WorldWideScience

Sample records for alkaline earth oxides

  1. Oxidation catalysts on alkaline earth supports

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  2. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  3. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation

    NARCIS (Netherlands)

    Xu, Jiang; Mojet, B.L.; Ommen, van J.G.; Lefferts, L.

    2004-01-01

    The desorption of products from a series of alkaline-earth exchanged Y zeolites after room-temperature propane selective oxidation was investigated by in situ infrared and mass spectroscopy. The intermediate product, isopropylhydroperoxide (IHP), did not desorb during temperature-programmed-desorpti

  4. Propane selective oxidation on alkaline earth exchanged zeolite Y: room temperature in situ IR study

    NARCIS (Netherlands)

    Xu, Jiang; Mojet, Barbara L.; Ommen, van Jan G.; Lefferts, Leon

    2003-01-01

    The effect of zeolite Y ion-exchanged with a series of alkaline-earth cations on selective propane oxidation at room temperature was studied with in situ infrared spectroscopy. Isopropylhydroperoxide was observed as a reaction intermediate and can be decomposed into acetone and water. Contrary to pr

  5. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides

    NARCIS (Netherlands)

    Hereijgers, B.P.C.; Weckhuysen, B.M.

    2009-01-01

    A series of alumina-supported gold catalysts was investigated for the CO-free production of hydrogen by partial oxidation of methanol. The addition of alkaline-earth metal oxide promoters resulted in a significant improvement of the catalytic performance. The methanol conversion was ca. 85 % with al

  6. Alkaline earth oxide nanoparticles as destructive absorbents for environmental toxins

    Energy Technology Data Exchange (ETDEWEB)

    Moscovici, J.; Latreche, K. [Univ. Paris XII, Groupe de Physique des Milieux Denses, Creteil (France); Michalowicz, A. [Univ. Paris Sud, LURE, Orsay (France); Decker, S.; Lagadic, I.; Klabunde, K. [Kansas State Univ., Chemistry Dept., Manhattan, Kansas (United States)

    1999-11-01

    Sr and Ca oxide nanoparticles are very reactive materials used to mitigate atmospheric pollution and to sequester polluting molecules. We have studied the structure of SrO nanoparticles, using Sr K-edge and Fe K-edge XAFS, that were prepared with various reactivities, with or without a Fe{sub 2}O{sub 3} coating, and before and after reaction with CCl{sub 4} or SO2. For CCl4, the polluting fraction of the reagent is totally absorbed in the bulk particle. For SO{sub 2}, the results show a total reaction for the Aerogel Preparation (AP) compound. For the coated particles before reaction, the iron oxide has a very disordered structure, and it is mixed with small metallic iron clusters for Conventional Preparation (CP) compounds. (au) 4 refs.

  7. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  8. Alkaline earth metal thioindates

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov-Ehmin, B.N.; Ivlieva, V.I.; Filatenko, L.A.; Zajtsev, B.E.; Kaziev, G.Z.; Sarabiya, M.G.

    1984-08-01

    Alkaline earth metal thioindates of MIn/sub 2/S/sub 4/ composition were synthesized by interaction of alkaline earth metal oxoindates with hydrogen sulfide during heating. Investigation into the compounds by X-ray analysis showed that calcium compound crystallizes in cubic crystal system and strontium and barium compounds in rhombic crystal system. Lattice parameters and the number of formula units were determined. Thioindates of M/sub 3/In/sub 2/S/sub 6/ composition were synthesized, their individuality was shown.

  9. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides.

    Science.gov (United States)

    Hereijgers, Bart P C; Weckhuysen, Bert M

    2009-01-01

    A series of alumina-supported gold catalysts was investigated for the CO-free production of hydrogen by partial oxidation of methanol. The addition of alkaline-earth metal oxide promoters resulted in a significant improvement of the catalytic performance. The methanol conversion was ca. 85 % with all studied catalyst materials, however, the selectivity for hydrogen increased from 15 % to 51 % when going from the unpromoted to a BaO-promoted catalyst. The formation of the undesired byproducts CO, methane, and dimethyl ether was considerably reduced as well. The observed trend in catalyst performance follows the trend in increasing basicity of the studied promoter elements, indicating a chemical effect of the promoter material. Superior catalytic performance, in terms of H(2) and CO selectivity, was obtained with a Au/La(2)O(3) catalyst. At 300 degrees C the hydrogen selectivity reached 80 % with only 2 % CO formation, and the catalyst displayed a stable performance over at least 24 h on-stream. Furthermore, the formation of CO was found to be independent of the oxygen concentration in the feed. The commercial lanthanum oxide used in this study had a low specific surface area, which led to the formation of relative large gold particles. Therefore, the catalytic activity could be enhanced by decreasing the gold particle size through deposition on lanthanum oxide supported on high-surface-area alumina.

  10. Characterization of alkaline-earth oxide additions to the MnO{sub 2} cathode in an aqueous secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Minakshi, Manickam, E-mail: minakshi@murdoch.edu.au [Extractive Metallurgy, Murdoch University, Murdoch, WA 6150 (Australia); Blackford, Mark [Institute of Materials Engineering, ANSTO, Lucas Heights, NSW 2234 (Australia); Ionescu, Mihail [Institute for Environment Research, ANSTO, Lucas Heights, NSW 2234 (Australia)

    2011-05-19

    Highlights: > Adding MgO in MnO{sub 2} cathode enhances the battery discharge capacity. > Mechanism appears to be different with those of our previously published results. > Capacity fade with subsequent cycling is reduced only for MgO but not for BaO. > Transferred the primary battery into a secondary while using LiOH as electrolyte. - Abstract: The effect of alkaline-earth oxide additions on aqueous rechargeable battery is investigated using microscopic and spectroscopic techniques. The alkaline-earth oxide additions such as magnesium oxide (MgO) and barium oxide (BaO) were physically mixed to the manganese dioxide (MnO{sub 2}) cathode of a cell comprising zinc as an anode and aqueous lithium hydroxide as the electrolyte. The results showed that such additions greatly improved the discharge capacity of the battery (from 145 to 195 for MgO and 265 mAh/g for BaO). Capacity fade with subsequent cycling is reduced only for MgO but not for BaO. With an aim to understand the role of these additives and its improvement in cell performance, we have used microscopy, spectroscopy, ion beam analysis and diffraction based techniques to study the process. Transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy analysis (EDS) results showed evidence of crystalline MnO{sub 2} particles for MgO as additive, whereas, MnO{sub 2} particles with diffused structure leading to mixture of phases is observed for BaO additives which is in agreement with X-ray diffraction (XRD) data. This work relates to improvement in the electrochemical behaviour of the Zn-MnO{sub 2} battery while the MgO additive helps to reduce the formation of manganese and zinc such as hetaerolite that hinders the lithium intercalation.

  11. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    Science.gov (United States)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  12. Fragment size for calculations on alkaline-earth oxides by the crystal cluster SCF-X/sub approx. /-RW method

    Energy Technology Data Exchange (ETDEWEB)

    Lobach, V.A.; Sobolev, A.B.; Shul' gin, B.V.

    1987-05-01

    Calculations have been performed on the clusters (A/sub x/B/sub y/) (x = 1, 13; y = 6, 14), corresponding to perfect crystals of the alkaline-earth oxides (AEO) MgO, CaO, and SrO by means of methods involving molecular clusters (MC) and crystalline clusters (CC) in the SCF-X/sub approx./-RW method. It is found that MC is unsuitable for describing perfect AEO, because they have a long-range Coulomb interaction and a potential cluster effect. Even in the CC method, the nonstoichiometric composition of (A/sub x/B/sub y/) for x < 13 and y < 14 does not allow one to obtain satisfactory agreement with the observed optical and x-ray spectra. The (A/sub 13/B/sub 14/) and (B/sub 13/A/sub 14/) clusters reproduce satisfactorily the partial composition of the valence band (VB) and the conduction band (CB), as well as the widths of those bands, the fine structure of the K emission spectrum for oxygen in MgO, and the observed electron-density distribution. A study is made of the effects of varying the radii of the spheres on the error from the region between the spheres with muffin-tin averaging.

  13. Size of the fragment for crystal cluster SCF-X/sub /-SW calculations of alkaline earth metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lobach, V.A.; Sobolev, A.B.; Shul' gin, B.V.

    Calculation of (A/sub x/B/sub y/) (x=1, 13; y=6, 14) clusters, corresponding to ideal crystals of alkaline earth metal oxides (AEMO) MgO, CaO, SrO by means of molecular cluster (MC) and crystal cluster (CC) SCF-X/sub /-SW method is carried out. MC method is not suitable for description of ideal AEMO electron structure due to long-range Coulomb interaction and potential cluster effect. Even in CC method at x < 13 and y < 14 (A/sub x/B/sub y/) cluster nonstoichiometry is inhibitory to the obtaining of satisfactory agreement with the experimental optical and X-ray spectra. (A13B14) and (B13A14) clusters satisfactorily reproduce partial composition of valence band (VB) and conduction band (CB), VB and CB widths, a fine structure of oxygen K-emission spectra in MgO and also experimental distribution of electron density. Sphere radii variation effect on the value of intersphere region error with muffin-tin averaging is considered.

  14. FTIR AND SOME PHYSICAL PROPERTIES OF ALKALINE EARTH BORATE GLASSES CONTAINING HEAVY METAL OXIDES

    Directory of Open Access Journals (Sweden)

    RAMADEVUDU.G

    2011-09-01

    Full Text Available The FTIR spectra of heavy metal oxide doped borate glasses with the general formula RO-MO-B2O3 (RO= MgO, CaO, SrO and BaO, MO=ZnO, TeO2, PbO and Bi2O3 were studied in the spectral range 400-4400cm-1 toobtain information about the influence of the glass composition on the spectra. The FTIR studies revealed that MO acted differently in RO-B2O3 glass matrix and produced small variations in the glass structure. RO oxides also affected the glass structure slightly due to mixed oxide effect. However the structural groupings present ineach series of glasses are not much affected by the composition. The effect of composition on some physical properties like density, molar volume was also carried out. The increase in the values of physical parameters such as density and glass transition temperature is attributed to conversion of [BO3]3- triangular units into BO4-tetrahedral units.

  15. Ab Initio Quantum Mechanical Study of the Structure and Stability of the Alkaline Earth Metal Oxides and Peroxides

    Science.gov (United States)

    Königstein, Markus; Catlow, C. Richard A.

    1998-10-01

    We report a detailed computationally study of the stability of the alkaline earth metal peroxidesMO2(M=Ba, Sr, Ca, Mg, Be) with respect to decomposition into the corresponding oxidesMOand molecular oxygen using Hartree-Fock and density functional theory (DFT) techniques. A comparison between calculated and experimental binding energies indicates that the DFT method is most suitable for a correct description of the peroxide bond. The DFT reaction energies for the peroxide decompositionMO2→MO+{1}/{2}O2show that only BaO2and SrO2are thermodynamically stable compounds, while CaO2(in the calcium carbide structure), MgO2, and BeO2(in the pyrite structure) are energetically unstable with reaction energies of -24.7, -26.8, and -128.7kJ/mol, respectively, and are therefore unlikely to exist as pure compounds. The published calcium carbide structure for CaO2is probably incorrect, at least for pure calcium peroxide, since apart from the thermodynamical instability the compound is more stable in the pyrite structure by 25.5 kJ/mol. Our analysis suggests that the water and/or hydrogen peroxide content of experimentally prepared MgO2samples is necessary for the stabilization of the structure, while BeO2is clearly unstable under ambient conditions. We studied also the effect of the zero point energies and the entropies on the decomposition free energies and, for this purpose, performed atomistic lattice simulations based on interatomic potentials, which we derived from ourab initiodata; the results indicate a negligible effect of the zero point energies, while the entropy terms favor the decomposition reaction by ca. 20 kJ/mol at 298.15 K.

  16. Ab initio quantum mechanical study of the structure and stability of the alkaline earth metal oxides and peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Koenigstein, M.; Catlow, C.R.A. [Royal Institution of Great Britain, London (United Kingdom). Davy Faraday Research Lab.

    1998-10-01

    The authors report a detailed computational study of the stability of the alkaline earth metal peroxides MO{sub 2} (M = Ba, Sr, Ca, Mg, Be) with respect to decomposition into the corresponding oxides Mo and molecular oxygen using Hartree-Fock and density functional theory (DFT) techniques. A comparison between calculated and experimental binding energies indicates that the DFT method is most suitable for a correct description of the peroxide bond. The DFT reaction energies for the peroxide decomposition MO{sub 2} {yields} MO + {1/2}O{sub 2} show that only BaO{sub 2} and SrO{sub 2} are thermodynamically stable compounds, while CaO{sub 2} (in the calcium carbide structure), MgO{sub 2}, and BeO{sub 2} (in the pyrite structure) are energetically unstable with reaction energies of {minus}24.7, {minus}26.8, and {minus}128.7 kJ/mol, respectively, and are therefore unlikely to exist as pure compounds. The published calcium carbide structure for CaO{sub 2} is probably incorrect, at least for pure calcium peroxide, since apart from the thermodynamical instability the compound is more stable in the pyrite structure by 25.5 kJ/mol. The analysis suggests that the water and/or hydrogen peroxide content of experimentally prepared MgO{sub 2} samples is necessary for the stabilization of the structure, while BeO{sub 2} is clearly unstable under ambient conditions. The authors studied also the effect of the zero point energies and the entropies on the decomposition free energies and, for this purpose, performed atomistic lattice simulations based on interatomic potentials, which they derived from their ab initio data; the results indicate a negligible effect of the zero point energies, while the entropy terms favor the decomposition reaction by ca. 20 kJ/mol at 298.15 K.

  17. Influence of Ce, Nd, Sm and Gd oxides on the properties of alkaline-earth borosilicate glass sealant

    Directory of Open Access Journals (Sweden)

    Nibedita Sasmal

    2016-03-01

    Full Text Available In this study, the influence of CeO2, Nd2O3, Sm2O3 and Gd2O3 on various properties of the melt-quench route derived SrO–CaO–ZnO–B2O3–SiO2 glass have been investigated. Both the precursor glasses and heat treated glasses are characterized by dilatometry, differential scanning calorimetry (DSC, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transformed infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The density and coefficient of thermal expansion of the glasses varies in the range 3.557–3.804 g cm−3 and 10.5–11.2 × 10−6 K−1 (50–800 °C respectively. Decrease in crystallization tendency with increase in cationic field strength of the ions is well supported by the increasing crystallization activation energy of the glasses calculated by Kissinger, Augis–Bennett and Ozawa models. XPS study revealed the presence of both Ce3+ and Ce4+ ions and an increase in characteristic binding energy of the respective rare earth elements from their core level studies. The Knoop hardness of the glasses varies in the range 6.03–6.28 GPa. The glass transition, glass softening and crystallization temperature; density and hardness of the glasses increased with increase in cationic field strength of the incorporated ions. The thermomechanical properties of the Gd2O3 containing glass advocate its applicability as the most promising sealant in solid oxide fuel cell.

  18. Solvent Extraction of Alkaline Earth Metals with Alkylphosphorus Acids

    Institute of Scientific and Technical Information of China (English)

    XUXin; ZHUTun

    2002-01-01

    Solvent extraction equiliria of four main alkaline earth metals (magnesium, calcium, strontium and barium) with di(2-ethylhexyl) phosphoric acid (DEHPA), 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester, di(2,4,4-tri-methylpentyl) phosphinic acid and IR spectra of the extracts have been studied. The selectivity order is dependent of the e/r value and hydration energy of the metal ions. The minor shift of the P→O in IR absorption of the alkaline earth metal extracts indicates that the interaction between the metal ions and P→O is much weaker for alkaline earth metals than for transitional metals. The distribution of the four alkaline earth elements between aqueous solutions and solutions of DEHPA and neutral organophosphorus compunds, tri-n-butyl phosphate (TBP) or tri-octyl phosphine oxide (TOPO) in kerosene have been determined at varying ratio of TBP or TOPO to DEHPA and the positive synergism is observed. The synergic effects is explained by using IR spectra of the loaded organic phase.

  19. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    Science.gov (United States)

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  20. Surface-treatment of Alkaline Earth Sulfides Based Phosphor

    Institute of Scientific and Technical Information of China (English)

    GUO Chong-feng; CHU Ben-li; XU Jian; SU Qiang

    2004-01-01

    A series of alkaline earth sulfides based phosphors Ca0.8Sr0.2S∶Eu2+, Tm3+ were covered with a layer of protective coating with alkaline earth fluorides by heating the mixture of phosphor and NH4HF2 at elevated temperatures. The coatings were characterized by means of XRD and SEM. The optical properties of the coated phosphors and the influences of the coating on their properties have been discussed extensively. The stabilities of the coated and uncoated phosphors have been compared.

  1. Effect of alkaline earth oxides on the physical and spectroscopic properties of Dy3+- doped Li2O-B2O3 glasses for white emitting material application

    Science.gov (United States)

    Shamshad, L.; Rooh, G.; Kirdsiri, K.; Srisittipokakun, N.; Damdee, B.; Kim, H. J.; Kaewkhao, J.

    2017-02-01

    Li2O-MO-B2O3:0.5Dy2O3 glasses mixed with four different alkaline earth modifier oxides MgO, CaO, SrO and BaO were synthesized by melt quench technique. Their physical properties like density, molar volume and refractive index were measured at room temperature and the effect of alkaline earth modifier oxides were studied. Also, optical absorption and photoluminescence spectra of these glasses have been acquired at room temperature. The Judd-Ofelt theory was effectively used to characterize these spectra and spectral intensities (ƒcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) and certain radiative properties have been determined. Radiative life-times (τR), branching ratios (βcal), and emission cross-sections (σp) and optical gain parameters (σp × τR) were calculated from the Judd-Ofelt intensity parameters and the variation in these parameters with the variation of glass matrix are discussed. Yellow/Blue (Y/B) ratio and chromacity color coordinates (x,y) are calculated from the emission spectra which indicates the white light generation from all the investigated samples. The correlated color temperature (CCT) for the studied glasses is found to be 4418 K. The fluorescence decay time (τexp) of the 4F9/2 level of Dy3+ has been measured from the decay profiles and compared with calculated lifetimes (τcal). Among all the studied glass matrices, the glass containing BaO exhibits high value of branching ratio, large emission cross-section and high optical gain parameter for 6F9/2 → 6H13 at 575 nm. The results indicates the suitability of all the studied glasses for laser action and white light generation.

  2. Alkaline earth stannates: The next silicon?

    Energy Technology Data Exchange (ETDEWEB)

    Ismail-Beigi, Sohrab, E-mail: sohrab.ismail-beigi@yale.edu; Ahn, Charles H. [Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structure and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Walker, Frederick J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structure and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Cheong, Sang-Wook [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Rutgers Center for Emergent Materials, Rutgers University, Piscataway, New Jersey 08854 (United States); Rabe, Karin M. [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-06-01

    Semiconductor materials are being used in an increasingly diverse array of applications, with new device concepts being proposed each year for solar cells, flat-panel displays, sensors, memory, and spin transport. This rapid progress of invention outpaces the development of new semiconductor materials with the required properties and performance. In many applications, high carrier mobility at room temperature is required in addition to specific functional properties critical to the device concept. We review recent developments on high mobility stannate perovskite oxide materials and devices.

  3. Alkaline earth stannates: The next silicon?

    Directory of Open Access Journals (Sweden)

    Sohrab Ismail-Beigi

    2015-06-01

    Full Text Available Semiconductor materials are being used in an increasingly diverse array of applications, with new device concepts being proposed each year for solar cells, flat-panel displays, sensors, memory, and spin transport. This rapid progress of invention outpaces the development of new semiconductor materials with the required properties and performance. In many applications, high carrier mobility at room temperature is required in addition to specific functional properties critical to the device concept. We review recent developments on high mobility stannate perovskite oxide materials and devices.

  4. IGCC sulfur compounds abatement with earth alkaline sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Alvarez-Rodriguez; Carmen Clemente-Jul [Universidad Politecnica de Madrid, Madrid (Spain). Escuela Tecnica Superior de Ingenieros de Minas

    2007-07-01

    In Integrated Gasification Combined Cycle (IGCC) process, in the reference plant built in Puertollano, Spain by Elcogas, a consortium formed by several utilities and engineering companies with a technology that is one of the most promising electricity generation options, both from the environmental and the efficiency point of view and that allows an efficient and environmentally friendly use of national coal, and also a refinery residue, petroleum coke, the high sulphur contents in coal and specially in petcoke, their presence in the feedstock, led to significant contents of gaseous sulphur compounds whose advanced removal has been the aim of this project. Different sorbents to reduce the presence of H{sub 2}S have been researched and between them the earth alkaline compounds, dolomite and calcite that react with H{sub 2}S to give calcium sulphide have been chosen due to their properties and low cost. The calcium sulphide is a reactive product because it reacts with water to regenerate the H{sub 2}S but it can be converted in calcium sulphate, inert product with diverse uses. This conversion to sulphate present some problems of possible lack of total conversion and different conditions to improve this conversion have been investigated. The tests have been carried out with dolomite and calcite and firstly the sulphuration of the same have been produced using a mixture of gases that simulates the IGCC gas and after their oxidation has been studied. The influence of the conditions of sulfurization and oxidation on the final conversion of calcium sulphide to sulphate as the presence of H{sub 2}O vapour, the variation in the composition of the gases, the temperature and the bed length have been evaluated. The solid products obtained have been characterized by X-ray diffraction and scanning electronic microscopy and chemical analysis to assess the evolution and progress of the reactions. 8 refs., 3 figs., 1 tab.

  5. Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses

    Indian Academy of Sciences (India)

    S P Singh; Aman; Anal Tarafder

    2004-06-01

    Absorption characteristics of Cu2+, Mn3+ and Cr3+ ions in ternary silicate (20Na2O.10RO.70SiO2, where R=Ca, Sr, Ba) glasses were investigated. The intensities of absorption bands due to Cu2+ ion was found to increase with increasing ionic radii of the alkaline earth ions whereas it was found to decrease in case of Mn3+ and Cr3+ ions with increasing ionic radii of the alkaline earth ions. The results were discussed in the light of relation between linear extinction coefficients of these ions and coulombic force of alkaline earth ions. The change in intensities of Cu2+, Mn3+ and Cr3+ ion is attributed due to change in silicate glass compositions.

  6. Controlled charge exchange between alkaline earth metals and their ions

    Science.gov (United States)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  7. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...... for the topology of multicomponent melts, before accurate prediction of phase relations within boron-containing glass ceramics can be obtained....

  8. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  9. Structural variations in layered alkaline earth metal cyclohexyl phosphonates

    Indian Academy of Sciences (India)

    Ramaswamy Murugavel; Nayanmoni Gogoi

    2009-06-01

    Two series of alkaline earth metal cyclohexyl phosphonates, M(C6H11PO3H)2(H2O) (M = Ca, Sr and Ba) (1–3) and M(C6H11PO3)(H2O) (M = Mg, Ca, Sr, and Ba) (4–7) have been synthesized under mild reaction conditions. All new compounds have been characterized using elemental analysis, IR, TGA and powder X-ray diffraction techniques. The molecular structure of compound 2 determined using single crystal X-ray diffraction technique reveals a layered polymeric structure.

  10. Quantum computing with alkaline-Earth-metal atoms.

    Science.gov (United States)

    Daley, Andrew J; Boyd, Martin M; Ye, Jun; Zoller, Peter

    2008-10-24

    We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the 1S0 and 3P0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3P2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.

  11. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    Science.gov (United States)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  12. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  13. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Science.gov (United States)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-02-01

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR - X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P-O-P bonds and creating more number of new P-O-Cu bonds.

  14. Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates

    Science.gov (United States)

    Balendra; Ramanan, Arunachalam

    2017-03-01

    Exploration of the structural landscape of the system containing divalent alkaline-earth metal ion (Mg, Ca and Sr) with the rigid 2,5-thiophenedicarboxylic acid (TDC) under varying solvothermal condition (DMF, DMA and DEF) yielded five new crystals: [Mg(TDC) (DEF)2(H2O)1/2] (1), [Ca(TDC) (DMA)] (2), [Ca(TDC) (DMA) (H2O)] (3), [Sr(TDC) (DMA)] (4) and [Sr(TDC) (DMA) (H2O)] (5) and two known solids. Single crystal structures of all the solids are characteristic of extended coordination interaction between metal and carboxylate ions. While the smaller magnesium ion crystallized into a 2D coordination polymer, the larger calcium and strontium compounds resulted into the growth of 3D metal organic frameworks. All the solids show blue emission arising from intra ligand charge transfer.

  15. Enhanced Magnetic Trap Loading for Alkaline-Earth Atoms

    Science.gov (United States)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser addressing the 3P1 level. For the 3P1 -->3S1 (688-nm) transition in strontium, the depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  16. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  17. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.C.; Peper, S.M.; Douglas, M.; Ziegelgruber, K.L. [PNNL, PO Box 999, MS P8-08, Richland, WA 99352 (United States)

    2009-06-15

    Understanding the dissolution of uranium oxides is critical for designing and optimizing next-generation spent nuclear fuel (SNF) reprocessing methods. Bench scale experiments were conducted to determine the optimal dissolution parameters for size-fractionated aliquots of UO{sub 2}, UO{sub 3}, and U{sub 3}O{sub 8} powders in aqueous peroxide-carbonate solutions. Experimental parameters included; peroxide and carbonate concentrations, and temperature. Solution pH was varied with ammonium hydroxide. We will present details of the dissolution experiment set-up as well as information on the kinetics of dissolution of the various U-oxides as a function of the above variables. We will also discuss efforts to characterize solution and solid-state complexes in peroxide-carbonate systems. This study will demonstrate the applicability of peroxide-containing alkaline solutions for effectively dissolving SNF, and will enhance the current level of understanding of actinide behavior in peroxide-containing alkaline solutions. (authors)

  18. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  19. Preparations of Pure Alkaline Earth Molybdate Phases from Single Molecular Precursors

    Institute of Scientific and Technical Information of China (English)

    JIANG Ya-qi; ZHAO Hong; FANG Zhi-min; WAN Hui-lin; XIONG Ming; ZHOU Zhao-hui

    2004-01-01

    The pure phases of alkaline earth molybdates MMoO4, where M=Mg, Ca, Sr or Ba, were synthesized via the calcination of the related citrato oxomolybdate complexes. The mixed metal oxides can be highly dispersed at the atomic level due to the existence of uniform citrato oxomolybdenum precursors in definite composition. The complexing effect helps to produce the fine-grained oxides with particle size in the ultrafine scale(<100 nm) at heat-treatment temperatures below 500 ℃. The structures of the precursor complexes and the finally heat-treated particles were studied by means of IR, XRD, DSC, DTA and TG techniques. The morphologies of the particles were observed by using the SEM technique. The average particle sizes were calculated to be in the range of 30-50 nm based on X-ray diffraction line-broadening and SEM images, indicating the poor conglomeration of crystallite at low temperatures.

  20. Reduction property of rare earth oxide doped molybdenum oxide

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Rare earth oxide doped molybdenum powders were prepared by the reduction of rare earth nitrites doped MoO3. The effect of rare earth oxide on the reduction behavior of molybdenum oxide had been studied by means of Temperature Programmed Reduction (TPR), thermal analysis, X-ray diffraction. Doping rare earth oxide in the powder could lower the reduction temperature of molybdenum oxide and decrease the particle size of molybdenum. The mechanism for the effects had been discussed in this paper.

  1. THE TRANSFER OF ALKALINE EARTH-METAL ION AT W/NB INTERFACE FACILITATED BY JOSAMYCIN

    Institute of Scientific and Technical Information of China (English)

    范瑞溪; 狄俊伟

    1991-01-01

    This paper describes the invesligation of the transfer behaviour of the alkaline earth-metal cations across the water/nitrobenzene interface facilitated by josamycin in the nitrobenzene phase using semi-differential cyclic voltammetry .The peak height is directly proportional to the concentration of josaycin (nb) and to the potential scan rate.The complexes formed from alkaline earth-metal ions and josamycin at the w/nb interface are ML22+ ion.

  2. Alkaline-earth metal hydrides as novel host lattices for Eu(II) luminescence.

    Science.gov (United States)

    Kunkel, Nathalie; Kohlmann, Holger; Sayede, Adlane; Springborg, Michael

    2011-07-04

    Luminescence of divalent europium has been investigated for the first time in metal hydrides. A complete solid-solution series was found for the pseudobinary system Eu(x)Sr(1-x)H(2) [a = 637.6(1) pm -12.1(3)x pm, b = 387.0(1)-6.5(2)x pm, c = 732.2(2)-10.1(4)x pm]. Europium-doped alkaline-earth hydrides Eu(x)M(1-x)H(2) (M = Ca, Sr, Ba) with a small europium concentration (x = 0.005) exhibit luminescence with maximum emission wavelengths of 764 nm (M = Ca), 728 nm (M = Sr), and 750 nm (M = Ba); i.e., the emission energy of divalent europium shows an extremely large red shift compared to the emission energies of fluorides or oxides. Theoretical calculations (LDA+U) confirm decreasing band gaps with increasing europium content of the solid solutions.

  3. [Broad excitation band alkaline-earth silicate luminescent materials activated by rare earth and its applications].

    Science.gov (United States)

    Xia, Wei; Lei, Ming-Kai; Luo, Xi-Xian; Xiao, Zhi-Guo

    2008-01-01

    Series of novel broad excitation band phosphors M2 MgSis O7 : Eu, Dy(M = Ca, Sr) were prepared by a high temperature solid-state reaction method. The crystal structure of compound was characterized. And the effects of part substitution of alkaline-earth on crystal structure, photoluminescence spectra and luminescence properties were also investigated. It is found that the excitation band of silicate luminescent materials extend to visible region and they exhibit yellow, green and blue long after-glow luminescence after excited by ultraviolet or visible light. Ca MgSi O7 : Eu, Dy luminescent materials can be excited effectively under the 450-480 nm range and exhibit a strong emission at 536 nm, nicely combining with blue light emitted by InGaN chips to produce white light. This promises the silicate luminescent materials a potential yellow phosphor for white LED.

  4. CATALYSED ALKALINE OXIDATION AS A WOOD FRACTIONATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Stella Rovio,

    2012-01-01

    Full Text Available Alkaline oxidation (AlkOx is an effective fractionation technique for lignocellulosic raw materials. The efficiency of the AlkOx treatment can further be enhanced by using a catalyst (CatOx. Both CatOx and AlkOx provide a fiber fraction containing readily hydrolysable carbohydrates that can be utilized in biotechnical processes and a liquid fraction containing solubilized lignin and reaction products from various biomass components. The effects of different fractionation conditions on yields and chemical composition of solubilized and insoluble fractions were investigated. Two temperatures and two reaction times were studied with and without a catalyst. The composition and content of carbohydrates in the fiber and liquid fractions were examined. The generation of aliphatic carboxylic acids as oxidation products was also investigated. The catalytically assisted oxidation was more efficient than the alkaline counterpart in dissolution of wood components under a four-hour treatment period resulting in higher dissolution of hemicelluloses. A longer reaction time of 20 hours leveled out the differences between the oxidation processes. Comparison of different bases showed that similar solubilisation of dry matter was obtained with NaOH, KOH, and Na2CO3. Oxidation in Na2CO3 caused higher dissolution of glucomannan and greater acid production. The dissolution of hemicellulose and lignin, and their oxidation to acids was most efficient in the first 4 hours of oxidation.

  5. Dynamics of dipolar defects in rare earth-doped alkaline-earth fluoride crystals

    Science.gov (United States)

    Charnock, Forrest Taylor

    Alkaline-earth fluoride crystals such as SrF2 provide an excellent sample material for investigating the physics of point defects in crystal lattices. High quality crystals are easily grown, and they readily accept many dopant ions into the lattice, particularly rare earth ions. Rare earth dopant ions (typically trivalent) occupy substitutional sites in the lattice by replacing a Sr2+ ion. Due to the extra charge of the rare earth ion, charge compensation is often provided by an extra fluoride ion (F--) located in a nearby interstitial position. If located in the nearest-neighbor (nn) interstitial position, it forms a defect with C4n symmetry; if located in the next-nearest-neighbor (nnn) intersitial position, it forms a defect with C3n symmetry. Given sufficient thermal energy, this interstitial F ion can move to adjacent interstitial sites and hence reorient the defect. The rate w at which the ion moves from one interstitial site to another is well described by a simple Arrhenius expression: w=n0e-E/kT , where n0 is the attack frequency of the F-- and E is the activation energy. This motion can profoundly affect both the electronic polarizability of the material and the polarization of light emitted or absorbed by the rare earth ion. This thesis describes the normal mode motion of interstitial ions which may occupy either nn or nnn interstitial sites. Using electron paramagnetic resonance (EPR), I observed the relative populations of nn and nnn defects in SrF2 doped with Gd3+ as a function of temperature. These measurements show that dipolar reorientation of the nnn F occurs through the nn interstitial position. Not all interstitial F-- motion is thermally driven. Fluorescence depolarization measurements of SrF2:Pr3+ indicate that optically stimulating a Pr3+ may induce interstitial motion of a nn F--. Such motion was confirmed by showing that nn defects in SrF2:Pr3+ may be polarized at very low temperatures when the sample is illuminated with resonant light. I

  6. Spectroscopic characterization of manganese-doped alkaline earth lead zinc phosphate glasses

    Indian Academy of Sciences (India)

    S Sreehari Sastry; B Rupa Venkateswara Rao

    2015-04-01

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four bands which are characteristic of Mn(II) in distorted octahedral site symmetry. The crystal field parameter Dq and Racah interelectronic-repulsion parameters and have been evaluated. All investigated samples exhibit EPR signals which are characteristic to the Mn2+ ions. The shapes of spectra are also changed with varying alkaline earth ions content. FTIR spectra show specific vibrations of phosphate units. The characteristic Raman bands of these glasses due to stretching and bending vibrations were identified and analysed by varying alkaline earth content. The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies. This leads to a strong decrease of the average chain length and a small decrease of the average P–O–P bridging angle with replacement of alkaline earth content.

  7. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    Science.gov (United States)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  8. Electrical Conductivity of Alkaline-reduced Graphene Oxide

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; TIAN Hong-wei; WANG Xin-wei; QIAO Liang; WANG Shu-min; WANG Xing-li; ZHENG Wei-tao; LIU Yi-chun

    2011-01-01

    A green route using a very simple and straightforward ultrasonic process under alkaline conditions,rather than a general chemical reduction process using hydrazine,was utilized to obtain the hydrophilic reduced graphene oxide(RGO) sheets,via removing oxygen functional groups from graphene oxide(GO) and repairing the aromatic structure.It is found that the conductivity of the obtained RGO could be tuned by changing pH value in alkaline solution,and the current-voltage(Ⅰ-Ⅴ) curves of both GO and RGO are nonlinear and slightly asymmetric.Under the same applied voltage,the current of RGO is much larger than that of GO,indicating a pronounced increase in the electrical conductivity of RGO,compared to that of GO.

  9. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...

  10. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc{sub 2}O{sub 3} to Lu{sub 2}O{sub 3} mediated by alkaline chlorides as complex former

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yanhui [School of Chemistry and Environment, South China Normal University, Guangzhou 510631 (China)]. E-mail: sunyanhui0102@163.com; He Peng [Department of Ecology, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen Huani [School of Chemistry and Environment, South China Normal University, Guangzhou 510631 (China)

    2007-08-30

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc{sub 2}O{sub 3} to Lu{sub 2}O{sub 3} mediated by the vapor complexes KLnCl{sub 4} and NaLnCl{sub 4} (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl{sub 3} is in the increasing order ScCl{sub 3} < YCl{sub 3} < LaCl{sub 3}, and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl{sub 3} > ScCl{sub 3}, and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl{sub 3} and GdCl{sub 3} mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl{sub 3}, CeCl{sub 3}, YbCl{sub 3} and LuCl{sub 3}, while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl{sub 3} and EuCl{sub 3}. More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl{sub 3} as complex former.

  11. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    Directory of Open Access Journals (Sweden)

    Sandipsingh Gour

    2012-04-01

    Full Text Available The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G# was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 KJ/mole and energy of activation was found to be 23.95 KJ/mole. A suitable mechanism is proposed based on the experimental conditions.

  12. Electrochemical Impedance of Ethanol Oxidation in Alkaline Media

    Institute of Scientific and Technical Information of China (English)

    DANAEE Iman; JAFARIAN Majid; GOBAL Fereydoon; SHARAFI Mahboobeh; MAHJANI Mohammad-ghasem

    2012-01-01

    Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions.The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was studied by ac impedance spectroscopy.Electrooxidation of ethanol on Ni shows negative resistance on impedance plots.The impedance shows different patterns at different applied anodic potential.The influence of the electrode potential on impedance was studied and a quantitative explanation for the impedance of ethanol oxidation was given by means of a proposed mathematical model.At potentials higher than 0.52 V(vs.Ag/AgCl),a pseudoinductive behavior was observed,but at those higher than 0.57 V,impedance patterns were reversed to the second and third quadrants.The conditions required for the reversing of impedance pattern were delineated with the impedance model.

  13. Recent advances in tailoring the aggregation of heavier alkaline earth metal halides, alkoxides and aryloxides from non-aqueous solvents.

    Science.gov (United States)

    Fromm, Katharina M

    2006-11-21

    This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D

  14. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    Science.gov (United States)

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  15. FORMATION (DECOMPOSITION) ENTHALPY CALCULATIONS FOR CRYSTAL LATTICES OF ALKALINE-EARTH FLUORIDES

    OpenAIRE

    Gruba, O.; Germanyuk, N.; Ryabukhin, A.

    2015-01-01

    A series of calculations of structural and thermochemical properties has been carried out for the alkaline-earth fluorides. The calculations have been carried out using the modified model of effective ionic radii and the model of enthalpy calculation for the crystal lattice. The results of the calculations are in accordance with the known experimental data within confidence intervals.

  16. Doping of graphite by an alkaline-earth metal to reduce the work function

    NARCIS (Netherlands)

    Baturin, AS; Nikolski, KN; Knyazev, AI; Tchesov, RG; Sheshin, EP

    2004-01-01

    A technique for reducing the work function of a field-emission graphite cathode by doping it by an alkaline-earth metal (barium) is suggested. A model of formation of a barium monolayer on the cathode surface is proposed. Field-emission tests show that the operating voltage of the doped cathode is l

  17. Conformation Switching in Gas-Phase Complexes of Histidine with Alkaline Earth Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Hopkinson, A. C.; Oomens, J.; Siu, C. K.; Siu, K. W. M.; Steill, J. D.; Verkerk, U. H.; Zhao, J. F.

    2009-01-01

    Infrared multiple photon dissociation spectroscopy of gas-phase doubly charged alkaline earth complexes of histidine reveals a transition from dominance of the zwitterion (salt bridge, SB) conformation with Ba2+ to substantial presence of the canonical (charge-solvated, CS) conformation with Ca2+. T

  18. Calculated Structural Phase-Transitions in the Alkaline-Earth Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1982-01-01

    The local-density approximation and the linear muffin-tin orbital method have been used within the atomic-sphere approximation to calculate structural energy differences for all the alkaline earth metals at zero temperature. At ordinary pressure the calculations predict the crystal structure...

  19. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  20. IR and Raman spectroscopic studies of sol–gel derived alkaline-earth silicate glasses

    Indian Academy of Sciences (India)

    Angelos G Kalampounias

    2011-04-01

    IR and Raman spectroscopies have been utilized to study the structure and vibrational modes of sol–gel-derived binary silicate glasses. The present study is motivated by the immense geological significance and focuses on the MO–SiO2 (M = Ca, Mg) binary systems in an effort to unveil the role of the CaO and MgO modifiers when incorporated to the 3D silica structure. Glasses in the composition range = 0, 0.1, 0.2, 0.3 and 0.4 prepared by the sol–gel method were compared with the corresponding glasses formed by appropriate mixing of SiO2 and MO powders through melting and fast cooling. The vibrational spectra of the sol–gel-derived glasses have revealed considerable changes in relative intensities as a function of the MO mole fraction. These changes signify structural modifications on the silica network. The population of the 3 species was found to increase for both modified silicate systems. The rate of increase is more pronounced in the CaO–SiO2 glasses. The extent of network depolymerization in the porous glass is higher at the same content of alkaline earth oxide compared to the bulk glass. The results are indicative of a more `defective’ nature of the sol–gel glasses compared to the corresponding melt-quenched ones.

  1. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  2. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    Science.gov (United States)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  3. Helical ternary complexes of alkaline earth picrates with open-chain crown ether

    Institute of Scientific and Technical Information of China (English)

    刘伟生; 温永红; 刘雪原; 谭民裕

    2003-01-01

    Four solid complexes of alkaline earth picrates with N,N,N′,N′-tetraphenyl-3,6,9-tri- oxaundecanediamide (TTD), M (Pic)2TTD (1, M = Mg; 2, M = Ca; 3, M = Sr; 4, M = Ba), have been prepared and characterized by elemental analysis, conductivity measurement, IR spectra, 1H NMR spectra and TG-DTA techniques. Crystal structure of complex 3 shows that the Sr(Ⅱ) ion is 9-coordinated by five oxygen atoms from TTD and four oxygen atoms from two bidentate picrates, and the coordination polyhedron is distorted tricapped trigonal prism. TTD as a pentadentate ligand forms a right-handed helical coordination structure. The chelating helical chain has a relative fixed radius and then shows a high coordination selectivity to metal ion. The high selectivity of TTD to alkaline earth ions is explained elementarily from the special coordination structures.

  4. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup;

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K......) are compared in order to determine the influence of the thermal history on these properties. Vickers hardness is found to be essentially unaffected by the environmental conditions, while the stress intensity factor (fracture toughness) and the crack resistance decrease significantly with increasing humidity...

  5. Molecular dynamics of liquid alkaline-earth metals near the melting point

    Indian Academy of Sciences (India)

    J K Baria; A R Jani

    2010-10-01

    Results of the studies of the properties like binding energy, the pair distribution function (), the structure factor (), specific heat at constant volume, velocity autocorrelation function (VACF), radial distribution function, self-diffusion coefficient and coordination number of alkaline-earth metals (Be, Mg, Ca, Sr and Ba) near melting point using molecular dynamics (MD) simulation technique using a pseudopotential proposed by us are presented in this article. Good agreement with the experiment is achieved for the binding energy, pair distribution function and structure factor, and these results compare favourably with the results obtained by other such calculations, showing the transferability of the pseudopotential used from solid to liquid environment in the case of alkaline-earth metals.

  6. Solvent Extraction of Alkaline Earth Metals with Alkylphosphorus Acids%有机磷(膦)酸对碱土金属的萃取

    Institute of Scientific and Technical Information of China (English)

    许新; 朱屯

    2002-01-01

    Solvent extraction equilibria of four main alkaline earth metals (magnesium, calcium, strontium and barium) with di(2-ethylhexyl) phosphoric acid (DEHPA), 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester,di(2,4,4-tri-methylpentyl) phosphinic acid and IR spectra of the extracts have been studied. The selectivity order is dependent on the e/r value and hydration energy of the metal ions. The minor shift of the P-O in IR absorption of the alkaline earth metal extracts indicates that the interaction between the metal ions and P-O is much weaker for alkaline earth metals than for transitional metals. The distribution of the four alkaline earth elements between aqueous solutions and solutions of DEHPA and neutral organophosphorus compounds, tri-n-butyl phosphate (TBP) or tri-octyl phosphine oxide (TOPO) in kerosene have been determined at varying ratio of TBP or TOPO to DEHPA and the positive synergism is observed. The synergic effect is explained by using IR spectra of the loaded organic phase.

  7. Properties of the triplet metastable states of the alkaline-earth atoms

    CERN Document Server

    Mitroy, J

    2004-01-01

    The static and dynamic properties of the alkaline-earth atoms in their metastable state are computed in a configuration interaction approach with a semi-empirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  8. Deselenization and detellurization of precious-metal ore concentrates by swelling oxidizing roasting and successive alkaline leaching

    Science.gov (United States)

    Zhang, Fu-yuan; Zheng, Ya-jie; Peng, Guo-min

    2017-02-01

    A new technique of swelling oxidizing roasting and alkaline leaching was proposed for deselenization and detellurization of precious-metal ore concentrates. Alkali-metal and alkaline-earth-metal chlorides and carbonates were preliminarily selected as swelling agents. The roasting removal rate and alkaline leaching rate of selenium and tellurium were investigated, and NaCl was selected as an appropriate swelling agent. Furthermore, the effects of various factors on the selenium gasification rate and leaching rate of selenium and tellurium were investigated. The results show that the selenium gasification rate reaches 88.41% after swelling oxidizing roasting for 2 h at 510°C using an NaCl dosage coefficient of 100 and a sulfuric acid dosage coefficient of 1.3; the amorphous elemental tellurium is completely transformed into TiO2. The roasted product is subjected to alkaline leaching using a 100 g/L NaOH solution, which results in a selenium leaching rate of 10.51%, a total selenium removal rate of 98.92%, and a tellurium leaching rate of 97.64%. In the alkaline leaching residue, the contents of selenium, tellurium, gold, platinum, and palladium are 0.7825%, 5.492%, 8.333%, 0.2587%, and 1.113%, respectively; the precious metals are enriched approximately sixfold.

  9. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with diva

  10. Nano porous alkaline earth metal silicates as free fatty acid adsorbents from Crude Palm Oil (CPO)

    Science.gov (United States)

    Masmur, Indra; Sembiring, Seri Bima; Bangun, Nimpan; Kaban, Jamaran; Putri, Nabila Karina

    2017-01-01

    Free fatty acids(FFA) from Crude Palm Oil (CPO) have been adsorbed by alkaline earth metal silicate (M-silicate : M = Mg, Ca, Sr and Ba) adsorbents in ethanol using batch method. The adsorbents were prepared from the chloride salts of alkaline metals and Na2SiO3. The resulting white solid of the alkaline earth metal silicates were then heated at 800°C for 3 hours to enlarge their porosities. All adsorbents were characterized by SEM-EDX, XRD and BET. The EDX spectrum of SEM-EDX showed the appearance of all elements in the adsorbents, and the XRD spectrum of all adsorbents showed that they have crystobalite structure. The porosity of the adsorbents calculated by BET method showed that the porosities of the adsorbents range from 2.0884 - 2.0969 nm. All the adsorbents were used to adsorb the FFA from CPO containing 4.79%, 7.3%, 10.37% and 13.34% of FFA. The ratio of adsorbent to CPO to be used in adsorption of FFA from CPO were made 1:1, 1:2 and 1:3, with adsorption time of 1 hour. We found that the maximum adsorption of FFA from CPO was given by Ca-Silicate adsorbent which was between 69.86 - 94.78%, while the lowest adsorption was shown by Mg-silicate adsorbent which was 49.32 -74.53%.

  11. Effects of Rare Earth and Alkaline Earth on Spheroidizing of Eutectic Carbides in Low Tungsten White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Fu Hanguang; Zou Dening

    2004-01-01

    Tungsten Alloy White Cast Iron(TAWCI) has great brittleness and narrow application scope. The influences of Rare earth element(Ce) and alkaline earth elements ( K, Na) on the microstructures and performances of TAWCI were researched, and the idea estimating spheroidizing effect of carbides using Circular Degree (C. D) were put forward. The result shows that eutectics carbide tums into sphericity from network after modification, and carbide is refined and uniformly distributed and the C. D of eutectic carbide increases. The mechanism of carbide spheroidizing was analyzed. The impact toughness and wear resistance of TAWCI obviously improve with the rise of C. D of carbides.The service life of modified TAWCI roll is 35 % higher than that of high chromium cast iron roll, and its production cost is reduced by 25 %.

  12. Creation of trapped electrons and holes in alkaline-earth fluoride crystals doped by rare-earth ions

    Science.gov (United States)

    Radzhabov, E.

    2002-06-01

    Defects in Ce 3+- and Eu 2+-doped alkaline-earth fluorides, created by vacuum ultraviolet (VUV) photons with energy lower than that of the band gap, were investigated by various methods: thermostimulated luminescence, photostimulated luminescence and optical absorption. The CaF 2:Eu 2+ thermoluminescence curves in the range of 60-330 K due to various types of trapped holes were the same after VUV illumination as after X-ray irradiation. Thermoluminescence curves of Ce 3+-doped alkaline-earth fluorides created by VUV illumination or X-ray irradiation were generally similar. However, Vk thermoluminescence peaks were absent in VUV-illuminated CaF 2:Ce 3+ and SrF 2:Ce 3+ crystals. Creation of Ce 2+ characteristic bands was observed in photostimulated luminescence spectra as well as in optical absorption spectra of vacuum ultraviolet-illuminated or X-ray-irradiated Ce 3+-doped crystals. The proposed mechanism of creation of trapped hole and trapped electron defects by vacuum ultraviolet illumination involves charge transfer-type transitions, in which the electron transfers from valence band to an impurity level, lying in the band gap. Comparison of all involved energies of transitions in the crystals investigated shows that the sum of all transition energies is less than that of the band gap by 1-3 eV. This energy difference can be considered as the energy of lattice relaxation around created Ce 2+ or Eu + ions.

  13. STARK STRUCTURE OF THE RYDBERG STATES OF ALKALINE-EARTH ATOMS

    Institute of Scientific and Technical Information of China (English)

    郅妙婵; 戴长建; 李士本

    2001-01-01

    The Stark effects of the Rydberg states in the alkaline-earth atoms are studied theoretically. Using a method similar to the treatment of alkali atoms, the properties of the Stark states of Mg, Ca, Sr and Ba atoms in the regions far away from the perturbers are investigated. The Stark maps for Mg (n=16, M=0), Ca (n=10, M=0), Sr (n=12,M=0) and Ba (n=13, |M|=0,1) are presented. Topics such as the general methods of calculation, the treatment of fine structure, and the structure of level anti-crossings are discussed. The comparison between the theoretical and experimental Stark maps is satisfactory.

  14. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    Science.gov (United States)

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  15. Nanocrystalline Powders of Alkaline-Earth Phosphates as Precursors for Bioceramics

    Directory of Open Access Journals (Sweden)

    Parhi Purnendu

    2006-01-01

    Full Text Available Bone is a nanocomposite made of calcium phosphates and collagen. Collagen has a typical fibrous structure, with diameter ranging from 100 nm to 2 µm. It is suggested that calcium hydroxyapatite, Ca10(PO46(OH2 in the size range 5-50 nm embedded in the collagen framework provides mechanical strength to bone. Among calcium phosphates, apatites are found to be the most suitable for bone regeneration due to its biocompatibility. A contemporary theme is to prepare nanocrystallites of alkaline-earth phosphates that can be employed as precursors for making novel bioceramics. In this paper, we present our attempts to prepare nano-sized particles of alkaline-earth hydroxyapatites, A10(PO46(OH2 where A= Ca, Sr and Ba through a metathetical route. Our work involved the use of same reactants treated under different reaction conditions. While hydrothermal route yielded well-crystalline nanorods, microwave resulted in agglomerated hydroxyapatites and reverse micellear route gave low crystalline apatites with less agglomeration.

  16. Long-range interacting many-body systems with alkaline-earth-metal atoms.

    Science.gov (United States)

    Olmos, B; Yu, D; Singh, Y; Schreck, F; Bongs, K; Lesanovsky, I

    2013-04-01

    Alkaline-earth-metal atoms can exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the (3)P(0) - (3)D(1) transition of the triplet manifold. In the case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.6 μm and a dipole moment of 4.03 D, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states (3)P(0) and (3)D(1). This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tunable disorder and anisotropy. We derive the many-body master equation, investigate the dynamics of excitation transport, and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with long-range interactions. As such, they represent an alternative to current related efforts employing Rydberg gases, atoms with large magnetic moment, or polar molecules.

  17. Long-range interacting many-body systems with alkaline-earth-metal atoms

    CERN Document Server

    Olmos, B; Singh, Y; Schreck, F; Bongs, K; Lesanovsky, I

    2012-01-01

    Alkaline-earth-metal atoms exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the 3P_0-3D_1-transition of the triplet manifold. In case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.7 \\mu m and a dipole moment of 2.46 Debye, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states 3P_0 and 3D_1. This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tuneable disorder and anisotropy. We derive the many-body Master equation, investigate the dynamics of excitation transport and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with lon...

  18. Temperature-induced collapse of alkaline Earth cation-polyacrylate anion complexes.

    Science.gov (United States)

    Lages, Sebastian; Schweins, Ralf; Huber, Klaus

    2007-09-06

    Polyacrylate anions are used to inhibit CaCO3 precipitation and may be a promising additive to control formation of inorganic nanoparticles. The origin of this applicability lies in specific interactions between the alkaline earth cations and the carboxylate functions along the polyacrylate chains. In the absence of CO32- anions, these interactions eventually cause precipitation of polyelectrolytes. Extended investigation of dilute sodium polyacrylate solutions approaching this precipitation threshold revealed a dramatic shrinking of the PA coil dimensions once the threshold is reached (Eur. Phys. J. E 2001, 5, 117). Recent isothermal calorimetric titration experiments by Antonietti et al. (Macromolecules 2004, 37, 3444) indicated that the driving force of this precipitation is entropic in nature. In the present work, we investigated the impact of temperature on the structural changes of dissolved polyacrylate chains decorated with alkaline earth cations. To this end, large polyacrylate chains were brought close to the precipitation threshold by the addition of distinct amounts of Ca2+ or Sr2+ cations. The resulting structural intermediates were then subjected to temperature variations in the range of 15 degrees C polyacrylate coils were recorded by means of light and neutron scattering. As a major result, we could unambiguously demonstrate that the coils can reversibly be collapsed and extended by increasing and decreasing the temperature, respectively.

  19. Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis

    Directory of Open Access Journals (Sweden)

    Pan Gao

    2015-11-01

    Full Text Available To study the effects of inherent and external alkali and alkaline earth metallic species (AAEMs, i.e., K, Ca and Mg on the behavior of N-containing species release during rice straw (RS pyrolysis, different pretreatments were applied in numerous experiments. Results indicate that ammonia (NH3 and hydrogen cyanide (HCN are the major N-containing species and that the yields of isocyanic acid (HNCO and nitric oxide (NO are relatively low. The removal of inhert AAEMs shifts N-containing species release to a high-temperature zone according to volatile release behavior because of the increase in activation energy. The formation selectivity of NH3, HNCO, and NO increases by demineralized pretreatment, whereas HCN selectivity decreases. The formation of HNCO is mainly affected by alkaline earth metal. N-containing species release occurs in low temperatures with the addition of external AAEMs. The activation energy of samples impregnated with CaCl2 and MgCl2 sharply decreases compared to the original RS. The total yields of N-containing species are reduced significantly in the presence of KCl, CaCl2, and MgCl2 as additives. The inhibition ability of AAEMs follows the sequence MgCl2 > CaCl2 > KCl. The inhibition effect of MgCl2 can be improved by solution immersion compared with solid powder mixing. The clean biomass pyrolysis and gasification technology with low N-containing species content may be developed according to the results.

  20. Destructive Adsorption of Carbon Tetrachloride on Alkaline Earth Metal Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Mestl, Gerhard; Rosynek, Michael P.; Krawietz, Thomas R.; Haw, James F.; Lunsford, Jack H.

    2001-01-01

    The destructive adsorption of CCl4 on MgO, CaO, SrO, and BaO has been studied as a function of the reaction temperature and the amount of CCl4 injected. The reaction was followed using in situ Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 13 C mag

  1. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  2. Relations between structure and material properties in earth alkaline silicate basing phosphors; Struktureigenschaftsbeziehungen in Erdalkalisilikat basierenden Leuchtstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Wolfgang

    2008-03-19

    This work is basing on the relation between structure and luminescence of Eu{sup 2+} doped Earth-Alkaline-Silicates. After an overview of Earth-Alkaline-Silicates silicates with an additional cation (Li{sup +}, Al{sup 3+}) and an additional anion (Cl{sup -}, N{sup 3-}) are examined in chapter 4 and 5. Basing on this data an relation between structural influence - like ion-radii, anion and coordination polyeder - and phosphor luminescence is set up. The ability of using as an industrial phosphor is made in the final chapter. (orig.)

  3. Electric dipole polarizability of alkaline-Earth-metal atoms from perturbed relativistic coupled-cluster theory with triples

    CERN Document Server

    Chattopadhyay, S; Angom, D

    2014-01-01

    The perturbed relativistic coupled-cluster (PRCC) theory is applied to calculate the electric dipole polarizabilities of alkaline Earth metal atoms. The Dirac-Coulomb-Breit atomic Hamiltonian is used and we include the triple excitations in the relativistic coupled-cluster (RCC) theory. The theoretical issues related to the triple excitation cluster operators are described in detail and we also provide details on the computational implementation. The PRCC theory results are in good agreement with the experimental and previous theoretical results. We, then, highlight the importance of considering the Breit interaction for alkaline Earth metal atoms.

  4. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    Science.gov (United States)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  5. Lifshitz and other transitions in alkaline-earth 122 pnictides under pressure

    Science.gov (United States)

    Quader, Khandker; Widom, Michael

    2014-10-01

    We carry out T =0 first-principles total energy calculations in the entire set of alkaline 122-pnictides (A Fe2As2 ; A = alkaline-earth element Ca, Sr, Ba, Ra) as a function of hydrostatic pressure. We find multiple distinct transitions to occur, namely an enthalpic transition in which the zero-pressure striped antiferromagnetic orthorhombic (OR-AFM) phase becomes thermodynamically less stable than a competing tetragonal (T) phase, a magnetic transition in which the OR-AFM phase loses its magnetism and orthorhombicity, and a lattice parameter anomaly in which the tetragonal c-axis collapses and a collapsed tetragonal (cT) phase becomes stable. Our results for energy band dispersions and spectra, lattice parameters, enthalpies, magnetism, and elastic constants over a wide range of hydrostatic pressure provide a coherent understanding of these experimentally observed transitions. In particular, the T-cT transition and anomalies in lattice parameters and elastic properties, observed at finite temperatures, are interpreted as arising from proximity to T =0 Lifshitz transitions, wherein pressure causes nontrivial changes in the Fermi surface topology in these materials.

  6. Quantum degenerate mixtures of alkali and alkaline-earth-like atoms.

    Science.gov (United States)

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope ⁶Li with evaporatively cooled bosonic ¹⁷⁴Yb and, separately, fermionic ¹⁷³Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a(⁶Li-¹⁷⁴Yb)| = 1.0 ± 0.2 nm and |a(⁶Li-¹⁷³Yb)| = 0.9 ± 0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  7. Theoretical study of the alkaline-earth (LiBe)+ ion: structure, spectroscopy and dipole moments

    Science.gov (United States)

    Ghanmi, C.; Farjallah, M.; Berriche, H.

    2017-03-01

    We study theoretically the structure and spectroscopic properties of the alkali alkaline-earth (LiBe)+ ion. The potential energy curves and their spectroscopic parameters, permanent and transition dipole moments are determined with a quantum chemistry approach. The (LiBe)+ ion is modelled as two valence electron system moving in the field of Be2+ and Li+ cores, which are described by pseudopotentials. In addition, effective core-polarization potentials are included to correct the energy. The molecular calculations are performed using a standard quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarization potentials, and full configuration interaction (CI) calculations. The precision of our spectroscopic parameters are discussed by comparison with currently available theoretical results. A rather good agreement is observed for the ground and first excited states. The permanent dipole moments reveal many abrupt changes, which are localized at particular distances corresponding to the positions of the avoided crossings.

  8. Photon Hall Scattering from Alkaline-earth-like atoms and Alkali-like ions

    CERN Document Server

    van Tiggelen, B A

    2016-01-01

    We investigate the possibility of observing a magneto-transverse scattering of photons from alkaline-earth-like atoms as well as alkali-like ions and provide orders of magnitude. The transverse magneto-scattering is physically induced by the interference between two possible quantum transitions of an outer electron in a S-state, one dispersive electric-dipole transition to a P-orbital state and a second resonant electric-quadrupole transition to a P-orbital state. In contrast with previous mechanisms proposed for such an atomic photonic Hall effect, no real photons are scattered by the electric-dipole allowed transition, which increases the ratio of Hall current to background photons significantly. The main experimental challenge is to overcome the small detection threshold, with only 10^{-5} photons scattered per atom per second.

  9. Linear alkaline earth metal phosphinate coordination polymers: synthesis and structural characterization.

    Science.gov (United States)

    Rood, Jeffrey A; Huttenstine, Ashley L; Schmidt, Zachery A; White, Michael R; Oliver, Allen G

    2014-06-01

    Reaction of alkaline earth metal salts with diphenylphosphinic acid in dimethylformamide solvent afforded four coordination polymers: [Mg3(O2PPh2)6(DMF)2]·2DMF (I), [Ca(O2PPh2)2(DMF)2] (II), [Sr(O2PPh2)2(DMF)2] (III) and [Ba(O2PPh2)2(DMF)2] (IV) (where DMF is N,N-dimethylformamide). Single-crystal X-ray diffraction revealed that all four compounds produce linear chain structures in the solid state, with the Ca, Sr and Ba forming isostructural crystals. The bulk materials were characterized by FT-IR and (1)H NMR spectroscopy and elemental analyses.

  10. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  11. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    Science.gov (United States)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  12. Raman and Rietveld structural characterization of sintered alkaline earth doped ceria

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira Junior, Jose Marcio; Brum Malta, Luiz Fernando; Garrido, Francisco M.S. [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu [Programa de Engenharia Metalurgica e de Materiais, Coordenacao dos Programas de Pos - Graduacao de Engenharia, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundao, CEP 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Medeiros, Marta Eloisa, E-mail: chico@iq.ufrj.br [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil)

    2012-08-15

    Nanocrystalline calcium and strontium singly doped ceria and co-doped ceria materials for solid electrolytes were prepared via a hydrothermal route. The effect of the hydrothermal treatment time on the solid solution composition was evaluated. Sr doped ceria was the most difficult to form, due to the Sr{sup 2+} large ionic radius. The small crystal size (12-16 nm) of powders allowed sintering into dense ceramic pellets at 1350 Degree-Sign C for 5 h. Raman spectroscopy evidenced a great lattice distortion for Sr doped and co-doped ceria materials, explaining the deterioration of the electrical properties for these ceramics. Besides that, a second phase was detected for Sr doped ceria pellet by using X-ray powder diffraction and Rietveld refinement of XRD data. Impedance measurements showed that Ca-doped ceria behaves as the best ionic conductor ({sigma}{sub g} 390 Degree-Sign C = 1.0 Multiplication-Sign 10{sup -3} S cm{sup -1}) since the nominal composition was achieved; on the other hand, Sr doped ceria performed as resistive materials since Sr incorporation into ceria lattice was critical. These results enhance the close interlace between electrical performance and chemical composition of alkaline earth doped ceria. -- Highlights: Black-Right-Pointing-Pointer Hydrothermally synthesized calcium doped ceria nanoparticles. Black-Right-Pointing-Pointer Incorporation of alkaline earth dopant into ceria lattice. Black-Right-Pointing-Pointer Raman and Rietveld structural characterization. Black-Right-Pointing-Pointer Calcium doped ceria ceramic pellets with high ionic conductivity. Black-Right-Pointing-Pointer Problems associated with the Sr{sup 2+} incorporation into ceria lattice.

  13. Thermal poling of alkaline earth boroaluminosilicate glasses with intrinsically high dielectric breakdown strength

    Science.gov (United States)

    Smith, Nicholas J.; Lanagan, Michael T.; Pantano, Carlo G.

    2012-04-01

    Per the rectification model of thermal poling, it has been proposed that intrinsic breakdown strength plays a strong limiting role in the internal DC fields supported by the glass from the poling process. One might therefore hypothesize proportionately larger second-order nonlinearity (SON) in glasses with intrinsically high dielectric breakdown strength. We test these ideas by thermal poling of two different commercial alkali-free alkaline-earth boroaluminosilicate display glasses—one with barium only (AF45 from Schott), and the other with a mixture of alkaline-earth ions (OA-10 G from NEG). Not only are such compositions relevant from a commercial standpoint, they are also interesting in that they have been recently shown to exhibit remarkably high intrinsic dielectric breakdown strengths of 11-14 MV/cm. Quantitative Maker fringe and stack Maker-fringe measurements provide an accurate evaluation of the poling-induced SON susceptibilities, and indicate maximum χ(2) values of 0.44 and 0.26 pm/V in these glasses. These values are comparable to those reported for silica and other multicomponent glasses. Thus, the hypothesis that higher χ(2) would be observed in high intrinsic breakdown strength glasses was not validated. Based on our application of the rectification model, internal fields of the order 2-4 MV/cm were calculated, which are well below the measured intrinsic breakdown strengths at room temperature. The most plausible explanation for these observations is nonlinear electronic conduction effects taking place within the depletion region at the poling temperature, limiting internal fields to a fraction of the breakdown field.

  14. THE BIOENERGETICS OF AMMONIA AND HYDROXYLAMINE OXIDATION IN NITROSOMONAS-EUROPAEA AT ACID AND ALKALINE PH

    NARCIS (Netherlands)

    FRIJLINK, MJ; ABEE, T; LAANBROEK, HJ; DEBOER, W; KONINGS, WN

    1992-01-01

    Autotrophic ammonia oxidizers depend on alkaline or neutral conditions for optimal activity. Below pH 7 growth and metabolic activity decrease dramatically. Actively oxidizing cells of Nitrosomonas europaea do not maintain a constant internal pH when the external pH is varied from 5 to 8. Studies of

  15. Hydrophobicity of rare-earth oxide ceramics

    Science.gov (United States)

    Azimi, Gisele; Dhiman, Rajeev; Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.

    2013-04-01

    Hydrophobic materials that are robust to harsh environments are needed in a broad range of applications. Although durable materials such as metals and ceramics, which are generally hydrophilic, can be rendered hydrophobic by polymeric modifiers, these deteriorate in harsh environments. Here we show that a class of ceramics comprising the entire lanthanide oxide series, ranging from ceria to lutecia, is intrinsically hydrophobic. We attribute their hydrophobicity to their unique electronic structure, which inhibits hydrogen bonding with interfacial water molecules. We also show with surface-energy measurements that polar interactions are minimized at these surfaces and with Fourier transform infrared/grazing-angle attenuated total reflection that interfacial water molecules are oriented in the hydrophobic hydration structure. Moreover, we demonstrate that these ceramic materials promote dropwise condensation, repel impinging water droplets, and sustain hydrophobicity even after exposure to harsh environments. Rare-earth oxide ceramics should find widespread applicability as robust hydrophobic surfaces.

  16. Oxidative dissolution of spent nuclear fuel in aqueous alkaline solutions - An alternative to the Purex process?

    Energy Technology Data Exchange (ETDEWEB)

    Runde, Wolfgang; Peper, Shane; Brodnax, Lia; Crooks, William; Zehnder, Ralph; Jarvinen, Gordon

    2004-07-01

    As an alternative to acidic reprocessing of spent nuclear, oxidative dissolution of UO{sub 2} into aqueous alkaline solutions and subsequent separation of fission products is considered. The efficacy of such a method is limited by the kinetics of the UO{sub 2} dissolution and the capacity of alkaline solutions for dissolved U(VI) species. We performed a series of dissolution studies on UO{sub 2} and U{sub 3}O{sub 8} in aqueous alkaline solutions applying various oxidants. Among the oxidative agents commonly used to transform low-valence actinides into their higher oxidation states, H{sub 2}O{sub 2} has proven to be the most effective in basic media. Consequently, we investigated the dissolution of UO{sub 2} and U{sub 3}O{sub 8} in NaOH-H{sub 2}O{sub 2} and Na{sub 2}CO{sub 3}-H{sub 2}O{sub 2} solutions and determined the dissolution kinetics as a function of peroxide and hydroxide (carbonate) concentrations. Methods to remove fission products, e.g., Cs, Sr, Ba and Zr, from alkaline solutions will be evaluated based upon their decontamination factors. We will discuss the feasibility of using chemically oxidizing alkaline solutions as an alternative spent nuclear fuel reprocessing method based on results from experimental quantitative investigations. (authors)

  17. Ab Initio Calculation of 19F NMR Chemical Shielding for Alkaline-earth-metal Fluorides

    Institute of Scientific and Technical Information of China (English)

    CAI,Shu-Hui(蔡淑惠); CHEN,Zhong,(陈忠); LU,Xin(吕鑫); CHEN,Zhi-Wei(陈志伟); WAN,Hui-Lin(万惠霖)

    2001-01-01

    Gauge-independent atomic orbital (GIAO) method atHartree-Fock (HF) and density functional theory (DFr) lev-els,respectively,was employed to calculate 19F NMR chemi-cal shieldings of solid state alkaline-earth-metal fluorides MF2 (M = Mg,Ca,Sr,Ba).The results show that,although thecalculated19F chemical shieldings tend to be larger than the experinental values,they have a fairly good linear relation-ship with the observed ones.The calculated results based on different combinations of basis sets show that the B3LYP (ahybrid of DFT with HF) predictions are greatly superior tothe I-IF predictions.When a basis set of metal atom with ef- fecfive core potential (ECP) has well representation of valencewavefunction,especially wavefuncfion of d component,andproper definition of core electron nmnher,it can be applied toobtain 19F chemical shielding which is dose to that of all-elec-tron calculation.Tne variation of 19F chemical shielding of al-kaline-earth-metal fluorides correlates well with the latticefactor A/R2.``

  18. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    Science.gov (United States)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  19. Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr

    KAUST Repository

    Zhang, J.-Y.

    2013-04-05

    Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.

  20. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Martínez, S.

    1992-09-01

    Full Text Available Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide, employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium allowed us to determine the Lambert-Beer law slopes for each compound. These values are differents (bearing in mind experimental random errors, so we have could to affirm the nonexistence of solid solution between the nitrate and the alkaline halide médium. The L-B law obtained by us can be used for the Identification differentiation and quantitative analysis of these nitrates in solid phase, even if they are present in a very low concentration.

    Se ha realizado la asignación de los espectros infrarrojo (IR de los nitratos alcalinos, sódico y potásico, y de los alcalinotérreos, magnésico y cálcico, en estado sólido. Se ha visto la influencia del medio dispersante (haluro alcalino, utilizado en la preparación de la muestra sólida. El estudio cuantitativo de la absorbencia de la banda a 1.387 cm-1 (presente en los espectros IR de los cuatro nitratos en medio KBr permite determinar las pendientes de la Ley de Lambert-Beer Se comprueba que dichas pendientes son diferentes lo que conduce a poder afirmar que no se produce disolución sólida entre el KBr y el nitrato alcalino o alcalinotérreo. La determinación de la ley de Lambert-Beer permite la identificación y el análisis cualitativo y cuantitativo por espectroscopia IR de estos nitratos cuando están presentes en bajas concentraciones en muestras sólidas.

  1. A laboratorial study on influence of alkaline and oxidative environment on preservation of Pinus tabulaeformis pollen

    Institute of Scientific and Technical Information of China (English)

    Fang TIAN; Xianyong CAO; Qinghai XU; Yuecong LI

    2009-01-01

    Different sedimentary settings can influence preservation of pollens, which would lead to mis-interpretation of fossil pollen spectrum. This study investigates the influence on the preservation of Pinus tabulaeformis pollen by simulating alkaline and oxidative environment in the laboratory. There was no obvious change in the content ofPinus tabulaeformis pollen while comparing the original with the ones that were immersed with 10% NaOH liquor for ten days, or boiled for five hours, and or boiled with 20%-30% NaOH for one hour,respectively. However, the pollen fossils were obviously corroded and eroded after being boiled with 40% NaOH for one hour and were seriously corroded after five hours. The result indicates that Pinus tabulaeformis pollen is quite durable in alkaline environment and heating condition within a shorter period of time, although alkaline environment has a disadvantage for its preservation. We also tested the influence of oxidation on Pinus tabulae-formis pollen preservation with KMnO4 as oxidant. The result presents that the number of remaining Pinus tabulaeformis pollen grains decreased quickly after being dipped in KMnO4 along with extending the reaction time and reinforcing oxidant. The rate of remnant pollen grains was less than 1% after being dipped with 2% KMnO4 for one hour. It is suggested that oxidative environment has stronger influence on Pinus tabulaeformis pollen preserva tion than alkaline environment.

  2. Syntheses, structure and properties of Alkaline-earth metal salts of 4-Nitrophenylacetic acid

    Indian Academy of Sciences (India)

    BIKSHANDARKOIL R SRINIVASAN; KIRAN T DHAVSKAR; CHRISTIAN NÄTHER

    2016-11-01

    The synthesis, crystal structure, spectral characteristics and thermal properties of alkaline-earth metal salts of 4-nitrophenylacetic acid (4-npaH) namely, [Mg(H₂O)₆](4-npa)₂·4H₂O (4-npa = 4-nitrophenylacetate) (1), [Ca(H₂O)₂(4-npa)₂] (2) and [Sr(H₂O)₃(4-npa)₂]·4.5H₂O(3) are reported. In 1, the 4-npa ion functions as a charge balancing counter anion for the octahedral [Mg(H₂O)6]²⁺ unit with the Mg(II) ion situated on a centre of inversion. The two unique lattice water molecules link the [Mg(H₂O)₆]²⁺ cations and 4-npa anions with the aid of O-H· · ·O interactions. Compounds 2 and 3 are one-dimensional (1-D) coordination polymers containing an eight coordinated Ca(II) situated in a general position and a nine coordinated Sr(II) located on a twofold axis. The μ₂-bridging tridentate binding modes of the crystallographically independent 4-npa ligands in 2 and the unique 4-npa ligand in 3 link the bivalent metal ions into an infinite chain with alternating Ca· · · Ca separations of 3.989 and 4.009 Å, respectively, and a single Sr· · · Sr separation of 4.194Å in the 1-D chain.

  3. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis-Granados, J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico); Granados-Correa, F., E-mail: francisco.granados@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Barrera-Díaz, C.E. [Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico)

    2013-08-15

    This work examines the surface fractal dimensions (D{sub f}) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N{sub 2}-physisorption measurements. Surface fractal dimensions were determined using single N{sub 2}-adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D{sub f} values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  4. Photo-bleaching effect in divalent samarium-doped alkaline-earth fluorohalides

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weiping [Chinese Academy of Sciences, Changchun (China); Jang, Kiwan; Cho, Hyungab; Chung, Yonghwa; Park, Seongtae; Lee, Yongill [Changwon National University, Changwon (Korea, Republic of); Kim, Changdae [Mokpo National University, Mokpo (Korea, Republic of)

    2004-08-15

    When a CW laser was focused on a sample of divalent samarium-doped alkaline-earth fluorohalides (Mg{sub 0.5}Sr{sub 0.5}FCl{sub 0.5}Br{sub 0.5} : Sm{sup 2+} or BaFCl{sub 0.5}Br{sub 0.5} : Sm{sup 2+}), the fluorescence intensity of Sm{sup +2} ions decreased rapidly. Under irradiation from a 488-nm laser with a power density of 10 W/cm{sup 2}, the intensity of the {sup 5}D{sub 0} -> {sup 7}F{sub 0} (Sm{sup 2+}) emission decreased as much as 96 % of its initial intensity in 30 minutes (for an X-ray-reduced sample). The so-called photo-bleaching effect can be influenced by the processes used for sample synthesis, such as the reduction method, the grinding process or X-ray irradiation. The decreasing curves obtained in the photo-bleaching experiments were fitted, a biexponential decreasing mode was found, which included a fast decrease (time constant {approx}tens of seconds) and a slow decrease (time constant {approx}hundreds of seconds). There was no evidence to support the divalent samarium ions being photo-ionized into trivalent samarium ions in the photobleaching process. The most probable mechanism for the photo-bleaching effect involves structural defects and color centers in the samples.

  5. Alkaline earth silicate wools - A new generation of high temperature insulation.

    Science.gov (United States)

    Brown, Robert C; Harrison, Paul T C

    2012-11-01

    Intensive study of the natural asbestiform minerals that cause human diseases, and the consequent understanding of their hazardous characteristics, has enabled the development of manufactured fibres whose physical and/or chemical properties, in particular as they relate to biopersistence, have been adjusted to minimize possible harm to health. A strong driver for the developmentof new high temperature insulation materials wasthe perception of the toxicity of refractory ceramic fibres (RCF)and their classification in the EU as a category 2 carcinogen under Directive 67/548/EEC. Such classification carries with it the requirement for substitution by less hazardous materials. This paper focuses on the development of alkaline earth silicate (AES) wools as a new class of high temperature insulation with the capability of such substitution in a number of applications. These wools have only a low potential to cause harm because they do not persist in lung tissue once deposited, and have produced minimal effects in experimental test systems. AES wools are increasingly being used in a wide range of high temperature applications.

  6. Collective non-equilibrium spin exchange in cold alkaline-earth atomic clocks

    Science.gov (United States)

    Acevedo, Oscar Leonardo; Rey, Ana Maria

    2016-05-01

    Alkaline-earth atomic (AEA) clocks have recently been shown to be reliable simulators of two-orbital SU(N) quantum magnetism. In this work, we study the non-equilibrium spin exchange dynamics during the clock interrogation of AEAs confined in a deep one-dimensional optical lattice and prepared in two nuclear levels. The two clock states act as an orbital degree of freedom. Every site in the lattice can be thought as populated by a frozen set of vibrational modes collectively interacting via predominantly p-wave collisions. Due to the exchange coupling, orbital state transfer between atoms with different nuclear states is expected to happen. At the mean field level, we observe that in addition to the expected suppression of population transfer in the presence of a large magnetic field, that makes the single particle levels off-resonance, there is also an interaction induced suppression for initial orbital population imbalance. This suppression resembles the macroscopic self-trapping mechanism seen in bosonic systems. However, by performing exact numerical solutions and also by using the so-called Truncated Wigner Approximation, we show that quantum correlations can significantly modify the mean field suppression. Our predictions should be testable in optical clock experiments. Project supported by NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, AFOSR, and MURI-AFOSR.

  7. Driving force for the hydration of the swelling clays: case of montmorillonites saturated with alkaline-earth cations.

    Science.gov (United States)

    Salles, Fabrice; Douillard, Jean-Marc; Bildstein, Olivier; Gaudin, Cedric; Prelot, Benedicte; Zajac, Jerzy; Van Damme, Henri

    2013-04-01

    Important structural modifications occur in swelling clays upon water adsorption. The multi-scale evolution of the swelling clay structure is usually evidenced by various experimental techniques. However, the driving force behind such phenomena is still not thoroughly understood. It appears strongly dependent on the nature of the interlayer cation. In the case of montmorillonites saturated with alkaline cations, it was inferred that the compensating cation or the layer surface could control the hydration process and thus the opening of the interlayer space, depending on the nature of the interlayer cation. In the present study, emphasis is put on the impact of divalent alkaline-earth cations compensating the layer charge in montmorillonites. Since no experimental technique offers the possibility of directly determining the hydration contributions related to interlayer cations and layer surfaces, an approach based on the combination of electrostatic calculations and immersion data is developed here, as already validated in the case of montmorillonites saturated by alkaline cations. This methodology allows to estimate the hydration energy for divalent interlayer cations and therefore to shed a new light on the driving force for hydration process occurring in montmorillonites saturated with alkaline-earth cations. Firstly, the surface energy values obtained from the electrostatic calculations based on the Electronegativity Equalization Method vary from 450 mJ m(-2) for Mg-montmorillonite to 1100 mJ m(-2) for Ba-montmorillonite. Secondly, considering both the hydration energy for cations and layer surfaces, the driving force for the hydration of alkaline-earth saturated montmorillonites can be attributed to the interlayer cation in the case of Mg-, Ca-, Sr-montmorillonites and to the interlayer surface in the case of Ba-montmorillonites. These results explain the differences in behaviour upon water adsorption as a function of the nature of the interlayer cation

  8. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  9. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    Directory of Open Access Journals (Sweden)

    Gervasio DF

    2010-01-01

    Full Text Available Abstract A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments.

  10. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    Science.gov (United States)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  11. Investigation on Alkaline-Earth Houses in Jilin Province%吉林碱土民居考察

    Institute of Scientific and Technical Information of China (English)

    王红燕; 朴玉顺

    2012-01-01

    Through extensive research on the residential alkali soil houses in places of the of Yilibao, Sanli bad in the Daan Town,the New Peace Town and Anguang Town, the article clears the distribution and characteristics of the Jilin province alkaline earth houses. Through the residents of the area of alkali land survey- ing and mapping field exploration and focus, the article summarizes the status of the use of alkaline-earth res- idence and makes a detailed analysis of characteristics of alkaline-earth residence. These characteristics are as follows:the alkaline-earth residents living with the ease of local materials, low cost, good thermal insulation properties ,cool, short lifetime, difficult to maintain ,easily damaged and unsightly appearance.%通过对吉林省大安市平安镇一里堡、三里堡、新平安镇、安广镇等地的碱土民居的广泛调研,厘清了吉林省境内碱土民居的分布规律和特点。通过对该地区碱土民居的实地踏勘和重点测绘,总结归纳了碱土民居的使用现状,详细剖析了碱土民居所具有的便于就地取材、造价低廉,保温隔热性能好、冬暖夏凉,使用寿命短、维护困难,易受损、外观不美观等特点。

  12. The Effect of Ormosil Matrix Composition and Alkaline Earth Metal Doping on the Photochromic Response of Ormosil-Phosphotungstate Films

    OpenAIRE

    Ferreira Neto,Elias P.; Simões,Mateus B.; Noveletto,Julia C.; Yabarrena,Jean M. S. C.; Ullah,Sajjad; Ubirajara P. Rodrigues Filho

    2015-01-01

    In this study, polyoxometallate based hybrid photochromic materials were prepared by incorporating phosphotungstate anion, PW12O403−, (PW) in hybrid tetraethyl orthosilicate and (3-glycidyloxypropyl)trimethoxysilane TEOS-GPTMS derived organomodified silicates (Ormosil) matrices by sol-gel method and the resulting materials were used to prepare multilayer films by dip-coating method. The effect of alkaline earth metal cations doping and matrix composition (%GPTMS) on the photochromic res...

  13. Spin-Orbit-Coupled Correlated Metal Phase in Kondo Lattices: An Implementation with Alkaline-Earth Atoms

    Science.gov (United States)

    Isaev, L.; Schachenmayer, J.; Rey, A. M.

    2016-09-01

    We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

  14. Spin-Orbit-Coupled Correlated Metal Phase in Kondo Lattices: An Implementation with Alkaline-Earth Atoms.

    Science.gov (United States)

    Isaev, L; Schachenmayer, J; Rey, A M

    2016-09-23

    We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

  15. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  16. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    Science.gov (United States)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  17. Alkaline-Earth-Catalysed Cross-Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism.

    Science.gov (United States)

    Bellini, Clément; Dorcet, Vincent; Carpentier, Jean-François; Tobisch, Sven; Sarazin, Yann

    2016-03-18

    Alkaline-earth (Ae=Ca, Sr, Ba) complexes are shown to catalyse the chemoselective cross-dehydrocoupling (CDC) of amines and hydrosilanes. Key trends were delineated in the benchmark couplings of Ph3 SiH with pyrrolidine or tBuNH2 . Ae{E(SiMe3)2}2 ⋅(THF)x (E=N, CH; x=2-3) are more efficient than {N^N}Ae{E(SiMe3)2}⋅(THF)n (E=N, CH; n=1-2) complexes (where {N^N}(-) ={ArN(o-C6H4)C(H)=NAr}(-) with Ar=2,6-iPr2 -C6H3) bearing an iminoanilide ligand, and alkyl precatalysts are better than amido analogues. Turnover frequencies (TOFs) increase in the order Ca30 products) includes diamines and di(hydrosilane)s. Kinetic analysis of the Ba-promoted CDC of pyrrolidine and Ph3SiH shows that 1) the kinetic law is rate=k[Ba](1) [amine](0) [hydrosilane](1), 2) electron-withdrawing p-substituents on the arylhydrosilane improve the reaction rate and 3) a maximal kinetic isotopic effect (kSiH/kSiD =4.7) is seen for Ph3SiX (X=H, D). DFT calculations identified the prevailing mechanism; instead of an inaccessible σ-bond-breaking metathesis pathway, the CDC appears to follow a stepwise reaction path with N-Si bond-forming nucleophilic attack of the catalytically competent Ba pyrrolide onto the incoming silane, followed by rate limiting hydrogen-atom transfer to barium. The participation of a Ba silyl species is prevented energetically. The reactivity trend Cametal centre and decreasing Ae-Namide bond strength upon descending Group 2.

  18. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    Science.gov (United States)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  19. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient...... pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...

  20. The MCVD synthesis and characterization of water tolerant fiber optic waveguides based on alkaline earth-doped silicas

    Science.gov (United States)

    Farley, Kevin F.

    Optical fibers that transmit throughout the entire telecommunications spectrum (1.2--1.7 mum) are presently manufactured by the removal of hydrogen or OH from the host preform glass. Hydrogen-oxygen torches are utilized in the conventional preform manufacturing process, but result in the formation of hydroxyls in germanium-doped silica fiber. The hydroxyl species generate unacceptably high losses for long haul telecommunications systems. This thesis has explored an alternative strategy for reducing OH-related absorption in silica-based glasses. Alkaline earth modifiers have been introduced via the modified chemical vapor deposition (MCVD) process to successfully damp out and dramatically reduce the extrinsic attenuation associated with both water and hydrogen. Specifically, alkaline earth ions were introduced into alumino-silicate glasses to form MgO-Al2O3-SiO2, CaO-Al 2O3-SiO2, and SrO-Al2O3-SiO 2 compositions. The utilization of halide precursors based on the vapor delivery of rare earths was incorporated into the existing MCVD set-up to fabricate these optical preforms. Both the bulk preforms and fibers drawn from them were characterized to determine relevant optical properties, including the attenuation, index profiles and extinction coefficients arising from OH in each host. The data indicate that modification of the silica glass structure through the additions of modifying ions can significantly reduce OH related absorption. For example, the doping of alkaline earth ions decreased the extinction coefficient measured at the 1.39 mum) OH overtone, to values reinforced by a series of experiments documenting their resistance to hydrogen induced losses.

  1. Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera

    Science.gov (United States)

    Evans, David; Müller, Wolfgang; Oron, Shai; Renema, Willem

    2013-11-01

    Intra-test variability in Mg/Ca and other (trace) elements within large benthic foraminifera (LBF) of the family Nummulitidae have been investigated using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). These foraminifera have a longevity and size facilitating seasonal proxy retrieval and a depth distribution similar to 'surface-dwelling' planktic foraminifera. Coupled with their abundance in climatically important periods such as the Paleogene, this means that this family of foraminifera are an important but under-utilised source of palaeoclimatic information. We have calibrated the relationship between Mg/Ca and temperature in modern Operculina ammonoides and observe a ˜2% increase in Mg/Ca °C-1. O. ammonoides is the nearest living relative of the abundant Eocene genus Nummulites, enabling us to reconstruct mid-Eocene tropical sea surface temperature seasonality by applying our calibration to fossil Nummulites djokdjokartae from Java. Our results indicate a 5-6 °C annual temperature range, implying greater than modern seasonality in the mid-Eocene (Bartonian). This is consistent with seasonal surface ocean cooling facilitated by enhanced Eocene tropical cyclone-induced upper ocean mixing, as suggested by recent modelling results. Analyses of fossil N. djokdjokartae and Operculina sp. from the same stratigraphic interval demonstrate that environmental controls on proxy distribution coefficients are the same for these two genera, within error. Using previously published test-seawater alkaline earth metal distribution coefficients derived from an LBF of the same family (Raitzsch et al., 2010) and inorganic calcite, with appropriate correction systematics for secular Mg/Casw variation (Evans and Müller, 2012), we use our fossil data to produce a more accurate foraminifera-based Mg/Casw reconstruction and an estimate of seawater Sr/Ca. We demonstrate that mid-Eocene Mg/Casw was ≲2 molmol, which is in contrast to the model most

  2. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  3. Electrocatalytic Oxidation of Cellulose to Gluconate on Carbon Aerogel Supported Gold Nanoparticles Anode in Alkaline Medium

    OpenAIRE

    Hanshuang Xiao; Meifen Wu; Guohua Zhao

    2015-01-01

    The development of high efficient and low energy consumption approaches for the transformation of cellulose is of high significance for a sustainable production of high value-added feedstocks. Herein, electrocatalytic oxidation technique was employed for the selective conversion of cellulose to gluconate in alkaline medium by using concentrated HNO3 pretreated carbon aerogel (CA) supported Au nanoparticles as anode. Results show that a high gluconate yield of 67.8% and sum salts yield of 88.9...

  4. Rare Earth Doped Optical Fibre From Oxide Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Minati Chatterjee; Aharon Gedanken; Renata Reisfeld; Ranjan Sen; Mrinmay Pal; Milan Naskar; Mukul Paul; Shyamal Bhadra; Kamal Dasgupta; Dibyendu Ganguli; Tarun Bandyopadhyay

    2003-01-01

    Rare earth (RE) doped optical fibres were fabricated by using RE oxides coated silica nanoparticles. The fibre properties are comparable to those prepared by conventional techniques. The process offers better control over RE incorporation and homogeneity in the preform.

  5. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    Science.gov (United States)

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  6. Kinetics and Mechanism of Oxidation of L-Cystine by Hexacyanoferrate(III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Annapurna Nowduri

    2009-01-01

    Full Text Available Kinetics of oxidation of L-cystine by hexacyanoferrate(III was studied in alkaline medium at 30 °C. The reaction was followed spectrophotometrically at λmax = 420 nm. The reaction was found to be first order dependence each on [HCF(III] and [cystine]. It was found that the rate of the reaction increases with increase in [OH-]. The oxidation product of the reaction was found to be cysteic acid. A plausible mechanism has been proposed to account for the experimental results.

  7. Microcalorimetric study on host-guest complexation of naphtho-15-crown-5 with four ions of alkaline earth metal

    Institute of Scientific and Technical Information of China (English)

    SONG Ming-zhi; ZHU Lan-ying; GAO Xi-ke; DOU Jian-min; SUN De-zhi

    2005-01-01

    Thermodynamic parameters of complexation of naphto- 15-crown-5 with four alkaline earth ions in aqueous media was determined using titration microcalorimetry at 298.15 K. The stability of the complexes, thermal effect and entropy effect of the complexation is discussed on the basis of the guest ions structure and the solvent effect. The stability constants tendency to vary with ion radius was interpreted. Complex of naphtha-15-crown-5 with calcium ion is very stable due to the synergism of static electric interaction and size selectivity between the host and the guest.

  8. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples.

  9. Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    Rui-Wen Yan; Bao-Kang Jin

    2013-01-01

    The oxidation of formaldehyde in alkaline solution was studied by in situ rapid-scan time-resolved IR spectroelectrochemistry (RS-TR-FTIRS) method.In the potential range between-0.7 V and 0.2 V,the gem-diol anions were oxidized (according to the 2765 cm-1 ofvH-o and 1034 cm-1 ofvco downward IR bands) and the formate ions appeared (according to the 1588,1357 cm-1 of the asymmetric and symmetricvoco and 1380 cm-1 ofδc-H upward IR bands) in aqueous solution.It was also confirmed that gem-diol anion was oxidized (according to the 2026,1034 cm-1 downward IR bands) to formate ions (according to the 1595,1357,1380 cm-1 upward IR bands) and water (according to the 3427 cm-1 ofvH-o upward IR band) in heavy water solution.The results illustrated that formaldehyde formed gem-diol anion in alkaline solution and was absorbed on the electrode surface; then gem-diol anion was oxidized to formate ions and water.

  10. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    Science.gov (United States)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  11. Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A DFT study

    Science.gov (United States)

    Islam, Nasarul; Chimni, Swapandeep Singh

    2017-02-01

    The interactions of phenazino-crown ether ligands with alkali, alkaline earth and selected toxic species were investigated using density functional theory modelling by employing B3PW91/6-311G ++ (d, p) level of theory. The complex stability was analysed in terms of binding energies, perturbation energies, position of highest molecular orbital and energy gap values. In general, the complexes formed by P18C6-1a ligand with metal cations were found to be more stable than those with P18C6-1b. Among alkali and alkaline earth metals complexes having highest stability was observed for the complex formed by P18C6-1a with Be2+. Computational calculations of P18C6 ligand with toxic metal ions reveals that the P18C6-Cr6+ metal complexes acquire envelop like geometry, leading to higher binding energy values. Comparing the binding energies of neutral and monocations of Ag and Hg, the former had higher value both in neutral as well as monocation state. Thus, the stability of metal complexes is determined not only by the ligand but also by the type of metal ion. In solvent systems the stability constants of metal complexes were found increasing with decreasing permittivity of the solvent. This reflects the inherited polar character of the protic solvents stabilises the cation, resulting in decrease of effective interaction of ligand with the metal ion.

  12. Modification of TiO{sub 2} electrode with a series of alkaline-earth carbonates. Performance improvement of quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chun; Wang, Liduo; Wu, Xueming; Qiu, Yong [Ministry of Education, Beijing (China). Key Lab of Organic Optoelectronics and Molecular Engineering; Tsinghua Univ., Beijing (China). Dept. of Chemistry

    2008-07-01

    In this paper, alkaline-earth carbonates (CaCO{sub 3}, SrCO{sub 3} and BaCO{sub 3}) modified TiO{sub 2} electrodes are synthesized by dipping TiO{sub 2} electrode into alkaline-earth hydroxide or alkaline-earth acetate aqueous solutions. When applied to quasi-solid-state DSSC, hydroxide-treated TiO{sub 2} electrodes have increased open-circuit photovoltages (Voc). Among the three alkaline-earth hydroxides, Ba(OH){sub 2} treatment improved the DSSC performance best. The Voc improves from 0.66 V to 0.71 V and the overall conversion efficiency ({eta}) improves by 15% under100 mW/cm{sup 2}. As to acetates, not only the Voc is increased (from 0.68V to 0.74V), but also short-circuit photocurrent(Isc) is improved by Sr(OAc){sub 2} Ba(OAc){sub 2} The overall conversion efficiency improves by 22%. Dark current measurement indicate that in the presence of alkaline-earth carbonates, the TiO2 conduction band shifts to the negative direction, leading to the increase in Voc.

  13. Electrocatalytic Oxidation of Cellulose to Gluconate on Carbon Aerogel Supported Gold Nanoparticles Anode in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Hanshuang Xiao

    2015-12-01

    Full Text Available The development of high efficient and low energy consumption approaches for the transformation of cellulose is of high significance for a sustainable production of high value-added feedstocks. Herein, electrocatalytic oxidation technique was employed for the selective conversion of cellulose to gluconate in alkaline medium by using concentrated HNO3 pretreated carbon aerogel (CA supported Au nanoparticles as anode. Results show that a high gluconate yield of 67.8% and sum salts yield of 88.9% can be obtained after 18 h of electrolysis. The high conversion of cellulose and high selectivity to gluconate could be attributed to the good dissolution of cellulose in NaOH solution which promotes its hydrolysis, the surface oxidized CA support and Au nanoparticles catalyst which possesses high amount of active sites. Moreover, the bubbled air also plays important role in the enhancement of cellulose electrocatalytic conversion efficiency. Lastly, a probable mechanism for electrocatalytic oxidation of cellulose to gluconate in alkaline medium was also proposed.

  14. Status of Research on Application of High Purity Rare Earth Oxides in Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Ma Zhihong; Qiu Jufeng

    2004-01-01

    The solid oxide fuel cell (SOFC) is a high-efficient and environmentally friendly power generation system.The rare earth oxide materials are used extensively in the manufacturing of SOFC components.In particular, the CeO2doped with Gd2O3 or Sm2O3, lanthanide perovskite oxides are indispensable and key materials for developing the intermediate temperature SOFC.The research and development status of application of high purity rare earth oxides in SOFC was overviewed.The rare earth oxide-based and -doped materials were discussed for the SOFC components.Concerning the rare earth oxides applicable to SOFC, several topics were also pointed out for further researching and developing.

  15. Kinetics and Mechanism of Oxidation of Some Diols by Dihydroxydiperiodatoargentate(Ⅲ) in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    SHAN, Jin-Huan; LI, Sheng-Min; HUO, Shu-Ying; SHEN, Shi-Gang; SUN, Han-Wen

    2006-01-01

    The kinetics of oxidation of ethylene glycol and 1,3-butylene glycol by dihydroxydiperiodatoargentate(Ⅲ) in alkaline medium have been studied by spectrophotometry in the range of 298.2-318.2 K. It is shown that the reaction was first order with respect to each reductant and Ag(Ⅲ), and kobs increased with an increase of [OH-]. A plausible mechanism of reaction involving a pre-equilibrium of adduct formation between complex and reductants was proposed, which could be applied to explain all experimental phenomena, and the activation parameters of the ratedetermining step have been also calculated.

  16. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides

    Institute of Scientific and Technical Information of China (English)

    闻海虎; 杨海朋; 鲁希锋; 闫静

    2003-01-01

    By using a simple solid reaction method, we have fabricated alkaline metal doped cobalt oxides Anx CoO2+δ(An = Na, K). The magnetic measurement shows a superconducting-like diamagnetic signal at 31 K based on a strong superparamagnetic signal. Below 31 K, the magnetization hysteresis loops contain a strong rough linear superparamagnetic background and a superconducting hysteresis. The typical magnetization hysteresis loops for a type-Ⅱ superconductor are found. Preliminary resistive data also show a fast dropping of resistance below Tc.These give indication of superconductivity below 31 K in Anx CoO2+δ (An = Na, K).

  17. Preparation of nanosized non-oxide powders using diatomaceous earth

    Directory of Open Access Journals (Sweden)

    Šaponjić A.

    2009-01-01

    Full Text Available In this paper the nanosized non-oxide powders were prepared by carbothermal reduction and subsequent nitridation of diatomaceous earth which is a waste product from coal exploitation. Our scope was to investigate the potential use of diatomaceous earth as a main precursor for low-cost nanosized non-oxide powder preparation as well as to solve an environmental problem. The influence of carbon materials (carbonized sucrose, carbon cryogel and carbon black as a reducing agent on synthesis and properties of low-cost nanosized nonoxide powders was also studied. The powders were characterized by specific surface area, X-ray and SEM investigations. It was found that by using diatomaceous earth it is was possible to produce either a mixture of non-oxide powders (Si3N4/SiC or pure SiC powders depending on temperature.

  18. Difference of coordination between alkali- and alkaline-earth-metal ions to a symmetrical α,α',δ,δ'-tetramethylcucurbit[6]uril.

    Science.gov (United States)

    Chen, Wen-Jian; Yu, Da-Hai; Xiao, Xin; Zhang, Yun-Qian; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu; Wei, Gang

    2011-08-01

    To explore differences in coordination between alkali- and alkaline-earth-metal ions and cucurbit[n]urils, a water-soluble α,α',δ,δ'-tetramethylcucurbit[6]uril (TMeQ[6]) was used to synthesize a series of complexes and their supramolecular assemblies, based on the coordination of TMeQ[6] with alkali- and alkaline-earth-metal ions. The complexes and corresponding supramolecular assemblies were structurally characterized by single-crystal X-ray diffraction. Unlike cucurbituril (Q[6]), which formed the metal-Q[6] polymers based on the direct coordination of carbonyl oxygen atoms to the alkali-metal ions, TMeQ[6] formed metal-TMeQ[6] polymers based on the direct coordination of carbonyl oxygen atoms with the alkaline-earth-metal ions rather than the alkali-metal ions.

  19. Dispersion coefficients for the interaction of inert gas atoms with alkali and alkaline earth ions and alkali atoms with their singly ionized ions

    CERN Document Server

    Singh, Sukhjit; Sahoo, B K; Arora, Bindiya

    2016-01-01

    We report the dispersion coefficients for the interacting inert gas atoms with the alkali ions, alkaline earth ions and alkali atoms with their singly charged ions. We use our relativistic coupled-cluster method to determine dynamic dipole and quadrupole polarizabilities of the alkali atoms and singly ionized alkaline earth atoms, whereas a relativistic random phase approximation approach has been adopted to evaluate these quantities for the closed-shell configured inert gas atoms and the singly and doubly ionized alkali and alkaline earth atoms, respectively. Accuracies of these results are adjudged from the comparison of their static polarizability values with their respective experimental results. These polarizabilities are further compared with the other theoretical results. Reason for the improvement in the accuracies of our estimated dispersion coefficients than the data listed in [At. Data and Nucl. Data Tables 101, 58 (2015)] are discussed. Results for some of the atom-ion interacting systems were not...

  20. Activity and Stability of Rare Earth-Based Hydride Alloys as Catalysts of Hydrogen Absorption-Oxidation Reactions

    Institute of Scientific and Technical Information of China (English)

    Ying Taokai(应桃开); Gao Xueping(高学平); Hu Weikang(胡伟康); Noréus Dag

    2004-01-01

    Rare earth-based AB5-type hydrogen storage alloys as catalysts of hydrogen-diffusion electrodes for hydrogen absorption and oxidation reactions in alkaline fuel cells were investigated. It is demonstrated that the meta-hydride hydrogen-diffusion electrodes could be charged by hydrogen gas and electrochemically discharged at the same time to retain a stable oxidation potential for a long period. The catalytic activities and stability are almost comparable with a Pt catalyst on the active carbon. Further improvement of performances is expected via reduction of catalyst size into nanometers.

  1. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  2. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms--a new hope.

    Science.gov (United States)

    Soldán, Pavel; Zuchowski, Piotr S; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  3. Highly Dispersed Palladium Nanoparticles on Functional MWNT Surfaces for Methanol Oxidation in Alkaline Solutions

    Institute of Scientific and Technical Information of China (English)

    WANG zhe; ZHU Zan-Zan; LI You-Xiang; LI Hu-Lin

    2008-01-01

    Palladium nanoparticles were crystallized on 4-aminobenzoic acid monolayer-grafted multi-walled carbon nanotubes (MWNT) by diazotization. The structure and nature of the resulting Pd/MWNT composite were characterized by transmission electron microscopy and X-ray diffraction, the results show that the chemically synthesized Pd nanoparticles were homogeneously dispersed and well-separated from one another on the modified MWNT surfaces. Cyclic voltammogram showed that the Pd-MWNT composite materials performed higher electrocatalytic activity and better long-term stability toward methanol oxidation in alkaline solution than Pd-C. The results imply that the Pd-MWNT composite materials as a promising support material improve the excellent electrocatalytic activity for methanol oxidation greatly. So the Pd/MWNT composites have a good application potential to fuel cells.

  4. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  5. Main group chemistry of 9-hydroxophenalenone: Syntheses and structural characterization of the alkaline earth and zinc complexes

    Indian Academy of Sciences (India)

    Arup Mukherjee; Prinson P Samuel; Carola Schulzke; Swadhin K Mandal

    2014-09-01

    Herein, we report the synthesis and characterization of 9-hydroxophenalenone based alkaline earth and zinc complexes.The reaction of 9-hydroxophenalenone (HO,O-PLY (1)) with one equivalent of KN(SiMe3)2 and MI2 in THF yields heteroleptic complexes [(O,O-PLY)M(THF)]I [M= Mg (2), Ca (3), Sr (4), Ba (5); n = 1-4], while use of two equivalents of KN(SiMe3)2 in THF (with respect to PLY) produces homoleptic complex (O,O-PLY)2Mg(THF)2 (6). Moreover, reaction between two equivalents of 1 with one equivalent of ZnMe2 in THF produces complex (O,O-PLY)2Zn(THF)2 (7). All these complexes were characterized by NMR spectroscopy and elemental analyses. The solid state structures of complexes 2, 6 and 7 were established by single crystal X-ray diffraction analysis.

  6. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sobolewski, R.; Gierlowski, P.; Kula, W.; Zarembinski, S.; Lewandowski, S.J.; Berkowski, M.; Pajaczkowska, A. (Instytut Fizyki, Polska Akatlemia Nauk, Al. Lotnikow 32/46, PL-02668 Warszawa (PL)); Gorshunov, B.P.; Lyudmirsky, D.B.; Sirotinsky, O.I. (Institute of General Physics, USSR Academy of Sciences, 38 Vavilova Street, SU-117924 Moscow (SU))

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  7. Rare earth elements and titanium in plants, soils and groundwaters in the alkaline-ultramafic complex of Salitre, MG Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceccantini, G. [Instituto de Biociencias, Sao Paulo, (Brazil). Dept. de Botanica; Figueiredo, A.M.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radioquimica; Sondag, F.; Soubies, F. [ORSTOM, 93 - Bondy (France); Soubies, F. [Universite Paul Sabatier, 31 - Toulouse (France)

    1997-12-31

    The contents of rare earth elements (REE) and titanium in various plant species, in groundwaters and in soils from the alkaline-ultramafic complex of Salitre, have been determined. Due to the the particular mineralogy of the bedrock, REE and Ti exhibit high concentrations in the soils. Despite this, plants generally present REE concentrations within the ranges usually found in plants, and the transfer factor from soil to plant is at least ten times below the range reported in the literature, confirming that the concentrations of REE in the plants are widely independent of the soil content. All species present normalized patterns similar to those of the soils, characterized by an enrichment in light REE. Several plants show Ti concentrations about three times higher than the reference values. It is suggested that in the studied ecosystem, the plant metabolism affect the REE distribution in the groundwaters, leading to an enrichment of the superficial waters in heavy REE

  8. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  9. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    Science.gov (United States)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  10. Static and Dynamic Structure Factors with Account of the Ion Structure for High-temperature Alkali and Alkaline Earth Plasmas

    CERN Document Server

    Sadykova, S P; Tkachenko, I M

    2010-01-01

    The $e-e$, $e-i$, $i-i$ and charge-charge static structure factors are calculated for alkali and Be$^{2+}$ plasmas using the method described by Gregori et al. in \\cite{bibGreg2006}. The dynamic structure factors for alkali plasmas are calculated using the method of moments \\cite{bibAdam83}, \\cite{bibAdam93}. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the ion structure \\cite{bib73}. PACS: 52.27.Aj (Alkali and alkaline earth plasmas, Static and dynamic structure factors), 52.25.Kn (Thermodynamics of plasmas), 52.38.Ph (X-ray scattering)

  11. Influence of alkali and alkaline earth elements on the uptake of radionuclides by Pleurototus eryngii fruit bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, J., E-mail: fguillen@unex.es [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain); Baeza, A.; Salas, A. [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain)

    2012-04-15

    In the literature, there are many data available on radionuclide contents and their transfer to different species of mushrooms. There are some variables, however, which affect the transfer but are very difficult to observe in collected wild mushrooms. An example is the effect of different concentrations of alkali and alkaline earth elements in the soil. Modification of these concentrations in the soil solution has traditionally been used as a countermeasure to deal with radioactively contaminated areas. In the present work, fruiting bodies of Pleurotus eryngii, a saprophytic mushroom, were grown under controlled laboratory conditions, varying the content of alkali (potassium and caesium) and alkaline earth (calcium and strontium) elements. The transfer of {sup 134}Cs, {sup 85}Sr, and {sup 60}Co (added to the cultures) and of natural {sup 210}Pb was analysed by increasing the content of each stable element considered. A significant, but nonlinear, enhancement of stable caesium and {sup 134}Cs was observed with increasing content of stable caesium in the substrate/mycelium. The transfer of {sup 85}Sr decreased with the addition of each stable cation, whereas the {sup 60}Co and {sup 210}Pb transfers were unaffected. - Highlights: Black-Right-Pointing-Pointer The addition of stable potassium did not affect the uptake of radiocaesium. Black-Right-Pointing-Pointer The addition of stable caesium increased the stable caesium and {sup 134}Cs content in the fruiting bodies of Pleurotus eryngii. Black-Right-Pointing-Pointer The addition of calcium reduced the content of calcium and {sup 85}Sr in the fruiting bodies. Black-Right-Pointing-Pointer These countermeasures did not work properly in the case of {sup 60}Co and {sup 210}Pb, no effect was observed.

  12. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda;

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... reacted differently in the two processes. The chemical composition changed little following enzyme treatment. After alkaline wet oxidation, fibers enriched in cellulose were obtained. With both materials, almost all hemicellulose (80%) together with a large portion of the lignin were solubilised...... by alkaline wet oxidation, but essentially all cellulose remained in the solid fraction. Following enzyme treatment most material remained as a solid. For wheat straw, reaction with acetic anhydride indicated that both treatments resulted in more hydroxyl groups being accessible for reaction. The enzyme...

  13. Lack of marked cyto- and genotoxicity of cristobalite in devitrified (heated) alkaline earth silicate wools in short-term assays with cultured primary rat alveolar macrophages.

    Science.gov (United States)

    Ziemann, Christina; Harrison, Paul T C; Bellmann, Bernd; Brown, Robert C; Zoitos, Bruce K; Class, Philippe

    2014-02-01

    Alkaline earth silicate (AES) wools are low-biopersistence high-temperature insulation wools. Following prolonged periods at high temperatures they may devitrify, producing crystalline silica (CS) polymorphs, including cristobalite, classified as carcinogenic to humans. Here we investigated the cytotoxic and genotoxic significance of cristobalite present in heated AES wools. Primary rat alveolar macrophages were incubated in vitro for 2 h with 200 µg/cm² unheated/heated calcium magnesium silicate wools (CMS1, CMS2, CMS3; heat-treated for 1 week at, or 4 weeks 150 °C below, their respective classification temperatures) or magnesium silicate wool (MS; heated for 24 h at 1260 °C). Types and quantities of CS formed, and fiber size distribution and shape were determined by X-ray diffraction and electron microscopy. Lactate dehydrogenase release and alkaline and hOGG1-modified comet assays were used, ± aluminum lactate (known to quench CS effects), for cytotoxicity/genotoxicity screening. Cristobalite content of wools increased with heating temperature and duration, paralleled by decreases in fiber length and changes in fiber shape. No marked cytotoxicity, and nearly no (CMS) or only slight (MS) DNA-strand break induction was observed, compared to the CS-negative control Al₂O₃, whereas DQ12 as CS-positive control was highly active. Some samples induced slight oxidative DNA damage, but no biological endpoint significantly correlated with free CS, quartz, or cristobalite. In conclusion, heating of AES wools mediates changes in CS content and fiber length/shape. While changes in fiber morphology can impact biological activity, cristobalite content appears minor or of no relevance to the intrinsic toxicity of heated AES wools in short-term assays with rat alveolar macrophages.

  14. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    Science.gov (United States)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Bacontaining copper dopants.

  15. Catalysis by alkali and alkaline-earth metal ions in nucleophilic attack of methoxide ion on crown ethers bearing an intra-annular acetoxy group

    NARCIS (Netherlands)

    Cacciapaglia, Roberta; Lucente, Silvia; Mandolini, Luigi; Doorn, van Arie R.; Reinhoudt, David N.; Verboom, Willem

    1989-01-01

    Rates of reaction of methoxide ion with crown ethers bearing an intra-annular acetoxy group are markedly enhanced by alkali and alkaline-earth metal bromides as a result of much stronger interactions of the metal ions with transition states than with reactants. Rates of reactions of methoxide ion w

  16. Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol

    Science.gov (United States)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.

    2012-11-01

    A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  17. Spectroscopic and mechanistic investigations into oxidation of aspartame by diperiodatocuprate(III in aqueous alkaline medium

    Directory of Open Access Journals (Sweden)

    Jayant I. Gowda

    2015-12-01

    Full Text Available The oxidation of aspartame (ASP by diperiodatocuprate(III (DPC in aqueous alkaline medium at 298 K and a constant ionic strength of 0.30 mol dm−3 was studied spectrophotometrically. The reaction between aspartame and diperiodatocuprate(III in alkaline medium exhibits 1:6 stoichiometry in the reaction. The order of the reaction with respect to [diperiodatocuprate(III] was unity, while the apparent order with respect to [aspartame] was less than unity over the concentration range studied. The rate of the reaction increased with increase in [OH−] whereas the rate decreased with increase in [$ {\\text{IO}}^-_4 $]. Increasing the ionic strength of the medium increased the rate. The main products were identified by FT-IR, NMR, and LC-MS spectral studies. The probable mechanism was proposed. The activation parameters with respect to slow step of the mechanism were computed and discussed. Thermodynamic quantities were also calculated. Kinetic studies suggest that [Cu(H2IO6(H2O2] is the reactive species of Cu(III.

  18. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    Science.gov (United States)

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.

  19. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    Science.gov (United States)

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  20. Kinetics and Mechanism of Oxidation of Lactic Acid by Dihydroxyditelluratoargentate(Ⅲ) in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)] anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25—40 ℃. The order of the redox reaction of lactic acid and DDA was found to be first-order. The rates increased with the increase in [OH-] and decreased with the increase in [tellurate]. No free radical was detected. In the view of this the dihydroxymonotelluratoargentate(Ⅲ) species(DMA) is assumed to be the active species. A plausible mechanism involving a two-electron transfer is proposed, and the rate equation derived from the mechanism can be used to explain all the experimental results. The activation parameters(25 ℃) and the rate constants of the rate-determining step along with the preequilibrium constants at different temperatures were evaluated.

  1. Kinetics and Mechanism of Oxidation of Lactic Acid by Dihydroxyditelluratoargentate(Ⅲ)in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    SHANJin-huan; WANGLi; LIUBao-sheng; SHENShi-gang

    2003-01-01

    The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)]anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25-40℃.The order of the redox reaction of lactic acid and DDA was found to be first-order.The rates increased with the increase in [OH-]and decreased with the increase in [tellurate].No free radical was detected.In the view of this the dihydroxymonotelluratoargentate(Ⅲ)species(DMA) is assumed to be the active species.A plausible mechanism involving a two-electron transfer is proposed,and the rate equation derived from the mechanism can be used to explain all the experimenttal results.The activation parameters(25℃)and the rate constants of the rate-determining step along with the preequilibrium constants at different temperatures were evaluated.

  2. Kinetic study of methanol oxidation on Pt2Ru3/C catalyst in the alkaline media

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2007-11-01

    Full Text Available The interaction of acridine orange (AO with double-stranded (ds The electrochemical oxidation of methanol in NaOH solution was examined on a thin film Pt2Ru3/C electrode. The XRD pattern revealed that the Pt2Ru3 alloy consisted of a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. It was shown that in alkaline solution, the difference in activity between Pt/C and Pt2Ru3/C is significantly smaller than in acid solution. It is proposed that the reaction follows a quasi bifunctional mechanism. The kinetic parameters indicated that the chemical reaction between adsorbed COad and OHad species could be the rate limiting step.

  3. Mechanism of the development of a weakly alkaline barrier slurry without BTA and oxidizer

    Science.gov (United States)

    Xiaodong, Luan; Yuling, Liu; Xinhuan, Niu; Juan, Wang

    2015-07-01

    Controllable removal rate selectivity with various films (Cu, Ta, SiO2) is a challenging job in barrier CMP. H2O2 as an oxidizer and benzotriazole (BTA) as an inhibitor is considered to be an effective method in barrier CMP. Slurries that contain hydrogen peroxide have a very short shelf life because H2O2 is unstable and easily decomposed. BTA can cause post-CMP challenges, such as organic residue, toxicity and particle adhesion. We have been engaged in studying a weakly alkaline barrier slurry without oxidizer and benzotriazole. Based on these works, the objective of this paper is to discuss the mechanism of the development of the barrier slurry without oxidizer and benzotriazole by studying the effects of the different components (containing colloidal silica, FA/O complexing agent, pH of polishing solution and guanidine nitrate) on removal rate selectivity. The possible related polishing mechanism has also been proposed. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the National Natural Science Foundation of Hebei Province, China (No. E2013202247), and the Department of Education-Funded Research Projects of Hebei Province, China (No. QN2014208).

  4. Establishing the potential dependent equilibrium oxide coverage on platinum in alkaline solution and its influence on the oxygen reduction

    DEFF Research Database (Denmark)

    Wiberg, Gustav; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Gustav K.H. Wiberg, Matthias Arenz The oxidation process of polycrystalline platinum subjected to alkaline solution is re-examined using a combination of cyclic voltammetry and potential hold techniques in Ar, H2 and O2 purged 0.1 M...

  5. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    Science.gov (United States)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  6. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    Science.gov (United States)

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules.

  7. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    Science.gov (United States)

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.

  8. Kinetics of oxidation of odorous sulfur compounds in aqueous alkaline solution with H2O2.

    Science.gov (United States)

    Feliers, C; Patria, L; Morvan, J; Laplanche, A

    2001-10-01

    Sulfur species oxidation is a crucial issue wastewater treatment. The production of sulfur compounds like H2S,CH3SH, C2H5SH, disulfides and dimethyle sulfide generates odorous nuisances for the neighborhood. The oxidation of these species by H2O2 in alkaline solution has been investigated. The results showed that thiols CH3SH and C2H5SH react with H202 only in their dissociated form RS- with rate constants respectively k = 8.81 +/- 0.48 M-1s-1 and 8.37 +/- 0.63 M-1.s-1. Mercaptans oxidation produces 100 % of dimethyldisulfide or diethyldisulfide. The oxidation of disulfides shows a difference of reactivity between H2O2 and HO2- towards sulfur species. Increasing the pH accelerates significantly the reactions in the case of CH3SSCH3. The oxidation rate can be described as: r = k[RSSR][H2O2][RSSR][H2O2] + k[RSSR][HO2-] [RSSR][HO2-] with k[RSSR][H2O2] = 1.2 x 10(-4) +/- 0.2 x 10(-4) M-1s-1 and k[RSSR][HO2-] = 3.4 x 10(-4) +/- 0.6 x 10(-4) M-1.s-1 for CH3SSCH3. Dimethyl sulfide presents a reactivity different from disulfides. The oxidation rate can also be described as: r = k[CH3SCH3][H2O21][CH3SCH3][H2O2] + k[CH3SCH3][HO-] [CH3SCH3][HO2-], however, oxidation rate decreases with pH increase. k[CH3SCH3][H2O2] = 12.8 x 10(-3) +/- 0.96 x 10(-3) M-1.s-1 and k[CH3SCH3][HO2-] = 4 x 10(-3) +/- 0.3 x 10(-3) M-1.s-1.

  9. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)) Derived from Molecular Precursors and Doped with Eu(3+) Ions.

    Science.gov (United States)

    Drąg-Jarząbek, Anna; John, Łukasz; Petrus, Rafał; Kosińska-Klähn, Magdalena; Sobota, Piotr

    2016-03-24

    The effect of alkaline earth metal alkoxides on the protonation of zirconocene dichloride was investigated. This approach enabled the design of compounds with preset molecular structures for generating high-purity binary metal oxide perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)). Single-source molecular precursors [Ba4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2(η(2) -HOR)2 (HOR)2 Cl4], [Sr4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2 (HOR)4 Cl4], [Ca4 Zr2 (μ6-O)(μ3 ,η(2)-OR)8 (OR)2 Cl4], and [Ca6 Zr2 (μ2 ,η(2)-OR)12 (μ-Cl)2 (η(2) -HOR)4 Cl6 ]⋅8 CH2 Cl2 were prepared via elimination of the cyclopentadienyl ring from Cp2 ZrCl2 as CpH in the presence of M(OR)2 and alcohol ROH (ROH=CH3OCH2 CH2OH) as a source of protons. The resulting complexes were characterized by elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction. The compounds were then thermally decomposed to MCl2 /MZrO3 mixtures. Leaching of MCl2 from the raw powder with deionized water produced highly pure perovskite-like oxide particles of 40-80 nm in size. Luminescence studies on Eu(3+)-doped MZrO3 revealed that the perovskites are attractive host lattices for potential applications in display technology.

  10. Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk.

    Science.gov (United States)

    Banerjee, Saumita; Sen, Ramkrishna; Mudliar, Sandeep; Pandey, R A; Chakrabarti, Tapan; Satpute, Dewanand

    2011-01-01

    Pretreatment of rice husk by alkaline peroxide assisted wet air oxidation (APAWAO) approach was investigated with the aim to enhance the enzymatic convertibility of cellulose in pretreated rice husk. Rice husk was presoaked overnight in 1% (w/v) H(2)O(2) solution (pH adjusted to 11.5 using NaOH) (equivalent to 16.67 g H(2)O(2) and 3.63 g NaOH per 100 g dry, untreated rice husk) at room temperature, followed by wet air oxidation (WAO). APAWAO pretreatment resulted in solubilization of 67 wt % of hemicellulose and 88 wt % of lignin initially present in raw rice husk. Some amount of oligomeric glucose (˜8.3 g/L) was also observed in the APAWAO liquid fraction. APAWAO pretreatment resulted in 13-fold increase in the amount of glucose that could be obtained from otherwise untreated rice husk. Up to 86 wt % of cellulose in the pretreated rice husk (solid fraction) could be converted into glucose within 24 hours, yielding over 21 g glucose per 100 g original rice husk. Scanning electron microscopy was performed to visualize changes in biomass structure following the APAWAO pretreatment. Enzymatic cellulose convertibility of the pretreated slurry at high dry matter loadings was also investigated.

  11. A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements.

    Science.gov (United States)

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Stack, Elaine M; Omamogho, Jesse O; Glennon, Jeremy D; Paull, Brett

    2013-12-20

    Bare core-shell silica (1.7μm) has been modified with iminodiacetic acid functional groups via standard silane chemistry, forming a new N-hydroxyethyliminodiacetic acid (HEIDA) functionalised core-shell stationary phase. The column was applied in high-performance chelation ion chromatography and evaluated for the retention of alkaline earth, transition and heavy metal cations. The influence of nitric acid eluent concentration, addition of complexing agent dipicolinic acid, eluent pH and column temperature on the column performance was investigated. The efficiencies obtained for transition and heavy metal cations (and resultant separations) were comparable or better than those previously obtained for alternative fully porous silica based chelation stationary phases, and a similarly modified monolithic silica column, ranging from ∼15 to 56μm HETP. Increasing the ionic strength of the eluent with the addition of KNO3 (0.75M) and increasing the column temperature (70°C) facilitated the isocratic separation of a mixture of 14 lanthanides and yttrium in under 12min, with HETP averaging 18μm (7μm for Ce(III)).

  12. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    Science.gov (United States)

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  13. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect.

    Science.gov (United States)

    Samsonowicz, M; Regulska, E; Lewandowski, W

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions. The vibrational FT-IR (in KBr and ATR techniques) and (1)H and (13)C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg→Ba were compared with series of univalent metal Li→Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  14. Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water.

    Science.gov (United States)

    Daorattanachai, Pornlada; Khemthong, Pongtanawat; Viriya-Empikul, Nawin; Laosiripojana, Navadol; Faungnawakij, Kajornsak

    2012-12-01

    The phosphates of alkaline earth metals (calcium and strontium) synthesized by precipitation process in acetone-water media system were used as catalysts for converting fructose, glucose, and cellulose to 5-hydroxymethylfurfural (HMF) under hot compressed water condition. It was found that the phosphates of calcium and strontium effectively catalyzed the HMF formation from fructose and glucose dehydration and cellulose hydrolysis/dehydration reaction, as compared with the non-catalytic system. The XRD analysis confirmed the CaP(2)O(6) and α-Sr(PO(3))(2) crystalline phases of the catalyst samples, while acid strength of both catalysts was in a range of +3.3 ≤ H(0) ≤ +4.8. From the study, CaP(2)O(6) and α-Sr(PO(3))(2) showed similar catalytic performance toward the dehydration of sugars, providing the HMF yields of 20-21% and 34-39% from glucose and fructose, respectively; whereas the total yield of glucose and HMF from the hydrolysis/dehydration of cellulose over α-Sr(PO(3))(2) (34%) was higher than that over CaP(2)O(6) (17.4%).

  15. A preorganized metalloreceptor for alkaline earth ions showing calcium versus magnesium selectivity in water: biological activity of selected metal complexes.

    Science.gov (United States)

    Amatori, Stefano; Ambrosi, Gianluca; Fanelli, Mirco; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Rossi, Patrizia

    2014-08-25

    The N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages.

  16. Fates and roles of alkali and alkaline earth metal species during the pyrolysis and gasification of a Victorian lignite

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Wu, H.; Li, C. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    The transformation of alkali and alkaline earth metal (AAEM) species in a Victorian lignite during the pyrolysis and subsequent gasification in CO{sub 2} was studied in a novel quartz fluidised-bed reactor. Lignite samples prepared by physically adding NaCl and ion-exchanging Na{sup +} and Ca{sup ++} into the lignite were used to investigate the effects of chemical forms and valency of the AAEM species in the substrate lignite on their transformation during pyrolysis and gasification. Carboxyl-bound Na was found to be less volatile than Na present as NaCl, but more volatile than carboxyl-bound Ca during pyrolysis at temperatures between 400 and 900{sup o}C. However, the carboxyl-bound Na was volatilised to a much greater extent than the carboxyl-bound Ca in the same lignite during pyrolysis. It was seen that the loading of NaCl into the lignite did not significantly affect the char reactivity in the fluidised-bed reactor at 900{sup o}C.

  17. A Density Functional Theory Study of Codoping Characteristics of Sulfur with Alkaline Earth in Delafossite CuAlO2

    Science.gov (United States)

    Liu, Qi-Jun; Qin, Han; Liu, Zheng-Tang

    2016-04-01

    The structural, electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO2 have been investigated using the first-principles density functional theory calculations. Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms. The formation energies under different growth conditions have been calculated, showing that the codoping systems are formed easily under O-rich growth conditions. Electronic band structures and density of states have been obtained. The decreased bandgaps, enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity. Supported by the National Natural Science Foundation of China under Grant Nos. 11347199, 51402244, and 11547311, the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No. 20130184120028, the Fundamental Research Fund for the Central Universities, China under Grant Nos. 2682014CX084, 2682014ZT30, and 2682014ZT31, and the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No. SKLSP201511

  18. Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides

    Science.gov (United States)

    Naidu, B. S.; Gupta, Uttam; Maitra, Urmimala; Rao, C. N. R.

    2014-01-01

    A study of the visible light induced oxidation of water by perovskite oxides of the formula LaMO3 (M = transition metal) has revealed the best activity with LaCoO3 which contains Co3+ in the intermediate-spin (IS) with one eg electron. Among the rare earth manganites, only orthorhombic manganites with octahedral Mn3+ ions exhibit good catalytic activity, but hexagonal manganites are poor catalysts. Interestingly, not only the perovskite rare earth cobaltites but also solid solutions of Co3+ in cubic rare earth sesquioxides exhibit catalytic activity comparable to LaCoO3, the Co3+ ion in all these oxides also being in the IS t2g5eg1 state.

  19. International strategic minerals inventory summary report; rare-earth oxides

    Science.gov (United States)

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the

  20. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, María V., E-mail: plapimu@yahoo.com.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Falco, Lorena R., E-mail: mlfalco@quimica.unlp.edu.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Peluso, Miguel A., E-mail: apelu@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Sambeth, Jorge E., E-mail: sambeth@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Thomas, Horacio J. [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina)

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  1. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Science.gov (United States)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  2. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  3. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-30

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  4. Structural criteria for the rational design of selective ligands. Extension of the MM3 force field to aliphatic ether complexes of the alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P.; Rustad, J.R. (Pacific Northwest Lab., Richland, WA (United States))

    1994-07-13

    Structural requirements for strain-free metal ion complexation by an aliphatic ether group are investigated through the use of both ab initio molecular orbital and molecular mechanics calculations. Hartree-Fock calculations on simple models, M-O(Me)[sub 2] and M-O(Me)(Et), reveal a preference for trigonal planar geometry when aliphatic ether oxygens are coordinated to alkali and alkaline earth cations. This preference is found to be strongest in small, high-valent cations and weakest in large, low-valent cations. Results from the Hartree-Fock calculations are used to extend the MM3 force field for calculation on aliphatic ether complexes with the alkali (Li to Cs) and alkaline earth (Mg to Ba) cations. The resulting molecular model (i) reproduces the experimental crystal structures of 51 different complexes of multidentate ethers with alkali and alkaline earth cations, (ii) explains experimental trends in the structure of five-membered chelate rings of aliphatic ethers, (iii) reveals a fundamental difference between the metal ion size selectivity of five-membered chelate rings of ethers versus that of amines, and (iv) rationalizes trends in the stability of four potassium complexes with the diasteriomers of dicyclohexyl-18-crown-6. 40 refs., 9 figs., 5 tabs.

  5. Stability of ZnMgO oxide in a weak alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Diler, E. [Laboratoire de Magnetisme de Bretagne, EA 4522, CNRS, Universite de Brest, UBO, 6 av. Le Gorgeu, 29285 Brest Cedex (France); Institut de la Corrosion, 220 rue Pierre Rivoalon, 29200 Brest (France); Rioual, S., E-mail: rioual@univ-brest.fr [Laboratoire de Magnetisme de Bretagne, EA 4522, CNRS, Universite de Brest, UBO, 6 av. Le Gorgeu, 29285 Brest Cedex (France); Lescop, B. [Laboratoire de Magnetisme de Bretagne, EA 4522, CNRS, Universite de Brest, UBO, 6 av. Le Gorgeu, 29285 Brest Cedex (France); Thierry, D. [Institut de la Corrosion, 220 rue Pierre Rivoalon, 29200 Brest (France); Rouvellou, B. [Laboratoire de Magnetisme de Bretagne, EA 4522, CNRS, Universite de Brest, UBO, 6 av. Le Gorgeu, 29285 Brest Cedex (France)

    2012-01-31

    Zinc oxide (ZnO) is a chemical compound of great interest used, for example, as photocatalyst in the purification of wastewater or polluted air. However, neither dissolution, nor photo-dissolution of ZnO is negligible: indeed, both processes reduce significantly the efficiency of photocatalysis and then lead to a secondary pollution by free Zn{sup 2+}. In the present study, the stability of ZnMgO thin films in weak alkaline solution is investigated. We demonstrate that the replacement of Zn{sup 2+} ion with Mg{sup 2+} ion results in the production of a Zn{sub 0.84}Mg{sub 0.16}O solid solution, whose stability is higher than that of the ZnO sample. This alloy, thus, constitutes an alternative to the use of ZnO in photocatalysis applications. To gain more insights into the higher resistance of such alloys to the dissolution process, X-Ray photoelectron spectroscopy measurements were performed. They highlighted the role of OH group adsorption in the experimentally observed enhancement of ZnMgO stability.

  6. Energetics and bonding in aluminosilicate rings with alkali metal and alkaline-earth metal charge-compensating cations.

    Science.gov (United States)

    Gatti, Carlo; Ottonello, Giulio; Richet, Pascal

    2012-08-23

    The stabilizing effect of alkali and alkaline-earth metal ions on the oxygen donors of four- and six-membered faujausite-like rings has been calculated in terms of Kohn-Sham core-level (O1s) energy shifts with respect to these same complexes without cations. The results confirm and complement earlier investigations by Vayssilov and co-workers where Na(+) and K(+) were the only complexing cations. The oxygen donor centers in six-membered rings are stabilized by -3.6 ± 0.4, -3.9 ± 0.5, -7.3 ± 0.1, and -7.6 ± 0.2 eV by K(+), Na(+), Ca(2+), and Mg(2+) adions, respectively. The energy shifts are even greater for four-membered rings where the stabilization effects attain -3.7 ± 0.1, -4.1 ± 0.1, -8.1 ± 0.1, and -9.0 ± 0.1 eV, respectively. These effects are also observed on the low-lying σ-bonding and antibonding molecular orbitals (MOs) of the oxygen framework, but in a less systematic fashion. Clear relationships with the core-level shifts are found when the effects of alkali metal complexation are evaluated through electron localization/delocalization indices, which are defined in terms of the whole wave function and not just of the individual orbitals. Complexation with cations not only involves a small but significant electron sharing of the cation with the oxygen atoms in the ring but also enhances electron exchange among oxygen atoms while reducing that between the O atoms and the Si or Al atoms bonded to them. Such changes slightly increase from Na to K and from Mg to Ca, whereas they are significantly enhanced for alkaline-earth metals relative to alkali metals. With respect to Al-free complexes, Si/Al substitution and cation charge compensation generally enhance electron delocalization among the O atoms, except between those that are linked through an Al atom, and cause either an increased or a decreased Si-O ionicity (smaller/higher electron exchange) depending on the position of O in the chain relative to the Al atom(s). The generally increased

  7. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  8. Band structure and electrical properties of MBE grown HfO{sub 2} - based alkaline earth Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Dudek; Grzegorz, Lupina; Grzegorz, Kozlowski; Jarek, Dabrowski; Gunther, Lippert; Hans-Joachim, Muessig; Thomas, Schroeder [IHP-Microelectronics, Frankfurt, Oder (Germany); Dieter, Schmeisser [BTU, Cottbus (Germany)

    2010-07-01

    Ultra thin dielectric films (<20 nm) deposited on TiN electrodes are interesting for MIM capacitor application. High capacitance density and dielectric permittivity must be accompanied by extremely low leakage currents (10{sup -8} A/cm{sup 2}) at bias 0.5 V. To achieve such low leakage currents, high band gap and proper band alignment is required. Occupied electronic states can be probed with standard laboratory photoemission methods. Probing of unoccupied states is more challenging. Synchrotron based PES in combination with XAS forms a powerful method to study the band alignment. ASAM end station located at the U 49/2 PGM 2 beamline of BESSY II (Berlin) offers excellent conditions for performing such measurements. We investigated HfO{sub 2} - based alkaline earth perovskite - BaHfO{sub 3} with subsequent admixture of TiO{sub 2}, resulting in formation of BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} compound. The analysis of data indicates that band gap for HfO{sub 2} is similar to BaHfO{sub 3} and amounts 5.8 eV; for BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} it decreases to 3.8 eV. We conclude that the addition of TiO{sub 2} to BaHfO{sub 3} increases significantly the dielectric permittivity but also impacts the band gap alignment. The conduction band offset shrinks, influencing the leakage current behavior.

  9. Mixed alkali and alkaline-earth borate Li2Sr4B12O23 single crystal

    Science.gov (United States)

    Reshak, A. H.

    2015-10-01

    A comprehensive theoretical investigation of the electronic band structure, density of states, electron charge density distribution and the optical properties for mixed alkali and alkaline-earth borate Li2Sr4B12O23 (LSBO) single crystals were performed. The experimental geometrical structure was optimized by minimizing the forces acting on each atom. Calculations were performed using the full potential linear augmented plane wave plus local orbitals (FPLAPW + lo) method within the local density approximation (LDA), generalized gradient approximation (GGA) and the recently modified Becke-Johnson potential (mBJ). Our calculations show that LSBO crystal is a direct band gap semiconductor. The calculated band gap is 4.64 eV (LDA), 4.92 eV (GGA) and 5.51 eV (mBJ). An earlier calculation using the CASTEP code within LDA obtained a band gap of about 4.66 eV. To overcome the well-known LDA underestimation of the energy gap we have used GGA and mBJ . We find that mBJ succeed by large amount in bringing the calculated bond lengths in good agreement with the experimental data. Also we found that using mBJ to calculate the optical properties gives a birefringence of about 0.068 (at λ = 586.5 nm) in excellent agreement with the experimental data (0.068 at λ = 586.5 nm). Therefore, we believe that the mBJ calculations reported here show excellent agreement with the experimental data.

  10. Investigations into Rare Earth Oxide Use and Behaviour

    Science.gov (United States)

    Pryce, Owen

    2010-05-01

    The use of tracers which are applied to soils (distinguishable from tracers naturally present in soils) is increasing. Rare earth oxides (REOs) are the most prevalent of the sediment tracers used to tag soils in this manner. REOs have been applied in a host of different countries, at a range of scales e.g. over watersheds in the USA (Polyakov and Nearing, 2004; Kimoto et al., 2006); to examine rill erosion in China (Li et al., 2006); and to investigate the importance of topographical features in arable fields in the EU (Stevens and Quinton, 2008). Many successful experiments have been conducted using the suit of REO tracers, yielding important information on the behaviour of eroding sediments. However, the majority of publications have focused upon application of REO tracers, applying the tagging and extraction methods developed by Zhang et al., (2001, 2003). Furthermore, the techniques presently being used are known to generate methodological inaccuracies, such as tracer enrichment and non-uniform REO distributions on experimental plots, and analytical interferences when ICP-MS is used for tracer quantification. Unanswered questions regarding the use of REO tracers include: i) what is the effect upon soil of REO tagging?; ii) how is a uniform distribution of REOs in tagged soil achieved? iii) which is the most suitable way of applying REOs, to experimental plots of different scale, and to meet different objectives?; iv) which REOs are unsuitable for sediment tracing?; v) what is the most precise and efficient method of extracting REO tracers from sediments? vi) is the transport behaviour of REO tracers comparable to untagged soils? In an attempt to answer some of these questions, investigations have been conducted into the effect upon soil particle size of different methods of REO tagging. The ability of these methods to provide uniform distributions of REOs in the tagged soil was calculated. The accuracy and precision of published (Zhang et al., 2003; Stevens and

  11. Oxide property of SG tube materials exposed to an alkaline environment as a secondary side of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjin; Mun, Byung Hak; Kim, Hong Pyo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Stress corrosion cracking (SCC) is an issue that should be overcome in nuclear power plants (NPP). Recognizing that cracks initiate and propagate through unavoidable breakdowns and alterations of the surface oxide on Alloy 600, the SCC behavior is closely related to the oxide property. Corrosion resistance against SCC, in particular, was improved through a newly developed heat treatment process from LTMA (low temperature mill annealed) Alloy 600 to HTMA (high temperature mill annealed) Alloy 600, and then TT (thermally treated) Alloy 600. Intra-granular carbide widely spread in LTMA Alloy 600 dissolves, and inter-granular carbide is then formed during high-temperature mill annealing and cooling, which leads to a great SCC resistance enhancement. Inter-granular carbide is well developed, healing chromium depletion at a grain boundary, and residual stress is removed during additional thermal treatment following mill annealing, which improves the SCC resistance more. In spite of this improvement of TT Alloy 600, Seabrook and Vogtle 1 in the US, using TT Alloy 600, also showed SCC due to a non-optimum microstructure, residual stress, Pb existence, and so on over a 20-year operation of an NPP even though SCC occurs less frequently than LTMA and (or) HTMA Alloy 600s. SCC has also occurred for TT Alloy 600 tubes in Korea, whose main causes resemble US cases. The pH at high temperature in the crevice of SG tubes distributes from acidic of 4 to alkaline above 10 at high temperature depending on the impurity concentration such as chloride and hydroxide ions including other corrosive impurities such as Pb known as very detrimental species even though the bulk pH of secondary water is a mild alkaline solution. Regarding the aggressiveness of Pb, even Alloy 690 is also susceptible to SCC in a strong alkaline solution with lead. Therefore, in the present work, the oxides were investigated in a leaded alkaline solution of pH(T) 9.9 at 315 .deg. C as a function of immersion time

  12. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    Science.gov (United States)

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-07

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively.

  13. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  14. Mechanistic investigation on the oxidation of kinetin by Ag(III) periodate complex in aqueous alkaline media: A kinetic approach

    Indian Academy of Sciences (India)

    S D Lamani; A M Tatagar; S T Nandibewoor

    2010-11-01

    The oxidation of amino acid, kinetin (KNT) by diperiodatoargentate(III) (DPA) in alkaline medium at a constant ionic strength of 0.5 mol dm-3 was studied spectrophtometrically. The reaction between KNT and DPA in alkaline medium exhibits 1 : 3 stoichiometry (KNT : DPA). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the monoperiodatoargentate(III) (MPA) as the reactive oxidant species has been proposed. The products, furon-2-methanol and para-nitro-purine were identified by spot test and characterized by spectral studies. The rate constants and associated activation parameters for the proposed mechanism as well as the thermodynamic quantities for different equilibrium steps are reported and discussed.

  15. High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium

    Science.gov (United States)

    Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Abdullah, Aboubakr M.; Vinu, Ajayan; Iwai, Hideo; Al-Deyab, Salem S.

    2017-04-01

    Nitrogen-Doped Carbon Nanofiber (N-CNF)-supported NiO composite was prepared by electrospinning a sol-gel mixture of graphene and polyaniline (PANi) with aqueous solutions of Polyvinylpyrrolidone (PVP) followed by a high-temperature annealing process. The electrospun was stabilized for 2 h at 280 °C, carbonized for 5 h at 1200 °C then loaded by 10% NiO. The electrocatalytic activities of the produced nanocomposite have been studied using cyclic voltammetry, and chronoamperometry. Also, N-CNF was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and scanning-electron microscopy (SEM). The obtained N-doped carbon nanofiber was found to have a nitrogen content of 2.6 atomic% with a diameter range of (140-160) nm, and a surface area (393.3 m2 g-1). In addition, it showed a high electrocatalytic behavior towards methanol oxidation reaction in alkaline medium and high stability and resistivity to the adsorption of intermediates.

  16. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    Science.gov (United States)

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  17. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    Science.gov (United States)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  18. Zinc(II) oxide stability in alkaline sodium phosphate solutions at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ziemniak, S.E.; Opalka, E.P.

    1993-04-01

    Zinc oxide (ZnO) is shown to transform into either of two phosphate-containing compounds in relatively dilute alkaline sodium phosphate solutions at elevated temperatures via ZnO(s) + Na{sup +} + H{sub 2}PO{sub 4}{sup {minus}} {r_reversible} NaZnPO{sub 4}(s) + H{sub 2}O or 2 ZnO(s) + H{sub 3}PO{sub 4}(aq) {r_reversible} Zn{sub 2}(OH)PO{sub 4}(s) + H{sub 2}O. X-ray diffraction analyses indicate that NaZnPO{sub 4} possesses an orthorhombic unit cell having lattice parameters a = 8.710 {+-} 0.013, b = 15.175 {+-} 0.010, and c = 8.027 {+-} 0.004 {angstrom}. The thermodynamic equilibria for these reactions were defined in the system ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O for Na/P molar ratios between 2.1 and 3. Based on observed reaction threshold values for sodium phosphate concentration and temperature, the standard entropy (S{degrees}) and free energy of formation ({Delta}G{sub f}{degrees}) for NaZnPO{sub 4} were calculated to be 169.0 J/mol-K and {minus}1510.6 kJ/mol, respectively; similar values for Zn{sub 2}(OH)PO{sub 4} (tarbuttite) were 235.9 J/mol-K and {minus}1604.6 kJ/mol. Additions of sodium sulfite and sulfate did not alter the above reactions.

  19. Luminescence behaviors of Eu- and Dy-codoped alkaline earth metal aluminate phosphors through potassium carbonate coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen-Jui, E-mail: cjliang@fcu.edu.tw; Siao, Hao-Yi

    2016-07-01

    An electronic energy mechanism of activator and sensitizer was established to describe the luminescence behaviors of Eu- and Dy-codoped M(II)Al{sub 2}O{sub 4} (M(II) = Ba, Sr, Ca, Mg) phosphors through potassium carbonate coprecipitation. Experimental results demonstrated that the prepared phosphors exhibited superior crystallinity at a temperature lower than 950 °C. The phosphors are ordered according to emission intensity as follows Ca- > Ba- > Sr- > Mg-containing phosphors. The energy level for Eu{sup 2+} 4f{sup 6}5d{sup 1} → 4f{sup 7}, Eu{sup 3+4}D{sub 0} → {sup 7}F, and Dy{sup 3+4}F{sub 9/2} → {sup 6}H transitions and the effects of nephelauxetic and crystal field in Ba-, Sr-, and Ca-containing phosphors were discussed. The energy gap, (hv){sub em}, between 5d and 4f of Eu{sup 2+} ion is strongly affected by host composition, crystal field strength, and nephelauxetic effect. The infrared emission of 4f{sub 9/2} → 6h for Dy{sup 3+} is merely depend on the transfer of energy from Eu{sup 2+} upon excited. Ca-containing phosphor with maximum (hv){sub em} is attributed to the lowest bond length of Ca−O and highest ionization potential of Ca{sup 2+} ion, which leads to the effects of crystal field and nephelauxetic greater than that in the other phosphors. - Highlights: • The list of the collected figure captions: • Develop a new coprecipitation method to prepare high efficiency phosphors. • Obtain superior crystallinity with lower calcination temperature. • Luminescence behavior of Eu- and Dy-codoped on aluminate phosphors is discussed. • Investigate the effects of alkaline earth metal containing on crystal field and nephelauxetic.

  20. The influence of alkaline earth metal equilibria on the rheological, melting and textural properties of Cheddar cheese.

    Science.gov (United States)

    Cooke, Darren R; McSweeney, Paul L H

    2013-11-01

    The total calcium content of cheese, along with changes in the equilibrium between soluble and casein (CN)-bound calcium during ripening can have a major impact on its rheological, functional and textural properties; however, little is known about the effect of other alkaline earth metals. NaCl was partially substituted with MgCl2 or SrCl2 (8·7 and 11·4 g/kg curd, respectively) at the salting stage of cheesemaking to study their effects on cheese. Three cheeses were produced: Mg supplemented (+Mg), Sr supplemented (+Sr) and a control Cheddar cheese. Ca, Mg and Sr contents of cheese and expressible serum obtained therefrom were determined by atomic absorption spectroscopy. Addition of Mg2+ or Sr2+ had no effect on % moisture, protein, fat and extent of proteolysis. A proportion of the added Mg2+ and Sr2+ became CN-bound. The level of CN-bound Mg was higher in the +Mg cheese than the control throughout ripening. The level of CN-bound Ca and Mg decreased during ripening in all cheeses, as did % CN-bound Sr in the +Sr cheese. The presence of Sr2+ increased % CN-bound Ca and Mg at a number of ripening times. Adding Mg2+ had no effect on % CN-bound Ca. The +Sr cheese exhibited a higher G' at 70 °C and a lower LTmax than the control and +Mg cheeses throughout ripening. The +Sr cheese had significantly lower meltability compared with the control and +Mg cheeses after 2 months of ripening. Hardness values of the +Sr cheese were higher at week 2 than the +Mg and control cheeses. Addition of Mg2+ did not influence the physical properties of cheese. Supplementing cheese with Sr appeared to have effects analogous to those previously reported for increasing Ca content. Sr2+ may form and/or modify nanocluster crosslinks causing an increase in the strength of the para-casein matrix.

  1. Structures and Spectroscopy Studies of Two M(II-Phosphonate Coordination Polymers Based on Alkaline Earth Metals (M = Ba, Mg

    Directory of Open Access Journals (Sweden)

    Kui-Rong Ma

    2013-01-01

    Full Text Available The two examples of alkaline-earth M(II-phosphonate coordination polymers, [Ba2(L(H2O9]·3H2O (1 and [Mg1.5(H2O9]·(L-H21.5·6H2O (2 (H4L = H2O3PCH2N(C4H8NCH2PO3H2, N,N′-piperazinebis(methylenephosphonic acid, (L-H2 = O3PH2CHN(C4H8NHCH2PO3 have been hydrothermally synthesized and characterized by elemental analysis, FT-IR, PXRD, TG-DSC, and single-crystal X-ray diffraction. Compound 1 possesses a 2D inorganic-organic alternate arrangement layer structure built from 1D inorganic chains through the piperazine bridge, in which the ligand L−4 shows two types of coordination modes reported rarely at the same time. In 1, both crystallographic distinct Ba(1 and Ba(2 ions adopt 8-coordination two caps and 9-coordination three caps triangular prism geometry structures, respectively. Compound 2 possesses a zero-dimensional mononuclear structure with two crystallographic distinct Mg(II ions. Free metal cations   [MgO6]n2+ and uncoordinated anions (L-H2n2- are joined together by static electric force. Results of photoluminescent measurement indicate three main emission bands centered at 300 nm, 378.5 nm, and 433 nm for 1 and 302 nm, 378 nm, and 434.5 nm for 2 (λex=235 nm, respectively. The high energy emissions could be derived from the intraligand π∗-n transition stations of H4L (310 nm and 382 nm, λex=235 nm, while the low energy emission (>400 nm of 1-2 may be due to the coordination effect with metal(II ions.

  2. Influence of beryllium cations on the electrochemical oxidation of methanol on stepped platinum surfaces in alkaline solution

    Science.gov (United States)

    García, Gonzalo; Stoffelsma, Chantal; Rodriguez, Paramaconi; Koper, Marc T. M.

    2015-01-01

    The role of beryllium on the oxidation of methanol on Pt stepped surfaces (Pt[(n-1) (111)x(110)]) orientation-Pt(553) with n = 5, Pt(554) n = 10, Pt(151514) n = 30), Pt(111) and Pt(110) single crystals in alkaline media was studied by cyclic voltammetry and Fourier transform infrared spectroscopy (FTIRS). The results suggest that under the conditions of the experiment, the methanol oxidation reaction follows a direct pathway with formaldehyde and formate as reaction intermediates. The combination of OHads and beryllium blocks the adsorption and oxidation of methanol on Pt(111), but appears to promote the complete oxidation of methanol to carbon dioxide/carbonate on Pt(110).

  3. Thermodynamic, kinetic and mechanistic investigations of Piperazine oxidation by Diperiodatocuprate(III) complex in aqueous alkaline medium

    Indian Academy of Sciences (India)

    Vijay P Pattar; Prashant A Magdum; Deepa G Patil; Sharanappa T Nandibewoor

    2016-03-01

    The kinetics of oxidation of piperazine by the copper complex, diperiodatocuprate(III) in alkaline medium was studied at 298 K, at an ionic strength of 2.0*10-2 mol dm-3. The reaction between piperazine and diperiodatocuprate(III) in aqueous alkaline medium exhibited 1:2 stoichiometry. The oxidation products were identified by UV-Visible, GC-MS and IR spectral studies. In the present study we have obtained different kinetic observations. The reaction exhibited unit order in case of diperiodatocuprate(III), while less than unit order with respect to piperazine. The addition of alkali and periodate retarded the rate of reaction. The effects of added products, ionic strength and dielectric constant on the rate of the reaction were also studied. The active species of diperiodatocuprate(III) in alkaline media is [Cu(OH)2(H3IO6)]-. The activation parameters with respect to the rate determining step and the thermodynamic quantities with respect to the equilibrium steps were evaluated and discussed. The plausible mechanism consistent with the experimental results was proposed and discussed in detail.

  4. Polymer Film Supported Bimetallic Au-Ag Catalysts for Electrocatalytic Oxidation of Ammonia Borane in Alkaline Media

    Institute of Scientific and Technical Information of China (English)

    Şükriye Ulubay Karabiberoglu; ÇagrCeylan Koçak; Süleyman Kocak; Zekerya Dursun

    2016-01-01

    Ammonia borane is widely used in most areas including fuel cell applications. The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au and Ag bimetallic nanoparticles. The glassy carbon electrode was firstly covered with polymeric film electrochemically and then, Au, Ag, and Au–Ag nanoparticles were deposited on the polymeric film, respectively. The surface morphology and chemical composition of these electrodes were examined by scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It was found that alloyed Au–Ag bimetallic nanoparticles are formed. Electrochemical measurements indicate that the developed electrode modified by Au–Ag bimetallic nanoparticles exhibit the highest electrocatalytic activity for ammonia borane oxidation in alkaline media. The rotating disk electrode voltammetry demonstrates that the developed electrode can catalyze almost six-electron oxidation pathway of ammonia borane. Our results may be attractive for anode materials of ammonia borane fuel cells under alkaline conditions.

  5. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  6. Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by diperiodatoargentate (III) in aqueous alkaline medium

    Indian Academy of Sciences (India)

    R R Hosamani; S T Nandibewoor

    2009-05-01

    The kinetics of Ru(III) catalysed oxidation of L-lysine by diperiodatoargentate (III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0.50 mol dm-3 was studied spectrophotometrically. The oxidation products are aldehyde (5-aminopentanal) and Ag (I). The stoichiometry is i.e. [L-lysine] : [DPA] = 1 : 1. The reaction is of first order in [Ru(III)] and [DPA] and is less than unit order in both [L-lys] and [alkali]. Addition of periodate had a retarding effect on the reaction. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)-L-lysine complex, which further reacts with one molecule of monoperiodatoargentate(III) (MPA) in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test, IR, GC-MS studies. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.

  7. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Narges Milani

    Full Text Available Zinc oxide (ZnO nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP and urea using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF mapping and absorption fine structure spectroscopy (μ-XAFS. Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO42.2H2O and zinc ammonium phosphate (Zn(NH4PO4 species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be

  8. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    Science.gov (United States)

    Milani, Narges; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G; Stacey, Samuel P; McLaughlin, Mike J

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF) mapping and absorption fine structure spectroscopy (μ-XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same

  9. Fabrication and Characterization of Glass-Ceramics Doped with Rare Earth Oxide and Heavy Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    陈国华; 刘心宇; 成钧

    2004-01-01

    Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO2) and heavy metal oxide (M2O3) respectively were fabricated from glass powders. After sintering and crystallization heat treatment, various physical properties, including compact density and apparent porosity, were examined to evaluate the sintering behavior of cordierite-based glass-ceramics. Results show that the additives both heavy metal oxide and rare earth oxide promote the sintering and lower the phase temperature from μ- to α-cordierite as well as affect the dielectric properties of sintered glass-ceramics. The complete-densification temperature for samples is as low as 900 ℃. The materials have a low dielectric constant (≈5), a low thermal expansion coefficient ((2.80~3.52)×10-6 ℃-1) and a low dissipation factor (≤0.2%) and can be co-fired with high conductivity metals such as Au, Cu, Ag/Pd paste at low temperature (below 950 ℃), which makes it to be a promising material for low-temperature co-fired ceramic substrates.

  10. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Science.gov (United States)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-11-01

    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water

  11. Kinetics and Mechanism of Oxidation of Leucine and Alanine by Ag(III Complex in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Changying Song

    2008-01-01

    Full Text Available Kinetics and mechanism of oxidation of leucine and alanine by Ag(III complex were studied spectrophotometrically in alkaline medium at constant ion strength. The reaction was in first order with respect to Ag(III complex and amino acids (leucine, alanine. The second-order rate constant, k−, decreased with the increasing in [OH−] and [IO4−]. A plausible mechanism was proposed from the kinetics study, and the rate equations derived from mechanism can explain all experimental phenomena. The activation parameters were calculated at 298.2 K.

  12. A Kinetically Mechanistic Investigation of Oxidation of 1,4-Butanediamine by Ag(Ⅲ)Complex in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    SONG,Changying; SHAN,Jinhuan; Shen,Shigang; Sun,Hanwen

    2009-01-01

    Kinetics and mechanism of oxidation of 1,4-butanediamine by a Ag (Ⅲ)complex were studied spectropho-tometrically in alkaline medium at constant ion strength. The reaction shows first order with respect to the Ag(Ⅲ)complex and 1,4.butanediamine respectively. The second order rate constant,k`:increased with the increasing in[OH-],and decreased with the increasing in[IO4-4].A plausible mechanism was proposed from the kinetics study.The rate equations derived from the mechanism Can explain all experimental phenomena. The activation parameters were calculated.

  13. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    Science.gov (United States)

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-01

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application.

  14. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  15. Syntheses, Vibrational Spectroscopy, and Crystal Structure Determination from X-Ray Powder Diffraction Data of Alkaline Earth Dicyanamides M[N(CN)

    Energy Technology Data Exchange (ETDEWEB)

    Juergens, Barbara; Irran, Elisabeth; Schnick, Wolfgang

    2001-03-01

    The alkaline earth dicyanamides Mg[N(CN){sub 2}]{sub 2}, Ca[N(CN){sub 2}]{sub 2}, Sr[N(CN){sub 2}]{sub 2}, and Ba[N(CN){sub 2}]{sub 2} were synthesized by ion exchange using Na[N(CN){sub 2}] and the respective nitrates or bromides as starting materials. The crystal structures were determined from X-ray powder diffractometry: Mg[N(CN){sub 2}]{sub 2}, Pnnm, Z=2, a=617.14(3), b=716.97(3), and c=740.35(5) pm; Ca[N(CN){sub 2}]{sub 2} and Sr[N(CN){sub 2}]{sub 2}, C2/c, Z=4; Ca[N(CN){sub 2}]{sub 2}, a=1244.55(3), b=607.97(1), and c=789.81(1) pm, {beta}=98.864(2){degree}; Sr[N(CN){sub 2}]{sub 2}, a=1279.63(2), b=624.756(8), and c=817.56(1) pm, {beta}=99.787(1){degree}; Ba[N(CN){sub 2}]{sub 2}, Pnma, Z=4, a=1368.68(7), b=429.07(7), and c=1226.26(2) pm. The dicyanamides consist of the respective alkaline earth cations and bent planar [N(CN){sub 2}]{sup -} ions. The structural features were correlated with vibrational spectroscopic data. The thermal behavior was studied by thermoanalytical experiments.

  16. Chelation ion chromatography of alkaline earth and transition metals a using monolithic silica column with bonded N-hydroxyethyliminodiacetic acid functional groups.

    Science.gov (United States)

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Jones, Phil; Paull, Brett

    2013-02-08

    A commercially available porous silica monolithic column (Onyx Monolithic Si, 100 mm×4.6 mm I.D.) was 'in-column' covalently functionalised with 2-hydroxyethyliminodiacetic acid (HEIDA) groups, and applied to the simultaneous and rapid separation of alkaline earth and transition metal ions, using high-performance chelation ion chromatography (HPCIC). With a 0.3mM dipicolinic acid (DPA) containing eluent, the baseline separation of various common transition and heavy metal ions and the four alkaline earth metal ions could be achieved in under 14 min with a flow rate of just 0.8 mL/min. Detection was achieved using spectrophotometric detection at 540 nm after post-column reaction (PCR) with 4-(2-pyridylazo)-resorcinol (PAR). Significant effects from variation of eluent nature, concentration and temperature upon selectivity and retention were demonstrated with the new monolithic silica chelating phase. Under optimised conditions (0.165 M LiNO(3) eluent, pH 2.5), peak efficiencies of 54,000, 60,000 and 64,000 N/m, for Zn(2+), Mn(2+) and Cd(2+), respectively, were recorded, far exceeding that previously reported for IDA based chelation ion exchange columns.

  17. Identifying the presence of a disulfide linkage in peptides by the selective elimination of hydrogen disulfide from collisionally activated alkali and alkaline earth metal complexes.

    Science.gov (United States)

    Kim, Hugh I; Beauchamp, J L

    2008-01-30

    We report a new method for identifying disulfide linkages in peptides using mass spectrometry. This is accomplished by collisional activation of singly charged cationic alkali and alkaline earth metal complexes, which results in the highly selective elimination of hydrogen disulfide (H2S2). Complexes of peptides possessing disulfide bonds with sodium and alkaline earth metal are generated using electrospray ionization (ESI). Isolation followed by collision induced dissociation (CID) of singly charged peptide complexes results in selective elimination of H2S2 to leave newly formed dehydroalanine residues in the peptide. Further activation of the product yields sequence information in the region previously short circuited by the disulfide bond. For example, singly charged magnesium and calcium ion bound complexes of [Lys8]-vasopressin exhibit selective elimination of H2S2 via low-energy CID. Further isolation of the product followed by CID yields major b- and z-type fragments revealing the peptide sequence in the region between the newly formed dehydroalanine residues. Numerous model peptides provide mechanistic details for the selective elimination of H2S2. The process is initiated starting with a metal stabilized enolate anion at Cys, followed by cleavage of the S-C bond. An examination of the peptic digest of insulin provides an example of the application of the selective elimination of H2S2 for the identification of peptides with disulfide linkages. The energetics and mechanisms of H2S2 elimination from model compounds are investigated using density functional theory (DFT) calculations.

  18. MB82- (M=Be,Mg,Ca,Sr,and Ba):Planar octacoordinate alkaline earth metal atoms enclosed by boron rings

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Complexes involving planar octacoordinate alkaline earth metal atoms in the centers of eight-membered boron rings have been investigated by two density functional theory (DFT) methods.BeB82-with D8h symmetry is predicted to be stable,both geometrically and electronically,since a good match is achieved between the size of the central beryllium atom and the eight-membered boron ring.By contrast,the other alkaline earth metal atoms cannot be stabilized in the center of a planar eight-membered boron ring because of their large radii.By following the out-of-plane imaginary vibrational frequency,pyramidal C8v MgB82-,CaB82-,SrB82-,and BaB82-structures are obtained.The presence of delocalized π and σ valence molecular orbitals in D8h BeB82-gives rise to aromaticity,which is reflected by the value of the nucleus-independent chemical shift.The D8h BeB82-structure is confirmed to be the global minimum on the potential energy surface.

  19. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  20. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    Science.gov (United States)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  1. Oxidative dehydrogenation of ethane on rare-earth oxide-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buyevskaya, O.; Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    Results on the oxidative dehydrogenation of ethane on rare-earth oxide (REO) based catalysts (Na-P-Sm-O, Sm-Sr(Ca)-O, La-Sr-O and Nd-Sr-O) are described. Oxygen adsorption was found to be a key factor which determines the activity of this type of catalysts. Continuous flow experiments in the presence of catalysts which reveal strong oxygen adsorption showed that the reaction mixture is ignited resulting in an enhanced heat generation at the reactor inlet. The heat produced by the oxidative reactions was sufficient under the conditions chosen for the endothermic thermal pyrolysis which takes place preferentially in the gas phase. Ignition of the reaction mixture is an important catalyst function. Contrary to non-catalytic oxidative dehydrogenation, reaction temperatures above 700 C could be achieved without significant external heat input. Ethylene yields of up to 34-45% (S=66-73%) were obtained on REO-based catalysts under non-isothermal conditions (T{sub max}=810-865 C) at contact times in the order of 30 to 40 ms. (orig.)

  2. Electrosynthesized polytyramine-copper oxalate nanocomposite on copper electrode for electrocatalytic oxidation of methanol in alkaline medium

    Institute of Scientific and Technical Information of China (English)

    Robab Abbasi a; Khalil Farhadi a; Sepideh Banisaeid a; Nader Nowroozi Pesyan a; Arezu Jamali a; Fatemeh Rahmani b

    2014-01-01

    A polytyramine-copper oxalate nanocomposite modified copper (PTCOxNMC) electrode prepared by electropolymerization was examined for electrocatalytic activity towards the oxidation of meth-anol in alkaline solution using cyclic voltammetry and impedance spectroscopy. The prepared PTCOxNMC electrode showed a significantly high response for adsorbed methanol oxidation. The effects of various parameters such as potential scan rate and methanol concentration on the elec-trocatalytic oxidation at the surface of the PTCOxNMC electrode were investigated. Spectrometry techniques such as Fourier transform infrared spectroscopy and scanning electron microscopy were used to determine the surface physical characteristics of the modified electrode and revealed that the polytyramine-copper oxalate nanocomposite particles were highly dispersed on the surface of the copper electrode with a narrow size up to 40 nm. The very high current density obtained for the catalytic oxidation may have resulted from the high electrode surface area caused by modifica-tion with the poly-tyramine-copper oxalate nanocomposite.

  3. Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria de Carvalho Fernandes

    2004-03-01

    Full Text Available The addition of small quantities of reactive elements such as rare earths (RE to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed.

  4. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  5. Production of Synthesis Gas via Methane Reforming with CO2 on Ni/SiO2 Catalysts Promoted by Alkali and Alkaline Earth Metals

    Institute of Scientific and Technical Information of China (English)

    陈平; 侯昭胤; 郑小明

    2005-01-01

    Ni/SiO2 catalysts promoted by alkali metals K and Cs or alkaline earth metals Mg, Ca, Sr and Ba were prepared, characterized by H2-TPR and XRD, and used for the production of synthesis gas via methane reforming with CO2. Though K and Cs promoted Ni catalysts could eliminate coke deposition, the reforming activity of these promoted catalysts was decreased heavily. Mg and Ca promoted Ni/SiO2 catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity of Ni/SiO2. Ba showed poor coke resistance ability and small amount of Sr increased the formation of coke. The possible mechanism of these promoters was discussed.

  6. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  7. Dispersion coefficients for the interactions of the alkali and alkaline-earth ions and inert gas atoms with a graphene layer

    CERN Document Server

    Kaur, Kiranpreet; Sahoo, B K

    2015-01-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients ($C_3$s) of the alkali ions (Li$^+$, Na$^+$, K$^+$ and Rb$^+$), the alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$ and Ra$^+$) and the inert gas atoms (He, Ne, Ar and Kr) with a graphene layer are determined precisely within the framework of Dirac model. For these calculations, we have evaluated the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are, finally, given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at the room temperature.

  8. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  9. Alkaline earth metal-based metal-organic framework: hydrothermal synthesis, X-ray structure and heterogeneously catalyzed Claisen-Schmidt reaction.

    Science.gov (United States)

    Saha, Debraj; Maity, Tanmoy; Koner, Subratanath

    2014-09-14

    Two alkaline earth metal-based carboxylate systems, [Mg(HL)(H2O)2]n (1) and [Ca(H2L)2]n (2) (H3L = chelidamic acid) have been hydrothermally synthesized, and characterized by single-crystal X-ray diffraction, IR, elemental analysis, and thermo-gravimetric analysis. Compound 1 has a 2D structure incorporating two water molecules. The dehydrated species, 1a, generated from 1 by removal of the coordinated water, has been characterized by thermo-gravimetric analysis, IR, elemental analysis and variable temperature powder X-ray diffraction. Both 1 and its dehydrated species 1a catalyze the Claisen-Schmidt reaction under heterogeneous conditions, but 1a is a more effective catalyst under environmentally friendly conditions. The catalyst can readily be recovered and reused in successive cycles without detectable loss of activity. Compound 2 has a 3D structure and is thermally stable up to 540 °C, but is inactive catalytically.

  10. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quyn, Dimple Mody; Li, Chun-Zhu [CRC for Clean Power from Lignite, Department of Chemical Engineering, PO Box 36, Monash University, Victoria 3800 (Australia); Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-08-25

    A Victorian brown coal was gasified in a bench-scale quartz fluidised-bed/fixed-bed reactor in order to study the volatilisation of Na, Ca, and Mg during devolatilisation and gasification and their roles in the reactivity of chars. It was found that the majority of Na was volatilised at 900 {sup o}C under all conditions and that a Na retention limit was achieved in the char with the progress of CO{sub 2} gasification. In some cases, the presence of CO{sub 2} during devolatilisation enhanced the Na retention in the char. In contrast, the retention of Ca (and Mg) was unaffected by CO{sub 2} during devolatilisation at 900C but decreased drastically upon nascent char gasification. The fundamental differences in volatilisation between the alkali and alkaline earth metallic species are discussed in this paper.

  11. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum.

    Science.gov (United States)

    Gong, Biao; Li, Xiu; Bloszies, Sean; Wen, Dan; Sun, Shasha; Wei, Min; Li, Yan; Yang, Fengjuan; Shi, Qinghua; Wang, Xiufeng

    2014-06-01

    Nitric oxide (NO) and polyamines (PAs) are two kinds of important signal in mediating plant tolerance to abiotic stress. In this study, we observed that both NO and PAs decreased alkaline stress in tomato plants, which may be a result of their role in regulating nutrient balance and reactive oxygen species (ROS), thereby protecting the photosynthetic system from damage. Further investigation indicated that NO and PAs induced accumulation of each other. Furthermore, the function of PAs could be removed by a NO scavenger, cPTIO. On the other hand, application of MGBG, a PA synthesis inhibitor, did little to abolish the function of NO. To further elucidate the mechanism by which NO and PAs alleviate alkaline stress, the expression of several genes associated with abiotic stress was analyzed by qRT-PCR. NO and PAs significantly upregulated ion transporters such as the plasma membrane Na(+)/H(+) antiporter (SlSOS1), vacuolar Na(+)/H(+) exchanger (SlNHX1 and SlNHX2), and Na(+) transporter and signal components including ROS, MAPK, and Ca(2+) signal pathways, as well as several transcription factors. All of these play important roles in plant adaptation to stress conditions.

  12. Kinetic, mechanistic and spectral investigation of ruthenium (III)-catalysed oxidation of atenolol by alkaline permanganate (stopped-flow technique)

    Indian Academy of Sciences (India)

    Rahamatalla M Mulla; Gurubasavaraj C Hiremath; Sharanappa T Nandibewoor

    2005-01-01

    Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0.30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry (atenolol : KMnO4). The reaction shows first-order dependence on [permanganate] and [ruthenium (III)] and apparently less than unit order on both atenolol and alkali concentrations. Reaction rate decreases with increase in ionic strength and increases with decreasing dielectric constant of the medium. Initial addition of reaction products does not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The active species of ruthenium (III) is understood as [Ru(H2O)5OH]2+. The reaction constants involved in the different steps of mechanism are calculated. Activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated.

  13. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    Science.gov (United States)

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature.

  14. Magnetic Behavior of Some Rare-Earth Transition-Metal Perovskite Oxide Systems

    Institute of Scientific and Technical Information of China (English)

    Kenji Yoshii; Akio Nakamura; Masaichiro Mizumaki; Naoshi Ikeda; Jun'ichiro Mizuki

    2004-01-01

    Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanates, magnetization reversal in the chromites and metallic ferromagnetism in the cobaltites. The results suggest an important role of the rare-earth ions for the magnetic properties of such complex oxides.

  15. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  16. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  17. Evaluation of metal oxide and carbonate nanoparticle stability in soybean oil: Implications for controlled release of alkalinity during subsurface remediation

    Science.gov (United States)

    Ramsburg, C. A.; Leach, O. I.; Sebik, J.; Muller, K.

    2011-12-01

    Traditional methods for adjusting groundwater pH rely on injection of aqueous solutes and therefore, amendment distribution is reliant upon aqueous phase flow and transport. This reliance can limit mixing and sustention of amendments within the treatment zone. Oil-in-water emulsions offer an alternative for amendment delivery - one that has potential to enhance control of the distribution and release of buffering agents within the subsurface. Focus here is placed on using metal oxide and carbonate nanoparticles to release alkalinity from soybean oil, a common dispersed phase within emulsions designed to support remediation activities. Batch reactor systems were employed to examine the influence of dispersed phase composition on particle stability and solubility. The stability of uncoated MgO and CaCO3 particles in unmodified soybean oil was explored in a series of sedimentation studies conducted at solid loadings of 0.05, 0.1, and 0.2% mass. Three nominal sizes of MgO particles were examined (20, 50, and 100 nm) and one CaCO3 particle size (60 nm). Results from sedimentation studies conducted over four hours suggest that the viscosity of the soybean oil imparts a kinetic stability, for all sizes of the uncoated MgO and CaCO3 nanoparticles, which is sufficient time for particle encapsulation within oil-in-water emulsions. Based upon these results, the sedimentation of the 50 nm and 100 nm MgO, and 60 nm CaCO3 particles was assessed over longer durations (≥72 hr). Results from these stability tests suggest that the 50 nm and 100 nm MgO particles have greater kinetic stability than the 60 nm CaCO3. Batch studies were also used to assess the influence of n-butanol, a co-solvent hypothesized to aid in controlling the rate of alkalinity release, on phase behavior and metal (Mg2+ and Ca2+) solubility. Phase behavior studies suggest that n-butanol has a limited region of miscibility within the soybean oil-water system. Use of n-butanol and water within this region of

  18. Theoretical studies of the spin Hamiltonian parameters and local distortions for Cu{sup 2+} in alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo-Kun; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian [University of Electronic Science and Technology of China, Chengdu (China). School of Yingcai Honors; Wu, Shao-Yi; Teng, Bao-Hua; Wu, Ming-He [University of Electronic Science and Technology of China, Chengdu (China). Dept. of Applied Physics

    2016-11-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu{sup 2+}-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d{sup 9} cluster. The relative elongation ratios are found to be ρ ∼ 3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu{sup 2+}-O{sup 2-} electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba

  19. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    Science.gov (United States)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  20. Promoter Effects of Rare Earth Ions on Electrocatalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time that Eu、Ho、Dy ions could accelerate the electrocatalytic oxidation of methanol at the Pt electrode, while Lu、Pr、Yb、Sm ions showed inhibitor effects.

  1. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Aysha Kamran

    2015-06-01

    Full Text Available Alkaline serine protease was purified to homogeneity from culture supernatant of a thermophilic, alkaliphilic Bacillus sp. by 80% ammonium sulphate precipitation followed by CM-cellulose and DEAE-cellulose ion exchange column chromatography. The enzyme was purified up to 16.5-fold with 6900 U/mg activity. The protease exhibited maximum activity towards casein at pH 8.0 and at 80 °C. The enzyme was stable at pH 8.0 and 80 °C temperature up to 2 h. The Ca2+ and Mn2+ enhanced the proteolytic activity up to 44% and 36% as compared to control, respectively. However, Zn2+, K+, Ba2+, Co2+, Hg2+ and Cu2+ significantly reduced the enzyme activity. PMSF (phenyl methyl sulphonyl fluoride completely inhibited the protease activity, whereas the activity of protease was stimulated up to two folds in the presence of 5 mM 2-mercaptoethanol. The enzyme was also stable in surfactant (Tween-80 and other commercial detergents (SDS, Triton X-100.

  2. Alkaline ameliorants increase nitrous oxide emission from acidified black soil in Northeastern China.

    Science.gov (United States)

    Han, Zuoqiang; Zhang, Xilin; Qiao, Yanjiao; Wang, Lianfeng

    2011-06-01

    Lime and plant ash are common management used to achieve optimum pH for plant growth and improve soil properties in agricultural soils. Laboratory incubation was conducted to assess N20 emissions as influenced by different soil amendments (lime and plant ash) in a slightly acidic arable soil (pH 5.34). The experimental treatments consisted of CK, lime and plant ash fertilized with NH4(+)-N or N03(-)-N as nitrogen resource. The results show that lime and plant ash dramatically increases the soil pH and N20 emission. For N03(-)-N fertilization, the cumulative N20 emissions from CK, lime and ash are 421, 1669 and 921 μg N20-N/kg, respectively. For NH4(+)-N fertilization, the cumulative N20 emissions from CK, lime and ash are 361, 576 and 559 μg N20-N/kg, respectively. N03(-)-N addition leads to more N20 emission than that of NH4(+)-N addition, and lime increases more N20 emission than that of plant ash. After incubation, N03(-)-N content decreased largely. The findings suggested that alkaline ameliorants increase N20 emissions due to enhancement of soil denitrification.

  3. sup 29 Si magic angle spinning NMR spectra of alkali metal, alkaline earth metal, and rare earth metal ion exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Kueijung; Chern, Jeryoung (Tsinghua Univ., Taiwan (China))

    1989-02-23

    The variation of the extraframework cation location in groups IA and IIA metals and rare earth metal (RE) Y zeolites as a function of the dehydration and the rehydration is monitored by {sup 29}Si MAS NMR. Unheated hydrated zeolites give similar {sup 29}Si spectra as they present the similar cation distributions. Upon dehydration a high-field shift is observed which correlates with the distortion of bond angles in silicon-oxygen tetrahedra. The line shapes of {sup 29}Si spectra depend on the nature and the location of the exchangeable cations and the occupancy of the different sites in dehydrated and rehydrated states. The correlation between the line shape of {sup 29}Si spectra and the migration of cations from the supercages to the sodalite cages after heating treatment was studied. The results of {sup 29}Si NMR agree with the known structure data.

  4. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions.

    Science.gov (United States)

    Kojima, Yoshihiro; Fukuta, Tadashi; Yamada, Takehisa; Onyango, Maurice S; Bernardo, Eileen C; Matsuda, Hitoki; Yagishita, Kohichi

    2005-01-01

    Wet oxidation of a 100 ppm aqueous solution of o-chlorophenol (o-CP) was performed in a lab-scale batch reactor using 3% Ru/TiO(2) catalyst at 373 and 413 K, and a partial oxygen pressure of 0.1 MPa. The experiments were conducted by varying the initial pH values of o-CP solution from pH 6.3 to 9.8 and 11.8. From the results, it was revealed that the catalytic decomposition of o-CP occurred most effectively at 413 K and at the initial pH of 9.8. Complete decomposition and dechlorination of o-CP were almost achieved within 1h, and about 85% of TOC was removed in 3.0 h. On the other hand, the catalytic wet oxidation of o-CP at a higher pH value of 11.8 was not effective in the removal of TOC. The incomplete removal of TOC at the initial pH of 11.8 is likely attributed to a low pK(a) of carboxylic acids formed during the wet oxidation of o-CP.

  5. Characterization of Pt-Pd/C Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    S. S. Mahapatra

    2011-01-01

    Full Text Available The Pt-Pd/C electrocatalyst was synthesized on graphite substrate by the electrochemical codeposition technique. The physicochemical characterization of the catalyst was done by SEM, XRD, and EDX. The electrochemical characterization of the Pt-Pd/C catalyst for methanol electro-oxidation was studied over a range of NaOH and methanol concentrations using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy. The activity of methanol oxidation increased with pH due to better OH species coverage on the electrode surface. At methanol concentration (>1.0 M, there is no change in the oxidation peak current density because of excess methanol at the electrode surface and/or depletion of OH− at the electrode surface. The Pt-Pd/C catalyst shows good stability and the low value of Tafel slope and charge transfer resistance. The enhanced electrocatalytic activity of the electrodes is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH− adsorption, and ad-atom contribution on the alloyed surface.

  6. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  7. Thermal oxidation of the surface of binary aluminum alloys with rare-earth metals

    Science.gov (United States)

    Akashev, L. A.; Popov, N. A.; Kuznetsov, M. V.; Shevchenko, V. G.

    2015-05-01

    The kinetics of oxidation of the surface of Al alloys with 1-2.5 at % rare-earth metals (REMs) at 400-500°C in air was studied by ellipsometry and X-ray photoelectron spectroscopy (XPS). The addition (1-2.5 at % REM) of all rare-earth metals to aluminum was shown to increase the thickness of the oxide layer. The addition of surfactant and chemically active REMs (Yb, Sm, La, and Ce) increased the rate of oxidation of solid aluminum most effectively. The oxidation can be accelerated by the polymorphic transformations of the individual REM oxides in the film. The surface activity of Sm with respect to solid Al was confirmed by XRS.

  8. Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes

    OpenAIRE

    2010-01-01

    Understanding sediment sources is essential to enable more effective targeting of in-field mitigation approaches to reduce diffuse pollution from agricultural land. In this paper we report on the application of rare earth element oxides to arable soils at hillslope scale in order to determine sediment source areas and their relative importance, using a non-intrusive method of surface spraying. Runoff, sediments and rare earth elements lost from four arable hillslope lengths at a site in the U...

  9. Electrocatalytic Oxidation of Formic Acid in an Alkaline Solution with Graphene-Oxide- Supported Ag and Pd Alloy Nanoparticles.

    Science.gov (United States)

    Han, Hyoung Soon; Yun, Mira; Jeong, Haesang; Jeon, Seungwon

    2015-08-01

    The electrocatalytic activities of metal-decorated graphene oxide (GO) catalysts were investigated. Electrochemically reduced GO-S-(CH2)4-S-Pd [ERGO-S-(CH2)4-S-Pd] and GO-S-(CH2)4-S-PdAg alloy [ERGO-S-(CH2)4-S-PdAg] were obtained through the electrochemical reduction of GO-S-(CH2)4-S-Pd and GO-S-(CH2)4-S-PdAg in a pH 5 PBS solution. It was demonstrated that the application of ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg used in a modified GCE improves the electrocatalytic oxidation of formic acid. The addition of an Ag nanoparticle with a carbon chain-Pd in the electrode provides an electrode with very interesting properties for the electrocatalytic oxidation of formic acid. The ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg were characterized via X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg can be employed for the electrocatalytic oxidation of formic acid. The electrochemical behaviors of this electrode were investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS).

  10. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  11. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Science.gov (United States)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  12. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Science.gov (United States)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2016-09-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  13. [High current microsecond pulsed hollow cathode lamp excited ionic fluorescence spectrometry of alkaline earth elements in inductively coupled plasma with a Fassel-torch].

    Science.gov (United States)

    Zhang, Shao-Yu; Gong, Zhen-Bin; Huang, Ben-Li

    2006-02-01

    High current microsecond pulsed hollow cathode lamp (HCMP-HCL) excited ionic fluorescence spectrometry (IFS) of alkaline earth elements in inductively coupled plasma (ICP) with a Fassel-torch has been investigated. In wide condition ranges only IFS was observed, whilst atomic fluorescence spectrometry (AFS) was not detectable. More intense ionic fluorescence signal was observed at lower observation heights and at lower incident RF powers. Without introduction of any reduction organic gases into the ICP, the limit of detection (LOD, 3sigma) of Ba was improved by 50-fold over that of a conventional pulsed (CP) HCL with the Baird sleeve-extended torch. For Ca and Sr, the LODs by HCMP-HCL-ICP-IFS and CP-HCL-ICP-AFS show no significant difference. Relative standard deviations were 0.6%-1.4% (0.1-0.2 microg x mL(-1), n = 10) for 5 ionic fluorescence lines. Preliminary studies showed that the intensity of ionic fluorescence could be depressed in the presence of K, Al and P.

  14. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.

    Science.gov (United States)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-03-14

    The long-range non-additive three-body dispersion interaction coefficients Z(111), Z(112), Z(113), and Z(122) are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z(111) arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z(112), Z(113), and Z(122) arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  15. Transfer of alkaline earth elements in mothers' milk and doses from {sup 45}Ca, {sup 90}Sr and {sup 226}Ra

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.J.; Phipps, A.W.; Fell, T.P.; Harrison, J.D

    2003-07-01

    An international programme of work is currently under way to develop methods for calculating doses to infants from ingestion of radionuclides present in mothers' milk. This paper considers the special case of the alkaline earth elements. Models have been developed for {sup 45}Ca, {sup 90}Sr and {sup 226}Ra and the sensitivity of results to various changes in parameter values is discussed. A complication when calculating doses from intakes of radium is that the International Commission on Radiological Protection has previously recommended that doses from decay products of radium should be calculated using element-specific biokinetic models (so-called independent biokinetics). An extension of this method to the models for breastfeeding is proposed. Preliminary estimates of the doses received by the infant for a number of maternal intake scenarios show that doses to the infant can exceed the corresponding adult dose, such as for {sup 45}Ca (ratio = 3.1) while, in other cases such as {sup 90}Sr, the infant dose can be a significant fraction of the adult dose. (author)

  16. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  17. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  18. Structural and spectroscopic studies of water-alkaline earth ion micro clusters: an alternate approach using genetic algorithm in conjunction with quantum chemical methods

    Science.gov (United States)

    Ganguly Neogi, S.; Chaudhury, P.

    2014-08-01

    We present an approach of using a stochastic optimization technique namely genetic algorithm in association with quantum chemical methods to first elucidate structure and then infrared spectroscopy and thermochemistry of water-alkaline earth metal ion clusters. We show that an initial determination of structure using stochastic techniques and following it up with quantum chemical calculation can lead to much faster convergence to high quality structures for these systems. Infrared spectroscopic, thermochemical calculations and natural population analysis based charges on the central metal ions are done to further ascertain the correctness of the structures using our technique. We have done a comparative study with a pure density functional theory calculation and have shown that even for very poor starting guess geometries genetic algorithm in conjunction with density functional theory indeed converges to global structure while pure density functional theory can encounter problems in certain situations to arrive at global geometry. We have also discussed usefulness of Unimodal Normal distribution crossover for handling situation with real coded variables.

  19. The long-range non-additive three-body dispersion interactions for the rare gases, alkali and alkaline-earth atoms

    CERN Document Server

    Tang, Li-Yan; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-01-01

    The long-range non-additive three-body dispersion interaction coefficients $Z_{111}$, $Z_{112}$, $Z_{113}$, and $Z_{122}$ are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb) and the alkaline-earth atoms (up to Sr). The term $Z_{111}$, arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms $Z_{112}$, $Z_{113}$, and $Z_{122}$ arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as DDQ, DDO, and DQQ coefficients. Results for the four $Z$ coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supp...

  20. Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1-xMbxF2 (M: Ca, Sr, Ba)

    Science.gov (United States)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2016-10-01

    The capability of mechanochemical synthesis for the formation of solid solutions of alkaline earth metal fluorides Ma1-xMbxF2 (M: Ca, Sr, Ba) was tested by fluorination of metal acetates and metal hydroxides with ammonium fluoride directly at milling. Evidence was found for a mutual substitution of cations on their lattice positions in Ca1-xSrxF2 and Ba1-xSrxF2 samples. For the Ba/Ca-system this synthesis route is only partially successful. X-ray diffraction and 19F MAS NMR spectroscopy were used to characterize all samples concerning their crystal structure and local fluorine coordination. Calculations of 19F chemical shifts with the superposition model along with probability calculations for the intensity of the individual 19F lines, performed in dependence on the molar composition of the samples, perfectly agree with the experimental findings. The fluoride ion conductivity of as-prepared samples, determined by temperature dependent DC conductivity measurements, is significantly higher than those of crystalline binary fluorides. Moreover, a higher F- ion conductivity is observed for samples with higher mixing grade in the Ca/Sr-and the Ba/Sr-systems.

  1. Alkaline, Endo III and FPG modified comet assay as biomarkers for the detection of oxidative DNA damage in rats with experimentally induced diabetes.

    Science.gov (United States)

    Kushwaha, S; Vikram, A; Trivedi, P P; Jena, G B

    2011-12-24

    Increased production of reactive oxygen species under diabetic condition underlines the higher oxidatively damaged DNA in different tissues. However, it is practically difficult to assess the oxidatively damaged DNA in different internal organs. Therefore, the present study was aimed to evaluate the extent of oxidative stress-induced DNA damage in different organs with the progression of diabetes. Diabetic and control Sprague Dawley rats were sacrificed in time-dependent manner and the lung, liver, heart, aorta, kidney, pancreas and peripheral blood lymphocytes (PBL) were analyzed for both alkaline and modified comet assay with endonuclease-III (Endo III) and formamidopyrimidine-DNA glycosylase (FPG) (hereafter called modified comet assay) for the detection of oxidative DNA damage. The statistically significant increase in olive tail moment (OTM) was found in all the tested tissues. The extent of DNA damage was increased with the progression of diabetes as revealed by the parameter of OTM in alkaline and modified comet assay. Further, the positive correlations were observed between OTM of the lung, liver, heart, aorta, kidney and pancreas with PBL of diabetic rat in the alkaline and modified comet assay. Moreover, significant increase in the 8-oxodG positive nuclei in the lung, liver, heart, aorta, kidney and pancreas was observed in 4th and 8th week diabetic rat as compared to control. Results of the present study clearly indicated the suitability of alkaline and modified comet assay for the detection of multi-organ oxidative DNA damage in streptozotocin (STZ)-induced diabetic rat and showed that damaged DNA of PBL can be used as a suitable biomarker to assess the internal organs response to DNA damage in diabetes.

  2. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize

    Science.gov (United States)

    Liu, Fu-yang; Xiong, Feng-xia; Fan, Yi-kang; Li, Juan; Wang, He-zhong; Xing, Geng-mei; Yan, Feng-ming; Tai, Fu-ju; He, Rui

    2016-11-01

    A feasible in operation, labor-saving and low-cost one-step technology to fabricate fullerenol nanoparticles (FNPs) up to 10 g in laboratory was developed by improved alkaline-oxidation approach using moderately concentrated sodium hydroxide solution as the hydroxylation agent and o-dichlorobenzene as the solvent. This strategy paves the avenue for industrial-scale bulk production of FNPs. The resulted product, [C60(OH)22·8H2O]n, were characterized by various measurements including matrix-assisted laser desorption ionization time-of-flight mass spectrometry, high-resolution 1H nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, UV-Visible spectrophotometer, thermogravimetric analysis, differential scanning calorimetry, dynamic light scattering analysis, scanning electron microscopy, and electron spin resonance spectrometer. Radical scavenging assay in vitro confirmed the high efficiency of water-soluble [C60(OH)22·8H2O]n as a novel radical scavenger. Furthermore, [C60(OH)22·8H2O]n as an excellent candidate has the potential to serve as the plant defense stimulation agent in maize.

  3. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  4. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    Science.gov (United States)

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13.

  5. Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics

    OpenAIRE

    2005-01-01

    Zinc oxide varistors are nonlinear voltage dependent ceramic resistors used to suppress and limit transient voltage surges. The work reported in this paper involves the relationship between microstructural characteristics and the varistor performance of ZnO ceramics doped with rare-earth oxides. Samples of these ceramics with different nonlinear current-voltage characteristics, according to the specific chemical composition and sintering parameters, were prepared and microstructurally analyze...

  6. Ruthenium(III) catalyzed oxidation of sulfanilic acid by diperiodatocuprate(III) in aqueous alkaline medium. A kinetic and mechanistic approach

    Science.gov (United States)

    Munavalli, D. S.; Patil, R. K.; Chimatadar, S. A.; Nandibewoor, S. T.

    2009-12-01

    The kinetics of ruthenium(III) catalyzed oxidation of sulfanilic acid by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of (0.50 mol dm-3) has been studied spectrophoto-metrically. The reaction between sulfanilic acid and DPC in alkaline medium exhibits 1: 4 stoichiometry (sulfanilic acid: DPC). The reaction is first order with respect to [DPC] and [RuIII] and has less than unit order both in [sulfanilic acid] and [alkali]. The active species of catalyst and oxidant have been identified. Intervention of free radicals was observed in the reaction. The main products were identified by spot test and IR. Probable mechanism is proposed and discussed. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed. Thermodynamic quantities are also determined.

  7. Study of the effect hydrogen binding in the solvation of alkaline earth cations with MeOH in nitromethane using 1 H NMR technique and determination of ionic solvation number

    CERN Document Server

    Alizadeh, N

    2001-01-01

    A proton NMR method for the study of the effect hydrogen binding and determination of solvation numbers of alkaline earth cations with methanol (MeOH) in in tromethane (NM) as diluent is described. The method is based on monitoring the resonance frequency of MeOH protons as a function of MeOH to metal ion mole ratio at constant metal ion concentration. the average solvation number of cation, n, at any MeOH/ metal ion mole ration was calculated from the NMR chemical shift-mole ration data and was plotted against the mole ration values. The solvation numbers of alkaline earth cations were obtained from the limiting values of the corresponding n, vs. mole ratio plots.

  8. A General Silica-Templating Synthesis of Alkaline Mesoporous Carbon Catalysts for Highly Efficient H2S Oxidation at Room Temperature.

    Science.gov (United States)

    Zhang, Zixiao; Jiang, Wuyou; Long, Donghui; Wang, Jitong; Qiao, Wenming; Ling, Licheng

    2017-01-25

    A general synthesis of alkaline mesoporous carbons (AMCs) is developed based on a simplified silica-templating method for room-temperature catalytic oxidation of H2S. The key to the success relies on dissolving the silica templates to create the interconnected mesoporous structure as well as leaving parts of the alkaline products in the pores; both of them are prerequisites for H2S oxidation. By adjusting the alkaline etching degree and organic/inorganic ratio, the porosity and basicity of the AMC could be simultaneously tuned, allowing the AMCs direct use for H2S catalytic oxidation with an unprecedented removal capacities of 4.49 ± 0.12 g/g. Such excellent catalytic performance should be attributed to the developed pore structure that stores the product sulfur and the strong basicity that promotes the dissociation of H2S into HS(-) ions. Moreover, this simplified silica-templating method could be easily extended to the preparation of various silica templated mesoporous carbon catalysts. All these AMCs demonstrate a successful combination of low cost with high performance, which may well be the answer for the technical development of industrial H2S removal.

  9. Kinetics and mechanism of oxidation of L-leucine by alkaline diperiodatocuprate(III)—A free radical intervention, deamination and decarboxylation

    Indian Academy of Sciences (India)

    Keerti M Naik; Sharanappa T Nandibewoor

    2012-07-01

    The kinetics of oxidation of L-leucine by diperiodatocuprate (III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10mol dm-3 was studied spectrophotometrically. The reaction between L-leucine and DPC in alkaline medium exhibits 1:4 stoichiometry (L-leucine: DPC). The reaction is of first order in [DPC] and has less than unit order in both [L-leucine] and [alkali]. However, the order in [Lleucine] and [alkali] changes from first order to zero order as their concentration increase. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreased the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate (III) - L-leucine complex, which decomposed slowly in a rate-determining step followed by other fast steps to give the products. The main oxidative products were identified by spot test and GC-MS. The reaction constants involved in the different steps of the mechanism were calculated.

  10. [Simultaneous determination of europium and copper in rare earth oxide by use AAS-PLS method].

    Science.gov (United States)

    Zhong, M; Qiu, X; Mo, C; Zheng, Y

    1999-02-01

    Partial least squares regression was used to compensate for spectral "overlap" interference of Eu 324. 753 nm with Cu 324.754 nm in atomic absorption spectrometry. We could only use the copper element hollow-cathode lamp to simultaneous determine Eu and Cu in synthetic samples and rare earth oxide, and obtained satisfactory results.

  11. Oxidative study of gabapentin by alkaline hexacyanoferrate(III) in room temperature in presence of catalytic amount of Ru(III) a mechanistic approach

    Science.gov (United States)

    Jose, Timy P.; Angadi, Mahantesh A.; Salunke, Manjalee S.; Tuwar, Suresh M.

    2008-12-01

    The kinetics of oxidation of gabapentin by hexacyanoferrate(III) in aqueous alkaline medium at a constant ionic strength of 0.5 mol dm -3 was studied spectrophotometrically. The reaction is of first order in [HCF(III)] and of less than unit order in [alkali]. The reaction rate is independent upon [gabapentin]. Effects of added products, ionic strength and dielectric constant of the reaction medium have been investigated. Oxidative product of gabapentin was identified. A suitable mechanism has been proposed. The reaction constants involved in the different steps of mechanism are calculated. The activation parameters of the mechanism are computed and discussed .

  12. Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtCl6,or Pt(CuUPD-Pt2+)n/Au for K2PtCl4,where n denotes the number of UPD-redox replacement cycles).The electrochemical quartz crystal microbalance(EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity(SECA) for methanol oxidation in alkaline solution.In comparison with Pt(CuUPD-Pt2+)n/Au,Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity,and the maximum SECA was obtained to be as high as 35.7 mA ?g?1 at Pt(CuUPD-Pt4+)3/Au.The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency,and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuOx-reduction peaks.The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers,and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological,energy and environmental sciences and technologies.

  13. Roles of rare earth oxide additives in millimeter-wave sintering of AlN

    Institute of Scientific and Technical Information of China (English)

    Yukio Makino; Takashi Yoshioka; Hiromi Nakano; Toshiyuki Ueno; Shoji Miyake

    2008-01-01

    Roles of rare earth oxide (RE2O3) additives in millimeter-wave(MM) sintering of AlN were investigated from the standpoints of phase diagram, heating characteristics of rare earth oxides, and morphology of intergranular oxide phase. In the millimeter-wave sintering of AlN, densification temperature decreased with the decrease of the ionic radius of rare earth ion and was closely related with the eutectic temperature in the RE2O3-Al2O3 binary system. The lowest densification temperature in the millimeter-wave sintering of AlN with Yb2O3 additive was attributed to the largest heating rate of Yb2O3·Al2O3 binary oxide under millimeter-wave radiation. Furthermore, the lowest densification temperature could be attained while selecting the Yb2O3 content so as to form the intergranular phase with the eutectic composition in the Yb2O3-Al2O3 binary system. The result showed good agreement with the above mentioned during the sintering of Si3N4 with Yb2O3-Al2O3 additive. From TEM observation, it was verified that film-like intergranular oxide phase formed under millimeter-wave radiation was favorable for attaining high thermal conductivity in the Yb2O3 added AlNs.

  14. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie [Department of Chemistry, Maynooth University, National University of Ireland—Maynooth, County Kildare (Ireland)

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  15. Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations

    Science.gov (United States)

    Zaghmarzi, Fatemeh Alipour; Zahedi, Mansour; Mola, Adeleh; Abedini, Saboora; Arshadi, Sattar; Ahmadzadeh, Saeed; Etminan, Nazanin; Younesi, Omran; Rahmanifar, Elham; Yoosefian, Mehdi

    2017-03-01

    Fullerenes are effective acceptor components with high electron affinity for charge transfer. The significant influences of chemical adsorption of the cations on the electrical sensitivity of pristine C60 and 15-(C2H4O)5/C60 nanocages could be the basis of new generation of electronic sensor design. The density functional theory calculation for alkali and alkaline earth cations detection by pristine C60 and 15-(C2H4O)5/C60 nanocages are considered at B3LYP level of theory with 6-31 G(d) basis set. The quantum theory of atoms in molecules analysis have been performed to understand the nature of intermolecular interactions between the cations and nanocages. Also, the natural bond orbital analysis have been performed to assess the intermolecular interactions in detail. Furthermore, the frontier molecular orbital, energy gap, work function, electronegativity, number of transferred electron (∆N), dipole moment as well as the related chemical hardness and softness are investigated and calculated in this study. The results show that the adsorption of cations (M=Na+, K+, Mg2+ and Ca2+) are exothermic and the binding energy in pristine C60 nanocage and 15-(C2H4O)5/C60 increases with respect to the cations charge. The results also denote a decrease in the energy gap and an increase in the electrical conductivity upon the adsorption process. In order to validate the obtained results, the density of state calculations are employed and presented in the end as well.

  16. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  17. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4 s 2) and Sr(5 s 2) atoms

    Science.gov (United States)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-01

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular ( l = | m| = n-1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ~ n-1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau-Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li( nlm) atom with given principal n, orbital l = n-1, and magnetic m quantum numbers at thermal collisions with the Ca(4 s 2) and Sr(5 s 2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l ( l ≪ n).

  18. Reconstructing Earth's Surface Oxidation Across The Archean- Proterozoic Transition

    Science.gov (United States)

    Kaufman, A. J.; Guo, Q.; Strauss, H.; Schröder, S.; Gutzmer, J.; Wing, B. A.; Baker, M.; Bekker, A.; Jin, Q.; Kim, S.; Farquhar, J.

    2010-12-01

    The Archean-Proterozoic transition is characterized by the widespread deposition of organic-rich shale, sedimentary iron formation, glacial diamictite, and marine carbonates recording profound carbon isotope anomalies, but notably lacks bedded evaporites. All deposits reflect environmental changes in oceanic and atmospheric redox states, in part associated with Earth’s earliest ice ages. Time-series data for multiple sulfur isotopes from carbonate associated sulfate as well as sulfides in the glaciogenic Duitschland Formation of the Transvaal Supergroup, South Africa, capture the concomitant buildup of sulfate in the ocean and the loss of mass independent sulfur isotope fractionation. This is arguably associated with the atmospheric rise of oxygen (as well as the protective ozone layer) coincident with profound changes in ocean chemistry and biology. The loss of the MIF signal within the Duitschland succession is in phase with the earliest recorded positive carbon isotope anomaly, convincingly linking these environmental perturbations to the Great Oxidation Event (ca. 2.3 Ga). The emergence of cyanobacteria and oxygenic photosynthesis may be associated with a geochemical “whiff of oxygen” recorded in 2.5 Ga sediments. If true, the delay in the GOE can then be understood in terms of a finite sink for molecular oxygen - ferrous iron, which was abundant in deep Neoarchean seawater and sequestered in a worldwide episode of iron formation deposition ending shortly before accumulation of the Duitschland Formation. Insofar as early Paleoproterozoic glaciation is associated with oxygenation of a methane-rich atmosphere, we conclude that Earth’s earliest ice age(s) and the onset of a modern and far more energetic carbon cycle are directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  19. Effects of rare earths on the microarc oxidation of a magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LI Jianzhong; TIAN Yanwen; CUI Zuoxing; HUANG Zhenqi

    2008-01-01

    The effects of rate earths on the properties of the microarc oxidation (MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.

  20. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  1. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  2. in vivo EFFECTS OF RARE-EARTH BASED NANOPARTICLES ON OXIDATIVE BALANCE IN RATS

    Directory of Open Access Journals (Sweden)

    V. K. Klochkov

    2016-12-01

    Full Text Available The purpose of the research was to find the influence of rare-earth based nanoparticles (CeO2, GdVO2: Eu3+ on the oxidative balance in rats. We analyzed biochemical markers of oxidative stress (lipid peroxidation level, nitric oxide metabolites, sulfhydryl groups content and enzyme activities (superoxide dismutase, catalase in tissues of rats. It has been found that administration of both types of the nanoparticles increased nitric oxide metabolites and products of lipid peroxidation in liver and spleen within 5 days. At injections of GdVO2: Eu3+ lipid peroxidation products, nitric oxide metabolites in serum at 5, 10 and 15 days of the experiment was also increased whereas the level of sulfhydryl groups decreased compared to the intact state and the control. In contrast, under the influence of nanoparticle CeO2 level diene conjugates were not significantly changed and the level of nitric oxide metabolites within 15 day even decreased. During this period, under the influence of both types of nanoparticles the activity of superoxide dismutase was increased, catalase activity was not changed. Oxidative stress coefficient showed the less pronounced CeO2 prooxidant effect (2.04 in comparison to GdVO2: Eu3+ (6.89. However, after-effect of both types of nanoparticles showed complete restoration of oxidative balance values.

  3. Phase Behavior and Crystal Structure of Perovskite-Type Rare Earth Complex Oxides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33Mn0.33Ti0.67O3 (A=Ca or Sr and Ln=rare earth) were found to have orthorhombic symmetry with the space group Pnma, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Ca0.67Ln0.33Mn0.33Ti0.67O3 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.

  4. Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics

    Directory of Open Access Journals (Sweden)

    José Geraldo de Melo Furtado

    2005-12-01

    Full Text Available Zinc oxide varistors are nonlinear voltage dependent ceramic resistors used to suppress and limit transient voltage surges. The work reported in this paper involves the relationship between microstructural characteristics and the varistor performance of ZnO ceramics doped with rare-earth oxides. Samples of these ceramics with different nonlinear current-voltage characteristics, according to the specific chemical composition and sintering parameters, were prepared and microstructurally analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray fluorescence spectroscopy and X-ray diffraction. The results denote that intergranular phase is rich in rare-earth elements, but its morphology, obtained by selective leaching of ZnO grains (which are only doped with Co, provides evidence that ZnO grains are not completely surrounding by the intergranular phase, also existing ZnO grains are in direct contact with each other, as well as it occurs in conventional varistor system.

  5. Mechanical behaviors of alumina ceramics doped with rare-earth oxides

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; LI Chuncheng; WANG Ling; JIANG Xiaolong; QIU Tai

    2010-01-01

    The effects of three types of additives Y2O3, La2O3, and Sm2O3 on the sintering and mechanical behaviors of alumina ceramics were investigated. The bending strengths of alumina ceramics with Sm2O3 and Y2O3 additions were 455 and 439 MPa, respectively, higher than that with La2O3 addition. The fracture toughness of the ceramics with Sm2O3 and Y2O3 were also higher than that with La2O3 addition. The fracture mode of rare earth oxides doped alumina ceramics exhibited obvious transgranular fractures as well as intergranular fracture. The results of research show that the improvement of bending strength and fracture toughness of alumina ceramics with rare earth oxides was achieved by refining the grain size and strengthening the grain boundary.

  6. Catalytic Oxidative Conversion from Naphthol to 2-Hydroxy-1, 4-naphthoquinone over Iron Porphyrin Catalysts by Molecular Oxygen in an Alkaline 2-Propanol Solution

    Institute of Scientific and Technical Information of China (English)

    YANG Ke-er; TONG Shan-ling; YAN Yan; KANG En-hua; XIAO Feng-shou; LI Qing; CHANG Xin; FANG Chi-guang

    2005-01-01

    In an alkaline 2-propanol solution with 5,10,15,20-tetra(4-methoxyl phenyl) porphyrin iron chloride(TOMPPFeCl) as a catalyst and oxygen as a cheap green oxidant, 2-naphthol was conversed to 2-hydroxy-1,4-naphthoquinone(HNQ) with a yield of 62.17% and a selectivity of 100%, and the conversion number of TMOPPFeCl catalyst was 8.32/min. The catalytic oxidation products were characterized by means of UV-Vis, IR, GC-MS, 1H NMR and melting point determination. In this catalytic oxidation, the catalytic activity of TMOPPFeCl was researched in detail and the reacting conditions were optimized. A possible reaction mechanism is summarized based on in situ EPR determination.

  7. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir, E-mail: drinager@ig.com.br, E-mail: dfsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Mauro Coelho dos [Universidade Federal do ABC (LEMN/CCNH/UFABC), Santo Andre, SP (Brazil)

    2015-07-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm{sup -2} and 31 mW.cm{sup -2} for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  8. Isotopic evidence for internal oxidation of the Earth's mantle during accretion

    Science.gov (United States)

    Williams, Helen M.; Wood, Bernard J.; Wade, Jon; Frost, Daniel J.; Tuff, James

    2012-03-01

    The Earth's mantle is currently oxidised and out of chemical equilibrium with the core. The reasons for this and for the relatively oxidised state of Earth's mantle relative to the mantles of other terrestrial planets are unclear. It has been proposed that the oxidised nature and high ferric iron (Fe3 +) content of Earth's mantle was produced internally by disproportionation of ferrous iron (Fe2 +) into Fe3 + and metallic iron by perovskite crystallisation during accretion. Here we show that there is substantial Fe isotope fractionation between experimentally equilibrated metal and Fe3 +-bearing perovskite (≥ 0.45‰/amu), which can account for the heavy Fe isotope compositions of terrestrial basalts relative to equivalent samples derived from Mars and Vesta as the latter bodies are too small to stabilise significant perovskite. Mass balance calculations indicate that all of the mantle's Fe3 + could readily have been generated from a single disproportionation event, consistent with dissolution of perovskite in the lower mantle during a process such as the Moon-forming giant impact. The similar Fe isotope compositions of primitive terrestrial and low-titanium lunar basalts is consistent with models of equilibration between the mantles of the Earth and Moon in the aftermath of the giant impact and suggests that the heavy Fe isotope composition of the Earth's mantle was established prior to, or during the giant impact. The oxidation state and ferric iron content of the Earth's mantle was therefore plausibly set by the end of accretion, and may be decoupled from later volatile additions and the rise of oxygen in the Earth's atmosphere at 2.45 Ga.

  9. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries

    Science.gov (United States)

    Shangguan, Enbo; Guo, Litan; Li, Fei; Wang, Qin; Li, Jing; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi

    2016-09-01

    A new nanocomposite formulation of the iron-based anode for alkaline secondary batteries is proposed. For the first time, FeS nanoparticles anchored on reduced graphene oxide (RGO) nanosheets are synthesized via a facile, environmentally friendly direct-precipitation approach. In this nanocomposite, FeS nanoparticles are anchored uniformly and tightly on the surface of RGO nanosheets. As an alkaline battery anode, the FeS@RGO electrode delivers a superior high-rate charge/discharge capability and outstanding cycling stability, even at a condition without any conductive additives and a high electrode loading of ∼40 mg cm-2. At high charge/discharge rates of 5C, 10C and 20C (6000 mA g-1), the FeS@RGO electrode presents a specific capacity of ∼288, 258 and 220 mAh g-1, respectively. Moreover, the FeS@RGO electrode exhibits an admirable long cycling stability with a superior capacity retention of 87.6% for 300 cycles at a charge/discharge rate of 2C. The excellent electrochemical properties of the FeS@RGO electrode can be stemmed from the high specific surface area, peculiar electric conductivity and robust sheet-anchored structure of the FeS@RGO nanocomposite. By virtue of its superior fast charge/discharge properties, the FeS@RGO nanocomposite is suitable as an advanced anode material for high-performance alkaline secondary batteries.

  10. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  11. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  12. Rare earth oxides doped NiO/γ-Al2O3 catalyst for oxidative dehydrogenation of cyclohexane

    Institute of Scientific and Technical Information of China (English)

    Hany M AbdelDayem; M Faiz; Hesham S Abdel-Samad; Salah A Hassan

    2015-01-01

    The effect of rare earth oxides (RE=Ce, La, Gd, and Dy) doping of alumina support in NiO/γ-Al2O3 system was investi-gated on its catalytic performance in oxidative dehydrogenation (ODH) of cyclohexane. The physicochemical properties of various samples were followed up through N2 physisorption, temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and potentiometric acid-base titration techniques. In the parent NiO/γ-Al2O3 catalyst, Ni species were found to be strongly interacted with alumina surface. Addition of rare earth dopants toγ-Al2O3 in the catalyst system affected the nickel-alumina interaction and resulted in significant modifications in the catalytic performances in the ODH reaction. The results re-vealed the beneficial role of both La2O3 and Gd2O3 doping in enhancing the ODH catalytic activity and selectivity to cyclohexene. H2-TPR and XPS results indicated that majority of Ni species in NiO/La2O3 modifiedγ-Al2O3 were more weakly interacted with La2O3 and alumina whereas both NiO like species and nickel aluminate were present on the surface. Doping with cerium or dyspro-sium increased the nickel-support interaction and led to a decrease in surface nickel concentration. In case of doping with Ce, surface concentration of cerium oxide was higher than those of the other RE oxides; the doped catalyst reached its steady state activity faster than the other catalysts. The acid-base results suggested that RE metals were interacted most likely with acidic surface hydroxyl groups. The degree of nickel-alumina interaction decreased in the following order: LaAl>GdAl>CeAl>DyAl.

  13. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency.

    Directory of Open Access Journals (Sweden)

    Haiquan Yang

    Full Text Available High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317 were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants, the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems

  14. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency.

    Science.gov (United States)

    Yang, Haiquan; Liu, Long; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering

  15. Oxides Catalysts of Rare Earth and Transient Metal for Catalytic Oxidation of Benzene

    Institute of Scientific and Technical Information of China (English)

    Liang Kun; Li Rong; Chen Jianjun; Ma Jiantai

    2004-01-01

    The catalysts of CeO2 and the mixture of CeO2 and CuO were prepared, and the activities of these catalysts for completely oxidizing benzene were studied.The results show that the optimal proportion of CeO2/CuO is 6: 4.The highest temperature at which benzene was completely oxidized on these catalysts at different airspeed was measured.Compared these catalysts with the noble metal used, our catalysts had superiority in the resources and the industrial cost besides good activities.

  16. A study of substituent effect on the oxidative strengths of sodium salts of N-bromo-arylsulphonamides: Kinetics and mechanism of oxidation of D-fructose and D-glucose in alkaline medium

    Indian Academy of Sciences (India)

    K M Usha; B Thimme Gowda

    2006-07-01

    N-Bromo-arylsulphonamides of different oxidizing strengths are used for studying the kinetics of oxidation of D-fructose and D-glucose in aqueous alkaline medium. The results are analysed and compared with those from the sodium salts of N-bromo-benzenesulphonamide and N-bromo-4-methylbenzenesulphonamide. The reactions show zero-order kinetics in [oxidant], fractional order in [Fru/Glu] and nearly first order in [OH-]. Rates of oxidation of fructose are higher than those for glucose with the same oxidant. Similarly, values for glucose oxidations are higher than those for fructose. The results are explained by a suitable mechanism and the related rate law is deduced. The effective oxidising species in the reactions of N-bromo-arylsulphonamides is Br+. The oxidative strengths of the latter therefore depend on the ease with which Br+ is released from them. The ease with which Br+ is released from Nbromo- arylsulphonamides depends on the electron density on the nitrogen atom of the sulphonamide group, which in turn depends on the nature of the substituent on the benzene ring. The validity of the Hammett equation has also been tested for oxidation of both fructose and glucose. Enthalpies and entropies of activations of the oxidations by all the N-bromo-arylsulphonamides correlate well. The effect of substitution on and log of the oxidations is also considered.

  17. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Bjoern

    2013-11-15

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [German] Bis heute werden heterogene Katalysatoren ueberwiegend per ''trial and error'' entwickelt. Dies liegt daran, dass es mit Hilfe der traditionellen Herstellungsmethoden sehr schwierig ist, auf der Nanometerskala Strukturen gezielt herzustellen. Im Zuge der rasanten Entwicklungen in den Materialwissenschaften ist es jedoch moeglich geworden, verschiedenste Materialen mit massgeschneiderten Eigenschaften vom makroskopischen bis hinein in den Nanometerbereich herzustellen. Ziel dieser Arbeit war es, dieses Potential fuer die Katalyse zu nutzen. Dabei bestand die Aufgabe darin

  18. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    Science.gov (United States)

    Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian

    2017-01-01

    Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  19. 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

    Indian Academy of Sciences (India)

    K Hari Gopi; S Gouse Peera; S D Bhat; P Sridhar; S Pitchumani

    2014-06-01

    Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  20. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L. P.; Rahman, Z.

    2015-12-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion [1], transitioned from reduced to oxidized [2,3,4], or from oxidized to reduced [1,5]. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P <4 GPa, Fe3+/ΣFe decreased slightly with increasing P, similar to terrestrial basalt [6,7,8]. For oxidizing experiments < 7GPa, Fe3+/ΣFe decreased as well [9], but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+ [1,10]. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 °C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after [11], but both resulted in a finer grained polyphase texture. Experiments are currently underway to test how different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and

  1. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.

    Science.gov (United States)

    Canfield, Donald E; Ngombi-Pemba, Lauriss; Hammarlund, Emma U; Bengtson, Stefan; Chaussidon, Marc; Gauthier-Lafaye, François; Meunier, Alain; Riboulleau, Armelle; Rollion-Bard, Claire; Rouxel, Olivier; Asael, Dan; Pierson-Wickmann, Anne-Catherine; El Albani, Abderrazak

    2013-10-15

    The oxygen content of Earth's atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth's oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth's oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest-lived positive δ(13)C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.

  2. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Directory of Open Access Journals (Sweden)

    I. Ssemmanda

    2012-11-01

    Full Text Available This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120–9336 μg g−1 as well as for Sr (9–2150 μg g−1. The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel–dentin junction by a factor of 1.3–1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing

  3. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Directory of Open Access Journals (Sweden)

    I. Ssemmanda

    2012-03-01

    Full Text Available For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120–9336 μg g−1 as well as for Sr (9–2150 μg g−1. Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3–1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel

  4. Influence of Ce, Nd, Sm and Gd oxides on the properties of alkaline-earth borosilicate glass sealant

    OpenAIRE

    Nibedita Sasmal; Mrinmoy Garai; Basudeb Karmakar

    2016-01-01

    In this study, the influence of CeO2, Nd2O3, Sm2O3 and Gd2O3 on various properties of the melt-quench route derived SrO–CaO–ZnO–B2O3–SiO2 glass have been investigated. Both the precursor glasses and heat treated glasses are characterized by dilatometry, differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The density and coefficient of ...

  5. Oxidative Weathering of Earth's Surface 3.7 Billion Years ago? - A Chromium Isotope Perspective

    Science.gov (United States)

    Frei, R.; Crowe, S.; Bau, M.; Polat, A.; Fowle, D. A.; Døssing, L. N.

    2015-12-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth's earliest surface chemistry and the low oxygen primordial biosphere. We find positive Cr isotope values (average δ53Cr = +0.05 +/- 0.10 permil; δ53Cr = (53Cr/52Cr)sample/(53Cr/52Cr)SRM 979 - 1) x 1000, where SRM 979 denotes Standard Reference Material 979 in both the Fe and Si-rich mesobands of 7 compositionally distinct quartz-magnetite and magnesian banded iron formation (BIF) samples collected from the eastern portion of the Isua BIF (Western Greenland). These postively fractioned Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed BIFs from Isua indicate oxidative Cr cycling 3.8-3.7 Gyr ago. We also examined the distribution of U, which is immobile in its reduced state but mobile when it is oxidized. Elevated U/Th ratios (mean U/Th ratio of 0.70 ± 0.29) in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species (ROS) accumulated in Earth's surface environment inducing the oxidative weathering of rocks during the deposition of the Isua BIFs. The precise threshold atmospheric O2 concentrations for the induction of Cr isotope fractionation remain uncertain, but we argue that our data are consistent with the very low levels of oxygen or other ROS indicated by other proxies. Importantly, any trace of Cr that cycled through redox reactions on land would tend both to be heavy, and to mobilize into the contemporaneous run-off more readily than Cr weathered directly as Cr(III). Once having reached the oceans, this fractionated Cr would have been stripped from seawater by Fe (oxy)hydroxides formed during the deposition of BIFs from low oxygen oceans. The

  6. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    Science.gov (United States)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-01-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level. PMID:28327642

  7. Syntheses, Vibrational Spectroscopy, and Crystal Structure Determination from X-Ray Powder Diffraction Data of Alkaline Earth Dicyanamides M[N(CN) 2] 2 with M=Mg, Ca, Sr, and Ba

    Science.gov (United States)

    Jürgens, Barbara; Irran, Elisabeth; Schnick, Wolfgang

    2001-03-01

    The alkaline earth dicyanamides Mg[N(CN)2]2, Ca[N(CN)2]2, Sr[N(CN)2]2, and Ba[N(CN)2]2 were synthesized by ion exchange using Na[N(CN)2] and the respective nitrates or bromides as starting materials. The crystal structures were determined from X-ray powder diffractometry: Mg[N(CN)2]2, Pnnm, Z=2, a=617.14(3), b=716.97(3), and c=740.35(5) pm; Ca[N(CN)2]2 and Sr[N(CN)2]2, C2/c, Z=4; Ca[N(CN)2]2, a=1244.55(3), b=607.97(1), and c=789.81(1) pm, β=98.864(2)°; Sr[N(CN)2]2, a=1279.63(2), b=624.756(8), and c=817.56(1) pm, β=99.787(1)°; Ba[N(CN)2]2, Pnma, Z=4, a=1368.68(7), b=429.07(7), and c=1226.26(2) pm. The dicyanamides consist of the respective alkaline earth cations and bent planar [N(CN)2]- ions. The structural features were correlated with vibrational spectroscopic data. The thermal behavior was studied by thermoanalytical experiments.

  8. Effects of rare earth oxide additives on the thermal behaviors of aluminum nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; WANG Ling; LI Chuncheng; JIANG Xiaolong; QIU Tai

    2009-01-01

    The effects of Y_2O_3 and Er_2O_3 on the sintering behaviors, thermal properties and microstructure of AIN ceramics were investigated. The ex-perimental results show that the sintering temperature can be decreased; the relative density and thermal behavior can be improved by adding rare earth oxide in AIN ceramics. For AIN ceramics with 3 wt.% Er_2O_3 additive, the relative density is 98.8%, and the thermal conductivity reaches 106 W·m~(-1)·K~(-1). The microstructure research found that no obvious aluminum erbium oxide was found in AIN ceramics doped with 3 wt.% Er_2O_3, which favored the improvement of the thermal conductivity of AIN ceramics.

  9. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  10. Partial Oxidation of Butane to Syngas over Nickel SupportedCatalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/g-Al2O3 is the most suitable for the POB among NiO/g-Al2O3, NiO/MgO and NiO/SiO2. And the reaction performance of the NiO/g-Al2O3 shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li2O and La2O3 can suppress carbon-deposition of the NiO/g-Al2O3, which contains graphite-like species during the POB reaction.

  11. Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

    Institute of Scientific and Technical Information of China (English)

    LI Ning; LI Guangming; YAO Zhenya; ZHAO Jianfu

    2007-01-01

    Catalytic wet air oxidation(CWAO)is one of the most promising technologies for pollution abatement.Developing catalysts with high activity and stability is crucial for the application of the CWAO process.The Mn/Ce complex oxide catalyrsts for CWAO of high concentration phenol containing wastewater were prepared by coprecipitation.The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis.The Mn/Ce serial catalysts were characterized by Brunauer-Emmett-Teller(BET)analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry(ICP-AES).The results show that the catalysts have high catalytic activities even at a low temperature(80℃)and low oxygen partial pressure(0.5 MPa)in a batch reactor.The metallic ion leaching is comparatively low(Mn<6.577 mg/L and Ce<0.6910 mg/L,respectively)in the CWAO process.The phenol,CODCD and TOC removal efficiencies in the solution exceed 98.5% using the optimal catalyst(named CSP).The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.

  12. [Use of coulometric titration for elucidating the mechanism of the oxidation of 6-APA alkaline breakdown products by halogens].

    Science.gov (United States)

    Kharlamov, V T; Inkin, A A; Ermolina, G E

    1975-02-01

    Penaldinic acid and penicillamine were formed on alkali decomposition (1 N NaOH) of 6-APA for 20 minutes at room temperature, penicillamine being completely oxidized to disulphide by the air oxygen. Coulometric titration of the alkali decomposition products showed that generated chlorine in 0.5 N HCl solution or bromine in a week acid solution of KBr oxidized them with participation of 7 electrones. Generated iodine did not practically oxidize the 6-APA decomposition products during the coulometric titration.

  13. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Science.gov (United States)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  14. Design, microstructure, and high-temperature behavior of silicon nitride sintered with rate-earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ciniculk, M.K. (California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering)

    1991-08-01

    The processing-microstructure-property relations of silicon nitride ceramics sintered with rare-earth oxide additives have been investigated with the aim of improving their high-temperature behavior. The additions of the oxides of Y, Sm, Gd, Dy, Er, or Yb were compositionally controlled to tailor the intergranular phase. The resulting microstructure consisted of {beta}-Si{sub 3}N{sub 4} grains and a crystalline secondary phase of RE{sub 2}Si{sub 2}O{sub 7}, with a thin residual amorphous phase present at grain boundaries. The lanthanide oxides were found to be as effective as Y{sub 2}O{sub 3} in densifying Si{sub 3}N{sub 4}, resulting in identical microstructures. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a residual amorphous, observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification. The low resistance to oxidation of these materials was attributed to the minimization of amorphous phases via devitrification to disilicates, compatible with SiO{sub 2}, the oxidation product of Si{sub 3}N{sub 4}. The strength retention of these materials at 1300{degrees}C was found to be between 80% and 91% of room-temperature strength, due to crystallization of the secondary phase and a residual but refractory amorphous grain-boundary phase. The creep behavior was found to be strongly dependent on residual amorphous phase viscosity as well as on the oxidation behavior, as evidenced by the nonsteady-state creep rates of all materials. 122 refs., 51 figs., 12 tabs.

  15. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  16. Preparation of glass carbon electrode modified with nanocrystalline nickel-decorated carbon nanotubes and electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanocrystalline nickel with an average diameter of about 16 nm and a face-centered cubic (fcc)structure was uniformly attached to the surface of carbon nanotubes (CNT) by wet chemistry.The sample was characterized by X-ray powder diffraction and transmission electron microscopy (TEM).A glass carbon electrode modified with nickel-modified multi-wall carbon nanotubes (MWCNTs-Ni/GCE) was prepared.The electrochemical behavior of the MWCNTs-Ni/GCE and the electrocatalytic oxidation of methanol at the MWCNTsNi/GCE were investigated by cyclic voltammetry in 1.0 mol/L NaOH solution.The cyclic voltammograms showed that the electron transfer between β-Ni(OH)2 and β-NiOOH is mainly a diffusion-controlled quasireversible process,and that the electrode has high catalytic activity for the electrooxidation of methanol in alkaline medium,revealing its potential application in alkaline rechargeable batteries and fuel cells.

  17. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Bjerring Olesen, A.; Fernqvist, T.

    1996-01-01

    addition readily oxidizes lignin from wheat straw facilitating the polysaccharides for enzymatic hy drolysis. By using a specially constructed autoclave system, the wet oxidation process was optimized with respect to both reaction time and temperature. The best conditions (20 g/L straw, 170 degrees C, 5...

  18. Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, USA

    Science.gov (United States)

    Cravotta, Charles A.

    2015-01-01

    Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the

  19. Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism

    Institute of Scientific and Technical Information of China (English)

    HAO Feifei; LIAO Bo; LI Da; LIU Ligang; DAN Ting; REN Xuejun; YANG Qingxiang

    2011-01-01

    The electrodes for hardfacing medium carbon steel with six additions of rare earth oxide were developed in this work. By means of optical microscopy and scanning electron microscopy, the microstructure, inclusion and the fractograph of the hardfacing metal were observed. Then, the effects of rare earth oxide on microstructure and inclusions in hardfacing metal were analyzed. The effectiveness of rare earth oxide as heterogeneous nuclei of δ-Fe was calculated with the misfit theory. The results showed that, the microstructure of hardfacing metal was composed of ferrite and small amount of pearlite. The microstructure was refined at first and then coarsened with the increase of rare earth oxide addition. The fractograph was changed from brittle to equiaxed dimples, then became quasi-cleavage and cleavage gradually.The calculated results showed that, the ferrite grain size could be refined because that LaA1O3 as heterogeneous nuclei ofδ-Fe was moderately effective, and the ferrite grain size was coarsened because the misfits between Ce2O3 and δ-Fe, Ce2O2S and δ-Fe were increased with futher increase of rare earth oxide addition.

  20. Waiting ages for atmospheric oxygen: A titration hourglass and the oxidation of the solid Earth. (Invited)

    Science.gov (United States)

    Catling, D. C.; Claire, M.; Zahnle, K. J.

    2013-12-01

    Atmospheric O2 increased from less than 1 ppm to 0.2-2% at 2.45-2.22 Ga in the Great Oxidation Event (GOE). A minority opinion is that the GOE happened close to the time when oxygenic photosynthesis originated but evidence from the concentration of redox-sensitive elements in shales and their isotopes, as well as the setting and morphology of stromatolites supports the consensus view that oxygenic photosynthesis had originated by 2.8-2.7 Ga. Models show that O2 can be consumed rapidly by reductants in the Archean so that the air can remain anoxic even after photosynthesis began pumping out O2. Why did the world ultimately shift away from this balance? What conditions were needed to oxygenate the atmosphere in addition to oxygenic photosynthesis? A general principle is that a shift to an oxic environment from a reducing one requires net export of reductant. In planetary science, for example, the oxidation of the surfaces and atmospheres of other planets or satellites is universally attributed to the escape of hydrogen to space. Hydrogen escape explains the redness of Mars, several characteristics of the atmosphere of Venus, and the presence of tenuous O2 atmospheres on Ganymede, Europa, Rhea and Dione. For the Earth's rise of oxygen, many ideas focus on a decline in mantle or seafloor reductant fluxes (driven by internal geologic evolution) to the point where these fluxes were surpassed by biogenic oxygen fluxes. But for such a shift (without a role for hydrogen escape), the surface still has to export net reductant to the mantle. Such net export depends on the ratio of subducted ferric iron versus reduced carbon during the Archean, which remains poorly constrained. Over a decade ago, we proposed that rapid escape of hydrogen to space from the pre-GOE atmosphere would have gradually oxidized the Earth's surface and crust, accompanied by falling levels of atmospheric CH4 [1]. The idea is that Earth underwent a redox titration. A point would be reached where O2 became

  1. Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media

    Science.gov (United States)

    Zheng, Jie-Ning; Li, Shan-Shan; Ma, Xiaohong; Chen, Fang-Yi; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-09-01

    Well-defined core-shell gold-palladium@palladium nanocrystals (AuPd@Pd) are facilely prepared by a simple and green wet-chemical method at 25 °C. A Good's buffer, 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), is used as a reducing agent and a shape-directing agent, while there is no template, seed, organic solvent, or surfactant involved. The AuPd@Pd nanocrystals are uniformly dispersed on graphene nanosheets by ultrasonication, resulting in the formation of graphene supported AuPd@Pd (G-AuPd@Pd). The as-prepared nanocomposites exhibit the improved catalytic activity, good tolerance, and better stability for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline media, compared with the G-Pd and commercial Pd black catalysts. The as-developed method may provide a promising pathway for large-scale fabrication of AuPd-based catalysts.

  2. Preparation of Pt Au/C and Pt Au Bi/C electrocatalysts using electron beam irradiation for ethanol electro-oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Geraldes, Adriana N.; Cardoso, Elisangela S.Z.; Gomes, Thiago B.; Linardi, Marcelo; Oliveira Neto, Almir; Spinace, Estevam V., E-mail: dfsilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Pt Au/C (50:50) and PtAuBi/C electrocatalysts with Pt:Au:Bi atomic ratios of 50:40:10, 50:30:20 and 50:10:40 were prepared in water/2-propanol using electron beam irradiation. The materials were characterized by X-ray diffraction (XRD) and the electro-oxidation of ethanol was studied by chronoamperometry at room temperature. The X-ray diffraction measurements for all electrocatalysts prepared showed four peaks, which are associated with the planes of the face-centered cubic (fcc) structure characteristic of Pt and Pt alloys. For PtAuBi/C it was also observed the presence of a mixture of BiPt alloys and bismuth phases. The average crystallite sizes for Pt/C, PtAu/C, PtAuBi/C (50:40:10), PtAuBi/C (50:30:20) and PtAuBi/C (50:10:40) were in the range of 2.0 - 4.0 nm. The activity of the electrocatalysts for ethanol oxidation in alkaline medium showed that PtAuBi/C (50:40:10) had a higher performance for ethanol oxidation compared to others electrocatalysts prepared. (author)

  3. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  4. Low Temperature Preparation of Ceria Solid Solutions Doubly Doped with Rare-Earth and Alkali-Earth and Their Properties as Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    任引哲; 蒋凯; 王海霞; 孟健; 苏锵

    2003-01-01

    A series of solid electrolytes, (Ce0.8Ln0.2)1-xMxO2-δ (Ln= La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)1-0.05Ca0.05O2-δ as electrolyte are 0.86 V and 33 mW*cm-2, respectively.

  5. Synthesis of nitrous oxide by lightning in the early anoxic Earth's atmosphere

    Science.gov (United States)

    Navarro, K. F.; Navarro-Gonzalez, R.; McKay, C. P.

    2013-12-01

    Carbon dioxide (CO2) was the main atmospheric component of the early Earth's atmosphere and exerted a key role in climate by maintaining a hydrosphere during a primitive faint Sun [1]; however, CO2 was eventually removed from the atmosphere by rock weathering and sequestered in the Earth's crust and mantle [1]. Nitric oxide (NO) was fixed by lightning discharges at a rate of 1×1016 molecules J-1 in CO2 (50-80%) rich atmospheres [2]. As the levels of atmospheric CO2 dropped to 20%, the production rate of NO by lightning rapidly decreased to 2×1014 molecules J-1 and then slowly diminished to 1×1014 molecules J-1 at CO2 levels of about 2.5% [2]. In order to maintain the existence of liquid water in the early Earth, it is required to warm up the planet with other greenhouse gases such as methane (CH4) [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.8 percent of carbon dioxide with methane concentrations from 0 to 1,000 ppm in molecular nitrogen. Lightning was simulated in the laboratory by a plasma generated with a pulsed Nd-YAG laser [2]. Our results show that the production of NO by lightning is independent of the presence of methane but drops from 3×1014 molecules J-1 in 10% CO2 to 5×1013 molecules J-1 in 1% CO2. Surprisingly, nitrous oxide (N2O) is also produced at a rate of 4×1013 molecules J-1 independent of the levels of CH4 and CO2. N2O is produced by lightning in the contemporaneous oxygenated Earth's atmosphere at a comparable rate of (0.4-1.5)×1013 molecules J-1 [4, 5], but was not detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [6]. The only previously reported abiotic synthesis of N2O was by corona discharges in rich CO2 atmospheres (20-80%) with a production rate of 8×1012 molecules J-1 [6]; however at lower CO2 (atmosphere was the main source of N2O in nitrogen dominated atmospheres. N2O is not

  6. Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes

    OpenAIRE

    Sorokin, D. Y.; Abbas, B; Tourova, T.P.; Bumazhkin, B. K.; Kolganova, T. V.; Muyzer, G

    2014-01-01

    So far, anaerobic sulfate-dependent acetate oxidation at high pH has only been demonstrated for a low-salt-tolerant syntrophic association of a clostridium ‘Candidatus Contubernalis alkalaceticum’ and its hydrogenotrophic sulfate-reducing partner Desulfonatronum cooperativum. Anaerobic enrichments at pH 10 inoculated with sediments from hypersaline soda lakes of the Kulunda Steppe (Altai, Russia) demonstrated the possibility of sulfate-dependent acetate oxidation at much higher salt concentra...

  7. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    Science.gov (United States)

    Stijfhoorn, D. E.; Stray, H.; Hjelmseth, H.

    1993-03-01

    A high-performance liquid Chromatographie (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2O 3, Gd 2O 3 and Dy 2O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS are presented.

  8. Glass-forming Ability and Chemical Stability of Mag-neto-optical Glass Heavily Doped with Rare Earth Oxide

    Institute of Scientific and Technical Information of China (English)

    YIN Hairong; ZHANG Chunxiang; LIU Liying; CHEN Guoping; TANG Baojun

    2009-01-01

    The glass-forming region of B_2O_3-Al_2O_3-SiO_2(BAS)glass heavily doped with rare earth oxides was investigated by an effective method,and the chemical stability was investigated by powder method.Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed.The experimental results show that the BAS glass-forming re-gion expands firstly with the increase of the Tb_2O_3 content up to 30mol%and then shrinks.The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest,the water-resistant capacity is secondary,and the alkali-resistant capacity is the best.Besides,the glass chemical stability can be improved by doping appropriate amount of rare earth oxides.Moreover,the stronger the ionic polarization ability of the rare earth ions is,the better the chemical stability of the BAS glass will be.

  9. Effect of para-substituents on alkaline earth metal ion extraction by proton di-ionizable calix[4]arene-crown-6 ligands in cone, partial-cone and 1,3-alternate conformations.

    Science.gov (United States)

    Zhou, Hui; Liu, Dazhan; Gega, Jerzy; Surowiec, Kazimierz; Purkiss, David W; Bartsch, Richard A

    2007-01-21

    Two carboxylic acid or N-(X)sulfonyl carboxamide groups were incorporated into calix[4]arene-crown-6 compounds to afford di-ionizable ligands for use in divalent metal ion separations. Acidities of the N-(X)sulfonyl carboxamide groups were tuned by variation of the electron-withdrawing properties of X. Cone, partial-cone and 1,3-alternate conformations were obtained by different synthetic strategies and their structures verified by NMR spectroscopy. Competitive solvent extractions of alkaline earth metal cations from aqueous solutions into chloroform were performed and the results compared with those reported previously for di-ionizable p-tert-butylcalix[4]arene-crown-6 analogues to probe the influence of the para-substituent on the calix[4]arene scaffold on extraction selectivity and efficiency.

  10. Counterion influence on the vibrational wavenumbers in ternary and quaternary metal hydride salts, A2MH6 (A = alkali metal, alkaline earth, and lanthanides; M = Ir, Fe, Ru, Os, Pt, Mn).

    Science.gov (United States)

    Gilson, Denis F R; Moyer, Ralph O

    2012-02-06

    The wavenumbers of the ν(3) metal-hydrogen stretching mode (T(1u)) in the IR spectra of both ternary and quaternary hexahydrido salts of transition metals from groups 7 to 10 ([Mn(I)H(6)](5-), [Fe(II)H(6)](4-), [Ru(II)H(6)](4-), [Os(II)H(6)](4-), [Ir(III)H(6)](3-), and [Pt(IV)H(6)](2-)) depend linearly upon the ionization energies of the counterions (alkali metal, alkaline earth, and lanthanide) with a separate line for each metal. This relationship provides quantitative support for the charge-transfer mechanism for explaining the stabilities of these compounds.

  11. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems; Etude quantique de collisions moleculaires a ultra-basse energie: applications aux alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Quemener, G

    2006-10-15

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  12. Effect of Rre Earth Oxides and Silica on Sintering and Microstructure of AZS—40 Materials

    Institute of Scientific and Technical Information of China (English)

    CHAIJun-lan; CHENZhao-you

    1996-01-01

    Effect of the content of La2O3,CeO2 and SiO2 on the sintering behavior and microstruc-ture of AZS-40 material has been studied by means of sintering test and SEM examination,The results show that the porosity of the AZS-40 clinker with addition of 0.5% La2O3 or CeO2 could reach 2% under the ondition of 1600℃ for 4 hours.But it is not beneficial to the sintering and microstructure of the clinkers when the addition of the rare earth oxides increases to more than 0.5%,AZS-40 materials become difficult to be sintered as the addition of SiO2 in the materials incereases.

  13. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.

    2012-03-09

    It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ∼350 mV negative shift with the Si overlayer present and a ∼110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.

  14. Mechanistic Investigations of Oxidation of Some Dipeptides by Sodium N-chloro-p-toluenesulfonamide in Alkaline Medium: A Kinetic Study

    Institute of Scientific and Technical Information of China (English)

    PUTTASWAMY; VAZ Nirmala; RAJENAHALLY VGOWDA Jagadeesh

    2008-01-01

    The kinetics of oxidation of five dipeptides (DPP) viz., glycylglycine (Gly-Gly), L-alanyl-L-alanine (Ala-Ala),L-valyl-L-valine (Val-Val), L-leucyl-L-leucine (Leu-Leu) and phenylglycyl-phenylglycine (Phg-Phg) by sodium N-chloro-p-toluenesuifonamide or chloramine-T (CAT) in NaOH medium was studied at 308 K. The reactions follow identical kinetics for all the dipeptides, being first-order dependence each on [CAT]o, [DPP]o and fractional-order on [OH-]. Addition of p-toluenesulfonamide or halide ions (CI- or Br-) has no significant effect on the rate of reaction. The reaction rate was found to increase with increase in ionic strength of the medium. The solvent isotope effect was studied using D2O. The activation parameters for the reaction were computed from Arrhenius plots. Equilibrium and decomposition constants were evaluated. The oxidation products of the dipeptides were identiffed as their corresponding aldehydes. An isokinetic relationship was observed with β=352 K, indicating that enthalpy factors control the reaction rate. CH3C6H4SO2NCl- of the oxidant has been postulated as the reactive oxidizing species. Under comparable experimental conditions, the rate of oxidation of the dipeptides increases in the order: Phg-Phg>Ala-Ala>Val-Val>Leu-Leu>Gly-Gly. The kinetics of oxidation of the dipeptides have also been compared with those of their corresponding monomer amino acids. The observed results have been explained by a plausible mechanism and the related rate law has been deduced.

  15. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young

    2015-11-01

    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  16. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Daniel J.; Miljkovic, Nenad; Sack, Jean; Queeney, John; Wang, Evelyn N., E-mail: enwang@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Enright, Ryan [Thermal Management Research Group, Efficient Energy Transfer (etaET) Department, Bell Labs Ireland, Dublin 15 (Ireland)

    2014-07-07

    Vapor condensation is routinely used as an effective means of transferring heat, with dropwise condensation exhibiting a 5 − 7x heat transfer improvement compared to filmwise condensation. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings, which are often not robust and therefore undesirable for industrial implementation. Natural surface contamination due to hydrocarbon adsorption, particularly on noble metals, has been explored as an alternative approach to realize stable dropwise condensing surfaces. While noble metals are prohibitively expensive, the recent discovery of robust rare earth oxide (REO) hydrophobicity has generated interest for dropwise condensation applications due to material costs approaching 1% of gold; however, the underlying mechanism of REO hydrophobicity remains under debate. In this work, we show through careful experiments and modeling that REO hydrophobicity occurs due to the same hydrocarbon adsorption mechanism seen previously on noble metals. To investigate adsorption dynamics, we studied holmia and ceria REOs, along with control samples of gold and silica, via X-Ray photoelectron spectroscopy (XPS) and dynamic time-resolved contact angle measurements. The contact angle and surface carbon percent started at ≈0 on in-situ argon-plasma-cleaned samples and increased asymptotically over time after exposure to laboratory air, with the rare earth oxides displaying hydrophobic (>90°) advancing contact angle behavior at long times (>4 days). The results indicate that REOs are in fact hydrophilic when clean and become hydrophobic due to hydrocarbon adsorption. Furthermore, this study provides insight into how REOs can be used to promote stable dropwise condensation, which is important for the development of enhanced phase change surfaces.

  17. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics

    Science.gov (United States)

    Preston, Daniel J.; Miljkovic, Nenad; Sack, Jean; Enright, Ryan; Queeney, John; Wang, Evelyn N.

    2014-07-01

    Vapor condensation is routinely used as an effective means of transferring heat, with dropwise condensation exhibiting a 5 - 7x heat transfer improvement compared to filmwise condensation. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings, which are often not robust and therefore undesirable for industrial implementation. Natural surface contamination due to hydrocarbon adsorption, particularly on noble metals, has been explored as an alternative approach to realize stable dropwise condensing surfaces. While noble metals are prohibitively expensive, the recent discovery of robust rare earth oxide (REO) hydrophobicity has generated interest for dropwise condensation applications due to material costs approaching 1% of gold; however, the underlying mechanism of REO hydrophobicity remains under debate. In this work, we show through careful experiments and modeling that REO hydrophobicity occurs due to the same hydrocarbon adsorption mechanism seen previously on noble metals. To investigate adsorption dynamics, we studied holmia and ceria REOs, along with control samples of gold and silica, via X-Ray photoelectron spectroscopy (XPS) and dynamic time-resolved contact angle measurements. The contact angle and surface carbon percent started at ≈0 on in-situ argon-plasma-cleaned samples and increased asymptotically over time after exposure to laboratory air, with the rare earth oxides displaying hydrophobic (>90°) advancing contact angle behavior at long times (>4 days). The results indicate that REOs are in fact hydrophilic when clean and become hydrophobic due to hydrocarbon adsorption. Furthermore, this study provides insight into how REOs can be used to promote stable dropwise condensation, which is important for the development of enhanced phase change surfaces.

  18. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Som, S.; Choubey, A. [Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826004 (India); Sharma, S.K., E-mail: sksharma_ism@yahoo.co.in [Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826004 (India)

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu{sup 3+}) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y{sub 2-x-y}Gd{sub x}) O{sub 3}: Eu{sub y}{sup 3+} (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 Degree-Sign C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  19. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    Science.gov (United States)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  20. Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes

    Directory of Open Access Journals (Sweden)

    C. Deasy

    2010-11-01

    Full Text Available Understanding sediment sources is essential to enable more effective targeting of in-field mitigation approaches to reduce diffuse pollution from agricultural land. In this paper we report on the application of rare earth element oxides to arable soils at hillslope scale in order to determine sediment source areas and their relative importance, using a non-intrusive method of surface spraying. Runoff, sediments and rare earth elements lost from four arable hillslope lengths at a site in the UK with clay soils were monitored from three rainfall events after tracer application. Measured erosion rates were low, reflecting the typical event conditions occurring at the site, and less than 1% of the applied REO tracers were recovered, which is consistent with the results of comparable studies. Tracer recovery at the base of the hillslope was able to indicate the relative importance of different hillslope sediment source areas, which were found to be consistent between events. The principal source of eroded sediments was the upslope area, implying that the wheel tracks were principally conduits for sediment transport, and not highly active sites of erosion. Mitigation treatments for sediment losses from arable hillslopes should therefore focus on methodologies for trapping mobile sediments within wheel track areas through increasing surface roughness or reducing the connectivity of sediment transport processes.

  1. Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes

    Directory of Open Access Journals (Sweden)

    C. Deasy

    2010-07-01

    Full Text Available Understanding sediment sources is essential to enable more effective targeting of in-field mitigation approaches to reduce diffuse pollution from agricultural land. In this paper we report on the application of rare earth element oxides to arable soils at hillslope scale in order to determine sediment source areas and their relative importance, using a non-intrusive method of surface spraying. Runoff, sediments and rare earth elements lost from four arable hillslope lengths at a site in the UK with clay soils were monitored from three rainfall events after tracer application. Measured erosion rates were low, reflecting the typical event conditions occurring at the site, and less than 1% of the applied REO tracers were recovered, which is consistent with the results of comparable studies. Tracer recovery at the base of the hillslope was able to indicate the relative importance of different hillslope sediment source areas, which were found to be consistent between events. The principal source of eroded sediments was the upslope area, implying that the wheel tracks were principally conduits for sediment transport, and not highly active sites of erosion. Mitigation treatments for sediment losses from arable hillslopes should therefore focus on methodologies for trapping mobile sediments within wheel track areas through increasing surface roughness or reducing the connectivity of sediment transport processes.

  2. Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes

    Science.gov (United States)

    Deasy, C.; Quinton, J. N.

    2010-11-01

    Understanding sediment sources is essential to enable more effective targeting of in-field mitigation approaches to reduce diffuse pollution from agricultural land. In this paper we report on the application of rare earth element oxides to arable soils at hillslope scale in order to determine sediment source areas and their relative importance, using a non-intrusive method of surface spraying. Runoff, sediments and rare earth elements lost from four arable hillslope lengths at a site in the UK with clay soils were monitored from three rainfall events after tracer application. Measured erosion rates were low, reflecting the typical event conditions occurring at the site, and less than 1% of the applied REO tracers were recovered, which is consistent with the results of comparable studies. Tracer recovery at the base of the hillslope was able to indicate the relative importance of different hillslope sediment source areas, which were found to be consistent between events. The principal source of eroded sediments was the upslope area, implying that the wheel tracks were principally conduits for sediment transport, and not highly active sites of erosion. Mitigation treatments for sediment losses from arable hillslopes should therefore focus on methodologies for trapping mobile sediments within wheel track areas through increasing surface roughness or reducing the connectivity of sediment transport processes.

  3. Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Abbas, B.; Tourova, T.P.; Bumazhkin, B.K.; Kolganova, T.V.; Muyzer, G.

    2014-01-01

    So far, anaerobic sulfate-dependent acetate oxidation at high pH has only been demonstrated for a low-salt-tolerant syntrophic association of a clostridium ‘Candidatus Contubernalis alkalaceticum’ and its hydrogenotrophic sulfate-reducing partner Desulfonatronum cooperativum. Anaerobic enrichments a

  4. Copper-poly(2-aminodiphenylamine) as a novel and low cost electrocatalyst for electrocatalytic oxidation of methanol in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Ojani, Reza, E-mail: fer-o@umz.ac.i [Electroanalytical Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Raoof, Jahan-Bakhsh; Ahmady-Khanghah, Yusef [Electroanalytical Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2011-03-30

    In the present work we demonstrate the carbon paste as a new electrode substrate for the electropolymerization of 2-aminodiphenylamine and fabrication of polymer film modified electrode. Then transition metal of copper is incorporated into the polymer by electrodepositing of Cu(II) from CuCl{sub 2} acidic solution using potentiostatic technique. The electrocatalytic oxidation of methanol was studies by cyclic voltammetry and chronoamperometry methods at the surface of obtained Cu/P(2ADPA)/MCPE. It has been found that in the course of an anodic potential sweep, the electro-oxidation of methanol follows the formation of Cu(III) and is catalyzed by this species through a mediated electron transfer mechanism. The obtained current density for this catalytic oxidation is very high which could be come from high surface area of caused by the P(2ADPA) modification. The effects of various parameters such as the copper loading, scan rate and methanol concentration on the electrocatalytic oxidation of methanol were also investigated at the surface of Cu/P(2ADPA)/MCPE. Finally, using a chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 0.2 x 10{sup 5} cm{sup 3} mol{sup -1} s{sup -1} that the high k can be ascribed for the fast electron transfer process due to electrode modification.

  5. Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium

    Science.gov (United States)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-08-01

    One of the obstacles to the commercialisation of fuel cells is the high cost of noble metals, such as platinum, that are used as electrocatalysts. Silver-incorporated nitrogen-doped reduced graphene oxide (Ag/N-rGO) has been synthesised through the simple annealing of metal salts with graphene oxide and melamine. The presence of silver and nitrogen atoms in Ag/N-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) analysis. Both the XPS and EDS results showed a higher Ag loading on the N-rGO surface compared with the rGO surface. Transmission electron microscopy (TEM) images revealed a wide size distribution of Ag particles loaded on the N-rGO surface. Electrochemical results indicate that N-rGO is a better support for Ag than rGO. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results indicate that Ag/N-rGO is a potential ORR catalyst candidate in alkaline as it exhibited an onset potential of -0.15 V vs. Ag/AgCl and a limiting diffusion current density of -4.38 mA cm-2 with four electron pathways. In addition, Ag/N-rGO also showed better methanol tolerance than Pt/C.

  6. Mechanistic aspects of Os(VIII) catalysed oxidation of loop diuretic drug furosemide by Ag(III) periodate complex in aqueous alkaline medium

    Indian Academy of Sciences (India)

    Shweta J Malode; Nagaraj P Shetti; Sharanappa T Nandibewoor

    2012-03-01

    The kinetics of oxidation of a loop diuretic drug furosemide (Fur) by diperiodatoargentate(III) (DPA) has been investigated in the presence of osmium(VIII) (Os(VIII)) used as homogeneous catalyst in alkaline medium at a constant ionic strength of 0.20mol dm-3 spectrophotometrically attached with HI-TECH SFA-12 stopped flow accessory. The stoichiometry was 1:2 (Fur:DPA). The order of the reaction with respect to [DPA] was unity while the order with respect to [Fur] was less than unity over the concentration range studied. The rate increased with an increase in [OH−] and decreased with an increase in [IO$^{−}_{4}$]. The order with respect to [Os(VIII)] was unity. The oxidation products were identified as 2-(4-carboxy-2-oxo-but-3-enylamino)-4-chloro-5-sulfamoyl-benzoic acid and Ag(I). A suitable mechanism was proposed. The reaction constants involved in the different steps of the reaction mechanism were calculated. Kinetic experiments suggest that [Ag(H2IO6)(H2O)2] is the reactive silver(III) species and [OsO4(OH)2]2− is the reactive Os(VIII) species.

  7. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    Science.gov (United States)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  8. Use of rare earth oxide tracers to determine source areas for sediment eroded from arable hillslopes

    Science.gov (United States)

    Deasy, C.; Quinton, J. N.

    2009-04-01

    Soil erosion from arable hillslopes has both on-site and off-site effects. On-site, erosion and redistribution of sediment can lead to the loss of productive field area and a reduction in organic matter and nutrient content in topsoil. Off-site, the transport and deposition of eroded sediment in downstream waters is associated with turbidity, sedimentation and reduced water quality, as sediments are associated with the transport of nutrients, particularly phosphorus (P) and nitrogen (N), heavy metals and pesticides. Arable land is a major source for these sediments, with studies in the UK estimating the cultivated fields may be responsible for up to 80% of particulate P in rivers. Previous studies at Loddington in Leicestershire, UK have demonstrated that most of the P and much of the N eroded from hillslope is in particulate form, transported in association with sediment suspended in runoff. Results also suggest that tramlines are the principal pathway for erosion from arable fields containing combinable crops. As tramlines are regularly spaced over the whole field, they potentially act as conduits for runoff, sediment and sediment-associated nutrients to be lost from the hillslope. However, it is not yet clear where the source areas are for sediment eroded via this pathway. To understand the movement of sediment on arable hillslopes, a hillslope-scale tracer experiment was undertaken in one year at the same site. The aims of this study were (1) to develop an application method for rare earth oxide tracers suitable for using on a hillslope scale to assess sediment movement over a number of storm events, (2) to determine the erosion rates of different contributing hillslope areas, (3) to determine the relative contributions of sediment eroded from each of these areas in order to assess the importance of different hillslope source areas for soil erosion. Different rare earth oxide tracers were applied in solution using a knapsack sprayer to four areas of the

  9. Effect of doping rare earth oxide on performance of copper-manganese catalysts for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    何润霞; 姜浩强; 武芳; 智科端; 王娜; 周晨亮; 刘全生

    2014-01-01

    Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or Pr6O11) as raw materials. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed reduc-tion of oxidized surfaces (s-TPR), and temperature-programmed desorption (TPD). Catalytic activities were tested for a water-gas shift reaction. Doping rare earth oxides did not alter the crystal structure of the original copper-manganese mixed oxides but changed the interplanar spacing, adsorption performance and reaction performance. Doping with La2O3 enhanced the activity and stability of Cu-Mn mixed oxides because of high copper distribution and fine reduction. Doping with CeO2 and Y2O3 also decreased the reduc-tion temperatures of the samples to different degrees while improving the dispersion of Cu on the surface, thus, catalytic activity was better than that of undoped Cu-Mn sample. The Pr6O11-doped sample was difficult to reduce, the dispersion of surface coppers was lowered, resulting in poor activity.

  10. Ab initio energetic study of oxide ceramics with rare-earth elements

    Institute of Scientific and Technical Information of China (English)

    WU Bo; Matvei Zinkevich; WANG Chong; Fritz Aldinger

    2006-01-01

    Ab initio energetic calculations based on the density functional theory (DFT) and the projector augmented wave method (PAW) for determining the polymorphisms of lanthanide sesquioxides Ln2O3 (where Ln = rare-earth element. Y,and Sc), LnMO3 perovskites (where M = Al and Ga), and Ln2B2O7 pyrochlores (where B = Ti, Zr, and Hf) were reported. The relative lattice stabilities agreed well with the critically assessed results or the experimental results except the C-type Ln2O3 with a cubic structure, for which the calculated total energies were considerably more negative. With the increase of the Ln3+-cation radius, the polymorphic structures showed a degenerative tendency. The tendencies and quantities of the enthalpies of formation of the ternary oxide ceramics synthesized from their constituent binary oxides reasonably agreed with the available experimental results, and valuable thermodynamic properties were afforded to the compound, for which no experimental data is available. The enthalpies of formation of both perovskites and pyrochlores tend to become more negative with the increase of the Ln3+-cation radius.

  11. Thermodynamics of Modifying Effect of Rare Earth Oxide on Inclusions in Hardfacing Metal of Medium—High Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 赵研辉; 等

    2002-01-01

    The modifying effect of rare earth(RE)oxide on inclusions in hardfacing metals of medium-high carbon steel was investigated by means of thermodynamics,The thermodynamic analsys for inclusion formation shows that RE oxide can be reduced to RE element by carbon,then the RE element can react with oxygen and sulfur to form the RE oxide,RE sulfide and RE oxide-sulfide in hardfacing molten pool.The deoxidization and the desulphurization can be carried otu and the liquid metal can be purified.In addition,RE oxide can also react with sulfur to form RE oxide-sulfide dirdctly.Therefore,the harmful effect of sulfur can be decreased.

  12. Development of nano indium tin oxide (ITO) grains by alkaline hydrolysis of In(III) and Sn(IV) salts

    Indian Academy of Sciences (India)

    Nimai Chand Pramanik; Prasanta Kumar Biswas

    2002-11-01

    Indium tin oxide (ITO) nano powders of different compositions (In : Sn = 90 : 10, 70 : 30 and 50 : 50) were prepared by heat treatment (300–450°C) of mixed hydroxides of In(III) and Sn(IV). The hydroxides were obtained by the reaction of aq. NH3 with mixed aq. solutions of In(NO3)3 and SnCl4. FTIR and TG/DTA studies revealed that powders existed as In(OH)3 H2O−SnO3H2 H2O in the solid state and then they transformed to In2O3–SnO2 via some metastable intermediates after 300°C. Cubic phase of In2O3 was identified by XRD for the oxides up to 30% of Sn. Particle size measurements of the solid dispersed in acetone and SEM study for microstructure showed that the oxides were in the nano range (55–75 nm) whereas the size range determined from Debye–Scherrer equation were 11–24 nm.

  13. Effects of rare earth oxides on dielectric properties of Y_2Ti_2O_7 series ceramics

    Institute of Scientific and Technical Information of China (English)

    丁佳钰; 肖瑗; 韩朋德; 张其土

    2010-01-01

    A series of Y2Ti2O7 microwave dielectric ceramics were synthesized by conventional solid-state method. The effects of rare earth oxide (La2O3, CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Dy2O3) and Nd2O3 doping content on the microstructure and dielectric properties of Y2Ti2O7 ceramics were investigated. The experimental results showed that the rare earth ions were considered to dissolve in Y-sites of the pyrochlore structure, different rare earth oxides and concentration had different influences on Y2Ti2O7 cerami...

  14. Use of rare earth oxides and iron oxides as soil erosion tracers in water erosion experiments at hillslope scale

    Science.gov (United States)

    Guzmán, G.; Cañasveras, J. C.; Barrón, V.; Boulal, H.; Gómez, H.; Conde, E.; Fernández, M.; Gómez, J. A.

    2010-05-01

    The characteristics of the ideal soil erosion have been defined by several authors, for example by Zhang et al. (2001). Despite intensive research on erosion tracers in the last decades there is not a single tracer fulfilling all these characteristics. That is why research on different soil erosion tracers remains as an active field. Two desirable characteristics in erosion tracers are that they should be relatively inexpensive (to purchase and analyze) and that they should be determined with high accuracy in soil or sediment. The availability of multiple tracers is another of the key requirements. In this communication we present our preliminary results on the use of two different sets of erosion tracers. One set are iron oxides with different magnetic and optical properties (Fe3O4, α-Fe2O3 and FeOOH) analyzed by NIRS and magnetic susceptibility measurements. The other set consists of five rare earth oxides (La2O3, Pr6O11, Nd2O3, Sm2O3 and Gd2O3) analyzed using inductively coupled plasma mass spectrometry (ICP-MS). These two groups were studied under controlled and natural conditions, through several water erosion experiments, in field plots with different soil management, crops and scale. In one experiment these tracers were used to determine the source of sediment within sprinkle irrigated fields planted with cotton on shoulders. For this purpose, rainfall simulations were performed under controlled conditions at two scales, one with a portable rainfall simulator at small scale (0.81m2) and with the sprinkler irrigation system in the whole cotton field (2450 m2). Furrows were tagged with both groups of tracers, keeping shoulders untagged (where cotton was planted). Soil samples before and after the rainfall simulations were collected as well as sediment samples. In another experiment four olive orchard plots (330 m2) with different soil managements (cover crop and conventional tillage) were also tagged with the two groups of tracers. Soil samples were taken at

  15. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium; Preparacao e caracterizacao de eletrocatalisadores a base de paladio para oxidacao eletroquimica de alcoois em meio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Brandalise, Michele

    2012-07-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  16. ZnO varistors with high voltage gradient and low leakage current by doping rare-earth oxide

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The surge arrester of 1000 kV gas-insulated substation (GIS) needs ZnO varistor with high voltage gradient to effectively improve the potential distribution along ZnO varistor column inside the metal-oxide surge arresters. In this paper, the elec-trical and structural parameters of ZnO varistors are changed by doping with some rare-earth oxides, and the mechanism which leads these changes is discussed. When rare-earth oxide additives are added into ZnO varistors, the growing speed is slowed down due to the stabilization of the new spinel phases formed in the grain-boundary by rare-earth oxide additives, then the size of ZnO grains is smaller, and the voltage gradient of varistor increases obviously. By adding suitable amount of oxides of metal Co and Mn, the leakage current can be effectively decreased and the nonlinearity coefficient increased. The novel ZnO varistor samples sintered with the optimal additives have a voltage gradient of 492 V/mm, and the nonlinearity coefficient of 76, but their leakage currents are only 1 μA.

  17. Micro-arc oxidization of a novel Mg–1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z.J.; Li, M.; Liu, Q.; Xu, X.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Y., E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Y.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Xi, T.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100871 (China)

    2014-02-15

    A newly-developed Mg–1Ca (wt%) alloy was treated by micro-arc oxidization (MAO) in KF-silicate- (Si coating), KF-phosphate- (P coating) and KF-silicate-phosphate (SiP coating) electrolytes. The microstructure, composition and corrosion resistance of the resultant MAO coatings were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometry (XRD). Electrochemical analysis and immersion test in Hanks’ solution and MTT assay for in-vitro toxicity against MG63 cells were subsequently carried out. Results showed that all the three MAO coatings contributed to the improvement of corrosion resistance and cytocompatibility of substrate; however, P coating outperformed the two others due to its specific microstructure and composition.

  18. Efficient visible-light photocatalytic oxidation of gaseous NO with graphitic carbon nitride (g-C3N4) activated by the alkaline hydrothermal treatment and mechanism analysis.

    Science.gov (United States)

    Nie, Haoyu; Ou, Man; Zhong, Qin; Zhang, Shule; Yu, Lemeng

    2015-12-30

    In this paper, an enhanced visible-light photocatalytic oxidation (PCO) of NO (∼ 400 ppm) in the presence of the graphitic carbon nitride (g-C3N4) treated by the alkaline hydrothermal treatment is evaluated. Various g-C3N4 samples were treated in different concentrations of NaOH solutions and the sample treated in 0.12 mol L(-1) of NaOH solution possesses the largest BET specific surface area as well as the optimal ability of the PCO of NO. UV-vis diffuse reflection spectra (DRS) and photoluminescence (PL) spectra were also conducted, and the highly improved photocatalytic performance is ascribed to the large specific surface area and high pore volume, which provides more adsorption and active sites, the wide visible-light adsorption edge and the narrow band gap, which is favorable for visible-light activation, as well as the decreased recombination rate of photo-generated electrons and holes, which could contribute to the production of active species. Fluorescence spectra and a trapping experiment were conducted to further the mechanism analysis of the PCO of NO, illustrating that superoxide radicals (O2(-)) play the dominant role among active species in the PCO of NO.

  19. Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al-Zn-Mg alloys

    Institute of Scientific and Technical Information of China (English)

    Rocio Ochoa; Alfredo Flores; Jesus Torres

    2016-01-01

    The aluminothermic reduction of zinc oxide (ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the sur-face tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the alu-minothermic reduction rate of ZnO was analyzed at the following values:0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO par-ticles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450-500 mesh. The re-sults show an increase in Zn concentration in the prepared alloys up to 5.43wt%for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.

  20. Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al-Zn-Mg alloys

    Science.gov (United States)

    Ochoa, Rocio; Flores, Alfredo; Torres, Jesus

    2016-04-01

    The aluminothermic reduction of zinc oxide (ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450-500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.

  1. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    Science.gov (United States)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  2. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  3. Effect of the addition of rare earths on the activity of alumina supported copper cobaltite in CO oxidation, CH4 oxidation and NO decomposition

    Institute of Scientific and Technical Information of China (English)

    B Ivanov; I Spassova; M Milanova; G Tyuliev; M Khristova

    2015-01-01

    The effect of the addition of small amounts of rare earths (Ln=La, Ce, Nd and Gd) to alumina supported copper-cobalt spinel oxide on the catalysts efficiency in CO and CH4 oxidation and in NO decomposition was investigated. Samples of Ln/CuCo/Al catalyst were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), H2-temperature-programmed reduc-tion (H2-TPR), electron paramagnetic resonance (EPR) spectroscopy and low temperature nitrogen adsorption. The results showed that the addition of rare earths changed the surface state of the alumina supported copper-cobalt spinel catalyst. As a result, partial re-duction of copper species was observed as well as migration of these species between the surface and the bulk. The Ln/CuCo/Al catalysts behaved differently in oxidation and reduction processes. In oxidation processes where oxide structure was important, Ce/CuCo/Al and Nd/CuCo/Al were the most active catalysts. The catalyst Ce/CuCo/Al was the most active in the oxidation reactions because of the availability and favorable surface distribution of the redox couples Cu+/Cu2+ and Ce3+/Ce4+. In NO decompostion, Ln-modified catalysts significantly improved the selectivity of the process to N2.

  4. Reactivity of Nanostructured MnO_2 in Alkaline Medium Studied with a Microcavity Electrode: Effect of Oxidizing Agent

    Institute of Scientific and Technical Information of China (English)

    L.Benhaddad; L.Makhloufi; B.Messaoudi1; K.Rahmouni; H.Takenouti

    2011-01-01

    The synthesis of MnO2 powders by hydrothermal method with different oxidizing agents has been successfully achieved. The characterizations by scanning electron microscopy, energy-dispersive X-ray analyses, transmission electron microscopy, and X-ray diffraction techniques confirm the synthesis of nanostructured γ-MnO2 powders. The electrochemical reactivity of these powders in 1 mol/l KOH is investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) by using microcavity electrode. The results reveal that the MnO2 synthesized with Na2S2O8 shows the highest electrochemical reactivity in the test medium. This is due both to its large expanded surface area and its crystallographic variety γ-MnO2 formed in the matrix of ramsdellite, which is largely used as cathodic material for primary batteries. However, the presence of pyrolusite in the structure of γ-MnO2 synthesized with (NH4)2S2O8 decreases its electrochemical reactivity due to its narrow 1×1 size tunnel, which hinders the protons insertion.

  5. Investigation of Co3O4 nanorods supported Pd anode catalyst for methanol oxidation in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    Yanbiao Ren; Shichao Zhang∗; Hua Fang; Xin Wei; Puheng Yang

    2014-01-01

    A Co3 O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation (MEO) has been fabricated by the combination of hydrother-mal synthesis and microwave-assisted polyol reduction processes. The crystallographic property and microstructure have been characterized using XRD, SEM and TEM. The results demonstrate that Pd nanoparticles (PdNPs) with a narrow particle size distribution (3−5 nm) are uni-formly deposited onto the surface of Co3O4 nanorods. Electrochemical measurements show that this catalyst having a larger electrochemically active surface area and a more negative onset-potential exhibits enhanced catalytic activity of 504 mA/mg Pd for MEO comparing with the Pd/C catalyst (448 mA/mg Pd). The dependency of logI against logv reveals that MEO on Pd-Co3O4 electrode is under a diffusion control. Electrochemical impedance spectroscopy (EIS) measurement agrees well with the CV results. The minimum charge transfer resistance of MEO on Pd-Co3 O4 is observed at−0.05 V, which coincides with the potential of MEO peak.

  6. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    Science.gov (United States)

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.

  7. OXIDATIVE DEHYDROGENATION OF PROPANE BY RARE EARTH PHOSPHATES SUPPORTED ON AL-PILC

    Directory of Open Access Journals (Sweden)

    Carolina De Los Santos

    2012-12-01

    Full Text Available Catalytic activity in propane oxidative dehydrogenation of rare earth phosphates LnPO4 (where Ln = La, Ce, Pr, Nd, Sm and of the same supported by an aluminum pillared clay, of high specific surface area, is presented. The solids were characterized by TGA, XRD, nitrogen adsorption and immediate analysis after reaction in order to determine eventual carbon formation. Catalytic assays were performed at temperatures in the range 400oC-600oC, the reaction mixture was C3H8/O2/Ar = 10/10/80. All the catalysts were active. The reaction products were H2, CO, CO2, CH4, C2H4 and C3H6 and there were no organic oxygenated compounds detected. Although all the investigated systems were active, the Al-PILC supported catalysts presented a higher activity than the bulk materials. In this context, the samarium supported catalyst showed a propene yield increase from 4% to 10% compared with bulk samarium phosphate at 600°C. This effect was attributed to the increase in the specific surface area.

  8. Study on BSTO/MgO Ferroelectric Materials for Phase Shift Doped with Rare Earth Oxides

    Institute of Scientific and Technical Information of China (English)

    Yang Chunxia; Zhou Hongqing; Liu Min; Wu Hongzhong

    2005-01-01

    Barium strontium titanate/magnesia (BSTO/MgO) ferroelectric materials for phase shift were prepared by traditional ceramic process-solid phase synthesis. The effects of various rare earth oxides of 0.5% on dielectric behaviors of BSTO/MgO composites were studied in terms of permittivity, loss tangent and tunability both at low and high frequencies. The dielectric constant of Y2O3 and Er2O3 doped samples decreases from 160 to 120, and the microwave loss of La2O3 and Er2O3 doped samples decreases from 8.2×10-3 to 6.8×10-3. Only La2O3 increases the tunability of BSTO/MgO system, from 13.6% to 14.8%. For the La2O3 doped sample, the value of tunability is more than 14% with the external DC field 4000 V*mm-1 and the microwave loss at 2.47 GHz is 6.77×10-3 and, hence, it can basically meet the requirements of phase shifters working at microwave frequencies. The influence mechanism was discussed preliminarily.

  9. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    Science.gov (United States)

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  10. Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance

    KAUST Repository

    Wei, Wei

    2012-04-20

    Upconversion rare-earth nanomaterials (URENs) possess highly efficient near-infrared (NIR), e.g., 980 nm, laser absorption and unique energy upconversion capabilities. On the other hand, graphene and its derivatives, such as graphene oxide (GO), show excellent performance in optical limiting (OL); however, the wavelengths of currently used lasers for OL studies mainly focus on either 532 or 1064 nm. To design new-generation OL materials working at other optical regions, such as the NIR, a novel nanocomposites, GO-URENs, which combines the advantages of both its components, is synthesized by a one-step chemical reaction. Transmission electron microscopy, X-ray diffraction, infrared spectroscopy, and fluorescence studies prove that the α-phase URENs uniformly attach on the GO surface via covalent chemical bonding, which assures highly efficient energy transfer between URENs and GO, and also accounts for the significantly improved OL performance compared to either GO or URENs. The superior OL effect is also observed in the proof-of-concept thin-film product, suggesting immediate applications in making high-performance laser-protecting products and optoelectronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multifunctional rare earth or bismuth oxide materials for catalytic or electrical applications

    Directory of Open Access Journals (Sweden)

    Gavarri J.R.

    2013-09-01

    Full Text Available We present a review on catalytic or electrical properties of materials based on rare earth (RE oxides (CeO2, La2O3, Lu2O3 or bismuth based composite systems CeO2-Bi2O3, susceptible to be integrated into catalytic microsystems or gas sensors. The polycrystalline solids can be used as catalysts allowing conversion of CO or CH4 traces in air-gas flows. Fourier Transform infrared spectroscopy is used to determine the conversion rate of CO or CH4 into CO2 through the variations versus time and temperature of vibrational band intensities. The time dependent reactivities are interpreted in terms of an adapted Avrami model. In these catalytic analyses the nature of surfaces of polycrystalline solids seems to play a prominent role in catalytic efficiency. Electrical impedance spectroscopy allows analyzing the variation of conductivity of the system CeO2-Bi2O3. In this system, the specific high ionic conduction of a Bi2O3 tetragonal phase might be linked to the high catalytic activity.

  12. Dielectric Relaxation of Rare Earth Ordered Double Perovskite Oxide Ba2ErTaO6

    Science.gov (United States)

    Mukherjee, Rajesh; Dutta, Alo; Sinha, T. P.

    2016-01-01

    The electrical properties of rare-earth based ordered double perovskite oxide barium erbium tantalate, Ba2ErTaO6 synthesized by solid-state reaction method are investigated. The x-ray diffraction pattern of the sample shows cubic Fm3m phase at room temperature with ordering of the B cations. Fourier transform infrared spectrum shows two primary phonon modes of the sample at around 350 cm-1 and 600 cm-1. The dielectric relaxation of the sample is investigated in the frequency range from 50 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. Electric modulus and electrical impedance data are fitted to the Cole-Cole equation. The frequency dependent conductivity spectra follow the power law. Summerfield scaling is used to explain the conduction mechanism. The scaling behavior of the imaginary part of the impedance spectra suggests that the relaxation shows the same mechanism at various temperatures. The complex impedance plane plots show that the relaxation (conduction) mechanism in this material is mainly due to grain boundary effect for all temperatures and grain effect for low temperature. The relaxation frequency corresponding to dielectric loss is found to obey Arrhenius law with activation energy of 0.50 eV. The values of activation energy indicate that the dielectric relaxation and the conduction mechanism are due to adiabatic small polaronic hole hopping mechanism.

  13. Ultrafast pump-probe dynamics of iron oxide based earth pigments for applications to ancient pottery manufacture

    Science.gov (United States)

    Villafana, Tana E.; Brown, William; Warren, Warren S.; Fischer, Martin

    2015-06-01

    We demonstrate that ultrafast pump-probe microscopy provides unique dynamics for natural iron oxide and iron hydroxide earth pigments, despite their chemical similarity. First, we conducted a pump-probe spectroscopy study on heat-treated hematite (the pure red iron oxide mineral) and found the pump-probe dynamics to be temperature dependent. Second, we investigated pottery fired under known conditions and observed firing dependent pump-probe dynamics. Finally, we imaged a New World potshard from the North Carolina Museum of Art. Our results indicate that pump-probe microscopy could be a useful tool in elucidating pottery manufacture.

  14. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design.

    Science.gov (United States)

    Li, Ruibin; Ji, Zhaoxia; Chang, Chong Hyun; Dunphy, Darren R; Cai, Xiaoming; Meng, Huan; Zhang, Haiyuan; Sun, Bingbing; Wang, Xiang; Dong, Juyao; Lin, Sijie; Wang, Meiying; Liao, Yu-Pei; Brinker, C Jeffrey; Nel, Andre; Xia, Tian

    2014-02-25

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use.

  15. Binding to Redox-Inactive Alkali and Alkaline Earth Metal Ions Strongly Deactivates the C-H Bonds of Tertiary Amides toward Hydrogen Atom Transfer to Reactive Oxygen Centered Radicals.

    Science.gov (United States)

    Salamone, Michela; Carboni, Giulia; Mangiacapra, Livia; Bietti, Massimo

    2015-09-18

    The effect of alkali and alkaline earth metal ions on the reactions of the cumyloxyl radical (CumO(•)) with N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) was studied by laser flash photolysis. In acetonitrile, a >2 order of magnitude decrease in the rate constant for hydrogen atom transfer (HAT) from the C-H bonds of these substrates (kH) was measured after addition of Li(+). This behavior was explained in terms of a strong interaction between Li(+) and the oxygen atom of both DMF and DMA that increases the extent of positive charge on the amide, leading to C-H bond deactivation toward HAT to the electrophilic radical CumO(•). Similar effects were observed after addition of Ca(2+), which was shown to strongly bind up to four equivalents of the amide substrates. With Mg(2+), weak C-H deactivation was observed for the first two substrate equivalents followed by stronger deactivation for two additional equivalents. No C-H deactivation was observed in DMSO after addition of Li(+) and Mg(2+). These results point toward the important role played by metal ion Lewis acidity and solvent Lewis basicity, indicating that C-H deactivation can be modulated by varying the nature of the metal cation and solvent and allowing for careful control over the HAT reactivity of amide substrates.

  16. Synthesis and alkaline earth metal cation extraction by proton di-ionizable p-tert-butylcalix[4]arene-crown-5 compounds in cone, partial-cone and 1,3-alternate conformations.

    Science.gov (United States)

    Zhou, Hui; Surowiec, Kazimierz; Purkiss, David W; Bartsch, Richard A

    2006-03-21

    Synthetic strategies for novel, proton di-ionizable p-tert-butylcalix[4]arene-crown-5 compounds in cone, partial-cone and 1,3-alternate conformations are reported. Selective linkage of the two diametrical phenolic oxygens in p-tert-butylcalix[4]arene with tetraethylene glycol ditosylate gave 1,3-bridged p-tert-butylcalix[4]arene-crown-5. The two remaining phenolic units were alkylated using NaH and KH as the bases to give the cone and partial-cone conformers, respectively. Preparation of the 1,3-alternate conformers utilized a different sequence in which O-alkylation was followed by crown ether ring formation. Structures of these new ligands were elucidated by (1)H and (13)C NMR spectroscopy. These proton-ionizable ligands were tested for their solvent extraction properties toward alkaline earth metal cations. Surprising differences in their extraction behaviors are noted compared to those reported previously for di-ionizable p-tert-butylcalix[4]arenecrown-6 analogues.

  17. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    Science.gov (United States)

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-06

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.

  18. Coordination of alkaline earth metal ions in the inverted cucurbit[7]uril supramolecular assemblies formed in the presence of [ZnCl4]2- and [CdCl4]2-.

    Science.gov (United States)

    Li, Qing; Zhang, Yun-Qian; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu; Xiao, Xin

    2015-05-01

    A convenient method to isolate inverted cucurbit[7]uril (iQ[7]) from a mixture of water-soluble Q[n]s was established by eluting the soluble mixture of Q[n]s on a Dowex (H(+) form) column so that iQ[7] could be selected as a ligand for coordination and supramolecular assembly with alkaline earth cations (AE(2+)) in aqueous HCl solutions in the presence of [ZnCl(4)](2-) and [CdCl(4)](2-) anions as structure-directing agents. Single-crystal X-ray diffraction analysis revealed that both iQ[7]-AE(2+) -[ZnCl(4)](2-) -HCl and iQ[7]-AE(2+) -[CdCl(4)](2-) -HCl interaction systems yielded supramolecular assemblies, in which the [ZnCl(4)](2-) and [CdCl(4)](2-) anions presented a honeycomb effect, and this resulted in the formation of linear iQ[7]/AE(2+) coordination polymers through outer-surface interactions of Q[n]s.

  19. High hydrogen loading of thin palladium wires through alkaline earth carbonates' precipitation on the cathodic surface - evidence of a new phase in the Pd-H system

    Energy Technology Data Exchange (ETDEWEB)

    Celani, F.; Spallone, A.; Di Gioacchino, D. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Marini, P.; Di Stefano, V.; Nakamura, M. [EURESYS, Rome (Italy); Pace, S. [Salerno Univ., Salerno (Italy). Dept. of Physics, Istituto Nazionale per la Fisica della Materia; Mancini, A. [ORIM S.r.l., Piediripa, MC (Italy); Tripodi, P. [Stanford Research Institut International, Stanford, CA (United States)

    2000-07-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, containing small amounts of hydrochloric or sulfuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature coefficient of the electrical resistivity. Mainly for this purpose a thin layer of Hg was galvanically deposed on the cathodic surface, in order to prevent any H deloading during the measurements. The results have been fully reproduced in other 2 well equipped and experienced Laboratories (Italy, USA).

  20. Effect of Ca{sup 2+} and Sr{sup 2+} alkaline earth ions on luminescence properties of BaAl{sub 12}O{sub 19}:Eu nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Abhay D., E-mail: abhay_d1984@yahoo.co.i [National Environmental Engineering Research Institute, Nagpur 440020 (India); Department of Metallurgical and Materials Engineering, VNIT, Nagpur 440011 (India); Valechha, Arti; Valechha, Dolly; Kumar, Animesh [National Environmental Engineering Research Institute, Nagpur 440020 (India); Peshwe, D.R. [Department of Metallurgical and Materials Engineering, VNIT, Nagpur 440011 (India); Dhoble, S.J. [Kamla Nehru College, Sakkardara Square, Nagpur 440009 (India)

    2009-07-15

    Nanosized barium aluminate materials was doped by divalent cations (Ca{sup 2+}, Sr{sup 2+}) and Eu{sup 2+} having nominal compositions Ba{sub 1-x}MxAl{sub 12}O{sub 19}:Eu (M=Ca and Sr) (x=0.1-0.5), were synthesized by the combustion method. These phosphors were characterized by XRD, scanning electron microscopy-energy-dispersive spectrometry (SEM-EDS) and photoluminescence measurement. The photoluminescence characterization showed the presence of Eu ion in divalent form which gave emission bands peaking at 444 nm for the 320 nm excitation (solid-state lighting excitation), while for 254 nm it gave the same emission wavelength of low intensity (1.5 times) compared to 320 nm excitation. It was also observed that alkaline earth metal (Ca{sup 2+} and Sr{sup 2+}) dopants increase the intensity of Eu{sup 2+} ion in BaAl{sub 12}O{sub 19} lattice, thus this phosphor may be useful for solid-state lighting.

  1. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides

    Science.gov (United States)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH3 at low temperature (150-300 °C). It is evidenced that CeO2 loaded catalysts present the best performance, and the optimum loading amount of CeO2 is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO2 are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O2 and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH3 at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir-Hinshlwood mechanism.

  2. Solution-Processed Rare-Earth Oxide Thin Films for Alternative Gate Dielectric Application.

    Science.gov (United States)

    Zhuang, Jiaqing; Sun, Qi-Jun; Zhou, Ye; Han, Su-Ting; Zhou, Li; Yan, Yan; Peng, Haiyan; Venkatesh, Shishir; Wu, Wei; Li, Robert K Y; Roy, V A L

    2016-11-16

    Previous investigations on rare-earth oxides (REOs) reveal their high possibility as dielectric films in electronic devices, while complicated physical methods impede their developments and applications. Herein, we report a facile route to fabricate 16 REOs thin insulating films through a general solution process and their applications in low-voltage thin-film transistors as dielectrics. The formation and properties of REOs thin films are analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), spectroscopic ellipsometry, water contact angle measurement, X-ray photoemission spectroscopy (XPS), and electrical characterizations, respectively. Ultrasmooth, amorphous, and hydrophilic REO films with thickness around 10 nm have been obtained through a combined spin-coating and postannealing method. The compositional analysis results reveal the formation of RE hydrocarbonates on the surface and silicates at the interface of REOs films annealed on Si substrate. The dielectric properties of REO films are investigated by characterizing capacitors with a Si/Ln2O3/Au (Ln = La, Gd, and Er) structure. The observed low leakage current densities and large areal capacitances indicate these REO films can be employed as alternative gate dielectrics in transistors. Thus, we have successfully fabricated a series of low-voltage organic thin-film transistors based on such sol-gel derived REO films to demonstrate their application in electronics. The optimization of REOs dielectrics in transistors through further surface modification has also been studied. The current study provides a simple solution process approach to fabricate varieties of REOs insulating films, and the results reveal their promising applications as alternative gate dielectrics in thin-film transistors.

  3. Photo-Fenton oxidation of phenol and organochlorides (2,4-DCP and 2,4-D) in aqueous alkaline medium with high chloride concentration.

    Science.gov (United States)

    Luna, Airton J; Chiavone-Filho, Osvaldo; Machulek, Amilcar; de Moraes, José Ermírio F; Nascimento, Cláudio A O

    2012-11-30

    A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe(2+) ([Fe(2+)](0)) from 1.0 up to 2.5 mM, the rate in mmol of H(2)O(2) fed into the system (FH(2)O(2);in) from 3.67 up to 7.33 mmol of H(2)O(2)/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes.

  4. Determination of a novel ACE inhibitor in the presence of alkaline and oxidative degradation products using smart spectrophotometric and chemometric methods

    Institute of Scientific and Technical Information of China (English)

    Maha Abdel-Monem Hegazy; Maya Shaaban Eissa; Osama Ibrahim Abd El-Sattar; Mohamed Mohamed Abd El-Kawy

    2014-01-01

    Simple, accurate, sensitive and validated UV spectrophotometric and chemometric methods were developed for the determination of imidapril hydrochloride (IMD) in the presence of both its alkaline (AKN) and oxidative (OXI) degradation products and in its pharmaceutical formulation. Method A is the fourth derivative spectra (D4) which allows the determination of IMD in the presence of both AKN and OXD, in pure form and in tablets by measuring the peak amplitude at 243.0 nm. Methods B, C and D, manipulating ratio spectra, were also developed. Method B is the double divisor-ratio difference spectrophotometric one (DD-RD) by computing the difference between the amplitudes of IMD ratio spectra at 232 and 256.3 nm. Method C is the double divisor-first derivative of ratio spectra method (DD-DR1) at 243.2 nm, while method D is the mean centering of ratio spectra (MCR) at 288.0 nm. Methods A, B, C and D could successfully determine IMD in a concentration range of 4.0-32.0 mg/mL. Methods E and F are principal component regression (PCR) and partial least-squares (PLS), respectively, for the simultaneous determination of IMD in the presence of both AKN and OXI, in pure form and in its tablets. The developed methods have the advantage of simultaneous determination of the cited components without any pre-treatment. The accuracy, precision and linearity ranges of the developed methods were determined. The results obtained were statistically compared with those of a reported HPLC method, and there was no significant difference between the proposed methods and the reported method regarding both accuracy and precision.

  5. Study of conformational and acid-base properties of norbadione A and pulvinic derivatives: Consequences on their complexation properties of alkaline and alkaline earth cations; Etude des proprietes conformationnelles et acido-basiques de la norbadione A et de derives pulviniques: consequences sur leurs proprietes complexantes de cations alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Kuad, P

    2006-01-15

    This work deals with the study of norbadione A, a pigment extracted from mushrooms and known to complex cesium cations. The study of the acid-base properties of norbadione A has allowed to determine the relative acidity of the seven protonable functions of the molecule and to reveal a reversible isomerization of the double exocyclic bond of the pulvinic moieties. The observed change of configuration is induced by a hydrogen bond of the H-O-H type and by electrostatic interactions. Moreover, the microscopic protonation mechanism of the norbadione A has been analyzed, considering three different study media where the acid-base properties of the norbadione A are compared. In the presence of 0.15 mol.l{sup -1} of NaCl, it has been observed a remarkable cooperativity in the protonation of the enol groups. At last, the use of different analytical methods (NMR, potentiometry and calorimetry) has allowed to study the complexing properties of the norbadione A towards cesium and other alkaline and rare earth cations. (O.M.)

  6. Oxidation state of the Earth's upper mantle during the last 3800 million years: Implications for the origin of life

    Science.gov (United States)

    Delano, J. W.

    1993-01-01

    A popular, as well as scientifically rigorous, scenario for the origin of life on Earth involves the production of organic molecules by interaction of lightning (or other forms of energy) with a chemically reducing atmosphere in the early history of Earth. Experiments since the 1950's have convincingly demonstrated that the yield of organic molecules is high when the atmosphere contains molecular hydrogen, methane, ammonia, and water vapor. Additional work has also shown that such a highly reducing atmosphere might not, however, have been sufficiently long-lived in the presence of intense solar ultraviolet radiation for life to have formed from it. One way of maintaining such an atmosphere would be to have a continual replenishment of the reduced gases by prolonged volcanic outgassing from a reducing of Earth's interior. The length of time that this replenishment might need to continue is in part constrained by the flux of asteroids onto the Earth's surface containing sufficient energy to destroy most, if not all, life that had developed up to that point in time. If a reducing atmosphere is a key ingredient for the origin of life on Earth, the time of the last environmental sterilization due to large impacts would be an important constraint. In a deep marine setting (e.g., hydrothermal vent), the last global sterilization might have occurred at 4200-4000 Ma. On the Earth's surface, the last global sterilization event might have occurred at 4000-3700 Ma. If these are meaningful constraints, how likely is it that a reducing atmosphere could have survived on the Earth until about 3800 Ma ago? Due to the importance of replenishing this atmosphere with reducing components by volcanic outgassing from the mantle, geochemical information on the history of the mantle's oxidation state would be useful for addressing this question. Geochemical and experimental data discussed in this abstract suggest that extrusive mafic volcanics derived from the upper mantle have had

  7. Influence of alkali and alkaline earth ions on the -alkylation of the lower rim phenolic-OH groups of -tert-butyl-calix[4]arene to result in amide-pendants: Template action of K+ and the structure of K+ bound tetra-amide derivative crystallized with a -tert-butylcalix[4]arene anion

    Indian Academy of Sciences (India)

    Amjad Ali; Chebrolu P Rao; Philippe Guionneau

    2008-03-01

    Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through -alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these -alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.

  8. Novel precursors for the deposition of rare earth oxides; Neuartige Precursor zur Abscheidung von Selten-Erd-Oxiden

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Mareike

    2010-02-22

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO{sub 3}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 2} (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO{sub 3}){sub 3}(O{sub 2}C{sub 4}H{sub 10}) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO{sub 4}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 3} was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO{sub 4}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 2}(MeOH){sub 2} was obtained without

  9. Emission Properties, Solubility, Thermodynamic Analysis and NMR Studies of Rare-Earth Complexes with Two Different Phosphine Oxides

    Directory of Open Access Journals (Sweden)

    Hiroki Iwanaga

    2010-07-01

    Full Text Available The paper proposes novel molecular designs for rare-earth complexes involving the introduction of two different phosphine oxide structures into one rare-earth ion. These designs are effective for improving solubility and emission intensity. Additionally, the complexes are indispensable for realizing high performances in LEDs and security media. The thermodynamic properties of Eu(III complexes are correlated with the solubility. Correlations between coordination structures and emission intensity were explained by NMR analysis. The luminous flux of red LED devices with Eu(III complexes is very high (20 mA, 870 m lumen. A new white LED has its largest spectra intensity in the red region and a human look much more vividly under this light.

  10. Rare earth effects on high temperature oxidation of pure nickel at 1000 ℃

    Institute of Scientific and Technical Information of China (English)

    JIN Huiming; ZHANG Jianfeng; YAN Kun; GONG Zexiang

    2004-01-01

    Isothermal and cyclic oxidation behaviors of pure and yttrium-implanted nickel were studied at 1000 ℃ in air.SEM and TEM were used to examine the oxide scales formed on nickel substrate.It was found that Y-implantation greatly improved the anti-oxidation ability of nickel both in isothermal and cyclic oxidizing experiments.Acoustic emission(AE)technique was used to study the size and number distribution of defects at the oxide/metal interface.Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium.The main reason for the improvement in anti-oxidation and adhesion of oxide scale was that Yimplantation greatly reduced the grain size of NiO and lowered the compressive stress within the scale.In the meantime,Y-implantation inhibited ion diffusion rate in the oxide scale and reduced the size and number of interfacial defects,hence remarkably enhanced the adhesion of protective NiO oxide scale formed on nickel substrate.

  11. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects.

    Science.gov (United States)

    Joonas, Elise; Aruoja, Villem; Olli, Kalle; Syvertsen-Wiig, Guttorm; Vija, Heiki; Kahru, Anne

    2017-03-27

    Use of rare earth elements (REEs) has increased rapidly in recent decades due to technological advances. It has been accompanied by recurring rare earth element anomalies in water bodies. In this work we (i) studied the effects of eight novel doped and one non-doped rare earth oxide (REO) particles (aimed to be used in solid oxide fuel cells and gas separation membranes) on algae, (ii) quantified the individual adverse effects of the elements that constitute the (doped) REO particles and (iii) attempted to find a discernible pattern to relate REO particle physicochemical characteristics to algal growth inhibitory properties. Green algae Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) were used as a test species in two different formats: a standard OECD201 algal growth inhibition assay and the algal viability assay (a 'spot test') that avoids nutrient removal effects. In the 24h 'spot' test that demonstrated direct toxicity, algae were not viable at REE concentrations above 1mgmetal/L. 72-hour algal growth inhibition EC50 values for four REE salts (Ce, Gd, La, Pr) were between 1.2 and 1.4mg/L, whereas the EC50 for REO particles ranged from 1 to 98mg/L. The growth inhibition of REEs was presumably the result of nutrient sequestration from the algal growth medium. The adverse effects of REO particles were at least in part due to the entrapment of algae within particle agglomerates. Adverse effects due to the dissolution of constituent elements from (doped) REO particles and the size or specific surface area of particles were excluded, except for La2NiO4. However, the structure of the particles and/or the varying effects of oxide composition might have played a role in the observed effects. As the production rates of these REO particles are negligible compared to other forms of REEs, there is presumably no acute risk for aquatic unicellular algae.

  12. PARAMAGNETIC PROPERTIES OF THE ALKALINE EARTH FLUORIDES.

    Science.gov (United States)

    decreases with increasing temperature; and the temperature dependance is stronger for SrF2. The results have been interpreted using the Simanek-Orbach theory of a phonon-induced hyperfine field. (Author)

  13. Positron elastic scattering from alkaline earth targets

    Science.gov (United States)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  14. Electrical properties of alkaline earth fluorohalide crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ayachour, D. (Lab. PHASE, C.R.N., 67 - Strasbourg (France)); Sieskind, M. (Groupe d' Optique, Non-Lineaire, 67 - Strasbourg (France)); Geist, P. (C.R.N.-G.O.P.A., 67 - Strasbourg (France))

    1991-07-01

    The ionic conductivity of undoped BaFCl, BaFBr, BaFI, SrFCl, and SrFBr single crystals is measured. The activation energies for a variety of anion vacancy mechanisms and the Schottky energy are defined. They are found to be in good agreement with Baetzold's theoretical data. Partial measurements of the static dielectric constant point out that these materials show an important dipolar contribution which is connected with their antiferroelectric character. (orig.).

  15. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  16. INFLUENCE OF RARE EARTH DOPING ON MECHANICAL PROPERTY AND MICRO-STRUCTURE OF CHROMIA OXIDE FILM

    Institute of Scientific and Technical Information of China (English)

    JIN Huiming; FELIX Adriana

    2008-01-01

    The isothermal oxidizing kinetics of Co-40Cr alloy and its yttrium ion-implanted samples are studied at 1 000 ℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) is used to examine the Cr2O3 oxide film's morphology after oxidation. Acoustic emission (AE) method is used in situ for monitoring the cracking and spalling of oxide films formed on both samples during oxidizing and subsequent air-cooling stages. Theoretical model is proposed relating to the film fracture process and is used for analyzing the acoustic emission spectrum both on time domain and on AE-event number domain. It is found that yttrium implantation remarkably reduces the isothermal oxidizing rate of Co-40Cr and improves the anti-cracking and anti-spalling properties of Cr2O3 oxide film. The reasons for the improvement are mainly that the implanted yttrium reduced the grain size of Cr2O3 oxide, increased the high temperature plasticity of oxide film, and remarkably reduced the number and size of Cr2O3/Co-40Cr interfacial defects.

  17. Effect of mixed rare earth oxides and CaCO3 modification on the microstructure of an in-situ Mg2Si/Al-Si composite

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng; LIN Jixing; JING Qingxiu

    2009-01-01

    The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope, scanning electron microscope, and energy dispersive spectrum analysis. The results showed that the morphology of the primary Mg2Si phase particles changed from irregular or crosses to polygonal shape, their sizes decreased from 75 μm to about 25 μm, and the compound of both the oxide and CaCO3 was better than either the single mixed rare earth oxides or CaCO3.

  18. Mechanism of Cracking Resistance of Hardfacing Specimens of Steel 5CrNiMo Improved by Rare Earth Oxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure and modified inclusion in hardfacing metal with rare earth (RE) oxide were analyzed. The results show that, the hardfacing crack is initiated from the coarse dendritic crystal grain boundary, inclusions and coarse austenite grain boundary in the HAZ and propagated by the residual stress existing in the center of the hardfacing metal and HAZ. The primary columnar grain structure can be refined by adding RE oxide in the coating of the electrode. The inclusion in the hardfacing metal can be modified as well. Meanwhile, if the martensite transformation temperature is decreased, the largest value of the residual tensile stress in the dangerous region can be reduced.

  19. Preparation and conductivity of nanocrystalline rare earth mixed oxides SmFe1-xCoxO3-δ

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanocrystalline rare earth mixed oxides SmFe1 xCoxO3-δ were prepared by sol-gel method at 1 073 K for 2h calcination and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that SmFe1-xCoxO3-δ has the structure ofperovskite type. The conductivity of the materials increases with the temperature rising and the maximum conductivity at 1 073 K is 2.6 S/cm with the best mole ratio of Fe3+ to Co3+ being 1: 4. This kind of oxide is a conductive ceramic material by means of conduction of electron and oxygen anion.

  20. Preparation of Nanocrystalline Rare Earth Mixed Oxides DyFexCo1-xO3-δ and Its Conductivity

    Institute of Scientific and Technical Information of China (English)

    任引哲; 王建英; 刘二保

    2002-01-01

    Nanocrystalline rare earth mixed oxides DyFexCo1-xO3-δ were prepared by sol-gel method and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG-DTA) and scanning electron microscope (SEM). The results show that DyFexCo1-xO3-δ has the structure of perovskite type at 800 ℃ for 2 h calcination. The conductivity of the materials at different temperature was measured by four-probe instrumentation and two-pole method. The results show that the conductivity of mixed oxides DyFexCo1-xO3-δ is higher than those of un-mixed oxides DyFeO3 and DyCoO3 and the conductivity is the best at x=0.8 in the matter of DyFexCo1-xO3-δ. The conductivity of these materials always increases with the temperature rising and there is an apparent change between 600 and 800 ℃. However, the spinodals are different with different ration of Fe3+ and Co3+. This kind of oxide is a conductive pottery material.

  1. Resting Study of Tracer Experiment on Catalytic Wet Oxidation Reactor under Micro-gravity and Earth Gravity Conditions

    Institute of Scientific and Technical Information of China (English)

    YANG Ji; JIA Jin-ping

    2005-01-01

    The International Space Station(ISS) employs catalytic wet oxidation carried out in a Volatile Reactor Assembly (VRA) for water recycling. Previous earth gravity experiments show that the VRA is very effective at removing polar,low molecular weight organics. To compare the reactor performance under micro-gravity and Earth gravity conditions,a tracer study was performed on a space shuttle in 1999 by using 0. 2% potassium carbonate as the chemical tracer.In this paper, the experimental data were analyzed and it is indicated that the reactor can be considered as a plug flow one under both micro-gravity and earth gravity experimental conditions. It has also been proved that dispersion is not important in the VRA reactor under the experimental conditions. Tracer retardation was observed in the experiments and it is most likely caused by catalyst adsorption. It is concluded that the following reasons may also have influence on the retardation of mean residence time: (1) the liquid can be held by appurtenances, which will retard the mean residence time; (2) the pores can hold the tracer, which can also retard the mean residence time.

  2. Synergistic extraction of rare earths with bis(2,4,4-trimethyl pentyl) dithiophosphinic acid and trialkyl phosphine oxide.

    Science.gov (United States)

    Reddy, M L; Bosco Bharathi, J R; Peter, S; Ramamohan, T R

    1999-08-23

    Synergistic extraction of trivalent rare earths from nitrate solutions using mixtures of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301=HX) and trialkyl phosphine oxide (Cyanex 923=TRPO) in xylene has been investigated. The results demonstrate that these trivalent metal ions are extracted into xylene as MX(3).3HX with Cyanex 301 alone. In the presence of Cyanex 923, La(III) and Nd(III) are found to be extracted as MX(2).NO(3).TRPO. On the other hand, Eu(III), Y(III) and heavier rare earths are found to be extracted as MX(3).HX.2TRPO. The addition of a trialkylphosphine oxide to the metal extraction system not only enhances the extraction efficiency of these metal ions but also improves the selectivities significantly, especially between yttrium and heavier lanthanides. The separation factors between these metal ions were calculated and compared with that of commercially important extraction systems like di-2-ethylhexyl phosphoric acid.

  3. Ce1-xLaxOy solid solution prepared from mixed rare earth chloride for soot oxidation

    Institute of Scientific and Technical Information of China (English)

    韩雪; 王亚飞; 郝红蕊; 郭荣贵; 胡运生; 蒋文全

    2016-01-01

    Ce1–xLaxOy solid solution was simply prepared using mixed rare earth chloride (RECl3·xH2O, RE=Ce, La>99%, containing unseparated Ce and La from rare earth metallurgical industry) as precursor by ultrasonic-assisted co-precipitation method with differ-ent ultrasonic frequencies (CLf,f=200, 400, 600, 800, 1000 Hz). A compared Ce1–xLaxOy solid solution (CL*) was also prepared by the same mothod with 10% less precipitant. X-ray diffraction results confirmed the formation of Ce1–xLaxOy solid solution, and the crystal structures of these catalysts were not very sensitive to ultrasonic frequency and precipitant amount. However, both of the fac-tors had obvious effect on morphology and surface area of CL, and precipitant amount seem to play a more crucial role than ultra-sonic frequency for Ce1–xLaxOy solid solution preparation. When soot and catalyst were tight contacted, the peak temperature (Tpeak) of soot oxidation and oxygen reducing temperature for CLf catalysts decreased linearly with increasing surface area. Under loose contact condition, theTpeak had obvious negative correlation with H2 consumption. It was inferred that good reducibility of the Ce1–xLaxOy solid solution favored the soot oxidation reaction. The Ce1–xLaxOy solid solution prepared from unseparated rare earth chloride showed a good soot oxidaiton activity. Controlling the preparation conditions to prepare a CL catalyst would high surface area will enhance its reducibility and activity.

  4. 采用碱性加压氧化浸出从高铋铅阳极泥中脱除砷锑%Arsenic and antimony removal from bismuth-rich lead anode slime by alkaline pressure oxidation leaching

    Institute of Scientific and Technical Information of China (English)

    李阔; 徐瑞东; 何世伟; 陈汉森; 朱云; 华宏全; 舒波

    2015-01-01

    在碱性溶液中釆用加压氧化浸出对高铋铅阳极泥进行脱除砷锑的研究。考察氧化剂用量、氢氧化钠浓度、液固比、碱浸温度及反应时间对铅阳极泥脱砷、锑效果的影响,优选得到较佳的工艺条件,砷、锑的浸出率分别达到95%和80%以上。碱浸液冷却过滤结晶砷酸钠和锑酸铅后,采用过氧化氢进行沉锑处理,沉锑后的溶液再补加定量的氢氧化钠后能够返回浸出工艺,实现碱浸液的循环利用,并保证砷、锑的有效脱除。%The arsenic and antimony were removed from bismuth-rich lead anode slime by alkaline pressure oxidation leaching. The effects of factors including oxidant dosage, NaOH concentration, ratio of liquid to solid, leaching temperature and leaching time on the arsenic and antimony removal were investigated, and the optimal process conditions were determined by experiments. The results show that the leaching rate of arsenic and antimony can reach over 95% and 80%, respectively. The removal of antimony can be realized by adding hydrogen peroxide after the removal of crystal sodium arsenate and lead antimonate by cooling and filtration. The alkaline leaching solution is returned to the leaching process after adding quantitative sodium hydroxide, which achieves the recycling of alkaline solution and the effective separation of arsenic and antimony from other metals.

  5. Decomposition kinetics of alkaline earth carbonates by integral approximation method Cinética de decomposição de carbonatos de terra alcalina pelo método de aproximação integral

    Directory of Open Access Journals (Sweden)

    S. Maitra

    2008-09-01

    Full Text Available The decomposition kinetics of four synthetic alkaline earth metal carbonates (MgCO3, CaCO3, SrCO3 and BaCO3 was studied under non-isothermal conditions from thermo-gravimetric measurements as compared to. The integral approximation method of Coats and Redfern was used to determine the kinetic parameters for the decomposition processes. The decomposition reactions followed mostly first order kinetics and the activation energy of the decomposition reactions increased with the increase in the molecular mass of the carbonates. The change in enthalpy for the decomposition processes was also calculated and compared with the activation energies for the decomposition processes. The activation energy of the decomposition process for all the carbonates was higher than the enthalpy of the reaction excepting SrCO3.A cinética de decomposição de quatro carbonatos sintéticos de metais de terra alcalina (MgCO3, CaCO3, SrCO3 e BaCO3 foi estudada sob condições não isotérmicas por meio de medidas de termogravimétricas e feita sua comparação. O método de aproximação integral de Coats e Redfern foi usado para determinar os parâmetros cinéticos dos processos de decomposição. As reações de decomposição seguiram principalmente cinética de primeira ordem e a energia de ativação para as reações de decomposição aumentou com o aumento da massa molecular dos carbonatos. A variação na entalpia para os processos de decomposição foi também calculada e comparada com as energias de ativação. A energia de ativação dos processos de decomposição de todos os carbonatos foi maior que a entalpia da reação excepto para SrCO3.

  6. 中温商业SCR催化剂碱和碱土中毒特性研究%Study on alkali and alkaline earths poisoning characteristics for a commercial SCR catalyst

    Institute of Scientific and Technical Information of China (English)

    沈伯雄; 卢凤菊; 高兰君; 岳时吉

    2016-01-01

    The poisoning of a commercial selective catalytic reduction ( SCR ) catalysts by alkali ( K ) and alkaline earths ( Ca) has been simulated in the laboratory. The techniques of N2 adsorption, scanning electronic microscopy, X-ray photoelectron spectroscopy, NH3-temperature program desorption, H2-temperature program reduction were used to identify the changes of physical chemical characteristics of the catalysts before and after the simulated poisoning. The results indicated that the poisoning of K and Ca did not damage the basic pore structure of the SCR catalyst, but decreased the BET surface area and pore volume. The poisoning by K and Ca changed the chemical valence state of V and decreased the reducibility of V. The poisoning by K and Ca decreased the amount of chemically adsorbed oxygen on the catalyst surface as well as acidity of the catalysts. The poisoning by K and Ca lowered the SCR activity of the catalysts and the poisoning by Ca was more serious than K.%在实验室条件下对选择性催化还原( SCR)商业催化剂的碱( K)和碱土( Ca)中毒进行了模拟,并采用液氮吸附、扫描电镜、能谱分析、NH3-程序升温脱附、H2-程序升温还原等方法对催化剂中毒前后的物理化学性质变化进行了表征。结果表明, K和Ca的中毒没有破坏商业中温SCR催化剂孔的基本结构,但K和Ca的中毒使催化剂的比表面积和孔容减小。 K和Ca的中毒在一定程度上改变了催化剂表面钒的价态,导致了钒的还原能力减弱,同时降低催化剂表面化学吸附氧。钾中毒和钙中毒使催化剂的表面酸量降低。钾和钙中毒造成中温SCR催化剂的脱硝活性降低,并且Ca中毒造成的催化剂活性降低要明显高于K中毒。

  7. The Adsorption and Oxidation of Isopropanol at Platinum Electrode in Alkaline Media%碱性介质中异丙醇在铂电极表面的吸附和电化学氧化

    Institute of Scientific and Technical Information of China (English)

    林珩; 陈国良; 郑子山; 周建章; 陈声培; 林仲华

    2005-01-01

    运用电化学循环伏安、原位FTIR反射光谱和石英晶体微天平(EQCM)等方法研究了碱性介质中异丙醇在Pt电极表面吸附和氧化行为.结果表明:碱性介质中异丙醇电氧化过程不存在自毒化现象.虽然电化学原位FTIR反射光谱未能检测到CO等毒性物种,但EQCM结果证明异丙醇或其解离产物吸附于铂电极上.在实验条件下,碱性介质中异丙醇在铂电极上氧化的最终产物只有丙酮,预示着碱性介质中异丙醇通过脱氢步骤氧化成丙酮.EQCM研究还从电极表面质量定量变化的角度提供了异丙醇吸附和电氧化反应机理的新数据.%The adsorption and oxidation of isopropanol in alkaline media at platinum electrode have been investigated by using electrochemical quartz crystal microbalance (EQCM) and in situ FTIR spectroscopy. The results show thatthere is no self-poisoning in the electrooxidation of isopropanol in alkaline media. Though no poison species, such as CO, are evidenced by in situ FTIR spectroscopy, the adsorption of isopropanol or its dissociative products on Pt surface is suggested by EQCM data. The final product of isopropanol oxidation is only acetone under experimental condition, which suggests that the oxidation of isopropanol into acetone takes place via dehydrogenation step. The EQCM studies provide quantitative results of surface mass variation and have thrown new light in the elucidating isopropanol oxidation.

  8. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.;

    2015-01-01

    and silica content of BIFs, we estimate that seawater in the Archean and early Proterozoic Eons likely contained 0.04–0.13 µM phosphorus, on average. These phosphorus limiting conditions could have favored primary production through photoferrotrophy at the expense of oxygenic photosynthesis until upwelling......As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...

  9. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D., E-mail: claudinei@demar.eel.usp.b [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Santos, C. [Centro Universitario de Volta Redonda (MEMAT/UNIFOA), RJ (Brazil); Suzuki, P.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Silva, O.M.M. [Centro Tecnico Aeroespacial (CTA-IAE), Sao Jose dos Campos, SP (Brazil). Inst. de Atividades Espaciais. Div. de Materiais

    2010-07-01

    In this work, the substitution of commercial Y{sub 2}O{sub 3} by a rare earth mixed oxide, RE{sub 2}O{sub 3}, to form Yttrium aluminum Garnet-Y{sub 3}Al{sub 5}O{sub 12}, was investigated. Al{sub 2}O{sub 3}:Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:RE{sub 2}O{sub 3} powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE{sub 2}O{sub 3} oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y{sub 2}O{sub 3}. X-ray diffraction pattern of the RE{sub 2}O{sub 3} indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} or Al{sub 2}O{sub 3}-RE{sub 2}O{sub 3} respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 {mu}m besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y{sub 2}O{sub 3} can be substituted by the rare-earth solid solution, RE{sub 2}O{sub 3}, in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  10. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  11. Chemical characterization of insoluble macromolecules (kerogen) from marine and lacustrine sediments. Molecular distribution of aliphatic dicarboxylic acids in alkaline KMnO4 oxidation products; Kaiyo oyobi konuma taisekibutsuchu no fuyosei yukibutsu (kerogen) no characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, S.; Ishiwatari, R.; Machihara, T. [The University of Tokyo, Tokyo (Japan). Faculty of Science

    1996-04-15

    The insoluble macromolecules (kerogen) in marine and lacustrine sediments was oxidated by alkaline KMnO4, and the kerogen was characterized by molecular distribution of produced aliphatic dicarboxylic acids. Seven seas and ten lakes in the world are used as a sample. The oxidation products consist of n-C4-C15 {alpha}, {omega}-dicarboxylic acids, n-C7-C28 mono-carboxylic acids, and benzene carboxylic acids. The dicarboxylic acid decreases from C4 to C15 for the marine kerogen and has a maximum at C8 to C9 for the lacustrine kerogen. The method for representing the molecular distribution by two mathematical expressions was proposed. The marine and lacustrine kerogens are classified into different groups, and the sample of an eruption bay is located between the two kerogens. The polymerized structure of polyhydoroxy acids in these kerogens is assumed to have been transformed into aliphatic dicarboxylic acids by oxidation. This is also backed up by the result of cutin oxidation. 38 refs., 4 figs., 4 tags.

  12. Synthesis of apatite and monazite waste form for immobilization of rare earth oxide radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, B. G.; Park, H. S.; Kim, I. T.; Lee, H. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In order to fabricate a monolithic waste form containing RE oxides, a vitrification at a high temperature or a ceramization by a HIP method is required. In this study, a series of monolithic wasteform with high waste loading were successfully produced at a mild condition, where the chemical structure was equivalent to the product by a high temperature process or a monolithic wasteform consisting of a durable ceramic host matrix for immobilizing RE elements.

  13. A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units

    Energy Technology Data Exchange (ETDEWEB)

    Schneemeyer, L.F. [Department of Chemistry, Montclair State University, Montclair, NJ 07043 (United States); Siegrist, T., E-mail: tsiegrist@fsu.edu [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States); National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Besara, T. [National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Lundberg, M. [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States); National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Sun, J. [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 (United States); Singh, D.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 (United States)

    2015-07-15

    The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo{sub 16}O{sub 44,} was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with the unique isolated ReO{sub 3}-type Mo{sub 8}O{sub 36} structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small ~1/8 μ{sub B} moments on each Mo. We suggest that the Mo{sub 8}O{sub 36} units behave like pseudoatoms with spin 1/2 derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. Interestingly, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal. - Graphical abstract: LnMo{sub 16}O{sub 44} phases comprise corner sharing tetrahedral and octahedral molybdenum ions. The MoO{sub 6} octahedra form Mo{sub 8}O{sub 36} units that are well separated and act like pseudo-atoms, accommodating 11 electrons each. - Highlights: • Single crystal X-ray diffraction refinements of LnMo{sub 16}O{sub 44} single crystals for Ln=Ce, Pr, Nd, Tb, Dy and Ho. • DFT calculations based on LaMo{sub 16}O{sub 44}. • [Mo{sub 8}O{sub 36}] units behaving as superatoms with a net magnetic moment of 1 µ

  14. Nuclear analysis of a rare earth containing protective oxide on aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, J.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Hughes, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC (Australia). Div. of Materials Science

    1996-12-31

    The aim is study was to examine the thickness of the conversion coating as well as the elemental depth distribution of cerium and molybdenum using Rutherford Backscattering Spectroscopy (RBS), Scanning Electron Microscopy (SEM), Scanning Auger Electron Spectroscopy and Forward Recoil Spectroscopy (FRS). In addition, RBS has been used to examine how changes in processing conditions, particularly the treatment temperatures, influences the coating thickness and Ce distribution at each process step. SEM established that a crazed oxide structure was developed over the matrix of the alloy using the above process steps. RBS was chosen to provide elemental concentration versus depth information on these samples since it is largely insensitive to surface topography when the detector is set to high scattering angles. A other advantage of using RBS for this particular system is that the heavy elements incorporated into the coating such as Ce and Mo because of their high atomic number compared to the aluminium oxide, are well separated from aluminium and oxygen at their higher recoil energies. Forward Recoil Spectroscopy is capable of detecting hydrogen and it has been used to confirm that the coating is hydrated and to establish the hydrogen distribution within the final oxide coating on each alloy. 7 refs., 1 tab., 4 figs.

  15. Influence of rare earth additions on the oxidation resistance of chromia forming alloys; Influencia da adicao de terras raras sobre a resistencia a oxidacao de ligas formadoras de cromia

    Energy Technology Data Exchange (ETDEWEB)

    Pillis, Marina Fuser

    1995-12-31

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O{sub 2} and AISI 316L+Y{sub 2} O{sub 3} by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O{sub 2} to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O{sub 3}. The isothermal oxidation behavior of rare earth oxide covered

  16. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  17. Cyanex 923 as the extractant in a rare earth element impurity analysis of high-purity cerium oxide.

    Science.gov (United States)

    Duan, Taicheng; Li, Hongfei; Kang, JianZhen; Chen, Hangting

    2004-06-01

    In this work, the feasibility of employing Cyanex 923 as an extractant into the non-cerium REE (rare earth elements) impurity analysis of high-purity cerium oxide was investigated. Through investigations on the choice of the extraction medium, the optimium extraction acidity, matrix Ce4+ effect on the non-cerium REE ion extraction, the optimium extractant concentration and suitable extracting time, and oscillation strengh, it was found that when the phase ratio was at 1:1 and the acicidity was about 2% H2SO4, by gently shaking by hand for about 2 min, 10 mL of 30% Cyanex 923 could not extract even for a 20 ng amount of non-cerium REE3+ ions. However, the extraction efficiency for Ce4+ of 100 mg total amount under the same conditions was about 96%, indicating that a 25-fold preconcentration factor could be achieved. Thus, it was concluded that Cyanex 923 could be used in a REE impurity analysis of 99.9999% or so pure cerium oxide for primary sepapation to elimilate matrix-induced interferences encountered in an ICP-MS (inductively coupled plasma mass spectroscopy) determination.

  18. EFFECTIVE ALKALINE PEROXIDE OXIDATION PRETREATMENT OF SHEA TREE SAWDUST FOR THE PRODUCTION OF BIOFUELS: KINETICS OF DELIGNIFICATION AND ENZYMATIC CONVERSION TO SUGAR AND SUBSEQUENT PRODUCTION OF ETHANOL BY FERMENTATION USING Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    A. O. Ayeni

    Full Text Available Abstract Shea tree sawdust delignification kinetic data during alkaline peroxide pretreatment were investigated at temperatures of 120 °C, 135 °C, and 150 °C. The activation energy during delignification was 76.4 kJ/mol and the Arrhenius constant was calculated as 8.4 x 106 per min. The reducing sugar yield for the treated to the untreated biomass was about 22-fold. Enzymatic hydrolysis conditions studied were; time (72 h and 96 h, substrate concentration (20, 30, 40, and 50 g/L, and enzyme loadings (10, 25, 40, 50 FPU/g dry biomass, which showed the optimum conditions of 96 h, 40 g/L, and 25 FPU/g dry biomass at 45 °C hydrolysis temperature. At the optimized enzymatic hydrolysis conditions, the reducing sugar yield was 416.32 mg equivalent glucose/g treated dry biomass. After 96 h fermentation of treated biomass, the ethanol obtained at 2% effective cellulose loading was 12.73 g/L. Alkaline peroxide oxidation pretreatment and subsequent enzymatic hydrolysis improved the ethanol yield of the biomass.

  19. Thermal barrier coatings of new rare-earth composite oxide by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.H., E-mail: zhxubiam@sina.com; Zhou, X.; Wang, K.; Dai, J.W.; He, L.M.

    2014-02-25

    Highlights: • 3Y-LZ7C3 coating has a cyclic lifetime longer than that of LZ7C3 coating. • Y{sub 2}O{sub 3} helps to moderate the excessive vapor pressure condition during deposition. • 3Y-LZ7C3 coating is a mixture of pyrochlore and fluorite structures. • 3Y-LZ7C3 coating has a low sintering ability as compared with LZ7C3 coating. -- Abstract: Thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) with the addition of 3 wt.% Y{sub 2}O{sub 3} (3Y-LZ7C3) were deposited by electron beam-physical vapor deposition (EB-PVD). The phase structures, surface and cross-sectional morphologies, thermal cycling behaviors of these coatings were studied in detail. The thermal cycling test at 1373 K in an air furnace indicates that the 3Y-LZ7C3 coating has a lifetime of 1134 cycles which is about 18% longer than that of LZ7C3 coating. The improvement of chemical homogeneity of the coating, the superior growth behavior of columns and the favorable mechanical properties are all very helpful to the prolongation of thermal cycling life of 3Y-LZ7C3 coating. The failure of 3Y-LZ7C3 coating is probably a result of the reduction–oxidation of cerium oxide (Ce{sub 2}O{sub 3} and CeO{sub 2}), the solid solution reactions between La{sub 2}O{sub 3} and Y{sub 2}O{sub 3} (or ZrO{sub 2}), the visible cracks initiation, propagation and extension, the abnormal oxidation of bond coat and the thermal expansion mismatch between ceramic coating and bond coat.

  20. Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating

    Science.gov (United States)

    Xiao, Zhisong; Zhou, Bo; Yan, Lu; Zhu, Fang; Zhang, Feng; Huang, Anping

    2010-02-01

    Tm-Er codoped amorphous aluminum oxide thin films were prepared by pulsed laser deposition. Broadband photoluminescence in the wavelength region of 1400-1700 nm comprised of two emissions at around 1532 and 1620 nm was observed. PL performance was investigated as a function of the substrate-heating temperature. Possible energy transfer processes involved in the heat treatment were discussed and nonradiative decay rates were evaluated, by comparing the inverse of measured lifetimes with the calculated radiative decay rates. Our results suggest that Tm-Er codoped Al 2O 3 thin film might be potential candidate as broadband light sources and amplifiers.

  1. Optical properties of zirconia doped with yttria and some rare earth oxides

    Science.gov (United States)

    Haberko, Jakub; Trenczek-Zając, Anita; Zientara, Dariusz; Adamczyk, Anna; Haberko, Krzysztof; Bućko, Mirosław M.

    2016-10-01

    Nanometric powders of cubic zirconia stabilized with yttria and rare element oxides (Sm, Nd, Gd) were prepared by crystallization under hydrothermal conditions. The powders were uniaxially compacted, repressed isostatically, pressure-less sintered in oxygen atmosphere and hot isostatically pressed under 300 MPa Ar atmosphere. Fully dense samples were polished from both sides. The optical properties were analyzed based on the spectral dependence of the transmittance (T) and reflectance (R). Spectroscopic measurements have shown that all materials fabricated in the present work are highly transparent, with total transmission above 90% towards the long-wavelength end of the near-IR range of the spectrum. Discussion of these results will be given.

  2. Synthesis, Characterization and Activity of Rare Earth Complexes with Schiff Base From 2,6-Diformylpyridine N-Oxide and 4-Amino-antipyrine

    Institute of Scientific and Technical Information of China (English)

    于青; 唐瑜; 谭民裕

    2002-01-01

    Six new rare earth complexes with Schiff base from 2,6-diformylpyridine N-oxide and 4-amino-antipyrine were synthesized. These complexes with general formula REL(NO3)3 (RE=La, Pr, Eu, Tb, Er, Y) were characterized by elemental analysis, IR, UV, molar conductance measurements and antimicrobial activity.

  3. Fabrication and sealing performance of rare-earth containing glass–ceramic seals for intermediate temperature solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Abdoli, H.; Alizadeh, P.; Agersted, Karsten

    2014-01-01

    The opportunity of using two rare-earth metal oxides in an aluminosilicate glass for seal applications was investigated in this work. Substitution of La2O3 with Y2O3 in the system changed thermal and physical properties such as transition temperature, flowing behavior, and thermal expansion. The ...

  4. Rare earth metal doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures

    Institute of Scientific and Technical Information of China (English)

    A Rangaswamy; Putla Sudarsanam; Benjaram M Reddy

    2015-01-01

    In this work, the influence of trivalent rare-earth dopants (Sm and La) on the structure-activity properties of CeO2 was thor-oughly studied for diesel soot oxidation. For this, an optimized 40%of Sm and La was incorporated into the CeO2 using a facile co-precipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction (XRD), transmission electron microscopy (TEM), Brumauer-Emmett-teller method (BET) surface area, X-ray pho-toelectron spectroscopy (XPS), Raman, and H2-temperature programmed reduction (TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline sin-gle phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm-and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants (Sm3+and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50%soot con-version temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were~790, 843 and 864 K (loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was at-tributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.

  5. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  6. Development of novel rare earth doped fluoride and oxide scintillators for two-dimensional imaging

    Institute of Scientific and Technical Information of China (English)

    A. Yoshikawa; T. Iguchi; G. Boulon; M. Nikd; T. Yanagida; Y. Yokota; K. Kamada; N. Kawaguchi; K. Fukuda; A. Yamazaki; K. Watanabe; A. Uritani

    2011-01-01

    Two topics were focused.The first one was about the gamma-ray scintillator,pr3+:Lu3Al5O12 (LuAG).The second one was about neutron scintillator,Ce3+:6LiCaAlF6 and Eu2+:6LiCaAlF6 (6LiCAF).Those scintillators have been developed very recently for modem imaging applications in the medical and homeland security fields.In both cases,the rare earth ions are playing the crucial role as emission centers.Pr3+ in LuAG provided fast 5d→4f transition providing noticeably shorter decay time than that of Ce3+.Among several candidate hosts,LuAG showed the best performance.Bulk crystal growth,basic scintillation properties,two-dimensional gamma-ray imaging and positron emission mammography (PEM) application were demonstrated.Due to the international situation,the homeland security was compromized by illicit traffic of explosives,drugs,nuclear materials,etc.and the ways to its improvement became an important R&D topic.For this purpose the Ce and Eu doped LiCAF appeared competitive candidates.Especially,when substitution of 3He neutron detectors was considered,the discrimination ability of gamma-ray from alpha-ray was important.Bulk crystal growth,basic scintillation properties and two-dimensional neutron imaging were demonstrated.

  7. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  8. The oxidation of chromium(III) by hydroxyl radical in alkaline solution. A stopped-flow and pre-mix pulse radiolysis study

    DEFF Research Database (Denmark)

    Zhao, Zhongwei; Rush, J.D.; Holcman, J.

    1995-01-01

    The pK(a) for the equilibrium Cr(III)(H2O)3(OH)3(OH)3 reversible Cr(III)(H2O)2(OH)4- + H+ was determined to be 12.8 at 25-degrees-C. The dimerization of the two monomeric forms was studied in alkaline solutions using the stopped-flow method: k2[Cr(III)(H2O)3(OH)3 + Cr(III)(H2O)3(OH)3] = (2.5 +/- ......(VI)-(O-Cr(III))n]. Furthermore, a second-order reaction between two Cr(IV) monomers to yield a species which may be either a (Cr)2IV,IV or a (Cr)2III,V mixed-valence dimer was observed. The corresponding spectra in both the UV and visible range were determined....

  9. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  10. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  11. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  12. Graphene oxide-rare earth metal-organic framework composites for the selective isolation of hemoglobin.

    Science.gov (United States)

    Liu, Jia-Wei; Zhang, Yue; Chen, Xu-Wei; Wang, Jian-Hua

    2014-07-09

    Graphene oxide-La(BTC)(H2O)6 (H3BTC=1,3,5-benzenetricarboxylic acid) metal organic framework composites (LaMOF-GOn, n = 1-6, corresponding to the percentage of GO at 1, 2, 3, 4, 5, and 10%) are prepared through a simple and large-scale method at room temperature. The obtained composites are characterized by ATR-FTIR spectra, SEM, XRD, TGA, and N2 adsorption-desorption isotherm. The presence of GO significantly changes the morphologies of the composites from spindly rectangular rods to irregular thick blocks and increases their surface area from 14.8 cm(2) g(-1) (LaMOFs) to 26.6 cm(2) g(-1) (LaMOF-GO3), whereas at the same time, the crystalline structure of La(BTC)(H2O)6 is maintained. As a novel solid-phase adsorbent the LaMOF-GO composite exhibits outstanding adsorption properties for proteins. The strong hydrophobic interaction, especially π-π interaction between protein and the composite, is the main driving force for protein adsorption. In particular, highly selective isolation of hemoglobin (Hb) is achieved by using LaMOF-GO3 composite as sorbent in 4 mM B-R buffer containing 0.05 mol L(-1) NaCl at pH 8. The retained Hb could be effectively recovered with a 1 mM B-R buffer at pH 10, giving rise to a recovery of 63%. The practical applicability of the LaMOF-GO3 composite is demonstrated by the selective adsorption of Hb from human whole blood, and SDS-PAGE assays indicate that Hb could be selectively isolated with high purity from biological samples of complex matrixes.

  13. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  14. Kinetics and mechanism of uncatalyzed and ruthenium(III)-catalyzed oxidation of formamidine derivative by hexacyanoferrate(III) in aqueous alkaline medium

    Indian Academy of Sciences (India)

    AHMED FAWZY

    2016-05-01

    The catalytic effect of ruthenium(III) on the oxidation of N,N-dimethyl-N-(4H-1,2,4-triazol-3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkalinemedium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF],whereas the reaction orders with respect to [ATF] and $[OH^{-}]$ were apparently less than unity over the concentrationrange studied. A first order dependence with respect to $[Ru^{III}]$ was obtained. Increasing ionic strengthincreased the rate of uncatalyzed reaction and decreased the rate of the catalyzed one Plausible mechanisticschemes of oxidation reactions have been proposed. In both cases, the final oxidation products are identifiedas aminotriazole, dimethyl amine and carbon dioxide. The rate laws associated with the reaction mechanismsare derived. The reaction constants involved in the different steps of the mechanisms were calculated. Theactivation and thermodynamic parameters have been computed and discussed.

  15. The electro-oxidation of the mixture of formaldehyde and 2-propanol on gold (100 and (111 single crystal planes in alkaline medium

    Directory of Open Access Journals (Sweden)

    BRANISLAV Z. NIKOLIC

    2000-12-01

    Full Text Available The effect of formaldehyde on the oxidation of 2-propanol and vice versa on gold single crystal planes (100 and 111 was studied. An activating effect in the reaction of the simultaneous oxidation of 2-propanol and formaldehyde was obtained on a gold (100 plane. In the case of a gold (111 electrode, the activation effect was not obtained. It was concluded that the adsorption of formaldehyde on the electrode surface prevents the adsorption of poisoning species formed during the electro-oxidation of 2-propanol on the Au(100 plane, while this is not the case on the Au(111 plane. The different behaviour is caused by the difference in the symmetry of the surface atoms of these two Au single-crystal planes.

  16. CO Oxidation and Subsequent CO2 Chemisorption on Alkaline Zirconates: Li2 ZrO3 and Na2 ZrO3

    Energy Technology Data Exchange (ETDEWEB)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-09-21

    Here, two different alkaline zirconates (Li2ZrO3 and Na2ZrO3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li2ZrO3 and Na2ZrO3, under different O2 partial flows. We found results clearly showed that Na2ZrO3 possesses much better catalytic properties than Li2ZrO3. After the CO-O2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na2ZrO3 ceramic. The results confirmed that Na2ZrO3 is able to work as a bifunctional material (CO oxidation and subsequent CO2 chemisorption), although the kinetic CO2 capture process was not the best one under the physicochemical condition used in this case. For Na2ZrO3, the best CO conversions were found between 445 and 580 °C (100%), while Li2ZrO3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na2ZrO3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.

  17. Rare Earth Oxide-Treated Fullerene and Titania Composites with Enhanced Photocatalytic Activity for the Degradation of Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    MENG Zada; ZHU Lei; CHOI Jong-geun; PARK Chong-yeon; OH Won-chun

    2011-01-01

    Rare earth oxide-treated fullerene and titania composites (Y-fullerene/TiO2) were prepared by the sol-gel method.The products had interesting surface compositions.X-ray diffraction patterns of the composites showed that the Y-fullerene/TiO2 composites contained a single and clear anatase phase.The surface properties were observed by scanning electron microscopy,which gave a characterization of the texture on the Y-fullerene/TiO2 composites and showed a homogenous distribution of titanium particles.The energy-dispersive X-ray spectra showed the presence of C and Ti with strong Y peaks.The composite obtained was also characterized with transmission electron microscopy and UV-Vis spectroscopy.The photocatalytic results showed that the y-fullerene/TiO2 composites had excellent activity for the degradation of methylene blue under visible light irradiation.This was attributed to both the effects on the photocatalysis of the supported TiO2 by charge transfer by the fullerene,and the introduction of yttrium to enhance photo-generated electron transfer.

  18. One-Pot Terpolymerization of CO2, Propylene Oxide and Lac- tide Using Rare-earth Ternary Catalyst

    Institute of Scientific and Technical Information of China (English)

    顾林; 秦玉升; 高永刚; 王献红; 王佛松

    2012-01-01

    A convenient one-pot terpolymerization of CO2, propylene oxide (PO), and L-lactide (L-LA) in short polymerization time (10 h or shorter) to afford poly(propylene carbonate-lactide) with excellent mechanical property and thermal stability using Y(CCl3COO)3-ZnEtz-glycerin rare-earth ternary catalyst is reported. The yield of the co- polymerization was between 69.7 and 111.7 g/(g Zn), corresponding to L-LA/PO molar feed ratio varying from 0 to 0.1, and the number average molecular weight was between 5.5×10^4 and 11.9 × 10^4. The L-LA content in the ter- polymer increased from 1.1% to 34.7% when L-LA/PO molar feed ratio changed from 0.01 to 0.1. Introducing L-LA as the third comonomer could significantly improve the mechanical strength and thermal stability of PPC. For the terpolymer obtained from L-LA/PO molar feed ratio of 1:50, the elongation at break reached 40.5%, which is 3 times of that of pure PPC, and the thermal decomposition temperature increased by 32℃ compared with pure PPC.

  19. INFLUENCE OF DIALKYLZINC IN RARE-EARTH TERNARY CATALYST ON THE COPOLYMERIZATION OF CARBON DIOXIDE AND PROPYLENE OXIDE

    Institute of Scientific and Technical Information of China (English)

    Dong Xie; Xian-hong Wang; Xiao-jiang Zhao; Fo-song Wang

    2005-01-01

    Rare-earth ternary catalysts Y(CC13COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, ali(n-butyl)zinc, di(i-propyl)zinc, di(i-butyl)zinc, di(s-butyl)zinc,respectively. The Y(CCl3COO)3-ZnR2-glycerin catalysts displayed the highest catalytic activity at the molar ratio of Y(CCl3COO)3:ZnR2:glycerin = 1:20:10. In the same copolymerization condition,catalysts containing dialkylzincs with branched alkyl group showed lower catalytic activity than that with primary alkyl group. For those catalysts including dialkylzincs with primary alkyl group, their catalytic activity decreases with increasing number of carbon atom in the alkyl group with the following sequence: Y(CCl3COO)3-ZnEt2-glycerin > Y(CCl3COO)3-Zn(n-Pr)2-glycerin>Y(CCl3COO)3-Zn(n-Bu)2-glycerin. However, the alkyl group in the dialkylzinc does not influence the insertion of PO into the propagation chain end.

  20. Thin films of rare-earth (Y, La, Ce, Pr, Nd, Sm) oxides formed by the spray-ICP technique

    Science.gov (United States)

    Suzuki, M.; Kagawa, M.; Syono, Y.; Hirai, T.

    1991-07-01

    Thin films of Y 2O 3, La 2O 3, CeO 2, PrO 2, Nd 2O 3 and Sm 2O 3 were synthesized by injecting ultrasonically atomized metal nitrate solutions into a high temperature inductively coupled RF plasma above 5000 K generated under atmospheric pressure (the spray-ICP technique). Fused quartz plates and single crystal sapphire plates giving no background X-ray reflection peaks were used as substrates. About 0.4 μm thick transparent films could be prepared by 10 min of running. The films of CeO 2 and PrO 2, both belonging to the cubic flourite type, revealed (100) and (111) orientations, respectively. With the remaining oxides having A (hexagonal), B (monoclinic) and C (cubic) rare-earth structures, film orientations were A (001) for La 2O 3, A (001)+C (111) for Nd 2O 3, and C (111) for Y 2O 3. Sm 2O 3 films were composed of a phase with C (111) and an extra phase with an orientation close to (001) of A-Sm 2O 3 or its equivalent, (20 overline1) of B-Sm 2O 3.

  1. A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, L.; Ivanov, I.; Andreeva, D. [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 11, 1113 Sofia (Bulgaria); Pantaleo, G.; Venezia, A.M. [Istituto per lo Studio dei Materiali Nanostrutturati, CNR, I-90146 Palermo (Italy); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico D. F. (Mexico)

    2009-08-15

    The preferential oxidation of CO in H{sub 2}-rich gas was studied over gold catalysts supported on ceria modified by rare earths (RE = La, Sm, Gd and Y). The ceria supports were prepared by mechanochemical activation or co-precipitation. The amount of RE{sub 2}O{sub 3} was 10 wt%. Gold (2 wt%) was added by the deposition-precipitation method. The samples were characterized using XRD, HRTEM, HAADF, TPR, and Raman spectroscopy. It was established that catalysts prepared by co-precipitation were more active than samples made by mechanochemical activation. A gold catalyst on yttrium-modified ceria, prepared by co-precipitation, exhibited the highest catalytic activity and selectivity, and high stability. No substantial differences in the size distribution and average size of the nanogold particles in the studied catalysts were observed. The main reason for the differences in PROX activity of these gold catalysts was searched into the role of the ceria supports, depending on the preparation method, and the nature of the modifier. (author)

  2. Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiali; Wang, Jinwei, E-mail: wangjw@ustb.edu.cn; Yuan, Hongye

    2013-11-01

    Oxide films on Ti6Al4V alloy are prepared using sodium hydroxide–sodium silicate as the base electrolyte with addition of aminopropyl trimethoxysilane (APS) as additive by potentiostatic anodizing under 10 V. APS is incorporated into the films during anodizing and the surface morphology of the oxide films is changed from particle stacked to honeycomb-like porous surfaces as shown by scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDX). The surface roughness and aminopropyl existence on the oxide films result in their differences in wettability as tested by the surface profile topography and contact angle measurements. The anti-abrasive ability of the anodic films is improved with the addition of APS due to its toughening effects and serving as lubricants in the ceramic oxide films as measured by ball-on-disk friction test. Also, potentiodynamic corrosion test proves that their anticorrosive ability in 3.5 wt.% NaCl is greatly improved as reflected by their much lower corrosion current (I{sub corr}) and higher corrosion potential (E{sub corr}) than those of the substrate.

  3. Double layer effects in electrocatalysis: the oxygen reduction reaction and ethanol oxidation reaction on Au(111), Pt(111) and Ir(111) in alkaline media containing Na and Li cations.

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pietro P.; Strmcnik, Dusan; Jirkovsky, Jakub S.; Connell, Justin G.; Stamenkovic, Vojislav; Markovic, Nenad

    2016-03-15

    Oxygen reduction and ethanol oxidation reactions were studied on Au(111), Pt(111) and Ir(111) in alkaline solutions containing sodium and/or lithium cations. By keeping the same (111) surface orientation and exploring oxophilicity trends and non-covalent interactions between OHad and alkali metal cations (AMCn+), we were able to gain deep insights into the multiple roles that OHad plays in these important electrocatalytic reactions. Cyclic voltammetry experiments revealed that OHad formation initiates at distinct electrode potentials, governed by the oxophilicity of the specific metal surface, with further OHad adlayer stabilization by non-covalent alkali-cation interactions and affecting the formation of a “true oxide” layer at higher electrode potentials. Although OHad is a simple spectator for the ORR, it promotes the ethanol oxidation reaction (EOR) at lower potentials and act as spectator at high OHad coverages. By changing the alkali metal cation at the interface (Li+) on more oxophilic surfaces, it was possible to promote the EOR even more, relative to Na+, without changing the product distribution for the reaction. This cation effect suggests that OHad---Li+(H2O)x clusters can stabilize the ethoxide adlayer, thus improving the EOR activity. Our results indicate the importance of the entire electrochemical interface in determining the electrocatalytic activity during reaction.

  4. Catalytic activity of ruthenium(III) on the oxidation of an anticholinergic drug-atropine sulfate monohydrate by copper(III) periodate complex in aqueous alkaline medium - decarboxylation and free radical mechanism.

    Science.gov (United States)

    Byadagi, Kirthi S; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2013-01-01

    Atropine sulfate monohydrate (ASM) is an anticholinergic drug, having a wide spectrum of activity. Hence, the kinetics of oxidation of ASM by diperiodatocuperate (DPC) in the presence of micro (10-6) amounts of Ru(III) catalyst has been investigated spectrophotometrically in aqueous alkaline medium at I = 0.50 mol dm-3. The reaction between DPC and ASM exhibits 1:2 stoichiometry (ASM:DPC) i. e., one mole of ASM require two moles of DPC to give products. The main oxidation products were confirmed by spectral studies. The reaction is first order with respect to [DPC] and [Ru(III)], while the order with respect to [ASM] and [OH-] was less than unity. The rates decreased with increase in periodate concentration. The reaction rates revealed that Ru(III) catalyzed reaction was about seven-fold faster than the uncatalyzed reaction. The catalytic constant (KC) was also determined at different temperatures. A plausible mechanism is proposed. The activation parameters with respect to slow step of the mechanism were calculated and the thermodynamic quantities were also determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive Cu(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species.

  5. Influence of the Type and Method of Injection of Oxides Admixtures of Rare Earth Elements on Colour and other Properties of Dental Porcelain

    Institute of Scientific and Technical Information of China (English)

    Ekaterina A. Kulinich; Tamara A. Khabas; Vladimir I. Vereschagin

    2010-01-01

    A glassceramic material, which can be used in stomatology for production of dentinal layer of the dental crown multilayer coating, was received. In order to colour the material the admixtures of Tb and Ce compounds were used, as well as composite admixture representing a mixture of Ce, Nd and La oxides. It was demonstrated that the admixture of Tb oxide tones the material only when it is used together with Ce oxide. It was found that the more admixtures of rare earth elements oxides are contained in the sample composition, the higher the colour strength of the sintered material is. The wave length for the test samples is in the range of 600~650 nm, which corresponds to the yellow-orange and orange-red spectral range.

  6. High performance of alkaline anion-exchange membranes based on chitosan/poly (vinyl) alcohol doped with graphene oxide for the electrooxidation of primary alcohols

    OpenAIRE

    García Cruz, Leticia; Casado Coterillo, Clara; Irabien Gulías, José Ángel; Montiel Leguey, Vicente; Iniesta Valcárcel, Jesús

    2016-01-01

    Mixed matrix membranes (MMM) based on chitosan (CS) and poly (vinyl) alcohol (PVA) with a 50:50 w/w ratio doped with graphene oxide (GO) are prepared by solution casting and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water uptake, alcohol permeability, ion exchange capacity (IEC) and OH− conductivity measurements. The SEM analysis revealed a dense MMM where the GO nanosheets were well dispersed over the entire polymer matrix...

  7. Systematic Structural Change in Selected Rare Earth Oxide Pyrochlores as Determined by Wide-Angle CBED and a Comparison with the Results of Atomistic Computer Simulation

    Science.gov (United States)

    Tabira, Yasunori; Withers, Ray L.; Minervini, Licia; Grimes, Robin W.

    2000-08-01

    An unknown oxygen atom fractional co-ordinate characteristic of the pyrochlore structure type has been determined for selected rare earth zirconate and titanate pyrochlores via a systematic row wide-angle CBED technique and shown to vary systematically with rare earth ion size. In the case of the titanate pyrochlore Gd2Ti2O7, the obtained results contrast with previously published X-ray results. Atomistic computer simulation is used to predict the value of the same parameter for a wide range of oxide pyrochlores. Comparison of calculated values with experimentally determined values shows that the general trends are correctly predicted although there appears to be systematic underestimation of both the observed values (by approximately 0.007) as well as their rate of change with rare earth ion size. Cation anti-site disorder is proposed as the origin of these discrepancies.

  8. Facile electrochemical co-deposition of a graphene-cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions.

    Science.gov (United States)

    Guo, Si-Xuan; Liu, Yuping; Bond, Alan M; Zhang, Jie; Esakki Karthik, P; Maheshwaran, I; Senthil Kumar, S; Phani, K L N

    2014-09-21

    A facile electrochemical co-deposition method has been developed for the fabrication of graphene-cobalt nanocomposite modified electrodes that achieve exceptionally efficient water oxidation in highly alkaline media. In the method reported, a graphene-cobalt nanocomposite film was deposited electrochemically from a medium containing 1 mg ml(-1) graphene oxide, 0.8 mM cobalt nitrate and 0.05 M phytic acid (pH 7). The formation of the nanocomposite film was confirmed using electrochemical, Raman spectroscopic and scanning electron microscopic techniques. The nanocomposite film exhibits excellent activity and stability towards water oxidation to generate oxygen in 1 M NaOH aqueous electrolyte media. A turn over frequency of 34 s(-1) at an overpotential of 0.59 V and a faradaic efficiency of 97.7% were deduced from analysis of data obtained by rotating ring disk electrode voltammetry. Controlled potential electrolysis data suggests that the graphene supported catalyst exhibits excellent stability under these harsh conditions. Phytate anion acts as stabilizer for the electrochemical formation of cobalt nanoparticles. Fourier transformed ac voltammetry allowed the redox chemistry associated with catalysis to be detected directly under catalytic turnover conditions. Estimates of formal reversible potentials obtained from this method and derived from the overall reactions 3Co(OH)2 + 2OH(-) ⇌ Co3O4 + 4H2O + 2e(-), Co3O4 + OH(-) ⇌ 3CoOOH + e(-) and CoOOH + OH(-) ⇌ CoO2 + H2O + e(-) are 0.10, 0.44 and 0.59 V vs. Ag/AgCl, respectively.

  9. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  10. 纳米管稀土氧化物的制备及应用%The preparation and applications of rare earth oxide nanotubes

    Institute of Scientific and Technical Information of China (English)

    莫尊理; 蒲斌; 蒋彩弟; 郭瑞斌

    2013-01-01

    Rare earth oxide has many excellent properties and great application value,because of its unique opti-cal,electric and chemical properties,making it has great application prospects in catalysis,luminescence,mag-netism.If the rare earth oxide was prepared into a lower dimension and high specific surface area of one dimen-sional nanotubes,it was possible to enhance the performance in various aspects,the development and applica-tion prospect was very fascinated.This article summarized an overview of the preparation method of rare earth oxide nanotubes,and introduces the progress of rare earth oxide nanotubes in catalysis,luminescence and mag-netic applications.Finally discussed the need study problems and direction.%稀土氧化物具有其独特的光、电等化学性质,在催化、发光、磁性等方面有很大的应用前景。如果将稀土氧化物制备成具有低的维数和高的比表面积的一维纳米管状,有可能增强其各方面的性能,它的开发和应用前景十分喜人。综述了稀土氧化物纳米管的制备方法,并介绍了稀土氧化物纳米管在催化、发光和磁性方面应用的进展,最后论述了还需要研究的问题和方向。

  11. Development of an optical thermal history coating sensor based on the oxidation of a divalent rare earth ion phosphor

    Science.gov (United States)

    Yáñez-González, Álvaro; Ruiz-Trejo, Enrique; van Wachem, Berend; Skinner, Stephen; Beyrau, Frank; Heyes, Andrew

    2016-11-01

    The measurement of temperatures in gas turbines, boilers, heat exchangers and other components exposed to hot gases is essential to design energy efficient systems and improve maintenance procedures. When on-line measurements, such as those performed with thermocouples and pyrometers, are not possible or inconvenient, the maximum temperatures of operation can be recorded and measured off-line after operation. Although thermal paints have been used for many years for this purpose, a novel technique based on irreversible changes in the optical properties of thermographic phosphors, can overcome some of the disadvantages of previous methods. In particular, oxidation of the divalent rare earth ion phosphor BaMgAl10O17:Eu (BAM:Eu) has shown great potential for temperature sensing between 700 °C and 1200 °C. The emission spectra of this phosphor change with temperature, which permits to define an intensity ratio between different lines in the spectra that can be used as a measurand of the temperature. In this paper, the study of the sensing capabilities of a sensor coating based on BAM:Eu phosphor material is addressed for the first time. The sensitivity of the intensity ratio is investigated in the temperature range from 800 °C to 1100 °C, and is proved to be affected by ionic diffusion of transition metals from the substrate. The use of an interlayer made of zirconia proves efficient in reducing ionic diffusion and coatings with this diffusion barrier present sensitivity comparable to that of the powder material.

  12. In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    A. C. Gómez-Monsiváis

    2017-03-01

    Full Text Available Currently, the ethanol electro-oxidation reaction has attracted considerable attention in fuel cells because of new green ethanol synthetic methods based on biomass processes that have emerged. In this study, PtFe/C and Pt/C nanoparticles were synthesized by a chemical reduction method and tested in the ethanol electro-oxidation reaction. Furthermore, the electrocatalytic effect of the PtFe bimetallic catalyst was analyzed by in situ surface-enhanced Raman spectroscopy (SERS coupled to an electrochemical cell. X-ray diffractograms showed typical face-centered cubic structures with crystallite sizes of 3.31 and 3.94 for Pt/C and PtFe/C, respectively. TEM micrographs revealed nanoparticle sizes of 2 ± 0.4 nm and 3 ± 0.6 nm for Pt/C and PtFe/C respectively. PtFe/C exhibited a Pt90Fe10 composition by both X-ray fluorescence and energy-dispersive X-ray spectroscopy. A better electrocatalytic activity as function of concentration was obtained through the incorporation of a small amount of Fe into the Pt lattice and the presence of Fe2+/Fe3+ (observed by X-ray photoelectron spectroscopy. According to SERS experiments, the presence of these iron species promotes the chemisorption of ethanol, the formation of formic acid as main product and renewal of the catalytic sites, resulting in current densities that were at least three fold higher than the values obtained for the Pt/C nanocatalyst.

  13. Titanium corrosion in alkaline hydrogen peroxide environments

    Science.gov (United States)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  14. Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: Towards fluorosis mitigation.

    Science.gov (United States)

    Izuagie, Anthony A; Gitari, Wilson M; Gumbo, Jabulani R

    2016-08-23

    The quest to reduce fluoride in groundwater to WHO acceptable limit of 1.5 mg/L to prevent diseases such as teeth mottling and skeletal fluorosis was the motivation for this study. Al/Fe oxide-modified diatomaceous earth was prepared and its defluoridation potential evaluated by batch method. The sorbent with pHpzc 6.0 ± 0.2 is very reactive. The maximum 82.3% fluoride removal attained in 50 min using a dosage of 0.3 g/100 mL in 10 mg/L fluoride was almost attained within 5 min contact time; 81.3% being the percent fluoride removal at 5 min contact time. The sorbent has a usage advantage of not requiring solution pH adjustment before it can exhibit its fluoride removal potential. A substantial amount of fluoride (93.1%) was removed from solution when a sorbent dosage of 0.6 g/100 mL was contacted with 10 mg/L fluoride solution for 50 min at a mixing rate of 200 rpm. The optimum adsorption capacity of the adsorbent was 7.633 mg/g using a solution containing initially 100 mg/L fluoride. The equilibrium pH of the suspensions ranged between 6.77 and 8.26 for 10 and 100 mg/L fluoride solutions respectively. Contacting the sorbent at a dosage of 0.6 g/100 mL with field water containing 5.53 mg/L at 200 rpm for 50 min reduced the fluoride content to 0.928 mg/L-a value below the upper limit of WHO guideline of 1.5 mg/L fluoride in drinking water. The sorption data fitted to both Langmuir and Freundlich isotherms but better with the former. The sorption data obeyed only the pseudo-second-order kinetic, which implies that fluoride was chemisorbed.

  15. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  16. High temperature oxidation resistance of rare earth chromite coated Fe-20Cr and Fe-20Cr-4Al alloys

    Directory of Open Access Journals (Sweden)

    Marina Fuser Pillis

    2007-09-01

    Full Text Available Doped lanthanum chromite has been used in solid oxide fuel cell (SOFC interconnects. The high costs involved in obtaining dense lanthanum chromite have increased efforts to find suitable metallic materials for interconnects. In this context, the oxidation behavior of lanthanum chromite coated Fe-20Cr and Fe-20Cr-4Al alloys at SOFC operation temperature was studied. Isothermal oxidation tests were carried out at 1000 °C for 20, 50 and 200 hours. Cyclic oxidation tests were also carried out and each oxidation cycle consisted of 7 hours at 1000/°C followed by cooling to room temperature. The oxidation measurements and the results of SEM/EDS as well as XRD analyses indicated that lanthanum chromite coated Fe-20Cr and Fe-20Cr-4Al alloys were significantly more resistant to oxidation compared with the uncoated alloys.

  17. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System....... H- is stable with respect to oxide and halide anions but, among cations only with respect to oxides and halides of strongly electropositive metals such as alkaline, alkaline-earth and main group III metals. H- is only stable in combination with transition metal ions of certain elements...... in their lowest positive oxidation state. Mixed oxide/hydride containing perovskites may thus exist. Steinsvik et al. have recently suggested a defect model for a perovskite including substitutional hydride ions on the oxygen site, H-O(.), and protons associated with a lattice oxygen, OHO.. The defect equations...

  18. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    Science.gov (United States)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  19. Synthesis, characterization, and thermal properties of homoleptic rare-earth guanidinates: promising precursors for MOCVD and ALD of rare-earth oxide thin films.

    Science.gov (United States)

    Milanov, Andrian P; Fischer, Roland A; Devi, Anjana

    2008-12-01

    Eight novel homoleptic tris-guanidinato complexes M[(N(i)Pr)(2)CNR(2)](3) [M = Y (a), Gd (b), Dy (c) and R = Me (1), Et (2), (i)Pr (3)] have been synthesized and characterized by NMR, CHN-analysis, mass spectrometry and infrared spectroscopy. Single crystal structure analysis revealed that all the compounds are monomers with the rare-earth metal center coordinated to six nitrogen atoms of the three chelating guanidinato ligands in a distorted trigonal prism geometry. With the use of TGA/DTA and isothermal TGA analysis, the thermal characteristics of all the complexes were studied in detail to evaluate their suitability as precursors for thin film deposition by MOCVD and ALD. The (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) showed excellent thermal characteristics in terms of thermal stability and volatility. Additionally, the thermal stability of the (i)Pr-Me(2)N-guanidinates of Y and Dy (1a, c) in solution was investigated by carrying out NMR decomposition experiments and both the compounds were found to be remarkably stable. All these studies indicate that (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) have the prerequisites for MOCVD and ALD applications which were confirmed by the successful deposition of Gd(2)O(3) and Dy(2)O(3) thin films on Si(100) substrates. The MOCVD grown films of Gd(2)O(3) and Dy(2)O(3) were highly oriented in the cubic phase, while the ALD grown films were amorphous.

  20. Reaproveitamento de óxidos de manganês de pilhas descartadas para eletrocatálise da reação de redução de oxigênio em meio básico Use of manganese oxides recovered from spent batteries in electrocatalysis of oxygen reduction reaction in alkaline medium

    Directory of Open Access Journals (Sweden)

    Daniel C. Rascio

    2010-01-01

    Full Text Available The oxygen reduction reaction was studied in alkaline media using manganese oxides obtained from spent batteries as electrocatalysts. Three processes were used to recover manganese oxides from spent batteries. The particles obtained were in the range from 8 to 11 nm. The electrochemical experiments indicated a good electrocatalytic activity toward oxygen reduction using the different samples and showing approximately a direct transference of 4 electrons during the process. Even though all the processes were efficient, the best result was observed for the prepared sample using reactants of low cost.

  1. Extraction of rare earth elements from their oxides using organophosphorus reagent complexes with HNO_3 and H_2O in supercritical CO_2

    Institute of Scientific and Technical Information of China (English)

    段五华; 曹丕佳; 朱永(贝睿)

    2010-01-01

    Direct extraction of metals from solids with complexing agents in supercritical CO2(SC-CO2) has recently attracted interests in separation,purification,recovery,and analysis of metals.In the present study,the static/dynamic extraction of rare earth elements(Nd,Ce) from their oxides(Nd2O3,CeO2) with organophosphorus complexes with HNO3 and H2O in SC-CO2 was investigated.The static extraction efficiency of Nd from Nd2O3 with the tri-n-butylphosphate(TBP)-HNO3 complex could reach 95% under optimized experiment...

  2. Evaluation of rare earth oxides doping SnO2.(Co1/4,Mn3/4O-based varistor system

    Directory of Open Access Journals (Sweden)

    Alessandro Dibb

    2006-09-01

    Full Text Available The present paper aims to verify the inuence of rare earth oxide such as lanthanum (La2O3 and neodymium (Nd2O3 doping SnO2 + 0.25%CoO + 0.75%MnO2 + 0.05%Ta2O5 system. The analysis focus on microstructural inuence on electrical properties. Microstructural analysis were made by using Transmission Electron Microscopy (TEM at different regions of the samples. From such analysis it was found that La2O3 and Nd2O3 oxides cause heterogeneous segregation and precipitation at grain boundary concerning cobalt and manganese, decreasing the nonohmic electrical properties, as discussed, likely due to the increasing of grain boundary non-active potential barriers.

  3. 二价碱土金属氟化物对Er3+/Tm3+/Yb3+共掺氟氧锗酸盐玻璃热稳定性和光谱特性影响的研究%Effect of Bivalent Alkaline Earth Fluorides Introduction on Thermal Stability and Spectroscopic Properties of Er3+/Tm3+/Yb3+ Co-Doped Oxyfluorogermanate Glasses

    Institute of Scientific and Technical Information of China (English)

    胡曰博; 张新娜; 周大利; 焦清; 王荣飞; 黄劲峰; 龙晓波; 邱建备

    2012-01-01

    制备了分别含有MgF2,CaF2,SrF2或BaF2的Er3+/Tm3+/Yb3+共掺氟氧锗酸盐玻璃试样和包含BaF2纳米晶的玻璃陶瓷试样,所制备试样均具有良好的透光性.对试样的热稳定性和上转换发光特性进行了研究.通过分析试样的吸收光谱发现,随着所含二价阳离子原子量的增大,试样的紫外吸收截止波长明显向短波方向移动.结果显示:通过改变所含二价碱土金属离子的种类能够对激发光的颜色进行调节,特别值得关注的是Mg2+的影响;结果证实:通过对包含二价碱土金属的玻璃进行微晶化处理或者增加二价碱土金属的含量均能提高上转换发光的强度.%Transparent Er3+ /Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses alone containing MgF2, CaF2, SrF2 or BaF2 and nano-glass-ceramics only containing BaF2 were prepared. The thermal stabilities and the up-conversion emission properties of the samples were investigated. Analyses of absorbance spectra reveal that the UV cutoff band moves slightly to shortwave band with the doping bivalent cation mass increasing. The results show that the emission color can be adjusted by changing the alkaline earth cation species in the glass matrixes, especially as Mg2+ is concerned, and the emission intensity can increase notably by heating the glass containing alkaline-earth fluoride into glass ceramic containing alkaline-earth fluoride nanocrystals or increasing the content of bivalent alkaline earth fluorides.

  4. Removal of ammonia from aqueous solutions by catalytic oxidation with copper-based rare earth composite metal materials: catalytic performance, characterization, and cytotoxicity evaluation

    Institute of Scientific and Technical Information of China (English)

    Chang-Mao Hung

    2011-01-01

    Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater.For this investigation of copper-based rare earth composite metal materials,aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reactor with a catalyst prepared by the co-precipitation of copper nitrate,lanthanum nitrate and cerium nitrate.Barely any of the dissolved ammonia was removed by wet oxidation without a catalyst,but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa.The catalytic redox behavior was determined by cyclic voltammetry (CV).Furthermore,the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX),which showed that the catalytic behavior was related to the metal oxide properties of the catalyst.In addition,the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested,and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro.No apparent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.

  5. Oxide cathode mechanisms: Electronic and structural features of oxide cathode surfaces

    Science.gov (United States)

    Cunningham, J.; Nunan, J.

    1985-01-01

    This report describes studies made upon systems selected for their ability to model various important features of oxide cathodes and the mechanisms which enable them to function as efficient thermionic emitters at moderate temperatures. An account is given of experiments which aimed to simulate conditions upon the surfaces of polycrystalline samples of alkaline earth oxides (e.g., SrO and BaO/SrO or MgO and BaO/MgO) at various stages of their preparation in similiar fashion to that used in the thermal activation of oxide cathodes. Accounts are given of experiments which examined the interaction between the gases O2, N2O, H2 or Ch4 and appropriately preactivated surface of pure and mixed alkaline earth oxide samples. Accounts are given of experiments involving the controlled deposition in UHV conditions of zero-valent Ba ad-atoms-in amounts ranging from submonolayer to multilayer coverage - upon layers of SrO or BaO previously prepared in UHV conditions by evaporation of the corresponding metal and its subsequent oxidation. UPS spectra have been undertaken in order to examine surfaces of samples prepared by evaporation of barium metal or strontium metal and to study effects upon the UPS spectra by exposures to the gases N20, O2 and CH4.

  6. Effect of rare earth oxides and La{sup 3+} ion concentration on some properties of Ni–Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ateia, Ebtesam E., E-mail: ebtesam@sci.cu.edu.eg; Ahmed, M.A.; Salah, L.M.; El-Gamal, A.A.

    2014-07-15

    The effect of both the rare earth ions and the La{sup 3+} ion concentration on the dielectric properties of Ni{sub 0.5}Zn{sub 0.5}R{sub y}Fe{sub 2−y}O{sub 4}; 0.0≤y≤0.9, R=La, Yb, Dy and Ce is studied. All the samples are sintered at 1250 °C with heating rate of 4 °C/min and sintering time of 35 h. The ionic radii of the used rare earth (Yb{sup 3+}, Dy{sup 3+}, Ce{sup 3+} and La{sup 3+}) are too large to occupy the octahedral site. They form a secondary phases on the grain boundaries. The X-ray data shows that the lattice parameter for the un- substituted ferrite sample is larger than the substituted one, which is the main feature for all rare earth elements. The dielectric properties show that the pure sample has a larger dielectric constant as well as a larger valence exchange with respect to substituted one. This means that introducing rare earth ions into the samples decreases ε′ owing to the decreasing Fe–Fe interaction. The lowest conduction for La substituted sample is attributed to the nature of La{sup 3+} ions which is insoluble in the spinel lattice so it hindered Fe–R (3d–4f) coupling. This feature can help to obtain well applicable ferrites.

  7. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings:A review

    Institute of Scientific and Technical Information of China (English)

    MM Quazi; MA Fazal; ASMA Haseeb; Farazila Yusof; HH Masjuki; A Arslan

    2016-01-01

    Laser cladding is a promising photon-based surface engineering technique broadly utilized for fabricating harder and wear resistant composite coatings. In spite of excellent properties, the practical applications of laser claddings are relatively restricted when compared with well-established coating techniques because of their inherent defects identified as cracks, pores and inclusions. Sub-stantial evidence suggests that the incorporation of an appropriate amount of rare earth in laser claddings can remarkably prevent these defects. Additionally, the presence of rare earth in laser claddings can notably enhance tribo-mechanical properties such as sur-face hardness, modulus of elasticity, fracture toughness, friction coefficient and wear rate. In this literature review, the effect of rare earth in reducing dilution and cracks susceptibility of laser claddings in addition to microstructural refinement attained was examined. Mechanical and tribological properties of these claddings along with their underlying mechanism were discussed in detail. Finally, this article summarizes current applications of laser claddings based on rare earth and was concluded with future research directions.

  8. Effect of H2O on metal-silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for the oxidation state of the Earth and Mars

    Science.gov (United States)

    Clesi, V.; Bouhifd, M. A.; Bolfan-Casanova, N.; Manthilake, G.; Fabbrizio, A.; Andrault, D.

    2016-11-01

    This study investigates the metal-silicate partitioning of Ni, Co, V, Cr, Mn and Fe during core mantle differentiation of terrestrial planets under hydrous conditions. For this, we equilibrated a molten hydrous CI chondrite model composition with various Fe-rich alloys in the system Fe-C-Ni-Co-Si-S in a multi-anvil over a range of P, T, fO2 and water content (5-20 GPa, 2073-2500 K, from 1 to 5 log units below the iron-wüstite (IW) buffer and for XH2O varying from 500 ppm to 1.5 wt%). By comparing the present experiments with the available data sets on dry systems, we observes that the effect of water on the partition coefficients of moderately siderophile elements is only moderate. For example, for iron we observed a decrease in the partition coefficient of Fe (Dmet/silFe) from 9.5 to 4.3, with increasing water content of the silicate melt, from 0 to 1.44 wt%, respectively. The evolution of metal-silicate partition coefficients of Ni, Co, V, Cr, Mn and Fe are modelled based on sets of empirical parameters. These empirical models are then used to refine the process of core segregation during accretion of Mars and the Earth. It appears that the likely presence of 3.5 wt% water on Mars during the core-mantle segregation could account for ∼74% of the FeO content of the Martian mantle. In contrast, water does not play such an important role for the Earth; only 4-6% of the FeO content of its mantle could be due to the water-induced Fe-oxidation, for a likely initial water concentration of 1.8 wt%. Thus, in order to reproduce the present-day FeO content of 8 wt% in the mantle, the Earth could initially have been accreted from a large fraction (between 85% and 90%) of reducing bodies (similar to EH chondrites), with 10-15% of the Earth's mass likely made of more oxidized components that introduced the major part of water and FeO to the Earth. This high proportion of enstatite chondrites in the original constitution of the Earth is consistent with the 17O,48Ca,50Ti,62Ni

  9. Catalysis of the rare earth containing mixed oxides Ln2CuO4 in phenol hydroxylation

    Institute of Scientific and Technical Information of China (English)

    刘持标; 赵震; 叶兴凯; 吴越

    1997-01-01

    Mixed oxides Ln2CuO4±λ(Ln=La,Pr,Nd,Sm,Gd) with K2NiF4 structure were prepared Their crystal structures were studied with XRD and IR spectra.Meanwhile,the average valence of Cu ions and non stoichiometric oxygen (λ) were determined through chemical analyses.Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated.Results show that the catalysis of these mixed oxides has close relation with their structures and composition.Substitution of A site atom in Ln2CuO4λ has a great influence on then eatalysis in the phenol hydroxylation.

  10. An alkaline element

    Energy Technology Data Exchange (ETDEWEB)

    Arita, T.; Murakami, K.; Okha, K.

    1983-04-28

    A cathode with a dual layer active mass is installed in the disk shaped alkaline silver and zinc element. The first layer, which is turned towards the anode, contains 85 parts Ag2O, 5 parts electrolytic MnO2 and 10 parts graphite. The second layer, which contacts the bottom of the element, contains 35 parts Ag2O, 60 parts electrolytic MnO2 and 5 parts graphite. The electrical capacity of the first and second layers is 60 and 40, respectively. The first layer may be discharged with a high current density and the second layer with less current density. The element has high characteristics with comparatively low cost.

  11. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars

    Science.gov (United States)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.

    2017-01-01

    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to

  12. 生物活性稀土梯度涂层在碱液环境中的电极化后处理%Electric polarized post treatment of rare earth active bioceramic gradient coating in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    汪震; 刘其斌; 肖明; 杨邦成

    2011-01-01

    To improve the quality of rare earth active bioceramic gradient coatings,a method of electric polarized treatment(PAS) was used to post-process the gradient coatings fabricated by wide band laser cladding in alkali liquid.The phases and corrosion resistance of the bioceramic coatings were analyzed by XRD and an electrochemical analyzer.The bioceramic coatings were immersed in simulated body fluid(SBF) to examine its bioactivity and its electrical charge.The experimental results indicate that PAS treatment not only improves the crystallinity of the coatings,but also is favourable to transform additional phases into hydroxyapatite.PAS treatment exhibits a little effect on corrosion resistance of the bioceramic coatings.Compared with as-received coatings,the coatings treated by PAS are of better bioactivity and more negative charge.%为了改善活性生物稀土梯度涂层的质量,在碱液环境中采用电极化处理法(PAS)对宽带激光熔覆生物活性稀土梯度涂层进行后处理。利用XRD和电化学分析仪对涂层的相组成和耐腐蚀性进行了研究,通过模拟体液浸泡试验考察了生物陶瓷涂层的生物活性和涂层表面的电荷分布情况。结果表明,碱液环境中电极化处理法(PAS)能够提高涂层的结晶度,使涂层中的非晶相、杂相向羟基磷灰石转化。PAS对涂层的耐腐蚀性影响不大。与未处理涂层相比,PAS处理后的涂层生物活性更好,且涂层表面产生了更多的负电荷。

  13. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  14. Mechanosynthesis and mechanolysis of solid solutions of La{sub 2}O{sub 3} with some rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Todorowsky, D. [Sofia Univ. (Bulgaria). Khimicheski Fakultet; Terziev, A. [Sofia Univ. (Bulgaria). Khimicheski Fakultet; Minkova, N. [Sofia Univ. (Bulgaria). Khimicheski Fakultet

    1996-12-31

    The effect of the mechanoactivation on Y{sub 2}O{sub 3}, Nd{sub 2}O{sub 3} and CeO{sub 2}, on mixtures of La{sub 2}O{sub 3} with each of these oxides as well as on the solid solutions La{sub 2}O{sub 3}-CeO{sub 2} is studied. The activation causes a decrease of the individual oxides` unit cell parameters. The formation of solid solutions of La{sub 2}O{sub 3} with the oxides studied is found. Under the conditions of activation in air no decomposition of La{sub 2}O{sub 3}-CeO{sub 2} solid solution is detected. The solution is, however, destroyed when the activation is carried out in the presence of acids. (orig.)

  15. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  16. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Supply of rare earth concentrate remained tight recently. Rare earth market exhibited rising tendency holistically Affected by tight supply of rare earth concentrate, many plants were operated under the capacity. Supply of didymium oxide got tighter and the price was on rising.

  17. 铜阳极泥碱性加压氧化浸出渣的硫酸浸出过程%Sulfuric acid leaching of residue from copper anode slime pretreated by alkaline oxidative pressure leaching

    Institute of Scientific and Technical Information of China (English)

    刘伟锋; 刘又年; 杨天足; 陈霖; 张杜超; 王安

    2013-01-01

    The process of sulfuric acid leaching was adopted to treat the residue from copper anode slime pretreated by alkaline pressure oxidation leaching.The effects of many factors such as sulfuric acid concentration,temperature,time,liquid-solid ratio,stirring speed and oxidation type in sulfuric acid leaching on residue yield and leaching ratio were investigated.The results show that leaching ratios of copper,tellurium and silver increase with the increase of the concentration of sulfuric acid,especially for the leaching ratio of silver.The phase of undissolved copper in the leaching residue exists mainly in the elemental,and the leaching ratio of copper can be enhanced with air.The optimum conditions of sulfuric acid leaching are determined.Under the optimum conditions of the sulfuric acid concentration 2.7 mol/L,temperature 85 ℃,liquid-solid ratio 5∶1,time 2 h,stirring speed 300 r/min and air pressure 0.1~0.2 MPa,the residue yield is 60%.The leaching rates of copper,tellurium,silver and nickel are 97.65%,77.53%,8.95% and 5.85%,respectively.%针对铜阳极泥碱性加压氧化浸出渣开展硫酸浸出过程研究,考察硫酸浓度、温度、时间、液固比、搅拌速度和氧化方式等因素对浸出渣渣率和金属浸出率的影响.研究结果表明:金属浸出率随硫酸浓度的增加而提高,银的溶解尤为明显;硫酸浸出渣中未溶解的铜主要以单质存在,采用空气氧化方式可以提高铜的浸出率;在最佳条件即硫酸浓度为2.7 mol/L,温度为85℃,液固比为5∶1,时间为2h,空气压力为0.1~0.2 MPa和搅拌速度为300 r/min下,硫酸浸出渣率为60.0%,Cu和Te的浸出率分别为97.65%和77.53%,Ag和Sb的浸出率分别为8.95%和2.0%.

  18. Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-Like Planets around quiescent M Dwarfs

    Science.gov (United States)

    Navarro, Karina F.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    Nitrous oxide (N _{2}O) is uniformly mixed in the troposphere with a concentration of about 310 ppb but disappears in the stratosphere (Prinn et al., 1990); N _{2}O is mostly emitted at a rate of 1x10 (13) g yr (-1) as a byproduct of microbial activity in soils and in the ocean by two processes: a) denitrification (reduction of nitrate and nitrite), and b) nitrification (oxidation of ammonia) (Maag and Vinther, 1996). The abiotic emission of N _{2}O in the contemporaneous Earth is small, mostly arising from lightning activity (2x10 (9) g yr (-1) , Hill et al., 1984) and by reduction of nitrite by Fe(II)-minerals in soils in Antarctica (Samarkin et al., 2010). Since N _{2}O has absorption bands in the mid-IR (7.8, 8.5, and 17 mumm) that makes it detectable by remote sensing (Topfer et al., 1997; Des Marais et al., 2002), it has been suggested as a potential biosignature in the search for life in extrasolar planets (Churchill and Kasting, 2000). However, the minimum required concentration for positive identification is 10,000 ppb with missions like Terrestrial Planet Finder and Darwin (Churchill and Kasting, 2000). Therefore, it is not a suitable biomarker for extrasolar Earth-like planets orbiting stars similar to the Sun. Because N _{2}O is protected in the troposphere from UV photolysis by the stratospheric ozone layer, its concentration would decrease with decreasing oxygen (O _{2}) concentrations, if the biological source strength remains constant (Kasting and Donahue, 1980). For a primitive Earth-like (Hadean) atmosphere dominated by CO _{2}, and no free O _{2}, the expected N _{2}O concentration would be about 3 ppb with the current microbial N _{2}O flux (Churchill and Kasting, 2000). The resulting N _{2}O spectral signature of this atmosphere would be undetectable unless the N _{2}O microbial flux would be 10 (4) greater than its present value (Churchill and Kasting, 2000). Since this flux is unlikely, it is impossible to use it as a biomarker in anoxic CO

  19. Influence of Doping Rare Earth on Performance of Lithium Manganese Oxide Spinels as Cathode Materials for Lithium-Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    Tang Zhiyuan; Zhang Na; Lu Xinghe; Huang Qinghua

    2005-01-01

    Some rare earth doping spinel LiMn2-xRExO4 (RE=La, Ce, Nd) cathode materials for lithium ion batteries were synthesized by the solid-state reaction method. The structure characteristics of these produced samples were investigated by XRD, SEM, and particle size distribution analysis. According to the microstructure and charge-discharge testing, the effect of doping rare earth on stabilizing the spinel structure was analyzed. Through a series of doping experiments, it is shown that when the doping content x within the range of 0.01~0.02 the cycle performance of the materials is greatly improved. The discharge capacity of the sample LiMn1.98La0.02O4, LiMn1.98Ce0.02O4 and LiMn1.98Nd0.02O4 remain 119.1, 114.2 and 117.5 mAh*g-1 after 50 cycles.

  20. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  1. Influence of rare-earth metal doping on the catalytic performance of CuO-CeO2 for the preferential oxidation of CO in excess hydrogen

    Institute of Scientific and Technical Information of China (English)

    Zhigang Liu; Renxian Zhou; Xiaoming Zheng

    2008-01-01

    Doping of different rare-earth metals(Pr,Nd,Y and La)had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation(PROX)Of CO in excess hydrogen.As for Pr,the doping enhanced the catalytic activity of CuO-CeO2 for PROX.For example,the CO conversion over the above catalyst for PROX was higher than 99%at 120℃.Especially.the doping of Pr widened the temperature window by 20℃ over CuO-CeO2 with 99%CO conversion.For Nd,Y and La,the doping depressed the catalytic activity of CuO-CeO2 for PROX.However,the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.

  2. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents.

  3. Lanthanide amidinates and guanidinates: from laboratory curiosities to efficient homogeneous catalysts and precursors for rare-earth oxide thin films.

    Science.gov (United States)

    Edelmann, Frank T

    2009-08-01

    For decades, the organometallic chemistry of the rare earth elements was largely dominated by the cyclopentadienyl ligand and its ring-substituted derivatives. A hot topic in current organolanthanide chemistry is the search for alternative ligand sets which are able to satisfy the coordination requirements of the large lanthanide cations. Among the most successful approaches in this field is the use of amidinate ligands of the general type [RC(NR')(2)](-) (R = H, alkyl, aryl; R' = alkyl, cycloalkyl, aryl, SiMe(3)) which can be regarded as steric cyclopentadienyl equivalents. Closely related are the guanidinate anions of the general type [R(2)NC(NR')(2)](-) (R = alkyl, SiMe(3); R' = alkyl, cycloalkyl, aryl, SiMe(3)). Two amidinate or guanidinate ligands can coordinate to a lanthanide ion to form a metallocene-like coordination environment which allows the isolation and characterization of stable though very reactive amide, alkyl, and hydride species. Mono- and trisubstituted lanthanide amidinate and guanidinate complexes are also readily available. Various rare earth amidinates and guanidinates have turned out to be very efficient homogeneous catalysts e.g. for ring-opening polymerization reactions. Moreover, certain alkyl-substituted lanthanide tris(amidinates) and tris(guanidinates) were found to be highly volatile and could thus be promising precursors for ALD (= Atomic Layer Deposition) and MOCVD (= Metal-Organic Chemical Vapor Deposition) processes in materials science and nanotechnology. This tutorial review covers the success story of lanthanide amidinates and guanidinates and their transition from mere laboratory curiosities to efficient homogeneous catalysts as well as ALD and MOCVD precursors.

  4. Trace amounts of rare earth elements in high purity samarium oxide by sector field inductively coupled plasma mass spectrometry after separation by HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Pedreira, W.R. [Instituto de Geociencias, Universidade de Brasilia (UnB), 70910-900 Brasilia, DF (Brazil) and Fundacao Jorge Duprat Figueiredo de Seguranca e Medicina do Trabalho (FUNDACENTRO), 05409-002 Sao Paulo, SP (Brazil)]. E-mail: walter.pedreira@fundacentro.gov.br; Queiroz, C.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Abrao, A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Rocha, S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Vasconcellos, M.E. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Boaventura, G.R. [Instituto de Geociencias, Universidade de Brasilia (UnB), 70910-900 Brasilia, DF (Brazil); Pimentel, M.M. [Instituto de Geociencias, Universidade de Brasilia (UnB), 70910-900 Brasilia, DF (Brazil)

    2006-07-20

    Today there is an increasing need for high purity rare earth compounds in various fields, the optical, the electronics, the ceramic, the nuclear and geochemistry. Samarium oxide has special uses in glass, phosphors, lasers and thermoelectric devices. Calcium chloride crystals treated with samarium have been employed in lasers, which produce light beams intense enough to burn metal. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques such as ICP optical emission spectrometry (ICP-OES). In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2 (La) pg mL{sup -1} to 8 (Gd) pg mL{sup -1}. The %R.S.D. of the methods varying between 0.9 and 1.5% for a set of five (n = 5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure samarium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference (MO{sup +} and MOH{sup +})

  5. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  6. Preparation and characterization of PbTi0{sub 3} ceramics modified by a natural mixture of rare earth oxides of xenotime

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar-Rodrigues, Jair; Rodrigues Junior, Pedro; Cruz, Gerson K. da, E-mail: jbr@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica; Lente, Manuel H.; Eiras, Jose A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Fisica

    2014-01-15

    Lead titanate ceramics modified by xenotime (Xm) with nominal composition (Pb, Xm)TiO{sub 3}, Xm 10 or 15 mol %, were prepared by the conventional oxide mixture technique. Xenotime is a natural mineral consisting of a mixture of rare earth oxides. Thermal, structural and electric properties were investigated through differential and gravimetric thermal analysis, X-ray diffraction and dielectric measurements as a function of temperature. The results of both compositions revealed a higher density and free of cracks ceramic body, compared to pure PbTiO{sub 3} prepared by the same procedure. On the other hand, the structural characteristics and Curie temperature are nearly the same as those of pure PbTiO{sub 3}. The hysteresis loop measured at room temperature revealed a hard ferroelectric material with coercive field of 10.7 kV/cm and a remanent polarization of 0.2 μC/cm{sup 2}. These finding reveal a material with properties that highlight potential to be used as electronic devices that operate at high temperature and high frequencies. (author)

  7. Oxide acid-base reaction relating to the inhibition of vandium attack on REY zeolite catalysts. [Rare earth-exchanged yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L. (Naval Research Lab., Washington, D.C. (USA))

    1991-05-01

    Certain materials, especially Sn, passivate the rare earth-exchanged Y zeolite (REY) used in petrochemical fluid-cracking catalysts against vanadium degradation caused by V impurities in the feed oil. The mechanism of passivation was investigated here from the standpoint of high-temperature oxide acid-base reaction; i.e., where the controlling factors were considered to be Lewis acid-base reactions between V{sub 2}O{sub 5}, the RE oxides, SnO{sub 2}, etc. Molten salt tests at 680{degree}C showed SnO{sub 2}, presumably because of its acidic nature, to be essentially nonreactive with V{sub 2}O{sub 5} or Na{sub 2}O-V{sub 2}O{sub 5} compounds. A hypothesis was developed to explain how the passivation effect by Sn might result from the unique resistivity of SnO{sub 2} to reaction with V{sub 2}O{sub 5}.

  8. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    M.Laleh; Farzad Kargar; A.Sabour Rouhaghdam

    2012-01-01

    Magnesium and its alloys have been used in many industries,but they are reactive and require protection against aggressive environments.In this study,oxide coatings were applied on AZ91D magnesium alloy using micro-arc oxidation (MAO) process.Then,in order to seal the pores of the MAO coatings,the samples were immersed in cerium bath for different times.The surface morphologies and compositions of the coatings were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS),respectively.The corrosion behavior of the coatings was investigated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution.The amount of the porosity of the coating was measured by electrochemical method.It was found that the sealing treatments by immersion in cerium bath successfully sealed the pores of the MAO coatings.The results of the corrosion tests showed that the MAO coating which was sealed in Ce bath for 10 min enhanced the corrosion resistance of the substrate significantly.Furthermore,this coating had the lowest amount of the porosity among the coatings.

  9. First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide

    Institute of Scientific and Technical Information of China (English)

    AG El Hachimi; H Zaari; A Benyoussef; M El Yadari; A El Kenz

    2014-01-01

    Electronic structure and magnetic properties of wurtzite ZnO semiconductor doped with rare earth (RE=La, Ce, Pr, Pm, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) atoms were studied using spin-polarized density functional theory based on the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the Wien2k code. In this approach the generalized gradient ap-proximation (GGA) was used for the exchange-correlation (XC) potential. Our results showed that the substitution of RE ions in ZnO induced spins polarized localized states in the band gap. Moreover, the studied DMSs compounds retained half metallicity at dopant concentration x=0.625%for most of the studied elements, with 100%spin polarization at the Fermi level (EF). The total magnetic moments of these compounds existed due to RE 4f states present at EF, while small induced magnetic moments existed on other non-magnetic atoms as well. Finally, the energy difference between far and near configurations was investigated. It was found that the room temperature ferromagnetism was possible for RE-doped ZnO at near configuration. Since the RE-RE separation was long enough (far configuration) for magnetic coupling, the system became paramagnetic or antiferromagnetic ground state.

  10. Energy transfer among rare earth ions induced by annealing process of Tm sbnd Er codoped aluminum oxide thin films

    Science.gov (United States)

    Xiao, Zhisong; Zhou, Bo; Xu, Fei; Zhu, Fang; Yan, Lu; Zhang, Feng; Huang, Anping

    2009-02-01

    Er sbnd Tm codoped amorphous aluminum oxide (a-Al 2O 3) thin films have been prepared by pulsed laser deposition. Efficient photoluminescence (PL) in the region of 1400-1700 nm with two peaks centered at 1533 nm and 1620 nm were observed with pumping at the wavelength of 791 nm. The PL performance has been investigated as a function of annealing temperature, which was varied from 650 to 850 °C in air. Infrared emission was improved by annealing, and energy transfer processes occurred obviously for annealing temperatures between 800 and 850 °C. All possible energy transfer channels were investigated and our results suggest that the quasi-resonant energy transfer and cross relaxation between Tm 3+ and Er 3+ play an important role in the evolution of the luminescent response.

  11. TEMPERATURE TRENDS OF THE PERMITTIVITY IN COMPLEX OXIDES OF RARE-EARTH ELEMENTS WITH PEROVSKITE-TYPE STRUCTURE

    Directory of Open Access Journals (Sweden)

    A.G.Belous

    2003-01-01

    Full Text Available Ceramic materials based on complex oxides with both the perovskite structure (Ln2/3Nb2O6 and the structure of tetragonal tungsten bronze (Ba6-xLn8+2x/3Ti18O54 have been investigated over a wide frequency and temperature ranges. The results obtained for certain structures denote the presence of the temperature anomalies of dielectric parameters (ε, tanδ. These anomalies occur over the wide frequency range including submilimeter (SMM wavelength range, and are related neither with the processing peculiarities nor with the presence of the phase transitions. Temperature behavior of the permittivity has been considered in terms of the polarization mechanism based on the elastic-strain lattice oscillations. It has been assumed that the observed anomalies could be ascribed to a superposition of harmonic and anharmonic contribution to lattice oscillations that determines τε sign and magnitude.

  12. Earth System Governance: Facing the Challenges of Climate Change

    Directory of Open Access Journals (Sweden)

    Susana Camargo Vieira

    2013-01-01

    Full Text Available YOUNG, Oran R. Institutional Dynamics: Emergent Patterns in International Environmental Governance. Cambridge (Massachusets, USA: The MIT Press, 2010. Earth System Governance Series. 225p. (Paperback; alkaline paper. ISBN 978-0-262-51440-8.

  13. Physicochemical study of alkaline earth metal and magnesium maleates

    Energy Technology Data Exchange (ETDEWEB)

    Koblova, O.E.; Vdovina, L.M.; Frolova, L.A. (Saratovskij Gosudarstvennyj Univ. (USSR); Saratovskij Gosudarstvennyj Pedagogicheskij Inst. (USSR))

    1982-01-01

    Magnesium, calcium, strontium and barium maleates are synthesized. Their thermal stability in the atmosphere of air and argon is studied. It is shown that the dehydration of initial salts proceeds in the temperature range of 100-300 deg C. The decomposition of anhydrous salts takes place in the temperature range of 380-600 deg C. The values of the effective activation energy are determined.

  14. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    2013-01-01

    , glass transition temperature, Vickers microhardness, and isokomtemperatures (viz., the temperatures atη=10^13.5 and 10^12.2 Pa s). The observed min-ima in fragility, glass transition temperature, and isokom temperature are ascribed to bond weakening in the local structural environment around the network...... modifiers. We suggest that, since the elastic properties of the investi-gated system are compositionally independent, the minimum in Vickers microhardness is closely correlated to the minimum in isokom temperatures. Both of these properties are related to plasticflow and the translational motion...

  15. Synthesis and acid digestion of biomorphic ceramics: determination of alkaline and alkaline earth ions.

    Science.gov (United States)

    Bosch Ojeda, Catalina; Sánchez Rojas, Fuensanta; Cano Pavón, José Manuel

    2007-09-01

    Ceramic and glass are some of the more recent engineering materials and those that are most resistant to environmental conditions. They belong to advanced materials in that they are being developed for the aerospace and electronics industries. In the last decade, a new class of ceramic materials has been the focus of particular attention. The materials were produced with natural, renewable resources (wood or wood-based products). In this work, we have synthesised a new biomorphic ceramic material from oak wood and Si infiltration. After the material characterization, we have optimized the dissolution of the sample by acid attack in an oven under microwave irradiation. Experimental designs were used as a multivariate strategy for the evaluation of the effects of varying several variables at the same time. The optimization was performed in two steps using factorial design for preliminary evaluation and a Draper-Lin design for determination of the critical experimental conditions. Five variables (time, power, volume of HNO3, volume H2SO4 and volume of HF) were considered as factors and as a response the concentration of different metal ions in the optimization process. Interactions between analytical factors and their optimal levels were investigated using a Draper-Lin design.

  16. Moessbauer effect of the alkaline and alkaline earth metal nitroprusside powders

    CERN Document Server

    Yang, T H; Kim, H S; Hong, C Y; Kim, H B; Cho, H Y; Kim, D Y; Moon, Y S

    2000-01-01

    We observe Moessbauer spectra of Fe atoms centered in nitroprusside anions of sodium nitroprusside (Na sub 2 [Fe(CN) sub 5 NO] 2H sub 2 O). potassium-nitroprusside (K sub 2 [Fe(CN)] sub 5 NO centre dot 2.5H sub 2 O), rubidium nitroprusside (Rb sub 2 [Fe(CN) sub 5 NO centre dot H sub 2 O), magnesium nitroprusside (Mg[Fe(CN) sub 5 NO], calcium nitroprusside (Ca[Fe(CN) sub 5 NO]centre dot 4H sub 2 O), and barium nitroprusside (Ba[Fe(CN) sub 5 NO]centre dot 3H sub 2 O) samples which have photochromic properties. We compare the Moessbauer parameters, the values of the isomer shifts and the quadrupole splittings of the samples with those of a sodium nitroprusside single crystal which is a standard material. The values of the isomer shifts and the quadrupole splittings of the various compounds are close to each other. The values of the line broadening of all samples are between 2.1 GAMMA sub N and 2.5 GAMMA sub N. The Moessbauer Lamb factors (f) are between 0.252(1) and 0.340(2). These values are obtained from the s...

  17. Microbial thiocyanate utilization under highly alkaline conditions.

    Science.gov (United States)

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  18. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Science.gov (United States)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  19. Soft chemistry routes for synthesis of rare earth oxide nanoparticles with well defined morphological and structural characteristics

    Science.gov (United States)

    Mancic, L.; Marinkovic, B. A.; Marinkovic, K.; Dramicanin, M.; Milosevic, O.

    2011-11-01

    Phosphors of (Y0.75Gd0.25)2O3:Eu3+ (5 at.%) have been prepared through soft chemistry routes. Conversion of the starting nitrates mixture into oxide is performed through two approaches: (a) hydrothermal treatment (HT) at 200 °C/3 h of an ammonium hydrogen carbonate precipitated mixture and (b) by thermally decomposition of pure nitrate precursor solution at 900 °C in dispersed phase (aerosol) within a tubular flow reactor by spray pyrolysis process (SP). The powders are additionally thermally treated at different temperatures: 600, 1000, and 1100 °C for either 3 or 12 h. HT—derived particles present exclusively one-dimensional morphology (nanorods) up to the temperatures of 600 °C, while the leaf-like particles start to grow afterward. SP—derived particles maintain their spherical shape up to the temperatures of 1100 °C. These submicron sized spheres were actually composed of randomly aggregated nanoparticles. All powders exhibits cubic Ia- 3 structure (Y0.75Gd0.25)2O3:Eu and have improved optical characteristics due to their nanocrystalline nature. The detailed study of the influence of structural and morphological powder characteristics on their emission properties is performed based on the results of X-ray powder diffractometry, scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, and photoluminescence measurements.

  20. Rare earth oxide reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics for inert coating of metallic parts for petroleum extraction

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Yoggendra Prasad; Rego, Sheila Alves Bezerra da Costa; Ferreira, Ricardo Artur Sanguinetti [Universidade Federal de Pernambuco (UFPE), Recife (Brazil)

    2012-07-01

    Recent findings of largest known pre-salt petroleum reservoir in Brazil have created an intense demand for new materials capable of withstanding direct contact with the crude petroleum as it is a highly corrosive and chemically reactive fluid. Petroleum drilling equipment, storage tanks and transportation systems suffer from constant physical stress caused by chemical attack of crude petroleum on its structure. Ceramics are materials with high chemical stability in hostile environment and therefore can be used as an inert coating material to resolve such problems. To date, ceramics based on alumina are most widely used in practice where there is demand for high mechanical strength and high fracture toughness. However intrinsic fragility of ceramics is still a fatal factor for their use in mechanical structures. To improve these characteristics, usually ceramics are reinforced with one or more ceramic additives. Mechanical properties of alumina based ceramics improve considerably with the addition of TiO{sub 2}, TiN, ZrO{sub 2} etc. ceramic additives. Nucleation and propagation of cracks is a major problem for ceramic coating applications. Initial studies show that addition of small percentages of rare earth oxides can increase the toughness of the alumina based ceramics. In the present work, we have produced rare-earth oxide (CeO{sub 2}) reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics in proportions of 5-20 wt% TiO{sub 2} and 2%wt% CeO{sub 2} through thermomechanical processing and sintering techniques and studied there microstructural characteristics and mechanical properties. To evaluate the potential of these ceramics as inert coatings for crude petroleum extraction, storage and transportation systems, we have studied the physic-chemical and mechanical stability of these ceramics in crude petroleum environment. Our studies presented satisfactory results in terms of physic-chemical and mechanical stability of these materials for the use of 2wt% of CeO{sub 2