度,根据等效循环寿命曲线建立电池的使用寿命量化模型;通过分析储能系统的成本结构,建立以储能系统年均最小成本为目标函数,同时考虑波动率、置信度等约束条件的容量优化配置模型,利用粒子群算法对模型进行寻优。仿真实例验证了所提方法的有效性,采用混合储能系统替代单类型电池储能系统可以大幅降低运行成本,提高光储系统的经济性。%Incorporating energy storage system properly into the photovoltaic plant can improve the power quality and economic benefits effectively. Taking battery-supercapacitor hybrid energy storage system as an example, the paper calculated the depth of battery using the rain-flow-counting method, and established battery life quantitative model according to the equivalent cycle life curve. By analyzing the cost structure of the energy storage system, the paper established capacity allocation model using the minimum annual cost as objective, fluctuation rate and confidence as constraints. Simulation calculation used the particle swarm algorithm, and the results show the validity of the method. The simulation results also show that hybrid energy storage system can greatly reduce the operating costs and improve the economy of PV-energy storage system compared with a single type of battery energy storage system.

  7. 电动汽车磁悬浮飞轮电池储能系统设计%Design of Energy Storage System for Maglev Flywheel Battery of Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    高辉; 李怀良; 翟长国; 陈良亮

    2013-01-01

    In order to improve the energy efficiency of electric vehicle (EV) power battery and increase the start-up power of EV, a maglev flywheel battery energy storage system with the active suspension controlled at five degrees of freedom is designed for EV. The system suspension control principle is expounded, and the radial single freedom transfer function of the maglev flywheel is established by referring to a digital proportion-integral-differential (PID) control algorithm. The frequency spectrum characteristic of the transfer function and the flywheel rotor trajectory curve are simulated, and the 30 000 r/min rotation experiment on the maglev flywheel battery prototype is realized. The experiment results show that the maglev flywheel rotor is capable of high speed steady spin, and with good energy storing ability. The maglev flywheel battery energy storage system will assist the EV power battery work, improve the battery charge and discharge properties and prolong the service life of the motive power battery.%为了提高电动汽车动力蓄电池能效,增加电动汽车的启动功率,设计了一种电动汽车用五自由度主动悬浮控制的磁悬浮飞轮电池储能系统,阐述了系统的悬浮控制原理,并结合一种数字比例-积分-微分(PID)控制算法建立了该磁悬浮飞轮径向单自由度传递函数.仿真分析了该传递函数的频谱特性及飞轮转子的运动轨迹曲线,实现了对磁悬浮飞轮电池样机30 000 r/min的旋转实验.实验结果表明:该磁悬浮飞轮转子可以高速稳定旋转,具有良好的储能能力;可以辅助电动汽车原动力蓄电池工作,有助于提高原动力电池的充放电性能以及延长原动力蓄电池的使用寿命.

  8. 化学电源储能技术研究进展与发展趋势分析%Technology progress &development trends of several secondary batteries for energy storage applications

    Institute of Scientific and Technical Information of China (English)

    刘肃力; 孙洋洲; 张敏吉; 郭雪飞; 王荣

    2013-01-01

    The principle,advantages & shortages of several electrochemical energy storage systems,such as lithium ion battery,vanadium redox flow battery and sodium/sulfur battery were described and compared,based on application demand of large-scale energy storage,In addition,some technology progress of above systems and their development trends were also introduced and analyzed.Meanwhile,the key technology issues before their large-scale application were commended,and some relevant suggestions related to technical approaches were preliminarily proposed.%基于规模储能应用的发展需求,重点评述了锂离子电池、全钒液流电池、钠硫电池的原理、特点及存在问题,并对其技术发展现状与趋势作了阐述与展望,对其作为未来规模化储能应用尚需解决的关键技术瓶颈做了分析,提出了相应的解决途径建议.

  9. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  10. Research on Electricity Pricing Mechanism of NaS Battery Based Energy Storage System%钠硫电池储能系统的电价机制研究

    Institute of Scientific and Technical Information of China (English)

    孙波; 廖强强; 陆宇东; 周国定; 陈飞杰; 葛红花

    2014-01-01

    A cost-benefit analysis model of NaS battery based energy storage system was established to study the electricity pricing mechanism during load shifting of power grid. The energy storage pricing strategies under three electricity pricing mechanisms, namely the capacity pricing mechanism, the energy pricing mechanism and the two-part electricity pricing mechanism, were discussed. Research results show that the energy pricing mechanism and the two-part electricity pricing mechanism are more suitable for the NaS battery based energy storage system than the energy pricing mechanism. Along with the reduction of specific energy construction cost for NaS battery based energy storage system from 3 000 RMB/kWh to 1 000 RMB/kWh, the discharge price of NaS battery based energy storage system, which is set by the energy pricing mechanism and the two-part electricity pricing mechanism, could be controlled to about 1 RMB/kWh, thus it may possess the elementary capability to compete with the Shanghai industrial and commercial electricity price in peak periods.%采用成本收益模型研究了钠硫电池储能系统在电网削峰填谷作用中的电价机制。从单一容量电价、单一电度电价、两部制电价3种电价机制讨论了固定投资回报期下的储能电价策略。研究结果表明,对于能量型的钠硫电池储能系统,采用单一容量电价机制来制定储能电价不太合适,而采用单一电度电价和两部制电价机制则更为合适。随着钠硫电池储能系统单位能量建设成本从3000元/kW·h降至1000元/kW·h,采用单一电度电价和两部制电价机制制定的放电电价可控制在1元/kW·h左右,初步具备了与上海工商业高峰时段电度电价竞争的优势。

  11. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    Science.gov (United States)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  12. Developments in MEMS scale printable alkaline and Li-ion technology

    Science.gov (United States)

    Littau, K. A.; Cobb, C. L.; Spengler, N.; Solberg, S.; Weisberg, M.; Chang, N.; Rodkin, A.

    2011-06-01

    Two technologies for MEMS (Microelectromechanical Systems) scale cell formation are discussed. First, the fabrication of planar alkaline cell batteries compatible with MEMS scale power storage applications is shown. Both mm scale and sub-mm scale individual cells and batteries have been constructed. The chosen coplanar electrode geometry allows for easy fabrication of series connected cells enabling higher voltage while simplifying the cell sealing and electrode formation. The Zn/Ag alkaline system is used due to the large operating voltage, inherent charge capacity, long shelf life, and ease of fabrication. Several cells have been constructed using both plated and spun-on silver. The plated cells are shown to be limited in performance due to inadequate surface area and porosity; however, the cells made from spun-on colloidal silver show reasonable charge capacity and power performance with current densities of up to 200 uA/mm2 and charge capacities of up to 18 mA-s/mm2. Second, a new printing method for interdigitated 3-D cells is introduced. A microfluidic printhead capable of dispensing multiple materials at high resolution and aspect ratio is described and used to form fine interdigitated cell features which show >10 times improvement in energy density. Representative structures enabled by this method are modeled, and the energy and power density improvements are reported.

  13. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic

  14. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  15. Design of battery control system using for drill pipe conveying storage well-logging tools%钻杆输送存储式测井仪电池控制系统设计

    Institute of Scientific and Technical Information of China (English)

    李明华

    2012-01-01

    The drill pipe conveying no cable storage logging is an important technical.it means to solve the highly deviated and horizontal wells, owe a balance wells difficulty logging. The rational use of the downhole tool battery, battery status monitoring is key to ensure that logging tools work reliably. In this paper, the design of the key part of drill pipe conveying storage logging tool battery control system hardware circuit and software, pressure acquisition temp-drift correction method was submitted, and it summarizes some the advantages of the system in the design and practical engineering applications. The application of the system in Shengli Oilfield and external oilfield demonstrated battery control system ensured that the instrument took complete and accurate logging data, solved a major technical problem of the logging project.%钻杆输送无电缆存储式测井是解决大斜度井、水平井、欠平衡井等高难度测井的重要技术手段.井下仪器电池的合理使用、电池状态的监控是保证测井仪器可靠工作的关键.文中给出了钻杆输送存储式测井仪电池控制系统的硬件电路及软件关键部分设计、压力采集温漂校正方法,总结了该系统在设计及实际工程应用中体现的一些优点.该系统在胜利油田及外部油区的应用表明,电池控制系统能够确保仪器取全取准测井资料,解决了测井工程的一大技术难题.

  16. Parallel Grid-connected System of Non-master-slave and Current-sharing Battery Energy Storage%无主从自均流并联并网电池储能系统

    Institute of Scientific and Technical Information of China (English)

    赵彪; 于庆广; 王立雯; 肖宜

    2012-01-01

    提出了一种无主从自均流的并联并网电池储能系统,并将系统中的变流器设计为双向可拓展变流结构,使其成为一四象限运行的储能系统,并且不对电网造成谐波污染,具有较高的功率因数。在此基础上,将系统的工作状态设计为蓄电池并网充电、蓄电池并网放电及应急电源3种模式,控制单元根据不同的工作模式控制各变流器的运行状态,不仅可以实现传统电池储能系统的基本功能,还能够在电网故障时作为应急电源独立使用。同时,给出了系统的控制管理策略,以达到系统稳态和暂态运行的控制目标。最后,基于电磁暂态仿真验证了该系统及其控制管理策略的有效性。%This paper proposes a parallel grid-connected system of non-master-slave and current-sharing battery energy storage.The converter of the system is designed as a bi-directional extended conversion structure,so the system becomes a four-quadrant operation battery energy storage device with characteristics such as low harmonics pollution and high power factor.On this basis,the operating modes of the system are designed to three modes: battery grid charging mode,battery grid discharging mode and emergency power supply mode.According to the different working modes,the control unit controls the operating status of the converter.It can achieve basic functions of traditional battery energy storage system,as well as emergency power used independently on the grid faults.In order to achieve the control targets of steady state and transient state,the control management strategy is given.EMTDC simulation results are provided to verify the effectiveness of the proposed system and control strategy.

  17. Preparation of Alkaline Solid Polymer Electrolyte Based on PVA-TiO2-KOH-H2 O and Tts Application in Zn-Ni Battery%碱性固态聚合物电解质 PVA-TiO2-KOH-H2 O的制备及应用

    Institute of Scientific and Technical Information of China (English)

    贾若琨; 金鑫; 林松竹

    2013-01-01

    PVA-TiO2-KOH-H2 O alkaline solid polymer electrolyte separator is successfully prepared by the solution casting method.The properties of PVA-TiO2-KOH alkaline polymer electrolyte films were studied by scanning electron microscopy (SEM).The result showed that TiO2 particles dispersed into the PVA matrix although some TiO2 aggregates of several micrometers were formed.According to the research of the influence of water ratio and the amount of TiO2 ,it is found that the room tem-perature (20 ℃)ionic conductivity values of typical samples were 0.14 S/cm.The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had a charging voltage of 4.2 V and a stable discharging voltage of 0.1 V.The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had excellent electrochemical property at the low charge-discharge rate.%通过溶胶凝胶法制备一种新型的合成物,它基于 PVA高分子基质,TiO2陶瓷填料,KOH 和水。通过 SEM来研究这种高分子薄膜,结果显示 TiO2微粒散布到 PVA 基质中会形成一些只有几微米的TiO2聚合物。通过对含水率和TiO2添加量对隔膜性质的研究,得到室温下这种薄膜的离子电导率值为0.14 S/cm。组装的锌镍电池充电电压最高可达4.2 V,放电电压可到0.1 V,且十分稳定。使用这种电解质的锌镍二次电池在低充电放电率条件下电化学性能优越。

  18. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Maria Skyllas-Kazacos; Aishwarya Parasuraman; Tuti Mariana Lim; Suminto Winardi; Helen Prifti

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  19. Optimal Load Distribution of Microgrid With Energy Storage System Composed of Vanadium Redox Flow Battery%含钒电池储能的微电网负荷优化分配

    Institute of Scientific and Technical Information of China (English)

    陈光堂; 邱晓燕; 林伟

    2012-01-01

    储能系统是微电网的重要组成部分,其对微电网的稳定性、经济性与安全性有着非常重要的影响.以含钒液流储能电池(vanadium redox flow battery,VRB)系统的微电网为研究对象,建立了含钒电池储能微电网多目标负荷优化分配模型.以某微电网为例,分析讨论了钒电池对微电网带来的经济效益,同时研究了运行模式、控制策略和优化目标中权重等诸多因素对微电网负荷优化分配结果的影响,验证了所建立模型的有效性.%Energy storage system is an important component of microgrid and it greatly impacts the stability, security and economic operation of microgrid. Taking a microgrid containing energy storage system composed of vanadium redox flow battery (VRB) as research object, a multi-objective load distribution optimization model of microgrid with energy storage system composed of vanadium redox flow battery (VRB) is built. The economic benefit bought to microgrid by VRB is analyzed and researched, meanwhile the influences of the factors such as operating modes, control strategy and the weights of optimization objectives on load distribution optimization of microgrid are researched too, thus the effectiveness of the built model is verified.

  20. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    Science.gov (United States)

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.

  1. Design and Implementation of Grid-Connected Converter for Lithium Battery Energy Storage System%锂电池储能并网变换器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    侯朝勇; 胡学浩; 惠东

    2012-01-01

    并网变换器为锂电池储能系统实现并网的核心部件,为实现锂电池储能系统与电网的双向功率交换,提出了锂电池储能并网变换器设计方案。该系统以赛米控智能集成功率模块作为主要功率器件,通过电感一电容一电感(LCL)滤波器接入电网,控制系统采用开放的分层控制架构。利用该设计方案研制了样机,样机试验结果验证了该设计方案的可行性,样机能够完成锂电池储能系统的不同充电模式,相关参数可以满足并网要求。%To achieve bi-directional power exchange be- tween lithium battery energy storage system and power grid, the grid-connected converter is the key component to imple- ment grid-connection of lithium battery energy storage system. A design scheme of grid-connected converter for lithium battery energy storage system is proposed. In the designed grid-connected converter, the Semikron integrated intelligent power, SKIIP) module is used as main power switch that is connected to power grid via LCL filter; an open hierarchical control structure is applied to the control system of the con- verter. Based on the design scheme, a prototype of grid-connected converter is developed and the testing results of the prototype show that different charging modes of lithium battery energy storage system can be implemented and the parameters of the prototype can meet the requirements of grid-connection, thus the feasibility of the proposed design scheme is verified.

  2. Battery Energy Storage Power Supply Simulation Model for Power Grid Frequency Regulation%面向电网调频应用的电池储能电源仿真模型

    Institute of Scientific and Technical Information of China (English)

    黄际元; 李欣然; 曹一家; 张晴; 刘卫健

    2015-01-01

    A battery energy storage power supply model for power grid frequency regulation is studied.First,the output characteristics of battery energy storage power are obtained by analyzing the amplitude and charge-discharge frequency characteristics in frequency regulation conditions.Then the process of constructing an electro-magnetic transient(EMT)model of battery energy storage power is presented,based on which a digital simulation model adapted to the needs of frequency regulation research and its parameter identification method are proposed.Finally,based on the multiple sets of experimental data of LiFePO 4 batteries,the parameters of the simulation model are identified using an improved genetic algorithm and verified in frequency regulation scenarios.The validation results show that the simulation data of the model fit the actual operating data of the energy storage power with an error less than 1%,and the proposed simulation model has a rational structure that is able to meet the simulation requirements of primary and secondary frequency regulation as well as other applications on a second-minute timescale.%对面向电网调频的电池储能电源模型展开了研究。首先,通过深入分析调频工况的幅值和充放电频率特点,总结了电池储能电源的出力特征;然后,介绍了电池储能电源电磁暂态模型的形成过程,在此基础上,提出了满足调频研究需求的仿真模型及其参数辨识方法;最后,基于多个磷酸铁锂电池的实验数据,采用改进的遗传算法辨识出仿真模型中的参数,并基于调频工况进行了验证分析。分析结果表明,模型仿真数据与实际储能的运行数据及特性相吻合,误差在1%以内,且提出的仿真模型结构合理,可较好地满足一次调频、二次调频以及其他秒级至分钟级的应用需求。

  3. A novel rechargeable zinc-air battery with molten salt electrolyte

    Science.gov (United States)

    Liu, Shuzhi; Han, Wei; Cui, Baochen; Liu, Xianjun; Zhao, Fulin; Stuart, Jessica; Licht, Stuart

    2017-02-01

    Zinc-air batteries have been proposed for EV applications and large-scale electricity storage such as wind and solar power. Although zinc-air batteries are very promising, there are numerous technological barriers to overcome. We demonstrate for the first time, a new rechargeable zinc-air battery that utilizes a molten Li0.87Na0.63K0.50CO3 eutectic electrolyte with added NaOH. Cyclic voltammetry reveals that a reversible deposition/dissolution of zinc occurs in the molten Li0.87Na0.63K0.50CO3 eutectic. At 550 °C, this zinc-air battery performs with a coulombic efficiency of 96.9% over 110 cycles, having an average charging potential of ∼1.43 V and discharge potential of ∼1.04 V. The zinc-air battery uses cost effective steel and nickel electrodes without the need for any precious metal catalysts. Moreover, the molten salt electrolyte offers advantages over aqueous electrolytes, avoiding the common aqueous alkaline electrolyte issues of hydrogen evolution, Zn dendrite formation, ;drying out;, and carbonate precipitation.

  4. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    Science.gov (United States)

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  5. Economic Analysis of the Virtual Power Plants with Large-scale Battery Energy Storage Systems%含规模化电池储能系统的商业型虚拟电厂经济性分析

    Institute of Scientific and Technical Information of China (English)

    闫涛; 渠展展; 惠东; 刘赟甲; 胡娟; 贾鹏飞

    2014-01-01

    In order to solve the two major problems in the new energy power generation process,namely,the difficultly in dynamic energy balance and high system operation costs,an operation mode of energy storage system based on the commercial virtual power plant(VPP) is put forward by referring to a demonstration project with wind power plants and energy storage systems.On the basis of the adoption of the objective function of VPP economic benefits and that of the benefits and costs of wind power plant and battery energy storage systems,an economical dispatching model for VPP able to provide services to peak load shifting and frequency control,is developed.With the goal of maximizing the profits in each period,the output power of wind power plants and battery energy storage systems is obtained by the simulated annealing algorithm.By referring to the data of electricity price of typical areas in China and the cost of typical battery energy storage system in operation,an example is presented to show that the adoption of the VPP operation mode proposed is able to yield greater benefits.%为解决新能源发电过程中功率动态平衡困难、系统投资成本高昂两大突出问题,结合国内某风储系统示范项目,提出基于商业型虚拟电厂(virtual power plant,VPP)的储能系统运行方式。在建立 VPP 经济收益的目标函数以及风力发电厂和电池储能系统的收益、成本等数学模型的基础上,建立了可提供调峰和调频服务的 VPP 经济优化调度模型。以各时段内获得收益最大为目标,采用模拟退火算法计算得到风力发电厂和电池储能系统的出力。参考中国典型地区电价和已经投运的典型电池储能系统的成本为数据,构造算例进行分析。算例分析表明采用 VPP 运行方式可获得更大的收益。

  6. Research and development of peripheral technology for photovoltaic power systems. Study of nickel-hydride storage battery for photovoltaic generation systems; Shuhen gijutsu no kenkyu kaihatsu. Taiyoko hatsuden`yo suiso denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of nickel-hydride storage battery for photovoltaic generation systems in fiscal 1994. (1) On the study on low-cost electrode materials, the physical properties and electrode characteristics were studied of the prototype hydrogen absorbing alloys prepared by substituting Cu or Ni for Co in Mm(Ni-Co-Mn-Al)5 (Mm: mixture of rare earth elements). The result clarified that it is difficult to reduce Co content in the alloy to 0.4 atom or less. Simple heat treatment and milling processes in production of hydrogen absorbing alloy electrodes were achieved by adopting an improved metal mold and gas atomization method. Characteristics and cycle life of the Ni positive electrode prepared by applying active paste material of Ni(OH)2 were studied, however, the result showed only lives of nearly 300 cycles. (2) On the study on electrode structure for high-performance (long-life) battery, the 3-D porous metal electrode support was evaluated, and various battery configurations were studied. 11 figs., 1 tab.

  7. A concept of an electricity storage system with 50 MWh storage capacity

    OpenAIRE

    Józef Paska; Mariusz Kłos; Paweł Antos; Grzegorz Błajszczak

    2012-01-01

    Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy), and direct storage (in an electric or magnetic fi eld). Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers an...

  8. 平滑光伏功率波动的储能系统充放电控制策略研究%Research on charge-discharge control strategy of battery energy storage system for smoothing photovoltaic power fluctuations

    Institute of Scientific and Technical Information of China (English)

    杨可林; 黄瑞雯; 刘皓明

    2015-01-01

    Integrating a battery energy storage system (BESS) with photovoltaic systems helps smooth the output fluctuations of photovoltaic power, improve the power supply reliability of the pow⁃er system, and enhance the regulation capability of the power sys⁃tem. Taking the photovoltaic⁃energy storage hybrid system as re⁃search object, an energy storage’s charge⁃discharge control strate⁃gy accounting charge⁃discharge depth of the battery is proposed based on the principle of filtering. The strategy considers the state⁃of⁃charge (SOC) of the battery to prevent accelerating its aging and damage, which, at the same time, dynamically compensates for the output power of BESS by regulating the output active power of ener⁃gy storage system. Taking a rooftop photovoltaic system in Wuxi city as an example for the simulation, the results show that the con⁃trol strategy proposed in this paper can fully consider the capacity configuration of BESS and furthest dynamically smooth the power output fluctuations of photovoltaic power system, and effectively prolong the service life of the battery.%在光伏发电系统中配备一定的储能装置可以平滑光伏发电的功率波动,提高系统的供电可靠性,增强电网的调控能力。以光储联合发电系统为研究对象,在滤波原理的基础上,设计了一种计及电池充放电深度的储能系统充放电控制策略。该策略计及储能电池荷电状态,防止过度充放电加快其寿命老损,通过调节储能系统输出有功功率,对光伏出力波动进行动态补偿。以无锡市某屋顶光伏电站为例进行了仿真研究,仿真结果表明,所提策略能够充分考虑储能系统容量配置,最大程度的动态平滑光伏发电系统输出功率波动,有效延长储能电池使用寿命。

  9. Design of rubber tyred gantry crane hybrid power system with lithium battery pack energy storage device%锂电池组储能的混合动力RTG系统设计

    Institute of Scientific and Technical Information of China (English)

    常奇; 王玥; 牛王强

    2014-01-01

    锂电池组与柴油机构成的混合动力起重机系统是港口节能减排的一项重要技术。针对起重机再生制动能量的回收,设计了双向DC-DC变换器来实现锂电池组储能系统的两种工作模式(再生制动模式和锂电池组放电模式);对双向DC-DC变流器升压工作方式设计了双闭环控制器,降压工作方式设计了电流环和电压环两种控制器,并进行了对比,从而实现了对锂电池组储能系统充、放电过程和不同运行模式间切换过程的控制。运用PLECS搭建了系统仿真模型,仿真结果表明,在制动能量回收过程中,采用电压环控制器可以实现较高效率的制动能量回收。%The hybrid power system of rubber tyred gantry crane(RTGC),which consists of a lithium battery pack and a diesel engine,is important for energy conservation and emission reduction in the port. To solve the problem of energy storage in the backing mode of RTGC,a bidirectional DC-DC converter was designed to achieve two operating modes(regenerative braking mode and lithium battery pack discharge mode) of lithium battery pack storage device. A double closed-loop controller was de-signed for the boost operating mode of bidirectional DC-DC converter. Two controllers with a current loop and voltage loop was designed for the buck operating mode of the bidirectional DC-DC converter. With the controllers,the control of lithium battery pack storage system was realized in the charging,discharging and switching process of the different modes. The PLECS is used to build a simulation model of the system. The simulation results show that the voltage loop controller can efficiently implement the braking energy recovery in the braking process.

  10. 独立光伏系统的超级电容和蓄电池混合储能系统研究%Study on Hybrid Storage System Based on Supercapacitor and Battery in Stand-alone PV System

    Institute of Scientific and Technical Information of China (English)

    温镇; 张勇; 潘晓纯; 盛银波; 刘千杰

    2013-01-01

    Energy storage system is usually essential for stand-alone PV system to ensure power supply stabil-ity and sustainability. For the sake of pulse power absorption from photovoltaic cells so as to inhibit the volt-age fluctuations of DC bus and to meet the needs of supplying short-term high-power to the load, the paper presents a hybrid energy storage scheme combining the supercapacitor with battery and conducts a simulated analysis on charging and discharging, which proves charging and discharging characteristic of supercapacitor and battery;it also proposes a charging and discharging control strategy.%对于独立光伏发电系统,通常需要储能系统来保证供电的稳定性和持续性。为了吸收光伏电池发出的脉动功率,从而抑制直流母线的电压波动,并满足向负载提供短时大功率的需求,提出了采用超级电容器和蓄电池混合储能方案,并进行了充放电仿真分析,验证了超级电容的蓄电池充放电特点,提出了充放电控制策略。

  11. Research on the Optimized 3-stage Charging Strategy for the Storage Battery in Stand-alone Photovoltaic System%独立光伏系统蓄电池优化三段式充电策略研究

    Institute of Scientific and Technical Information of China (English)

    蔡晓峰; 张鸿博; 黄伟; 赵慧光

    2012-01-01

    To improve the charging efficiency and the lifetime of the storage battery in the stand-alone photovoltaic system, the charging algorithm of storage battery is studied. In consideration of the photovoltaic system is easily to be impacted by the environment, and the power generated is unstable, the reason caused failure of implementing 3-stage charging by using PI algorithm is analyzed, thus the charging strategy combining maximum power point tracking (MPPT) and 3-stage charging is proposed. PI constant current, constant current charging and the switching criteria of MPPT charging are researched emphatically. The result of Matlab simulation verifies the correctness of the algorithm.%为了提高独立光伏系统蓄电池的充电效率和使用寿命,对蓄电池充电算法进行了研究.考虑到光伏系统受环境影响较大、发电功率不稳定等因素,分析了直接利用PI算法实现三段式充电失败的原因,提出了将最大功率点跟踪(MPPT)与三段式充电相结合的充电策略.重点研究了PI恒流、恒压充电与MPPT充电的切换判据.Matlab仿真结果证明了该算法的正确性.

  12. 计及缺电成本的用户侧蓄电池储能系统容量规划%Capacity Plan of Battery Energy Storage System in User Side Considering Power Outage Cost

    Institute of Scientific and Technical Information of China (English)

    颜志敏; 王承民; 连鸿波; 衣涛; 时志雄; 张宇

    2012-01-01

    Based on the relevant studies, in order to bring the battery energy storage system economical benefits in the user side caused by reducing capacity of user's distribution station and decreasing the power expenses for user, a value model for reducing loss of the transformer and power outage cost is built. In the mean time, considering the investment cost and operation and maintenance cost, the capacity optimization plan model for user' s battery energy storage system is developed and particle swarm optimization algorithm is used to solve it.%在相关研究的基础上,考虑了用户侧电池储能系统在减少用户配电站建设容量和降低购电费用方面为用户带来的经济价值,建立了其降低配电变压器损耗和停电损失的价值模型。同时,考虑蓄电池储能系统的投资成本和运行维护成本,建立了其容量优化规划模型,并用粒子群优化算法进行了求解。

  13. Power Optimization Distribution and Control Strategies of Multistage Vanadium Redox Flow Battery Energy Storage Systems%多级钒电池储能系统的功率优化分配及控制策略

    Institute of Scientific and Technical Information of China (English)

    李辉; 付博; 杨超; 赵斌; 唐显虎

    2013-01-01

    为了更好利用储能系统平抑大容量风电场功率波动,提出采用多级全钒液流电池(vanadium redox flow battery,VRB)储能的功率优化分配控制策略.首先,在建立VRB等效电路基础上,采用交直流变换器级联多重双向直流变换器作为VRB储能系统接口,分别建立了以稳定直流母线电压为目标的DC/AC变换器矢量控制策略,以电池荷电状态为约束的VRB充放电切换的DC/DC变换器双闭环控制策略.其次,以每级电池组的荷电状态值作为吞吐功率的优选目标,以外部端电压作为电池安全充放电的约束条件,提出多级VRB组的功率优化分配策略.最后,以不同荷电状态(state of charge,SOC)值下的2级VRB储能系统为例,对其在风速波动情况下的风电功率平抑效果以及各个储能单元充放电运行性能进行仿真,并与功率平均分配策略进行对比.结果表明,所提出的多级VRB储能系统功率优化分配和控制策略能很好的平滑风电功率波动,又能减少单台VRB组的充放电次数,并确保电池工作于安全运行区域.%In order to make better use of energy storage system to reduce the fluctuation of active power for large-scale wind farm,this paper proposes the optimization power distribution control strategies of the multistage vanadium redox flow battery (VRB) storage.Firstly,based on the equivalent circuit of a VRB and by using the interface of the DC/AC converter cascade multiple bi-directional DC/DC converter,a vector control strategy of DC/AC converter is presented to keep the stable DC bus voltage,and a double closed loop control strategy of DC/DC converter is established to switch charge-discharge style as a constraint of state of charge (SOC) on a single VRB.Secondly,by taking SOC value of each battery as priority target selection of output power,and by using the limit of external terminal voltage as the constraint conditions for battery safety charging and discharging,an optimization

  14. Operational experience and performance characteristics of a valve-regulated lead-acid battery energy-storage system for providing the customer with critical load protection and energy-management benefits at a lead-recycling plant

    Science.gov (United States)

    Hunt, G. W.

    The Power Control Division of GNB Technologies, commissioned on May 13, 1996 a new facility which houses a 5-MW battery energy-storage system (BESS) at GNB's Lead Recycling Centre in Vernon, CA. When the plant loses utility power (which typically happens two or three times a year), the BESS will provide up to 5 MW of power at 4160 VAC in support of all the plant loads. Since the critical loads are not isolated, it is necessary to carry the entire plant load (maximum of 5 MVA) for a short period immediately following an incident until non-critical loads have been automatically shed. Plant loading typically peaks at 3.5 MVA with critical loads of about 2.1 MVA. The BESS also provides the manufacturing plant with customer-side-of-the-meter energy management options to reduce its energy demand during peak periods of the day. The BESS has provided a reduction in monthly electric bills through daily peak-shaving. By design, the battery can provide up to 2.5 MWh of energy and still retain 2.5 MWh of capacity in reserve to handle the possibility of a power outage in protecting the critical loads for up to 1 h. By storing energy from the utility during off-peak hours of the night in the batteries when the cost is low (US4.5¢ per kWh), GNB can then discharge this energy during high demand periods of the day (US14.50 per kW). For example, by reducing its peak demand by 300 kW, the lead-recycling centre can save over US4000 per month in its electric bills. The BESS at Vernon represents a first large-scale use of valve-regulated lead-acid batteries in such a demanding application. This paper presents a summary of the operational experience and performance characteristics of the BESS over the past 2 years.

  15. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  16. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  17. Study of flywheel energy storage for space stations

    Science.gov (United States)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  18. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  19. Repurposing of Batteries from Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2015-06-11

    Energy storage for stationary use is gaining traction both at the grid scale and distributed level. As renewable energy generation increases, energy storage is needed to compensate for the volatility of renewable over various time scales. This requires energy storage that is tailored for various energy to power (E/P) ratios. Other applications for energy storage include peak shaving, time shifting, load leveling, VAR control, frequency regulation, spinning reserves and other ancillary applications. While the need for energy storage for stationary applications is obvious, the regulations that determine the economic value of adding storage are at various stages of development. This has created a reluctance on the part of energy storage manufacturers to develop a suite of storage systems that can address the myriad of applications associated with stationary applications. Deployment of battery energy storage systems in the transportation sector is ahead of the curve with respect to the stationary space. Batteries, along with battery management systems (BMS) have been deployed for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). HEVs have now been deployed for 12 years, while PHEVs for 8 and EVs for 4 years. Some of the batteries are approaching end of life within the vehicle, and are ready to be taken off for recycling and disposal. Performance within a vehicle is non-negotiable in terms of miles traveled per charge, resulting in the batteries retaining a significant portion of their life. For stationary applications, the remaining energy and power of the battery can still be used by grouping together a few of these batteries. This enables getting the most of these batteries, while ensuring that performance is not compromised in either the automotive or stationary applications. This work summarizes the opportunities for such re-purposing of automotive batteries, along with the advantages and limitations

  20. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.