WorldWideScience

Sample records for alkaline radioactive waste

  1. Conditioning alkaline coolant radioactive waste from research reactor BR-10

    International Nuclear Information System (INIS)

    Vladimir, Smykov; Mikhail, Kononyuk; Kirill, Butov

    2014-01-01

    In the Institute for Physics and Power Engineering (Russia) has developed and was successfully demonstrated a technology of solid-phase oxidation of alkaline metal by slag from the copper-smelting industry. Neutralization of alkaline metal in the solid-phase oxidation process occurs in a single phase. The solid-phase oxidation process does not result in the generation of hydrogen. The product of alkaline metal radioactive waste processing is solid mineral-like sinter of reaction products, contained inside a steel reaction container, which is immediately shipped for dry storage in a solid radioactive waste storage facility. The presence of a mercury admixture in the research reactor BR-10 (BR-10) reactor alkaline metals radioactive waste makes conditioning of that waste considerably more complicated. Laboratory research demonstrated that mercury could be effectively removed from alkaline metal by pushing the Na-K alloy through chips of metallic magnesium in elevated temperatures. For neutralization of non-drainable sodium residues and admixtures in individual equipment (cold traps, pipe lines, tanks) of the research reactor BR-10 has developed a method for neutralization of non-drainable residues of alkaline liquid metal coolants with a gaseous sub oxide of nitrogen, which is characterized by absence of hydrogen generation, improving the safety of the technology. Currently, the reactor building is undergoing installation of the experimental-industrial plant 'Magma', the purpose of which is processing of accumulated alkaline metals radioactive waste. In according with concept of 'experimental polygon for testing the decommissioning technologies of the BN series of reactors' based on the BR-10 installation, it would appear sensible to start the development of the installation for conditioning by solid-phase oxidation of up to 1000 liters of radioactive waste per loading. (author)

  2. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    International Nuclear Information System (INIS)

    Clark-Deaborg, David

    2001-01-01

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am--the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting their solubility and sorption behavior in tanks, determining whether chemical separations are needed for waste treatment, and designing separations processes. Baseline washing of tank sludges with NaOH solutions is being proposed to reduce the volume of HLW. Alkaline pretreatment of HLW will be needed to remove aluminum [as NaAl(OH) 4 ] because it significantly reduces the HLW volume; however, aluminate [Al(OH) 4 - ] enhances actinide solubility via an unknown mechanism. Thus, alkaline wash residues may require an additional treatment to remove actinides. The results of this research will determine the nature TRU (Np, Pu, Am) speciation with aluminate anions under alkaline, oxidizing tank-like conditions. Specific issues to be addressed include solubility of these actinides, speciation in aluminate-containing alkaline supernatants, the role of actinide redox states on solubility, and partitioning between supernatant and solid phases, including colloids. Studies will include thermodynamics, kinetics, spectroscopy, electrochemistry, etc. It is already known, for example, that certain high valent forms of NF and Pu are very soluble under alkaline conditions due to the formation of anionic hydroxo complexes, AnO 2 (OH) 4 2- and AnO 2 (OH) 5 3- . The presence of aluminate ions causes the actinide solubilities to increase, although the exact species have only been determined during this program. We are continuing to characterize high-valent TRU elements bound to oxo, water, OH - , under waste-like and sludge washing conditions. These conditions are in the range of 1-3 M excess hydroxide, ∼0.2 M carbonate, ∼0.5 M aluminate, for a total sodium of 2-4 mols/kg. Molecular structure-specific probes

  3. Actinide-aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David C.; Krot, Nikolai N.

    2000-01-01

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting their solubility and sorption behavior in tanks, determining whether chemical separations are needed for waste treatment, and designing separations processes. Baseline washing of tank sludges with NaOH solutions is being proposed to reduce the volume of HLW. Alkaline pretreatment of HLW will be needed to remove aluminum [as NaAl(OH)4] because it significantly reduces the HLW volume; however, the aluminate ion [Al(OH)4 -] enhances actinide solubility via an unknown mechanism. Thus, alkaline wash residues may require an additional treatment to remove actinides. The results of this research will determine the nature TRU (U, Np, Pu, Am) speciation with aluminate anions under alkaline, oxidizing tank-like conditions. Specific issues to be addressed include solubility of these actinides, speciation in aluminate-containing alkaline supernatants, the role of actinide redox states on solubility, and partitioning between supernatant and solid phases, including colloids. Studies will include thermodynamics, kinetics, spectroscopy, electrochemistry, and surface science. We have already determined, for example, that certain high valent forms of Np and Pu are very soluble under alkaline conditions due to the formation of anionic hydroxo complexes, AnO2(OH)4 2- and AnO2(OH)5 3-. The presence of aluminate ions causes the actinide solubilities to increase, although the exact species are not known. We are currently characterizing the high valent TRU elements bound to oxo, water, OH-, and Al(OH)4 -, ligands under waste-like conditions. These waste-like conditions are in the range of 1-3 M excess hydroxide, ∼0.2 M carbonate, ∼0.5 M aluminate, for a total sodium of 2-4 M. Molecular structure-specific probes

  4. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  5. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  6. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes

  7. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  8. Removal of radioruthenium from alkaline intermediate level radioactive waste solution : a laboratory investigation

    International Nuclear Information System (INIS)

    Samanta, S.K.; Theyyunni, T.K.

    1994-01-01

    Various methods were investigated in the laboratory for the removal of radioruthenium from alkaline intermediate level radioactive waste solutions of reprocessing plant origin. The methods included batch equilibration with different ion exchangers and sorbents, column testing and chemical precipitation. A column method using zinc-activated carbon mixture and a chemical precipitation method using ferrous salt along with sodium sulphite were found to be promising for plant scale application. (author). 10 refs., 3 figs., 7 tabs

  9. Radioactive wastes

    International Nuclear Information System (INIS)

    Boegly, W.J.; Alexander, H.J.

    1983-01-01

    A literature review on studies concerning radioactive wastes is presented. Literature on radioactive wastes available from the National Technical Information Service, Washington, DC, was not included in the review. Studies were reviewed that dealt with general programs for radioactive wastes; isolation of radioactive wastes; waste management; waste storage; environmental transport; transportation; risk assessment; and remedial action are reviewed

  10. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-01-01

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex trademark-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO 4 - ). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH) 3 , and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)

  11. Eichrom's ABEC trademark resins: Alkaline radioactive waste treatment, radiopharmaceutical, and potential hydrometallurgical applications

    International Nuclear Information System (INIS)

    Bond, A.H.; Gula, M.J.; Chang, F.; Rogers, R.D.

    1997-01-01

    Eichrom's ABEC trademark resins selectivity extract certain anions from high ionic strength acidic, neutral, or strongly alkaline media, and solute stripping can be accomplished by eluting with water. ABEC resins are stable to pH extreme and radiolysis and operate in high ionic strength and/or alkaline solutions where anion-exchange is often ineffective. Potential applications of the ABEC materials include heavy metal and ReO 4 - separations in hydrometallurgy and purification of perrhenate iodide, and iodate in radiopharmaceutical production. Separation of 99m TcO 4 - from its 99 MoO 4 2- parent and stripping with water or physiological saline solution have been demonstrated for radiopharmaceutical applications. Removal of 99 TcO 4 - and 129 I - from alkaline tank wastes has also been successfully demonstrated. The authors will discuss the scale-up studies, process-scale testing, and market development of this new extraction material

  12. Recent studies of uranium and plutonium chemistry in alkaline radioactive waste solutions

    International Nuclear Information System (INIS)

    King, William D.; Wilmarth, William R.; Hobbs, David T.; Edwards, Thomas B.

    2008-01-01

    Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions

  13. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  14. Development of low-alkaline cement using pozzolans for geological disposal of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Mihara, Morihiro; Iriya, Keishiro; Torii, Kazuyuki

    2008-01-01

    To reduce uncertainties in the safety assessment of the disposal system for long-lived radioactive waste, cement was developed which generates leachates with a lower pH than that of ordinary cement paste. This cement is termed 'low-alkaline cement'. Large amounts of pozzolans were used to produce the low-alkaline cement with ordinary Portland cement. Silica fume was found to be an effective pozzolans to reduce pH, but the needed large amount of silica fume reduced the workability of fresh concrete. Therefore, the authors also used fly ash with silica fume, to develop more workable low-alkaline cement, termed high-volume fly ash silica fume cement (HFSC). Two types of HFSC developed showed high compressive strength, smaller drying shrinkage and lower temperature rise than that of ordinary Portland cement. It was confirmed that HFSC could be used as self-compacting concrete. Therefore they can be applied as either structural or backfilling concrete in the disposal system. (author)

  15. Review of the potential effects of alkaline plume migration from a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Savage, D.

    1997-01-01

    Extensive use of cement and concrete is envisaged in the construction of geological repositories for low and intermediate-level radioactive wastes, both for structural, and encapsulation and backfilling purposes. Saturation of these materials with groundwater may occur in the post-closure period of disposal, producing a hyperalkaline pore fluid with a pH in the range 10-13.5. These pore fluids have the potential to migrate from the repository according to local groundwater flow conditions and react chemically with the host rock. These chemical reactions may affect the rock's capacity to retard the migration of radionuclides released from the repository after the degradation of the waste packages. The effects of these chemical reactions on the behaviour of the repository rock as a barrier to waste migration need to be investigated for the purposes of assessing the safety of the repository design (so-called 'safety assessment' or 'performance assessment'). The objectives of the work reported here were to: identify those processes influencing radionuclide mobility in the geosphere which could be affected by plume migration; review literature relevant to alkali-rock reaction; contact organisations carrying out relevant research and summarise their current and future activities; and make recommendations how the effects of plume migration can be incorporated into models of repository performance assessment. (author)

  16. Radioactive waste

    International Nuclear Information System (INIS)

    Berkhout, F.

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  17. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  18. Alkaline Plume in the Aptian Sand Aquifer in the Context of Low-Level Radioactive Waste Surface Disposal

    Science.gov (United States)

    Cochepin, B.; Munier, I.; MADE, B.

    2017-12-01

    The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.

  19. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  20. Solidification of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Hayashi, Tadamasa; Sano, Katsunori.

    1980-01-01

    Purpose: To decrease the amount of surface active agents required for solidifying sodium sulfate-containing concentrated radioactive liquid wastes with asphalts. Method: Water soluble calcium compounds (calcium nitrate, etc.) are added to alkaline radioactive concentrated liquid wastes essentially consisting of sodium sulfate to adjust the pH value of the liquid wastes to 4.5 - 8.5. The addition amount of the water soluble calcium compounds (based on the weight of the calcium ions) is set to about 2 - 5% of the sulfate ions in the liquid wastes. Then, surface active agents are added by 3 - 10 weight % to the solid contents in the liquid wastes. (Ikeda, J.)

  1. Radioactive waste in perspective

    National Research Council Canada - National Science Library

    2010-01-01

    ... radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements...

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  3. Radioactive waste treatment apparatus

    International Nuclear Information System (INIS)

    Abrams, R.F.; Chellis, J.G.

    1983-01-01

    Radioactive waste treatment apparatus is disclosed in which the waste is burned in a controlled combustion process, the ash residue from the combustion process is removed and buried, the gaseous effluent is treated in a scrubbing solution the pH of which is maintained constant by adding an alkaline compound to the solution while concurrently extracting a portion of the scrubbing solution, called the blowdown stream. The blowdown stream is fed to the incinerator where it is evaporated and the combustibles in the blowdown stream burned and the gaseous residue sent to the scrubbing solution. Gases left after the scrubbing process are treated to remove iodides and are filtered and passed into the atmosphere

  4. Radioactive Demonstration of Caustic Recovery from Low-Level Alkaline Nuclear Waste by an Electrochemical Separation Process

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-04-01

    Bench-scale radioactive tests successfully demonstrated an electrochemical process for the recovery of sodium hydroxide (caustic) from Decontaminated Salt Solution produced from the In-Tank Precipitation and Effluent Treatment Processes at the Savannah River Site (SRS). This testing evaluated two membranes: an organic-based membrane, Nafion Type 350, manufactured by E. I. duPont de Nemours {ampersand} Company, Inc. (DuPont) and an inorganic-based membrane, NAS D, being developed by Ceramatec. Both membranes successfully separated caustic from radioactive SRS waste.Key findings of the testing indicate the following attributes and disadvantages of each membrane. The commercially-available Nafion membrane proved highly conductive. Thus, the electrochemical cell can operate at high current density minimizing the number of cells at the desired volumetric processing rate. Testing indicated cesium transported across the Nafion membrane into the caustic product. Therefore, the caustic product will contain low-levels of radioactive cesium due to the presence of {sup 134,137}Cs in the waste feed. To meet customer requirements, a post treatment stage may prove necessary to remove radioactive cesium resulting in increased overall process costs and decreased cost savings. In contrast to the Nafion membrane, the NAS D membrane demonstrated the production of caustic with much lower levels of gamma radioactivity ({sup 137}Cs activity was {lt} 51 dpm/g). Therefore, the caustic product could possibly release for onsite/offsite use without further treatment. The NAS D membrane remains in the development stage and does not exist as a commercial product. Operating costs and long-term membrane durability remain unknown.Caustic recovery has been successfully demonstrated in a bench-scale, 2-compartment electrochemical reactor operated for brief periods of time with simulated and radioactive waste solutions and two different types of membranes. The next phase of testing should be directed

  5. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  7. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  8. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  9. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  10. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  11. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  12. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  13. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  15. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  17. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  18. Radioactive Waste Management

    International Nuclear Information System (INIS)

    Paulikas, V.

    2006-01-01

    After the Law of the Republic of Lithuania was passed on Radioactive Waste Management on May 20, 1999, much more attention is being given to the disposal of this kind of waste in our country and especially at Ignalina NPP, the facility that generates most of it. The key principle of radioactive waste management is to manage it in such a manner that it would pose no danger to the public and the environment, and would not become an additional burden to future generations. This principle is followed in managing radioactive waste in Lithuania too. (author)

  19. Radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Neilson, H.R.

    1982-01-01

    The responsibilities of the Minister of Agriculture, Fisheries and Food and Ministry policy on radioactive waste disposal are described. The disposal of solid radioactive waste at sea is subject to detailed safeguards developed within two international agreements to which the United Kingdom is a contracting party. The agreements are discussed together with a research and monitoring programme to provide scientific data for informed decisions on waste disposal authorisations and dumping licences. (U.K.)

  20. Radioactive mixed waste storage

    International Nuclear Information System (INIS)

    Hennig, J.M.; Jasen, W.G.; Hamilton, W.H.

    1992-08-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) (reference 1) and the Resource Conservation and Recovery Act of 1976 (RCRA) (reference 2) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the storage of solid RMW. The management of bulk liquid RMW will not be described

  1. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  2. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  3. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  4. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1987-01-01

    Radioactive waste of two different activity levels is buried on the same site. The high level waste e.g. intermediate level waste may be in a trench or cells in a trench bottom, and be surmounted by a layer of concrete surmounted by an intrusion barrier comprising drums containing an aggregate of cement and the lower level activity waste, the whole having a substantially impermeable cap. (author)

  5. Storage of radioactive waste

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1981-01-01

    Several factors are cited which would make the underground storage of radioactive wastes a safe technology: the rock or salt formation containing the waste would require a very long time for dissolution by ground water. Moreover, the backfill material, namely clay, would swell when wet to provide a tight seal, as well as to filter out leaked materials. In addition, casing materials are available which would not dissolve for a million years. A further protection is that the waste itself will be a glass-like material resistant to dissolution. Also, ground water carrying radioactive material would take about 1,000 years to travel 2,000 ft to the surface. Once on the surface, any radioactive leakage can readily be detected. It is concluded that radioactive wastes do not represent a serious problem to health

  6. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  7. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    Permeability tests using the compacted bentonites and alkaline solutions were carried out to estimate of alteration behavior and the change of permeability during the alteration reaction. The permeability tests of the compacted bentonites were carried out at 23degC for one week after they were immersed in alkaline solution at 60degC for four weeks (immersing test). After permeability tests, the compacted bentonites were repeatedly tested as the same procedure (i.e. repetition of permeability test and immersing test) at 11 cycles. The compacted bentonites with initial dry density of 1.6 Mg/m 3 were reacted with the different type of the alkaline solutions (deionized water, NaOH (pH=12 and 14), KOH (pH=12 and 14) and Ca(OH) 2 (pH=12)) in each experiments. In the case of deionized water and alkaline solutions of pH12, the mineral compositions of altered bentonite were similar to original bentonite while the exchangeable cations of altered bentonites were changed. No changes of the mineralogical features of montmorillonite in altered bentonites (i.e. illitization, baideritization and increasing of layer charge) were observed in the case of deionized water, pH12-NaOH and pH12-Ca(OH) 2 . The montmorillonite was changed to the illite/smectite interstratified mineral containing about 40% illite like component during the reaction with pH12-KOH. In the case of alkaline solutions with pH14, the component minerals of bentonite (e.g. montmorillonite, quartz and clinoptilolite) were dissolved, consequently secondly minerals (e.g. analcime and phillipsite) were crystallized during experiments. Furthermore, the mineralogical features of montmorillonite were changed as illitization (pH14-KOH), beidellitization (pH14-NaOH and pH14-KOH) and increasing of layer charge (pH14-NaOH and pH14-KOH). No increasing of permeability were observed during the experiment using pH12-NaOH and pH12-Ca(OH) 2 as well as the case of deionized water. In the case of pH12-KOH, the permeability continually

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  9. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  10. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  11. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  12. Radioactive waste storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Daniel E. [Colorado Christian Univ., Lakewood, CO (United States)

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  13. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  14. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  15. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A.

    2006-01-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  16. Radioactive waste management; Gerencia de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan.

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  18. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Nosovs'kij, A.V.; Aljeksjejeva, Z.M.; Borozenets', G.P.; Vasilenko, T.M.; Vasil'chenko, V.M.; Pavlenko, A.O.

    2007-01-01

    The main issues of the radioactive waste safe management are covered in the monograph. The international knowledge, as well as the national experience in this field are summarized. The technologies and methods used for the safety objective achievement are described. The main attention is paid to the safety norms and rules, to the descriptions of the radwaste management facilities under operation

  1. Radioactive waste processing field

    International Nuclear Information System (INIS)

    Ito, Minoru.

    1993-01-01

    Storing space for radioactive wastes (storage tunnels) are formed underground of the sea bottom along coast. A plurality of boreholes through which sea water flows are pored vertically in a direction intersecting underground streams of brine in the ground between the tunnels and seaside. Sea water introduction pipes are joined to the upper side walls of the boreholes. The sea water introduction pipes have introduction ports protruded under the sea level of the coastal sea area region. Since sea water flows from the introduction ports to the boreholes passing through the sea water introduction pipes, sea water is always filled in the boreholes. Therefore, brine is sufficiently supplied toward the land by sea water from the boreholes, the underground stream of brine is negligibly small. This can prevent radioactive contamination due to flow of the underground water when radioactive wastes are buried in the underground near coast. (I.N.)

  2. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  3. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  4. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  5. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  6. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  7. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  9. Categorizing operational radioactive wastes

    International Nuclear Information System (INIS)

    2007-04-01

    The primary objective of this publication is to improve communications among waste management professionals and Member States relative to the properties and status of radioactive waste. This is accomplished by providing a standardized approach to operational waste categorization using accepted industry practices and experience. It is a secondary objective to draw a distinction between operational waste categorization and waste disposal classification. The approach set forth herein is applicable to waste generation by mature (major, advanced) nuclear programmes, small-to-medium sized nuclear programmes, and programmes with waste from other nuclear applications. It can be used for planning, developing or revising categorization methodologies. For existing categorization programmes, the approach set forth in this publication may be used as a validation and evaluation tool for assessing communication effectiveness among affected organizations or nations. This publication is intended for use by waste management professionals responsible for creating, implementing or communicating effective categorization, processing and disposal strategies. For the users of this publication, it is important to remember that waste categorization is a communication tool. As such, the operational waste categories are not suitable for regulatory purposes nor for use in health and safety evaluations. Following Section 1 (Introduction) Section 2 of this publication defines categorization and its relationship to existing waste classification and management standards, regulations and practices. It also describes the benefits of a comprehensive categorization programme and fundamental record considerations. Section 3 provides an overview of the categorization process, including primary categories and sub-categories. Sections 4 and 5 outline the specific methodology for categorizing unconditioned and conditioned wastes. Finally, Section 6 provides a brief summary of critical considerations that

  10. Supercompaction [of radioactive wastes

    International Nuclear Information System (INIS)

    Naughton, M.D.

    1991-01-01

    Public concern over the disposal of radioactive wastes has severely limited the number of disposal sites available and promoted the development of advanced volume reduction technologies. The development of supercompactors is traced with particular reference to the press, hydraulic system and control systems. Experience in the nuclear industry over the past ten years has shown that supercompaction is an effective means of waste volume reduction. Some of the lessons learned and necessary changes in the base process are outlined. The relative merits of central and mobile supercompaction systems are discussed. Supercompactors are not limited to low activity waste although the handling of higher activity waste requires more stringent monitoring and contamination control. Personnel exposure associated with the operation of supercompactors has been low. (UK)

  11. Chapter 7. Radioactive wastes

    International Nuclear Information System (INIS)

    2000-01-01

    The inspection and assessment activities of Nuclear Regulatory Authority of the Slovak Republic (UJD) focused on minimization of activity and the quantity of produced radioactive waste (RAW), and on increasing safety of waste management. The general scheme of rad-waste management in the Slovak Republic is presented. The radioactive wastes produced during the operation of NPP V-1, NPP V-2 and NPP Mochovce in 1999 are listed.Liquid RAW was treated and conditioned into a solid form at the nuclear facility Technology for treatment and conditioning of RAW. In 1999 combustible solid waste was treated at the nuclear facility Incinerator of VUJE Trnava. Produced liquid and solid RAW are stored at designed equipment at individual nuclear installations (in case of NPP V-1, NPP V-2 Bohunice and NPP Mochovce in compliance with the Regulation No. 67/1987 Coll. law).The status of free capacity of these storages as of 31.121999 is presented. Storage solidified product built the SE-VYZ was fully filled at the end of 1999. In 1999 there was a significant improvement in the process of radioactive waste management by: (A) issuing approval for commissioning the National Repository for RAW, (B) issuing approval for commissioning the Treatment and Conditioning Center for RAW, (C) having the application for approval to transport conditioned RAW to the National repository Mochovce in the final stage of evaluation. At the beginning of 2000 it is realistic to expect that RAW conditioned in the Conditioning center of RAW will start to be disposed at the National repository of RAW in Mochovce

  12. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1982-04-01

    Terminology used in documents published by the IAEA is frequently defined in glossaries in the separate documents so that understanding is enhanced, particularly for terms having unique meanings in the field of radioactive waste management. This has been found to be a good practice but frequently a burdensome one, too. In addition, terms in various documents occasionally were used differently. Thus, a common glossary of terms for radioactive waste management documents is believed to have merit. This glossary has been developed for use in IAEA documentation on radioactive waste management topics. The individual items have been compiled by selecting terms and definitions from thirty sources, listed on the next page, and numerous people. An effort has been made to use the definitions in internationally-accepted glossaries (e.g. ICRP, ICRU, ISO), with minimum modification; similarly, definitions in recently published IAEA documents have been respected. Nevertheless, when modifications were believed appropriate, they have been made. The glossary, stored on magnetic tape, is intended to be used as a standard for terminology for IAEA use; it is hoped that some benefits of common international terminology may result from its use in IAEA documentation

  13. Radioactive waste equivalence

    International Nuclear Information System (INIS)

    Orlowski, S.; Schaller, K.H.

    1990-01-01

    The report reviews, for the Member States of the European Community, possible situations in which an equivalence concept for radioactive waste may be used, analyses the various factors involved, and suggests guidelines for the implementation of such a concept. Only safety and technical aspects are covered. Other aspects such as commercial ones are excluded. Situations where the need for an equivalence concept has been identified are processes where impurities are added as a consequence of the treatment and conditioning process, the substitution of wastes from similar waste streams due to the treatment process, and exchange of waste belonging to different waste categories. The analysis of factors involved and possible ways for equivalence evaluation, taking into account in particular the chemical, physical and radiological characteristics of the waste package, and the potential risks of the waste form, shows that no simple all-encompassing equivalence formula may be derived. Consequently, a step-by-step approach is suggested, which avoids complex evaluations in the case of simple exchanges

  14. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  15. Storage of radioactive wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Even if the best waste minimization measures are undertaken throughout radioisotope production or usage, significant radioactive wastes arise to make management measures essential. For developing countries with low isotope usage and little or no generation of nuclear materials, it may be possible to handle the generated waste by simply practicing decay storage for several half-lives of the radionuclides involved, followed by discharge or disposal without further processing. For those countries with much larger facilities, longer lived isotopes are produced and used. In this situation, storage is used not only for decay storage but also for in-process retention steps and for the key stage of interim storage of conditioned wastes pending final disposal. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Considerations are limited to the simpler storage facilities. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements in the storage facilities or equipment used for handling. A small quantity of wastes from some radioisotope production cells and from reactor cooling water treatment may contain sufficient short lived activity from activated corrosion products to require some separate decay storage before contact-handling is suitable. 16 refs, 12 figs, 8 tabs

  16. Natural radioactivity of wastes

    International Nuclear Information System (INIS)

    Zak, A.; Isajenko, K.; Piotrowska, B.; Kuczbajska, M.; Zabek, A.; Szczygielski, T.

    2010-01-01

    By-products of the combustion of coal (wastes) are often used for various types of construction (dwellings, roads, etc.). The legal regulations (The Ordinance of the Council of Ministers of 2 January 2007 'On the requirements for the content of natural radioactive isotopes of potassium K-40, radium Ra-226 and thorium Th-228 in raws and materials used in buildings for the residence of people and livestock, as well as in the industrial by-products used in the construction, and the control of the content of the aforementioned isotopes' - Law Gazette no. 4/2007 item 29) are in force in Poland. The regulations permit the possibility of utilization of raws and by-products basing upon the level of the natural radioactivity of the examined raws and materials. The article is a survey of the results obtained during the measurements of many types of raws and building materials for almost 30 years by the network of the laboratories in Poland. It is based upon the results stored in the database of the Central Laboratory for Radiological Protection (CLRP), Warsaw. The article tends to outline the radioactivity of the waste materials with respect to other raws and materials used in the construction industry. The article shows the possibilities for the use of by-products originating in the power stations and heat- and power stations (mainly ashes, slag and hinter) in the construction of dwellings and roads. (authors)

  17. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  18. The transport of radioactive waste

    International Nuclear Information System (INIS)

    Appleton, P.R.; Poulter, D.R.

    1989-01-01

    Regulations have been developed to ensure the safe transport of all radioactive materials by all modes (road, rail, sea and air). There are no features of radioactive waste which set it aside from other radioactive materials for transport, and the same regulations control all radioactive material transport. These regulations and their underlying basis are described in this paper, and their application to waste transport is outlined. (author)

  19. National inventory of radioactive wastes

    International Nuclear Information System (INIS)

    1997-01-01

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.)

  20. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  1. Stigma and radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1988-01-01

    Stigma is a special impact of radioactive waste disposal resulting from the perceptions of risk people have of nuclear waste. In this case, stigma is the devaluing or discrediting of a person, group, or geographical area because of proximity to a nuclear waste disposal site, resulting in negative consequences for the individual and collective (e.g., local economy, community relations, perceived quality of life). As part of a social and economic impact assessment of the proposed HLWR at Hanford Site, WA for Washington State, focus groups were conducted in the Tri-Cities near Hanford to identify stigma effects. Results from the groups showed strong evidence of individual impacts of stigmatization: local residents described prejudice towards them because they live near Hanford which appeared to affect their self-respect, the use of the phrase glowing in the dark by outsiders to symbolize the stigma, and showed concern about the possibility that local products might suffer from reduced demand because of products becoming associated with radioactivity in the public's mind. These results indicate that stigma effects are real and should be studied in research and assessments

  2. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  3. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  4. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  5. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  6. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-09-01

    Reports and other Canadian literature on radioactive waste processing and disposal covering the period 1953-1979 are listed. A selected list of international conferences relating to waste management (1959-1979) is attached. (LL)

  7. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  8. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  9. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  10. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  11. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  12. Neutronic measurements of radioactive waste

    International Nuclear Information System (INIS)

    Perot, B.

    1997-01-01

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author)

  13. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  14. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  15. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  16. Radioactive waste sealing container

    International Nuclear Information System (INIS)

    Tozawa, S.; Kitamura, T.; Sugimoto, S.

    1984-01-01

    A low- to medium-level radioactive waste sealing container is constructed by depositing a foundation coating consisting essentially of zinc, cadmium or a zinc-aluminum alloy over a steel base, then coating an organic synthetic resin paint containing a metal phosphate over the foundation coating, and thereafter coating an acryl resin, epoxy resin, and/or polyurethane paint. The sealing container can consist of a main container body, a lid placed over the main body, and fixing members for clamping and fixing the lid to the main body. Each fixing member may consist of a material obtained by depositing a coating consisting essentially of cadmium or a zinc-aluminum alloy over a steel base

  17. CEA and its radioactive wastes

    International Nuclear Information System (INIS)

    Marano, S.

    1999-01-01

    CEA annually produces about 3500 tons of radioactive wastes in its 43 basic nuclear installations. CEA ranks third behind EDF and Cogema. Low-level wastes (A wastes) are sent to ANDRA (national agency for the management of nuclear wastes)whereas medium-level wastes (B wastes) are stored by CEA itself. CEA has checked off its storing places and has set up an installation Cedra to process and store ancient and new nuclear wastes. 3 other installations are planned to operate within 6 years: Agate (Cadarache) will treat liquid effluents, Stella (Saclay) will process liquid wastes that are beta or gamma emitters, and Atena (Marcoule) will treat and store radioactive sodium coming from Phenix reactor and IPSN laboratories. The use of plasma torch for vitrifying wastes is detailed, the management of all the nuclear wastes produced by CEA laboratories and installations is presented. (A.C.)

  18. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  19. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  20. Management of radioactive waste: A review

    OpenAIRE

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  1. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  2. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  3. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  4. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  5. Krsko NPP radioactive waste characteristics

    International Nuclear Information System (INIS)

    Skanata, D.; Kroselj, V.; Jankovic, M.

    2007-01-01

    In May 2005 Krsko NPP initiated the Radioactive Waste Characterization Project and commissioned its realization to the consulting company Enconet International, Zagreb. The Agency for Radwaste Management was invited to participate on the Project. The Project was successfully closed out in August 2006. The main Project goal consisted of systematization the existing and gathering the missing radiological, chemical, physical, mechanical, thermal and biological information and data on radioactive waste. In a general perspective, the Project may also be considered as a part of broader scope of activities to support state efforts to find a disposal solution for radioactive waste in Slovenia. The operational low and intermediate level radioactive waste has been structured into 6 waste streams that contain evaporator concentrates and tank sludges, spent ion resins, spent filters, compressible and non-compressible waste as well as specific waste. For each of mentioned waste streams, process schemes have been developed including raw waste, treatment and conditioning technologies, waste forms, containers and waste packages. In the paper the main results of the Characterization Project will be briefly described. The results will indicate that there are 17 different types of raw waste that have been processed by applying 9 treatment/conditioning technologies. By this way 18 different waste forms have been produced and stored into 3 types of containers. Within each type of container several combinations should be distinguished. Considering all of this, there are 34 different types of waste packages altogether that are currently stored in the Solid Radwaste Storage Facility at the Krsko NPP site. Because of these findings a new identification system has been recommended and consequently the improvement of the existing database on radioactive waste has been proposed. The potential areas of further in depth characterization are indicated. In the paper a brief description on the

  6. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  7. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  8. Radioactive Waste Management Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of radioactive waste management, including decommissioning and environmental remediation, to ensure that the Nuclear Energy Basic Principles are satisfied.

  9. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Fukuhara, Yuka.

    1991-01-01

    Radioactive gaseous wastes are introduced to a cooling tower and cooled by cooling water discharged from a cooling water discharging nozzle. Cooled radioactive gaseous wastes are cleaned by cleaning water in the cleaning tower and introduced accompanied with water to a condenser. Water in the gases is condensed in a condenser and gathered in a condensated water receiving tank. Water-removed gases are removed with fine particles by way of filters and then released out of the system by using a blower. Further, water used for cleaning the radioactive gaseous wastes in the cleaning tower is gathered to the liquid wastes receiving tank and sent to a radioactive liquid wastes processing device. On the other hand, condensates collected to the condensates receiving tank are returned to a cooling water discharging nozzle by a pump and re-utilized as cooling water. This can reduce the amount of radioactive liquid wastes, to reduce the processing amount of the radioactive liquid waste processing devices. (I.N.)

  10. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  11. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  12. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  13. National radioactive waste management strategy

    International Nuclear Information System (INIS)

    Syed Abd Malik Syed Zain

    1985-01-01

    This article briefs out the strategic management of radioactive wastes in Malaysia. The criteria and methods discussed are those promoted by UTN (Nuclear Energy Unit) which has been given the authority to carry out local research programs in nuclear energy

  14. World ocean and radioactive wastes

    International Nuclear Information System (INIS)

    Kiknadze, O.E.; Sivintsev, Yu.V.

    2000-01-01

    The radioecological situation that took shape in the Arctic, North Atlantic Ocean and Far East regions as a result of radioactive waste marine disposal was assessed. Accurate account of radionuclides formation and decay in submerged water-water reactors of nuclear submarines suggests that total activity of radioactive waste disposed near the Novaya Zemlya amounted to 107 kCi by the end of 1999. Activity of radioactive waste disposed in the North Atlantic currently is not in excess of 430 kCi. It is pointed out that the Far East region heads the list in terms of total activity disposed (529 kCi). Effective individual dose for critical groups of population in the Arctic, North Atlantic and Far East regions was determined. The conclusion was made that there is no detrimental effect of the radioactive waste disposed on radioecological situation in the relevant areas [ru

  15. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  16. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Pradel, J.

    1975-01-01

    The different stages of radioactive waste production are examined: ore production, reactor operation, reprocessing plants. The treatment and storage methods used and the French realizations relative to these problems are described [fr

  17. Radioactive waste melting furnace

    International Nuclear Information System (INIS)

    Nakayama, Junpei.

    1997-01-01

    The present invention provides a radioactive waste melting furnace excellent in heat insulating property, capable of exchanging only refractory materials with lesser amount of contamination. Namely, an heat insulation layer is disposed on the outer wall of the melting furnace. A refractory layer is disposed on the inner wall being in contact with molten materials in the melting furnace. A metal vessel covering the refractory layer is interposed between the heat insulation layer and the refractory layer. In addition, a metal outer shell covering the heat insulation layer is disposed on the heat insulation layer on the outer wall of the melting furnace. Bricks comprising, for example, alumina, carbon, zircon, magnesia or chromia having a low heat conductivity are used for the outer wall heat insulation layer irrespective of the melting performance. The refractory layer on the inner wall is made of bricks comprising chromia, alumina and zircon as molten materials of low basicity and chromia and magnesia as molten materials of high basicity. The materials of the metal vessel may be ordinary carbon steels, cast irons, or stainless steels. The refractory layer is taken out from the melting furnace together with the metal vessel, and only the refractory layer can be removed. Radiation contamination is eliminated. The metal vessel can be used again. (I.S.)

  18. Radioactive waste problems in Russia

    International Nuclear Information System (INIS)

    Bridges, O.; Bridges, J.W.

    1995-01-01

    The collapse of the former Soviet Union, with the consequent shift to a market driven economy and demilitarisation, has had a profound effect on the nuclear and associated industries. The introduction of tighter legislation to control the disposal of radioactive wastes has been delayed and the power and willingness of the various government bodies responsible for its regulation is in doubt. Previously secret information is becoming more accessible and it is apparent that substantial areas of Russian land and surface waters are contaminated with radioactive material. The main sources of radioactive pollution in Russia are similar to those in many western countries. The existing atomic power stations already face problems in the storage and safe disposal of their wastes. These arise because of limited on site capacity for storage and the paucity of waste processing facilities. Many Russian military nuclear facilities also have had a sequence of problems with their radioactive wastes. Attempts to ameliorate the impacts of discharges to important water sources have had variable success. Some of the procedures used have been technically unsound. The Russian navy has traditionally dealt with virtually all of its radioactive wastes by disposal to sea. Many areas of the Barents, Kola and the Sea of Japan are heavily contaminated. To deal with radioactive wastes 34 large and 257 small disposal sites are available. However, the controls at these sites are often inadequate and illegal dumps of radioactive waste abound. Substantial funding will be required to introduce the necessary technologies to achieve acceptable standards for the storage and disposal of radioactive wastes in Russia. (author)

  19. Leaching tests of cemented organic radioactive waste

    International Nuclear Information System (INIS)

    Calabria, Jaqueline A. Almeida; Haucz, Maria Judite A.; Tello, Cledola Cassia O.

    2011-01-01

    The use of radioisotopes in research, medical and industrial activities generates organic liquid radioactive wastes. At Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) are produced organic liquid wastes from different sources, one of these are the solvent extraction activities, whose the waste volume is the largest one. Therefore a research was carried out to treat them. Several techniques to treat organic liquid radioactive wastes have been evaluated, among them incineration, oxidation processes, alkaline hydrolysis, distillation, absorption and cementation. Laboratory experiments were accomplished to establish the most adequate process in order to obtain qualified products for storage and disposal. Absorption followed by cementation was the procedure used in this study, i.e. absorbent substances were added to the organic liquid wastes before mixing with the cement. Initially were defined the absorbers, and evaluated the formulation in relation to the compressive strength of its products. Bentonite from different suppliers (B and G) and vermiculite in two granulometries (M - medium and F - small) were tested. In order to assess the product quality the specimens were submitted to the leaching test according the Standard ISO 6961 and its results were evaluated. Then they were compared with the values established by Standard CNEN NN 6.09 A cceptance criteria for waste products to be disposed , to verify if they meet the requirements for safely storage and disposal. Through this study the best formulations to treat the organic wastes were established. (author)

  20. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  1. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  2. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  3. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  4. Method of processing radioactive laundry wastes

    International Nuclear Information System (INIS)

    Shirai, Takamori; Suzuki, Takeo; Takahara, Toshio.

    1982-01-01

    Purpose: To improve the processing performance of radioactive laundry waste processing device, as well as improve the working life of back osmotic membranes to be secondary wastes. Method: Upon removal of radioactive nucleids in radioactive laundry wastes by separation, radioactive nuclides-containing solids contained in the radioactive laundry wastes are separated and removed in a separation plate type centrifugal cleaner. Then, solid radioactive nuclides and ionized radioactive nuclides remained in the radioactive laundry wastes from which the solids have been removed by separation are separated and removed in a back osmotic membrane processing device. (Aizawa, K.)

  5. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1986-09-01

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  6. Radioactive waste below regulatory concern

    International Nuclear Information System (INIS)

    Neuder, S.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission (NRC) published two notices in the Federal Register concerning radioactive waste below regulatory concern. The first, a Commission Policy Statement and Implementation Plan published August 29, 1986, concerns petition to exempt specific radioactive waste streams from the regulations. The second, an Advanced Notice of Proposed Rulemaking published Decemger 2, 1986, addresses the concept of generic rulemaking by the NRC on radioactive wastes that are below regulatory concern. Radioactive waste determined to be below regulatory concern would not be subject to regulatory control and would not need to go to a licensed low-level radioactive waste disposal site. The Policy Statement and Implementation Plan describe (1) the information a petitioner should file in support of a petition to exempt a specific waste stream, (2) the decision criteria the Commission intends to use for judging the petition, and (3) the internal administrative procedures to use be followed in order to permit the Commission to act upon the petition in an expedited manner

  7. Method for burning radioactive wastes

    International Nuclear Information System (INIS)

    Hattori, Akinori; Tejima, Takaya.

    1987-01-01

    Purpose: To completely process less combustible radioactive wastes with no excess loads on discharge gas processing systems and without causing corrosions to furnace walls. Method: Among combustible radioactive wastes, chlorine-containing less combustible wastes such as chlorine-containing rubbers and vinyl chlorides, and highly heat generating wastes not containing chloride such as polyethylene are selectively packed into packages. While on the other hand, packages of less combustible wastes are charged into a water-cooled jacket type incinerator intermittently while controlling the amount and the interval of charging so that the temperature in the furnace will be kept to lower than 850 deg C for burning treatment. Directly after the completion of the burning, the packed highly heat calorie producing wastes are charged and subjected to combustion treatment. (Yoshihara, H.)

  8. Radioactive waste management in Germany

    International Nuclear Information System (INIS)

    Roesel, H.

    2003-01-01

    The Federal Republic of Germany intends to dispose of all types of radioactive waste in deep geological formations. This waste comprises spent fuel elements, vitrified fission product solution, nuclear power plant operational and decommissioning waste as well as spent sealed radiation sources and miscellaneous waste originating from small waste generators. The Atomic Energy Act gives the responsibility for the disposal of radioactive waste to the Federal Government with the Bundesamt fuer Strahlenschutz (BfS - Federal Office for Radiation Protection) as the legally responsible authority. The Federal Government has made a pronounced change in energy policy since 1998, the most important feature of which is the abandoning or phasing out of nuclear energy. It is intended to irreversibly phase out nuclear energy use for electricity generation. Essential (basic) steps are the agreement which was achieved by the Federal Government and the utilities on June 14, 2000, and signed on June 11, 2001, and the April 2002 amendment of the Atomic Energy Act. (orig.)

  9. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  10. Standardization of radioactive waste categories

    International Nuclear Information System (INIS)

    1970-01-01

    A large amount of information about most aspects of radioactive waste management has been accumulated and made available to interested nations in recent years. The efficiency of this service has been somewhat hampered because the terminology used to describe the different types of radioactive waste has varied from country to country and indeed from installation to installation within a given country. This publication is the outcome of a panel meeting on Standardization of Radioactive Waste Categories. It presents a simple standard to be used as a common language between people working in the field of waste management at nuclear installations. The purpose of the standard is only to act as a practical tool for increasing efficiency in communicating, collecting and assessing technical and economical information in the common interest of all nations and the developing countries in particular. 20 refs, 1 fig., 3 tabs

  11. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  12. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  13. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  14. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  15. Radioactive liquid waste processing facility

    International Nuclear Information System (INIS)

    Kikuchi, Makoto; Tamada, Shin; Oura, Masato; Sawa, Toshio.

    1991-01-01

    This invention is intended for preventing degradation of an evaporation permeable membrane in a facility for processing radioactive liquid wastes generated in a nuclear power plant, while taking advantages of a film evaporation and concentration system. That is, surface active agents, oils and solids are removed by a pre-filter before sending the radioactive liquid wastes to a liquid wastes processing device (membrane evaporation concentration device) comprising an evaporation permeable membrane. Active carbon or active silica is preferably used for the pre-filter. This can prevent the reduction of surface tension of the radioactive liquid wastes caused by the surface active agents and the destruction of the hydrophobic property of the membrane due to the deposition of the surface active agents to the evaporation permeable membrane in the membrane evaporation and concentration device, that is a back-filter. (T.M.)

  16. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  17. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  18. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  19. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  20. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  1. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  2. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  3. Radioactive liquid waste processing device

    International Nuclear Information System (INIS)

    Mukai, Osamu; Kitamura, Masahiro.

    1992-01-01

    In a radioactive liquid waste processing device comprising a freeze-drying vessel for freezing and then vacuum drying acidic liquid wastes containing radioactive materials and a cold trap condensing steams evaporated in the freeze-drying vessel, a dust collecting electrode of an electric dust collector is disposed in the freeze-drying vessel for capturing fine solid particles and inorganic salts in steams. With such a constitution, upon sublimation of the water content contained in a freezing product of an acidic solution, since fine solid particles and inorganic salts entrained by steams are collected by the dust collecting electrode, radioactive materials entrained by recovered steams are almost eliminated, decontamination efficiency of the liquid waste processing device can be increased. Further, heat for the sublimation can be supplied to the solution-freezing product by a radiation heat caused by electric discharge of the dust collecting electrode, thereby enabling to eliminate the heater which was unnecessary so far. (T.M.)

  4. Public debate on radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The definition and implementation of safe and perennial solutions for the management of radioactive wastes is a necessity from the point of view of both the nuclear industrialists and the public authorities, but also of the overall French citizens. For the low- or medium-level or short living radioactive wastes, some solutions have been defined are are already implemented. On the other hand, no decision has been taken so far for the long living medium to high-level radioactive wastes. Researches are in progress in this domain according to 3 ways of research defined by the law from December 30, 1991: separation-transmutation, disposal in deep underground, and long duration surface or sub-surface storage. This paper presents in a digest way, the principle, the results obtained so far, and the perspectives of each of the three solutions under study. (J.S.)

  5. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  6. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the first part of a report of a preliminary study for Atomic Energy of Canada Limited. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) underground layout, 2) cost estimates, 3) waste handling, 4) retrievability, decommissioning, sealing and monitoring, and 5) research and design engineering requirements. (author)

  7. Radioactive waste integrated management system

    International Nuclear Information System (INIS)

    Song, D. Y.; Choi, S. S.; Han, B. S.

    2003-01-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  8. Radioactive waste removing device

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1982-01-01

    Purpose: To cleanup primary coolants for LMFBR type reactors by magnetically generating a high speed rotational flow in the flow of liquid metal, and adsorbing radioactive corrosion products and fission products onto capturing material of a complicated shape. Constitution: Three-phase AC coils for generating a rotational magnetic field are provided to the outside of a container through which liquid sodium is passed to thereby generate a high speed rotational stream in the liquid sodium flowing into the container. A radioactive substance capturing material made of a metal plate such as of nickel and stainless steel in the corrugated shape with shape edges is secured within a flow channel. Magnetic field at a great slope is generated in the flow channel by the capturing material to adsorb radioactive corrosion products and fission products present in the liquid sodium onto the capturing material and removing therefrom. This enables to capture the ferri-magnetic impurities by adsorption. (Moriyama, K.)

  9. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  10. Radioactive Waste management - v. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The state of the art for each stage and activities correlated to the nuclear fuel cycle, describing the activities of main countries of the world in this area, is presented. In this volume, the principles which described the several sources of radioactive wastes from nuclear industry, the standardization of waste categories, the strategies adopted for treatment and disposal, the repository types and the practices and proposals of several countries in this field, are presented. (M.C.K.) [pt

  11. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  12. The limitation of radioactive wastes from hospitals

    International Nuclear Information System (INIS)

    Schuurman, B.; IJtsma, D.; Zwigt, A.

    1987-01-01

    Interviews were made with radiation experts working at hospitals about the treatment and limiting of radioactive wastes. The authors conclude that with the aid of hospital personnel a decrease of the volume of radioactive waste is possible. 25 refs

  13. Geomechanical problems in study of radioactive wastes disposal

    International Nuclear Information System (INIS)

    Feng Yixing

    1987-01-01

    Methods for both low-intermediate level radioactive wastes disposal and high level radioactive waste disposal were introduced briefly. Geomechanical problems in radioactive wastes disposal were discussed. Some suggestions were proposed for the radioactive wastes disposal in China

  14. Dukovany radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Horyna, J.

    1998-01-01

    The most significant source of radioactive wastes in the Czech Republic is the operation of nuclear power plant. The original NPP design included only storage of concentrates and unsorted solid wastes in the nuclear power plant. Our concept of waste management from nuclear power plant operation has been gradually developed and it consists of solidification of radioactive concentrates, volume reduction of solid wastes by compressing and disposal of conditioned wastes in surface concrete vaults. The most significant part of the arising waste was assumed to be evaporator concentrates. in the design of the NPP it has been assumed that up to 1% of fuel element cladding may fail. With a sufficient number of natural and man-made barriers, the release of radioactive material will be limited and delayed, its migration retarded and its concentration sufficiently diluted to assure that the impact will remain in prescribed levels. Initial site selection studies started in the later seventies taking into account social, economic conditions and requirements for the protection of nature. After performed area surveys, the site near the constructed NPP Dukovany has been chosen. Safety assessment of Dukovany repository has been based on 3 critical scenarios: -groundwater transport to the nearest water supply, -Intrusion after end of institutional control, -dwelling on the site after end of institutional control. Compartment models based on the scenarios described above were formulated to estimate committed effective equivalent dose due to different exposure ways. (author)

  15. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  16. The solidification of radioactive waste

    International Nuclear Information System (INIS)

    Nagaya, Kiichi; Fujimoto, Yoshio; Hashimoto, Yasuo; Nomura, Ichiro

    1985-01-01

    A previous paper covered the decomposition and vitrification of Na 2 SO 4 (the primary component of the liquid waste from BWR) with silica. Now, in order to establish an integrated treatment system for the radioactive waste from BWR, this paper examines the effects of combining incinerator ash and other incinerator wastes with radioactive waste on the durability of the final vitrified products. A bench scale test plat consisting of a waiped file evaporator/dryer, a Joule-heated glass melter and SO 2 absorber was therefore put into operation and run safety for a period of 3000 hours. The combination of the radioactive waste with incinerator ash and the secondary waste of the incinerator was found to make no difference on the durability of the final vitrified products effecting no increase or decrease. Durability similar to that displayed in the beaker tests was proven, with the final vitrified products exhibiting a leaching rate less than 3 x 10 -4 g/cm 2 /day at 95 deg C. (author)

  17. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Houy, J.C.; Rimbert, J.C.; Bouvet, C.; Laugle, S.

    1997-01-01

    The hospital radioactive wastes are of three types: solid, liquid and gaseous. Prior to final evacuation all these wastes are checked by a detector the threshold of which is lower than the standard. This system allows detecting activities very low under the daily recommended threshold of 37 kBq (1μ Ci), for the group II. In metabolic radiotherapy the unsealed sources of iodine 131 will form mainly the wastes arising from the rooms contaminated by the patient himself. In this service anything touching the patient's room most by systematically checked. All the rooms are provided with toilette with two compartments, one connected traditionally to the sewerage system for faeces and the other coupled to tanks for urine storing. The filled reservoirs waits around 10 month span prior to being emptied, after checking, into the sewerage system. The volume activity most be lower than 7 Bq per liter (standard). For the hot labs, injection room and in-vitro lab, the liquid waste retrieved from dedicated stainless sinks are stored in storage tanks and will waits for 2 years before evacuation. The undies coming from the metabolic radiotherapy service are possible contaminated by the patient sheets, pillow cases, etc. These undies freshly contaminated may be contaminating if the contamination is non fixated. All the undies coming from this service are checked like all the wastes by means of the fixed detector. For the solid wastes two evacuation channels are possible: the urban garbage repository for household wastes and the Brest waste repository for hospital wastes. For the liquid waste arising for urines, used washing water, etc, the evacuation will be done towards city sewerage system after storing or dilution. Concerning the liquid wastes presenting chemical risks, they will be evacuated in cans by NETRA. Concerning the gaseous wastes, trapped on active carbon filters, they will be handled like solid wastes and will be directed to the waste repository of Brest. The other

  18. Radioactive waste management regulatory framework in Mexico

    International Nuclear Information System (INIS)

    Barcenas, M.; Mejia, M.

    2001-01-01

    The purpose of this paper is to present an overview of the current regulatory framework concerning the radioactive waste management in Mexico. It is intended to show regulatory historical antecedents, the legal responsibilities assigned to institutions involved in the radioactive waste management, the sources of radioactive waste, and the development and preparation of national standards for fulfilling the legal framework for low level radioactive waste. It is at present the most important matter to be resolved. (author)

  19. State planning council on radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This report contains the findings and policy resolutions resulting from the Council's meeting. The texts of policy resolutions on radioactive waste transport, spent fuel storage, and high-level radioactive waste disposal test facilities are included. A draft legislation statement is presented in support of the establishment of a clear national policy for high-level radioactive waste disposal and management. A status report containing a summary of regional activities in the field of low-level radioactive wastes is presented

  20. Cementation of liquid radioactive waste

    International Nuclear Information System (INIS)

    Efremenkov, V.

    2004-01-01

    The cementation methods for immobilisation of radioactive wastes are discussed in terms of methodology, chemistry and properties of the different types of cements as well as the worldwide experience in this field. Two facilities for cementation - DEWA and MOWA - are described in details

  1. High-level radioactive wastes

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1982-10-01

    This bibliography contains 812 citations on high-level radioactive wastes included in the Department of Energy's Energy Data Base from January 1981 through July 1982. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  2. Chemical decontamination of radioactive waste

    International Nuclear Information System (INIS)

    Mohamed, H.I.

    2006-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. There is also a variety of alternatives for treatment and conditioning of the wastes prior disposal. The importance of treatment of radioactive waste for protection of human and environment has long been recognized and considerable experience has gained in this field. Generally, the methods used for treatment of radioactive wastes can be classified into three type's biological, physical and chemical treatment this physical treatment it gives good result than biological treatment. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. In chemical treatment there are different procedures, solvent extraction, ion exchange, electro dialysis but solvent extraction is best one because high purity can be optioned on the other hand the disadvantage that it is expensive. Beside the solvent extraction technique one can be used is ion exchange which gives reasonable result, but requires pretreatment that to avoid in closing of column by colloidal and large species. Electro dialysis technique gives quite result but less than solvent extraction and ion exchange technique the advantage is a cheep.(Author)

  3. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  4. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  5. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  6. Radioactive waste disposal in Greece

    International Nuclear Information System (INIS)

    Radioactive waste is any material which contains or is contaminated by radionuclides and for which no use is foreseen. According to this definition, a large number of sources, solid, liquid and gaseous, within the Greek territory can be - and, actually, is - declared as waste. The types of such solid sources are presented. It is estimated that these solid sources represent above 90% of all disused sources in Greece. The medical sources of Co-60 and Cs-137 were used in Teletherapy units, while the Ra-226 ones are in the form of needles or tubes used in Brachytherapy. All the industrial sources had been used for measuring moisture, density, thickness, elementary composition, etc. The small sources used by research labs are mainly in the form of discs. The above sources had been imported a long time ago (even 3 decades ago), had been used, and then stored as useless inside the user's premises. Since 1990 all the users of radioactive sources are obliged to return them back to the suppliers when they are no longer in use. In fact, no source is imported unless there is a written declaration of acceptance by its producer. A project concerning the export of all disused sealed sources is in progress. For every source a certificate will be issued, proper container will be purchased and all the necessary documents will be prepared so that it can be transported for final disposal or reuse in a foreign repository facility. Apart from this 'old generated' waste, unsealed radionuclides have always been used in nuclear medicine producing waste. The above radionuclides are used either in vivo (injected or ingested by patients) or in vitro (labeling of blood and other cells). Both uses leave some radioactive waste inside the needles, the tubes, or other material. Since 1991, Greece has a well-established regulatory system for controlling waste from nuclear medicine labs, so that disposing such solid or liquid waste does no harm to the environment. A revision of these regulations has

  7. Apparatus for fixing radioactive waste

    International Nuclear Information System (INIS)

    Murphy, J.D.; Pirro, J. Jr.; Lawrence, M.; Wisla, S.F.

    1975-01-01

    Fixing radioactive waste is disclosed in which the waste is collected as a slurry in aqueous media in a metering tank located within the nuclear facilities. Collection of waste is continued from time to time until a sufficient quantity of material to make up a full shipment to a burial ground has been collected. The slurry is then cast in shipping containers for shipment to a burial ground or the like by metering through a mixer into which fixing materials are simultaneously metered at a rate to yield the desired proportions of materials. (U.S.)

  8. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BelgoWaste was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste, centralization assuming that adequate arrangements are made for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of residual material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste (deep clay formations are at present preferred); and disposal of low-level treated waste into the Atlantic Ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol. (author)

  9. Radioactive waste management: Spanish experiences

    International Nuclear Information System (INIS)

    Beceiro, A. R.

    1996-01-01

    Radioactive waste generation began in Spain during the 1950's, in association with the first applications of radioactive isotopes in industry, medicine and research. Spain's first nuclear power plant began its operations in 1968. At present, there are in operation some one thousand installations possessing the administrative authorization required to use radioactive isotopes (small producers), nine nuclear groups and a tenth is now entering the dismantling phase. There are also activities and installations pertaining to the front end of the nuclear fuel cycle (mining, milling and the manufacturing of fuel elements). Until 1985, the research center Junta de Energia Nuclear (now CIEMAT) rendered radioactive waste removal, and subsequent conditioning and temporary storage services to the small producers. Since the beginning of their operations the nuclear power plants and fuel cycle facilities have had the capacity to condition and temporarily store their own radioactive wastes. ENRESA (Empresa Nacional de Residuos Radiactivos, S. A.) began its operations in the second half of 1985. It is a state-owned company created by the Government in accordance with a previous parliamentary resolution and commissioned to establish a system for management of such wastes throughout Spain, being in charge also of the dismantling of nuclear power plants and other major installations at the end of their operating lifetimes. Possibly the most outstanding characteristic of ENRESA's evolution over these last seven years has been the need to bring about a compromise between solving the most immediate and pressing day-to-day problems of operation (the first wastes were removed at the beginning of 1986) and establishing the basic organization, resources, technology and installations required for ENRESA to operate efficiently in the long term. (author)

  10. Radioactive wastes: underground laboratories implantation

    International Nuclear Information System (INIS)

    Bataille, Ch.

    1997-01-01

    This article studies the situation of radioactive waste management, more especially the possible storage in deep laboratories. In front of the reaction of public opinion relative to the nuclear waste question, it was essential to begin by a study on the notions of liability, transparence and democracy. At the beginning, it was a matter of underground researches with a view to doing an eventual storage of high level radioactive wastes. The Parliament had to define, through the law, a behaviour able to come to the fore for anybody. A behaviour which won recognition from authorities, from scientists, from industrial people, which guarantees the rights of populations confronted to a problem whom they were not informed, on which they received only few explanations. (N.C.)

  11. Ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    The activities developed by the Federal Institution of Physical Engineering PTB and by the Federal Office for Radiation Protection (BfS) concentrated, among others, on work to implement ultimate storage facilities for radioactive wastes. The book illuminates this development from site designation to the preliminary evaluation of the Gorleben salt dome, to the preparation of planning documents proving that the Konrad ore mine is suitable for a repository. The paper shows the legal provisions involved; research and development tasks; collection of radioactive wastes ready for ultimate disposal; safety analysis in the commissioning and post-operational stages, and product control. The historical development of waste management in the Federal Republic of Germany and international cooperation in this area are outlined. (DG) [de

  12. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  13. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  14. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  15. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  16. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the third part of a report of a preliminary study for AECL. It summarizes the topics considered in reports AECL-6188-1 and AECL-6188-2 as requirements for an undergpound repository for disposal of wastes produced by the Canadian Nuclear Fuel Program. (author)

  17. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  18. Innocuous management of radioactive wastes

    International Nuclear Information System (INIS)

    Vargas, C.

    1997-01-01

    The relations between peaceful uses and bellicose uses of the nuclear energy are complexes in relation to international establishment of norms to control the destiny of the radioactive materials, above all in the context of the existing international legislation of respect to the autonomy of the countries, and in the determination of the institution or institutions upon the ones that would fall on. The nuclear safeguards of materials and the possibilities of performing their function. Important efforts have been done to unify, to help and to impose international measures on the behalf of an environmentally harmless processing of the radioactive wastes [es

  19. Geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Tassoni, E.; Giulianelli, G.; Testa, L.; Bocola, W.; Girolimetti, G.; Giacani, G.

    1983-01-01

    The heat dissipation arising from the radioactive decay constitutes an important problem of the geological disposal of high level radioactive waste. A heating experiment was carried out in a clay quarry near Monterotondo (Rome), at 6.4 M in depth by means of a heater whose thermal power ranged from 250 to 500 watt. The experimental results fit well the theoretical values and show that the clay is a homogeneous and isotropic medium. The clay thermal conductivity, which was deducted by means of the ''curve fitting'' method, ranges from 0.015 to 0.017 watt/C

  20. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Ramirez Martin, S.; Vigil de la villa Mencia, R.; Martin Barca, M.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  1. Classification of Radioactive Waste. General Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  2. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  3. Radioactive waste management at KANUPP

    International Nuclear Information System (INIS)

    Tahir, Tariq B.; Qamar Ali

    2001-01-01

    This paper describes the existing radioactive waste management scheme of KANUPP. The radioactive wastes generated at KANUPP are in solid, liquid and gaseous forms. The spent fuel of the plant is stored underwater in the Spent Fuel Bay. For long term storage of low and intermediate level solid waste, 3m deep concrete lined trenches have been provided. The non-combustible material is directly stored in these trenches while the combustible material is first burnt in an incinerator and the ash is collected, sealed and also stored in the trenches. The low-level liquid and gaseous effluents are diluted and are discharged into the sea and the atmosphere. The paper also describes a modification carried out in the spent resin collection system in which a locally designed removable tank replaced the old permanent tanks. Presently the low level combustible solid waste is incinerated and stored, but it is planned to replace the present method by using compactor and storing the compacted waste in steel drums underground. (author)

  4. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    1990-11-01

    This bibliography is a review of the Canadian literature on radioactive waste management from 1953 to the present. It incorporates the references from the previous AECL--6186 revisions, and adds the current data and some of the references that had been omitted. Publications from outside organizations of concern to the Canadian Nuclear Fuel Waste Program are included in addition to AECL Research reports and papers. This report is intended as an aid in the preparation of the Concept Assessment Document and is complementary to AECL Research's internal document-ready references on the MASS-11 word processing systems

  5. Chemical treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Pottier, P.E.

    1968-01-01

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  6. Radioactive waste and public acceptance

    International Nuclear Information System (INIS)

    Perkins, B.

    1977-01-01

    Radioactive waste just happens to be the major issue in the public eye now--it could be replaced by another issue later. A survey is quoted to prove that wastes are not really one of the burning national issues of the day. The people opposing the nuclear program cannot be said to represent the public. The taste of the press for the melodramatic is pointed out. The issue needs to be presented with the proper perspective, in the context of the benefits and risks of nuclear power

  7. Low-level radioactive waste

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1983-03-01

    This bibliography contains information on low-level radioactive waste included in the Department of Energy's Energy Data Base for January through December 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Low-Level Radioactive Wastes/Transport. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each proceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 492 references

  8. Shallow disposal of radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A review and evaluation of computer codes capable of simulating the various processes that are instrumental in determining the dose rate to individuals resulting from the shallow disposal of radioactive waste was conducted. Possible pathways of contamination, as well as the mechanisms controlling radionuclide movement along these pathways have been identified. Potential transport pathways include the unsaturated and saturated ground water systems, surface water bodies, atmospheric transport and movement (and accumulation) in the food chain. Contributions to dose may occur as a result of ingestion of contaminated water and food, inhalation of contaminated air and immersion in contaminated air/water. Specific recommendations were developed regarding the selection and modification of a model to meet the needs associated with the prediction of dose rates to individuals as a consequence of shallow radioactive waste disposal. Specific technical requirements with regards to risk, sensitivity and uncertainty analyses have been addressed

  9. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  10. Storage container for radioactive wastes

    International Nuclear Information System (INIS)

    Phlix, P.; Credoz, J.P.

    1989-01-01

    A container for transport and storage of solidified low and medium level radioactive waste is characterized by fast and safe closure with a plug that can be tested. The container is made of concrete and inside of composite allowing dimension variations with time and thermal insulation. The plug made of precasted concrete comprises a metal part that can be, for instance, welded to a ring of the container [fr

  11. Radioactive waste inventories and projections

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-11-01

    This bibliography contains information on radioactive waste inventories and projections included in the Department of Energy's Energy Data Base from January 1981 through September 1982. The arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. (25 abstracts)

  12. Public Education and Radioactive Waste

    International Nuclear Information System (INIS)

    Sarten, S.

    2009-01-01

    Throughout the country the mention of anything nuclear or the word radiation ignites fear in the minds of many Americans. Political hype, news stories and the lack of basic understanding about nuclear power and radiation causes many people to reject what they do not understand. Often little, if any, thought may have been given to nearby nuclear weapons facilities where family members and neighbors were gainfully employed at these sites. As older nuclear facilities are closed being a result of the end of the Cold War, with indications that radioactive materials might be transported to other parts of the country, the public in expressing concern. It is important that the public have an understanding of how these materials are handled to insure public safety. It becomes important that both the companies handling these materials and the U.S. Department of Energy create an environment that will involve community participation in developing strategies that will promote and support an understanding of how radioactive wastes will be packaged, transported, and disposed. This is being performed in Oak Ridge, TN. through the efforts of the Oak Ridge Site Specific Advisory Board (ORSSAB). The ORSSAB is a DOE sponsored board of private citizens from all walks of life and professionalism's. The objective of this paper is to offer suggestions as to how public confidence, through education about nuclear, radioactive and associated and wastes are effectively handle the problems related to waste disposal, removal or on-site storage. It is essential that the public fully understand and become involved in the need for the reduction of the waste stream volumes and the technical problems being faced in reaching this goal. The effort of gaining public understanding and support of this important task cannot be limited to just those within close proximity to the facility presently housing these materials, but must extend to those outlying areas and along any potential route that might be

  13. What to do with radioactive wastes?

    International Nuclear Information System (INIS)

    2006-01-01

    This power point presentation (82 slides) gives information on what is a radioactive waste, radioactivity and historical review of radioactivity, radioactive period, natural radioactivity (with examples of data), the three main radiation types (α, β, γ), the origin of radioactive wastes (nuclear power, research, defense, other), the proportion of radioactive wastes in the total of industrial wastes in France, the classification of nuclear wastes according to their activity and period, the quantities and their storage means, the 1991 december 30 law (France) related to the radioactive waste management, the situation in other countries (Germany, Belgium, Canada, USA, Finland, Japan, Netherlands, Sweden, Switzerland), volume figures and previsions for the various waste types in 2004, 2010 and 2020, the storage perspectives, the French national debate on radioactive waste management and the objective of perpetuated solutions, the enhancement of the public information, the 15 June 2006 law on a sustainable management of radioactive materials and wastes with three main axis (deep separation and transmutation, deep storage, waste conditioning and long term surface storage), and the development of a nuclear safety and waste culture that could be extended to other types of industry

  14. Discarding system for radioactive waste

    International Nuclear Information System (INIS)

    Shinbori, Kuniaki; Komura, Shiro.

    1992-01-01

    Radiation contamination dose on the surface and permeation extent of contamination are measured relative to the surfaces to be measured, such as of floors, walls, ceilings of concrete building structures in an administration area after removing equipments and pipelines disposed so far in a nuclear power facility. Then, it is judged as to whether they are radioactive or not. If the surfaces to be measured are judged radioactive, it is further judged if radioactive contamination is present only on the surfaces or it permeates from the surfaces to the inner side, or it intrudes into cracks present on the surfaces. Then, decontamination methods are applied depending on the states of respective modes of contamination, to decontaminate each of the portions. Decontamination liquid wastes are classified depending on the level of the radioactivity contained therein, and then packed in containers. A confirmation measurement is conducted again to the surfaces to be measured from which the contaminated portions were removed. With such procedures, the operation time is shortened, as well as it can remarkably contribute to the reduction of the radiation dose and greatly reduce the waste processing cost. (T.M.)

  15. Solidification agent for radioactive waste

    International Nuclear Information System (INIS)

    Sakai, Etsuro; Shibayama, Yukio.

    1986-01-01

    Purpose: In low and medium level radioactive waste processing, to obtain superior solidified blocks by mixing cement, super-fine dusts and high-performance water-reducing agent and water to radioactive waste materials for solidification. Constitution: The various types of portland cements available are used for solidification. Silica dust is used as the super-fine dust and has an average article size of one order smaller than that of the cement used for solidification. Napthalene, sulfonic acid formalydehyde condensation salts etc. are used as the water-reducing agents. For example, for hundred units, by weight, of cement and super-fine dust 10 units (by solid content) are added. Furthermore, smaller quantities of water are desirable. By mixing the radioactive wastes with cement, super-fine dust, water-reducing agents, and water, the solidified material shows superior chemical resistance and durability. The processing capacity is also increased. Furthermore, a more leach resistant solid can be obtained for storage. (Takahashi, M.)

  16. Media analysis of radioactive wastes

    International Nuclear Information System (INIS)

    Janowski, M.J.

    1989-01-01

    The radioactive waste cleanup community has not effectively utilized its most powerful communications tool to inform the general public; the print and broadcast media. Environmental interest groups have known of the value of accessing the media for their message for years and have used it effectively. The radioactive waste cleanup community's efforts to date have not been focused on education of the media so that they in turn can inform the public of our cleanup mission. Their focus must be to learn of the importance of the media, develop training programs that train technical people in how to know and respond to the media's needs for information, and then incorporate that training into a comprehensive program of public information in which access to the media is a key communications tool. This paper discusses how media education and access is a cost-effective means of accomplishing community relations goals of public information and public participation in radioactive waste cleanup and has been effectively utilized at the Weldon Spring Site Remedial Action Project

  17. Stress and radioactive waste management

    International Nuclear Information System (INIS)

    Williams, R.G.; Olshansky, S.J.

    1987-01-01

    In the Supreme Court case ''People Against Nuclear Energy (PANE) vs Metropolitan Edison,'' one of the conclusions was that the Nuclear Regulatory Commission did not have to consider psychological distress, community cohesiveness and sense of well-being in the supplement to the Environmental Impact Statement (EIS) covering the restart of Three Mile Island (TMI). This decision was based on the assumption that the intention of the National Environmental Policy Act (NEPA) is to focus on the physical environment, and the casual chain between psychological distress and adverse health effects is tenuous. In this paper the authors summarize the literature on the relationship between environmentally-induced stress and its effects on health. They present the results of a new survey research project in which levels of stress were evaluated in West Chicago, Illinois, a community in which radioactive wastes have been present for many years. Explanatory social variables are brought into the evaluation in which stress is evaluated as a function of proximity to the radioactive waste site. In addition, stress is discussed in the context of attitudes on nuclear power, environmental group participation, and knowledge about the health effects associated with radioactive waste. The paper ends with a discussion of the portion of the Supreme Court decision in which psychological distress, community stability, cohesiveness and sense of well being are excluded as variables to address in EISs

  18. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Ziehm, Cornelia

    2015-01-01

    As explained in the present article, operators of nuclear power plants are responsible for the safe final disposal of the radioactive wastes they produce on the strength of the polluter pays principle. To shift the burden of responsibility for safe disposal to society as a whole would violate this principle and is therefore not possible. The polluter pays principle follows from more general principles of the fair distribution of benefits and burdens. Instances of its implementation are to be found in the national Atomic Energy Law as well as in the European Radioactive Waste and Spent Fuel Management Directive. The polluters in this case are in particular responsible for financing the installation and operation of final disposal sites. The reserves accumulated so far for the decommissioning and dismantling of nuclear power plants and disposal of radioactive wastes, including the installation and operation of final disposal sites, should be transferred to a public-law fund. This fund should be supplemented by the polluters to cover further foreseeable costs not covered by the reserves accumulated so far, including a realistic cost increase factor, appropriate risk reserves as well as the costs of the site selection procedure and a share in the costs for the safe closure of the final disposal sites of Morsleben and Asse II. This would merely be implementing in the sphere of atomic law that has long been standard practice in other areas of environmental law involving environmental hazards.

  19. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  20. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2000-01-01

    SCK-CEN's Radioactive Waste and Clean-up Division performs studies and develops strategies, techniques and technologies in the area of radioactive waste management, the decontamination and decommissioning of nuclear installations and the remediation of radioactive-contaminated sites. These activities are performed in the context of our responsibility towards the safety of present and future generations and contribute to achieve intrageneration equity

  1. Preliminary investigation of microbiological effect for radioactive waste disposal system. 1. Experimental investigation of tolerance of some bacterias under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Mihara, Morihiro; Fukunaga, Sakae; Asano, Hidekazu.

    1995-01-01

    Activities and tolerance of some bacteria were investigated under alkaline and reducing conditions for geological disposal. A fermenter was used to control pH and Eh with a liquid culture inoculated with sulphate-reducing bacteria (SRB), methane-producing bacteria (MPB) and sulphur-oxidizing bacteria (SOB). Growth of SRB was obtained at maximum pH 8.6 (Eh -340 mV) or maximum Eh -100 mV (pH 7). Ranges of Eh for the growth of MPB and SOB were estimated to be less than -210 mV at pH8, and more than +240 mV at pH 7.5, respectively. Activity for SOB was not observed in the pH range more than 8. (author)

  2. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  3. Radioactive liquid wastes processing device

    International Nuclear Information System (INIS)

    Sauda, Kenzo; Koshiba, Yukihiko; Yagi, Takuro; Yamazaki, Hideki.

    1985-01-01

    Purpose: To carry out optimum photooxidizing procession following after the fluctuation in the density of organic materials in radioactive liquid wastes to thereby realize automatic remote procession. Constitution: A reaction tank is equipped with an ultraviolet lamp and an ozone dispersing means for the oxidizing treatment of organic materials in liquid wastes under the irradiation of UV rays. There are also provided organic material density measuring devices to the inlet and outlet of the reaction tank, and a control device for controlling the UV lamp power adjusting depending on the measured density. The output of the UV lamp is most conveniently adjusted by changing the applied voltage. The liquid wastes in which the radioactivity dose is reduced to a predetermined level are returned to the reaction tank by the operation of a switching valve for reprocession. The amount of the liquid wastes at the inlet is controlled depending on the measured ozone density by the adjusting valve. In this way, the amount of organic materials to be subjected to photolysis can be kept within a certain limit. (Kamimura, M.)

  4. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  5. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Faussat, A.

    1988-01-01

    Solutions for radioactive waste management are already in existence and applied on an industrial scale for short-lived wastes. France has acquired an aknowledged expertise on the international level and several foreign contemporaries are interested in the relevant techniques developed. An intensive international cooperation has allowed to define bases for an underground deep repository for long-lived wastes. It is therefore important to choose a site which meets the expected storage conditions. This development work has been started in several countries in a similar way and which should be completed by the beginning of the next century. An 'open channel' with the public about this emotional topic can smooth the way for solutions by which mankind can master its technological challenges

  6. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  7. Instructive for radioactive solid waste management

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia

    2014-01-01

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM [es

  8. United Kingdom government policy towards radioactive waste

    International Nuclear Information System (INIS)

    Pritchard, G.

    1986-01-01

    There are three areas of radioactive waste management which exemplify, beyond any reasonable doubt, that the United Kingdom has in the past (and intends in the future), to pursue a policy of dispersal and disposal of radioactive wastes: These are: (I) dumping of low-level waste in the deep ocean and, on a parallel, seabed emplacement of highly active waste; (II) the liquid discharges from Windscale into the Irish Sea; and (III) land dumping of low- and intermediate-level waste

  9. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  10. Sponsored research on radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in chapters entitled: introduction (background, responsibilities, options, structure of the programme); strategy development; disposal of accumulations; disposal of radioactive waste arisings; quality assurance for waste conditioning quality assurance related to radioactive waste disposal (effectiveness of different rock types as natural barriers to the movement of radioactivity, and non-site specific factors in the design of repositories; radiological assessment; environmental studies; research and development to meet requirements specific to UKAEA wastes; long term research (processes for the solidification of highly active liquid wastes); plutonium contamination waste minimisation. (U.K.)

  11. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R.; Lindskog, A.

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  12. Radioactive waste management in Germany

    International Nuclear Information System (INIS)

    Brammer, K.J.

    2011-01-01

    The responsibility for the disposal of radioactive waste is regulated in the Federal Republic of Germany in the Atomic Energy Act. Basically, it is the responsibility of the waste producers to carry out all necessary processing steps up to the delivery to a repository. The Federal Republic reserves the right to select, explore and operate the repository (§ 9a, para. 3 AtG). The costs of all necessary expenditures of this task are borne by the waste producers in accordance with § 21 AtG regulation. The waste quantity forecasts have shown that by the year 2080 a total volume of about 300,000 m3 of low- and intermediate-level (non-heat-generating) waste will be generated in research, industry, medicine and in the production of electricity in nuclear power plants. This waste is to be transported to the ‘Konrad repository’ which is under construction. The Federal Office for Radiation Protection (BfS), which is responsible for the construction and operation, intends to commission the repository at 2019. As a repository for heat-generating wastes, i. Approximately 10.000 tSM spent fuel (BE) 7,500 molds (HAW and MAW, corresponding to about 6000 tSM) returned Waste from reprocessing, the Gorleben salt dome has been explored since 1979. The works were resumed on 01.10.2010 after a 10-year break. Federal Environment Minister Röttgen has made it clear that the Federal Government has proposed a transparent procedure and a dialogue and participation procedure for open-ended exploration. (roessner)

  13. Radioactive wastes management: what is the situation?

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  14. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    Energy Technology Data Exchange (ETDEWEB)

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  15. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  16. Radioactive waste management - the Indian scenario

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2008-01-01

    In India, nuclear power generation programme and application of radioisotopes for health care and various other application is increasing steadily. With resultant increase in generation of radioactive waste, emphasis is on the minimization of generation of radioactive waste by deploying suitable processes and materials, segregation of waste streams at sources, recycle and re-use of useful components of waste and use of volume reduction techniques. The minimization of the radioactive waste is also essential to facilitate judicious use of the scarce land available for disposal, to reduce impact on the environment due to disposal and, finally to optimize the cost of radioactive waste management. This paper presents a bird's eye view of radioactive waste management programme in the country today

  17. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  18. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  19. Management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated. Cement solidification and bituminization unit has come into trial run. Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities. Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces. Disposal of low and intermediate level radioactive wastes pursues the policy of 'regional disposal'. Four repositories have been planned to be built in northwest, southwest, south and east China respectively. A program for treatment and disposal of high level radioactive waste has been made

  20. Supercompaction of radioactive waste at NPP Krsko

    International Nuclear Information System (INIS)

    Fink, K.; Sirola, P.

    1996-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  1. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  2. Radioactive wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The lecture deals with definition, quantity and type of radioactive waste products occurring in a fuel reprocessing plant. Solid, liquid and gaseous fission and activation products are formed during the dissolution of the fuel and during the extraction process, and they must be separated from the fissionalble uranium and plutonium not spent. The chemical behaviour of these products (Zr, Ru, Np, gaseous substances, radiolysis products), which is sometimes very problematic, necessitates careful process control. However, the lifetime of nuclides is just as important for the conditions of the reprocessing procedure. The types of waste obtained after reprocessing are classified according to their state of aggregation and level of activity and - on the basis of the operational data of a prototype plant - they are quantitatively extrapolated for the operation of a large-scale facility of 1,400 tons of fuel annually. (RB) [de

  3. Microbiological treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1992-01-01

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment

  4. Controlling low-level radioactive waste

    International Nuclear Information System (INIS)

    1990-01-01

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  5. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  6. Communication from the Radioactive Waste Service

    CERN Multimedia

    2011-01-01

    The Radioactive Waste service of the Radiation protection Group informs you that as of 15 April 2011 radioactive waste can be delivered to the waste treatment centre (Bldg. 573) only during the following hours: Mon- Thu: 08:00 – 11:30 / 13:30 – 16:00 Fri : 08:00 – 11:30 An electronic form must be filled in before the arrival of the waste at the treatment centre: https://edh.cern.ch/Document/General/RadioactiveWaste for further information, please call 73171.

  7. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Frazier, D.H.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.; Watson, R.A.

    1977-04-01

    Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public concerns are identified, their relevance assessed, and a conceptual framework is developed that facilitates understanding of the dimensions and demands of the radioactive waste management problem. The nature and scope of the study are described along with the approach used to arrive at a set of goals appropriately focused on waste management

  8. Microbiology and radioactive waste disposal

    International Nuclear Information System (INIS)

    Colasanti, R.; Coutts, D.; Pugh, S.Y.R.; Rosevear, A.

    1990-03-01

    The present Nirex Safety Assessment Research Programme on microbiology is based on experimental as well as theoretical work. It has concentrated on the study of how mixed, natural populations of microbes might survive and grow on the organic component of Low Level Radioactive Wastes (LLW) and PCM (Plutonium Contaminated Waste) in a cementitious waste repository. The present studies indicate that both carbon dioxide and methane will be produced by microbial action within the repository. Carbon dioxide will dissolve and react with the concrete to a limited extent so methane will be the principal component of the produced gas. The concentration of hydrogen, derived from corrosion, will be depressed by microbial action and that this will further elevate methane levels. Actual rates of production will be lower than that in a domestic landfill due to the more extreme pH. Microbial action will clearly affect the aqueous phase chemistry where organic material is present in the waste. The cellulosic fraction is the main determinant of cell growth and the appearance of soluble organics. The structure of the mathematical model which has been developed, predicts the general features which are intuitively expected in a developing microbial population. It illustrates that intermediate compounds will build up in the waste until growth of the next organism needed for sequential degradation is initiated. The soluble compounds in the pore water and the mixture of microbes present in the waste will vary with time and sustain biological activity over a prolonged period. Present estimates suggest that most microbial action in the repository will be complete after 400 years. There is scope for the model to deal with environmental factors such as temperature and pH and to introduce other energy sources such as hydrogen. (author)

  9. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  10. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  11. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  12. Common errors in transport of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Dellamano, Jos C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: ffsuzuki@ipen.br; mbmitake@ipen.br; jcdellam@ipen.br

    2007-07-01

    The transport of radioactive waste is a stage of the waste management and must fit the same protection and safety requirements of any radioactive material shipment. In Brazil, the radioactive waste shipments must comply with the national regulations for transport of dangerous goods and the specific regulation for the safe transport of radioactive material of the nuclear regulatory authority. In these regulations, the consignor is responsible for the safety during the transport, however, the unload operations are consignee's responsibility. The Radioactive Waste Laboratory of the Nuclear and Energy Research Institute, IPEN-CNEN/SP, receives institutional radioactive waste from several radioactive facilities in the country. During the unload operations, protection and safety items are verified, such as the data written into the transport documents and the maximum levels of radiation on packages. The records show that almost all shipments of radioactive waste presented irregularities that varied from mistakes in fulfilling transport documents, up to the total disregard to the regulations. The shipments that could result in radiological risk to the operators of IPEN-CNEN/SP gave origin to reports that had been sent to the nuclear regulatory authority to take steps to prevent new occurrences and to enforce consignors and carriers. The adoption of this procedure in any type of occurrence, as well as its institutionalization in all radioactive waste management facilities of the nuclear regulatory authority could be an improvement against the errors observed in this type of transport. (author)

  13. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  14. Probabilistic safety assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1987-07-01

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  15. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  16. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  17. The conditioning of radioactive waste by bitumen

    International Nuclear Information System (INIS)

    Rodier, J.; Scheidhauer, J.; Malabre, M.

    1961-01-01

    The separation of radioactive sludge and waste by bitumen is studied. Results are given concerning various trials carried out on the lixiviation of the final product by water as a function of the pH, of the time, and of the composition. The conditions for carrying out this process of coating the waste are controlled from a radioactive point of view. (author) [fr

  18. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this ...

  19. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  20. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    Abstract. The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective.

  1. The Spanish general radioactive waste plan

    International Nuclear Information System (INIS)

    Redondo, J.M.

    2007-01-01

    The author summarized the current status of Spain's general radioactive waste management plan. This plan forms the basis for a national radioactive waste management policy and decommissioning strategy. It is updated periodically, the current 5. plan was approved in 1999. The most important element of the current strategy is the development of a centralized interim HLW storage facility by 2010. (A.L.B.)

  2. Indian programme on radioactive waste management

    International Nuclear Information System (INIS)

    Wattal, P.K.

    2013-01-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective. (author)

  3. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Shikata, Eiji; Nakamura, Haruto; Miyazaki, Kazuhide; Sato, Toshikazu; Ishii, Masato.

    1980-01-01

    Purpose: To effectively and economically eliminate toxic radioactive nuclides contained at an extremely low concentration of about 10 -6 - 10 -10 ppm in radioactive liquid wastes. Method: Radioactive liquid wastes are subjected to DC current electrolysis using aluminum or aluminum alloy as an anode. Toxic nuclides contained at an extremely low concentration in the liquid wastes are adsorbed onto aluminum hydroxide having intense activity formed from aluminum ions leached out from the anode and combined with hydroxyl ions. The process can effectively separate to remove the following radioactive nuclides: Cr-51, Co-53, Co-60 (heavy metal elements), La-140, Ce-143 (Lanthanoide elements), Pu-239, Np-239 (actinoid elements). (Ikeda, J.)

  4. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  5. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  6. Technology applications for radioactive waste minimization

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1994-01-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry

  7. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  8. RADWASS update. Radioactive Waste Safety Standards Programme

    International Nuclear Information System (INIS)

    Delattre, D.

    2000-01-01

    By the late 1980s, the issue of radioactive wastes and their management was becoming increasingly politically important. The IAEA responded by establishing a high profile family of safety standards, the Radioactive Waste Safety Standards (RADWASS). By this means, the IAEA intended to draw attention to the fact that well-established procedures for the safe management of radioactive wastes already were in place. The programme was intended to establish an ordered structure for safety documents on waste management and to ensure comprehensive coverage of all relevant subject areas. RADWASS documents are categorized under four subject areas - discharges, predisposal, disposal, and environmental restoration. The programme is overseen through a formalized review and approval mechanism that was established in 1996 for all safety standards activities. The Waste Safety Standards Committee (WASSC) is a standing body of senior regulatory officials with technical expertise in radioactive waste safety. To date, three Safety Requirements and seven Safety Guides have been issued

  9. Radioactive waste multiple container system

    International Nuclear Information System (INIS)

    Smith, R.J.; Garman, L.D.; Reynolds, W.E.

    1984-01-01

    A radioactive waste multiple container system is described which provides a simplified method whereby a plurality of drums can be placed in a remote, unmanned storage facility in one materials handling sequence, as opposed to a plurality of separate materials handling sequences, such as required for individual drums utilizing a remotely-controlled materials handling system. The multiple container system also functions as an interim storage system in that it will allow for stacking up to a total of ten levels high. Each container interlocks with each successive unit, through automatic, passive alignment of the individual container with the previously placed unit, while being handled completely by remote control. This interlock and alignment feature insures greater stack stability, substantially increasing the overall storage efficiency of the remote storage facility. While a '6-pack' container system has been described, a 4, 8, 10, 12, etc. system may be used instead. (author)

  10. Radioactive wastes. Management prospects. Appendixes

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    These appendixes complete the article BN3661 entitled 'Radioactive wastes. Management prospects'. They develop the principles of the different separation processes under study and make a status of the conditioning matrices that are envisaged: 1 - principles of advanced separation (separation of U, Np, Pu, Tc and I; separation of Am and Cm in two extraction steps (Diamex and Sanex processes); separation of Am and Cm in a single extraction step (Paladin process); separation of Am and Cm (Sesame process); separation of Cs (Calixarene process); 2 - principles of separation in pyro-chemistry: separation under inert atmosphere (non-oxidizing); separation in oxidizing conditions; 3 - conditioning matrices under study for separate elements: objectives and methodology, matrices for iodine, for cesium and for actinides. (J.S.)

  11. Storage facility for radioactive wastes

    International Nuclear Information System (INIS)

    Okada, Kyo

    1998-01-01

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  12. Solidifying agent for radioactive waste

    International Nuclear Information System (INIS)

    Sakai, Etsuro; Kida, Tsutomu; Sasagawa, Yukio.

    1988-01-01

    Purpose: To apply solidifying treatment to boron-containing radioactive wastes while improving the durability, rapid hardening property and processing performance, as well as reducing the leaching property. Constitution: A solidifying agent comprising calcium aluminate having CaO and Al 2 O 3 at 1.5 - 4 molar ratio, super fine powder and high performance moderator is used. As the super fine powder, those having a grain size smaller by 1 - 2 orders than that of the calcium aluminate are preferred. Specifically, there can be used silica dust, calcium carbonate, silica gel, titanium oxide, aluminum oxide, etc. As the moderator, there are used those surface active agents of great dispersing performance not causing excess delay for coagulation or excess air entrainment when added in a great amount to cements. Specifically, there can be mentioned those mainly composed of salts of naphthalene sulfonic acid-formaldehyde condensates, salts of melamine sulfonic acid formaldehyde condensates, etc. (Ikeda, J.)

  13. Management of radioactive waste nuclear power plants

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Marek, J.

    1976-01-01

    The authors give a survey of the sources, types and amounts of radioactive waste in LWR nuclear power stations (1,300 MWe). The amount of solid waste produced by a Novovorenezh-type PWR reactor (2 x 400 resp. 1 x 1,000 MWe) is given in a table. Treatment, solidification and final storage of radioactive waste are shortly discussed with special reference to the problems of final storage in the CSR. (HR) [de

  14. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  15. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  16. Assessment of Malaysia Institutional radioactive waste management

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma; Nik Marzukee; Ibrahim Martibi

    1996-01-01

    A complete inventory of radioactive wastes from different source bas been set up in Malaysia. Wastes from external agencies were sent to the National Radioactive Waste Management Center at MINT for final disposal. MINT has been collecting information on the accumulated wastes received since 1982. Assessment of radioactive waste management in Malaysia has been conducted based on the inventory record. The information in the inventory include description of users, type volume, characteristics of the wastes; and the current and accumulated activities of the radioisotopes in the wastes forms while storing. The records indicate that there is a significant increase in the volume of wastes from medical and industrial applications. The category of users varies; there are about 270 industrial users, about 60 in medical fields and 13 in research institutes and universities. Major users generating sealed source wastes for the industrial sector are services, manufacturing and consumer companies; including government department and universities. It is estimated that by the year 2005, approximately a total accumulated processed waste package volume for disposal will be between 210-215 m sup 3. This estimate includes low level and intermediate level wastes. From this study, future waste management activities in Malaysia can be planned with proper policy decision, treatment conditioning, storage and disposal facilities. This will enable radioactive wastes to be kept under control and their potential impact on man and the environment to be minimal

  17. Neutralization and storage of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Minczewski, J.

    1989-01-01

    Radioactive wastes from nuclear power plants are described. The methods of radioactive wastes processing are shortly presented. Their volume is compared with the quantity of wastes from fossil-fuel power plants and municipal wastes. (A.S.)

  18. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  19. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  20. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  1. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  2. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  3. Collecting and identifying the radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, C. GH.

    2001-01-01

    The procedure 'Collecting and identifying the radioactive waste' applied by the Radioactive Waste Management Department, STDR, complies with the requirements of the competent authority concerning the radioactive source management. One of the most important tasks, requiring the application of this procedure, is collecting and identification of 'historical wastes' for which a complete book keeping does not exist from different reasons. The chapter 1 presents the procedure's goal and the chapter 2 defines the applicability field. Chapter 3 enlists the reference documents while the chapter 4 gives the definitions and abbreviations used in the procedure. Chapter 5 defines responsibilities of the operators implied in collecting, identification and characterization of the radioactive wastes, the producers of the radioactive wastes being implied. Chapter 6 gives the preliminary conditions for applying the procedure. Among these, the transport, collecting, processing, storing and characterization costs are implied, as well as the compliance with technical and different other condition. The procedure structure is presented in the chapter 7. In collecting radioactive wastes, two situations are possible: 1- the producer is able to prepare the wastes for transport and to deliver them to STDR; 2 - the wastes are received from the producer by a delegate STDR operator, properly and technically prepared. The producer must demonstrate by documents the origin and possession, analysis bulletins specifying, the radionuclides activity and measurement date, physical state and, in addition, for spent radiation sources, the series/number of the container and producer. In case the producer is not able to display all this information, the wastes are taken into custody by the STDR labs in view of their analysis. A record in writing is completed specifying the transfer of radioactive wastes from the producer to the STDR, a record which is sent to the national authority in charge with the

  4. Solidification of radioactive waste effluents

    International Nuclear Information System (INIS)

    Mergan, L.M.; Cordier, J.-P.

    1981-01-01

    A process and apparatus for solidifying radioactive waste liquid containing dissolved and/or suspended solids is disclosed. The process includes chemically treating for pH adjustment and precipitation of solids, concentrating solids with a thin-film evaporator to provide liquid concentrate containing about 50% solids, and drying the concentrate with a heated mixing apparatus. The heated mixing apparatus includes a heated wall and working means for shearing dried concentrate from internal surfaces and subdividing dry concentrate into dry, powdery particles. The working means includes a rotor and helical means for positively advancing the concentrate and resulting dry particles from inlet to outlet of the mixing apparatus. The dry particles may also be encapsulated in a matrix material. Entrained particles in the vapor stream from the evaporator and mixer are removed in an integral particle separator and the vapor is subsequently condensed and may be recycled upstream of the thin-film evaporator. A section of the mixer may be used for mixing dry particles with the matrix material in a continuous drying and mixing sequence. A section of the mixer also may be used for mixing the treating chemical with the waste liquid

  5. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    India has achieved self-reliance in the management of all types of radioactive waste arising dur- ing the operation of the nuclear fuel cycle facilities. Decades of safe and successful operation of our waste management facilities are testimony to the Indian waste management practices being on par with international standards ...

  6. Marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1980-01-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the adsorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strenghs and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area. (orig.) [de

  7. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  8. Source, transport and dumping of radioactive waste

    International Nuclear Information System (INIS)

    1980-03-01

    The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described, including the physical and chemical, ecological, medical and legal aspects. The practical aspects of radioactive waste in the Netherlands are considered, including the sources, the packaging and transport and dumping in the Atlantic Ocean. The politics and policies involved in this process are outlined. (C.F.)

  9. On the strategies for radioactive waste management in Vietnam

    International Nuclear Information System (INIS)

    Tran Hong Ha; Kenji shimooka

    2002-01-01

    Arising of radioactive waste and the current status of radioactive waste management in Vietnam are analyzed, addressing the need for the establishment of a national managerial system for radioactive waste. Based upon the objective and principles of radioactive waste management, which are international agreed on, key matters of a national framework for radioactive waste management are presented, including such principal aspects of waste management as policy, national system, strategies and allocation of responsibilities. (Author)

  10. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  11. Safe management of radioactive waste in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2000-01-01

    The Ghana Atomic Energy Commission was established in 1963 by an Act of Parliament, Act 204 for the Promotion, Development and Peaceful Application of Nuclear Techniques for the Benefit of Ghana. As in many developing countries the use of nuclear application is growing considerably in importance within the national economy. The Radiation Protection Board was established as the national regulatory authority and empowered by the Radiation Protection Instrument LI 1559 (1993). The above regulations, Act 204 and LI 1559 provided a minimum legal basis for regulatory control of radioactive waste management as it deals with waste management issues in a very general way and is of limited practical use to the waste producer. Hence the National Radioactive Waste Management Centre was established in July 1995 to carry out waste safety operations in Ghana. This paper highlights steps that have been taken to develop a systemic approach for the safe management of radioactive waste in the future and those already in existence. (author)

  12. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  13. Radioactive waste management: An international perspective

    International Nuclear Information System (INIS)

    Chan, C.Y.

    1992-01-01

    Scientists, governments, and the general public have devoted considerable attention to the subject of radioactive waste over the past 35 years. The subject has gained even more attention of late, owing to heightened awareness of environmental protection. Potential transboundary effects have further added to this interest, which today extends beyond local domains to regional and global levels. Almost all of the IAEA's Member States generate some radioactive wastes. The type of waste they produce varies, however, as do the quantities, which range from a few grams to several hundred tonnes of wastes per year. This article will summarize the status of waste management and disposal activities in IAEA Member States as well as providing a brief background on what radioactive waste is, where it comes from, and how it is managed

  14. Electrochemistry and Radioactive Wastes: A Scientific Overview

    Directory of Open Access Journals (Sweden)

    Maher Abed Elaziz

    2015-12-01

    Full Text Available Radioactive wastes are arising from nuclear applications such as nuclear medicine and nuclear power plants. Radioactive wastes should be managed in a safe manner to protect human beings and the environment now and in the future. The management strategy depends on collection, segregation, treatment, immobilization, and disposal. The treatment process is a very important step in which the hazardous materials were converted to a more concentrated, less volume and less movable materials. Electrochemistry is the branch of chemistry in which the passage of electric current was producing a chemical change. Electrochemical treatment of radioactive wastes is widely used all over the world. It has a number of advantages and hence benefits. Electrochemistry can lead to remote, automatic control and increasing safety. The present work is focusing on the role of electrochemistry in the treatment of radioactive wastes worldwide. It contains the fundamentals of electrochemistry, the brief story of radioactive wastes, and the modern trends in the electrochemical treatment of radioactive wastes. An overview of electrochemical decomposition of organic wastes, electrochemical reduction of nitrates, electro- precipitation, electro- ion exchange, and electrochemical remediation of soil are outlined. The main operating factors, the mechanism of decontamination, energy consumption and examples of field trials are considered.

  15. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2007-01-01

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  16. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  17. Plastic solidification treatment for radioactive wastes

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro

    1981-01-01

    Purpose: To conduct solidification treatment to radioactive wastes adequately depending on the water content by separately providing an independent process for adding surface active agent to emulsified liquid wastes to the resin solidification process for the wastes. Constitution: For particulate wastes subjected to drying process, the wastes are introduced by way of a feeding machine into a mixer. Then, thermosetting resin, polymerization initiator and polymerization accelerator are introduced from respective tanks to the mixer, agitated to mix and then discharge to solidify in a radioactive waste storage container. On the contrary, for liquid wastes containing lot of water, resin, surface active agent and liquid wastes from respective tanks are introduced into a mixer, agitated to mix into water-in-oil emulsions, then incorporated and mixed with polymerization initiator and polymerization accelerator, and then discharged to solidify in a storage container. (Kawakami, Y.)

  18. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    This research focused on isolation and characterization of a new strain of Bacillus sp. from alkaline soil, which was able to producing extracellular alkaline protease and amylase from date waste at pH ranging from 8 to 11 and temperatures of 20 to 50°C. Purification was conducted by fractionation, concentration, and cation ...

  19. Ocean disposal of radioactive waste: Status report

    International Nuclear Information System (INIS)

    Calmet, D.P.

    1989-01-01

    For hundreds of years, the seas have been used as a place to dispose of wastes resulting from human activities and although no high level radioactive waste (HLW) has been disposed of into the sea, variable amounts of packaged low level radioactive waste (LLW) have been dumped at more than 50 sites in the northern part of the Atlantic and Pacific oceans. So far, samples of sea water, sediments and deep sea organisms collected on the various sites have not shown any excess in the levels of radionuclides above those due to nuclear weapons fallout except on certain occasions where caesium and plutonium were detected at higher levels in samples taken close to packages at the dumping site. Since 1957, the date of its first meeting to design methodologies to assess the safety of ''radioactive waste disposal into the sea'', the IAEA has provided guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. Since the Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (referred to as the London Dumping Convention) came into force in 1975, the dumping of waste has been regulated on a global scale. The London Dumping Convention entrusted IAEA with specific responsibilities for the definition of high level radioactive wastes unsuitable for dumping at sea, and for making recommendations to national authorities for issuing special permits for ocean dumping of low level radioactive wastes. This paper presents a status report of immersion operations of low-level radioactive waste and the current studies the IAEA is undertaking on behalf of the LDC

  20. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  1. Immobilization of radioactive waste in glass matrices

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1978-01-01

    A promising process for long-term management of high-level radioactive waste is to immobilize the waste in a borosilicate glass matrix. Among the most important criteria characterizing the integrity of the large-scale glass-waste forms are that they possess good chemical stability (including low leachability), thermal stability, mechanical integrity, and high radiation stability. Fulfillment of these criteria ensures the maximum margin of safety of glass-waste products, following solidification, handling, transportation, and long-term storage

  2. Quality control in the radioactive waste management

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    Radioactive waste management as in industrial activities must mantain in all steps a quality control programme. This control extended from materials acquisition, for waste treatment, to the package deposition is one of the most important activities because it aims to observe the waste acceptance criteria in repositories and allows to guarantee the security of the nuclear facilities. In this work basic knowledges about quality control in waste management and some examples of adopted procedures in other countries are given. (author) [pt

  3. Safety of radioactive waste management in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Radioactive waste produced in France vary considerably by their activity level, their half lives, their volume or even their nature. In order to manage them safely, the treatment and final disposal solution must be adapted to the type of waste considered by setting up specific waste management channels. A strong principle in France is that it is the responsibility of the nuclear operators as waste producers to dispose of their waste or have them disposed of in a suitable manner. The competent authorities regulate and control the radioactive waste management activities. At present, only short-lived low and intermediate level waste have a definitive solution, the surface repository, where adequate waste packages are disposed of in concrete structures. Other types of radioactive waste are in interim storage facilities at the production sites. For very low level waste coming mainly from dismantling of nuclear facilities a dedicated repository is planned to be built in the coming years. Dedicated repositories are also planned for radiferous, tritiated and graphite waste. As for high level waste and long-lived waste coming mainly from reprocessing of spent nuclear fuel the disposal options are being sought along the lines specified by law 91-1381 concerning research on radioactive waste management, passed on December 30, 1991: research of solutions to partition and transmute long-lived radionuclides in the waste; studies of retrievable and non retrievable disposal in deep geological layers with the help of underground laboratories; studies of processes for conditioning and long term surface storage of these waste. In 2006, the French Parliament will assess the results of the research conducted by ANDRA relative to deep geological disposal as well as the work conducted by CEA in the two other areas of research and, if this research is conclusive, pass a law defining the final disposal option. (author)

  4. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  5. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  6. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant

  7. Juridical and institutional aspects of radioactive wastes

    International Nuclear Information System (INIS)

    Faria, N.M. de.

    1988-07-01

    The author proposes a discussion of a new branch of the public law - the nuclear law. The main subject is the radioactive waste. Its production is a decisive problem in the utilization of nuclear energy being one of the discussed questions from the technical, economical, political, social and juridical points of view. Countries have been striving to establish their own policies related to radioactive wastes having always in mind the man and the environmental protection. In this scenario the author developed the investigations trying to discuss juridical and institutional aspects of radioactive wastes on the international level as well as in different countries with the aim to establish the juridical basis of a radioactive wastes policy in Brazil [pt

  8. Ocean abandonment of radioactive waste. 2

    International Nuclear Information System (INIS)

    Kouyama, Hiroaki

    1994-01-01

    Now, the nuclear powered submarines armed with ballistic missiles have become the main strength of navy. In Russia, eight nuclear powered icebreakers are operated. Mainly PWRs are used for these nuclear ships. The fuel exchange for nuclear powered submarines is carried out after the use for nearly ten years, therefore, the degree of enrichment of U-235 in fuel seems considerably high. So far, the sinking accidents of five nuclear powered submarines were reported. Former USSR began the ocean abandonment of radioactive waste in 1959, and continued it up to recent date. The northern sea area where the abandonment was carried out and the abandoned amount of radioactivity are shown. Also those in Far East sea area are shown. The management system for radioactive waste in Russia, the course after the abandonment of liquid waste in Japan Sea by Russian navy, the response of Japan regarding the ocean abandonment of radioactive waste and so on are described. (K.I.)

  9. Identification and characterization of radioactive wastes

    International Nuclear Information System (INIS)

    RANDRIAMORA, T.H.

    2007-01-01

    As the goal of the radioactive waste management is to protect human health and the environment, without imposing excessive constraints to the future generations, this work consists with of the identification of the radioactive waste existing in Madagascar, theirs characterizations for their later conditioning and their final storage. In this work, we used a dosimeter GRAETZ X5 C and a portable spectrometer EXPLORANIUM GR 135. These apparatuses have a great advantage at the user level because of their capacity to measure the equivalent dose rate, to identify, search and locate radiocative elements. The establishment of national center for radioactive waste management for the conditioning and the storage of spent sealed sources is the best solution for radioactive waste management in Madagascar. [fr

  10. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  11. Radioactive waste management - objectives and practices

    International Nuclear Information System (INIS)

    Ali, S.S.

    2002-01-01

    This article deals with the objectives, the legal frame works, regulations and the regulating authorities in India and also the technologies and practices being used for the safe management of radioactive wastes in the country

  12. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  13. Safety standards for radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1993-01-01

    The International Atomic Energy Agency (IAEA) has established the Radioactive Waste Safety Standards (RADWASS) programme upon request by its Member States to provide evidence that radioactive waste can be managed safely. The RADWASS programme consists of a series of fifty-five international consensus documents covering all parts of radioactive waste management, i.e. the subject areas: planning; pre-disposal; near surface disposal; geological disposal; U/Th mining and milling; and decommissioning. A single Safety Fundamentals document will set out the basic safety principles for radioactive waste management. Each subject area is headed by a Safety Standard. Twenty-eight Safety Guides and twenty Safety Practices will provide further details for the implementation of safety requirements stated in the Safety Standards. The programme was started in 1991 and is being carried out in three phases (Phase I: 1991-1994; Phase II: 1995-1998; Phase III: post 1998). (author)

  14. Solid and liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author) [pt

  15. Spanish program on disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.; Ramos Salvador, L.; Martines Martinez, A.

    1977-01-01

    The Spanish Energetic Program assumes an installed nuclear electrical power of 23.000 MWe by the year 1985. Therefore, Spain is making an effort in the managment of radioactive wastes, that can be synthesized in the following points: 1.- Make-up and review of the regulation on the management of radioactive wastes. 2.- Development of the processes and equipment for the treatment of solid, liquid and gaseous wastes from the CNEN ''Juan Vigon'', as well as those from the Nuclear Center of Soria. Solidification studies of RAA wastes arisen from the reprocessing. 3.- Evaluation of radioactive waste treatment systems of the new installed nuclear power plants. Assistance to the nuclear and radioactive facilities operators. 4.- Increase the storage capacity of the pilot repository for solid radioactive wastes of categories 1 and 2 IAEA, located in Sierra Albarrana. Studies of adequate geological formation for storage of solid wastes of IAEA categories 3 and 4. 5.- Studies about long term surface storage systems for solidified RAA wastes arisen from the reprocessing [es

  16. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Murakami, Kazuo.

    1997-01-01

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  17. Manless radioactive waste transporting system

    International Nuclear Information System (INIS)

    Yamada, Hitoshi; Soya, Masataka.

    1996-01-01

    The system of the present invention comprises a self-forklift for transporting vessels which contain radioactive wastes generated in a power facility to a storage warehouse and a unmanned remote control salvaging vehicle for drawing out the forklift when it is disabled in the storage warehouse for repair. Namely, the self forklift runs by itself on a predetermined route to transport and unload the vessels to a predetermined position in the storage warehouse. When the self forklift is stopped by failure in the storage warehouse, the unmanned salvaging vehicle takes the self forklift to the outside by operator's remote control while observing a monitor of an TV camera attached to the vehicle. In this case, the self forklift has a salvaging hook at a position of the body corresponding to a driving front wheel. The unmanned salvaging vehicle has a hoisting hook which enables the self forklift to move only with the front wheel as a loading wheel while raising the back wheel away from the floor surface. The self forklift is connected to the unmanned salvaging vehicle by both of the hooks. (I.S.)

  18. Radioactive wastes handling problems in Venezuela

    International Nuclear Information System (INIS)

    Ramirez, R.; Venegas, R.

    1984-07-01

    A brief description of the radioactive wastes problem in Venezuela is presented. The origins of the problem are shown in a squematic form. The requirements for its solution are divided into three parts: information system, control system, radioactive wastes hadling system. A questionnaire summarizing factors to be considered when looking for a solution to the problem in Venezuela is included, as well as conclusions and recomendations for further discussion

  19. General criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Maxey, M.N.; Musgrave, B.C.; Watkins, G.B.

    1979-01-01

    Techniques are being developed for conversion of radioactive wastes to solids and their placement into repositories. Criteria for such disposal are needed to assure protection of the biosphere. The ALARA (as low as reasonably achievable) principle should be applicable at all times during the disposal period. Radioactive wastes can be categorized into three classes, depending on the activity. Three approaches were developed for judging the adequacy of disposal concepts: acceptable risk, ore body comparison, and three-stage ore body comparison

  20. Microbiological treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Ashley, N.V.; Pugh, S.Y.R.; Banks, C.J.; Humphreys, P.N.

    1992-01-01

    This report summarises the work of an experimental programme investigating the anaerobic digestion of low-level radioactive wastes. The project focused on the selection of the optimum bioreactor design to achieve 95% removal or stabilisation of the biodegradable portion of low-level radioactive wastes. Performance data was obtained for the bioreactors and process scale-up factors for the construction of a full-scale reactor were considered. (author)

  1. Deep-sea burial of radioactive wastes

    International Nuclear Information System (INIS)

    Laser, M.

    1980-11-01

    State of the art of sea dumping of radioactive wastes, legal bases, problems of ecology and environmental safety, possibilities and prospects were the goal of this seminar. Moreover, experts in ministries and members of the parliament in the Federal Republic of Germany should be supported by the results and experiences given here in order to find the legal requirements for a marine disposal of special radioactive wastes. (RB) [de

  2. Disposal or radioactive wastes, tendencies and challenges

    International Nuclear Information System (INIS)

    Molina, G.; Barcenas R, M.

    2013-10-01

    The administration of radioactive wastes is an important part of the uses of the nuclear energy, even not carrying out some application due to the natural radioisotopes. The result will be that to more radioactive wastes production major will be the expense in its administration. In this work the main activities in an item of selected countries are described and it concludes with the necessities that should be carried out in this field in Mexico. (Author)

  3. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  4. Mental Models of Radioactivity and Attitudes towards Radioactive Waste

    International Nuclear Information System (INIS)

    Zeleznik, N.

    2010-01-01

    Siting of a radioactive waste repository presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. Previous research on people's perception of the LILW repository construction, their attitudes towards radioactive waste, their willingness to accept it, indicated significant differences in answers of experts and lay persons, mainly regarding evaluation of the consequences of repository construction. Based on the findings of pilot investigations a mental model approach to the radioactivity, radioactive waste and repository was used as a method for development better risk communication strategies with local communities. The mental models were obtained by adjustment of the method developed by Morgan and co-workers where expert model of radioactivity is compared with mental model of lay people obtained through individual opened interviews. Additional information on trust, risk perception, role of main actors in the site selection process and their credibility was gained with the overall questionnaire on the representative sample of Slovenian population. Results of the survey confirm some already known findings, in addition we gained new cognitions and with analyses obtained the relationships and ratios between different factors, which are characteristics both for the general public and for the public, which is involved in the site selection process for a longer period and has been living beside a nuclear power plant for one generation. People have in general negative associations regarding the repository, the perceived risk for nuclear facilities is high, and trust in representatives of governmental institutions is low. Mental models of radioactivity, radioactive waste and the LILW repository are mostly irregular and differ from the experts' models. This is particularly valid for the models of radioactivity and the influences of

  5. Management of radioactive waste from reprocessing operations

    International Nuclear Information System (INIS)

    Elsden, A.D.

    1990-01-01

    This paper reports that British Nuclear Fuels plc (BNFL) has a policy for radioactive waste management which is to minimize effluent discharges to the environment, to safely dispose of solid low level waste as it arises and to provide safe and cost effective methods for storing, treating and preparing for disposal all other wastes. BNF:'s overall waste management policy is to develop a strategy to minimize effluent discharges, to dispose of Solid Low Level Waste as it arises and to provide a safe and cost effective method of treating and preparing for disposal of all other waste arising on site

  6. The International Conference on Radioactive Waste Management

    International Nuclear Information System (INIS)

    1983-01-01

    The IAEA has been concerned with radioactive waste management since its inception. Its programme in this area was expanded in the mid 1970s as questions related to the management and disposal of radioactive wastes came into focus in conjunction with the further industrial development of nuclear power. The objectives of the Agency's wastes management programme are to assist its Member States in the safe and effective management of wastes by organizing the exchange and dissemination of information, providing guidance and technical assistance and supporting research. The current programme addresses all aspects of the industrial use of nuclear power under the aspects (a) technology of handling and treatment of wastes, (b) underground disposal of wastes, (c) environmental aspects of nuclear energy, including sea disposal of radioactive wastes. Systematic reviews have been made and publications issued concerning the technology of handling, treating, conditioning, and storing various categories of wastes, including liquid and gaseous wastes, wastes from nuclear power plants, spent fuel reprocessing and mining and milling of uranium ores, as well as wastes from decommissioning of nuclear facilities. As waste disposal is the current issue of highest interest, an Agency programme was set up in 1977 to develop a set of guidelines on the safe underground disposal of low-, intermediate- and high-level wastes in shallow ground, rock cavities or deep geological repositories. This programme will continue until 1990. Eleven Safety Series and Technical documents and reports have been published under this programme so far, which also addresses safety and other criteria for waste disposal. The environmental part of the waste management programme is concerned with the assessment of radiological and non-radiological consequences of discharges from nuclear facilities, including de minimis concepts in waste disposal and environmental models and data for radionuclide releases. The Agency

  7. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  8. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  9. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  10. Volumetric determination of hydroxide, aluminate, and carbonate in alkaline solutions of nuclear waste

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1975-06-01

    An integrated procedure was developed for determining OH - , Al(OH) 4 - , and CO 3 2- in alkaline nuclear waste. The free alkali, the hydroxide released when Al(OH) 3 is complexed with oxalate, and the precipitated BaCO 3 were determined by acidimetric titration. With a 50-μl sample, the relative standard deviations were 1 to 2 percent for nonradioactive test solutions and 2 to 5 percent for radioactive process solutions. (U.S.)

  11. Radioactive wastes assay technique and equipment

    International Nuclear Information System (INIS)

    Lee, K. M.; Hong, D. S; Kim, T. K.; Bae, S. M.; Shon, J. S.; Hong, K. P.

    2004-12-01

    The waste inventory records such as the activities and radio- nuclides contained in the waste packages are to be submitted with the radioactive wastes packages for the final disposal. The nearly around 10,000 drums of waste stocked in KAERI now should be assayed for the preparation of the waste inventory records too. For the successive execution of the waste assay, the investigation into the present waste assay techniques and equipment are to be taken first. Also the installation of the waste assay equipment through the comprehensive design, manufacturing and procurement should be proceeded timely. As the characteristics of the KAERI-stocked wastes are very different from that of the nuclear power plant and those have no regular waste streams, the application of the in-direct waste assay method using the scaling factors are not effective for the KAERI-generated wastes. Considering for the versal conveniency including the accuracy over the wide range of waste forms and the combination of assay time and sensitivity, the TGS(Tomographic Gamma Scanner) is appropriate as for the KAERI -generated radioactive waste assay equipment

  12. Radioactive wastes assay technique and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Hong, D. S; Kim, T. K.; Bae, S. M.; Shon, J. S.; Hong, K. P

    2004-12-01

    The waste inventory records such as the activities and radio- nuclides contained in the waste packages are to be submitted with the radioactive wastes packages for the final disposal. The nearly around 10,000 drums of waste stocked in KAERI now should be assayed for the preparation of the waste inventory records too. For the successive execution of the waste assay, the investigation into the present waste assay techniques and equipment are to be taken first. Also the installation of the waste assay equipment through the comprehensive design, manufacturing and procurement should be proceeded timely. As the characteristics of the KAERI-stocked wastes are very different from that of the nuclear power plant and those have no regular waste streams, the application of the in-direct waste assay method using the scaling factors are not effective for the KAERI-generated wastes. Considering for the versal conveniency including the accuracy over the wide range of waste forms and the combination of assay time and sensitivity, the TGS(Tomographic Gamma Scanner) is appropriate as for the KAERI -generated radioactive waste assay equipment.

  13. Policies and strategies for radioactive waste management

    International Nuclear Information System (INIS)

    2009-01-01

    A policy for spent fuel and radioactive waste management should include a set of goals or requirements to ensure the safe and efficient management of spent fuel and radioactive waste in the country. Policy is mainly established by the national government and may become codified in the national legislative system. The spent fuel and radioactive waste management strategy sets out the means for achieving the goals and requirements set out in the national policy. It is normally established by the relevant waste owner or nuclear facility operator, or by government (institutional waste). Thus, the national policy may be elaborated in several different strategy components. To ensure the safe, technically optimal and cost effective management of radioactive waste, countries are advised to formulate appropriate policies and strategies. A typical policy should include the following elements: defined safety and security objectives, arrangements for providing resources for spent fuel and radioactive waste management, identification of the main approaches for the management of the national spent fuel and radioactive waste categories, policy on export/import of radioactive waste, and provisions for public information and participation. In addition, the policy should define national roles and responsibilities for spent fuel and radioactive waste management. In order to formulate a meaningful policy, it is necessary to have sufficient information on the national situation, for example, on the existing national legal framework, institutional structures, relevant international obligations, other relevant national policies and strategies, indicative waste and spent fuel inventories, the availability of resources, the situation in other countries and the preferences of the major interested parties. The strategy reflects and elaborates the goals and requirements set out in the policy statement. For its formulation, detailed information is needed on the current situation in the country

  14. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  15. Radioactive Waste Management in A Hospital

    Science.gov (United States)

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  16. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  17. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  18. Evidence of the generation of isosaccharinic acids and their subsequent degradation by local microbial consortia within hyper-alkaline contaminated soils, with relevance to intermediate level radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Charles, Christopher J; Garratt, Eva J; Laws, Andrew P; Gunn, John; Humphreys, Paul N

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration.

  19. Evidence of the generation of isosaccharinic acids and their subsequent degradation by local microbial consortia within hyper-alkaline contaminated soils, with relevance to intermediate level radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0 soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration.

  20. Safety disposal studies of radioactive and hazardous wastes using cement

    International Nuclear Information System (INIS)

    Aly, M.M.E.

    2000-01-01

    radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials applications, agriculture and medicine. the important of safe management of radioactive waste for the protection of human health and the environment has long been recognized. conditioning of radioactive waste is the transform of radioactive waste into a suitable form for storage and disposal. common immobilization methods include solidification of low radioactive waste in cement or bitumen.in order to improve cement properties to decrease the release of liquid radioactive waste into the environment and its dispersion to a level where the risks to individuals, population and the environment

  1. Management of radioactive waste; Beheer van radioactief afval

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed.

  2. Hazards from radioactive waste in perspective

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1979-01-01

    This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity

  3. Radioactive waste management practices in other countries

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1987-01-01

    The basis of classification of solid radioactive wastes is described, with reference to definitions used in France, UK and USA. By surveying the plans and the facilities for managing each type of waste in a number of countries, the general trends in technical approach are identified

  4. IEN Low-level-radioactive waste Management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-01-01

    The control, treatment and disposal of the low-level radioactive waste produced in the units of IEN-CNEN, in Brazil are presented, in details. These wastes are generated from a particle accelerator (CV-28 cyclotron), radiochemistry laboratories and a nuclear research reactor (Argonaut type). (Author) [pt

  5. Radioactive waste management plan. Plan 82

    International Nuclear Information System (INIS)

    1982-06-01

    The report is the first account of the nuclear power utilities of Sweden concerning the plans for the final disposal of the radioactive waste products of the nuclear power. Part 2 describes the waste facilities in details. The layouts and estimated costs are presented. The decomissioning of nuclear power plants and the postponement of it is discussed. (G.B.)

  6. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  7. Disposal of radioactive waste. Some ethical aspects

    International Nuclear Information System (INIS)

    Streffer, Christian

    2014-01-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  8. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  9. Processing method for radioactive liquid wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Yoshikawa, Jun; Ozaki, Shigeru.

    1994-01-01

    The present invention provides a method of processing a radioactive liquid wastes, such as washing water for working cloths, hand washing water and shower water generated from a nuclear power plant having extremely low-level radioactivity and containing COD ingredients such as surface active agents. Namely, an adsorbent (powdery active carbon) for adsorbing the surface active agents is added to the radioactive liquid wastes containing the surface active agents. Precise filtration is conducted by using the adsorbent as a filtering aid. In a case where the radioactive liquid wastes contain harmful ion ingredients, zeolite and inorganic or organic ion exchanger powder are added to the radioactive liquid wastes as an ion remover before adding the adsorbent for removing the harmful ion ingredients. According to the present invention, since the radioactive liquid wastes containing the surface active agents generated in the nuclear power plant are applied with the powdery active carbon and then filtered precisely, the surface active agents and floating particles can be removed at the same time. (I.S.)

  10. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  11. Optimization of the radioactive waste storage

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio

    2005-01-01

    Radioactive waste storage is the practice adopted in countries where the production of small quantities of radioactive waste does not justify the immediate investment in the construction of a repository. Accordingly, at IPEN, treated radioactive wastes, mainly solid compacted, have been stored for more than 20 years, in 200 dm 3 drums. The storage facility is almost complete and must be extended. Taking into account that a fraction of these wastes has decayed to a very low level due to the short half - life of some radionuclides and considering that 'retrieval for disposal as very low level radioactive waste' is one of the actions suggested to radioactive waste managers, the Laboratory of Waste Management of IPEN started a project to apply the concepts of clearance levels and exemption limits to optimize the radioactive waste storage capacity . This study has been carried out by determining the doses and costs related to two main options: either to maintain the present situation or to open the packages and segregate the wastes that may be subject to clearance, using the national, two international clearance levels and the annual public limit. Doses and costs were evaluated as well as the collective dose and the detriment cost. The analytical solution among the evaluated options was determined by using the technique to aid decision making known as cost-benefit analysis. At last, it was carried out the sensitivity analysis considering all criteria and parameters in order to assess the robustness of the analytical solution. This study can be used as base to other institutions or other countries with similar nuclear programs. (author)

  12. Reduction of INTEC Analytical Radioactive Liquid Wastes

    International Nuclear Information System (INIS)

    Johnson, V.J.; Hu, J.S.; Chambers, A.G.

    1999-01-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste

  13. Leachability of bituminized radioactive waste. Literature survey

    International Nuclear Information System (INIS)

    Akimoto, Toshiyuki; Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi

    1999-02-01

    Bituminized radioactive waste that will be returned from COGEMA, France is planned to be disposed of in deep geologic repository in Japan. Data on leachability of radionuclides from bituminized waste are required for the performance assessment of the disposal. We made a literature survey on bitumen and bituminized radioactive waste, placing emphasis on leach tests and leach data in terms of geologic disposal. This survey revealed that reliable leach data on transuranium elements and data obtained under reducing conditions that is characteristic to deep underground are lacking. (author). 64 refs

  14. Radiological assessment of the radioactive wastes management

    International Nuclear Information System (INIS)

    Domenech Nieves, Haydee; Hernandez Saiz, Alejandro

    1996-01-01

    In the work are obtained the dose values resulting from the evaluation of the conditioning operations of wastes in the scenarios of exposure that are mentioned and are compared with the dose restriction suggested for the moment for such tasks. The radioactive wastes that are evaluated in the work are: liquids -both those from the generating institutions and the ones stored in the Managua- located deposit, Radon-226 not-in-use solids and sources 226: the results demonstrate that it is possible to treat in a year the total volume of the liquid and solid radioactive wastes as well as a large number of sources of Radon-226

  15. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  16. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  17. Radioactive waste disposal and public acceptance aspects

    International Nuclear Information System (INIS)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M.

    2011-01-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  18. Method of concentrating radioactive liquid waste

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1990-01-01

    Radioactive liquid wastes generated from nuclear power facilities are caused to flow into a vessel incorporated with first hydrophobic porous membranes. Then, the radioactive liquid wastes are passed through the first hydrophobic porous membranes under an elevated or reduced pressure to remove fine particles contained in the liquid wastes. The radioactive liquid wastes passed through the first membranes are stored in a temporary store a vessel and steams generated under heating are passed through the second hydrophobic porous membranes and then cooled and concentrated as condensates. In this case, the first and the second hydrophobic porous membranes have a property of passing steams but not water and, for example, are made of tetrafluoroethylen resin type thin membranes. Accordingly, since the fine particles can be removed by the first hydrophobic porous membranes, lowering of the concentration rate due to the deposition of solid contents to the membranes upon concentration can be prevented. (I.S.)

  19. Radioactive tank waste remediation focus area

    International Nuclear Information System (INIS)

    1996-08-01

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  20. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki.

    1985-01-01

    Purpose: To enable to process medium level radioactive liquid wastes discharged from nuclear power plants and facilities handling radioisotopes and uranium at an inexpensive precession cost. Method: After adding water glass and solidification aids to the radioactive liquid wastes, they are concentrated through ultrafine filtration membrane treatment to process the radioactive liquid wastes. The concentrates obtained through the ultrafine filtration membrane treatment are directly concentrating to solidify (asphalt solidification, vitrification, evaporation to dry or the like), or the liquids obtained by washing the ultrafine filter membranes by adding surface active agents are subjected to bubble separation and, thereafter, to concentrated solidification in the same manner as described above. This enables to increase the decontaminating coefficient and decrease the processing cost as compared with the mere ultrafine filtration of the liquid wastes. (Yoshihara, H.)

  1. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  2. Radioactive waste management: yesterday, today and tomorrow

    International Nuclear Information System (INIS)

    Prince, A.T.

    1977-10-01

    The public believes that there is a radioactive waste problem, but knowledge in the field is so well advanced that the only problem left is how to choose the most economically effective method among many available. Tailings from uranium ore processing could be made harmless by removing the majority of the radium and storing the remaining waste in well-designed retention areas. Non-fuel reactor wastes may be handled by incineraton, reverse osmosis, and evaporation in a central waste management centre. The dry storage of spent fuel in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  3. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  4. Development of Specifications for Radioactive Waste Packages

    International Nuclear Information System (INIS)

    2006-10-01

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste

  5. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  6. Inventory of radioactive waste disposals at sea

    International Nuclear Information System (INIS)

    1999-08-01

    The IAEA was requested by the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972) to develop and maintain an inventory of radioactive material entering the marine environment from all sources. The rationale for having such an inventory is related to its use as an information base with which the impact of radionuclides from different sources entering the marine environment can be assessed and compared. To respond to the request of the London Convention, the IAEA has undertaken the development of the inventory to include: disposal at sea of radioactive wastes, and accidents and losses at sea involving radioactive materials. This report addresses disposal at sea of radioactive waste, a practice which continued from 1946 to 1993. It is a revision of IAEA-TECDOC-588, Inventory of Radioactive Material Entering the Marine Environment: Sea Disposal of Radioactive Waste, published in 1991. In addition to the data already published in IAEA-TECDOC-588, the present publication includes detailed official information on sea disposal operations carried out by the former Soviet Union and the Russian Federation provided in 1993 as well as additional information provided by Sweden in 1992 and the United Kingdom in 1997 and 1998

  7. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1977-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container

  8. Radioactive waste management practices in India

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2012-01-01

    Different countries around the globe, especially those involved in nuclear power plant operation, spent fuel reprocessing, nuclear research activities and diverse nuclear applications; generate large inventory of radioactive wastes. These waste streams generated during various stages of nuclear fuel cycle are of different categories, which require special care for handling, treatment and conditioning. Conventional treatment and conditioning methods may not be efficient for various type of waste; therefore special options may be required to manage these waste streams. Presently, Indian waste management fraternity is focused to minimize the volume of the waste to be finally disposed off, by partitioning radionuclides, regenerating separation media and re-using as much of the waste components as possible and economically feasible. This approach, together with the reuse/recycling strategy, seems to represent a robust waste treatment strategy for the future

  9. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  10. The radiation protection and the radioactive wastes management

    International Nuclear Information System (INIS)

    Servais, F.; Woiche, Ch.; Hunin, Ch.

    2003-01-01

    This chapter concerns the radiation protection in relation with the radioactive waste management. Three articles make the matter of this file, the management of radioactive medical waste into hospitals, a new concept of waste storage on site, the protection devices on the long term with some lessons for the radioactive waste management. (N.C.)

  11. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  12. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  13. The management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Teng Lijun

    2001-01-01

    Full text: This paper wants to introduce the management of radioactive wastes in China. The Management System. The management system of radioactive waste consists of the institutional system and the regulatory system. During the recent 30 years, more than 50 national standards and trades standards have been issued, will be published, or are being prepared, covering essentially all the process of wastes management. State Environmental Protection Administration (SEPA) is in charge of not only the environmental protection view but also nuclear safety surveillance of radioactive waste management, especially in the aspect of HLW disposal. China Atomic Energy Authority (CAEA) is a centralized management of the government responsible. China National Nuclear Corp. (CNNC) is responsible for the management work of radioactive wastes within its system, implementing national policies on wastes management, and siting, construction and operation of LILW repositories and HLW deep geological repository. The Policies of Radioactive Waste Management. The LILW for temporary storage shall be solidified as early as possible. Regional repository for disposal of low-and intermediate-level wastes shall be built. HLW is Centralized disposal in geological repository. The radioactive wastes and waste radioisotope sources must be collected to the signified place (facilities) for a relatively centralized management in each province, The Accompanying Mineral radioactive wastes can be stored in the tailing dumps or connected to the storage place for a temporal storage, then transported to the nearby tailing dumps of installation or tailing dumps of mineral-accompanying waste for an eventual storage. Activities in the Wastes Management Radioactive wastes treatment and conditioning Since 1970, the study on the HLLW vitrification has been initiated. In 1990, a cold test bench for the vitrification (BVPM), introduced from Germany, was completed in Sichuan Province. As for the LILW, the cementation

  14. Radioactive waste management centers: an approach

    International Nuclear Information System (INIS)

    Lotts, A.L.

    1980-01-01

    Radioactive waste management centers would satisfy the need for a cost-effective, sound management system for nuclear wastes by the industry and would provide a well integrated solution which could be understood by the public. The future demands for nuclear waste processing and disposal by industry and institutions outside the United States Government are such that a number of such facilities are required between now and the year 2000. Waste management centers can be organized around two general needs in the commercial sector: (1) the need for management of low-level waste generated by nuclear power plants, the once-through nuclear fuel cycle production facilities, from hospitals, and other institutions; and (2) more comprehensive centers handling all categories of nuclear wastes that would be generated by a nuclear fuel recycle industry. The basic technology for radioactive waste management will be available by the time such facilities can be deployed. This paper discusses the technical, economic, and social aspects of organizing radioactive waste managment centers and presents a strategy for stimulating their development

  15. Aspects of the storage of radioactive waste

    International Nuclear Information System (INIS)

    Nienhuys, K.

    1978-01-01

    The expansion in the number of nuclear power stations in the netherlands is amongst other things, dependent on an acceptable policy for the storage of the waste from the stations. Consequently the idea has developed for storage in a salt-dome. The sub-committee on radioactive waste substances of the Interdepartmental Committee for Nuclear Energy has therefore given a mandate to initiate further research. For the risk analysis over the definitive storage of nuclear waste the sub-comittee produced a report in 1975, entitled 'Safety analysis for the underground storage of nuclear waste in salt-dome outcrops'. The analysis reveals a number of defective features. This makes especially clear that statements about the definitive storage of nuclear waste in salt domes can only be made with a great deal of uncertainty. There is no guarantee that the nuclear waste generated may be stowed away so that it will never return to the ionosphere. The speed whereby the nuclear waste may return would be dependent on a combination of events which cannot generally be calculated or assessed. The long term consequences of an irreversible radioactive contamination of the biosphere is not acceptable. There is insufficient proof that the storage of radioactive waste in salt domes is feasible. (G.C.)

  16. Method of controlling radioactive waste processing systems

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Sato, Takao.

    1981-01-01

    Purpose: To minimize the pellet production amount, maximize the working life of a solidifying device and maintaining the mechanical strength of pellets to a predetermined value irrespective of the type and the cycle of occurrence of the secondary waste in the secondary waste solidifying device for radioactive waste processing systems in nuclear power plants. Method: Forecasting periods for the type, production amount and radioactivity level of the secondary wastes are determined in input/output devices connected to a control system and resulted signals are sent to computing elements. The computing elements forecast the production amount of regenerated liquid wastes after predetermined days based on the running conditions of a condensate desalter and the production amounts of filter sludges and liquid resin wastes after predetermined days based on the liquid waste processing amount or the like in a processing device respectively. Then, the mass balance between the type and the amount of the secondary wastes presently stored in a tank are calculated and the composition and concentration for the processing liquid are set so as to obtain predetermined values for the strength of pellets that can be dried to solidify, the working life of the solidifying device itself and the radioactivity level of the pellets. Thereafter, the running conditions for the solidifying device are determined so as to maximize the working life of the solidifying device. (Horiuchi, T.)

  17. Radioactive wastes in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sakata, Sadahiro; Nagaike, Tadakatsu; Emura, Satoru; Matsumoto, Akira; Morisawa, Shinsuke.

    1978-01-01

    Recent topics concerning radioactive water management and disposal are widely reviewed. As the introduction, various sources of radioactivity including uranium mining, fuel fabrication, reactor operation and fuel reprocessing and their amount of wastes accumulated per 1000 MWe year operation of a LWR are presented together with the typical methods of disposal. The second section discusses the problems associated with uranium fuel fabrication and with nuclear power plants. Typical radioactive nuclides and their sources in PWRs and BWRs are discussed. The third section deals with the problems associated with reprocessing facilities and with mixed oxide fuel fabrication. Solidification of high-level wastes and the methods of the disposal of transuranic nuclides are the main topics in this section. The fourth section discusses the methods and the problems of final disposal. Various methods being proposed or studied for the final disposal of low- and high-level wastes and transuranic wastes are reviewed. The fifth section concerns with the risk analysis of waste disposal. Both deterministic and probabilistic methods are treated. As the example, the assessment of the risk due to floods is explained. The associated event tree and fault three are presented together with the estimated probability of the occurrence of each constituent failure. In the final section, the environmental problems of radioactive wastes are widely reviewed. (Aoki, K.)

  18. Treatment and conditioning of radioactive solid wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Radioactive materials are extensively used in industrial and research activities mainly related to medical, agricultural, environmental and other studies and applications. During the application and production of radioisotopes, significant amounts of radioactive wastes will inevitably arise, which must be managed (i.e. handled, treated, conditioned, intermediately stored and finally disposed of) with particular care. Serious efforts to minimize and appropriately segregate the waste arisings during the application of radioisotopes are the most important first step in waste management. The essential objective of the management of radioactive waste is the protection of mankind, the biosphere and the environment from the detrimental effects of nuclear radiation both now and in the future. This report deals with radioactive wastes outside the nuclear fuel cycle and it is directed primarily to countries without nuclear power programmes, e.g. countries belonging to the Groups A, B and C. Group A includes Member States which utilize radioisotopes at a few hospital locations, universities and industries. Group B includes Member States which have multi-use of radioisotopes in hospitals and other institutional areas and need a central collection and processing system. Group C includes Member States which have multi-use of radioisotopes and a nuclear research centre which is capable of indigenous production of several radioisotopes. When developing a waste management strategy, consideration should be given to the entire sequence of waste management operations from waste sources to disposal and all the related issues: every aspect of waste generation, processing, transportation, storage and disposal, including regulatory, socio-political and economic issues. The interaction of all these aspects must be analysed and understood before the entire waste management system can be properly built up and safely managed. 16 refs, 13 figs, 5 tabs

  19. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    A general analysis of transportation requirements for postfission radioactive wastes that are produced from the commercial light water reactor (LWR) fuel cycle and that are assumed to require Federal custody for storage or disposal is given. Possible radioactive wastes for which transportation requirements are described include: spent fuel, solidified high-level waste, fuel residues (cladding wastes), plutonium, and non-high-level transuranic (TRU) wastes. Transportation is described for wastes generated in three fuel cycle options: once-through fuel cycle, uranium recycle only, and recycle of uranium and plutonium. The geologic considerations essential for repository selection, the nature of geologic formations that are potential repository media, the thermal criteria for waste placement in geologic repositories, and conceptual repositories in four different geologic media are described. The media are salt deposits, granite, shale, and basalt. Possible alternatives for managing retired facilities and procedures for decommissioning are reviewed. A qualitative comparison is made of wastes generated by the uranium fuel cycle and the thorium fuel cycle. This study presents data characterizing wastes from prebreeder light water breeder reactors using thorium and slightly enriched uranium-235. The prebreeder LWBRs are essentially LWRs using thorium. The operation of HTGR and LWBR cycles are conceptually designed, and wastes produced in these cycles are compared for potential differences

  20. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  1. Vessel for storing and disposing radioactive waste

    International Nuclear Information System (INIS)

    Takakura, Masahide.

    1997-01-01

    A vessel for storing and disposing radioactive wastes is composed of a containing vessel main body having an opening and a lid capable of fitting with the opening. The containing vessel main body is made into a cylindrical shape which can contain radioactive wastes therein. The containing vessel main body and the lid are made of a reinforced material such as carbon steels and stainless steels respectively. A plurality of fin set up-seats are disposed, each at a same distance, detachably to the outer surface of the containing vessel main body in parallel with the axial line of the containing vessel main body. Heat dissipating fins are secured on the outer surface of the fin set-up-seats. With such a constitution, there can be obtained a vessel suitable to underground disposal of radioactive wastes after cooling and storing them till removal of after heat. (I.N.)

  2. Long term radioactive waste management policy

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Dina, D.

    2001-01-01

    Radioactive waste management is a key issue of the environmental policy of any company. According to the Romanian Nuclear Act (Law 111/1996) and the Environmental Protection Act (Law 137/1996) the owner is responsible for the management of all radioactive waste effluents at the nuclear installations, including the technical and cost components. The developed policy incorporates the practice in the EU Member States and in the country of the plant supplier (Canada). On short term, the priorities of our radioactive waste management policy are to extend the spent fuel storage capacity using the dry storage technology. On long term the policy includes a facilities for L/ILW packaging for disposal in a new surface repository to be built on the Cernavoda NPP site. For HLW the interim storage for about 50 years will provide the necessary time to select and implement the geological disposal, in accordance with the best international practice. (authors)

  3. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  4. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  5. Method of solidifying radioactive wastes with ceramics

    International Nuclear Information System (INIS)

    Anzai, Kazuo; Oota, Takao.

    1983-01-01

    Purpose: To improve the heat efficiency and enable simple and rapid solidification of radioactive wastes by facilitating high frequency inductive heating. Method: Calcined radioactive wastes and ceramic forming substances are charged into a crucible made of electrically insulating pyrolytic materials, melted by way of high frequency induction heating, then taken out from the crucible, introduced into a container and solidified therein to dispose radioactive wastes. In this case, the high frequency induction heating can be facilitated by adding, to the ceramic-forming substance and the calcined products charged in the crucible, powderous silicon carbide as the third ingredient in a range of 20 - 50% by weight based on the total weight. (Kawakami, Y.)

  6. Public involvement in radioactive waste management decisions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  7. Public involvement in radioactive waste management decisions

    International Nuclear Information System (INIS)

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE's Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government's decision to study Yucca Mountain. The state's opposition reflects public opinion in Nevada, and has considerably slowed DOE's progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada's opposition -- its ability to thwart if not outright derail DOE's activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE's radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE's low level of credibility among the general public as the product, in part, of the department's past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials

  8. The safe management of radioactive wastes

    International Nuclear Information System (INIS)

    Vivian, G.A.

    1978-01-01

    Methods and facilities used by Ontario Hydro for storage of nuclear waste other than spent fuel are described and illustrated. The waste storage site is at the Bruce Nuclear Development. It has an impermeable clay subsoil. Low level, compactable and combustible waste is stored in concrete trenches. In-ground tile holes or concrete 'quadricells' are used for ion-exchange resins. The 'quadricells' are also used for pressure tubes. Liquid wastes are solidified before emplacement. Radioactive emissions from the site have been two to three orders of magnitude below the regulatory limits. (N.D.H.)

  9. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  10. PRINCIPLE ROCK TYPES FOR RADIOACTIVE WASTE REPOSITORIES

    Directory of Open Access Journals (Sweden)

    Sibila Borojević Šostarić

    2012-07-01

    Full Text Available Underground geological storage of high- and intermediate/low radioactive waste is aimed to represent a barrier between the surface environment and potentially hazardous radioactive elements. Permeability, behavior against external stresses, chemical reacatibility and absorption are the key geological parameters for the geological storage of radioactive waste. Three principal rock types were discussed and applied to the Dinarides: (1 evaporites in general, (2 shale, and (3 crystalline basement rocks. (1 Within the Dinarides, evaporite formations are located within the central part of a Carbonate platform and are inappropriate for storage. Offshore evaporites are located within diapiric structures of the central and southern part of the Adriatic Sea and are covered by thick Mesozoic to Cenozoic clastic sediment. Under very specific circumstances they can be considered as potential site locations for further investigation for the storage of low/intermediate level radioactive wast e. (2 Thick flysch type formation of shale to phyllite rocks are exposed at the basement units of the Petrova and Trgovska gora regions whereas (3 crystalline magmatic to metamorphic basement is exposed at the Moslavačka Gora and Slavonian Mts. regions. For high-level radioactive waste, basement phyllites and granites may represent the only realistic potential option in the NW Dinarides.

  11. Radioactive waste management - v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    In this second part, the program of waste management of non-military origin of the following countries: USA, United Kingdom, France, Canada, Federal Republic of Germany, and Japan, is presented. For each country, a brief overview on its nuclear program, to identify the reason of the major emphasis done by this country for a specific waste management, is presented. The legislation control, the classification, the treatment and, the options for waste disposal are also presented. (M.C.K.) [pt

  12. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  13. Radioactive waste management in the former USSR

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes

  14. Radioactive waste management in the former USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  15. National inventory of radioactive wastes and recoverable materials 2006. Descriptive catalogue of radioactive waste families

    International Nuclear Information System (INIS)

    2006-01-01

    Real comprehensive overview of radioactive wastes, the national inventory of radioactive wastes and recoverable materials describes the situation in France of the wastes that can be conditioned (in their definitive form) or not. It presents also the waste production quantities foreseen for 2010, 2020 and beyond. This document is a complement to the synthesis report and to the geographic inventory of radioactive wastes in France and details the classification of wastes by families (wastes with similar characteristics). For each family of wastes, the description comprises a general presentation and some photos. It comprises also some data such as the position of the family in the French classification, the industrial activity at the origin of the waste, the production situation of the waste in concern (finished, in progress, not started). Some information about the raw waste are given and the conditioning process used is described. Some figures complete the description, like: the past and future production quantities, the evaluation of the radioactivity of the waste family in 2004 and 2020, and the evaluation of the thermal power when available. Finally, some information are given about the presence of compounds with a specific risk of toxicity. (J.S.)

  16. Legal and regulator framework of radioactive waste

    International Nuclear Information System (INIS)

    Chavez Cassanello, Griselda; Mels Siningen, Celeste; Reina, Mariana; Vega, Hernan

    2009-01-01

    The present work intends to develop the legislative and regulatory framework in the matter of radioactive waste. The legal frame of the radioactive waste conformed by the National Constitution, the treaties and conventions, laws and decrees and regulatory norm in Argentine . The subject is approached from the international point of view considering the slogan of 36 The Annual Meeting of the Association Argentine de Nuclear Technology: 'The Nuclear Energy in the Present World'. This work also contains a special paragraph dedicated to the analysis of practical cases related to the subject and the activity of the National Commission of Atomic Energy. (author)

  17. Managing radioactive waste safely. Engaging Scotland

    International Nuclear Information System (INIS)

    Elrick, D.; Boyes, L.; McCormick, J.

    2002-01-01

    The report presents findings from a study to explore how best to engage the public and other stakeholders in decision-making processes on the safe management of radioactive waste. Scottish Council Foundation conducted extended focus groups with the Scottish public in 4 locations, as well as group and one-to-one interviews with stakeholders from the nuclear industry, environment non-governmental organisations (NGOs), bodies experienced in using other public engagement methods, Community Planning partners and media reporters. A review of literature on public involvement in radioactive waste issues and public engagement more generally was also conducted

  18. Risk assessments for radioactive waste management

    International Nuclear Information System (INIS)

    Johnston, P.D.; Rosinger, E.L.J.

    1985-01-01

    The development of risk criteria for radioactive waste disposal is briefly reviewed. The rationale for a definition of risk pertinent to safety assessments of radioactive waste disposal facilities is given, and current regulatory guidance on risk targets in facility design is summarised. Risk assessment methodologies are described, with particular emphasis on system variability analysis techniques. The status of development of the Canadian SYVAC code is described and some examples of recent assessment results are given. The application of risk assessment methodologies to disposal options of interest in the UK is described and some future developments are discussed

  19. Process for the encapsulation of radioactive wastes

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.; Hill, M.L.

    1980-01-01

    Radioactive waste material, particularly radioactive ion exchange resin in the wet condition, is encapsulated in a polyurethane by dispersing the waste in an aqueous emulsion of an organic polyol, a polyisocyanate and an hydraulic cement and allowing the emulsion to set to form a monolithic block. If desired the emulsion may also contain additional filler e.g. sand or aggregate to increase the density of the final product. Preferred polyurethanes are those made from a polyester polyol and an organic diisocyanate, particularly hexamethylene diisocyanate. (author)

  20. Radioactive waste with 14C in Argentina

    International Nuclear Information System (INIS)

    Di Lello, D.S.

    2009-01-01

    14 C is a long half-life radioisotope, which is present in radioactive waste generated during the operation and decommissioning of nuclear power plants. 14 C can also be found in waste generated by medical diagnostic laboratories or any one generated by fields that deal with research and development (mainly connected with the biochemists area). According to international precedents the disposal of 14 C based on the final amount found in radioactive waste and its chemical form have conditioned the design and operation of the facilities (either because of the amount of it or the chemical form in which 14 C was present). We have to take into account that the design of facilities for radioactive waste disposal is included among the obligations of the National Radioactive Waste Management Program (PNGRR). It is absolutely necessary to count with enough information about the characteristics of any waste containing 14 C that is generated in Argentina, in order to be able to fulfil the requirements previously mentioned. The main characteristics of interest in the frame of the present project are: a) the principal reactions that take place for the formation of 14 C; b) The specific concentration of activity in materials where this radio nuclei is formed or is accumulated; c) To know which is the current step in the process of managing these wastes (in Argentina and all over the world). Either if it refers to bulk or conditioned storage, inside the generating facility; d) Transportation possibilities of 14 C under these conditions; e) The accumulated volume and the generation rate of this kind of waste in Argentina. This paper presents an initial collection and evaluation of the information related to the characteristics already mentioned, having gathered published material from the literature and information in the PNGRR up to this moment. The description of the characteristics of the radioactive waste containing 14 C from nuclear power plants, hospitals and research and

  1. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    International Nuclear Information System (INIS)

    Dziewinska, K.M.

    1998-01-01

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities

  2. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Dziewinska, K.M.

    1998-09-28

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities.

  3. Strategy and methodology for radioactive waste characterization

    International Nuclear Information System (INIS)

    2007-03-01

    Over the past decade, significant progress has been achieved in the development of waste characterization as well as control procedures and equipment. This has been as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. This publication discusses the strategy and methodology to be adopted in conceiving a characterization programme for the various kinds of radioactive waste fluxes or packages. No international publications have dealt with this topic in such depth. The strategy elaborated here takes into account the international State of the art in the different characterization methodologies. The strategy and methodology of the characterization programme will depend on the type of radioactive waste. In addition, the accuracy and quality of the characterization programme very much depends on the requirements to demonstrate compliance with the waste acceptance criteria. This publication presents a new subdivision of radioactive waste based on its physicochemical composition and its time dependence: simple/stable, complex/stable, simple/variable and complex/variable. Decommissioning and historical waste deserve special attention in this publication, and they can belong to any of the four categories. Identifying the life cycle of the radioactive waste is a cornerstone in defining the strategy for radioactive waste characterization. The waste acceptance criteria and the performance assessment of the repository are other key factors in the strategy and

  4. The Radioactive Waste Management Programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, A. R.; Vico, E.

    2000-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Ministry of Industry and Energy. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Industry and Energy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  5. The radioactive waste management programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, Alvaro R.; Vico, Elena

    2002-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Spanish Government. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Economy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The Fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  6. Properties of radioactive wastes and waste containers

    International Nuclear Information System (INIS)

    Arora, H.S.; Dayal, R.

    1984-01-01

    Major tasks in this NRC-sponsored program include: (1) an evaluation of the acceptability of low-level solidified wastes with respect to minimizing radionuclide releases after burial; and (2) an assessment of the influence of pertinent environmental stresses on the performance of high-integrity radwaste container (HIC) materials. The waste form performance task involves studies on small-scale laboratory specimens to predict and extrapolate: (1) leachability for extended time periods; (2) leach behavior of full-size forms; (3) performance of waste forms under realistic leaching conditions; and (4) leachability of solidified reactor wastes. The results show that leach data derived from testing of small-scale specimens can be extrapolated to estimate leachability of a full-scale specimen and that radionuclide release data derived from testing of simulants can be employed to predict the release behavior of reactor wastes. Leaching under partially saturated conditions exhibits lower releases of radionuclides than those observed under the conventional IAEA-type or ANS 16.1 leach tests. The HIC assessment task includes the characterization of mechanical properties of Marlex CL-100, a candidate radwaste high density polyethylene material. Tensile strength and creep rupture tests have been carried out to determine the influence of specific waste constituents as well as gamma irradiation on material performance. Emphasis in ongoing tests is being placed on studying creep rupture while the specimens are in contact with a variety of chemicals including radiolytic by-products of irradiated resin wastes. 12 references 6 figures, 2 tables

  7. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    OpenAIRE

    Ammar F. Abbas

    2016-01-01

    Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect ...

  8. Radioactive waste communication policy in Spain

    International Nuclear Information System (INIS)

    Gonzalez, V.

    1993-01-01

    ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.), is a State-owned company, founded in 1985 and is responsible for radioactive waste management in Spain. ENRESA's activities are developed following a General Radioactive Waste Plan approved by the Spanish Government. As in most countries, Spanish public opinion is concerned with the most activities related to radioactivity or rad-waste management due to different facts but mainly to a lack of information on the matter. This situation provides misuse of information on it by some politicians, green groups and media which increases distrust of public on responsible companies and institutions. To gain public acceptance, it would be necessary to develop long-term information policy, due to the fact that results in communication are reached in the long term. ENRESA is carrying out a Communication Plan (CP) which has been implemented in a continuous way with success around the area of the disposal site of low and intermediate level wastes as well as around an old uranium mill factory in which remedial actions are being implemented. The implantation of CP at a national level is being done stepwise. The more relevant issues related to the radioactive waste situation in Spain, as well as the communication actions are explained in this document

  9. Radioactive waste management of urban area

    International Nuclear Information System (INIS)

    Huang, Z.; Gu, S.X.

    1993-01-01

    The several years experience of radioactive waste management in Shanghai of China shows that the centralized management is quite successful and effective. Rad waste generated in urban area would be treated with further concern in the respect of radiation and environmental protection. In this respect, there is a need for a professional organisation to undertake the necessary regulation, and demonstrate that high standards of design, planning, management and operation could be met. The experience in China is suitable to manage and dispose rad waste generated from the civil applications in urban area, and valuable to the developing country and area in particular. It is concluded that the centralized management of intermediate level and low level radioactive waste is an optimum choice for urban area

  10. Stakeholder confidence and radioactive waste disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Any significant decisions regarding geologic disposal of radioactive waste will need a comprehensive public review and a thorough involvement of all relevant stakeholders, such as waste generators, waste management agencies, regulatory authorities, local communities and elected officials. The participation of non-technical stakeholders will become increasingly important as more countries move towards siting and implementing geologic repositories. The decision-making process and avenues for stakeholder involvement differ from country to country. It is important to identify similarities and differences, understand the key concerns of the various stakeholders, and develop means to interact effectively. The Nuclear Energy Agency recently set up a Forum on Stakeholder Confidence charged with distilling the lessons that can be learnt from national and international experience. These proceedings of the Forums first workshop held in August 2000 provide an overview of OECD countries' experience in the field of stakeholder confidence and radioactive waste disposal. (author)

  11. Characterization of radioactive waste forms. Volume 1

    International Nuclear Information System (INIS)

    Brodersen, K.; Nilsson, K.

    1989-01-01

    This document is the second yearbook for Task 3 of the European Communities 1985-89 programme of research on radioactive waste management and disposal carried out by public organizations and private firms in the Community through costsharing contracts with the Commission of the European Communities. The report, in two volumes, describes progress made in 1987 within the field of Task 3: Testing and evaluation of conditioned waste and engineered barriers. The first volume of the report covers Item 3.1 Characterization of low and medium-level radioactive waste forms and Item 3.5 Development of test methods for quality assurance. The second volume covers Item 3.2: High-level and alpha waste characterization and Item 3.3: Other engineered barriers. Item 3.4 on the round robin study will be treated in a separate report

  12. Cementation of radioactive liquid scintillator waste simulate

    International Nuclear Information System (INIS)

    Bayoumi, T.A.

    2010-01-01

    Liquid scintillation counting is an important analytical tool with extensive applications in medicine and basic applied research and used in quantification of □ -particles, weak □ and x-rays. The generated spent liquid scintillator radioactive waste should be limited and controlled to protect man and his environment. In this study, the radioactive spent liquid scintillator waste simulate (SLS) was immobilized in cement matrix using a surfactant in order to facilitate and increase the amount of SLS incorporated into the cementitious materials. Mechanical properties of the final cement waste form were acceptable for blocks containing up to 20% SLS in presence of surfactant. X-ray diffraction, IR analysis and scanning electron microscope proved that the hydration of cement materials is not significantly affected by organic scintillator waste. Therefore, the cement matrix could be recommended for solidification of SLS for the acceptable mechanical, physical and chemical characterizations reached.

  13. INEEL Radioactive Liquid Waste Reduction Program

    International Nuclear Information System (INIS)

    Millet, C.B.; Tripp, J.L.; Archibald, K.E.; Lauerhauss, L.; Argyle, M.D.; Demmer, R.L.

    1999-01-01

    Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most

  14. Education and training in radioactive waste topics

    International Nuclear Information System (INIS)

    Falcon Cabrera, S.; Marco Arboli, M.

    2003-01-01

    Tecnologically developed countries rely on nuclear fission as an important source for the production of electrical power. some of th epower plants in current generation will continue to be operated for at least 20 years, and there exist plans for the future. As a consequence, these countries take part in R and D projects oriented towards progress to be made in the management of radioactive waste, and particularly in the industrial implementation of technical solutions for the management of long-lived waste. The great experience of CIEMAT in this field has made it possible that different standard and re-creation training actions were carried out in the last years. At national level, these actions have covered both the question of reducing the impact of radioactive waste and the problem of its management. In the first subject, actions have been focused to the following aspects: Characterization of radioactive waste, where the present-day knowledge on efficient technologies of physicochemical and radiological characterization of low and medium activity waste are provided. Partitioning and Transmutation, where the development of new technologies like the Accelerator Driven Systems (ADS) and the climination by transmutation, that reduce the hazards associated with waste of high activity are shown. Decommissioning of nuclear ficilities, development of techniques which will allow to mange these wastes with minimum radioactive waste generation, using new techniques for the decontamination and cutting of contaminated materials that have to be immobilized. On the second subject Management of Radioactive Wastes, a doctorate course organised in collaboration with the Polytechnic University of Madrid, and sponsored by ENRESA. At the international level, CIEMAT usually takes part in training activities of the technical assistance programmes of the International Atomic Energy agency (IAEA). In particular, actions related to Safety assessment methodologies for near surface

  15. Treatment of radioactive organics liquid wastes

    International Nuclear Information System (INIS)

    Morales Galarce, Tania

    1999-01-01

    Because of the danger that radioactive wastes can pose to society and to the environment a viable treatment alternative must be developed to prepare these wastes for final disposal. The waste studied in this work is a liquid organic waste contaminated with the radioisotope tritium. This must be treated and then changed into solid form in a 200 liter container. This study defined an optimum formulation that immobilizes the liquid waste. The organic waste is first submitted to an absorption treatment, with Celite absorbent, which had the best physical characteristics from the point of view of radioactive waste management. Then this was solidified by forming a cement mortar, using a highly resistant local cement, Polpaico 400. Various mixes were tested, with different water/cement, waste/absorbent and absorbed waste/cement ratios, until a mixture that met the quality control requirements was achieved. The optimum mixture obtained has a water/cement ratio of 0.35 (p/p) that is the amount of water needed to make the mixture workable, and minimum water for hydrating the cement; a waste/absorbent ration of 0.5 (v/v), where the organic liquid is totally absorbed, and is incorporated in the solid's crystalline network; and an absorbed waste/cement ratio of 0.8 (p/p), which represents the minimum amount of cement needed to obtain a solid product with the required mechanical resistance. The mixture's components join together with no problem, to produce a good workable mixture. It takes about 10 hours for the mixture to harden. After 14 days, the resulting solid product has a resistance to compression of 52 Kgf/cm2. The formulation contains 22.9% immobilized organic waste, 46.5% cement, 14.3% Celite and 16.3% water. Organic liquid waste can be treated and a solid product obtained, that meets the qualitative and quantitative parameters required for its disposal. (CW)

  16. Requalification of Legacy Radioactive Waste in Germany

    International Nuclear Information System (INIS)

    Bandt, Gabriele; Hoffmann, Paulina; Spicher, Gottfried; Filss, Martin; Schauer, Claudia

    2016-01-01

    Conclusion: • Large stocks of legacy radioactive waste exist, which do not comply with the requirements of the Konrad repository. • Requalification campaigns with thousands of waste packages have successfully been carried out. • Quality assurance plans contain all necessary steps of specific (requalification) campaigns and optimize the procedures for each campaign in advance. • When sophisticated measurement equipment was needed an iterative procedure was adopted. Repeated evaluations of the nondestructive res. destructive measurements limited the measures to the necessary limit.

  17. National policy on radioactive waste management

    International Nuclear Information System (INIS)

    Jova, Luis; Metcalfa, Phil; Rowata, John; Louvata, Didier; Linsley, Gordon

    2008-01-01

    Every country should have some form of policy and strategy for managing its spent fuel and radioactive waste. Such policies and strategies are important; they set out the nationally agreed position and plans for managing spent fuel and radioactive waste and are visible evidence of the concern and intent of the government and the relevant national organisations to ensure that spent fuel and radioactive waste are properly taken care of in the country. There is a large diversity in the types and amounts of radioactive waste in the countries of the world and, as a result of this diversity, the strategies for implementing the policies may be different, although the main elements of policy are likely to be similar from country to country. In some countries, the national policy and strategy is well established and documented, while in others there is no explicit policy and strategy statement and, instead, it has to be inferred from the contents of the laws, regulations and guidelines. The present paper describes the work undertaken by the International Atomic Energy Agency (IAEA) related to identifying the main elements of national policies for spent fuel and radioactive waste management, recognising that policies and strategies vary considerably depending on, among other things, the nature and scale of applications of radioactive material in a country. An indication is provided of what might be contained in national policies recognizing that national policy and strategy has to be decided at the national level taking into account national priorities and circumstances. The paper is concerned with the contents of policies and strategies and does not address the development of national laws, regulations and guidelines - although these are clearly related to the contents of the national policy and strategy. (author)

  18. Management of radioactive wastes (solids and liquids) of CDTN

    International Nuclear Information System (INIS)

    Prado, M.A.S. do; Reis, L.C.A.

    1984-01-01

    Estimates of solid and liquid radioactive wastes produced in CDTN, the foreseen treatment and the responsibilities of various organs of CDTN involved in radioactive waste management are presented. (C.M.)

  19. Guide for the control and recording of radioactive wastes

    International Nuclear Information System (INIS)

    1987-01-01

    This guide present the aspects related to the control and recording of radioactive wastes in their points of origin. Then it is of great importance to fulfill these instructions so as to achieve a successful management of radioactive waste

  20. Glasses used for the high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-06-01

    High level radioactive wastes generated by the reprocessing of spent fuels is an important concern in the conditioning of radioactive wastes. This paper deals with the status of the knowledge about glasses used for the treatment of these liquids [fr

  1. Regulation on radioactive waste management, Governmental Agreement No. 559-98

    International Nuclear Information System (INIS)

    1998-01-01

    This regulation defines the responsibilities on the radioactive waste management in Guatemala including the requirements of users, handling of radioactive wastes, authorization of radioactive waste disposal, transport of radioactive wastes and penalties

  2. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  3. Conflict, public communication, and radioactive waste management

    International Nuclear Information System (INIS)

    Payne, B.A.; Williams, R.G.

    1985-01-01

    Of the technical, political, and social problems associated with radioactive waste management, least is known about the latter two. Lay persons tend to generalize negative attitudes about other nuclear activity to radioactive waste management. Thus, conflict appears inevitable between the general public, citizen action groups, and decision-makers on radioactive waste management. The basis of conflict can be found in the value orientation of certain groups and in differing perceptions of risk. The paper is in three parts. First the sources of conflict over radioactive waste management issues are reviewed. The negative attitudes and fears of the public toward different types of projects involving radioactivity, value conflicts, and differential perceptions of risk are cited as sources. Next are discussed the consequences of conflict in terms of sociological theory. Finally, discussed is how conflict can be directed and managed to produce an informed decision-making process. When the public is sensitized to an issue, when prevailing attitudes on the issue are negative, and when perceived risks are high - all of which are characteristic of waste management issues - specific steps should be taken to establish a legitimate process of communication and interaction between the public and the sponsor agency. When conflict is recognized as inevitable, the goal of a communications programs is no longer to avoid it. It is to use the increased awareness to increase knowledge about waste management issues and public participation in decisions so that the final solution is acceptable at some level to all parties. Other benefits, such as increased agency/group cohesion, can also be realized as consequence of conflict

  4. Shallow land burial of radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Rose, R.R.

    1985-01-01

    The authors discuss low-level, solid radioactive wastes buried in the ground since the startup of nuclear operations by the Manhattan Engineer District in the early 1940's. These operations were originally intended to be temporary so the primary consideration in locating land burial sites was their accessibility from the source of waste production. Early land-burial facilities were located on large reservations owned by the U.S. Atomic Energy Commission (AEC) and operated by their prime contractors. Shallow land burial consists of excavating a trench or vault, emplacing the waste, minimizing void space within the disposal unit, and covering the waste with earth to control access to the waste. Problems encountered in the land-burial of radioactive wastes are classified into areas which relate to the environmental characteristics of the sites, waste characteristics, operational practices and control, and predictive capability. The most serious environmentally related problems involve water management. Water provides primary vehicle for both erosional processes, which affect the structural integrity of the waste trenches, and for the migration of radionuclides. Although there is consensus that the current level of off-site movement of radionuclides from operating burial grounds does not constitute an immediate health hazard, there is less certainty with respect to the ability of the facilities to provide long-term containment and isolation

  5. Determination of a radioactive waste classification system

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for /sup 239/Pu or mixed transuranic waste is 1.0 ..mu..Ci/cm/sup 3/ of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10/sup 8/ per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity.

  6. Determination of a radioactive waste classification system

    International Nuclear Information System (INIS)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for 239 Pu or mixed transuranic waste is 1.0 μCi/cm 3 of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10 8 per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity

  7. Crystallization of sodium nitrate from radioactive waste

    International Nuclear Information System (INIS)

    Krapukhin, V.B.; Krasavina, E.P.; Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs

  8. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  9. Radioactive waste management at ANSTO - Managing current and historic wastes

    International Nuclear Information System (INIS)

    Harries, J.; Dimitrovski, L.; Hart, K.; Levins, D.

    2001-01-01

    Full text: The Australian Nuclear Science and Technology Organisation (ANSTO) site at Lucas Heights has operated as a nuclear site for over 40 years and most of the waste generated is still stored at the site. The 10 MW heavy water research reactor (HIFAR) has operated at Lucas Heights for over 40 years with associated radioisotope and radiopharmaceutical production facilities. HIFAR is scheduled to shut down in 2005 and a contract has been signed for a multipurpose 20 MW research reactor which, amongst other uses, will provide continued radiopharmaceutical production and neutron beam research. In addition to these activities, a wide range of nuclear science and technology R and D is carried out at the site. In 1995, ANSTO issued its radioactive waste management policy which made a commitment to: (a) complying with all regulatory requirements; (b) ensuring that radiation dose rates were kept as low as reasonably achievable (the ALARA principle); (c) disposing of waste when appropriate disposal routes are available; and (d) being in accord with international best practice. An extensive audit was earned out of ANSTO's waste management facilities and practices. The recommendations arising from this audit became the basis for an integrated five year Waste Management Action Plan, which began in 1996. The Plan dealt with legacy issues that had arisen from the accumulation of the radioactive waste at Lucas Heights. It involved construction and operation of improved storage facilities for low- level radioactive waste, better monitoring of existing storage facilities for spent research reactor fuel and intermediate level liquid wastes, and conversion of liquid and solid wastes into more stable forms suitable for prolonged storage. Solidification of the intermediate level liquid waste has been a major priority of the Waste Management Action Plan. This acidic waste is generated during the production of molybdenum-99 for radiopharmaceutical use. A hot cell process was

  10. High-level radioactive wastes. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations

  11. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  12. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1980-01-01

    A system is disclosed for disposing of radioactive mixed liquid and particulate waste material from nuclear reactors by solidifying the liquid components into a free standing hardened mass with a syrup of partially polymerized particles of urea formaldehyde in water and a liquid curing agent

  13. Method of processing low level radioactive wastes

    International Nuclear Information System (INIS)

    Ichinose, Yoshiro; Takaya, Akihiro.

    1985-01-01

    Purpose: To enable to dispose a great amount of low level radioactive wastes with safety in the process of burying underground radioactive wastes tightly sealed in vessels. Method: Water shield walls surrounding the boundary of a disposal site are constructed by the method of successively repeating the steps of digging out shafts holes with the width corresponding to the wall thickness and reaching the water impermeable layer of the disposal site, putting iron wire cages into the holes and then spiking concretes. Then, vertical shafts each of a rectangular transversal section are dug out in the disposal site surrounded with the walls with an appropriate gap from the wall. Then, after accommodating vessels containing low level radioactive wastes tightly shield therein in the shafts, stabilizing liquid filled in the shafts is replaced with self-curing stabilizing liquid, by which radioactive wastes can be disposed with safety being covered around the periphery thereof and with the outside of them being surrounded with the water shield walls. (Horiuchi, T.)

  14. Radioactive waste management: A status report

    International Nuclear Information System (INIS)

    1985-08-01

    This publication briefly summarizes the activities of the IAEA and its Member States in the area of radioactive waste management. The information is presented in two major sections. One section presents a brief overview of the Agency's programme, and the other section provides a status report on the activities in many of the Agency's Member States

  15. Annual radioactive waste tank inspection program - 1991

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1992-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1991 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report

  16. Radioactive waste management - a European issue

    International Nuclear Information System (INIS)

    Blohm-Hieber, U.

    2011-01-01

    Today, the European Union (EU) nuclear panorama is changing rapidly. Many Member States have reconsidered the nuclear energy option and its contribution towards a balanced energy mix. Such perspectives fit well with the European 2020 Strategy for smart, sustainable and inclusive growth which aims at a 'Resource efficient Europe'. This objective demands a gradual but clear shift towards a low-carbon economy. In fact today, nuclear power already contributes to 2/3 of the low-carbon electricity production. It is unquestionably our shared duty to ensure that nuclear energy be used in a responsible manner. Nuclear safety is, and remains, an absolute priority for the EU. This includes the highest safety standards for the design, for the operation and for the security of nuclear installations. But, it also extends to the safe management of spent fuel and radioactive waste, generated in all Member States, regardless of whether they have nuclear power plants or not. Nuclear techniques are also to be found in the medical sector, for cancer therapy, and in industry, in such applications as the quality control of welds. The draft of the European directive on radioactive wastes imposes that all radioactive waste should be disposed in the member state that has produced it except in case of agreements between member states. This directive does not apply to military wastes, to ore tailings and authorized radioactive releases

  17. Radioactive wastes immobilization in glasses and ceramics

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A review on the several options available for encapsulation and disposal of high level radioactive liquid wastes is presented, along with the relative merits and disadvantages of each material to be encapsulated. Some of the main fields requiring further advancements in both scientific and technological research are discussed and a few suggestions for the solution of the brazilian problem are given. (Author) [pt

  18. Acceptance criteria for radioactive waste deposition

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The disposal of low-and intermediate level radioactive waste in either shallow ground or rock cavities must be subjected to special guidelines which are used by national authorities and implementing bodies when establishing and regulating respositories. These informations are given by the acceptance criteria and will depend on specific site conditions and optmized procedures. (author) [pt

  19. Impact of radioactive waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Rogers, L.E.; Uresk, D.W.

    1977-01-01

    Impact assessment of radioactive waste management operations is considered separately for nonradiological impact on biota, impact on ecosystem structure and function and radiological impact on biota. Localized effects related to facility construction and maintenance activities probably occur but the large expanse of relatively undisturbed surrounding landscape minimizes any overall effects

  20. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Palmer, R.

    1985-01-01

    The paper presents arguments against the marine disposal of radioactive wastes. Results of American studies of deep-water dump-sites, and strontium levels in fish, are cited as providing evidence of the detrimental effects of marine dumping. The London Dumping Convention and the British dumping programme, are briefly discussed. (U.K.)

  1. Radioactive waste management plan. Plan 82

    International Nuclear Information System (INIS)

    1982-06-01

    The report is the first account of the nuclear power utilities of Sweden about the plans for the final disposal of the radioactive waste products of the nuclear power. Part 1 describes the general background, the plans for research and development, including the necessary facilities. The time schedule and the calculated costs of the operations are presented. (G.B.)

  2. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  3. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  4. 77 FR 10401 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-02-22

    ...-3150-AI92 [NRC-2011-0012] Low-Level Radioactive Waste Management Issues AGENCY: Nuclear Regulatory... framework for the management of commercial low-level radioactive waste (LLW). The purpose of this public... version of this Order has been in place for about 11 years and applies to management of radioactive waste...

  5. 77 FR 26991 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-05-08

    ...] RIN 3150-AI92 Low-Level Radioactive Waste Management Issues AGENCY: Nuclear Regulatory Commission... the management of commercial low-level radioactive waste (LLW). The purpose of this public meeting is... experience in the management of LLW and intermediate-level radioactive wastes that did not exist at the time...

  6. Must we be afraid by the radioactive waste?

    International Nuclear Information System (INIS)

    2002-01-01

    In the framework of the information on radioactive waste, scientists and politicians give information on the radioactive waste management in France, the researches in the framework of the law of the 30 december 1991, the national agency for the radioactive waste (ANDRA) and its sites. (A.L.B.)

  7. Industrial radioactive wastes: what are we talking about?

    International Nuclear Information System (INIS)

    Le Bars, Y.

    2001-01-01

    The subject of radioactive wastes is developed through their origin, their classification, their scale of size. The different storage centers are given and the new channels of radioactive wastes management are tackled. The particular case of high level and long term radioactive wastes is detailed. (N.C.)

  8. Report of safety of the characterizing system of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.; Jimenez D, J.; Reyes L, J.

    1998-09-01

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  9. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  10. Radioactive hospital wastes. Radiations under control

    International Nuclear Information System (INIS)

    Bondeelle, A.; Delmotte, H.; Gauron, C.

    2006-07-01

    A set of articles proposes an overview of legal and regulatory evolutions regarding radioactive hospital wastes. These legal measures and evolutions are notably present in the Public Health code, in the Labour code. An article outlines the role of the radiation protection expert in the process of elimination of contaminated wastes (four major steps for this elimination are indicated; peculiarities of the hospital are outlined, as well as control procedures and the importance of training and information). An article describes the specific activity of the Creteil incinerator which comprises a unit for the incineration of care activity wastes under a very constraining regulation

  11. Handbook of high-level radioactive waste transportation

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  12. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  13. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  14. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  15. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  16. Optimization of Concrete Composition in Radioactive Waste Management

    International Nuclear Information System (INIS)

    IIija, P.

    1999-01-01

    Low and Intermediate level radioactive waste re presents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed . In this paper methods and optimization of concrete container composition, used for storing radioactive waste, is presented

  17. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  18. Packaging of radioactive wastes for sea disposal

    International Nuclear Information System (INIS)

    1981-02-01

    The Convention on the Prevention of Marine Pollution by the Dumping of Wastes and Other Matter, known as the London Dumping Convention was adopted by an inter-governmental conference in London in 1972 and came into force in 1975. In 1977, the IAEA Board of Governors agreed that there is a continuing responsibility for the IAEA to contribute to the effectiveness of the London Dumping Conventions by providing guidance relevant to the various aspects of dumping radioactive wastes at sea. In the light of the above responsibilities, the IAEA organized a Technical Committee Meeting from 3 to 7 December 1979 to assess the current situation concerning the requirements and the practices of packaging radioactive wastes for dumping at sea with a view to providing further guidance on this subject. The present report summarizes the results of this meeting

  19. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  20. The management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Peyrin, J.O.

    1992-01-01

    Enquiries performed by nuclear medicine services together with ANDRA in order to characterize the radioactive wastes from hospital origin have led to suggest some improvements in the management of these products: improved screening on the production site by rationalized collection, planning of a local storage installation for decay of 125 I-containing products, systematic education of concerned hospital staff, in particular to prevent infectious risks, obtaining legislatively a change of class for tritiated and carbonated hospital radioactive wastes, which will be then considered as common wastes. The practical application of these arrangements in hospital by the 'radiation protection competent person' would liberate hospital departments from systematic appeal to ANDRA and thus result in money saving

  1. Soluble pig for radioactive waste transfer lines

    International Nuclear Information System (INIS)

    Ohl, P.C.; Pezeshki, C.

    1997-01-01

    Flushing transfer pipe after radioactive waste transfers generates thousands of gallons of additional radioactive waste each year at the Hanford site. The use of pneumatic pigging with waste soluble pigs as a means to clear transfer piping may be an effective alternative to raw water flushes. A feasibility study was performed by a group of senior mechanical engineering students for their senior design project as part of their curriculum at Washington State University. The students divided the feasibility study into three sub-projects involving: (1) material research, (2) delivery system design, and (3) mockup fabrication and testing. The students screened through twenty-three candidate materials and selected a thermoplastic polymer combined 50:50 wt% with sucrose to meet the established material performance criteria. The students also prepared a conceptual design of a remote pneumatic delivery system and constructed a mockup section of transfer pipe for testing the prototype pigs

  2. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  3. Radioactive waste disposal: an international law perspective

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1989-01-01

    The question of radioactive waste disposal is the most intractable technical and political problem facing nuclear industry. Environmentalists world-wide demand a nuclear waste policy that must be ecologically acceptable internationally. Radioactive wastes and oil pollution were the first two types of marine pollution to receive international attention and various marine pollution controls were established. Ocean disposal was co-ordinated by the Nuclear Energy Agency and the Organization of Economic Co-operation and Development in 1967. The first treaty was the 1958 Convention on the High Seas (High Seas Convention). In response to its call for national co-operation the International Atomic Energy Agency (IAEA) established its Brynielson panel. The IAEA first issued guidelines on sea dumping in 1961. The London Dumping Convention, written in 1972, is the only global agreement concerned solely with the disposal of wastes in the marine environment by dumping. None of the global agreements make specific reference to sea-bed disposal of high-level radioactive wastes. Negotiations began at the Third UN Conference on the Law of the Sea (UNCLOS III) for the codification of a comprehensive treaty concerned with the protection, conservation, sustainable use and development of the marine environment. Burial in deep geological formations is a method of HLW disposal which decreases the chances of accidental intrusion by mankind and has little likelihood of malicious intrusion. National waste management programmes of different countries differ but there is agreement on the acceptable technical solutions to issues of waste management. The final disposition of HLW - storage or disposal - has not been decisively determined, but there is growing consensus that geological land-based disposal is the most viable alternative. Expanded international technical co-operation could well reduce the time needed to develop effective waste disposal mechanisms

  4. Characterization of radioactive waste forms and packages

    International Nuclear Information System (INIS)

    1997-01-01

    This publication provides a compendium of waste form, container and waste package properties which are potential importance for waste characterization to support approval for treatment/conditioning, storage and disposal methods and for predicting both short and long term waste behaviour in the repository environment. The properties to be characterized are defined in terms of the technical rationale for their control and characterization. Characterization methods for each property are described in general with reference to detailed discussions existing in the literature. Guidance as to the advantages and disadvantages of individual methods from a technical perspective is also provided where appropriate. This report deals with the characterization of all types of radioactive wastes except spent fuel intended for direct disposal. 115 refs, 17 figs, 12 tabs

  5. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar F. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained.The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy.A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide.

  6. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar S. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production. PET plastic waste converting to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained. The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy. A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide. Normal 0 false false false EN-US X-NONE AR-SA

  7. National index of radioactive wastes

    International Nuclear Information System (INIS)

    1995-01-01

    According to the 30 th december 1991 law, ANDRA is the public authority in charge of indexing the state and localisation of all the nuclear wastes existing on national territory. This index is the third edition of the resulting file. (D.L.)

  8. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  9. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  10. 2009 National inventory of radioactive material and wastes. Synthesis report

    International Nuclear Information System (INIS)

    2009-01-01

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  11. Radioactive waste vitrification offgas analysis proposal

    International Nuclear Information System (INIS)

    Nelson, C.W.; Morrey, E.V.

    1993-11-01

    Further validation of the Hanford Waste Vitrification Plant (HWVP) feed simulants will be performed by analyzing offgases during crucible melting of actual waste glasses and simulants. The existing method of vitrifying radioactive laboratory-scale samples will be modified to allow offgas analysis during preparation of glass for product testing. The analysis equipment will include two gas chromatographs (GC) with thermal conductivity detectors (TCD) and one NO/NO x analyzer. This equipment is part of the radioactive formating offgas system. The system will provide real-time analysis of H 2 , O 2 , N 2 , NO, N 2 O, NO 2 , CO, CO 2 , H 2 O, and SO 2 . As with the prior melting method, the product glass will be compatible with durability testing, i.e., Product Consistency Test (PCT) and Material Characterization Center (MCC-1), and crystallinity analysis. Procedures have been included to ensure glass homogeneity and quenching. The radioactive glass will be adaptable to Fe +2 /ΣFe measurement procedures because the atmosphere above the melt can be controlled. The 325 A-hot cell facility is being established as the permanent location for radioactive offgas analysis during formating, and can be easily adapted to crucible melt tests. The total costs necessary to set up and perform offgas measurements on the first radioactive core sample is estimated at $115K. Costs for repeating the test on each additional core sample are estimated to be $60K. The schedule allows for performing the test on the next available core sample

  12. Status and challenges for radioactive waste management

    International Nuclear Information System (INIS)

    Riotte, H.

    2011-01-01

    In its 2008 Nuclear Energy Outlook the NEA reviewed the status of radioactive waste management world-wide and noted that the technology for disposal of short-lived low- and intermediate-level radioactive waste is well developed. The review concluded that all OECD countries with major nuclear programmes either operate corresponding waste disposal facilities or are in an advanced stage of developing them. By contrast, the developmental progress of HLW/SNF management programmes varies widely between countries; not to mention that there is currently no repository operating that could take spent nuclear fuel or high-level waste from reprocessing. In its collective opinion 'Moving forward with geological disposal' the NEA noted that deep underground disposal in geological formations is seen worldwide as the only sustainable endpoint for the management of these types of waste, as it affords unparalleled protection without reliance on active safety monitoring and controls. While waste management programmes in some countries are well matured and countries like Finland, France and Sweden aim to operate geologic repositories in the next decade, others need to develop their national strategies, plans and corresponding actions for managing radioactive waste further. Periodically reviewed national waste management plans, as legally required for EU member countries by a recent Directive, can provide a co-operation framework for all national institutional players and a means to measure progress. In implementing sustainable solutions for the long-term management of HLW/SNF, specific challenges lay in establishing an efficient policy and regulatory framework that (a) defines a desired level of safety over the various time scales to be considered and (b) allows for sustainable decision making procedures by involving public and stakeholder in a flexible, step-wise implementation process. Technical confidence in the safety of a repository needs to be demonstrated in a modern

  13. Decommissioning standards: the radioactive waste impact

    International Nuclear Information System (INIS)

    Russell, J.L.; Crofford, W.N.

    1979-01-01

    Several considerations are important in establishing standards for decommissioning nuclear facilities, sites and materials. The review includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions, and low-level radioactive waste. Decommissioning appears more closely related to radiation protection than to waste management, although it is often carried under waste management programs or activities. Basically, decommissioning is the removal of radioactive contamination from facilities, sites and materials so that they can be returned to unrestricted use or other actions designed to minimize radiation exposure of the public. It is the removed material that is the waste and, as such, it must be managed and disposed of in an environmentally safe manner. It is important to make this distinction even though, for programmatic purposes, decommissioning may be carried under waste management activities. It was concluded that the waste disposal problem from decommissioning activities is significant in that it may produce volumes comparable to volumes produced during the total operating life of a reactor. However, this volume does not appear to place an inordinate demand on shallow land burial capacity. It appears that the greater problems will be associated with occupational exposures and costs, both of which are sensitive to the timing of decommissioning actions

  14. Process of radioactive waste gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.; Schroter, H.J.

    1975-01-01

    A method is described in which the radiation level of waste gases from nuclear power plants containing both activation and fission gases is controlled at or below limits permitted by applicable standards by passing such gases, prior to release to the atmosphere, through an adsorptive delay path including a body of activated carbon having the relation to the throughput and character of such gases. (U.S.)

  15. Combustible radioactive waste treatment by incineration and chemical digestion

    International Nuclear Information System (INIS)

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-01-01

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste

  16. Method of encapsulating waste radioactive material

    International Nuclear Information System (INIS)

    Forrester, J.A.; Rootham, M.W.

    1982-01-01

    When encapsulating radioactive waste including radioactive liquid having a retardant therein which retards the setting of cements by preventing hydration at cement particles in the mix, the liquid is mixed with ordinary Portland cement and subjected, in a high shear mixer, to long term shear far in excess of that needed to form ordinary grout. The controlled utilization of the retardants plus shear produces a thixotropic paste with extreme moldability which will not bleed, and finally sets more rapidly than can be expected with normal cement mixtures forming a very strong product. (author)

  17. Geological problems in radioactive waste isolation

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, ''Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately

  18. Geochemical signature of radioactive waste: oil NORM

    International Nuclear Information System (INIS)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes

    2017-01-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as 228 Ac, 214 Bi and 214 Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  19. Geological problems in radioactive waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. (ed.)

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  20. Geochemical signature of radioactive waste: oil NORM

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes, E-mail: gilberto.costa@cnen.gov.br, E-mail: jcmoura@cnen.gov.br, E-mail: cgomes@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Div. de Controle de Rejeitos e Transporte de Materiais Radioativos

    2017-07-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as {sup 228}Ac, {sup 214}Bi and {sup 214}Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  1. High-risk biodegradable waste processing by alkaline hydrolysis.

    Science.gov (United States)

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Sindrak, Zoran; Spehar, Ana; Kalambura, Dejan

    2011-09-01

    Biodegradable waste is by definition degraded by other living organisms. Every day, meat industry produces large amounts of a specific type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies have been developed, and animal wastes have now been used for energy production. Certain parts of this waste, such as brains and spinal cord, are deemed high-risk substances, because they may be infected with prions. Their treatment is therefore possible only in strictly controlled conditions. One of the methods which seems to bear acceptable health risk is alkaline hydrolysis. This paper presents the results of an alkaline hydrolysis efficiency study. It also proposes reuse of the obtained material as organic fertiliser, as is suggested by the analytical comparison between meat and bone meal and hydrolysate.

  2. Radioactive waste management; the realities as against the myths

    International Nuclear Information System (INIS)

    Williams, I.

    1980-01-01

    Nuclear power generation is now an essential requirement for the mankind in the current energy difficulties. The problem of radioactive waste management is arousing the opposition, but it must not inhibit the utilization of nuclear energy. Radioactive waste management concerns the whole course from its occurrence to its final disposal. The purpose of the management is then to protect absolutely the human beings of present and future generations from the danger of radioactivity. Radioactive wastes are varied much in their kinds and natures. While the management technology is nearly all established, the amounts of wastes are increasing. The following matters are described. Definition of radioactive waste management, fundamental strategies of the management, kinds of radioactive wastes, the present situation of radioactive waste management, and problems in the management. (J.P.N.)

  3. Database basic design for safe management radioactive waste

    International Nuclear Information System (INIS)

    Son, D. C.; Ahn, K. I.; Jung, D. J.; Cho, Y. B.

    2003-01-01

    As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used in association with national radioactive waste management project, standardization of data form and its protocol is required, Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management

  4. Waste gas combustion in a Hanford radioactive waste tank

    International Nuclear Information System (INIS)

    Travis, J.R.; Fujita, R.K.; Spore, J.W.

    1994-01-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion

  5. An improved analytical method for iodine-129 determination in low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Kong; Wang, TsingHai; Jian, Li-Wei; Chen, Wei-Han; Wang, Chu-Fang [National Tsing Hua Univ., Hsinchu, Taiwan (China). Dept. of Biomedical Engineering and Environmental Sciences; Tsai, Tsuey-Lin [Atomic Energy Council, Taiwan (China). Chemical Analysis Div.

    2014-07-01

    In this study, an alkaline-digestion pretreatment and a subsequent ICP-MS measurement were conducted for iodine-129 (I-129) determination in low-level radioactive waste. A TMAH + H{sub 2}O{sub 2} + Triton X-100 mixed alkaline digestion was the most effective mixture for I-129 determination. Using this alkaline reagent, a high level of I-129 recovery (101 ± 6%) was achieved for the analysis of the I-129-spiked standard reference materials NIST 2709 and 2711. Importantly, the I-129 concentrations determined for ten real samples provided by the Lan-Yu radioactive waste temporary storage site were found to be below the detection limit (0.011 mg/kg). This value was only approximately 30-70% of the values determined using the I-129/Cs-137 scaling factor. This means that using the I-129/Cs-137 scaling factor severely overestimates the I-129 concentration in these low-level radioactive wastes. We therefore suggest that a detailed re-inspection of the I-129/Cs-137 scaling factor should be performed to appropriately categorize these low-level radioactive wastes.

  6. Method and equipment of processing radioactive laundry wastes

    International Nuclear Information System (INIS)

    Shirai, Takamori; Suzuki, Takeo; Tabata, Masayuki; Takada, Takao; Yamaguchi, Shin-ichi; Noda, Tetsuya.

    1985-01-01

    Purpose: To effectively process radioactive laundry wastes generated due to water-washing after dry-cleaning of protective clothings which have been put on in nuclear facilities. Method: Dry cleaning soaps and ionic radioactive materials contained in radioactive laundry wastes are selectively adsorbed to decontaminate by adsorbents. Then, the adsorbents having adsorbed dry cleaning soaps and ionic radioactive materials are purified by being removed with these radioactive materials. The purified adsorbents are re-used. (Seki, T.)

  7. Radioactive wastes management of NPP

    International Nuclear Information System (INIS)

    Klyuchnikov, A.A.; Pazukhin, Eh.M.; Shigera, Yu. M.; Shigera, V.Yu.

    2005-01-01

    Modern knowledge in the field of radiation waste management on example of the most serious man-made accident at Chernobyl NPP are illuminated. This nuclear power plant that after accident in 1986 became in definite aspect an experimental scientific ground, includes all variety of problems which have to be solved by NPP personnel and specialists from scientific organizations. This book is aimed for large sphere of readers. It will be useful for students, engineers, specialists and those working in the field of nuclear power, ionizing source and radiation technology use for acquiring modern experience in nuclear material management

  8. Recommendations on national radioactive waste management policies

    International Nuclear Information System (INIS)

    1981-01-01

    As a nation, we have learned that sound technical solutions to the problems of waste disposal cannot be carried out without public acceptance. The key to gaining the public's confidence is a process of decision making which is open and accessible to elected officials from all levels of government. The Council believes that such a process can be put in place through a renewal of the traditional principles of our federal system of government. State, local, and tribal officials must become working partners with the federal government in making the crucial decisions about how radioactive wastes will be handled, transported, and ultimately disposed. A workable and effective partnership must include, first the full sharing of information and plans regarding waste disposal activities among all levels of government and, second, the opportunity for state, local, and tribal governments to participate effectively in waste management decisions which affect their jurisdictions. Finally, althougcome this difficulty

  9. The 1986 United Kingdom radioactive waste inventory

    International Nuclear Information System (INIS)

    Shepherd, J.; Harrison, J.; McNicholas, P.

    1987-11-01

    This report gives information on the radioactive wastes which arise in the United Kingdom, updated to 1 January 1986. It has been compiled from information provided by the principal producers of the wastes, Amersham International plc, British Nuclear Fuels plc, the Central Electricity Generating Board, the South of Scotland Electricity Board, and the United Kingdom Atomic Energy Authority. The report lists the waste types, or streams, which these organisations produce, or will produce, as part of their normal operations or from decommissioning of their plant. For each stream is given the volume (or in a few cases mass) of existing stocks, estimated arisings to the year 2030 (2080 in the case of some decommissioning wastes), specific activity, and conditioning factor (volume change from ''raw'' waste volume to volume conditioned for disposal). Details of the radionuclide compositions of individual waste streams are separately listed. Waste streams are allocated to one of the three categories High, Intermediate or Low-Level, although this does not necessarily imply any commitment to a particular disposal route. The report includes tables summarising the data, arranged in a hierarchical manner to enable totals to be readily extracted as required. Summary tables of both ''raw'' and ''conditioned'' waste volumes are given. Also included are a commentary on the data and important changes from the 1985 inventory, and information on scenarios on which estimates of future arisings are based. (author)

  10. Guidebook of radioactive wastes removal. From collection to storage

    International Nuclear Information System (INIS)

    2014-06-01

    This document, more particularly devoted to radioactive waste producers (except electronuclear industry), defines the technical specifications relative to the taking over of their wastes by the ANDRA, the French national agency of radioactive wastes. Content: general conditions (producers liability and obligations), instructions manual of the taking over demand, non-electronuclear wastes collecting, wastes conditioning specifications, specifications for each category of waste, the lightning arresters case, specifications for particular removals with prior consent

  11. Treatment of radioactive wastes from uranium concentrating

    International Nuclear Information System (INIS)

    Ashtari, Parviz.

    1995-06-01

    Radioactive wastes from uranium and thorium ore processing pose potential environmental and public health problems because of their radioactivity and chemical composition. The radionuclides exist in these wastes are those resulting from the uranium 238, uranium 235 and thorium 232 decay series. The most important radionuclide in U 238 decay series are uranium 234, thorium 230, radium 226 and some short lived radionuclides such as radon-222. Radium 226 is the nuclide of principal concern from the standpoint of the assessment and control of the radiological hazard associated with the wastes. Thus determination of uranium, thorium and radium concentration in wastes resulting from nuclear fuel cycle is very important because of its potential hazard. Various analytical methods such as fluorimetry, neutron activation analysis, radon emanation, spectrophotometry and spectroscopy are used for determination of these radionuclides. Uranium and thorium are separated from interfering element by ion exchange chromatography and measured by spectrophotometry method using arsenazo III and thorin as indicator. Radium is separated from interfering elements and α-emitters by coprecipitation of radium barium sulphate and measured by counting α-particles with surface barrier detector. Regarding to physical and chemical characteristic of waste being investigated, decontamination factors and treatment methods, chemical precipitation and coprecipitation procedure were carried out in this research work. By adding barium chloride, radium is separated from liquid waste and optimum condition were determined. Precipitation with lime and sodium-hydroxide were also studied and good result were obtained. The results show that by neutralization of waste by lime and sodium hydroxide more than 99.9% of activity was removed from stream. Advantage and disadvantage of each methods were studied and finally, effluent resulted from treatment were discharged after analysis with γ-spectroscopy and

  12. Guide to radioactive waste management literature

    International Nuclear Information System (INIS)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals

  13. Guide to radioactive waste management literature

    Energy Technology Data Exchange (ETDEWEB)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.

  14. Maintenance of records for radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-07-01

    The safety of the radioactive waste disposal concepts does not rely on long term institutional arrangements. However, future generations may need information related to repositories and the wastes confined in them. The potentially needed information therefore has to be identified and collected. A suitable system for the preservation of that information needs to be created as a part of the disposal concept beginning with the planning phase. The IAEA has prepared this technical report to respond to the needs of Member States having repositories or involved in or considering the development of repositories. In many countries policies and systems for record keeping and maintenance of information related to disposal are the subjects of current interest. This report describes the requirements for presenting information about repositories for radioactive waste including long lived and transuranic waste and spent fuel if it is declared as a waste. The report discussed topics of identification, transfer and long term retention of high level information pertaining to the repository in a records management system (RMS) for retrieval if it becomes necessary in the future

  15. Characterization of radioactive organic liquid wastes

    International Nuclear Information System (INIS)

    Hernandez A, I.; Monroy G, F.; Quintero P, E.; Lopez A, E.; Duarte A, C.

    2014-10-01

    With the purpose of defining the treatment and more appropriate conditioning of radioactive organic liquid wastes, generated in medical establishments and research centers of the country (Mexico) and stored in drums of 208 L is necessary to characterize them. This work presents the physical-chemistry and radiological characterization of these wastes. The samples of 36 drums are presented, whose registrations report the presence of H-3, C-14 and S-35. The following physiochemical parameters of each sample were evaluated: ph, conductivity, density and viscosity; and analyzed by means of gamma spectrometry and liquid scintillation, in order to determine those contained radionuclides in the same wastes and their activities. Our results show the presence of H-3 (61%), C-14 (13%) and Na-22 (11%) and in some drums low concentrations of Co-60 (5.5%). In the case of the registered drums with S-35 (8.3%) does not exist presence of radioactive material, so they can be liberated without restriction as conventional chemical wastes. The present activities in these wastes vary among 5.6 and 2312.6 B g/g, their ph between 2 and 13, the conductivities between 0.005 and 15 m S, the densities among 1.05 and 1.14, and the viscosities between 1.1 and 39 MPa. (Author)

  16. Television systems for radioactive waste management

    International Nuclear Information System (INIS)

    Quartly, J.R.

    1989-01-01

    Radiation-tolerant television cameras, widely used for the inspection of nuclear plants, are now used for monitoring radioactive waste management processes. Two systems are described in this paper that differ in the methods of maintaining the camera equipment. At the British Nuclear Fuels plc (BNFL) Sellafield plant, a major capital investment program is under way that includes plants for spent-fuel reprocessing and radioactive waste management. The Windscale vitrification plant (WVP) will convert highly active liquid waste to a solid glass-like form. The WVP television system was based on in-cell cameras designed to be removable by remote-handling equipment. The plant to encapsulate medium active solid waste, encapsulation plant 1 (EP1) used through-wall and through-roof viewing systems with a glass viewing dome as the biological shield, allowing the camera and optics to be withdrawn to a safe area for maintenance. Both systems used novel techniques to obtain a record of the waste-processing operations. The WVP system used a microcomputer to overlay reference information onto the television picture and a motion detector to automatically trigger the video recording. The television system for EP1 included automatic character recognition to generate a computer data record of drum serial numbers

  17. Bulk monitoring and segregation of radioactive wastes

    International Nuclear Information System (INIS)

    Beddow, H.; Adsley, I.; Pearman, I.; Sweeney, A.; Davies, M.

    2014-01-01

    Several sites in the UK are contaminated by radioactive legacy wastes. These include; radium luminising sites and more recently the oil, and (potentially) fracking industries; sites contaminated from thorium gas mantle factories; old nuclear research sites; nuclear power sites, and the Sellafield reprocessing site. Nuvia has developed a suite of technologies to map the location of and to recover and process wastes during remedial operations. The main method for delineating contaminated areas in-situ is by use of the Groundhog system, whilst bulk monitoring methods employ the Gamma Excavation Monitor, the High Resolution Assay Monitor, and the Conveyor Active Particle System. (author)

  18. Microbial processes in radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, L.; Farkas-Galgoczi, G.; Diosi, G.

    2002-01-01

    Microbial processes could potentially affect the performance of a radioactive waste disposal system and related factors that could have an influence on the mobility of radionuclides are outlined. Analytical methods, including sampling of water, rock and surface swabs from a potential disposal site, are described and the quantitative as well as qualitative experimental results obtained are given. Although the results contribute to an understanding of the impact of microbial processes on deep geological disposal of nuclear waste, there is not yet sufficient information for a model which will predict the consequences of these processes. (author)

  19. Process for storing radioactive waste in ground

    International Nuclear Information System (INIS)

    Cohen, P.; Gouvenot, D.; Pagny, P.

    1983-01-01

    A process for storing radioactive waste in a cavity in the ground is claimed. The waste is conditioned and isolated from the ground by at least one retention barrier. A grout consisting of 1000 parts by weight of water, 40 to 400 parts by weight of cement, 80 to 1000 parts by weight of at least one clay chosen from the group including montmorillonite, illite and vermiculite, as well as 25 to 1200 parts by weight of kieselguhr and/or natural or artificial pozzuolanas is introduced into gaps in the soil areas surrounding the cavity

  20. Evaluation procedure for radioactive waste treatment processes

    International Nuclear Information System (INIS)

    Whitty, W.J.

    1979-11-01

    An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included

  1. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  2. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  3. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  4. Hospital wastes management containing in radioactive refusals

    International Nuclear Information System (INIS)

    Campi, F.

    1999-01-01

    In large hospitals, featuring a nuclear medicine department, diagnostic examinations and metabolic therapies are performed using an amount of radio drugs per day averaging around some hundreds mCi. Part of these drugs are disposed in the conventional patient related waste and collected within the hospital itself. Before directing the wastes to the disposal, it is necessary verify that they do not contain radioactive materials. This article refers a study on the possibility to perform this verification by means of an automatic radio-metric system, in order to improve the efficiency, the speed and the safety of the control. Measures devoted to determined the minimum detectable activities for the main radionuclides used in the hospitals have been executed, and it has been designed a comprehensive device able to operate automatically, and unattended by any operator, the selection of radioactive refusals [it

  5. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Funabashi, Kiyomi; Matsuda, Masami.

    1984-01-01

    Purpose: To improve the performance of removing metal ions in ion exchange resins for use in clean-up of service water or waste water in BWR type reactors. Method: A column filled with activated carbon is disposed at the pre- or post-stage of a clean-up system using ion exchange resins disposed for the clean-up of service water or waste water of a nuclear reactor so that organics contained in water may be removed through adsorption. Since the organic materials are thus adsorbed and eliminated, various types of radioactive ions contained in radioactive liquid are no more masked and the performance of removing ions in the ion exchanger resins of the clean-up device can be improved. (Moriyama, K.)

  6. Solidification process for high level radioactive waste

    International Nuclear Information System (INIS)

    Ono, Chisato

    1988-01-01

    Purpose: To integrally solidify high level radioactive wastes with water-curable solidifying material thereby improve the heat- and radiation-resistance. Constitution: High level radioactive wastes are integrally solidified with water curable solidifying material comprising a mixture of alumina cements, aggregates, inorganic fluidizing materials and dispersing agent. Alumina cements are mainly composed of calcium aluminate and excellent in refractory property. Chamotte particles and baked bauxite particles are used as the aggregates, which can improve the strength of the solidification products. Fine alumina powder and fine silica powder of less than 10 μm radius are used as the inorganic fluidizing materials and condensated phosphoric acid salt and polycarboxylic acid type polymeric surface active agent are used as the dispersing agents for improving the slidability between the particles. (Yoshino, Y.)

  7. High-level radioactive waste disposal problem in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    This presentation on radioactive waste management in Russia discusses criteria for the selection of disposal sites, how the various types of waste should be contained and stored, and gives a list showing the liable owner, type, volume, activity and storage place of the present amount of radioactive waste. The bulk of this waste, in volume and radioactivity, is at the enterprises of Minatom of the Russian Federation

  8. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  9. Application of quality assurance to radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs

  10. Radioactive waste repository of high ecological safety

    International Nuclear Information System (INIS)

    Sobolev, I.; Barinov, A.; Prozorov, L.

    2000-01-01

    With the purpose to construct a radioactive waste repository of high ecological safety and reliable containment, MosNPO 'Radon' specialists have developed an advanced type repository - large diameter well (LBD) one. A project is started for the development of a technology for LDW repository construction and pilot operation of the new repository for 25-30 years. The 2 LDW repositories constructed at the 'Radon' site and the developed monitoring system are described

  11. Long-term management of radioactive waste

    International Nuclear Information System (INIS)

    1984-01-01

    This study analyses questions of a legal, administrative and financial nature connected with the implementation of programmes for the storage and disposal of radioactive waste. It demonstrates that institutional controls do not involve technically different operations nor do they require the marshalling of large-scale industrial and administrative resources. Finally, the study analyses the different possible approaches in the light of regulations already adopted in certain OECD countries. The annex to the study gives examples of relevant provisions. (NEA) [fr

  12. Radioactive waste - a select list of material

    International Nuclear Information System (INIS)

    Lambert, C.M.

    1982-01-01

    A chronological bibliography is presented of literature relating to radioactive waste management in the United Kingdom concentrating on material published since 1978. The main sections include Dept. of Environ. and Official publications, administrative and environmental concerns, technological and scientific considerations, including publications on geological aspects, deep-sea bed and ocean-dumping and salt domes, with general background material and further sources of information listed at the end. (U.K.)

  13. High-level radioactive wastes. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, L.H. (ed.)

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  14. Storage drums for radio-active waste

    International Nuclear Information System (INIS)

    Knights, H.C.

    1982-01-01

    The lid of a storage drum for radioactive waste is secured by a series of clamps each of which has a hook for engaging the rim of the drum. Each clamp has an indicating means whereby a remote operator can check that the lid is secured to the drum. In a second embodiment, the position of an arm acts as a visual indication as to whether or not the clamp is in engagement with the container rim. (author)

  15. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  16. Commercial radioactive waste disposal: marriage or divorce

    International Nuclear Information System (INIS)

    Corbett, J.S.

    1977-01-01

    It is shown that the state (South Carolina) is doing a good job in regulating the South Carolina disposal facility of Chemo-Nuclear Inc., and that there is no need for the NRC to reassert Federal control. The efforts in developing a low-level site in New Mexico are described. The NRC Task Force report on Federal/state regulation of commercial low-level radioactive waste burial grounds is discussed

  17. Social impacts of radioactive waste disposal

    International Nuclear Information System (INIS)

    1985-11-01

    In this report an approach is developed for the assessment of socio-economic impacts from radioactive waste disposal. The approach provides recommendations on procedures to be used in identification and prediction of impacts. Two decision-aiding methods are also included. The first provides for the identification of key issues and the illustration of the trade-offs involved in the decision. Multi-attribute scoring and weighting techniques are then proposed for the illustration of impacts using quantitative measures. (author)

  18. Leak of draft report on radioactive waste

    International Nuclear Information System (INIS)

    1986-01-01

    The Environment Committee's second report discusses the leak of the draft report on radioactive waste. The circumstances of the leak are discussed and ''The Times'' and ''The Guardian'' articles of December 1985 are printed in full, as are the letter from the Chairman of the environmental committee to the members and their replies. The letters from Mr John Large of Large and Associates to the Chairman of the Environment Committee, and Mr Large's correspondence with Greenpeace are also printed. (UK)

  19. Underground repository for radioactive wastes

    International Nuclear Information System (INIS)

    Cassibba, R.O.

    1989-01-01

    In the feasibility study for an underground repository in Argentina, the conceptual basis for the final disposal of high activity nuclear waste was set, as well as the biosphere isolation, according to the multiple barrier concept or to the engineering barrier system. As design limit, the container shall act as an engineering barrier, granting the isolation of the radionuclides for approximately 1000 years. The container for reprocessed and vitrified wastes shall have three metallic layers: a stainless steel inner layer, an external one of a metal to be selected and a thick intermediate lead layer preselected due to its good radiological protection and corrosion resistance. Therefore, the study of the lead corrosion behaviour in simulated media of an underground repository becomes necessary. Relevant parameters of the repository system such as temperature, pressure, water flux, variation in salt concentrations and oxidants supply shall be considered. At the same time, a study is necessary on the galvanic effect of lead coupled with different candidate metals for external layer of the container in the same experimental conditions. Also temporal evaluation about the engineering barrier system efficiency is presented in this thesis. It was considered the extrapolated results of corrosion rates and literature data about the other engineering barriers. Taking into account that corrosion is of a generalized type, the integrity of the lead shall be maintained for more than 1000 years and according to temporal evaluation, the multiple barrier concept shall retard the radionuclide dispersion to the biosphere for a period of time between 10 4 and 10 6 years. (Author) [es

  20. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs