WorldWideScience

Sample records for alkaline earth metal complexes

  1. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  2. On the capacity to the complexing of alkaline earth metal and magnesium chromates

    International Nuclear Information System (INIS)

    Orekhov, O.L.

    1978-01-01

    Considered is the capacity to the complexing of magnesium chromates and alkaline earth metal chromates with ammonium chromates in aqueous solutions. It has been established that the complexing of alkaline earth metal and magnesium chromates is effected by a nature of initial salts as well as their solubilities and the presence of crystallization water. Capacity of magnesium ions and alkaline rare earth metals to the complexing decreases in a series of Mg-Ca-Sr-Ba. Ca complexes exceed magnesium derivatives in respect of stability

  3. Synthesis of complex plutonium oxides with alkaline-earth metals

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Nakajima, Kunihisa; Iwai, Takashi; Ohmichi, Toshihiko; Yamawaki, Michio.

    1995-03-01

    Complex plutonium(IV) oxides with strontium and barium, SuPuO 3 and BaPuO 3 , were synthesized and their crystal structure was analyzed. Compacted mixture of plutonium dioxide powder and the carbonate of strontium or barium was heated in a stream of argon gas using a cell with a small orifice. The products obtained were found to be composed of a nearly single phase showing the structure of orthorhombic slightly distorted from cubic. (author)

  4. Dansyl - Substituted Aza Crown Ethers: Complexation with Alkali, Alkaline Earth Metal Ions and Ammonium

    Science.gov (United States)

    Deiab, Shihab; Archibong, Edikan; Tasheva, Donka; Mochona, Bereket; Gangapuram, Madhavi; Redda, Kinfe

    2011-01-01

    The present study investigates the binding properties of four dansyl substituted aza-crown ethers with alkali, alkaline earth metal ions and ammonium. The influence of the solvent polarity and protonation on the photophysical properties of the compounds was studied by UV/Vis and fluorescence methods. The host species caused only slight changes on the absorption spectra of the ligands. The fluorescence changes were more pronounced and concentration dependent thus allowing to calculate the binding constants of the process. The most stable complex under our working conditions was the one between Ba2+ and DNS18C6. PMID:21738561

  5. Ethylenediaminetetraacetates of neodymium and alkaline earth metals

    International Nuclear Information System (INIS)

    Barinov, A.V.; Pechurova, L.I.; Martynenko, K.I.; Popov, K.I.; Spitsyn, V.I.

    1977-01-01

    The possibilities have been studied of the formation of polynuclear complexonates of alkaline-earth metals (Ca, Sr, and Ba) based on neodymium derivatives EDTA of the composition NdA - . By pH-metry, electron spectroscopy, and derivatography it has been shown that the structure of complexes M 2 (NdA) 2 (where M- Ca, Sr, or Ba; A- EDTA) in the solution is not polynuclear. Hydroxopolynuclear complexes do not form under conditions studied. The data obtained agree with an assumption about polynuclear structure of the solid complex Ca(NdA) 2 x17 H 2 O and gradual weakening of the polynuclear nature upon substitution of Ca 2+ with Sr 2+ and Ba 2+

  6. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  7. Mass spectra of alkaline earth salts with a FAB source. Complexation with crown ethers

    International Nuclear Information System (INIS)

    Ulrich, J.

    1987-01-01

    With a liquid desorption FAB source it is possible to obtain alkaline earth metal ions complexed by a crown ether. Conditions for formation of these complexes ions are examined for selection of the complexing agent in function of cation size. Behaviour of alkaline and alkaline earth compounds are compared allowing the differentiation of ion extraction phenomena by liquid desorption ion source and solvent extraction [fr

  8. Structural variations in layered alkaline earth metal cyclohexyl ...

    Indian Academy of Sciences (India)

    Administrator

    because of the entrance of the guest molecules between the layers, there will be a change in the interlayer distance (Alberti 1978). Although M(IV) organo-phos- phonates are well documented, the chemistry of M(II) organophosphonates especially the alkaline earth metal organophosphonates has been explored marginally ...

  9. Alkaline-earth metal phenylphosphonates and their intercalation chemistry

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, J.; Zima, Vítězslav; Pospíšil, M.; Kovář, P.

    2018-01-01

    Roč. 47, č. 9 (2018), s. 2867-2880 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA17-10639S Institutional support: RVO:61389013 Keywords : intercalation * layered compounds * alkaline-earth metal phenylphosphonates Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.029, year: 2016

  10. Band gaps and photocurrent responses of two novel alkaline earth metal(II) complexes based on 4,5-di(4′-carboxylphenyl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Gong, Yun, E-mail: gongyun7211@cqu.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Lin, Jian Hua, E-mail: jhlin@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2017-01-15

    By using a rigid dicarboxylate ligand, 4,5-di(4′-carboxylphenyl)benzene (H{sub 2}L), two complexes formulated as SrL(DMF)(H{sub 2}O)·(CH{sub 3}CN) (DMF=N,N′-dimethylformamide) (1) and BaL(H{sub 2}O){sub 2} (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV–vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density than complex 1. The Mott–Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations. - Graphical abstract: Two alkaline earth metal(II) complexes with 2D layer structures are p-type semiconductors, they possess different band structures and density of states. And the Ba(II) complex 2 exhibits much higher photocurrent density than the Sr(II) complex 1.

  11. Mixed ligand complexes of alkaline earth metals: Part XII. Mg(II, Ca(II, Sr(II and Ba(II complexes with 5-chlorosalicylaldehyde and salicylaldehyde or hydroxyaromatic ketones

    Directory of Open Access Journals (Sweden)

    MITHLESH AGRAWAL

    2002-04-01

    Full Text Available The reactions of alkaline earth metal chlorides with 5-chlorosalicylaldehyde and salicylaldehyde, 2-hydroxyacetophenone or 2-hydroxypropiophenone have been carried out in 1 : 1 : 1 mole ratio and the mixed ligand complexes of the type MLL’(H2O2 (where M = Mg(II, Ca(II, Sr(II and Ba(II, HL = 5-chlorosalicylaldehyde and HL’ = salicylaldehyde, 2-hydroxyacetophenone or 2-hydroxypropiophenone have been isolated. These complexes were characterized by TLC, conductance measurements, IR and 1H-NMR spectra.

  12. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... metalloid oxyanions. 721.4668 Section 721.4668 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  13. Alkaline-earth metal bicarbonates as lixiviants for uranium (VI) under CO2 sparging

    International Nuclear Information System (INIS)

    Vaziri, F.; White, D.A.

    1989-01-01

    In recent years it has become apparent that uranium is significantly soluble in solutions of alkaline-earth metal bicarbonates -particularly those of magnesium and calcium. A system has been proposed by previous authors in which milled uranium ore is leached in a medium to which an oxidizing agent, the metal hydroxide and CO 2 are added. The alkaline-earth metal hydroxides are much more readily soluble in this medium than the corresponding carbonates. Magnesium and calcium bicarbonates are quite soluble in aqueous media at neutral or nearly neutral pH. The pH determines the relative quantities of bicarbonate and carbonate ions in the system. Even if the pH is quite low, small amounts of carbonate ion are present that can complex with the uranyl ion to produce anionic uranyl complexes. Both UO 2 (CO 3 ) 2 2- and UO 2 (CO 3 ) 3 4- complexes are known and both have a very high stability constant. Despite the appearance of several patents on the use of alkaline-earth metal ions in carbonate media as uranium lixiviants, little theoretical or experimental work on the system has been published. In view of the potential of these systems for cheap, large-scale dissolution of uranium the present contribution will discuss the theory behind this method and provide some experimental data to verify the theoretical treatment. (author)

  14. Molecular dynamics of liquid alkaline-earth metals near the melting ...

    Indian Academy of Sciences (India)

    computed the velocity autocorrelation function (VACF), its memory function and ... Since alkaline-earth metals are simple like metals, the main difficulty in the calcu- lation of ..... recall that the conventional binding energy can be written [23] as.

  15. Daily intakes of alkaline earth metals in Japanese males

    International Nuclear Information System (INIS)

    Shiraishi, Kunio; Yamamoto, Masayoshi; Ueno, Kaoru

    1994-01-01

    Diet samples were collected for two duplicate portion studies and one market basket study. 226 Ra in the diet samples was determined by alpha spectrometry and daily intake was estimated as 23 mBq (0.62 pCi) per person. Other alkaline earth metals were determined by inductively coupled plasma atomic-emission spectrometry. Average mineral intakes of calcium, magnesium, strontium, and barium were 0.55 g, 0.21 g, 2.3 mg, and 0.39 mg, respectively. Element ratios magnesium:calcium 0.38, strontium:calcium 4.2 x 10 -3 barium:calcium 7.1 X 10 -4 , and Ra:calcium 1.1 x 10 -12 were found in the diet; these compared with element ratios in Japanese vertebrae of magnesium:calcium 0.011, strontium:calcium 3.1 x 10 -4 , barium:calcium 2.7 x 10 -5 , and radium:calcium 2.6 x 10 -14 . Observed ratios, defined as the element ratio in bone divided by the respective element intake ratio in Japanese males, were as follows: 226 Ra 0.02, magnesium 0.03, strontium 0.07, and barium 0.04

  16. Naphthenic acid removal from HVGO by alkaline earth metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Rahimi, P.; Hawkins, R.; Bhatt, S.; Shi, Y. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted a study that investigated naphthenic acid removal from bitumen-derived heavy vacuum gas oil (HVGO) by thermal cracking and catalytic decarboxylation over alkaline earth-metal oxides and ZnO catalysts in a batch reactor and a continuous fixed-bed reactor. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) temperature-programmed desorption (TPD) of carbon dioxide (CO{sub 2}-TPD), and scanning electron microscopy were used to characterize the fresh and spent catalysts. With MgO and ZnO, naphthenic acid removal proceeded via catalytic decarboxylation. No crystalline phase changes were observed after reaction. With CaO, multiple pathways such as catalytic decarboxylation, neutralization, and thermal cracking were responsible for naphthenic acid conversion. The spent catalysts contained Ca(OH){sub 2} and CaCO{sub 3}. With BaO, naphthenic acid conversion occurred through neutralization. All BaO was converted to Ba(OH){sub 2} during the reaction. tabs., figs.

  17. When VSEPR fails: experimental and theoretical investigations of the behavior of alkaline-earth-metal acetylides.

    Science.gov (United States)

    Guino-o, Marites A; Alexander, Jacob S; McKee, Michael L; Hope, Håkon; Englich, Ulrich B; Ruhlandt-Senge, Karin

    2009-11-09

    The synthesis, structural, and spectral characterization as well as a theoretical study of a family of alkaline-earth-metal acetylides provides insights into synthetic access and the structural and bonding characteristics of this group of highly reactive compounds. Based on our earlier communication that reported unusual geometry for a family of triphenylsilyl-substituted alkaline-earth-metal acetylides, we herein present our studies on an expanded family of target derivatives, providing experimental and theoretical data to offer new insights into the intensively debated theme of structural chemistry in heavy alkaline-earth-metal chemistry.

  18. Synthesis and structure of alkaline earth and rare earth metal doped C70

    International Nuclear Information System (INIS)

    Takenobu, Taishi; Iwasa, Yoshihiro; Ito, Takayoshi; Mitani, Tadaoki

    2001-01-01

    We have investigated the structure sequence of alkaline earth (A=Ba, Sr) and rare earth metal (R=Eu) doped C 70 binary system. X-ray diffraction measurements revealed that there exist at least four stable phases at x=3, 4, 6, and 9 in A x C 70 and two stable phases at x=3, and 9 in R x C 70 . Among them, structural models are presented for Ba 4 C 70 , Sr 3 C 70 , and Eu 3 C 70 . Ba 4 C 70 takes an analogous structure to orthorhombic Ba 4 C 60 . Sr 3 C 70 and Eu 3 C 70 have monoclinic cell and their diffraction patterns are quite similar to that of Sm 3 C 70 , which involves a unique C 70 -metal-C 70 dimer structure. Preliminary results of Raman spectroscopy and magnetization measurement suggest the highly reduction state for A 9 C 70 and ferromagnetic interaction for Eu x C 70

  19. Study of alkaline-earth element complexes in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Petit, N.

    1968-10-01

    We have studied the complexes of alkaline-earth elements in anhydrous acetic acid. Using glass-electrode potentiometry we have studied the titration of alkaline earth acetates with perchloric acid which is the strongest acid in anhydrous acetic acid. These titrations have shown that the basic strength of these acetates increases as follows: Mg 4 ); the mixed acetate-acid sulfate complex of barium: Ba (OAc)(HSO 4 ); the mixed acetate-chloride of barium: Ba (OAc)(Cl). (author) [fr

  20. Vibrational spectra of double rare earth alkaline metal metaphosphates

    International Nuclear Information System (INIS)

    Madij, V.A.; Krasilov, Yu.I.; Kizel', V.A.; Denisov, Yu.V.; Chudinova, N.N.; Vinogradova, N.V.

    1978-01-01

    Joint analysis of the Raman and infrared absorption spectra, as well as X-ray structural data for binary metaphosphates, suggest a cyclic structure of the anion in RbEu(PO 3 ) 4 and a chain structure of the anions in HEu(PO 3 ) 4 and LiEu(PO 3 ) 4 . Spectroscopic criteria are proposed for distinguishing between cyclic and chain structures in binary metaphosphates of rare earth elements and alkali metals

  1. Separation of alkali and alkaline earth metals by polyethers using extraction chromatography

    International Nuclear Information System (INIS)

    Smulek, W.; Lada, W.A.

    1979-01-01

    The separation of alkali and alkaline earth metals by means of an acyclic polyether, 1,13-bis(8-chinolinyl)-1, 4, 7, 10, 13-pentaoxatridecane (CPOD), and cyclic polyethers, benzo-15-crown-5 (BC), dibenzo-18-crown-6 (DBC) and dicyclohexyl-18-crown-6 (DCHC), using extraction chromatography has been studied. The alkali metals can be effectively separated using SCN - as the accompanying ion. For alkaline earth metals, the best results were obtained with ClO 4 - ions. Different elution sequences for these groups were observed using chloroform and/meen=/ sitylene as diluents for the polyethers. (author)

  2. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    International Nuclear Information System (INIS)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO–LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ∼1.11–1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface

  3. Effect of alkaline earth metal and magnesium cations on cadmium extraction from chloride solutions by tributyl phosphate

    International Nuclear Information System (INIS)

    Prokuev, V.A.; Belousov, E.A.

    1985-01-01

    At 298 K thermodynamic constants of cadmium (2) extraction from chloride solutions of magnesium, calcium, strontium and barium by tributyl phosphate are calculated. It is established, that logarithm of the thermodynamic extraction constant is in a linear dependence from the change in the cation hydration enthalpy in agqueous solution. It is shown, that activity coefficient of neutral complex CdVCl 2 differs from one, and it is the higher the more stable the complex is in alkaline earth metal chloride solutions

  4. Use of polysulfides of alkali and alkaline-earth metals to obtain highly dispersed sulfur

    International Nuclear Information System (INIS)

    Massalimov, I.A.; Vikhareva, I.N.; Kireeva, M.S.

    2008-01-01

    Possibilities of obtaining polysulfides of alkali and alkaline earth metals (M is Na, K, Ca, Sr, Ba) in aqueous solutions were considered. The composition of the polysulfides and their concentration in solutions were found. The efficiencies of application of highly dispersed sulfur, produced from calcium polysulfide, and colloid sulfur as a fungicide were compared [ru

  5. Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda; Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-09-01

    This paper presents a study on the adsorption of alkali and alkaline-earth metal atoms on single-layer stanene with different levels of coverage using first-principles plane wave calculations within spin-polarized density functional theory. The most favorable adsorption site for alkali atoms (Li, Na, K) were found to be the hollow site similar to other group IV single-layers, but the case of alkaline-earths on stanene is different from silicene and germanene. Whereas Mg and Ca are bound to stanene at hollow site, the bridge site is found to be energetically favorable for Be adatom. All adsorbed atoms are positively charged due to the charge transfer from adatom to stanene single-layer. The semimetallic bare stanene become metallic except for Be adsorption. The Beryllium adsorption give rise to non-magnetic semiconducting ground state. Our results illustrate that stanene has a reactive and functionalizable surface similar to graphene or silicene. - Highlights: • Alkali and alkaline-earth metal atoms form stronger bonds with stanene compared to other group IV monolayers. • Semi-metallic stanene becomes nonmagnetic metal for Li, Na, K, Mg, and Ca atoms adsorption. • Semi-metallic stanene becomes nonmagnetic semiconductor with 94 meV band gap for Be atom adsorption.

  6. Synthesis and infrared spectra of alkaline earth metal carbonates ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The metal carbonate, MCO3 (M = Ca, Sr and Ba), was synthesized by a novel method of reacting aqueous solution of each of Ca2+, Sr2+ and Ba2+ salts with urea at high temperature, ~ 80°C. The reaction products were characterized through elemental analysis and infrared spectra. The infrared spectra of the.

  7. Synthesis and infrared spectra of alkaline earth metal carbonates

    Indian Academy of Sciences (India)

    The metal carbonate, MCO3 (M = Ca, Sr and Ba), was synthesized by a novel method of reacting aqueous solution of each of Ca2+, Sr2+ and Ba2+ salts with urea at high temperature, ∼ 80°C. The reaction products were characterized through elemental analysis and infrared spectra. The infrared spectra of the products are ...

  8. New half-metallic materials with an alkaline earth element

    International Nuclear Information System (INIS)

    Kusakabe, Koichi; Geshi, Masaaki; Tsukamoto, Hidekazu; Suzuki, Naoshi

    2004-01-01

    New candidates for half-metallic materials were theoretically designed recently by Geshi et al. The materials are calcium pnictides, i.e. CaP, CaAs and CaSb. When the zinc-blende structure was assumed, these compounds showed half-metallic electronic band-structure, in which a curious flat band was found. To explain this magnetism, we investigated characters of orbitals on this flat band of CaAs. The hybridization of p states of As with d states of Ca is shown to be essential for formation of a flat band made of localized orbitals. The appearance of complete spin polarization in the flat band suggests that the flat-band mechanism is relevant for the ferromagnetism. A connection from the first-principles result to a solvable Hubbard model with a flat band is discussed

  9. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2004-01-01

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described

  10. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  11. Distributions of alkali metals, alkaline earth metals and halogens in cabbage leaves

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Takeda, Akira; Hasegawa, Hidenao

    2007-01-01

    The distributions of stable elements in plant components provide useful information for understanding the behavior of radionuclides in plants. An entire cabbage plant sample was collected from an experimental field, and the distributions of alkali metals (K, Rb and Cs), alkaline earth metals (Ca, Sr and Ba) and halogens (Cl and I) were determined for cabbage leaves at different positions. The concentration of Cs in outer (older) cabbage leaves was higher than that in inner (younger) leaves, but the distributions of K and Rb concentrations were relatively similar in cabbage leaves, independent of leaf positions. The concentration of Sr in older cabbage leaves was one order of magnitude higher than that in younger leaves. The distributions of Ca, Ba and Sr concentrations in the plant followed a similar pattern. The concentrations of halogens were also very rich in the outer leaves. The percentage distributions of Cs, Sr, Cl and I in the inedible (extreme outer) leaves were 77, 91, 93 and 96% of the total content in the leaf part, respectively. These results show that the inedible plant components are important for understanding the transfer of the radioactive Cs, Sr Cl and I in soil-plant systems. (author)

  12. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  13. Synthesis and physicochemical investigation of complexes of rare earth, alkaline earth elements and copper with some β-diketones

    International Nuclear Information System (INIS)

    Nichiporuk, R.V.; Pechurova, N.I.; Snezhko, N.I.; Martynenko, L.I.; Kaul', A.R.; Zanina, A.S.; Shergina, S.I.; Sokolov, I.E.

    1991-01-01

    Complexes of rare earth, alkaline earth elements and copper with 2-methoxy-2,6,6-trimethylheptanedion-3,5 as well as complexes of yttrium and barium with 2-methoxy-2,6-dimethylheptanedion-3,5 were synthesized. Prepared complexes were investigated by the methods of chemical, thermal, X-ray phase analyses, IR spectroscopy. Complex sublimation was studied at 10 -1 -10 -2 mm Hg. Complexes of rare earths and copper don't change their composition during sublimation, and sublimation of hydrated complexes of barium, strontium and calcium leads to formation of anhydrous complexes. All prepared complexes are able to transsublimate multiply and qualitatively without change of composition. All isolated complexes can be used for preparation of film oxide coatings by CVD method

  14. Associated equilibria with participatian of single and mixed silver, lead and cadmium halide complexes in mixtures of molten alkali and alkaline earth metal nitrates

    International Nuclear Information System (INIS)

    Gouk, Kh.S.; Gupta, R.K.; Vekma, K.V.

    1983-01-01

    Associated equilibria in the systems, which contain single and mixed silver, cadmium and lead halide complexes in the KNO 3 -Ba(N0 3 ) 2 (87.6:12.4 and 89:11 mol.%) and NaNO 3 -Ba(NO 3 ) 2 (94.2-5.8 mol%) melts in the temperature range from 568.2 up to 698.2 K are investigated. Applicability of equations derivated on the base of quasi-lattice model to description of temperature coefficients of association constants is analized

  15. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  16. Isotope exchange between alkaline earth metal hydroxide and HTO water in the equilibrium state

    International Nuclear Information System (INIS)

    Imaizumi, H.; Gounome, J.; Kano, N.

    1997-01-01

    In order reveal to what extent tritium ( 3 H or T) can be incorporated into hydroxides, the isotope exchange reaction (OT-for-OH exchange reaction) between each alkaline earth metal hydroxide (M(OH) 2 ), where M means alkaline earth metal (M=Ca, Sr or Ba) and HTO water was observed homogeneously at 30 deg C under equilibrium after mixing. Consequently, the followings were obtained: a quantitative relation between the electronegativity of each M ion and the ability (of the M ion) incorporating OT - into the M hydroxide can be found and the ability is small when the temperature is high, the exchange rate for the OT-for-OH exchange reaction is small when the electronegativity of the M ion in the M hydroxide is great, as for the dissociation of HTO water, it seems that formula (HTO ↔ T + + OH - ) is more predominant than the formula (HTO ↔H + + OT - ) when the temperature is high and the method used in this work is useful to estimate the reactivity of a certain alkaline material. (author)

  17. Subthermal linewidths in photoassociation spectra of cold alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Machholm, Mette; Julienne, Paul S.; Suominen, Kalle-Antti

    2002-01-01

    Narrow s-wave features with subthermal widths are predicted for the 1 Π g photoassociation spectra of cold alkaline-earth-metal atoms. The phenomenon is explained by numerical and analytical calculations. These show that only a small subthermal range of collision energies near threshold contributes to the s-wave features that are excited when the atoms are very far apart. The resonances survive thermal averaging, and may be detectable for Ca cooled near the Doppler cooling temperature of the 4 1 P 1 S laser-cooling transition

  18. Apparent molar volumes and compressibilities of alkaline earth metal ions in methanol and dimethylsulfoxide

    International Nuclear Information System (INIS)

    Warminska, Dorota; Wawer, Jaroslaw; Grzybkowski, Waclaw

    2010-01-01

    Temperature dependencies of density of magnesium (II), calcium (II), strontium (II), barium (II) perchlorates as well as beryllium (II), and sodium trifluoromethanesulfonates in methanol and dimethylsulfoxide have been determined over the composition range studied. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of alkaline earth metal perchlorates and beryllium (II) and sodium triflates in methanol and DMSO have been calculated from sound speed data obtained at T = 298.15 K.

  19. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    Science.gov (United States)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  20. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    International Nuclear Information System (INIS)

    Magno, Wictor C.; Cavasso Filho, Reinaldo L.; Cruz, Flavio C.

    2003-01-01

    The possibility of laser cooling of alkaline-earth-metal atoms and ytterbium atoms using a two-photon transition is analyzed. We consider a 1 S 0 - 1 S 0 transition with excitation in near resonance with the 1 P 1 level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 μK. The efficiency of this cooling scheme and the main loss mechanisms are analyzed

  1. Tensorial analysis of the long-range interaction between metastable alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Santra, Robin; Greene, Chris H.

    2003-01-01

    Alkaline-earth-metal atoms in their lowest (nsnp) 3 P 2 state are exceptionally long lived and can be trapped magnetically. The nonspherical atomic structure leads to anisotropic long-range interactions between two metastable alkaline-earth-metal atoms. The anisotropy affects the rotational motion of the diatomic system and couples states of different rotational quantum numbers. This paper develops a tensorial decomposition of the most important long-range interaction operators, and a systematic inclusion of molecular rotations, in the presence of an external magnetic field. This analysis illuminates the nature of the coupling between the various degrees of freedom. The consequences are illustrated by application to a system of practical interest: metastable 88 Sr. Using atomic parameters determined in a nearly ab initio calculation, we compute adiabatic potential-energy curves. The anisotropic interatomic interaction, in combination with the applied magnetic field, is demonstrated to induce the formation of a long-range molecular potential well. This curve correlates to two fully polarized, low-field seeking atoms in a rotational s-wave state. The coupling among molecular rotational states controls the existence of the potential well, and its properties vary as a function of magnetic-field strength, thus allowing the scattering length in this state to be tuned. The scattering length of metastable 88 Sr displays a resonance at a field of 339 G

  2. Steam Gasification of Sawdust Biochar Influenced by Chemical Speciation of Alkali and Alkaline Earth Metallic Species

    Directory of Open Access Journals (Sweden)

    Dongdong Feng

    2018-01-01

    Full Text Available The effect of chemical speciation (H2O/NH4Ac/HCl-soluble and insoluble of alkali and alkaline earth metallic species on the steam gasification of sawdust biochar was investigated in a lab-scale, fixed-bed reactor, with the method of chemical fractionation analysis. The changes in biochar structures and the evolution of biochar reactivity are discussed, with a focus on the contributions of the chemical speciation of alkali and alkaline earth metallic species (AAEMs on the steam gasification of biochar. The results indicate that H2O/NH4Ac/HCl-soluble AAEMs have a significant effect on biochar gasification rates. The release of K occurs mainly in the form of inorganic salts and hydrated ions, while that of Ca occurs mainly as organic ones. The sp3-rich or sp2-sp3 structures and different chemical-speciation AAEMs function together as the preferred active sites during steam gasification. H2O/HCl-soluble AAEMs could promote the transformation of biochar surface functional groups, from ether/alkene C-O-C to carboxylate COO− in biochar, while they may both be improved by NH4Ac-soluble AAEMs. H2O-soluble AAEMs play a crucial catalytic role in biochar reactivity. The effect of NH4Ac-soluble AAEMs is mainly concentrated in the high-conversion stage (biochar conversion >30%, while that of HCl-soluble AAEMs is reflected in the whole activity-testing stage.

  3. Separation of strontium ions from other alkaline earth metal ions using masking reagent

    International Nuclear Information System (INIS)

    Komatsu, Y.

    1996-01-01

    Cs + and Sr 2+ have been well known as serious elements in high level radioactive waste. Separation of Cs + has already been successful when using an ion-exchange method from solution in the presence of other alkali metal ions. The separation of Sr 2+ is, however, not so easy by any known separation method such as solvent-extraction and ion-exchange methods. This is because Sr 2+ is in the middle of the selectivity series, which is Mg 2+ > Ca 2+ > Sr 2+ > Ba 2+ for the solvent-extraction method and Ba 2+ > Sr 2+ > Ca 2+ > Mg 2+ for the ion- exchange method. In the present study, separation of strontium from other alkaline earth metal ions was studied by a combined use of three types of separation methods at 298 K: the solvent-extraction method was applied for the first separation, in which thenoyltrifluoroacetone (TTA, extractant) and trioctylphosphine oxide ( TOPO, adduct forming ligand) were used for the organic phase of the system. The separation factors for each combination of four alkaline earth metal ions were determined by the values of the distribution ratio. The Mg 2+ was well separated from Sr 2+ by the TTA-TOPO system. However, the separation of the combinations of Ca 2+ -Sr 2+ and Sr 2+ -Ba 2+ was not complete by the above solvent-extraction system. The second separation method, an ion-exchange method was applied using dihydrogen tetratitanate hydrate fibers (H 2 Ti 4 O 9 nH 2 O) as an ion exchanger to separate Sr 2+ and Ba 2+ . The separation factors for each combination of four alkaline earth metal ions were calculated by the values of the distribution coefficients. Ba 2+ was well separated from Sr 2+ by the ion-exchange method. To separate Ca 2+ and Sr 2+ , however, a modified solvent-extraction method was finally used in which H 2 Ti 4 O 9 nH 2 O was used as a masking reagent of Sr 2+ . After the dihydrogen tetratitanate hydrate fibers were contacted with the aqueous solution containing Ca 2+ and Sr 2+ , the organic solution containing TTA and TOPO

  4. Cationic rare-earth metal SALEN complexes.

    Science.gov (United States)

    Liu, Qiancai; Meermann, Christian; Görlitzer, Hans W; Runte, Oliver; Herdtweck, Eberhardt; Sirsch, Peter; Törnroos, Karl W; Anwander, Reiner

    2008-11-28

    Complexes (Salpren(tBu,tBu))Y[N(SiHMe2)2](thf) and (SALEN(tBu,tBu))La[N(SiHMe2)2](thf) (SALEN(tBu,tBu) = Salcyc(tBu,tBu) and Salpren(tBu,tBu)) were prepared from Ln[N(SiHMe2)2]3(thf)2 and H2SALEN(tBu,tBu). The yttrium complex was characterized by X-ray crystallography revealing intrinsic solid-state structural features: the metal centre is displaced by 1.05 angstroms from the [N2O2] least squares plane of a highly bent Salpren(tBu,tBu) ligand (angle(Ph,Ph) dihedral angle of 80.4(1) degrees ) and is coordinated asymmetrically by the silylamide ligand exhibiting one significant Y---(HSi) beta-agostic interaction (Y-N1-Si1, 106.90(9) degrees; Y---Si1, 3.2317(6) angstroms). Complexes (SALEN(tBu,tBu))Ln[N(SiHMe2)2](thf)n (n = 1, Sc; n = 2, Y, La) react with ammonium tetraphenylborate to form the ion pairs [(SALEN(tBu,tBu))Ln(thf)n][BPh4]. The cationisation was proven by X-ray crystal structure analyses of [(Salpren(tBu,tBu))Sc(thf)2][B(C6H5)4].2(thf) and [(Salpren(tBu,tBu))Ln(thf)3][B(C6H5)4].4(thf) (Ln = Y, La), showing an octahedral and pentagonal-bipyramidal coordination geometry, respectively.

  5. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  6. Prolonged QT Syndrome and Seizure Secondary to Alkaline Earth Metal Deficiency: A Case Report

    Directory of Open Access Journals (Sweden)

    A. McKinney

    2011-01-01

    Full Text Available Introduction. Alkaline earth metal deficiency is recognized as a cause of both seizure and long QT syndrome. Their deficiency can have significant repercussions on the function of cells, tissues, and organs of the body. An understanding of the role of electrolytes allows an appreciation of the significance of depleted levels on cell function. Case Report. A 65-year-old lady was admitted with symptoms of chest discomfort, vomiting, increased stoma output, and dizziness. Two days following admission she suffered a tonic-clonic seizure. ECG review demonstrated a prolonged QTc interval, raising the possibility of an underlying Torsades de Pointes as the precipitant. This was attributed to electrolyte disturbance arising as a result of multiple aetiologies. Discussion. This paper highlights the multisystem effects of electrolyte disturbance, with emphasis upon its role in precipitating cardiac arrhythmia and neurological symptoms.

  7. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2003-01-01

    The van der Waals coefficients, C 6 , C 8 , and C 10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D 8 and the three-body coefficient, C 9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  8. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2003-01-01

    The van der Waals coefficients C 6 , C 8 , and C 10 for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C 6 at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)

  9. Nitridomanganates of alkaline-earth metals. Synthesis, structure, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, Alexander

    2016-12-02

    The main goal of the present work was the synthesis of alkaline-earth nitridomanganates (AE{sub x}Mn{sub y}N{sub z}) with extended anionic structures and the characterization of their electronic and magnetic properties. Up to now, only compounds with isolated nitridomanganate anions have been reported in the discussed ternary systems. A systematic exploratory synthesis, employing high-temperature treatment of AE nitrides and Mn under controlled N2 pressure, yielded more than ten new nitridomanganates. Their crystal structures contain anionic building blocks of different dimensionalities, ranging from isolated species to three-dimensional frameworks. In general, the formation of Mn-rich compositions was found to be driven by the emergence of Mn-Mn interactions, which creates a link between nitridometalates and transition-metal-rich binary nitrides. The obtained nitridomanganates display a plethora of interesting phenomena, such as large spin-orbit coupling, magnetic frustration, quenching of magnetism due to Mn-Mn interactions, and metal-insulator transition.

  10. Alkaline-earth metal phosphonocarboxylates: synthesis, structures, chirality, and luminescence properties

    Czech Academy of Sciences Publication Activity Database

    Zima, Vítězslav; Raja, D. S.; Lee, Y. S.; Chang, T. G.; Wu, Ch. Y.; Hu, Ch. Ch.; Lee, K. R.; Lai, J. Y.; Yeh, J. M.; Lin, Ch. H.

    2013-01-01

    Roč. 42, č. 43 (2013), s. 15332-15342 ISSN 1477-9226 Grant - others:AV ČR(CZ) M200501202 Program:M Institutional support: RVO:61389013 Keywords : coordination polymers * phosphonates * alkaline-earth Subject RIV: CA - Inorganic Chemistry Impact factor: 4.097, year: 2013

  11. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Martínez, S.

    1992-09-01

    Full Text Available Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide, employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium allowed us to determine the Lambert-Beer law slopes for each compound. These values are differents (bearing in mind experimental random errors, so we have could to affirm the nonexistence of solid solution between the nitrate and the alkaline halide médium. The L-B law obtained by us can be used for the Identification differentiation and quantitative analysis of these nitrates in solid phase, even if they are present in a very low concentration.

    Se ha realizado la asignación de los espectros infrarrojo (IR de los nitratos alcalinos, sódico y potásico, y de los alcalinotérreos, magnésico y cálcico, en estado sólido. Se ha visto la influencia del medio dispersante (haluro alcalino, utilizado en la preparación de la muestra sólida. El estudio cuantitativo de la absorbencia de la banda a 1.387 cm-1 (presente en los espectros IR de los cuatro nitratos en medio KBr permite determinar las pendientes de la Ley de Lambert-Beer Se comprueba que dichas pendientes son diferentes lo que conduce a poder afirmar que no se produce disolución sólida entre el KBr y el nitrato alcalino o alcalinotérreo. La determinación de la ley de Lambert-Beer permite la identificación y el análisis cualitativo y cuantitativo por espectroscopia IR de estos nitratos cuando están presentes en bajas concentraciones en muestras sólidas.

  12. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides

    International Nuclear Information System (INIS)

    Georgobiani, A.N.

    1997-01-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa 2 S 4 and (Ga 2 S 3 ) 1-x (Eu 2 O 3 ) x solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field

  13. Alkaline earth metal and samarium co-doped ceria as efficient electrolytes

    Science.gov (United States)

    Ali, Amjad; Raza, Rizwan; Kaleem Ullah, M.; Rafique, Asia; Wang, Baoyuan; Zhu, Bin

    2018-01-01

    Co-doped ceramic electrolytes M0.1Sm0.1Ce0.8O2-δ (M = Ba, Ca, Mg, and Sr) were synthesized via co-precipitation. The focus of this study was to highlight the effects of alkaline earth metals in doped ceria on the microstructure, densification, conductivity, and performance. The ionic conductivity comparisons of prepared electrolytes in the air atmosphere were studied. It has been observed that Ca0.1Sm0.1Ce0.8O2-δ shows the highest conductivity of 0.124 Scm-1 at 650 °C and a lower activation energy of 0.48 eV. The cell shows a maximum power density of 630 mW cm-2 at 650 °C using hydrogen fuel. The enhancement in conductivity and performance was due to increasing the oxygen vacancies in the ceria lattice with the increasing dopant concentration. The bandgap was calculated from UV-Vis data, which shows a red shift when compared with pure ceria. The average crystallite size is in the range of 37-49 nm. DFT was used to analyze the co-doping structure, and the calculated lattice parameter was compared with the experimental lattice parameter.

  14. Thermodynamic properties of titanates, zirconates and hafnates of alkaline earth metals

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The problems are considered arising in critical analysis and choosing recommended values of thermodynamic constants of the series of the most important perovskites-ferroelectrics-titanates, zirconates, and hafnates of alkaline-earth metals finding application in modern radioelectronics. Recommended values of standard thermodynamic values are given: heat capacity Csub(p,298) , enthalpy change H/sub 298/-H/sub 0/, entropy S/sub 298/, heat formation ..delta..Hsub(f,298 ), free energy formation ..delta..Gsub(f,298) , temperatures and heats of phase transitions with indication of errors for the adopted values. The effect of impurities on thermal constants of phase transitions is discussed. The relationships between thermodynamic characteristics of perovskites and crystal structure as well as the effect of orthorhombic distortions of ideal perovskite lattice on entropy of the compounds have been considered. Along with thermodynamic methods of investigation, a great attention is given to other physical methods which have been used for finding temperature regions of phase transitions, Curie points, and temperatures of transition from ferroelectric to paraelectric state. The importance of physical methods is emphasized in those cases when phase transitions are accompanied by small energy changes and are not fixed in measuring heat capacity.

  15. Study of radioactive sources accumulation with application of thermoluminescence dosemeters on the base of alkaline earth metals sulfates

    International Nuclear Information System (INIS)

    Tokbergenov, I.; Sadykov, T.

    2001-01-01

    Methodic for study of accumulation and distribution of radioactive sources in a nature objects is developed. An essence of the method consists of in that quantity of accumulated radioactive sources in a nature objects is defining by absorption dose measured with help of thermoluminescent dosemeters on the base of alkaline earth metals sulfates such as CaSO 4 :Dy and SrSO 4 :Eu

  16. Structure of fluoroantimonates (5) and fluorobismuthates (5) of alkaline earth metals

    International Nuclear Information System (INIS)

    Popov, A.I.; Val'kovskij, M.D.; Sukhoverkhov, V.F.

    1990-01-01

    Structure of fluoroantimonates (5) and fluorobismuthates (5) of M 2+ (M 5+ F 6 ) 2 composition, where M 5+ =Sb, Bi; M 2+ =Ca, Mg, Sr, Ba, alkaline earth elements is studied using powder x-ray structure analysis. Strontium fluoroantimonate and fluorobismuthate are crystallized in triclinic syngony, lattice parameters are presented. Models of structure of the studied fluorocomplex, which crystaline lattices consist of M 2+ cations and M 5+ F 6 - octahedral anions

  17. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    Science.gov (United States)

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima.

  18. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  19. Tuning aromaticity in trigonal alkaline earth metal clusters and their alkali metal salts.

    Science.gov (United States)

    Jiménez-Halla, J Oscar C; Matito, Eduard; Blancafort, Lluís; Robles, Juvencio; Solà, Miquel

    2009-12-01

    In this work, we analyze the geometry and electronic structure of the [X(n)M(3)](n-2) species (M = Be, Mg, and Ca; X = Li, Na, and K; n = 0, 1, and 2), with special emphasis on the electron delocalization properties and aromaticity of the cyclo-[M(3)](2-) unit. The cyclo-[M(3)](2-) ring is held together through a three-center two-electron bond of sigma-character. Interestingly, the interaction of these small clusters with alkali metals stabilizes the cyclo-[M(3)](2-) ring and leads to a change from sigma-aromaticity in the bound state of the cyclo-[M(3)](2-) to pi-aromaticity in the XM(3) (-) and X(2)M(3) metallic clusters. Our results also show that the aromaticity of the cyclo-[M(3)](2-) unit in the X(2)M(3) metallic clusters depends on the nature of X and M. Moreover, we explored the possibility for tuning the aromaticity by simply moving X perpendicularly to the center of the M(3) ring. The Na(2)Mg(3), Li(2)Mg(3), and X(2)Ca(3) clusters undergo drastic aromaticity alterations when changing the distance from X to the center of the M(3) ring, whereas X(2)Be(3) and K(2)Mg(3) keep its aromaticity relatively constant along this process. (c) 2009 Wiley Periodicals, Inc.

  20. Cure and mechanical properties of carboxylated nitrile rubber (XNBR) vulcanized by alkaline earth metal compounds

    Science.gov (United States)

    Tulyapitak, Tulyapong

    Compounds of carboxylated nitrile rubber (XNBR) with alkaline metal oxides and hydroxide were prepared, and their cure and mechanical properties were investigated. Magnesium oxide (MgO) with different specific surface areas (45, 65, and 140 m2/g) was used. Increased specific surface area and concentration of MgO resulted in higher cure rate. Optimum stiffness, tensile strength, and ultimate strain required an equimolar amount of acidity and MgO. The effect of specific surface area on tensile properties was not significant. Crosslink density of XNBR-MgO vulcanizates increased with increased amounts of MgO. ATR-IR spectroscopy showed that neutralization occurs in two steps: (1) During mixing and storage, MgO reacts with carboxyl groups (RCOOH) to give RCOOMgOH. (2) Upon curing, these react bimolecularly to form RCOOMgOOCR and Mg(OH)2. Dynamic mechanical thermal analysis revealed an ionic transition at higher temperature, in addition to the glass transition. The ionic transition shifts to higher temperature with increasing MgO concentration. Like MgO-XNBR systems, cure rates of XNBR-calcium hydroxide (Ca(OH)2) and XNBR-barium oxide (BaO) compounds increased with increased content of curing agents. Curing by these two agents resulted in ionic crosslinks. To ensure optimum tensile properties, equimolar amounts of carboxyl groups and curing agents were required. Dynamic mechanical analysis revealed the ionic transition in these two systems. It shifted to higher temperature with increased amounts of curing agents. In contrast to MgO, Ca(OH)2, and BaO, calcium oxide (CaO) gave results similar to those for thermally cured samples. No ionic transition was observed in XNBR-CaO systems. Tensile strength of XNBR depended on the strength of ionic crosslinks, which was dependent on the size of the alkaline metal ions.

  1. Coprecipitation of rare earths in systems of three heterovalent ions with sulfates of alkali and alkaline-earth metals

    International Nuclear Information System (INIS)

    Bobrik, V.M.

    1977-01-01

    Co-precipitation of rare earth elements (REE) in milligram amounts (3x10 -3 -3x10 -1 M) with alkali earth (AEE) sulfates in presence of alkali metal ions has been studied, the AEE:REE ratios between the co-precipitator and a REE (up to 50:1) the latter can be co-precipitated quantitatively in presence of corresponding alkali metals linked with the AEE in the Periodic table by a diagonal, i.e. in presence of sodium in co-precipitation with calcium sulfate, potassium with strontium sulfate and rubidium with barium sulfate. Co-precipitation with sulfates of sodium and calcium occurs at temperatures above 85 deg C and presumably involves calcium semihydrate. In presence of an alkali metal REE co-precipitation with AEE becomes isomorphic, i.e. at different AEE:REE ratios the co-precipitation coefficient remains constant. In presence of corresponding alkali metals the decrease in effectiveness of co-precipitation with AEE in the La-Lu series is more pronounced

  2. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Stress corrosion cracking (SCC)can cause failures of CANDU Zircaloy-4 fuel sheathing. The process occurs when a corrosive element (i.e.,iodine) interacts with a susceptible material that is under sufficient strain at a high temperature. Currently, there is an ongoing effort to improve SCC mitigation strategies for future iterations of CANDU reactors. A potential mechanism for SCC mitigation involves utilizing alkali metal oxides and alkaline earth metal oxides that will sequester corrosive iodine while actively repairing a protective oxide layer on the sheath. SCC tests performed with sodium oxide (Na{sub 2}O) and calcium oxide (CaO) have shown to decrease significantly the sheath degradation. (author)

  3. Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Bhushan, B; Das, D; Basumallick, A; Bandopadhyay, S K; Vasanthacharya, N Y

    2009-01-01

    Substrate-free pure-phase BiFeO 3 (BFO) nanoparticles doped with alkaline earth metals (Ba, Sr and Ca) have been synthesized by a sol-gel route and their thermal, optical, dielectric and magnetic properties are discussed. The characteristic structural phase transitions of BFO nanoparticles are found to occur at much lower temperatures. A reduction of the Neel temperature has been observed in the doped samples in comparison with the pristine one, whereas the band gap shows a reverse trend. Iron was found to be only in the Fe 3+ valence state in all the doped samples. Magnetoelectric coupling is seen in our samples. Weak ferromagnetism is observed at room temperature in all of the doped and undoped BFO nanoparticles with the largest value of coercive field ∼1.78 kOe and saturation magnetization ∼2.38 emu g -1 for Ba and Ca doped BFO nanoparticles, respectively.

  4. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  5. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  6. Preliminary investigations on picoplankton-related precipitation of alkaline-earth metal carbonates in meso-oligotrophic lake Geneva (Switzerland

    Directory of Open Access Journals (Sweden)

    Jean-Michel Jaquet

    2013-10-01

    Full Text Available In the course of a routine water-quality survey in meso-oligotrophic lake Geneva (Switzerland, suspended matter was collected by filtration on 0.2 μm membranes in July and August 2012 at the depth of maximal chlorophyll a (Chl a concentration (2 mg m–3. Examination by scanning electron microscopy revealed the presence of numerous dark and gelatinous patches occluding the pores of the membranes, containing high numbers of picoplanktonic cells and, in places, clusters of high-reflectance smooth microspheres (1-2 μm in diameter. Their chemical composition, determined by semi-quantitative, energy-dispersive X ray spectroscopy (EDS showed magnesium (Mg, calcium (Ca, strontium (Sr and barium (Ba (alkaline earth metals to be the dominant cations. Among the anions, phosphorus (P and carbon (C were present, but only the latter is considered here (as carbonate. The microspheres were subdivided into four types represented in a Ca-Sr-Ba ternary space. All types are confined within a domain bound by Ca>45, Sr<10 and Ba<50 (in mole %. Type I, the most frequent, displays a broad variability in Ba/Ca, even within a given cluster. Types II and III are devoid of Ba, but may incorporate P. Type IV contains only Ca. The Type I composition resembles that of benstonite, a Group IIA carbonate that was recently found as intracellular granules in a cyanobacterium from alkaline lake Alchichica (Mexico.Lake Geneva microspheres are solid, featureless and embedded in a mucilage-looking substance in the vicinity of, but seemingly not inside, picoplanktonic cells morphologically similar to Chlorella and Synechococcus. In summer 2012, the macroscopic physico-chemical conditions in lake Geneva epilimnion were such as to allow precipitation of Ca but not of Sr and Ba carbonates. Favourable conditions did exist, though, in the micro-environment provided by the combination of active picoplankton and a mucilaginous envelope. Further studies are ongoing to investigate the

  7. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers

    International Nuclear Information System (INIS)

    Xu, Shuang; Kan, Kan; Yang, Ying; Jiang, Chao; Gao, Jun; Jing, Liqiang; Shen, Peikang; Li, Li

    2015-01-01

    Highlights: • The small-sized SnO 2 (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO 2 nanofibers showed uniform nanotubes structure (Sr/SnO 2 ). • Sr/SnO 2 showed an excellent sensing performance to NH 3 at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO 2 (Ae/SnO 2 ) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO 2 was 5–7 nm, which was smaller than the pristine SnO 2 nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO 2 nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO 2 nanotubes exhibited an excellent sensing response toward NH 3 gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO 2 nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO 2 . Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO 2 nanotubes was 3 fold of that pristine SnO 2

  8. Study of conformational and acid-base properties of norbadione A and pulvinic derivatives: Consequences on their complexation properties of alkaline and alkaline earth cations

    International Nuclear Information System (INIS)

    Kuad, P.

    2006-01-01

    This work deals with the study of norbadione A, a pigment extracted from mushrooms and known to complex cesium cations. The study of the acid-base properties of norbadione A has allowed to determine the relative acidity of the seven protonable functions of the molecule and to reveal a reversible isomerization of the double exocyclic bond of the pulvinic moieties. The observed change of configuration is induced by a hydrogen bond of the H-O-H type and by electrostatic interactions. Moreover, the microscopic protonation mechanism of the norbadione A has been analyzed, considering three different study media where the acid-base properties of the norbadione A are compared. In the presence of 0.15 mol.l -1 of NaCl, it has been observed a remarkable cooperativity in the protonation of the enol groups. At last, the use of different analytical methods (NMR, potentiometry and calorimetry) has allowed to study the complexing properties of the norbadione A towards cesium and other alkaline and rare earth cations. (O.M.)

  9. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  10. Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth

    International Nuclear Information System (INIS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCl eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system. (orig.)

  11. Fates and roles of alkali and alkaline earth metal species during the pyrolysis and gasification of a Victorian lignite

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Wu, H.; Li, C. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    The transformation of alkali and alkaline earth metal (AAEM) species in a Victorian lignite during the pyrolysis and subsequent gasification in CO{sub 2} was studied in a novel quartz fluidised-bed reactor. Lignite samples prepared by physically adding NaCl and ion-exchanging Na{sup +} and Ca{sup ++} into the lignite were used to investigate the effects of chemical forms and valency of the AAEM species in the substrate lignite on their transformation during pyrolysis and gasification. Carboxyl-bound Na was found to be less volatile than Na present as NaCl, but more volatile than carboxyl-bound Ca during pyrolysis at temperatures between 400 and 900{sup o}C. However, the carboxyl-bound Na was volatilised to a much greater extent than the carboxyl-bound Ca in the same lignite during pyrolysis. It was seen that the loading of NaCl into the lignite did not significantly affect the char reactivity in the fluidised-bed reactor at 900{sup o}C.

  12. Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C24 fullerene: A DFT study

    Science.gov (United States)

    Zhang, Yafei; Cheng, Xinlu

    2018-04-01

    The hydrogen storage behavior of alkali and alkaline-earth metal (AM = Li, Na, K, Mg, Ca) atoms decorated C24 fullerene was investigated by using density functional theory (DFT) study. Our results indicate that the AM atoms prefer to adsorb atop the center of tetragon of C24 fullerene with the largest binding energy than other possible adsorption sites. Moreover, the hydrogen storage gravimetric density of 24H2/6Li/C24, 24H2/6Na/C24 and 36H2/6Ca/C24 configurations reaches up to 12.7 wt%, 10.1 wt% and 12 wt%, higher than the year 2020 target from the US department of energy (DOE). Also, the average adsorption energies of H2 molecules of the 24H2/6Li/C24, 24H2/6Na/C24 and 36H2/6Ca/C24 configurations are -0.198 eV/H2, -0.164 eV/H2 and -0.138 eV/H2, locate the desirable range under the physical adsorption at near ambient conditions. These findings will have important implications on designing new hydrogen storage materials in the future.

  13. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.

    Science.gov (United States)

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui

    2013-01-01

    The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    Science.gov (United States)

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  15. Syntheses, structure and properties of Alkaline-earth metal salts of 4 ...

    Indian Academy of Sciences (India)

    with the aid of O-H··· O interactions. ... in 2 and the unique 4-npa ligand in 3 link the bivalent metal ions into an infinite chain ... using 785 nm laser radiation for excitation on an Agiltron ... was stopped when there was no more evolution of CO2.

  16. Corrosion potentials of hafnium in molten alkaline-earth metal chlorides

    International Nuclear Information System (INIS)

    Kovalik, O.Yu.; Tkhaj, V.D.

    2000-01-01

    Corrosion potentials of hafnium in molten calcium, strontium and barium chlorides are measured and their temperature dependences are determined. It is stated that the corrosion potential of hafnium becomes more electropositive with an increase of the environment temperature. If the temperature is the same the potential shifts to the interval of more electronegative values in the row of CaCl 2 , SrCl 2 , BaCl 2 which corresponds to a lesser corrosion rate in environments positioned from left to right. the comparison of hafnium corrosion potentials with previously measured values for titanium and zirconium shows that a metal activity decrease results in a more electronegative corrosion potential [ru

  17. Comparison of arsenic acid with phosphoric acid in the interaction with a water molecule and an alkali/alkaline-earth metal cation.

    Science.gov (United States)

    Park, Sung Woo; Kim, Chang Woo; Lee, Ji Hyun; Shim, Giwoong; Kim, Kwang S

    2011-10-20

    Recently, Wolfe-Simon has discovered a bacterium which is able to survive using arsenic(V) rather than phosphorus(V) in its DNA. Thus it is important to investigate some important structural and chemical similarities and dissimilarities between phosphate and arsenate. We compared the monohydrated structures and the alkali/alkaline-earth metal (Na(+), K(+), Mg(2+) and Ca(2+)) complexes of the arsenic acid/anions with those of the phosphoric acid/anions [i.e., H(m)PO(4)(-(3-m)) vs H(m)AsO(4)(-(3-m)) (m = 1-3)]. We carried out geometry optimization along with harmonic frequency calculations using ab initio calculations. Despite the increased van der Waals radius of As, the hydrated structures of both P and As systems show very close similarity (within 0.25 Å in the P/As···O(water) distance and within a few kJ/mol in binding energy) because of the increased induction energies by more polar arsenic acid/anons and slightly increased dispersion energy by a larger size of the As atom. In the metal complexes, the arsenic acid has a slightly larger binding distance (by 0.07-1.0 Å) and weaker binding energy because the As(V) ion has a slightly larger radius than the P(V) ion, and the electrostatic interaction is the dominating feature in these systems.

  18. Effects of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Y.; Wu, Z.; Furimsky, E. [Tohoku University, Sendai (Japan). Inst. for Chemical Reaction Science

    1997-11-01

    The paper reports that the formation of HCN, NH{sub 3} and N{sub 2} during fixed-bed pyrolysis at 10 K min{sup -1} has been studied using coal samples after partial demineralization followed by addition of metal hydroxides from aqueous systems. Without additives, NH{sub 3} is the predominant product at {le} 700{degree}C, showing the two peaks in the formation rate profile, whereas N{sub 2} is the only product at {ge} 800{degree}C. The presence of NaOH, KOH and Ca(OH){sub 2} promotes considerable NH{sub 3} formation between 450 and 600{degree}C, but in contrast suppresses HCN formation in this region. The Ca shows the largest effect on both the promotion and suppression. It is likely that the NH{sub 3} increased by Ca addition arises partly from HCN, but mainly from secondary reactions of tar-N. These hydroxides affect N{sub 2} formation in quite different manners: the Na decreases the rate between 700 and 950{degree}C, and the K changes it less significantly than the Na, but the Ca remarkably increases the rate in a low temperature region of 550-700{degree}C. These different features are discussed in terms of solid-phase reactions of alkali metal carbonates with char-N and secondary decomposition reactions of tar-N on CaO particles. As a result, total conversion of coal-N to HCN, NH{sub 3} and N{sub 2} up to 1000{degree}C increases in the sequence of Na {lt} none {lt} K {lt} Ca. 40 refs., 10 figs., 2 tabs.

  19. Electrochemical transformations of oxygen and the defect structure of solid solutions on the basis of alkaline earth metal ortho-vanadates

    International Nuclear Information System (INIS)

    Khodos, M.Ya.; Belysheva, G.M.; Brajnina, Kh.Z.

    1986-01-01

    Effect of iso- and heterovalent substitution in the structure of alkaline earth metal ortho-vanadates and synthesis conditions, simulating the definite type of their crystal lattice disordering, on the character of potentiodynamic anodic-cathodic curves has been investigated by the method of cyclic voltammetry. Correlation between signals observed and the defect structure of oxide compounds is refined. Oxygen chemisorption is shown to be determined by concentration of nonequilibrium oxygen vacancies, which formation is accompanied by appearance of quasi-free electrons

  20. Formation of ammonia complexes of alkaline earth elements in aqueous solutions

    International Nuclear Information System (INIS)

    Padar, T.G.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1990-01-01

    Coefficients of ammonia distribution between aqueous solutions of calcium, strontium, barium and ammonium perchlorate mixtures at ionic strength - 0.50; 1.0 and 1.5 at 298.2 K and ammonia concentrations 0.2-10 mol/dm 3 are measured. Formation of ammonia complexes of M(NH 3 ) n 2+ composition is shown. Logarithms of stepped stability constants for solutions with zero ionic strength for Ca 2+ are: -0.13; -0.25; -0.52 and -0.77, where n=1-4; for Sr 2+ : -0.04; -0.42 and -0.70, where n=1-3 and for Ba 2+ : -0.11; -0.50 and 0.76, where n=1-3

  1. Iron corrosion inhibition by phosphonate complexes of rare earth metals

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Raskol'nikov, A.F.; Starobinskaya, I.V.; Alekseev, V.N.

    1993-01-01

    Capability is shown of trivalent rare earth nitrilotrimethylphosphonates (R= Ce, Pr, Nd, Eu, Lu, Y) to retard steel corrosion in soft water due to the formation of slightly soluble hydroxides on steel surface. The protective film is produced as a result of electrophilic substitution of nascent iron cations for rare earth ions in near the surface layer. The introduction of rare earth cations into the protective film is ascertained by Auger spectroscopy in combination with the argon spraying. A quantitative interrelation between the protective effectiveness and solubility product of rare earth hydroxides is revealed

  2. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  3. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. D.; Fang, Y. M.; Wu, S. Q., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Zhu, Z. Z., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005 (China)

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  4. Structures and Spectroscopy Studies of Two M(II-Phosphonate Coordination Polymers Based on Alkaline Earth Metals (M = Ba, Mg

    Directory of Open Access Journals (Sweden)

    Kui-Rong Ma

    2013-01-01

    Full Text Available The two examples of alkaline-earth M(II-phosphonate coordination polymers, [Ba2(L(H2O9]·3H2O (1 and [Mg1.5(H2O9]·(L-H21.5·6H2O (2 (H4L = H2O3PCH2N(C4H8NCH2PO3H2, N,N′-piperazinebis(methylenephosphonic acid, (L-H2 = O3PH2CHN(C4H8NHCH2PO3 have been hydrothermally synthesized and characterized by elemental analysis, FT-IR, PXRD, TG-DSC, and single-crystal X-ray diffraction. Compound 1 possesses a 2D inorganic-organic alternate arrangement layer structure built from 1D inorganic chains through the piperazine bridge, in which the ligand L−4 shows two types of coordination modes reported rarely at the same time. In 1, both crystallographic distinct Ba(1 and Ba(2 ions adopt 8-coordination two caps and 9-coordination three caps triangular prism geometry structures, respectively. Compound 2 possesses a zero-dimensional mononuclear structure with two crystallographic distinct Mg(II ions. Free metal cations   [MgO6]n2+ and uncoordinated anions (L-H2n2- are joined together by static electric force. Results of photoluminescent measurement indicate three main emission bands centered at 300 nm, 378.5 nm, and 433 nm for 1 and 302 nm, 378 nm, and 434.5 nm for 2 (λex=235 nm, respectively. The high energy emissions could be derived from the intraligand π∗-n transition stations of H4L (310 nm and 382 nm, λex=235 nm, while the low energy emission (>400 nm of 1-2 may be due to the coordination effect with metal(II ions.

  5. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    Science.gov (United States)

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere. Copyright © 2015. Published by Elsevier Ltd.

  6. Luminescence behaviors of Eu- and Dy-codoped alkaline earth metal aluminate phosphors through potassium carbonate coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen-Jui, E-mail: cjliang@fcu.edu.tw; Siao, Hao-Yi

    2016-07-01

    An electronic energy mechanism of activator and sensitizer was established to describe the luminescence behaviors of Eu- and Dy-codoped M(II)Al{sub 2}O{sub 4} (M(II) = Ba, Sr, Ca, Mg) phosphors through potassium carbonate coprecipitation. Experimental results demonstrated that the prepared phosphors exhibited superior crystallinity at a temperature lower than 950 °C. The phosphors are ordered according to emission intensity as follows Ca- > Ba- > Sr- > Mg-containing phosphors. The energy level for Eu{sup 2+} 4f{sup 6}5d{sup 1} → 4f{sup 7}, Eu{sup 3+4}D{sub 0} → {sup 7}F, and Dy{sup 3+4}F{sub 9/2} → {sup 6}H transitions and the effects of nephelauxetic and crystal field in Ba-, Sr-, and Ca-containing phosphors were discussed. The energy gap, (hv){sub em}, between 5d and 4f of Eu{sup 2+} ion is strongly affected by host composition, crystal field strength, and nephelauxetic effect. The infrared emission of 4f{sub 9/2} → 6h for Dy{sup 3+} is merely depend on the transfer of energy from Eu{sup 2+} upon excited. Ca-containing phosphor with maximum (hv){sub em} is attributed to the lowest bond length of Ca−O and highest ionization potential of Ca{sup 2+} ion, which leads to the effects of crystal field and nephelauxetic greater than that in the other phosphors. - Highlights: • The list of the collected figure captions: • Develop a new coprecipitation method to prepare high efficiency phosphors. • Obtain superior crystallinity with lower calcination temperature. • Luminescence behavior of Eu- and Dy-codoped on aluminate phosphors is discussed. • Investigate the effects of alkaline earth metal containing on crystal field and nephelauxetic.

  7. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    This work investigates strategies to mitigate stress corrosion cracking (SCC) in Zircaloy-4 sheathing materials. The CANLUB coatings currently used in CANDU reactors contain both alkali metal and alkaline earth metal impurities, which can exist as oxides (e.g., Na{sub 2}O and CaO). It is believed that when the corrosive fission product iodine reacts with these oxides, the iodine can be sequestered through the formation of an iodide (e.g.,NaI and CaI{sub 2}). The subsequent O{sub 2} release may repair cracks in the protective ZrO{sub 2} layer on the sheathing, shielding the Zircaloy-4 sheathing from further corrosive fission product attack. For this investigation, O{sub 2} gas, Na{sub 2}O, and CaO were separately introduced into an environment wherein slotted Zircaloy-4 rings endure mechanical stresses in iodine vapour at high temperatures. Controlled additions of O{sub 2} gas created a slight reduction in the corrosive attack on Zircaloy-4 sheathing, while the inclusion of Na{sub 2}O and CaO lead to greater reductions. (author)

  8. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  9. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-01-01

    The location of extraframework cations in Sr 2+ and Ba 2+ ion-exchanged SAPO-34 was estimated by means of 1 H and 23 Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO 2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO 2 adsorption performance. Highlights: ► Location of extraframework Sr 2+ or Ba 2+ cations was estimated by means of 1 H and 23 Na MAS NMR. ► Level of Sr 2+ or Ba 2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr 2+ and Ba 2+ ion exchanged SAPOs are outstanding CO 2 adsorbents.

  10. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    Science.gov (United States)

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  12. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Durand, S.

    1999-01-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA 4- , ethylene-diamino-tri-acetate-acetic acid EDTA(H) 3- , tetra-aza-cyclo-dodecane-tetra-acetate DOTA 4- , methylene-imidine-acetate MIDA 2- ) are reported. First, a consistent set of Lennard-Jones parameters for La 3+ , Eu 3+ and Lu 3+ cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA 4- , EDTA(H) 3- , DOTA 4- and 1:2 complexes of lanthanide cations with MIDA 2- were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca 2+ vs Sr 2+ and vs Ba 2+ on the one hand, and with La 3+ vs Eu 3+ and vs Lu 3+ on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  13. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Red-emitting alkaline-earth rare-earth pentaoxometallates powders ...

    Indian Academy of Sciences (India)

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to ... alkaline-earth ion, or possibly even a rare-earth ion and alkali metal ... sion spectra of the powders were recorded on a fluorescent.

  15. Metallic complexes with glyphosate: a review

    OpenAIRE

    Coutinho, Cláudia F. B.; Mazo, Luiz Henrique

    2005-01-01

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature.

  16. Metallic complexes with glyphosate: a review

    International Nuclear Information System (INIS)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique

    2005-01-01

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  17. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure

    International Nuclear Information System (INIS)

    Gao, G.Y.; Yao, K.L.; Liu, Z.L.; Zhang, J.; Min, Y.; Fan, S.W.

    2008-01-01

    In this Letter, using the first-principles full-potential linearized augmented plane-wave (FP-LAPW) method, we extend the electronic structure and magnetism studies on zinc-blende structure of II-V compounds MX (M=Ca,Sr,Ba; X=N,P,As) [M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73 (2006) 024404] to the rock-salt structure. It is found that, in the nine compounds, only alkaline-earth nitrides CaN, SrN and BaN exhibit ferromagnetic half-metallic character with a magnetic moment of 1.00μ B per formula unit. Furthermore, compared with the zinc-blende structure of CaN, SrN and BaN, the rock-salt structure has lower energy, which makes them more promising candidates of possible growth of half-metallic films on suitable substrates

  18. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quyn, Dimple Mody; Li, Chun-Zhu [CRC for Clean Power from Lignite, Department of Chemical Engineering, PO Box 36, Monash University, Victoria 3800 (Australia); Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-08-25

    A Victorian brown coal was gasified in a bench-scale quartz fluidised-bed/fixed-bed reactor in order to study the volatilisation of Na, Ca, and Mg during devolatilisation and gasification and their roles in the reactivity of chars. It was found that the majority of Na was volatilised at 900 {sup o}C under all conditions and that a Na retention limit was achieved in the char with the progress of CO{sub 2} gasification. In some cases, the presence of CO{sub 2} during devolatilisation enhanced the Na retention in the char. In contrast, the retention of Ca (and Mg) was unaffected by CO{sub 2} during devolatilisation at 900C but decreased drastically upon nascent char gasification. The fundamental differences in volatilisation between the alkali and alkaline earth metallic species are discussed in this paper.

  19. Enhanced spin polarization of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend and low-lying shape resonance regions

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.

    1993-01-01

    Spin polarizations (SP's) of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend (RT) and low-lying shape resonance (SR) regions are calculated using a relativistic method. The detailed SP distributions both with scattering angle and with electron energy are presented via the energy- and angle-dependent surfaces of SP parameters. It is shown that the SP effects of the collisions of electrons with Ca, Sr, and Ba atoms in the RT region are significant in a considerable area on the energy-angle plane and that the spin-orbit interaction is well increased around the low-lying p-wave SR states of Be and Mg and the d-wave SR states of Ca, Sr, and Ba

  20. Mineralizer-assisted high-pressure high-temperature synthesis and characterization of novel phosphorus nitride imides and luminescent alkaline earth metal (oxo)nitridophosphates

    International Nuclear Information System (INIS)

    Marchuk, Alexey

    2016-01-01

    The main objectives of this thesis were the synthesis, identification and structural characterization of new alkaline earth metal (oxo)nitridophopshates and phosphorus nitrides. Furthermore, luminescence properties of the resulting materials should be investigated and a connection between these properties and the respective structures should be established. For this purpose, a range of synthesis strategies was employed, including conventional solid-state syntheses in silica ampoules and high-pressure high-temperature syntheses using the multianvil technique. The emphasis of the synthetic part of this thesis lies on the development of new synthetic strategies in order to increase crystallinity of alkaline earth metal (oxo)nitridophosphates and thus accelerate their structure determination. This involves the selection of a suitable mineralizer and the investigation of its interaction with the respective starting materials. In addition, the analytical methods applied in this thesis in order to identify and characterize the compounds are just as essential as the synthesis strategies. X-ray diffraction on single crystals and on powders was carried out as the main analytical method while being supported by quantitative and qualitative 1 H and 31 P solid-state NMR measurements, FTIR and energy-dispersive X-ray (EDX) spectroscopy, as well as electron microscopy methods including both imaging and diffraction techniques. Implied by the large number of novel structures investigated, theoretical studies including topological analysis, calculations of lattice energies and bond-valence sums also played a major role in this thesis. Optical analysis methods such as reflectance spectroscopy, luminescence microscopy and photoluminescence measurements helped to determine the luminescence properties of some of the presented compounds.

  1. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  2. (e,2e) ionization studies of alkaline-earth-metal and alkali-earth-metal targets: Na, Mg, K, and Ca, from near threshold to beyond intermediate energies

    International Nuclear Information System (INIS)

    Murray, Andrew James

    2005-01-01

    A comprehensive set of experimental data is presented for the electron impact ionization differential cross sections of sodium, magnesium, potassium, and calcium. A coplanar symmetric geometry was chosen for these (e,2e) coincidence studies, the energies ranging from near threshold to around fifteen times the first ionization potential. The results reveal a complex structure in both angle and energy which depends on the chosen target. Similarities and differences in the overall structure are found for the targets which have been studied. The results are compared to the measured cross section for helium over the same incident energy regime. The calcium results are also compared to recent theoretical calculations using a distorted wave Born approximation and the convergent close coupling method. Clear discrepancies are found between both theories and with experiment

  3. Synthesis of alkaline-earth metal tungstates in melts of [NaNO3-M(NO3)2]eut-Na2WO4 (M=Ca, Sr, Ba) system

    International Nuclear Information System (INIS)

    Shurdumov, G.K.; Shurdumova, Z.V.; Cherkesov, Z.A.; Karmokov, A.M.

    2006-01-01

    Synthesis of alkaline earth metal tungstates in melts of eutectics of NaNO 3 -M(NO 3 ) 2 ] (M=Ca, Sr, Ba) is done. Synthesis is based in exchange reaction of calcium, strontium, and barium nitrates with sodium tungstate [ru

  4. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids II. Tb3+, Yb3+ and Gd3+ complexes in weakly alkaline conditions

    International Nuclear Information System (INIS)

    Dong Wenming; Li Weijuan; Tao Zuyi

    2002-01-01

    The conditional stability constants for tracer concentrations of Tb(III), Yb(III), and Gd(III) with three soil humic acids, three soil fulvic acids and a fulvic acid from weathered coal were determined at pH 9.0-9.1 (these values are similar to those in calcareous soils) in the presence of NaHCO 3 by using the anion exchange method. It was found that 1 : 1 and 1 : 2 complexes were simultaneously formed in the weakly alkaline conditions. The conditional stability constants of these 1 : 1 and 1 : 2 complexes were calculated from the distribution coefficients of rare earth elements at various concentrations of humate or fulvate. The stability constants indicate the very high stability of trivalent Tb 3+ , Yb 3+ and Gd 3+ complexes with humic substances in weakly alkaline conditions. The key parameters necessary for the experimental determination of the conditional stability constants of metal ions with humic substances in the presence of NaHCO 3 by using an anion exchange method were discussed. The conditional stability constants of these 1 : 1 and 1 : 2 complexes were compared in this paper. It was found that stabilities of Tb 3+ 1 : 1 and 1 : 2 complexes with humic acid are greater than the corresponding ones with fulvic acid from the same soil. In addition, the effect of the presence of Ca 2+ as a competitor on the stabilities of 1 : 1 and 1 : 2 complexes of Yb was examined and no pronounced change of stabilities of 1 : 1 complex was found, even though Ca 2+ is in a 10 3 excess to Yb 3+

  5. Enhanced NH{sub 3} gas sensing performance based on electrospun alkaline-earth metals composited SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Daqing Branch, Heilongjiang Academy of Sciences, Daqing 163319 (China); Yang, Ying; Jiang, Chao [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Gao, Jun [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Department of Chemistry, Harbin Normal University, Harbin 150025 (China); Jing, Liqiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Shen, Peikang [Department of Physics and Engineering Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); and others

    2015-01-05

    Highlights: • The small-sized SnO{sub 2} (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO{sub 2} nanofibers showed uniform nanotubes structure (Sr/SnO{sub 2}). • Sr/SnO{sub 2} showed an excellent sensing performance to NH{sub 3} at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO{sub 2} (Ae/SnO{sub 2}) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO{sub 2} was 5–7 nm, which was smaller than the pristine SnO{sub 2} nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO{sub 2} nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO{sub 2} nanotubes exhibited an excellent sensing response toward NH{sub 3} gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO{sub 2} nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO{sub 2}. Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO{sub 2} nanotubes was 3 fold of that pristine SnO{sub 2}.

  6. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  7. Complexation of trichlorosalicylic acids by alkaline and first row transition metals as a switch for their antibacterial activity

    KAUST Repository

    Kumar, Vijay

    2017-09-14

    3,5,6-trichlorosalicylic acid (TCSA) does not show a good antibacterial activity. In contrast, here metal complexes with TCSA have shown better antibacterial activity for selected bacterial strains with a good degree of selectivity. Amongst the eight synthesized essential metal complexes complexed with TCSA, Mn(II)-TCSA and Ni(II)-TCSA have been found to be more effective with MIC range 20-50 µg/L as compared to control (chloramphenicol). The activity of an individual complex against different microbes was not found to be identical, indicating the usage of an individual metal chelate against a targeted bacterial strain. Further, the protein (BSA) binding constant of TCSA and its metal complexes were determined and ordered as Ca(II)-TCSA > Cu(II)-TCSA > Mg(II)-TCSA >> Mn(II)-TCSA >> Zn(II)-TCSA >>> Ni(II)-TCSA >>> Co(II)-TCSA > Fe(II)-TCSA > TCSA. The present study has confirmed enhanced antibacterial activities and binding constants for metal chelates of TCSA as compared to free TCSA, which seems directly related with the antioxidant activities of these complexes. Further, bearing the ambiguity related to the structural characterization of the metal complexed with TCSA ligands, DFT calculations have been used as the tool to unravel the right environment around the metals, studying basically the relative stability of square planar and octahedral metal complexes with TCSA.

  8. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations.

    Science.gov (United States)

    Lan, Jianhui; Cao, Dapeng; Wang, Wenchuan; Smit, Berend

    2010-07-27

    We use the multiscale simulation approach, which combines the first-principles calculations and grand canonical Monte Carlo simulations, to comprehensively study the doping of a series of alkali (Li, Na, and K), alkaline-earth (Be, Mg, and Ca), and transition (Sc and Ti) metals in nanoporous covalent organic frameworks (COFs), and the effects of the doped metals on CO2 capture. The results indicate that, among all the metals studied, Li, Sc, and Ti can bind with COFs stably, while Be, Mg, and Ca cannot, because the binding of Be, Mg, and Ca with COFs is very weak. Furthermore, Li, Sc, and Ti can improve the uptakes of CO2 in COFs significantly. However, the binding energy of a CO2 molecule with Sc and Ti exceeds the lower limit of chemisorptions and, thus, suffers from the difficulty of desorption. By the comparative studies above, it is found that Li is the best surface modifier of COFs for CO2 capture among all the metals studied. Therefore, we further investigate the uptakes of CO2 in the Li-doped COFs. Our simulation results show that at 298 K and 1 bar, the excess CO2 uptakes of the Li-doped COF-102 and COF-105 reach 409 and 344 mg/g, which are about eight and four times those in the nondoped ones, respectively. As the pressure increases to 40 bar, the CO2 uptakes of the Li-doped COF-102 and COF-105 reach 1349 and 2266 mg/g at 298 K, respectively, which are among the reported highest scores to date. In summary, doping of metals in porous COFs provides an efficient approach for enhancing CO2 capture.

  9. Complexation of trichlorosalicylic acids by alkaline and first row transition metals as a switch for their antibacterial activity

    KAUST Repository

    Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Basit Wani, Abdul; Manhas, Anu; Kaur, Sukhmanpreet; Poater, Albert; Chadar, Hemlata; NirajUpadhyay

    2017-01-01

    3,5,6-trichlorosalicylic acid (TCSA) does not show a good antibacterial activity. In contrast, here metal complexes with TCSA have shown better antibacterial activity for selected bacterial strains with a good degree of selectivity. Amongst

  10. Bis(imidazolin-2-iminato) rare earth metal complexes: synthesis, structural characterization, and catalytic application.

    Science.gov (United States)

    Trambitas, Alexandra G; Melcher, Daniel; Hartenstein, Larissa; Roesky, Peter W; Daniliuc, Constantin; Jones, Peter G; Tamm, Matthias

    2012-06-18

    Reaction of anhydrous rare earth metal halides MCl(3) with 2 equiv of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) and 2 equiv of trimethylsilylmethyl lithium (Me(3)SiCH(2)Li) in THF furnished the complexes [(Im(Dipp)N)(2)MCl(THF)(n)] (M = Sc, Y, Lu). The molecular structures of all three compounds were established by single-crystal X-ray diffraction analyses. The coordination spheres around the pentacoordinate metal atoms are best described as trigonal bipyramids. Reaction of YbI(2) with 2 equiv of LiCH(2)SiMe(3) and 2 equiv of the imino ligand Im(Dipp)NH in tetrahydrofuran did not result in a divalent complex, but instead the Yb(III) complex [(Im(Dipp)N)(2)YbI(THF)(2)] was obtained and structurally characterized. Treatment of [(Im(Dipp)N)(2)MCl(THF)(n)] with 1 equiv of LiCH(2)SiMe(3) resulted in the formation of [(Im(Dipp)N)(2)M(CH(2)SiMe(3))(THF)(n)]. The coordination arrangement of these compounds in the solid state at the metal atoms is similar to that found for the starting materials, although the introduction of the neosilyl ligand induces a significantly greater distortion from the ideal trigonal-bipyramidal geometry. [(Im(Dipp)N)(2)Y(CH(2)SiMe(3))(THF)(2)] was used as precatalyst in the intramolecular hydroamination/cyclization reaction of various terminal aminoalkenes and of one aminoalkyne. The complex showed high catalytic activity and selectivity. A comparison with the previously reported dialkyl yttrium complex [(Im(Dipp)N)Y(CH(2)SiMe(3))(2)(THF)(3)] showed no clear tendency in terms of activity.

  11. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation.

    Science.gov (United States)

    Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-08-24

    Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  12. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  13. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study.

    Science.gov (United States)

    Duan, Yuhua; Sorescu, Dan C

    2010-08-21

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents.

  14. Theoretical study for the reduction of N2O with CO Mediated by alkaline-earth metal oxide cations 2MO+(M=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Zhang Jianhui; Leng Yanli; Wang Yongcheng

    2013-01-01

    The reaction mechanism of the reaction N 2 O( 0 Σ + ) + CO ( 1 Σ + )→N 2 ( 1 Σ g + ) + CO 2 ( 1 Σ g + ) mediated by alkaline-earth metal oxide cations 2 MO + (m=Ca, Sr, Ba) have been investigated by using the UB3LYP and CCSD (T) levels of theory. The O-atom affinities (OA) testified that only the 2 CaO + can capture O from N 2 O and transfer O to CO is thermodynamically allowed in three ions. The processes can be expressed as channels l and 2 for the reaction of N 2 O and CO mediated by 2 MO + (M=Ca, Sr, Ba). For the former, the main reaction processes in a two-step manner to products, the 2 MO + , as a catalyzer, transports an oxygen atom from N 2 O to CO. For the latter, firstly, the N 2 O interact with the 2 MO + to form IM1, then IM1 interact with the CO to form IM2', along the reaction pathway the intermediate species convert into products 2 1MO + , N 2 and CO 2 . From above results, the following conclusion was drawn. The channel 2 is kinetically and thermodynamically feasible. Our calculated results show the title reactions are accord with the experiment. (authors)

  15. Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat; Zarnegar, Mohammad; Ahmadi, Hamed

    2018-01-02

    The steam gasification of algal biomass (Cladophora glomerata L.) in presence of alkali and alkaline-earth metal compounds catalysts was studied to enhance the yield of syngas and reduce its tar content through cracking and reforming of condensable fractions. The commercial catalysts used include NaOH, KHCO 3 , Na 3 PO 4 and MgO. The gasification runs carried out with a research scale, biomass gasification unit, show that the NaOH has a strong potential for production of hydrogen, along with the added advantages of char converting and tar destruction, allowing enhancement of produced syngas caloric value. When the temperature increased from 700°C to 900°C, the tar content in the gas sharply decreased, while the hydrogen yield increased. Increasing steam/biomass ratio significantly increased hydrogen yield and tar destruction; however, the particle size in the range of 0.5-2.5 mm played a minor role in the process.

  16. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  17. Crystal growth, characterization and theoretical studies of alkaline earth metal-doped tetrakis(thiourea)nickel(II) chloride.

    Science.gov (United States)

    Agilandeshwari, R; Muthu, K; Meenatchi, V; Meena, K; Rajasekar, M; Aditya Prasad, A; Meenakshisundaram, S P

    2015-02-25

    The influence of Sr(II)-doping on the properties of tetrakis(thiourea)nickel(II) chloride (TTNC) has been described. The reduction in the intensity observed in powder X-ray diffraction of doped specimen and slight shifts in vibrational frequencies of doped specimens confirm the lattice stress as a result of doping. Surface morphological changes due to doping of the Sr(II) are observed by scanning electron microscopy. The incorporation of metal into the host crystal lattice was confirmed by energy dispersive X-ray spectroscopy. Lattice parameters are determined by single crystal XRD analysis. The thermogravimetric and differential thermal analysis studies reveal the purity of the materials and no decomposition is observed up to the melting point. The nonlinear optical properties of the doped and undoped specimens were studied. Theoretical calculations were performed using the Density functional theory (DFT) method with B3LYP/LANL2DZ as the basis set. The molecular geometry and vibrational frequencies of TTNC in the ground state were calculated and the observed structural parameters of TTNC are compared with parameters obtained from single crystal X-ray studies. The atomic charge distributions are obtained by Mulliken charge population analysis. The first-order molecular hyperpolarizability, polarizability and dipole moment were derived. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Tetrahydropentalenyl-phosphazene constrained geometry complexes of rare-earth metal alkyls.

    Science.gov (United States)

    Hangaly, Noa K; Petrov, Alexander R; Elfferding, Michael; Harms, Klaus; Sundermeyer, Jörg

    2014-05-21

    Reactions of Cp™HPPh2 (1, diphenyl(4,4,6,6-tetramethyl-1,4,5,6-tetrahydropentalen-2-yl)phosphane) with the organic azides AdN3 and DipN3 (Ad = 1-adamantyl; Dip = 2,6-di-iso-propylphenyl) led to the formation of two novel CpPN ligands: P-amino-cyclopentadienylidene-phosphorane (Cp™PPh2NHAd; L(Ad)H) and P-cyclopentadienyl-iminophosphorane (Cp™HPPh2NDip; L(Dip)H). Both were characterized by NMR spectroscopy and X-ray structure analysis. For both compounds only one isomer was observed. Neither possesses any detectable prototropic or elementotropic isomers. Reactions of these ligands with [Lu(CH2SiMe3)3(thf)2] or with rare-earth metal halides and three equivalents of LiCH2SiMe3 produced the desired bis(alkyl) Cp™PN complexes: [{Cp™PN}M(CH2SiMe3)2] (M = Sc (1(Ad), 1(Dip)), Lu (2(Ad), 2(Dip)), Y (3(Ad), 3(Dip)), Sm (4(Ad)), Nd (5(Ad)), Pr (6(Ad)), Yb (7(Ad))). These complexes were characterized by extensive NMR studies for the diamagnetic and the paramagnetic complexes with full signal assignment. An almost mirror inverted order of the paramagnetic shifts has been observed for ytterbium complex 7(Ad) compared to 4(Ad), 5(Ad) and 6(Ad). For the assignment of the NMR signals [{η(1) : η(5)-C5Me4PMe2NAd}Yb(CH2SiMe3)2] 7 was synthesized, characterized and the (1)H NMR signals were compared to 7(Ad) and to other paramagnetic lanthanide complexes with the same ligand. 1(Ad), 2(Ad), 2(Dip), 3(Ad) and 3(Dip) were characterized by X-ray structure analysis revealing a sterically congested constrained geometry structure.

  19. Oxidation of Commercial Petronas Diesel with Tert-Butyl Hydroperoxide Over Poly molybdate Alumina Supported Catalyst Modified With Alkaline Earth Metals

    International Nuclear Information System (INIS)

    Wan Nazwanie Wan Abdullah; Rusmidah Ali; Wan Azlee Wan Abu Bakar

    2016-01-01

    Due to strict environmental legislation for ultra-low sulfur diesel fuels, increasing technical and operational challenges are imposed to conventional hydrodesulfurization (HDS) technology. Therefore, catalytic oxidative desulfurization (Cat-ODS) has been suggested to be an alternative method to replace a conventional method which is hydrodesulfurization. In this study, catalytic oxidation of commercial diesel was performed using an oil-soluble oxidant, tert-butyl hydroperoxide (TBHP), over poly molybdate supported on alumina MoO_3-PO_4/ Al_2O_3 catalyst. A commercial Petronas diesel with 440 ppm of total sulfur was employed to evaluate the elimination of sulfur compounds. Besides, the percentage of sulfur removal was measured by (GC-FPD). Alkaline earth metals, such as Calcium (Ca), Barium (Ba) and Strontium (Sr) were introduced on the surface of MoO_3-PO_4/ Al_2O_3. The results showed that the catalytic activity decreased in the order, Ca/ MoO_3-PO_4/ Al_2O_3>Sr/ MoO_3-PO_4/ Al_2O_3> Ba/ MoO_3-PO_4/ Al_2O_3. The Ca/ MoO_3-PO_4/ Al_2O_3 catalyst was characterized by XRD and FESEM. XRD results showed that the best catalyst was highly amorphous while FESEM micrograph illustrated an aggregation and agglomeration of various particle sizes. The catalytic activity of Ca/ MoO_3-PO_4/ Al_2O_3 catalyst with various Ca/ Mo ratios were also studied. When the Ca/ Mo ratio was 15:85, the sulfur removal was the highest (79 %) at 45 degree Celsius, 30 min and O/ S molar ratio 3.0 with solvent = dimethylformamide (DMF), diesel/ solvent ratio = 1.0. (author)

  20. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  1. A comparative study between the dissolution and the leaching methods for the separation of rare earths, uranium and thorium from hydrous metal oxide cake obtained by the alkaline digestion of monazite

    International Nuclear Information System (INIS)

    Chayavadhanangkur, C.; Busamongkol, A.; Hongsirinirachorn, S.; Rodthongkom, C.; Sirisena, K.

    1986-12-01

    Methods for the group-separation of rare-earths, thorium and uranium from hydrous metal oxide cake obtained by the alkaline digestion of monazite were studied. Leaching of the hydrous metal oxide cake at pH between 4-5 separates the elements under investigation into 3 major groups which are suitable to be used as feed materials for further purification. Total dissolution and gradient precipitation at pH 4-5 yields a poorer separation in comparison to the leaching method

  2. Spectroscopic characterization of alkaline earth uranyl carbonates

    International Nuclear Information System (INIS)

    Amayri, Samer; Reich, Tobias; Arnold, Thuro; Geipel, Gerhard; Bernhard, Gert

    2005-01-01

    A series of alkaline uranyl carbonates, M[UO 2 (CO 3 ) 3 ].nH 2 O (M=Mg 2 , Ca 2 , Sr 2 , Ba 2 , Na 2 Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba 2 [UO 2 (CO 3 ) 3 ].6H 2 O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO 2 )(CO 3 ) 3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90+/-0.02A.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces

  3. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    Newton, D.

    1990-06-01

    The data on human metabolism and long-term retention of alkaline earth elements ( 133 Ba injected into six healthy male volunteers at age 25-81 y and 45 Ca and 85 Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133 Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  4. Structures and heats of formation of simple alkaline earth metal compounds: fluorides, chlorides, oxides, and hydroxides for Be, Mg, and Ca.

    Science.gov (United States)

    Vasiliu, Monica; Feller, David; Gole, James L; Dixon, David A

    2010-09-02

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for the simple alkaline earth (Be, Mg and Ca) fluorides, chlorides, oxides, and hydroxides at the coupled cluster theory [CCSD(T)] level including core-valence correlation with the aug-cc-pwCVnZ basis sets up to n = 5 in some cases. Additional corrections (scalar relativistic effects, vibrational zero-point energies, and atomic spin-orbit effects) were necessary to accurately calculate the total atomization energies and heats of formation. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies are compared with the available experimental data. For a number of these alkaline earth compounds, the experimental geometries and energies are not reliable. MgF(2) and BeF(2) are predicted to be linear and CaF(2) is predicted to be bent. BeOH is predicted to be bent, whereas MgOH and CaOH are linear. The OBeO angle in Be(OH)(2) is not linear, and the molecule has C(2) symmetry. The heat of formation at 298 K for MgO is calculated to be 32.3 kcal/mol, and the bond dissociation energy at 0 K is predicted to be 61.5 kcal/mol.

  5. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and

  6. Tunable electronic and magnetic properties in germanene by alkali, alkaline-earth, group III and 3d transition metal atom adsorption.

    Science.gov (United States)

    Li, Sheng-shi; Zhang, Chang-wen; Ji, Wei-xiao; Li, Feng; Wang, Pei-ji; Hu, Shu-jun; Yan, Shi-shen; Liu, Yu-shen

    2014-08-14

    We performed first-principles calculations to study the adsorption characteristics of alkali, alkali-earth, group III, and 3d transition-metal (TM) adatoms on germanene. We find that the adsorption of alkali or alkali-earth adatoms on germanene has minimal effects on geometry of germanene. The significant charge transfer from alkali adatoms to germanene leads to metallization of germanene, whereas alkali-earth adatom adsorption, whose interaction is a mixture of ionic and covalent, results in semiconducting behavior with an energy gap of 17-29 meV. For group III adatoms, they also bind germanene with mixed covalent and ionic bonding character. Adsorption characteristics of the transition metals (TMs) are rather complicated, though all TM adsorptions on germanene exhibit strong covalent bonding with germanene. The main contributions to the strong bonding are from the hybridization between the TM 3d and Ge pz orbitals. Depending on the induced-TM type, the adsorbed systems can exhibit metallic, half-metallic, or semiconducting behavior. Also, the variation trends of the dipole moment and work function with the adsorption energy across the different adatoms are discussed. These findings may provide a potential avenue to design new germanene-based devices in nanoelectronics.

  7. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  8. Detection of rare-earth-mineral phases by scanning electron microscopy/energy dispersive x-rays (SEM/EDX) in the alkaline complexes of Tamil Nadu

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Nathan, N.P.; Ganesan, V.; Shome, S.

    2005-01-01

    The alkaline complexes of the Southern Granulite Terrain (SGT) are generally restricted within NNW-SSE-trending Dharmapuri Shear Zone (DSZ), extending from Gudiyatham in the north and Bhavani in the south in Tamil Nadu. REE-rich phases have been studied under EDX (Energy Dispersive X-rays) from the different alkaline suites of Tamil Nadu. In Elagiri, the Th-rich epidote/allanite is concentrically zoned and occurs in the outermost coarse sub-solvus syenite, indicating that the REE concentration is restricted within the late-stage magmatic activity. In Koratti, the apatites are LREE rich. In Samalpatti Complex, the carbonatites host a number of REE-rich minerals commonly classified as betafite, along with nioborutite and nioboilmenite. The niobo-rutile and niobo-ilmenite show exsolved texture. The betafite is zoned with mendelyeerite. Some of the molybdenite in Samalpatti is dendritic indicating incomplete crystallisation. In Sivamalai, the REE phases are generally associated with ferrosyenite and nepheline syenite as adsorbed grains around apatite or carbonate. The REE minerals are Zr-REE titanate, REE-titano silicate and REE-yttrium silicate. In the Pikkili Complex, the REE minerals generally occur as rim around apatite and calcite. A discrete metamict allanite grain with radial cracks occurs within syenite. In Pakkanadu Complex zoned allanite occurs with distinct chemical zonation in syenite. Monazite and celesto-barite are associated with barite suggesting that the REE phases are developed in the late intrusive stage. (author)

  9. A Kinetic Insight into the Activation of n -Octane with Alkaline-Earth ...

    African Journals Online (AJOL)

    Alkaline-earth metal hydroxyapatites are prepared by the co-precipitation method and characterized using XRD, ICP,NH3-TPD, SEM-EDX, TEM and N2 physisorption analysis. The metal present in the hydroxyapatite influences the acidity of the catalyst. Oxidative dehydrogenation reactions carried out in a continuous flow ...

  10. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  11. Blue photoluminescence in Ti-doped alkaline-earth stannates

    International Nuclear Information System (INIS)

    Yamashita, Takahiro; Ueda, Kazushige

    2007-01-01

    Blue photoluminescence properties of Ti-doped alkaline-earth stannates, A 2 (Sn 1- x Ti x )O 4 (A=Ca, Sr, Ba) (x=0.005-0.15), were examined at room temperature. These stannates showed intense broad emission bands peaking at 445 nm for Ca 2 SnO 4 , at 410 nm for Sr 2 SnO 4 , and at 425 nm for Ba 2 SnO 4 under UV excitation. Emission intensities were relatively insensitive to Ti concentration and no sharp concentration quenching was observed. Mixing alkaline-earth ions in the crystal structures did not increase the emission intensities in the A 2 (Sn 1- x Ti x )O 4 system. The excitation spectra of these stannates exhibited broad bands just below the fundamental absorption edges, implying that luminescence centers do not consist of the component elements in the host materials. It was suggested that the isolated TiO 6 complexes are possible luminescence centers in these materials, as previously proposed in other Ti-doped stannates such as Mg 2 SnO 4 and Y 2 Sn 2 O 7 . - Graphical abstract: Blue photoluminescence properties of Ti-doped alkaline-earth stannates, A 2 (Sn 1- x Ti x )O 4 (A=Ca, Sr, Ba) (x=0.005-0.15), were examined at room temperature. These stannates showed intense broad emission bands peaking at 445 nm for Ca 2 SnO 4 , at 410 nm for Sr 2 SnO 4 , and at 425 nm for Ba 2 SnO 4 under UV excitation

  12. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  13. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  14. Analogy of the Coordination Chemistry of Alkaline Earth Metal and Lanthanide Ln²⁺ Ions: The Isostructural Zoo of Mixed Metal Cages [IM(OtBu)₄{Li(thf)}₄(OH)] (M=Ca, Sr, Ba, Eu), [MM′₆(OPh)₈(thf)₆] (M=Ca, Sr, Ba, Sm, Eu, M′=Li, Na), and their Derivatives with 1,2-Dimethoxyethane

    OpenAIRE

    Maudez, William; Meuwly, Markus; Fromm, Katharina M.

    2008-01-01

    As previously shown, alkali and alkaline earth metal iodides in nonaqueous, aprotic solvents behave like transition metal halides, forming cis- and trans-dihalides with various neutral O-donor ligands. These compounds can be used as precursors for the synthesis of new mixed alkali/alkaline earth metal aggregates. We show here that Ln²⁺ ions form isostructural cluster compounds. Thus, with LiOtBu, 50 % of the initial iodide can be replaced in MI₂, M=Ca, Sr, Ba, Eu, to generate the mixed-metal ...

  15. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    The shapes of spectra are also changed with varying alkaline earth ions content. ... of manganese ion and electrical properties of glass contain- ing mobile ions like .... octahedral crystal field are located above the ground 6S state. Figure 2.

  16. Structures and Heats of Formation of Simple Alkaline Earth Metal Compounds II: Fluorides, Chlorides, Oxides, and Hydroxides for Ba, Sr, and Ra.

    Science.gov (United States)

    Vasiliu, Monica; Hill, J Grant; Peterson, Kirk A; Dixon, David A

    2018-01-11

    Geometry parameters, vibrational frequencies, heats of formation, bond dissociation energies, cohesive energies, and selected fluoride affinities (difluorides) are predicted for the late alkaline earth (Sr, Ba, and Ra) oxides, fluorides, chlorides, and hydroxides at the coupled cluster theory CCSD(T) level. Additional corrections (scalar relativistic and pseudopotential corrections, vibrational zero-point energies, and atomic spin-orbit effects) were included to accurately calculate the total atomization energies and heats of formation following the Feller-Peterson-Dixon methodology. The calculated values are compared to the experimental data where available. In some cases, especially for Ra compounds, there are no experimental results, or the experimental energetics and geometries are not reliable or have very large error bars. All of the Sr, Ba, and Ra difluorides, dichlorides, and dihydroxides are bent structures with the OMO bond angles decreasing going down the group. The cohesive energies of bulk Be dihalides are predicted to be quite low, while those of Ra are relatively large. The fluoride affinities show that the difluorides are moderately strong Lewis acids and that such trifluorides may form under the appropriate experimental conditions.

  17. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane.

    Science.gov (United States)

    Ayala-Torres, Carlos; Novoa-Aponte, Lorena; Soto, Carlos Y

    2015-07-01

    Mycobacterium smegmatis Pma1 is the orthologue of M. tuberculosis P-type ATPase cation transporter CtpF, which is activated under stress conditions, such as hypoxia, starvation and response to antituberculous and toxic substances. The function of Pma1 in the mycobacterial processes across the plasma membrane has not been characterised. In this work, bioinformatic analyses revealed that Pma1 likely contains potential sites for, Na(+), K(+) and Ca(2+) binding and transport. Accordingly, RT-qPCR experiments showed that M. smegmatis pma1 transcription is stimulated by sub-lethal doses of Na(+), K(+) and Ca(2+); in addition, the ATPase activity of plasma membrane vesicles in recombinant Pma1-expressing M. smegmatis cells is stimulated by treatment with these cations. In contrast, M. smegmatis cells homologously expressing Pma1 displayed tolerance to high doses of Na(+) and K(+) but not to Ca(2+) ions. Consistently, the recombinant protein Km embedded in plasma membrane demonstrated that Ca(2+) has more affinity for Pma1 than Na(+) and K(+) ions; furthermore, the estimation of Vmax/Km suggests that Na(+) and K(+) ions are more efficiently translocated than Ca(2+). Thus, these results strongly suggest that Pma1 is a promiscuous alkali/alkaline earth cation ATPase that preferentially transports Na(+) and/or K(+) across the mycobacterial plasma membrane. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Metal complexation in near field conditions of nuclear waste repository - stability constant of copper complexation with cellulose degradation products, in alkaline conditions

    International Nuclear Information System (INIS)

    Guede, Kipre Bertin

    2005-11-01

    Copper is a stable element and spent fuel component which constitutes the radioactive waste. The reaction of Copper with cellulose degradation products in alkaline conditions was performed to mimic what occurs in near field conditions of nuclear waste repository. From the characteristics of Cu (II), this thesis aims at inferring the behaviour of radionuclides vis a vis the degradation products of cellulose. The contribution of the present work is therefore the assessment of the stability of the major cellulose degradation product, its affinity for Copper and the extent of the complexation function 13 between Cu (II) and the organic moieties. The formation of cellulose degradation products was followed by measurement of p11, Conductivity, Angle of rotation, relative abundance of aliphatics and aromatics (E4/E6 ) aid by UV-visible spectroscopy. The TOC was determined using the Walkley and Black titration after respectively 31 weeks and 13 weeks of degradation for the reaction mixtures T and A, N. The stability of the major degradation products gave the following figures: ISA(A): - 13 43.39 <ΔG -10639.88 ISA(N): - Ii 436.45<ΔG< -9103.6. The study of the characteristics of Gluconic Acid, as a model compound, was carried out in an attempt to give a general picture of the roper ties of cellulose degradation products. The Complexation between Cu (II) and the organic ligand (Cellulose degradation products) was performed using UV-visible spectroscopy and Ion Distribution technique. The Log B value obtained from the complexation studies at 336 nm for 1 = 0. I Ni NaClO4 and I = 0.01 M NaClO4, falls within a range of 3.48 to 3.74 for the standard reference material (Gluconic Acid), and within I .87 to 2.3 I, and I .6 to 2.01, respectively for the degradation Products ISA (A) and ISA(N). The ion distribution studies showed that: • In (he absence of the degradation product ISA and at pH = 3.68. 56. 17 % of Cu (II) was bound to the resin. • In the presence of ISA and at 2

  19. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc2O3 to Lu2O3 mediated by alkaline chlorides as complex former

    International Nuclear Information System (INIS)

    Sun Yanhui; He Peng; Chen Huani

    2007-01-01

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc 2 O 3 to Lu 2 O 3 mediated by the vapor complexes KLnCl 4 and NaLnCl 4 (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl 3 is in the increasing order ScCl 3 3 3 , and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl 3 > ScCl 3 , and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl 3 and GdCl 3 mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl 3 , CeCl 3 , YbCl 3 and LuCl 3 , while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl 3 and EuCl 3 . More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl 3 as complex former

  20. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    Science.gov (United States)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  1. Metallic complexes with glyphosate: a review; Complexos metalicos com o herbicida glifosato: revisao

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: claudiabreda@iqsc.usp.br

    2005-11-15

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  2. Alkaline earth metal, silicon, chlorine, hydrogen. A reaction system for the heterogeneous hydrodehalogenation of silicon tetrachloride to nanocrystalline silicon; Erdalkalimetall-Silicium-Chlor-Wasserstoff. Das Reaktionssystem fuer die heterogene Hydrodehalogenierung von Siliciumtetrachlorid bis zum nanokristallinen Silicium

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Katja

    2012-02-17

    Reactions of an alkaline earth metal with a SiCl{sub 4}-H{sub 2} result in a quaternary system with a metastable quaternary phase which separates into the metal chloride and nanocrystalline silicon upon cooling. The present study was dedicated to a making a detailed characterisation of the quaternary phase. For this purpose the properties of the quaternary system were derived from those of the six binary and four ternary systems. The first ever characterisation of the surface by means of photoelectron spectroscopy was undertaken. It also proved possible for the first time to follow the formation reaction by measuring the potential difference across the reaction system. Using the results of the characterisation the author presents first steps towards identifying the formation mechanism involved. [German] Im quaternaeren System Erdalkalimetall-Silicium-Chlor-Wasserstoff bildet sich bei der Umsetzung des Metalls mit einer SiCl{sub 4}-H{sub 2}-Atmosphaere eine quaternaere Phase. Diese metastabile Phase zerfaellt beim Abkuehlen in das Metallchlorid und Silicium in nanokristalliner Form. Die vorliegende Arbeit hat sich mit der tiefergehenden Charakterisierung der quaternaeren Phase beschaeftigt. Dazu wurden die Eigenschaften des quaternaeren Systems aus den Eigenschaften der sechs binaeren und vier ternaeren Systemen abgeleitet. Die Oberflaeche wurde erstmals mit Photoelektronenspektroskopie charakterisiert. Zusaetzlich gelang erstmalig die Verfolgung der Bildungsreaktion durch Messung des Spannungsabfalls ueber das Reaktionssystem. Erste Ansaetze zur Aufklaerung des Bildungsmechanismus ausgehend von den Ergebnissen der Charakterisierung wurden zusaetzlich aufgezeigt.

  3. Long-range interactions between alkali and alkaline-earth atoms

    International Nuclear Information System (INIS)

    Jiang Jun; Cheng Yongjun; Mitroy, J

    2013-01-01

    Dispersion coefficients between the alkali metal atoms (Li–Rb) and alkaline-earth metal atoms (Be–Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low-lying excited state. (paper)

  4. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation

    KAUST Repository

    Minenkov, Yury

    2017-03-07

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (<2 kcal mol-1) for some reactions of Na, Mg, Ca, Sr, Ba and Pb, while for a few reactions of Ca and Ba deviations up to 40 kcal mol-1 have been obtained. Large errors are both due to artificial mixing of the core (sub-valence) orbitals of metals and the valence orbitals of oxygen and halogens in the molecular orbitals treated as core, and due to neglecting core-core and core-valence correlation effects. These large errors are reduced to a few kcal mol-1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol-1, indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.

  5. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.

    Science.gov (United States)

    Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J

    2018-02-19

    The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

  6. Spectroscopic characterization of manganese-doped alkaline earth

    Indian Academy of Sciences (India)

    The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies.

  7. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  8. Positron collisions with helium and alkaline earth-like atoms

    International Nuclear Information System (INIS)

    Campbell, C.P.

    1998-09-01

    This doctoral thesis is subdivided into: 1. Theory of positron collisions with helium and alkaline earth-like atoms, 2. Positron collisions with helium, magnesium, calcium, zinc, 3. Intercomparison of positron scattering by all those elements. The appendix of this work gives details of the numerical calculations and expands on the wavefunctions used

  9. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...

  10. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  11. Photoionization of subvalence p-subshell in alkali and alkaline-earth atoms

    International Nuclear Information System (INIS)

    Yagishita, A.; Hayaishi, T.; Itoh, Y.

    1986-11-01

    Photoionization of alkali and alkaline-earth atoms has been investigated by means of a time-of-flight mass spectrometer combined with monochromatised synchrotron radiation and an atomic beam, in the wavelength region of 350 - 750 A. For alkaline-earth atoms, it has been made clear that a two-step autoionization following an innershell excitation plays an important role for doubly charged ions. For alkali atoms, relative photoionization cross sections have been measured for the first time. Moreover, a tentative assignment of spectral lines for Rb and Cs in the complex spectral region has been attemped based on the photoionization data. (author)

  12. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation.

    Science.gov (United States)

    Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A; Neese, Frank; Cavallo, Luigi

    2017-04-05

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (correlation effects. These large errors are reduced to a few kcal mol -1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol -1 , indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.

  13. Li2Sr4B12O23: A new alkali and alkaline-earth metal mixed borate with [B10O18]6− network and isolated [B2O5]4− unit

    International Nuclear Information System (INIS)

    Zhang Min; Pan Shilie; Han Jian; Yang Zhihua; Su Xin; Zhao Wenwu

    2012-01-01

    A novel ternary lithium strontium borate Li 2 Sr 4 B 12 O 23 crystal with size up to 20 mm×10 mm×4 mm has been grown via the top-seeded solution growth method below 730 °C. Single-crystal XRD analyses showed that Li 2 Sr 4 B 12 O 23 crystallizes in the monoclinic space group P2 1 /c with a=6.4664(4) Å, b=8.4878(4) Å, c=15.3337(8) Å, β=102.02(3)°, Z=2. The crystal structure is composed of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. The IR spectrum further confirmed the presence of both BO 3 and BO 4 groups. TG-DSC and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li 2 Sr 4 B 12 O 23 , has been discovered in the ternary M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkalineearth metal) system. The crystal structure consists of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. Highlights: ► Li 2 Sr 4 B 12 O 23 is a a novel borate discovered in the M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkaline-earth metal) system. ► Li 2 Sr 4 B 12 O 23 crystal structure has a three-dimensional crystal structure with [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. ► Sr 1 and Sr 2 are located in two different channels constructed by 3 ∞ [B 10 O 18 ] network.

  14. Novel synergism by complex ligands in solvent extraction of rare earth metals(III) with β-diketones

    International Nuclear Information System (INIS)

    Imura, H.; Ebisawa, M.; Kato, M.; Ohashi, K.

    2006-01-01

    The extraction of rare earth metals(III) (RE) with hexafluoroacetylacetone (Hhfa) and 2-thenoyltrifluoroacetone (Htta) was studied in the presence of some cobalt(III) chelates such as tris(acetylacetonato)cobalt(III), tris(4-isopropyltropolonato)cobalt(III), tris(8-quinolinolato)cobalt(III), tris(8-quinolinethiolato)cobalt(III), and tris(diethyldithiocarbamato)cobalt(III) in benzene or toluene. The synergistic enhancement of the extraction of RE, especially of lanthanum(III) was found in all the systems. Therefore, those cobalt(III) chelates act as synergists or complex ligands. The equilibrium analysis and IR spectroscopic study were performed to evaluate the present synergistic mechanism. It was found that the RE-β-diketone chelates form 1:1 adducts, i.e., binuclear complexes, with the cobalt(III) chelates in the organic phase. The formation constants (β s,1 ) were determined and compared with those reported previously. The spectroscopic studies demonstrated that adducts have two different structures with inner- and outer-sphere coordination. In the former the cobalt(III) chelate directly coordinated to the RE ion and displaced the coordinated water molecules. In the latter the hydrogen-bonding was formed between the coordinating oxygen or sulfur atoms of cobalt(III) chelate and hydrogen atoms of the coordinated water molecules in the RE-β-diketone chelate. The types of the adducts are mainly due to the steric factors of the RE-β-diketone chelates and the cobalt(III) chelates

  15. Rare earth [beta]-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, N.P. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Tu, Z.A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kaul, A.R. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Girichev, G.V. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Giricheva, N.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Rykov, A.N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korenev, Y.M. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-08-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.).

  16. Rare earth β-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    International Nuclear Information System (INIS)

    Kuzmina, N.P.; Martynenko, L.I.; Tu, Z.A.; Kaul, A.R.; Girichev, G.V.; Giricheva, N.I.; Rykov, A.N.; Korenev, Y.M.

    1993-01-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.)

  17. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Science.gov (United States)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  18. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  19. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements

    Science.gov (United States)

    Hill, J. Grant; Peterson, Kirk A.

    2017-12-01

    New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.

  20. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements.

    Science.gov (United States)

    Hill, J Grant; Peterson, Kirk A

    2017-12-28

    New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.

  1. Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide

    Directory of Open Access Journals (Sweden)

    T.K. Chondhekar

    2011-12-01

    Full Text Available The solid complexes of Cu(II, Co(II, Mn(II, La(III and Ce(III were prepared from bidentate Schiff base, N-benzylidene-2-hydroxybenzohydrazide. The Schiff base ligand was synthesized from 2-hyhdroxybenzohydrazide and benzaldehyde. These metal complexes were characterized by molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, FTIR, 1H-NMR, UV-Vis and mass spectroscopy. The analytical data of these metal complexes showed metal:ligand ratio of 1:2. The physico-chemical study supports the presence of square planar geometry around Cu(II and octahedral geometry around Mn(II, Co(II, La(III and Ce(III ions. The IR spectral data reveal that the ligand behaves as bidentate with ON donor atom sequence towards central metal ion. The molar conductance values of metal complexes suggest their non-electrolyte nature. The X-ray diffraction data suggest monoclinic crystal system for these complexes. Thermal behavior (TG/DTA and kinetic parameters calculated by Coats-Redfern method are suggestive of more ordered activated state in complex formation. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma.

  2. Thermochemical and thermophysical properties of alkaline-earth perovskites

    International Nuclear Information System (INIS)

    Yamanaka, Shinsuke; Kurosaki, Ken; Maekawa, Takuji; Matsuda, Tetsushi; Kobayashi, Shin-ichi; Uno, Masayoshi

    2005-01-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO 3 , BaZrO 3 , BaCeO 3 , BaMoO 3 , SrTiO 3 , SrZrO 3 , SrCeO 3 , SrMoO 3 , SrHfO 3 and SrRuO 3 , were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied

  3. Theoretical survey on M@C_8_0 (M = Ca, Sr, and Ba): Behavior of different alkaline earth metal impacting the chemical stability and electronic properties

    International Nuclear Information System (INIS)

    Cui, Jin-Bo; Guo, Yi-Jun; Li, Qiao-Zhi; Zhao, Pei; Zhao, Xiang

    2016-01-01

    Structures of mono-metallofullerenes M@C_8_0 (M = Ca, Sr, and Ba) that separated in early experiment are determined owning the C_2_v(31920)-C_8_0 cage. The change rule of properties for M@C_8_0 (M = Ca, Sr, and Ba) influenced by different inner metal are discussed. As the trapped metal changes from calcium to barium, performance of thermodynamic stabilities for M@C_2_v(31920)-C_8_0, M@C_2_v(31922)-C_8_0, and M@D_5_h(31923)-C_8_0 are significantly different. Orbital analysis suggests that the lowest unoccupied molecular orbitals (LUMOs) of Ca@C_2_v(31920)-C_8_0 and Ca@D_5_h(31923)-C_8_0 are mostly located on the trapped metal, whereas reduction reactions of Ca@C_2_v(31920)-C_8_0 and Ca@D_5_h(31923)-C_8_0 occur on the fullerene cage. Natural electron configuration analyses demonstrates that the decentralized electron back-donation of Ba@C_2_v(31920)-C_8_0 would take responsible for the instability of itself. Electronic properties such as electron affinities and ionization potentials are significantly affected by encapsulated metal are also found. Computational UV–visible–NIR spectra for M@C_2_v(31920)-C_8_0 (M = Ca, Sr, Ba) are in perfect accord with the spectra obtained experimentally.

  4. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  5. Theoretical survey on M@C{sub 80} (M = Ca, Sr, and Ba): Behavior of different alkaline earth metal impacting the chemical stability and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jin-Bo; Guo, Yi-Jun; Li, Qiao-Zhi; Zhao, Pei; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn

    2016-08-02

    Structures of mono-metallofullerenes M@C{sub 80} (M = Ca, Sr, and Ba) that separated in early experiment are determined owning the C{sub 2v}(31920)-C{sub 80} cage. The change rule of properties for M@C{sub 80} (M = Ca, Sr, and Ba) influenced by different inner metal are discussed. As the trapped metal changes from calcium to barium, performance of thermodynamic stabilities for M@C{sub 2v}(31920)-C{sub 80}, M@C{sub 2v}(31922)-C{sub 80}, and M@D{sub 5h}(31923)-C{sub 80} are significantly different. Orbital analysis suggests that the lowest unoccupied molecular orbitals (LUMOs) of Ca@C{sub 2v}(31920)-C{sub 80} and Ca@D{sub 5h}(31923)-C{sub 80} are mostly located on the trapped metal, whereas reduction reactions of Ca@C{sub 2v}(31920)-C{sub 80} and Ca@D{sub 5h}(31923)-C{sub 80} occur on the fullerene cage. Natural electron configuration analyses demonstrates that the decentralized electron back-donation of Ba@C{sub 2v}(31920)-C{sub 80} would take responsible for the instability of itself. Electronic properties such as electron affinities and ionization potentials are significantly affected by encapsulated metal are also found. Computational UV–visible–NIR spectra for M@C{sub 2v}(31920)-C{sub 80} (M = Ca, Sr, Ba) are in perfect accord with the spectra obtained experimentally.

  6. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation

    KAUST Repository

    Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A.; Neese, Frank; Cavallo, Luigi

    2017-01-01

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes

  7. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    Science.gov (United States)

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  8. Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba).

    Science.gov (United States)

    Yang, Li-Ming; Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer; Tilset, Mats

    2011-06-07

    Formation energies, chemical bonding, electronic structure, and optical properties of metal-organic frameworks of alkaline earth metals, A-IRMOF-1 (where A = Be, Mg, Ca, Sr, or Ba), have been systemically investigated with DFT methods. The unit cell volumes and atomic positions were fully optimized with the Perdew-Burke-Ernzerhof functional. By fitting the E-V data into the Murnaghan, Birch and Universal equation of states (UEOS), the bulk modulus and its pressure derivative were estimated and provided almost identical results. The data indicate that the A-IRMOF-1 series are soft materials. The estimated bandgap values are all ca. 3.5 eV, indicating a nonmetallic behavior which is essentially metal independent within this A-IRMOF-1 series. The calculated formation energies for the A-IRMOF-1 series are -61.69 (Be), -62.53 (Mg), -66.56 (Ca), -65.34 (Sr), and -64.12 (Ba) kJ mol(-1) and are substantially more negative than that of Zn-based IRMOF-1 (MOF-5) at -46.02 kJ mol(-1). From the thermodynamic point of view, the A-IRMOF-1 compounds are therefore even more stable than the well-known MOF-5. The linear optical properties of the A-IRMOF-1 series were systematically investigated. The detailed analysis of chemical bonding in the A-IRMOF-1 series reveals the nature of the A-O, O-C, H-C, and C-C bonds, i.e., A-O is a mainly ionic interaction with a metal dependent degree of covalency. The O-C, H-C, and C-C bonding interactions are as anticipated mainly covalent in character. Furthermore it is found that the geometry and electronic structures of the presently considered MOFs are not very sensitive to the k-point mesh involved in the calculations. Importantly, this suggests that sampling with Γ-point only will give reliable structural properties for MOFs. Thus, computational simulations should be readily extended to even more complicated MOF systems.

  9. Magnetic modulation of exciplex fluorescence of pyrene solutions with azacrown-ether excess in the presence of ions of alkali and alkaline earth metals

    International Nuclear Information System (INIS)

    Borisenko, V.N.; Petrov, N.Kh.; Gromov, S.P.; Alfimov, M.V.

    1997-01-01

    Photoexcitation of polar pyrene solutions with excess of phenylaza-15-crown-5 as a donor results to intermolecular electron transfer with formation of ion-radical pairs, recombination of which produces fluorescent exciplex. Charge exchange between molecules of crown ether and its cation-radicals is practically absent at that. Magnetic effect, observed for fluorescence, decreases, when adding diamagnetic lithium and calcium ions to exiplex pyrene/crown-ether system. This can be explained by formation of paramagnetic complexes. 15 refs., 5 figs

  10. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  11. Metal Distribution and Mobility under alkaline conditions

    International Nuclear Information System (INIS)

    Dario, Maarten

    2004-01-01

    The adsorption of an element, expressed as its distribution between liquid (aquatic) and solid phases in the bio geosphere, largely determines its mobility and transport properties. This is of fundamental importance in the assessment of the performance of e.g. geologic repositories for hazardous elements like radionuclides. Geologic repositories for low and intermediate level nuclear waste will most likely be based on concrete constructions in a suitable bedrock, leading to a local chemical environment with pH well above 12. At this pH metal adsorption is very high, and thus the mobility is hindered. Organic complexing agents, such as natural humic matter from the ground and in the groundwater, as well as components in the waste (cleaning agents, degradation products from ion exchange resins and cellulose, cement additives etc.) would affect the sorption properties of the various elements in the waste. Trace element migration from a cementitious repository through the pH- and salinity gradient created around the repository would be affected by the presence and creation of particulate matter (colloids) that may serve as carriers that enhance the mobility. The objective of this thesis was to describe and quantify the sorption of some selected elements representative of spent nuclear fuel (Eu, Am) and other heavy metals (Zn, Cd, Hg) in a clay/cement environment (pH 10-13) and in the pH-gradient outside this environment. The potential of organic complexing agents and colloids to enhance metal migration was also investigated. It was shown that many organic ligands are able to reduce trace metal sorption under these conditions. It was not possible to calculate the effect of well-defined organic ligands on the metal sorption in a cement environment by using stability constants from the literature. A simple method for comparing the effect of different complexing agents on metal sorption is, however, suggested. The stability in terms of the particle size of suspended

  12. Rare earth metal bis(amide) complexes bearing amidinate ancillary ligands: synthesis, characterization, and performance as catalyst precursors for cis-1,4 selective polymerization of isoprene.

    Science.gov (United States)

    Luo, Yunjie; Fan, Shimin; Yang, Jianping; Fang, Jianghua; Xu, Ping

    2011-03-28

    A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).

  13. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  14. Rare-earth metal transition metal borocarbide and nitridoborate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Niewa, Rainer; Shlyk, Larysa; Blaschkowski, Bjoern [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Few years after the discovery of superconductivity in high-T{sub c} cuprates, borocarbides and shortly after nitridoborates with reasonably high T{sub c}s up to about 23 K attracted considerable attention. Particularly for the rare-earth metal series with composition RNi{sub 2}[B{sub 2}C] it turned out, that several members exhibit superconductivity next to magnetic order with both T{sub c} above or below the magnetic ordering temperature. Therefore, these compounds have been regarded as ideal materials to study the interplay and coexistence of superconductivity and long range magnetic order, due to their comparably high ordering temperatures and similar magnetic and superconducting condensation energies. This review gathers information on the series RNi{sub 2}[B{sub 2}C] and isostructural compounds with different transition metals substituting Ni as well as related series like RM[BC], RM[BN], AM[BN] and R{sub 3}M{sub 2}[BN]{sub 2}N (all with R = rare-earth metal, A = alkaline-earth metal, M = transition metal) with special focus on synthesis, crystal structures and structural trends in correspondence to physical properties. (orig.)

  15. Features of rare earth element (3) complexing

    International Nuclear Information System (INIS)

    Martynenko, L.I.

    1991-01-01

    Reasons for nonobeyance to the regularity of tetrad ''W'' effect of rare earth chelate complex compounds are discussed in the review. The concept of metal-ligand ionic bond in rare earth complexes is put in the basis of the consideration. From this viewpoint mutual influence of ligands in lower, higher, polynuclear and different-ligand complexes, formed by the ligands of low, medium and high denticity, is discussed. Problems of intermolecular interaction of complexes with different structure are considered in relation to problems of variation of chelate volatility and selectivity in the processes of sublimation and precipitation

  16. Rb-Sr age of the Sivamalai alkaline complex, Tamil Nadu

    International Nuclear Information System (INIS)

    Subba Rao, T.V.; Narayana, B.L.; Gopalan, K.

    1994-01-01

    The Sivamalai alkaline complex comprises ferro-, pyroxene- hornblende-and nepheline-syenites. Field relations show that the nepheline syenites followed the emplacement of non-feldspathoidal syenites. Mineralogical data on the syenite suite have been reviewed. The Sivamalai alkaline rocks are not strongly enriched in rare-earth elements like most miaskites. Rb-Sr isotopic analyses of a suite of six samples from the various members of the complex define an isochron corresponding to an age of 623 ± 21 Ma (2σ) and initial Sr ratio of 0.70376 ± 14 (2σ). This is consistent with a model of fractional crystallization of a parent magma derived from an upper mantle source with apparently no isotopic evidence for more than one magma source for the complex. The Sivamalai alkaline complex represents a Pan-African alkaline magmatic event in the southern granulite terrane of peninsular India. (author). 26 refs., 4 figs., 4 tabs

  17. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  18. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  19. Theoretical studies on selectivity of dibenzo-18-crown-6-ether for alkaline earth divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jiyoung [Sangmyung Univ., Seoul (Korea, Republic of)

    2012-04-15

    Crown ether is one of well-known host molecules and able to selectively sequester metal cation. We employed M06-2X density functional theory with IEFPCM and SMD continuum solvation models to study selectivity of dibenzo-18-crown-6-ether (DB18C6) for alkaline earth dications, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, and Mg{sup 2+} in the gas phase and in aqueous solution. Mg{sup 2+} showed predominantly strong binding affinity in the gas phase because of strong polarization of CO bonds by cation. In aqueous solution, binding free energy differences became smaller among these dications. However, Mg{sup 2+} had the best binding, being incompatible with experimental observations in aqueous solution. The enthalpies of the dication exchange reaction between DB18C6 and water cluster molecules were computed as another estimation of selectivity in aqueous solution. These results also demonstrated that Mg{sup 2+} bound to DB18C6 better than Ba{sup 2+}. We speculated that the species determining selectivity in water could be 2:1 complexes of two DB18C6s and one dication.

  20. Study of conformational and acid-base properties of norbadione A and pulvinic derivatives: Consequences on their complexation properties of alkaline and alkaline earth cations; Etude des proprietes conformationnelles et acido-basiques de la norbadione A et de derives pulviniques: consequences sur leurs proprietes complexantes de cations alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Kuad, P

    2006-01-15

    This work deals with the study of norbadione A, a pigment extracted from mushrooms and known to complex cesium cations. The study of the acid-base properties of norbadione A has allowed to determine the relative acidity of the seven protonable functions of the molecule and to reveal a reversible isomerization of the double exocyclic bond of the pulvinic moieties. The observed change of configuration is induced by a hydrogen bond of the H-O-H type and by electrostatic interactions. Moreover, the microscopic protonation mechanism of the norbadione A has been analyzed, considering three different study media where the acid-base properties of the norbadione A are compared. In the presence of 0.15 mol.l{sup -1} of NaCl, it has been observed a remarkable cooperativity in the protonation of the enol groups. At last, the use of different analytical methods (NMR, potentiometry and calorimetry) has allowed to study the complexing properties of the norbadione A towards cesium and other alkaline and rare earth cations. (O.M.)

  1. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  2. Method for synthesizing metal bis(borano) hypophosphite complexes

    Science.gov (United States)

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  3. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  4. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  5. Reaction cross section calculation of some alkaline earth elements

    Science.gov (United States)

    Tel, Eyyup; Kavun, Yusuf; Sarpün, Ismail Hakki

    2017-09-01

    Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  6. Reaction cross section calculation of some alkaline earth elements

    Directory of Open Access Journals (Sweden)

    Tel Eyyup

    2017-01-01

    Full Text Available Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  7. Many-body physics with alkaline-earth Rydberg lattices

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, R; Nath, R; Pohl, T [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Millen, J; Jones, M P A, E-mail: rick@pks.mpg.de [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2011-09-28

    We explore the prospects for confining alkaline-earth Rydberg atoms in an optical lattice via optical dressing of the secondary core-valence electron. Focussing on the particular case of strontium, we identify experimentally accessible magic wavelengths for simultaneous trapping of ground and Rydberg states. A detailed analysis of relevant loss mechanisms shows that the overall lifetime of such a system is limited only by the spontaneous decay of the Rydberg state, and is not significantly affected by photoionization or autoionization. The van der Waals C{sub 6} coefficients for the Sr(5sns {sup 1}S{sub 0}) Rydberg series are calculated, and we find that the interactions are attractive. Finally we show that the combination of magic-wavelength lattices and attractive interactions could be exploited to generate many-body Greenberger-Horne-Zeilinger states.

  8. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    International Nuclear Information System (INIS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-01-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg 2+ , Ca 2+ and Ba 2+ ) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO) 4 , which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4 4 ·6 2 ) 3 (4 9 ·6 6 ) 2 . The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies. - Graphical abstract: Three alkaline

  9. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides; Poluchenie i fizicheskie svojtsva trojnykh khal`kogenidov redkozemel`nykh, shchelochnykh i perekhodnykh ehlementov

    Energy Technology Data Exchange (ETDEWEB)

    Georgobiani, A N [RAN, Moskva (Russian Federation). Fizicheskij Inst. im. P.N.Lebedeva; Dzhabbarov, R B; Izzatov, B M; Musaeva, N N; Sultanov, F N; Tagiev, B G; Tagiev, O B [Inst. Fiziki im. G.M.Abdullaeva Akademii nauk Azerbajdzhana, Baku (Azerbaijan)

    1997-02-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa{sub 2}S{sub 4} and (Ga{sub 2}S{sub 3}){sub 1-x}(Eu{sub 2}O{sub 3}){sub x} solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field. 13 refs., 7 figs.

  10. Competitive solvent extraction of alkaline-earth cations into chloroform by lipophilic acyclic polyether dicarboxylic acids

    International Nuclear Information System (INIS)

    Kang, S.I.; Czech, A.; Czech, B.P.; Stewart, L.E.; Bartsch, R.A.

    1985-01-01

    Competitive solvent extraction of alkaline-earth cations from aqueous solutions into chloroform by a series of lipophilic acyclic polyether dicarboxylic acids is reported. The influence of polyether chain length and of terminal carboxylic acid group variation upon extraction selectivity and efficiency is assessed. In the competitive extraction of concentrated magnesium, calcium, strontium and barium chloride solutions, one complexing agent exhibits pronounced selectivity for barium with Ba 2+ /S 2+ = 50, Ba 2+ /Ca 2+ = 250, and no detectable Mg 2+ extraction. 20 references, 3 figures, 1 table

  11. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    Science.gov (United States)

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  12. Enhanced NO2 abatement by alkaline-earth modified g-C3N4 nanocomposites for efficient air purification

    Science.gov (United States)

    Papailias, Ilias; Todorova, Nadia; Giannakopoulou, Tatiana; Karapati, Sofia; Boukos, Nikos; Dimotikali, Dimitra; Trapalis, Christos

    2018-02-01

    The emission of nitrogen dioxide (NO2) is a major problem encountered in photocatalytic NOx removal for air purification. Although the oxidation of nitric oxide (NO) has been extensively studied, the elimination of NO2 byproduct is still in preliminary stage. In this work, alkaline-earth modified graphitic carbon nitride (g-C3N4) is proposed for efficient NOx removal by minimizing the emission of NO2 during the NO oxidation process. The novel photocatalysts were synthesized by annealing mixtures of melamine and various alkaline-earth acetates (magnesium, calcium and barium acetate) at 550 °C for 3 h. The specific surface area of the photocatalysts varied between 4.65 and 11.81 m2/g. The formation of MgO, CaCO3 and BaCO3 was demonstrated by XPS and FT-IR analyses. The initial concentration of each alkaline-earth precursor was 5 and 10 wt%, while the final metal concentration in the nanocomposites was in the range of 7.19-22.39 wt%. The modified photocatalysts showed slightly reduced NO oxidation ability. However, the overall air quality was significantly improved by restraining the NO2 emission. The results were related to the basic character of the nanocomposites due to the presence of alkaline-earths and their enhanced NO2 adsorption capability.

  13. Extraction process of U from its ores using solutions of alkaline earth carbonates and bicarbonates in presence of carbon dioxide

    International Nuclear Information System (INIS)

    Floreancig, Antoine; Schuffenecker, Robert.

    1976-01-01

    A process is described for extracting uranium from its ores, either directly in the ore deposit or after such ore bodies have been taken from the ground, comprising an oxidation-leaching stage followed by a recovery stage. The characteristic of this process is that in the leaching process, carbonate and bicarbonate solutions of an alkaline-earth metal are used under a pressure of carbon dioxide between zero and 60 bars and at a temperature of zero to 100 0 C [fr

  14. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    Science.gov (United States)

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  15. The electronic structure of rare-earth luminescent centre in alkaline-earth sulphides

    International Nuclear Information System (INIS)

    Zheng Qingqi; Pan Wei; Huang Maichun; He Xiaoguang

    1988-09-01

    The cluster method is used to investigate the electronic structure of rare-earth Eu 2+ and Ce 3+ doped SrS and CaS alkaline-earth sulphides in the local density theory regime. The ground state is obtained self-consistently by the DV-X α method, while the transition state theory is used to calculate the excited states. The energy difference between ground state and excited state is 2.95 eV (420 nm) for CaS:Eu is in good agreement with the experimental data of 430 nm for the absorption peak in SrS:Cu. The composition of ground state and excited state is also calculated which can give information about the EL excitation mechanism. (author). 7 refs, 4 figs, 3 tabs

  16. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements

    International Nuclear Information System (INIS)

    Menes, F.

    1969-01-01

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr 2 - (CaBr 2 + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for 48 Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr 2 - CeBr 3 . A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author) [fr

  17. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The desorption of products from a series of alkaline-earth exchanged Y zeolites after room-temperature propane selective oxidation was investigated by in situ infrared and mass spectroscopy. The intermediate product, isopropylhydroperoxide (IHP), did not desorb during

  18. The application of extraction chromatography for analysis of alkali and alkaline earth uranates

    International Nuclear Information System (INIS)

    Tomazic, B.; Cukovic, M.

    1978-01-01

    A method for rapid analysis of alkali and alkaline earth uranates is proposed. The method is based on the use of an HDEHP extraction chromatographic column, which makes possible quantitative separations of alkaline earth ions from macroamounts of uranium(VI). Composition of alkaline earth uranates, based on regression analysis, are presented. The results, which show that under the given experimental conditions alkaline earth triuranates precipitate, are in good agreement with previous data from same laboratory. In addition the HDEHP extraction chromatographic column can be suggested as a tool for separation of representative fission products from irradiated uranium for the purpose of determination of the burn-up factor of nuclear reactor materials. (T.G.)

  19. Ion exchange kinetics of alkaline earths on Zr(IV) arsenosilicate cation exchanger

    International Nuclear Information System (INIS)

    Varshney, K.G.; Agrawal, S.; Varshney, K.

    1984-01-01

    A new approach based on the Nernst-Planck equations was applied to study the ion exchange kinetics for the exchange reactions of Mg(II), Ca(II), Sr(II) and Ba(II) with H + -ions at various temperatures on the zirconium(IV) arsenosilicate phase. Under the conditions of particle diffusion, the rate of exchange was found to be independent of the metal ion concentration at and above 0.1 M in aqueous medium. Energy and entropy of activation were determined and found to vary linearly with the ionic radii and mobilities of alkaline earths, a unique feature observed for an inorganic ion exchanger. The results are useful for predicting the ion exchange processes occurring on the surface of an inorganic material of the type studied. (author)

  20. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  1. Modulation of cardiac ryanodine receptor channels by alkaline earth cations.

    Directory of Open Access Journals (Sweden)

    Paula L Diaz-Sylvester

    Full Text Available Cardiac ryanodine receptor (RyR2 function is modulated by Ca(2+ and Mg(2+. To better characterize Ca(2+ and Mg(2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+: Mg(2+, Ca(2+, Sr(2+, Ba(2+ were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+ or Sr(2+. This activation was interfered by Mg(2+ and Ba(2+ acting at low affinity M(2+-unspecific binding sites. When testing the effects of luminal M(2+ as current carriers, all M(2+ increased maximal RyR2 open probability (compared to Cs(+, suggesting the existence of low affinity activating M(2+-unspecific sites at the luminal surface. Responses to M(2+ vary from channel to channel (heterogeneity. However, with luminal Ba(2+or Mg(2+, RyR2 were less sensitive to cytosolic Ca(2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+or Sr(2+. Kinetics of RyR2 with mixtures of luminal Ba(2+/Ca(2+ and additive action of luminal plus cytosolic Ba(2+ or Mg(2+ suggest luminal M(2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+/Sr(2+-specific sites, which stabilize high P(o mode (less voltage-dependent and increase RyR2 sensitivity to cytosolic Ca(2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+ binding sites (specific for Ca(2+ and unspecific for Ca(2+/Mg(2+ that dynamically modulate channel activity and gating status, depending on SR voltage.

  2. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  3. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ka King [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe2)3 and KC(SiHMe2})3TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe2)3 with potassium benzyl. KC(SiHMe2)3TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing β-SiH groups M{C(SiHMe2)3}3 (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe2)3. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) are prepared from MI2 and 2 equiv of KC(SiHMe2)3. The compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) and La{C(SiHMe2)3}3 react with 1 equiv of B(C6F5)3 to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe2)3}2HB(C6F5)3, respectively. The corresponding reactions of Ln{C(SiHMe2)3}3 (Ln = Y, Lu) give the β-SiH abstraction product [{(Me2HSi)3C}2LnC(SiHMe2)2SiMe2][HB(C6F5)3] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2or TMEDA) and Ln{C(SiHMe2)3}3 (Ln = Y, Lu, La) and 2 equiv of B(C6

  4. Synthesis, characterization, and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manisha; Bobnar, Matej; Ormeci, Alim; Hoehn, Peter [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Stoiber, Dominik; Niewa, Rainer [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Ovchinnikov, Alexander [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2017-11-17

    Large single crystals of Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}] up to several mm in size were grown from mixtures of the respective elements and binary alkaline-earth metal nitrides in reactive lithium melts employing a modified high-temperature centrifugation-aided filtration (HTCAF) technique. The main structural features of these isotypic phases are stella quadrangula building units [Ga{sub 4}]Li{sub 4/2} and octahedra (Nae{sub 6/2}), which form two independent interpenetrating networks. The phases crystallize in the η-carbide structure and represent diamagnetic small bandgap semiconductors. Real-space chemical bonding analysis indicates predominantly ionic bonding. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Rare Earth Metals: Resourcefulness and Recovery

    Science.gov (United States)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  6. Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites

    International Nuclear Information System (INIS)

    Lee, Soonil; Woodford, William H.; Randall, Clive A.

    2008-01-01

    A number of perovskites with A-site alkaline earth chemistries being Ca, Sr, and Ba, and tetravalent cations including Ce, Zr, and Ti are measured for optical band gap and found to vary systematically with tolerance factor and lattice volume within limits defined by the chemistry of the octahedral site. This paper also focuses on the BaTiO 3 system, considering equilibrated nonstoichiometries, and determines the changes in band gap with respect to Ba/Ti ratios. It was found that the optical band gap changes in the solid solution regime and is invariant in the second phase regions, as would be expected. In the cases of Ba/Ti 1.0 stoichiometries, there is a distinct Urbach tail and the trend with lattice volume no longer holds. It is inferred that the V Ti q prime-2V O partial Schottky complex controls the band gap trend with Ba-rich nonstoichiometries

  7. Selenophene transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    White, Carter James [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η5- and the η1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of η1(S)-bound thiophenes, η1(S)-benzothiophene and η1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh3)Re(2-benzothioenylcarbene)]O3SCF3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  8. Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2003-09-24

    Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.

  9. A molecular mechanics (MM3(96)) force field for metal-amide complexes

    International Nuclear Information System (INIS)

    Hay, B.P.; Clement, O.; Sandrone, G.; Dixon, D.A.

    1998-01-01

    A molecular mechanics (MM3(96)) force field is reported for modeling metal complexes of amides in which the amide is coordinated through oxygen. This model uses a points-on-a-sphere approach which involves the parameterization of the Msingle bondO stretch, the Msingle bondO double-bond C bend, and the Msingle bondO double-bond Csingle bondX (X = C, H, N) torsion interactions. Relationships between force field parameters and metal ion properties (charge, ionic radius, and electronegativity) are presented that allow the application of this model to a wide range of metal ions. The model satisfactorily reproduces the structures of over fifty amide complexes with the alkaline earths, transition metals, lanthanides, and actinides

  10. Complexes of rare earths with hydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Abashmadze, M Sh; Pirtskhalava, N I; Kharitonov, Yu Ya; Machkhoshvili, R I [Tbilisskij Gosudarstvennyj Univ. (USSR); AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii; Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1978-10-01

    Complex compounds M(HOC/sub 6/H/sub 4/CONNH/sub 2/)/sub 3/ xnH/sub 2/O, where M is one of the following metals and n=0 or 1, have been obtained in the reactions of salts (chlorides or nitrates) of praseodymium, neodymium, europium, gadolinium, erbium, thulium or lutecium with salicylic acid hydrazide in a weakly alkaline medium. Some properties and infrared absorption spectra of the compounds obtained have been studied.

  11. Change of sulfide inclusions in steel microalloying with rare earth and alkaline-earth elements

    International Nuclear Information System (INIS)

    Averin, V.V.; Polonskaya, S.M.; Chistyakov, V.F.

    1977-01-01

    The conditions for the formation of sulfides in molten and solid iron were determined by considering the thermodynamics of the interaction of sulfur and of oxygen with various components. It was shown in casting of low-carbon steel under a blanket of slag-forming briquettes, calcium of the silicocalcium partly passes to iron and to the sulfide phase. The sulfide inclusions with calcium in rolling become lens-shaped and acquire a greater strength, proportional to the content of calcium, thus ensuring a lesser anisotropy of steel. The change in the shape and the composition of sulfide inclusions effects the fracture of the metal which changes in type from separation along lamellar inclusions to a plastic fracture, i.e., enhances resilience. It is thus noted that rare-earth and alkali-earth elements, in particular, cerium and calcium are promising agents for desulfurating molten iron

  12. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  13. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  14. Ammonothermal synthesis of alkali-alkaline earth metal and alkali-rare earth metal carbodiimides. K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}

    Energy Technology Data Exchange (ETDEWEB)

    Mallmann, Mathias; Haeusler, Jonas; Cordes, Niklas; Schnick, Wolfgang [Department of Chemistry, University of Munich (LMU) (Germany)

    2017-12-13

    Alkali-alkaline earth metal and alkali-rare earth metal carbodiimides, namely K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (x = 0 - 1) (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}, were synthesized under ammonothermal conditions in high-pressure autoclaves. The structures of the three compounds can be derived from homeotypic K{sub 5}H(CN{sub 2}){sub 3} and Na{sub 5}H(CN{sub 2}){sub 3} by partial substitution of K{sup +} or Na{sup +}by Sr{sup 2+} or Eu{sup 2+}. The reactions were carried out in two step syntheses (T{sub 1} = 673 K, T{sub 2} = 823 K) starting from sodium or potassium azide, dicyandiamide and strontium or Eu(NH{sub 2}){sub 2}, respectively. The crystal structures were solved and refined from single-crystal X-ray diffraction data [K{sub 4.16}Sr{sub 0.84}(CN{sub 2}){sub 2.84}(HCN{sub 2}){sub 0.16}: space group Im3m (no. 229), a = 7.8304(5) Aa, Z = 2, R{sub 1} = 0.024, wR{sub 2} = 0.052; K{sub 4.40}Eu{sub 0.60}(CN{sub 2}){sub 2.60}(HCN{sub 2}){sub 0.40}: space group Im anti 3m (no. 229), a = 7.8502(6) Aa, Z = 2, R{sub 1} = 0.022, wR{sub 2} = 0.049]. In contrast to the potassium carbodiimides, the sodium-strontium carbodiimide was only synthesized as microcrystalline powder. The crystal structure was determined by powder X-ray diffraction and refined by the Rietveld method [Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}: space group Im3m (no. 229), a = 7.2412(1) Aa, Z = 2, R{sub wp} = 0.050]. The presence of hydrogencyanamide units ([HNCN]{sup -}) next to carbodiimide units ([CN{sub 2}]{sup 2-}) in all compounds was confirmed by FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Complexing in aqueous solutions of rare earth n-aminobenzoates

    International Nuclear Information System (INIS)

    Efremova, G.I.; Buchkova, R.T.; Lapitskaya, A.V.; Pirkes, S.B.

    1977-01-01

    Complexing in the system ''ion of a rare-earth metal - n-aminobenzoic acid'' has been investigated by the pH-metric method in the pH range of 3.5-5.5. In the La-Eu series, the stability of n-aminobenzoate complexes increases and attains the maximum value in the complex Eu (lg Ksub(st)=2.66). In the Gd-Lu series the stability of the complex particles decreases monotonically

  16. A study of new rare-earth metal group-13 chalcohalides. Structures, chemistry, and optical properties

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Van Calcar, P.M.

    1998-01-01

    Full text: Several new quaternary compounds from the rare-earth metal group-13 chalcohalide family have been prepared from alkaline earth halide flux reactions of binary and elemental starting materials. One compound, for example, Ca 2 La 6G a 2 S 1 4 , crystallizes as needles in an hexagonal cell while another, more disordered structure, La 11 Ga 19 Cl 6 S 42 , crystallizes as monoclinic plates. The former is a condensed structure with channels that contain the alkaline earth element while the latter forms a layered structure containing rare-earth halide clusters within interlayer galleries. These compounds are new members of a family of rare-earth metal main-group chalcogenides which show promise as electroluminescent materials. Structural and spectroscopic studies of these and related compounds will be discussed

  17. Facile synthesis of highly biocompatible folic acid-functionalised SiO2 nanoparticles encapsulating rare-earth metal complexes, and their application in targeted drug delivery.

    Science.gov (United States)

    Xu, Xiuling; Hu, Fan; Shuai, Qi

    2017-11-14

    Mesoporous silica core-shell nanospheres encapsulating a rare-earth metal complex (RC) were first synthesised through a facile W/O (water in oil) inverse microemulsion method. In order to achieve targeted complex delivery, folic acid (FA) was used as the targeting component due to its high affinity for over-expressed folate receptors (FRs) in cancer cells. The RC 2 @SiO 2 -FA nanospheres were characterised via ultraviolet-visible light absorption spectroscopy (UV-vis spectroscopy), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A microwave method was used to synthesise five RC cores based on 4-chlorophenoxyacetic acid, and their crystal structures were further confirmed using X-ray diffraction. The five RC cores have the following chemical formulae: [Er 2 (p-CPA) 6 (H 2 O) 6 ] RC 1 , [Ho 2 (p-CPA) 6 (H 2 O) 6 ] RC 2 , [Sm(p-CPA) 3 (H 2 O)] RC 3 , [Pr(p-CPA) 3 (H 2 O)]·3H 2 O RC 4 and [Ce(p-CPA) 3 (H 2 O) 2 ]·2H 2 O RC 5 . The carboxyl groups showed two kinds of coordination modes, namely μ 2 -η 1 :η 1 and μ 2 -η 1 :η 2 , among RC 1 -RC 5 . The flexible -OCH 2 COO- spacer group, which can undergo rotation of its C-O and C-C bonds, offered great potential for structural diversity. In vivo experiments revealed that the nanospheres exhibited no obvious cytotoxicity on HepG2 cells and 293 T cells, even at concentrations of up to 80 μg mL -1 . Nevertheless, all of the RC cores showed a certain degree of anti-tumour efficacy; in particular, RC 2 showed the strongest cytotoxicity against HepG2 cells. Interestingly, the cytotoxicity of all of the RC 2 @SiO 2 -FA nanospheres was higher than that of lone RC 2 . These types of FA-targeted mesoporous silica nanocarriers can be used for the delivery of anti-tumour RC, and provide a basis for the further study of affordable non-platinum-based complexes.

  18. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  19. Ion chromatography of transition metals: specific alteration of retention by complexation reactions in the mobile and on the stationary phase

    International Nuclear Information System (INIS)

    Baumgartner, S.

    1992-05-01

    Ion chromatography of mono- and bivalent cations was performed on a conventional cation exchanger. The pH influence of an ethylene-diamine/citrate eluent was significant for the retention of alkaline earth and transition metals, but negligible for alkali ions. This was dealt with from a mechanistic point of view. Mobile phase optimization allowed fast isocratic analysis of mono- and bivalent cations and the separation of the radionuclides Cs-137 and Sr-90. A newly synthesized stationary phase containing iminodiacetate (IDA) function was investigated for cation chromatography using ethylenediamine/citrate eluents, polyhydroxy acid and dipicolinic acid. The column's high selectivity for transition metal ions in comparison to alkali and alkaline earth metals may be governed by the choice of complexing ability and pH of the eluent. Applications verified by atomic absorption spectroscopy include alkaline earth metals in beverages and the determination of Co, Cd and Zn in solutions containing more than 10 14 -fold excess of Na and Mg, such as sea water

  20. Cation colloidal particles in alkaline-earth halides

    Energy Technology Data Exchange (ETDEWEB)

    Alcala, R; Orera, V M [Zaragoza Univ. (Spain). Facultad da Ciencias

    1976-01-01

    The formation of calcium, strontium and barium colloids both in heavily electron irradiated samples and in additively colored crystals of CaF/sub 2/, SrF/sub 2/ and BaF/sub 2/ has been investigated. Detailed data on the temperature dependence of the efficiency of colloid formation by irradiation have been obained. The growth of metallic particles in additively colored samples containing F and M centers has been studied for different color center concentrations and annealing temperatures. The optical absorption bands due to metallic colloids have been calculated using the theory of Mie. To take account of the pressure exerted by the matrix on the metallic particles several corrections to the optical constants of the metals have been introduced. A good agreement between theoretical calculations and experimental results has been obtained. The evolution of colloids along several thermal annealing experiments has also been investigated. A diffusion-limited model has been used which accounts for the dependence of the colloid radii with the annealing time.

  1. A Kirkwood-Buff derived force field for alkaline earth halide salts

    Science.gov (United States)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  2. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  3. Determination of oxygen in ternary uranium oxides by a gravimetric alkaline earth addition method

    International Nuclear Information System (INIS)

    Fujino, T.; Tagawa, H.

    1979-01-01

    The applicability of a gravimetric method based on alkaline earth metal addition for the determination of oxygen in ternary uranium oxides of the tupe M-U-O (M=La, Ce and Th) is described. The oxide sample is mixed with MgO or Basub(2.8)UOsub(5.8) and heated in air under suitable conditions. Because uranium is completely oxidized to the hexavalent state during the reaction, oxygen can be determined from the weight change. Oxygen in Lasub(y)Usub(1-y)Osub(2+x) is determined up to y = 0.8 with a standard deviation for x of +- 0.006 with MgO. For Thsub(y)Usub(1-y)Osub(2+x) the value of x is determined with Basub(2.8)UOsub(5.8) with a standard deviation of +- 0.01 at y = 0.8. For Cesub(y)Usub(1-y)Osub(2+x), the method can be applied only for low cerium concentrations where y = 0-0.2; the value for x with Basub(2.8)UOsub(5.8) at y = 0.2 showed a standard deviation of +- 0.002. (Auth.)

  4. Study of solubility of akaline earth metals in liquid iron and in alloys on its base

    International Nuclear Information System (INIS)

    Ageev, Yu.A.; Archugov, S.A.

    1985-01-01

    Solubility of magnesium, calcium, strontium and barium in liquid iron and its alloys with aluminium, silicon, nickel, chromium and carbon at 1600 deg C has been measured. Interaction parameters taking account of the effect of added elements on alkaline earth metal solubility in liquid iron have been estimated

  5. Formation of H a - hydrogen centers upon additive coloration of alkaline-earth fluoride crystals

    Science.gov (United States)

    Radzhabov, E. A.; Egranov, A. V.; Shendrik, R. Yu.

    2017-06-01

    The mechanism of coloration of alkaline-earth fluoride crystals CaF2, SrF2, and BaF2 in calcium vapors in an autoclave with a cold zone is studied. It was found that the pressure in the autoclave upon constant evacuation by a vacuum pump within the temperature range of 500-800°C increases due to evaporation of metal calcium. In addition to the optical-absorption bands of color centers in the additively colored undoped crystals or to the bands of divalent ions in the crystals doped with rare-earth Sm, Yb, and Tm elements, there appear intense bands in the vacuum ultraviolet region at 7.7, 7.0, and 6.025 eV in CaF2, SrF2, and BaF2, respectively. These bands belong to the Ha - hydrogen centers. The formation of hydrogen centers is also confirmed by the appearance of the EPR signal of interstitial hydrogen atoms after X-ray irradiation of the additively colored crystals. Grinding of the outer edges of the colored crystals leads to a decrease in the hydrogen absorption-band intensity with depth to complete disappearance. The rate of hydrogen penetration inside the crystal is lower than the corresponding rate of color centers (anion vacancies) by a factor of tens. The visible color density of the outer regions of the hydrogen-containing crystals is several times lower than that of the inner region due to the competition between the color centers and hydrogen centers.

  6. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    Science.gov (United States)

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  7. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  8. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    International Nuclear Information System (INIS)

    Christensen, J.J.

    1981-01-01

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used

  9. On monosubstituted cyanurate complexes of transition metals

    International Nuclear Information System (INIS)

    Sejfer, G.B.; Tarasova, Z.A.

    1995-01-01

    Complex monosubstituted cyanurates of transition metals K 2 [Eh(H 2 C 3 N 3 O 3 ) 4 ]x4H 2 ) where Eh = Mn, Co, Ni, Cu, Zn, Cd are synthesized and investigated by means of IR - spectroscopy and thermal analysis methods. It is shown that only thermal decomposition of a manganese complex leads to the production of this metal oxide. All other derivatives decompose with the production of a free metal, because decomposition of these substances in argon atmosphere occurs through an intermediate production of their nitrides. An assumption is made that nitroduction of yttrium or rare earth element salts (instead of transition or alkali metal derivatives) as accelerating additions will facilitate increase of polyisocyanurate resin thermal stability. 25 refs.; 2 figs.; 3 tabs

  10. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Baei, Mohammad T. [Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan (Iran, Islamic Republic of); Bagheri, Zargham [Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. Black-Right-Pointing-Pointer The alkaline cation adsorption may raise potential barrier of the electron emission. Black-Right-Pointing-Pointer The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li{sup +}, Na{sup +}, and K{sup +}) and alkaline earth (Be{sup 2+}, Mg{sup 2+}, and Ca{sup 2+}) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54-1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be{sup 2+} Much-Greater-Than Mg{sup 2+} Much-Greater-Than Ca{sup 2+} Much-Greater-Than Li{sup +} {approx} Na{sup +} {approx} K{sup +}.

  11. Correlates of long-term alkaline earth retention

    International Nuclear Information System (INIS)

    Stebbings, J.H.; Schlenker, R.A.; Keane, A.T.; Kotek, T.J.; Jansen, A.J.

    1987-01-01

    Data on 63 subjects from several occupational cohorts, plus iatrogenic subjects, were analyzed to determine effects of sex, age at exposure, exposure duration, and age at measurement upon the coefficient of elimination (λ, % y -1 ). While 12 women exposed at age 17-18 had λ's significantly lower than those exposed at ages 15-16 or 21-26, λ showed no overall trend with age at exposure among females. Higher radium burdens associated with bone damage are associated with decreased λ's, but neither exposure duration nor age at measurement correlated significantly with λ. The 12 males had λ's about 60% of those for females after adjustment for retention time. The males λ's were lower the earlier the age at exposure. Effects of personal habits were studied in a homogeneous cohort of female Illinois dial painters with relatively uniform ages at first employment. The most powerful predictor of radium loss was the number of cups of coffee and tea consumed per day. Coffee/tea consumption explained ∼ 35% of the variance in λ, the effect persisting after deletion of smokers and subjects with x-ray evidence of bone damage. Higher weight/height ratios were associated with higher λ's. Individuals smoking throughout the measurement period had significantly low λ's. A complex interaction of weight/height ratios to both smoking and radium-induced bone damage was observed

  12. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  13. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  14. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    Science.gov (United States)

    Vanderdeelen, Jan

    2012-06-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO3. H2O), the hexahydrate ikaite (CaCO3.6H2O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  15. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    International Nuclear Information System (INIS)

    De Visscher, Alex; Vanderdeelen, Jan

    2012-01-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO 3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO 3 · H 2 O), the hexahydrate ikaite (CaCO 3 ·6H 2 O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  16. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    Energy Technology Data Exchange (ETDEWEB)

    De Visscher, Alex; Vanderdeelen, Jan [Department of Chemical and Petroleum Engineering, and Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4 (Canada); Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent (Belgium)

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  17. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth

    International Nuclear Information System (INIS)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile; Lenoir, Marion; Dussossoy, Jean-Luc; Charpentier, Thibault; Neuville, Daniel R.; Gervais, C.

    2006-01-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na + ion (respectively Ca 2+ ions) present in the standard composition is totally substituted by another alkaline ion Li + , K + , Rb + or Cs + (respectively another rare earth ion Mg 2+ , Sr 2+ or Ba 2+ ). These glasses, analyzed by optical absorption, Raman and 27 Al or 11 B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO 3 /BO 4 and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  18. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  19. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  20. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    International Nuclear Information System (INIS)

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping

    2014-01-01

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H 2 O)] n (1), [Ba(Pzdc)] n (2), [AgSr(Pzdc)(NO 3 )(H 2 O)] n (3), [Ag 2 Ca(Pzdc) 2 (H 2 O)] n (4) (H 2 Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba 2 O 11 N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H 2 O)] n (1), [Ba(Pzdc)] n (2), [AgSr(Pzdc)(NO 3 )(H 2 O)] n (3), [Ag 2 Ca(Pzdc) 2 (H 2 O)] n (4) (H 2 Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2

  1. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping, E-mail: sanpingchen@126.com

    2014-02-15

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba{sub 2}O{sub 11}N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2.

  2. Detection of nanocrystallinity by X-ray absorption spectroscopy in thin film transition metal/rare-earth atom, elemental and complex oxides

    International Nuclear Information System (INIS)

    Edge, L.F.; Schlom, D.G.; Stemmer, S.; Lucovsky, G.; Luning, J.

    2006-01-01

    Nanocrystallinity has been detected in the X-ray absorption spectra of transition metal and rare-earth oxides by (i) removal of d-state degeneracies in the (a) Ti and Sc L 3 spectra of TiO 2 and LaScO 3 , respectively, and (b) O K 1 spectra of Zr(Hf)O 2 , Y 2 O 3 , LaScO 3 and LaAlO 3 , and by the (ii) detection of the O-atom vacancy in the O K 1 edge ZrO 2 -Y 2 O 3 alloys. Spectroscopic detection is more sensitive than X-ray diffraction with a limit of ∼2 nm as compared to >5 mm. Other example includes detection of ZrO 2 nanocrystallinity in phase-separated Zr(Hf) silicate alloys

  3. Complex metal hydrides

    DEFF Research Database (Denmark)

    Ley, Morten Brix

    2014-01-01

    og batterier de to mest lovende energibærere til mobile applikationer. Komplekse metalhydrider er blevet undersøgt i vid udstrækning over de sidste tyve år, siden de gravimetrisk og volumetrisk kan indeholde store mængder brint. Derfor er metal borhydrider velegnet til faststofopbevaring af brint...

  4. Novel rare earth quinolinolate complexes

    International Nuclear Information System (INIS)

    Deacon, Glen B.; Forsyth, Craig M.; Junk, Peter C.; Kynast, Ulrich; Meyer, Gerd; Moore, Joanne; Sierau, Jennyfer; Urbatsch, Aron

    2008-01-01

    The reaction of europium 8-quinolinolate Eu(OQ) 3 with calcium 8-quinolinolate, Ca(OQ) 2 , in the flux 1,2,4,5-tetramethylbenzene (TMB) at 210 deg. C yields the bimetallic [Eu 2 Ca(OQ) 8 ], which is a linear tri-nuclear complex with two eight coordinate europium atoms flanking a six coordinate calcium atom bonded by six bridging phenolate oxygen atoms. A similar reaction between La(OQ) 3 and Co(OQ) 2 gave [LaCo 2 (OQ) 7 ], in which two six coordinate cobalt atoms flank an eight coordinate lanthanum atom with six bridging phenolate oxygen atoms and a terminal OQ group

  5. benzimidazole metal complexes

    Indian Academy of Sciences (India)

    aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université des Frères. Mentouri .... determine the quantum chemical parameters for the title ..... retical study of benzazole thioether and its zinc complex.

  6. Superconductivity in alkaline earth-substituted La2CuO/sub 4-y/

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Mueller, K.A.; Takashige, M.

    1987-01-01

    La 2 CuO/sub 4-y/ ceramics containing a few percent of Ca 2+ , Sr 2+ , and Ba 2+ ions have been prepared. Resistivity and susceptibility measurements exhibit superconductive onsets (as in earlier Ba 2+ -containing samples). The onset temperature La 2 CuO/sub 4-y/ with Sr 2+ is higher and its superconductivity-induced diamagnetism larger than that found with Ba 2+ and Ca 2+ . This is proof that the electronic change resulting from alkaline earth-doping, rather than the size effect, is responsible for superconductivity. The ionic radius of Sr 2+ is close to that of La 3+ for which it presumably substitutes

  7. Calculation of the electronic structure and contact hyperfine parameters of interstitial hydrogen in alkaline - earth fluorides

    International Nuclear Information System (INIS)

    Oliveira, L.E.M.C. de.

    1976-01-01

    The electronic structure of the interstitial hydrogen atom in alkaline-earth fluorides has been studied using the self-consistent-field multiple-scattering Xα method. In the calculations a cluster constituted by the hydrogen atom and its first anion and cation neighbors has been used. The contact parameters with the proton and the fluorine nuclei have been evaluated. The agreement obtained with the experimental results is in general good and indicates that this method is also appropriate to study defects in ionic crystals. (author) [pt

  8. Destructive Adsorption of Carbon Tetrachloride on Alkaline Earth Metal Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Mestl, Gerhard; Rosynek, Michael P.; Krawietz, Thomas R.; Haw, James F.; Lunsford, Jack H.

    1998-01-01

    The destructive adsorption of CCl4 on MgO, CaO, SrO, and BaO has been studied as a function of the reaction temperature and the amount of CCl4 injected. The reaction was followed using in situ Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 13 C

  9. Melt cationic and anionic composition effect on titanium group metal corrosion in halogenides of alkali earths

    International Nuclear Information System (INIS)

    Tkhaj, V.; Kovalik, O.Yu.; Dikunov, Yu.G.; P'yankova, S.P.

    1997-01-01

    A study was made on interaction of titanium group metals with melts of chlorides and chloride-fluorides of alkaline earth metals and magnesium. It was revealed that the rate of metal corrosion increased from BaCl 2 2 2 2 in chloride series. It is explained by amplification of oxidation activity of salt cation in the series: Ba 2+ 2+ 2+ 2+ . It was also determined that corrosion rate of titanium exceeded the one of zirconium and hafnium, became reducing power of titanium was the highest in the given group

  10. Rare earth metal bis(silylamide) complexes bearing pyridyl-functionalized indenyl ligand: synthesis, structure and performance in the living polymerization of L-lactide and rac-lactide.

    Science.gov (United States)

    Wang, Yibin; Lei, Yinlin; Chi, Shuhui; Luo, Yunjie

    2013-02-07

    Amine elimination of rare earth tris(silylamide) complexes Ln[N(SiHMe(2))(2)](3)(THF)(2) (Ln = La, Sm, Er, Lu) with 1 equiv. of the pyridyl-functionalized indenyl ligand C(9)H(7)CMe(2)CH(2)C(5)H(4)N-α afforded a series of neutral mono-indenyl-ligated rare earth metal bis(silylamide) complexes (C(9)H(6)CMe(2)CH(2)C(5)H(4)N-α)Ln[N(SiHMe(2))(2)](2) (Ln = La (1), Sm (2), Er (3), Lu (4)) in 83-87% isolated yields. Reaction of La[N(SiHMe(2))(2)](3)(THF)(2) with 2 equivalents of C(9)H(7)CMe(2)CH(2)C(5)H(4)N-α provided the neutral bis(indenyl) lanthanum mono(silylamide) complex (C(9)H(6)CMe(2)CH(2)C(5)H(4)N-α)(2)LaN(SiHMe(2))(2) (5). These complexes were characterized by elemental analysis, FT-IR and NMR (except for 3 for the strong paramagnetic property of the central metal). X-ray single crystal structural diffraction showed that 1-4 are isostructural and the central metals are four-coordinated by one indenyl ring, one nitrogen atom from the pendant pyridyl group, and two amide groups to form a distorted tetrahedral geometry; while the central metal in 5 is five-coordinated by two indenyl rings, two nitrogen atoms from the pendant pyridyl groups, and one amide group to adopt a distorted pyramidal geometry, if the indenyl ring is regarded as occupying an independent vertex. The monoanionic pyridyl-functionalized indenyl ligand is bonded to the central metal in η(5)/κ(1) constrained geometry configuration (CGC) mode. 1-4 are highly active for the ring-opening polymerization of L-lactide and rac-lactide. In the presence of 2 equivalents of benzyl alcohol, 1 shows high activity toward L-lactide and rac-lactide in a living fashion.

  11. Novel Extraction Process Of Rare Earth Elements From NdFeB Powders Via Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Chung K.W.

    2015-06-01

    Full Text Available The alkaline treatment of NdFeB powders in NaOH solution at various equivalent amounts of NaOH at 100°C was performed. The resultant powders were then leached in 0.5M H2SO4 solution at 25°C for 2 minutes. At 5 equivalents of NaOH, neodymium in NdFeB powders was partially transformed to neodymium hydroxide. The transformation of neodymium to neodymium hydroxide actually occurred at 10 equivalents of NaOH and was facilitated by increasing the equivalent of NaOH from 10 to 30. In addition, iron was partially transformed to magnetite during the alkaline treatment, which was also promoted at a higher equivalent of NaOH. The leaching yield of neodymium from alkaline-treated powders was increased with an increasing equivalent of NaOH up to 10; however, it slightly decreased with the equivalent NaOH of over 10. The leaching yield of iron was inversely proportional to that of rare earth elements. NdFeB powders treated at 10 equivalents of NaOH showed a maximum leaching yield of neodymium and dysprosium of 91.6% and 94.6%, respectively, and the lowest leaching yield of iron of 24.2%, resulting in the highest selective leaching efficiency of 69.4%.

  12. Transition Metal Complexes and Catalysis

    Indian Academy of Sciences (India)

    approaches towards the study of bonding in transition metal complexes. Despite .... industrial scale reactions for the production of organic compounds using transition ..... It has found several applications as an engineering thermoplastic. .... and processes of interest to the company, that is, applied research. It is this very ...

  13. Radium, uranium and metals in acidic or alkaline uranium mill

    International Nuclear Information System (INIS)

    Somot, St.

    1997-01-01

    Uranium mill study sites have been chosen in function of their different characteristics: deposits age, treatment nature (alkaline or acid), mill origin. The realization of specific drilling allowed the simultaneous study of the interstitial water and the solid fraction of samples, cut at determined deep. A radiation imbalance between 230 Th and 226 Ra is observed in the acid treatment residues. The trace elements concentration spectrum is directly bound to the nature of the ore. Diamagnetic evolutions are observed in residues. The uranium concentrations are higher in carbonated waters than in calcic sulfated waters. The selective sequential lixiviation showed that the 226 Ra activity of the interstitial water is controlled by the Gypsum in acid treatment residues. In other hand in the alkaline treatment waters, the carbonates occur. The Ra retention is largely bound to the Fe and Mn oxy-hydroxides. (A.L.B.)

  14. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    Science.gov (United States)

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  15. Raman and 11B nuclear magnetic resonance spectroscopic studies of alkaline-earth lanthanoborate glasses

    International Nuclear Information System (INIS)

    Brow, R.K.; Tallant, D.R.; Turner, G.L.

    1996-01-01

    Glasses from the RO·La 2 O 3 ·B 2 O 3 (R = Mg, Ca, and Ba) systems have been examined. Glass formation is centered along the metaborate tie line, from La(BO 2 ) 3 to R(BO 2 ) 2 . Glasses generally have transition temperatures >600 C and expansion coefficients between 60 x 10 -7 /C and 100 x 10 -7 /C. Raman and solid-state nuclear magnetic resonance spectroscopies reveal changes in the metaborate network that depend on both the [R]:[La] ratio and the type of alkaline-earth ion. The fraction of tetrahedral sites is generally reduced in alkaline-earth-rich glasses, with magnesium glasses possessing the lowest concentration of B[4]. Raman spectra indicate that, with increasing [R]:[La] ratio, the preferred metaborate anion changes from a double-chain structure associated with crystalline La(BO 2 ) 3 to the single-chain and ring metaborate anions found in crystalline R(BO 2 ) 2 phases. In addition, disproportionation of the metaborate anions leads to the formation of a variety of other species, including pyroborates with terminal oxygens and more-polymerized species, such as diborates, with tetrahedral borons. Such structural changes are related to the ease of glass formation and some of the glass properties

  16. Red-emitting alkaline-earth rare-earth pentaoxometallates powders ...

    Indian Academy of Sciences (India)

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to the preparation of strontium europium aluminate (Sr2EuAlO5) powders for red-emitting phosphor under near ultraviolet radiation. Strontium naphthenate, aluminium-2-ethylhexanoate and ...

  17. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  18. Metal complexes with 5-aminotetrazole

    International Nuclear Information System (INIS)

    Lavrenova, L.G.; Larionov, S.V.; Grankina, Z.A.; Ikorskij, V.N.

    1983-01-01

    Nitrate and chloride complexes of Co(2), Ni(2), Cu(2), Cd(2), Hg(2), Pb(2) with 5 aminotetrazole (ATE) and compoUnds Zn(ATE') 2 and Cd(ATEE') 2 , where ATE' is a 5 aminotetrazole ano /nion. On the base of spectroscopic data (spectrophotometry, IR- spectra, EPR and magnetic measurements assumptions on M(2) coordination in complexes are made. Most probably ATE is a bridge ligand which is joined by two nitrogen atoms to various M(2) ions. In Co(2), Ni(2) and Cu(ATE) 3 -Cl 2 compounds the metal has a distorted actahedral coordination and forms MN 6 unit, which suggests the interaction of metal ions with ATE nitrogen atoms along the Z-axis. In the Cu(ATE) 2 (NO 3 ) 2 octahedral complex the CuN 4 O 2 coordination unit is realized at the expense of participation of nitratogroups in coordination

  19. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  20. Pollution control and resource reuse for alkaline hydrometallurgy of amphoteric metal hazardous wastes

    CERN Document Server

    Youcai, Zhao

    2017-01-01

    This book provides a comprehensive description of alkaline hydrometallurgy of amphoteric metal hazardous wastes. Topics focus on leaching of zinc and lead hazardous wastes, purification of leach solution of zinc and lead, electrowinning of zinc and lead from purified alkaline solutions, chemical reactions taking place in the production flowsheets, thermodynamic and spent electrolyte regeneration, alkaline hydrometallurgy of low-grade smithsonite ores, recovery of molybdenum and tungsten using ion flotation and solvent extraction processes and their application in chemical synthesis of Nb and Ta inorganic compounds, and industrial scale production of 1500-2000 t/a zinc powder using alkaline leaching–electrowinning processes. Processes described are cost-effective, generate lesser secondary pollutants, and have been applied widely in China. Readers that will find the book appealing include solid waste engineers, environmental managers, technicians, recycling coordinators, government officials, undergraduates ...

  1. Relations between structure and material properties in earth alkaline silicate basing phosphors; Struktureigenschaftsbeziehungen in Erdalkalisilikat basierenden Leuchtstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Wolfgang

    2008-03-19

    This work is basing on the relation between structure and luminescence of Eu{sup 2+} doped Earth-Alkaline-Silicates. After an overview of Earth-Alkaline-Silicates silicates with an additional cation (Li{sup +}, Al{sup 3+}) and an additional anion (Cl{sup -}, N{sup 3-}) are examined in chapter 4 and 5. Basing on this data an relation between structural influence - like ion-radii, anion and coordination polyeder - and phosphor luminescence is set up. The ability of using as an industrial phosphor is made in the final chapter. (orig.)

  2. Luminescence investigation of R{sup 3+}-doped alkaline earth tungstates prepared by a soft chemistry method

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Helliomar P. [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Kai, Jiang [Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, Rio de Janeiro, RJ, Brazil (Brazil); Silva, Ivan G.N.; Rodrigues, Lucas C.V. [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Felinto, Maria C.F.C. [Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, SP (Brazil); Hölsä, Jorma [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Department of Chemistry, University of Turku,FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Malta, Oscar L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.br [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2016-02-15

    Highly luminescent rare earth (R{sup 3+}) doped alkaline-earth tungstates MWO{sub 4}:R{sup 3+} (M{sup 2+}: Ca, Sr and Ba, R{sup 3+}: Eu, Tb, Gd) were prepared with a room temperature coprecipitation method. The phosphors were characterized by X-ray powder diffraction (XPD), thermal analysis (TG), infrared absorption spectroscopy (FTIR) and UV excited photoluminescence. The as-prepared MWO{sub 4}:R{sup 3+} particles belong to the tetragonal scheelite phase, and are well crystallized and are of the average size of 16–48 nm. The excitation and emission spectra of the materials were recorded at 300 and 77 K temperatures. The luminescent materials exhibit intense red (Eu{sup 3+}) and green (Tb{sup 3+}) colors under UV excitation. The excitation spectra of the Eu{sup 3+} doped materials show broad bands arising from the ligand-to-metal charge transfer transitions (O{sup 2−}→W{sup VI} and O{sup 2−}→Eu{sup 3+}) as well as narrow bands from 4f–4f intraconfigurational transitions of Eu{sup 3+}. 4f–4f emission data of the Eu{sup 3+} and Tb{sup 3+} in the MWO{sub 4} host matrices as well as the values of emission quantum efficiencies of the {sup 5}D{sub 0} level and the 4f–4f experimental intensity parameters of Eu{sup 3+} ion are presented and discussed. - Highlights: • Highly red Europium and green Terbium doped tungstate under UV excitation. • Efficient energy transfer process from tungstate to R{sup 3+} ion. • Promising candidates for a red (Eu{sup 3+}) and green (Tb{sup 3+}) emitting phosphors. • Ligand Metal charge transfer to R{sup 3+} ion. • Charge compensation with Na{sup +}.

  3. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments

    Directory of Open Access Journals (Sweden)

    Claire eMahaffey

    2014-12-01

    Full Text Available Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP, that enable them to utilize the more replete dissolved organic phosphorus (DOP pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361 in the eastern subtropical Atlantic to explore the relationship between AP activity (APA and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM. While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.

  4. REDOX BEHAVIOR AND DIFFUSIVITY OF ANTIMONY AND CERIUM ION IN ALKALI ALKALINE EARTH SILICATE GLASS MELTS

    Directory of Open Access Journals (Sweden)

    K. D. Kim

    2010-03-01

    Full Text Available Redox behavior and diffusivity of antimony and cerium ion in alkali alkaline earth silicate CRT (Cathode Ray Tube model glass melts were studied by means of square wave voltammetry under the frequency range of 5-1000 Hz and in the temperature range of 800-1400°C. According to voltammogram, peaks due to Sb³⁺/Sb⁰ were positioned in the negative potential region while peaks due to Sb⁵⁺/Sb³⁺ and Ce⁴⁺/Ce³⁺ were found in the positive potential region. By using some equations, correlation for peak potential versus temperature and peak current versus reciprocal frequency was examined, respectively. Their correlation showed a linear relation in the applied temperature and frequency range. Based on the linear relationship, thermodynamic and kinetic properties for each redox reaction were suggested.

  5. Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice

    International Nuclear Information System (INIS)

    Zhu Shaobing; Qian Jun; Wang Yuzhu

    2017-01-01

    Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding (orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases. Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist. In the superexchange interaction dominating regime, we find that the time-resolved spin imbalance shows a remarkable modulated oscillation, which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms. Moreover, the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics. These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy. (paper)

  6. Topological Fractional Pumping with Alkaline-Earth-Like Atoms in Synthetic Lattices

    Science.gov (United States)

    Taddia, Luca; Cornfeld, Eyal; Rossini, Davide; Mazza, Leonardo; Sela, Eran; Fazio, Rosario

    2017-06-01

    Alkaline-earth(-like) atoms, trapped in optical lattices and in the presence of an external gauge field, can form insulating states at given fractional fillings. We will show that, by exploiting these properties, it is possible to realize a topological fractional pump. Our analysis is based on a many-body adiabatic expansion, on simulations with time-dependent matrix product states, and, for a specific form of atom-atom interaction, on an exactly solvable model of fractional pump. The numerical simulations allow us to consider a realistic setup amenable of an experimental realization. As a further consequence, the measure of the center-of-mass shift of the atomic cloud would constitute the first measurement of a many-body Chern number in a cold-atom experiment.

  7. IRON REDOX EQUILIBRIUM AND DIFFUSIVITY IN MIXED ALKALI-ALKALINE EARTH-SILICA GLASS MELTS

    Directory of Open Access Journals (Sweden)

    KI-DONG KIM

    2011-03-01

    Full Text Available Dependence of redox behavior and diffusivity of iron on temperature and composition was studied in mixed alkali-alkaline earth-silica glass melts by means of square wave voltammetry (SWV. The voltammograms showed that irrespective of K2O/(Na2O+K2O the peak potential due to Fe3+/Fe2+ moved toward negative direction with temperature decrease and the peak current showed a strong dependence on frequency at constant temperature. Iron diffusion coefficient versus melt viscosity showed a good linearity. The compositional dependence showed that the peak potential shifted to the positive direction with increase of K2O but a typical mixed alkali effect occurred in iron diffusion either at constant temperature or at constant viscosity.

  8. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  9. Two novel alkaline earth coordination polymers constructed from cinnamic acid and 1,10-phenanthroline: synthesis and structural and thermal properties.

    Science.gov (United States)

    Bendjellal, Nassima; Trifa, Chahrazed; Bouacida, Sofiane; Boudaren, Chaouki; Boudraa, Mhamed; Merazig, Hocine

    2018-02-01

    In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. The diverse coordination modes of N-donor ligands have been employed to assemble metal-organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds; they are thus good candidates for the construction of supramolecular architectures. We synthesized under reflux or hydrothermal conditions two new alkaline earth(II) complexes, namely poly[(1,10-phenanthroline-κ 2 N,N')bis(μ-3-phenylprop-2-enoato-κ 3 O,O':O)calcium(II)], [Ca(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (1), and poly[(1,10-phenanthroline-κ 2 N,N')(μ 3 -3-phenylprop-2-enoato-κ 4 O:O,O':O')(μ-3-phenylprop-2-enoato-κ 3 O,O':O)barium(II)], [Ba(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (2), and characterized them by FT-IR and UV-Vis spectroscopies, thermogravimetric analysis (TGA) and single-crystal X-ray diffraction analysis, as well as by powder X-ray diffraction (PXRD) analysis. Complex (1) features a chain topology of type 2,4 C4, where the Ca atoms are connected by O and N atoms, forming a distorted bicapped trigonal prismatic geometry. Complex (2) displays chains of topology type 2,3,5 C4, where the Ba atom is nine-coordinated by seven O atoms of bridging/chelating carboxylate groups from two cinnamate ligands and by two N atoms from one phenanthroline ligand, forming a distorted tricapped prismatic arrangement. Weak C-H...O hydrogen bonds and π-π stacking interactions between phenanthroline ligands are responsible to the formation of a supramolecular three-dimensional network. The thermal decompositions of (1) and (2) in the temperature range 297-1173 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.

  10. Metal mobilization under alkaline conditions in ash-covered tailings.

    Science.gov (United States)

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Conformational changes in the bilirubin-human serum albumin complex at extreme alkaline pH

    DEFF Research Database (Denmark)

    Honoré, B; Frandsen, P C

    1986-01-01

    Light-absorption, c.d. and fluorescence of the bilirubin-albumin complex were investigated at extreme alkaline pH. Above pH 11.1 albumin binds the bilirubin molecule, twisted oppositely to the configuration at more neutral pH. On the basis of light-absorption it is shown that two alkaline...... transitions occur. The first alkaline transition takes place at pH between 11.3 and 11.8, co-operatively dissociating at least six protons. The second alkaline transition takes place at pH between 11.8 and 12.0. It probably implies a reversible unfolding of the albumin molecule, increasing the distance...

  12. Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr

    KAUST Repository

    Zhang, J.-Y.; Babb, J. F.; Mitroy, J.; Sadeghpour, H. R.; Schwingenschlö gl, Udo; Yan, Z.-C.

    2013-01-01

    Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.

  13. Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr

    KAUST Repository

    Zhang, J.-Y.

    2013-04-05

    Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.

  14. Study of the effect hydrogen binding in the solvation of alkaline earth cations with MeOH in nitromethane using 1 H NMR technique and determination of ionic solvation number

    CERN Document Server

    Alizadeh, N

    2001-01-01

    A proton NMR method for the study of the effect hydrogen binding and determination of solvation numbers of alkaline earth cations with methanol (MeOH) in in tromethane (NM) as diluent is described. The method is based on monitoring the resonance frequency of MeOH protons as a function of MeOH to metal ion mole ratio at constant metal ion concentration. the average solvation number of cation, n, at any MeOH/ metal ion mole ration was calculated from the NMR chemical shift-mole ration data and was plotted against the mole ration values. The solvation numbers of alkaline earth cations were obtained from the limiting values of the corresponding n, vs. mole ratio plots.

  15. Study of the effect hydrogen binding in the solvation of alkaline earth cations with MeOH in nitromethane using 1 H NMR technique and determination of ionic solvation number

    International Nuclear Information System (INIS)

    Alizadeh, N.

    2001-01-01

    A proton NMR method for the study of the effect hydrogen binding and determination of solvation numbers of alkaline earth cations with methanol (MeOH) in in tromethane (NM) as diluent is described. The method is based on monitoring the resonance frequency of MeOH protons as a function of MeOH to metal ion mole ratio at constant metal ion concentration. the average solvation number of cation, n, at any MeOH/ metal ion mole ration was calculated from the NMR chemical shift-mole ration data and was plotted against the mole ration values. The solvation numbers of alkaline earth cations were obtained from the limiting values of the corresponding n, vs. mole ratio plots

  16. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  17. Studies on the determination of trace amounts of nitrogen along with alkali and alkaline earth elements in uranium based samples by ion-chromatography (IC)

    International Nuclear Information System (INIS)

    Verma, Poonam; Rastogi, R.K.; Ramakumar, K.L.

    2006-12-01

    Present report describes an ion chromatography (IC) method with suppressed conductivity detection for the determination of traces of nitrogen along with alkali and alkaline earth elements in uranium based nuclear fuels. Method was developed to determine nitrogen as NH 4 + along with alkali and alkaline earth cations by IC using a cation exchange column. (author)

  18. Removal of alkaline-earth elements by a carbonate precipitation in a chloride molten salt

    International Nuclear Information System (INIS)

    Yung-Zun Cho; In-Tae Kim; Hee-Chui Yang; Hee-Chui Eun; Hwan-Seo Park; Eung-Ho Kim

    2007-01-01

    Separation of some alkaline-earth chlorides (Sr, Ba) was investigated by using carbonate injection method in LiCl-KCl eutectic and LiCl molten salts. The effects of the injected molar ratio of carbonate([K 2 (or Li 2 )CO 3 /Sr(or Ba)Cl 2 ]) and the temperature(450-750 deg.) on the conversion ratio of the Sr or Ba carbonate were determined. In addition, the form of the Sr and Ba carbonate resulting from the carbonation reaction with carbonates was identified via XRD and SEM-EDS analysis. In these experiments, the carbonate injection method can remove Sr and Ba chlorides effectively over 99% in both LiCl-KCl eutectic and LiCl molten salt conditions. When Sr and Ba were co-presented in the eutectic molten salt, they were carbonated in a form of Ba 0.5 Sr 0.3 CO 3 . And when Sr was present in LiCl molten salt, it was carbonated in the form of SrCO 3 . Carbonation ratio increased with a decreasing temperature and it was more favorable in the case of a K 2 CO 3 injection than that of Li 2 CO 3 . Based on this experiment, it is postulated that carbonate precipitation method has the potential for removing alkali-earth chlorides from LiCl-KCl eutectic and LiCl molten salts. (authors)

  19. First-principles calculation on oxygen ion migration in alkaline-earth doped La2GeO5

    International Nuclear Information System (INIS)

    Thuy Linh, Tran Phan; Sakaue, Mamoru; Aspera, Susan Meñez; Alaydrus, Musa; Wungu, Triati Dewi Kencana; Hoang Linh, Nguyen; Kasai, Hideaki; Mohri, Takahiro; Ishihara, Tatsumi

    2014-01-01

    By using first-principles calculations based on the density functional theory, we investigated the doping effects of alkaline-earth metals (Ba, Sr and Ca) in monoclinic lanthanum germanate La 2 GeO 5 on its oxygen ion conduction. Although the lattice parameters of the doped systems changed due to the ionic radii mismatch, the crystal structures remained monoclinic. The contribution of each atomic orbital to electronic densities of states was evaluated from the partial densities of states and partial charge densities. It was confirmed that the materials behaved as ionic crystals comprising of cations of La and dopants and anions of oxygen and covalently formed GeO 4 . The doping effect on the activation barrier for oxygen hopping to the most stable oxygen vacancy site was investigated by the climbing-image nudged elastic band method. By tracing the charge density change during the hopping, it was confirmed that the oxygen motion is governed by covalent interactions. The obtained activation barriers showed excellent quantitative agreements with an experiment for the Ca- and Sr-doped systems in low temperatures as well as the qualitative trend, including the Ba-doped system. (paper)

  20. Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review

    Science.gov (United States)

    Spry, D.J.; Wiener, James G.

    1991-01-01

    Fish in low-alkalinity lakes having pH of 6·0–6·5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH3 Hg+, Cd2+, and Pb2+) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  1. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil.

    Science.gov (United States)

    Zhang, Guixiang; Guo, Xiaofang; Zhao, Zhihua; He, Qiusheng; Wang, Shuifeng; Zhu, Yuen; Yan, Yulong; Liu, Xitao; Sun, Ke; Zhao, Ye; Qian, Tianwei

    2016-11-01

    A pot experiment was conducted to investigate the effects of biochars on the availability of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) to ryegrass in an alkaline contaminated soil. Biochars only slightly decreased or even increased the availability of heavy metals assesses by chemical extractant (a mixture of 0.05 mol L -1 ethylenediaminetetraacetic acid disodium, 0.01 mol L -1 CaCl 2 , and 0.1 mol L -1 triethanolamine). The significantly positive correlation between most chemical-extractable heavy metals and the ash content in biochars indicated the positive role of ash in this extraction. Biochars significantly reduced the plant uptake of heavy metals, excluding Mn. The absence of a positive correlation between the chemical-extractable heavy metals and the plant uptake counterparts (except for Mn) indicates that chemical extractability is probably not a reliable indicator to predict the phytoavailability of most heavy metals in alkaline soils treated with biochars. The obviously negative correlation between the plant uptake of heavy metals (except for Mn) and the (O + N)/C and H/C indicates that biochars with more polar groups, which were produced at lower temperatures, had higher efficiency for reducing the phytoavailability of heavy metals. The significantly negative correlations between the plant uptake of Mn and ryegrass biomass indicated the "dilution effect" caused by the improvement of biomass. These observations will be helpful for designing biochars as soil amendments to reduce the availability of heavy metals to plants in soils, especially in alkaline soils. Copyright © 2016. Published by Elsevier Ltd.

  2. The synthesis and crystal structures of the first rare-earth alkaline-earth selenite chlorides MNd10(SeO3)12Cl8 (M=Ca and Sr)

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Olenev, A.V.; Dolgikh, V.A.; Lightfoot, P.

    2007-01-01

    Two new alkaline-earth Nd selenite chlorides MNd 10 (SeO 3 ) 12 Cl 8 (M=Ca, Sr) were obtained using crystal growth from alkaline-earth chloride melts in quartz tubes. These new compounds crystallize in the orthorhombic system in space group C cca (no. 68). The compounds were studied by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction. It was shown that both compounds adopt the same structure type, constructed by complex [M 11 (SeO 3 ) 12 ] 8+ slabs separated by chloride anion layers perpendicular to the longest cell parameter. The SeO 3 groups show a pyramidal shape and may be described as SeO 3 E tetrahedra. Such SeO 3 groups decorate the Nd-O skeletons forming the [M 11 (SeO 3 ) 12 ] 8+ slabs. - Graphical abstract: Two new alkaline-earth Nd selenite chlorides MNd 10 (SeO 3 ) 12 Cl 8 (M=Ca, Sr) were synthesized. These structures are constructed by [M 11 (SeO 3 ) 12 ] 8+ slabs separated by chloride anion layers

  3. Environmental Characteristics of Carbonatite and Alkaline Intrusion-related Rare Earth Element (REE) Deposits

    Science.gov (United States)

    Seal, R. R., II; Piatak, N. M.

    2017-12-01

    Carbonatites and alkaline intrusions are important sources of REEs. Environmental risks related to these deposit types have been assessed through literature review and evaluation of the geochemical properties of representative samples of mill tailings and their leachates. The main ore mineral in carbonatite deposits is bastnasite [(Ce,La)(CO3)F], which is found with dolomite and calcite ( 65 %), barite (20 - 25 %), plus a number of minor accessory minerals including sulfides such as galena and pyrite. Generally, alkaline intrusion-related REE deposits either occur in layered complexes or with dikes and veins cutting alkaline intrusions. Such intrusions have a more diverse group of REE ore minerals that include fluorcarbonates, oxides, silicates, and phosphates. Ore also can include minor calcite and iron (Fe), lead (Pb), and zinc (Zn) sulfides. The acid-generating potential of both deposit types is low because of a predominance of carbonate minerals in the carbonatite deposits, the presence of feldspars and minor calcite in alkaline intrusion-related deposits, and to only minor to trace occurrence of potentially acid-generating sulfide minerals. Both deposit types, however, are produced by igneous and hydrothermal processes that enrich high-field strength, incompatible elements, which typically are excluded from common rock-forming minerals. Elements such as yttrium (Y), niobium Nb), zirconium (Zr), hafnium (Hf), tungsten (W), titanium (Ti), tantalum (Ta), scandium (Sc), thorium (Th), and uranium (U) can be characteristic of these deposits and may be of environmental concern. Most of these elements, including the REEs, but with the exception of U, have low solubilities in water at the near-neutral pH values expected around these deposits. Mill tailings from carbonatite deposits can exceed residential soil and sediment criteria for Pb, and leachates from mill tailings can exceed drinking water guidelines for Pb. The greatest environmental challenges, however, are

  4. Variable dimensionality and new uranium oxide topologies in the alkaline-earth metal uranyl selenites AE[UO2)(SeO3)2] (AE=Ca, Ba) and Sr[UO2)(SeO3)2] · 2H2O

    International Nuclear Information System (INIS)

    Almond, Philip M.; Peper, Shane M.; Bakker, Eric; Albrecht-Schmitt, Thomas E.

    2002-01-01

    Three new alkaline-earth metal uranyl selenites, Ca[UO 2 )(SeO 3 ) 2 ] (1), Sr[UO 2 )(SeO 3 ) 2 ] · 2H 2 O (2), and Ba[UO 2 )(SeO 3 ) 2 ] (3), have been prepared from the reactions of CaCO 3 and Ca(OH) 2 , SrCl 2 and Sr(OH) 2 , or BaCl 2 and Ba(OH) 2 with UO 3 and SeO 2 under mild hydrothermal conditions. Single-crystal X-ray diffraction experiments reveal that the structures of 1-3 differ in both connectivity and dimensionality even though all contain the same fundamental building unit, namely [UO 2 (SeO 3 ) 4 ]. This polyhedron consists of a linear uranyl unit that is bound by one chelating and three bridging selenite anions creating a pentagonal bipyramidal environment around the U(VI) center. The crystal structure of 1 contains one-dimensional ribbons where the edges are terminated by monodentate selenite anions. The interior of the ribbons are constructed from edge-sharing pentagonal bipyramidal UO 7 units. The structure of 2 is also one-dimensional; however, here there are chains of edge-sharing pentagonal bipyramidal UO 7 dimers that are connected by bridging selenite anions. Ba[(UO 2 )(SeO 3 ) 2 ] (3) is two-dimensional, and the highly ruffled anionic sheets present in this structure are formed from both bridging and chelating/bridging selenite anions bound to uranyl moieties. The anionic substructures in 1-3 are separated by Ca 2+ , Sr 2+ , or Ba 2+ cations. Crystallographic data (193 K, MoKα, λ=0.71073): 1, triclinic, space group P1-bar, a=5.5502(6) A, b=6.6415(7) A, c=11.013(1) A, α=104.055(2) deg., β=93.342(2) deg., γ=110.589(2) deg. , Z=2, R(F)=4.56% for 100 parameters with 1530 reflections with I>2σ(I); 2, triclinic, space group P1-bar, a=7.0545(5) A, b=7.4656(5) A, c=10.0484(6) A, α=106.995(1) deg., β=108.028(1) deg., γ=98.875(1) deg., Z=2, R(F)= 2.43% for 128 parameters with 2187 reflections with I>2σ(I); 3, monoclinic, space group P2 1 /c, a=7.3067(6) A, b=8.1239(7) A, c=13.651(1) A, β=100.375(2) deg., Z=4, R(F)=4.31% for 105 parameters

  5. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Hinwood, A.L.; Stasinska, A.; Callan, A.C.; Heyworth, J.; Ramalingam, M.; Boyce, M.; McCafferty, P.; Odland, J.Ø.

    2015-01-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  6. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    Science.gov (United States)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    thermobarometric evidence suggests that apatite-fluorite rocks were formed from the residual fluid-melt, separated after crystallization of rare-metal pegmatites. Petrochemical and geochemical data Burpalinsky are in accord of general trend of crystal differentiation of alkaline magma containing small concentrations of CO2 and higher P2O5 and F, which accumulated significantly separated from the pegmatite melts. In some pegmatites fluorite with rare-metal minerals (flyuocerit etc) are separating in schlieren. Apatite-fluorite rocks are cut by leucogranite dyke, having genetic connection with rare-metal pegmatites. Late granitic phases has its own association of rare-metal minerals described by A.A. Ganzeev (1972). Thermobarometric geochemical study of apatite-fluorite rocks Burpala massif found a large number of primary fluid inclusions (15-50 micrometers). Thermal and cryometric research of 60 individual fluid inclusions in fluorite showed the domination of Na, Ca, Mg chlorides and high temperatures salt inclusions in fluorites (above 550C) and melt inclusions in apatites (800C). Apatite-fluorite rocks in massif are similar to foskorites in carbonatite complexes, with similar high Ca content, but instead fluorite, together with other "foskoritovymi" minerals - apatite, magnetite, mica, and pyroxene were formed instead for calcite. Isotopic studies (Sr-Nd) indicate the mantle source of primary magma Burpala massif close to EM-2, which is characteristic of alkaline intrusions in the folded belts (Vladykin 2009). RBRF grant 14-45-04057

  7. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  8. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T., E-mail: ktlim@pknu.ac.kr [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  9. Elaboration and test of the method of separation of alkaline metals ions with tin phosphate

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Chernyak, A.S.; Kostromina, O.N.; Kachur, N.Ya.; Shpeyzer, B.G.

    1986-01-01

    Present work is devoted to elaboration and test of the method of separation of alkaline metals ions with tin phosphate. Thus, the isotherms of sorption of lithium, sodium, potassium, rubidium and cesium ions with amorphous tin phosphate depending on their concentration, ph of solution, sorbent quantity are obtained. The parameters of extraction of potassium microquantities from sodium salts are defined. Ultra pure sodium chloride, sodium iodide, sodium sulphate, sodium nitrate, sodium nitrite, sodium phosphate are synthesized.

  10. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    International Nuclear Information System (INIS)

    Vilchis-Granados, J.; Granados-Correa, F.; Barrera-Díaz, C.E.

    2013-01-01

    This work examines the surface fractal dimensions (D f ) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N 2 -physisorption measurements. Surface fractal dimensions were determined using single N 2 -adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D f values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  11. Photoluminescence properties of Er{sup 3+}-doped alkaline earth titanium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, D.V.R.; Babu, A. Mohan [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jamalaiah, B.C. [Department of Physics, Sree Vidyanikethan Engineering College, Tirupati, 517 102 (India); Moorthy, L. Rama, E-mail: lrmphysics@yahoo.co.i [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung Soo [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of)

    2010-02-18

    Er{sup 3+}-doped alkaline earth titanium phosphate (RTP) glasses with molar composition of 24 (NaPO{sub 3}){sub 6} + 30 KH{sub 2}PO{sub 4} + 25 TiO{sub 2} + 20 RCl{sub 2} + 1 Er{sub 2}O{sub 3} were prepared by melt quenching technique. Judd-Ofelt intensity parameters ({Omega}{sub 2,4,6}) were determined from the experimental oscillator strengths (f{sub exp}) of absorption bands. From these parameters spontaneous emission probabilities (A{sub R}), luminescence branching ratios ({beta}{sub R}) and radiative lifetimes ({tau}{sub R}) have been calculated. Visible and near infrared photoluminescence spectra has been recorded by exciting the samples at 380 and 970 nm respectively. An intense broad emission band at 1.53 {mu}m was observed corresponding to {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition. McCumber theory has been applied to determine the emission cross-sections ({sigma}{sub e}) of the {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition using the absorption cross-sections ({sigma}{sub a}). The lifetimes of {sup 4}S{sub 3/2} level were measured for the glasses by exciting the samples at 540 nm wavelength and the quantum efficiencies were also determined.

  12. Rare Earth Elements (REE Deposits Associated with Great Plain Margin Deposits (Alkaline-Related, Southwestern United States and Eastern Mexico

    Directory of Open Access Journals (Sweden)

    Virginia T. McLemore

    2018-01-01

    Full Text Available W.G. Lindgren in 1933 first noted that a belt of alkaline-igneous rocks extends along the eastern edge of the Rocky Mountains and Basin and Range provinces from Alaska and British Columbia southward into New Mexico, Trans-Pecos Texas, and eastern Mexico and that these rocks contain relatively large quantities of important commodities such as, gold, fluorine, zirconium, rare earth elements (REE, tellurium, gallium, and other critical elements. In New Mexico, these deposits were called Great Plain Margin (GPM deposits, because this north-south belt of alkaline-igneous rocks roughly coincides with crustal thickening along the margin between the Great Plains physiographic province with the Basin and Range (including the Rio Grande rift and Rocky Mountains physiographic provinces, which extends into Trans-Pecos Texas and eastern Mexico. Since 1996, only minor exploration and development of these deposits in New Mexico, Texas, and eastern Mexico has occurred because of low commodity prices, permitting issues, and environmental concerns. However, as the current demand for gold and critical elements, such as REE and tellurium has increased, new exploration programs have encouraged additional research on the geology of these deposits. The lack of abundant quartz in these systems results in these deposits being less resistant to erosion, being covered, and not as well exposed as other types of quartz-rich deposits, therefore additional undiscovered alkaline-related gold and REE deposits are likely in these areas. Deposits of Th-REE-fluorite (±U, Nb epithermal veins and breccias are found in the several GPM districts, but typically do not contain significant gold, although trace amounts of gold are found in most GPM districts. Gold-rich deposits in these districts tend to have moderate to low REE and anomalously high tungsten and sporadic amounts of tellurium. Carbonatites are only found in New Mexico and Mexico. The diversity of igneous rocks, including

  13. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.L.

    2008-01-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R + = Li + , Rb + , Cs + ) and alkaline-earth (R 2+ = Sr 2+ , Ba 2+ ) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R + and R 2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na + or Ca 2+ cations in the simplified glass by respectively (Li + , K + , Rb + , Cs + ) or (Mg 2+ , Sr 2+ , Ba 2+ ) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO 4 ) - entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  14. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    Science.gov (United States)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  15. Alkaline earth metabolism: a model useful in calculating organ burdens, excretion rates and committed effective dose equivalent conversion factors

    International Nuclear Information System (INIS)

    Johnson, J.R.; Myers, R.C.

    1981-01-01

    Two mathematical models of alkaline earth metabolism in man have been developed from the postulates given in ICRP Publication 20. Both models have recycling between the organs and blood included explicitly, and the first one retains the power function used by the ICRP for diminution in mineral bone from being available for resorption by blood. In the second model, this diminution is represented by secondary compartments in mineral bone. Both models give good agreement with the retention functions developed in ICRP Publication 20. The second one has been incorporated into a larger model which includes the lung and G.I. tract. This overall model has been used to calculate organ burdens excretion rates, and committed effective dose equivalent factors for the more important radioisotopes of the alkaline earth elements for inhalation and ingestion exposures. (author)

  16. Many-body forces and stability of the alkaline-earth tetramers

    International Nuclear Information System (INIS)

    Diaz-Torrejon, C.C.; Kaplan, Ilya G.

    2011-01-01

    Graphical abstract: Many-body forces effect. In a three-particle system, the two-body interaction energies depend upon coordinates of all three particles. The comparative study of the interaction energy and its many-body decomposition for alkaline-earths tetramers Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In comparison with weakly bound dimers, the binding energy in trimers and, especially, in tetramers drastically increases; e.g., E b /N in Be 3 is 7 times larger and in Be 4 is 18.4 times larger than in Be 2 . This sharp increase is explained as a manifestation of many-body forces. The trimers and tetramers are stabilized by the three-body forces, whereas the two- and four-body forces are repulsive. The attractive contribution to the three-body forces has a three-atom electron exchange origin. The natural bond orbital (NBO) population analysis reveals a relatively large np-population in trimers and tetramers. The population of the valence np-orbitals leads to the sp-hybridization providing the covalent bonding. Research highlights: → The alkaline-earths trimers and tetramers are stabilized by the three-body forces. → Two- and four-body forces are repulsive for trimers and tetramers. → The attractive contribution to the three-body forces has a three-atom electron exchange origin. → The population of the np-orbitals leads to the sp-hybridization providing the covalent bonding. - Abstract: The comparative study of the interaction energy and its many-body decomposition for Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In

  17. Are concentrations of alkaline earth elements in maternal hair associated with risk of neural tube defects?

    Science.gov (United States)

    Li, Zhenjiang; Wang, Bin; Huo, Wenhua; Liu, Yingying; Zhu, Yibing; Xie, Jing; Li, Zhiwen; Ren, Aiguo

    2017-12-31

    The relationship between maternal intake of alkaline earth elements (AEEs) during the period of neural tube closure and the risk of neural tube defects (NTDs) is still unclear. We propose that AEE deficiency during the early period of pregnancy is associated with an elevated risk of NTDs in the offspring. In this study, we recruited 191 women with NTD-affected pregnancies (cases) and 261 women who delivered healthy infants (controls). The concentrations of four AEEs (Ca, Mg, Sr, Ba) in maternal hair sections that grew during early pregnancy were analyzed. Information on the dietary habits of the mothers was also collected by questionnaire. Higher concentrations of the four AEEs in hair had protective effects against the risk of total NTDs, with odds ratios with 95% confidence interval (comparing groups separated by each median level) of 0.44 (0.28-0.68) for Mg, 0.56 (0.36-0.87) for Ca, 0.45 (0.28-0.70) for Sr, and 0.41 (0.26-0.65) for Ba. Significant negative dose-response trends were identified for the relationships between the four AEE concentrations in maternal hair and the risks of anencephaly and spina bifida, but not for encephalocele. The frequencies of maternal consumption of fresh green vegetables, fresh fruit, and meat or fish were positively correlated with the concentrations of AEEs in hair. We concluded that the maternal intake of AEEs may play an important role in preventing NTD formation in offspring, and that this intake is related to maternal dietary habits of consuming fresh green vegetables, fresh fruit, and fish or meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms

    Science.gov (United States)

    Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.

    2018-04-01

    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.

  19. A gravimetric method for the determination of oxygen in uranium oxides and ternary uranium oxides by addition of alkaline earth compounds

    International Nuclear Information System (INIS)

    Fujino, Takeo; Tagawa, Hiroaki; Adachi, Takeo; Hashitani, Hiroshi

    1978-01-01

    A simple gravimetric determination of oxygen in uranium oxides and ternary uranium oxides is described. In alkaline earth uranates which are formed by heating in air at 800-1100 0 C, uranium is in the hexavalent state over certain continuous ranges of alkaline earth-to-uranium ratios. Thus, if an alkaline earth uranate or a compound containing an alkaline earth element, e.g. MgO, is mixed with the oxide sample and heated in air under suitable conditions, oxygen can be determined from the weight change before and after the reaction. The standard deviation of the O:U ratio for a UOsub(2+x) test sample is +-0.0008-0.001, if a correction is applied for atmospheric moisture absorbed during mixing. (Auth.)

  20. Precise U-Pb Zircon Dating of the Syenite Phase from the Ditrau Alkaline Igneous Complex

    Directory of Open Access Journals (Sweden)

    Pană Dinu

    2000-04-01

    Full Text Available The Ditrău igneous complex represents the largest alkaline intrusion in the Carpathian-Pannonian region consisting of a plethora of rock types formed by complicated magmatic and metasomatic processes. A detailed U-Pb zircon age study is currently underway and the results for the syenite intrusion phase is reported herein. The U-Pb zircon emplacement age of the syenite of 229.6 +1.7/-1.2 Ma documents the quasi-contemporaneous production and emplacement of the gabbro and syenite magmas. We suggest that the syenite and associated granite formed by crustal melting during the emplacement of the mantle derived gabbroic magma around 230 Ma. The thermal contact aureole produced by the Ditrău alkaline igneous complex constrains the main tectonism recorded by surrounding metamorphic lithotectonic assemblages to be pre-Ladinian.

  1. Radiological Mapping of the Alkaline Intrusive Complex of Jombo, South Coastal Kenya by In-Situ Gamma-Ray Spectrometry

    Science.gov (United States)

    Kaniu, Ian; Darby, Iain G.; Kalambuka Angeyo, Hudson

    2016-04-01

    Carbonatites and alkaline intrusive complexes are rich in a variety of mineral deposits such as rare earth elements (REEs), including Nb, Zr and Mn. These are often associated with U and Th bearing minerals, including monazite, samarskite and pyrochlore. Mining waste resulting from mineral processing activities can be highly radioactive and therefore poses a risk to human health and environment. The Jombo complex located in Kenya's south coastal region is potentially one of the richest sources of Nb and REEs in the world. It consists of the main intrusion at Jombo hill, three associated satellite intrusions at Mrima, Kiruku and Nguluku hills, and several dykes. The complex is highly heterogeneous with regard to its geological formation as it is characterized by alkaline igneous rocks and carbonatites which also influence its radio-ecological dynamics. In-situ gamma spectrometry offers a low-cost, rapid and spatially representative radioactivity estimate across a range of landscapes compared to conventional radiometric techniques. In this work, a wide ranging radiological survey was conducted in the Jombo complex as follow up on previous studies[1,2], to determine radiation exposure levels and source distributions, and perform radiological risk assessments. The in-situ measurements were carried out using a 2.0 l NaI(Tl) PGIS-2 portable detector from Pico Envirotec Inc integrated with GPS, deployed for ground (back-pack) and vehicular gamma-ray spectrometry. Preliminary results of radiological distribution and mapping will be presented. [1] Patel, J. P. (1991). Discovery and Innovation, 3(3): 31-35. [2] Kebwaro, J. M. et. al. (2011). J. Phys. Sci., 6(13): 3105-3110.

  2. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Mostapha, Sarah

    2013-01-01

    demonstrated that the dominant interaction is between the cations and the phosphate groups of the ligands. Complexes with monophosphate ligands (AMP-Lu, Lu-Th-AEP and AMP) show similar organizations with bridging phosphates indicating that the organic part does not have a significant effect on their structure. ADP and ATP solid state complexes (with two spheroid metal ions: Lu and Th) show several similarities in terms of local environment indicating that the occurrence of a third phosphate group has no significant effect on the local organization of the complex. However, despite the theoretical approaches that have been conducted, the right structure of these complexes has not been accurately determined. Complexes of lanthanides and actinide(III) (Am) with ATP behave similarly at macroscopic level suggesting an identical structure at the molecular level for these complexes. With uranyl, U-AMP complex synthesized at acidic pH show different behaviour at molecular level than that observed at alkaline pH but the same coordination sites (phosphates and hydroxyls ribose groups) have been demonstrated for both complexes. (author) [fr

  3. Complexes of natural carbohydrates with metal cations

    International Nuclear Information System (INIS)

    Alekseev, Yurii E; Garnovskii, Alexander D; Zhdanov, Yu A

    1998-01-01

    Data on the interaction of natural carbohydrates (mono-, oligo-, and poly-saccharides, amino sugars, and natural organic acids of carbohydrate origin) with metal cations are surveyed and described systematically. The structural diversity of carbohydrate metal complexes, caused by some specific features of carbohydrates as ligands, is demonstrated. The influence of complex formation on the chemical properties of carbohydrates is discussed. It is shown that the formation of metal complexes plays an important role in the configurational and conformational analysis of carbohydrates. The practical significance of the coordination interaction in the series of carbohydrate ligands is demonstrated. The bibliography includes 571 references.

  4. Composite nanoparticles containing rare earth metal and methods of preparation thereof

    Science.gov (United States)

    Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis

    2018-04-10

    The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.

  5. Spectral and thermal behaviours of rare earth element complexes with 3,5-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    JANUSZ CHRUŚCIEL

    2003-10-01

    Full Text Available The conditions for the formation of rare earth element 3,5-dimethytoxybenzoates were studied and their quantitative composition and solubilities in water at 293 K were determined. The complexes are anhydrous or hydrated salts and their solubilities are of the orders of 10-5 – 10-4 mol dm-3. Their FTIR, FIR and X-ray spectra were recorded. The compounds were also characterized by thermogravimetric studies in air and nitrogen atmospheres and by magnetic measurements. All complexes are crystalline compounds. The carboxylate group in these complexes is a bidentate, chelating ligand. On heating in air to 1173 K, the 3,5-dimethoxybenzoates of rare earth elements decompose in various ways. The hydrated complexes first dehydrate to form anhydrous salts which then decompose in air to the oxides of the respective metals while in nitrogen to mixtures of carbon and oxides of the respective metals. The complexes are more stable in air than in nitrogen.

  6. Interactions of nucleobases with alkali earth metal cations--electrospray ionization mass spectrometric study.

    Science.gov (United States)

    Frańska, Magdalena

    2007-01-01

    Interactions of nucleobases with alkali earth metal cations have been studied by electrospray ionization mass spectrometry (ESI-MS). Nucleobases containing at least one oxygen atom form stable complexes with alkali earth metal cations. This phenomenon can be explained on the grounds of the well known theory of hard and soft acids and bases. Uracil and thymine make complexes only when in their deprotonoted forms. The cations of great radii (Sr(2+), Ba(2+)) are more prone to form complexes of stoichiometry 1:1 with uracil and thymine than the cations of small radii (Mg(2+), Ca(2+)). On the other hand, Mg(2+) forms complexes of stoichiometry 2:1 and 3:2 with uracil and thymine. Gas-phase stabilities of the 1:1 complexes are higher for the cations of small radii, in contrast to the solution stabilities. For cytosine and 9- methylhypoxantine the 1:1 complexes of their deprotonated forms are observed at higher cone voltage as a result of HCl molecule loss from the complexes containing the counter ion (Cl(-)). In solution, more stable complexes are formed with metal cations of low radii. Gas-phase stability of the complexes formed by deprotonated 9- methyl-hypoxantine increases with increasing metal cation radius.

  7. Rare earth elements leaching from Tin slag using Acid Chloride after Alkaline fusion process

    International Nuclear Information System (INIS)

    Kurnia Trinopiawan; Budi Yuli Ani; June Mellawati; Mohammad Zaki Mubarok

    2016-01-01

    Tin slag, a waste product from tin smelting process, has a potency to be utilized further by extracting the valuable metals inside, such as rare earth elements(REE). The objective of this study is to determine the optimum leaching condition of REE from tin slag after alkali fusion. Silica structure in slag is causing the direct leaching uneffectively. Therefore, pre-treatment step using alkali fusion is required to break the structure of silica and to increase the porosity of slag. Fusion is conducted in 2 hours at 700°C, with ratio of natrium hydroxide (NaOH) : slag = 2 : 1. Later, frit which is leached by water then leached by chloride acid to dissolve REE. As much as 87,5% of REE is dissolved at 2 M on chloride acid (HCl) concentration, in 40°C temperature, -325 mesh particle size, 15 g/100 ml of S/L, 150 rpm of agitation speed, and 5 minutes of leaching time. (author)

  8. Pharmacologically significant tetraaza macrocyclic metal complexes ...

    Indian Academy of Sciences (India)

    MOHAMMAD SHAKIR

    2017-11-22

    Nov 22, 2017 ... structural biological models.6 Hence, biological prop- erties of ... poor water solubility, exhibits intrinsic resistance and ..... pdb). The metal complex files were drawn using. ChemDraw (MM2) and their energies were minimized.

  9. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    Science.gov (United States)

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  10. Theoretical consideration of metabolic and histomorphometric data for alkaline earth and actinide distribution dynamics in the beagle skeleton

    International Nuclear Information System (INIS)

    Parks, N.J.

    1989-01-01

    The beagle has been used for thirty years as a putative model for human skeletal dynamics in terms of metabolic behaviour and response to in situ radiation insults. The partitioned clearance model (PCM) is a bone by bone description of radionuclide redistribution in the beagle skeleton after the end of exposure to 226 Ra by eight semi-monthly injections at 435-535 days or by continuous ingestion of 90 Sr from in utero to 540 days. The PCM describes both the clearance of radium after deposition on surfaces following injection and the clearance of 90 Sr after uniform deposition in the skeleton as a function of Ca mass. The PCM relates the metabolically determined time-zero deposition fraction (% A) per skeletal component to the calcium fraction (%Ca) per component. The ratio of these two fractions is defined as an estimator of relative 'surface',S, in PCM for the alkaline earths (ae). A comparison is made of 'surface' as defined, in PCM, by activity fraction per mass fraction in a given skeletal component for bone seeking alkaline earths (S ae ), to similarly defined 'surface' (S act ) for injected plutonium citrate. For inhaled soluble plutonium nitrate that translocates to bone, the S act values are very similar to the S ae values for injected radium. The physiochemical determinants of Pu deposition in bone after inhalation appear to be similar to those for alkaline earths. Histomorphometric data from actual bone surfaces marked in vivo with fluorescent labels given to a juvenile dog and then 13 years later give direct evidence that actinides not removed metabolically may never be removed by remodelling processes. (author)

  11. Characterization of Anthraquinone-DerivedRedox Switchable Ionophores and Their Complexes with Li+, Na+, K+, Ca+, and Mg+ Metal Ions

    Directory of Open Access Journals (Sweden)

    Vaishali Vyas

    2011-01-01

    Full Text Available Anthraquinone derived redox switchable ionophores 1,5 bis (2-(2-(2-ethoxy ethoxy ethoxyanthracene-9,10-dione (V1 and 1,8-bis(2-(2-(2-ethoxyethoxyethoxy anthracene—9,10-dione (V2 have been used for isolation, extraction and liquid membrane transport studies of Li+, Na+, K+, Ca2+ and Mg2+ metal ions. These isolated complexes were characterized by melting point determination, CV and IR, 1H NMR spectral analysis. Ionophore V2 shows maximum shift in reduction potential (ΔE with Ca(Pic2. The observed sequence for the shifting in reduction potential (ΔE between V2 and their complexes is V2 calcium picrate (42 mV > V2 potassium picrate (33 mV > V2 lithium picrate (25 mV > V2 sodium picrate (18 mV > V2 magnesium picrate (15 mV. These findings are also supported by results of extraction, back extraction and transport studies. Ionophore V2 complexed with KPic and showed much higher extractability and selectivity towards K+ than V1. These synthetic ionophores show positive and negative cooperativity towards alkali and alkaline earth metal ions in reduced and oxidized state. Hence, this property can be used in selective separation and enrichment of metal ions using electrochemically driven ion transport.

  12. Separation of rare earth metal using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2005-01-01

    A micro solvent extraction system for the separation of rare earth metals has been investigated. The micro flow channel was fabricated on a PMMA plate. Extraction equilibrium was quickly achieved, without any mechanical mixing. The solvent extraction results obtained for the Pr/Sm binary solutions revealed that both rare earth metals are firstly extracted together. Following, the Pr is extracted in the organic solution and Sm remains in the aqueous phase. The phase separation can be successively achieved by contriving the cross section of the flow channel

  13. Analytical study, by modelling methods, of the alkali and alkaline earth cations influence on the stability and the reactivity of aluminium (III) oxides or halides complexes; Etude analytique, par des techniques de modelisation, de l`influence de cations alcalins ou alcalino-terreux sur la stabilite et la reactivite de complexes de l`aluminium(III) avec des ions halogenures ou oxydes

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F

    1995-10-05

    The electric power consumption in aluminium production and electrorefining processes is high. A study of the electrochemical processes can be very useful for a better understanding of phenomena in electrolytic baths and then for reducing the production costs. A structural and vibrational analysis of species which exist in ionic solutions has been carried out with software based on the functional density theory. Concerning the electrolyte used for the aluminium refining, the anions study has shown that the aluminium chloro-fluoride complexes are preferentially tetrahedral. Moreover, the aluminium oxyfluoride complexes structures (which come from the alumina dissolution in cryolitic media) have been analyzed in the same way and the preferential coordination numbers for aluminium and oxygen have been shown clearly. The anionic model (which is limited to the nearest aluminium neighbours) does not allow to account for the thermodynamics of the cryolitic media. A more elaborated model has then been found to obtain the cryolite structure. The reactions enthalpies have been estimated and have lead to the calculus of species concentration gradients in liquid phase. The counterions effects as for instance sodium and calcium have been investigated. A model for the gaseous phase allowing to know the preferential species has been given. At last, a statistic thermochemistry program has been conceived and developed. It gives the thermodynamical functions at all temperature for the different complexes and allows to reckon the reactions coefficients in gaseous phase as well as the partial pressures profiles with those of calcium and sodium fluorides. (O.M.) 204 refs.

  14. Quinonoid metal complexes: toward molecular switches.

    Science.gov (United States)

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo

    2004-11-01

    The peculiar redox-active character of quinonoid metal complexes makes them extremely appealing to design materials of potential technological interest. We show here how the tuning of the properties of these systems can be pursued by using appropriate molecular synthetic techniques. In particular, we focus our attention on metal polyoxolene complexes exhibiting intramolecular electron transfer processes involving either the ligand and the metal ion or the two dioxolene moieties of a properly designed ligand thus inducing electronic bistability. The transition between the two metastable electronic states can be induced by different external stimuli such as temperature, pressure, light, or pH suggesting the use of these systems for molecular switches.

  15. Nuclear orientation studies of rare-earth metals

    International Nuclear Information System (INIS)

    Krane, K.S.; Morgan, G.L.; Moses, J.D.

    1981-01-01

    The angular distributions of gamma rays from 166 sup(m)Ho and 160 Tb aligned at low temperatures in, respectively, Ho metal and Tb metal have been measured. Large hyperfine splittings, expected for the rare earths, have been deduced from the temperature dependence of the gamma ray anisotropies. Both samples show a macroscopic magnetic anisotropy which is not consistent with an interpretation in terms of a randomly oriented polycrystalline structure. (orig.)

  16. Study of polyoxide catalysts of methane combustion on Mn, Cu, Ni, rare earth elements, alkaline earth elements base by the X-ray fluorescence analysis method

    International Nuclear Information System (INIS)

    Grigor'eva, V.P.; Popova, N.M.; Zheksenbaeva, Z.T.; Sass, A.S.; Salakhova, R.Kh.; Dosumov, K.D.

    2002-01-01

    The results of X-ray fluorescence analysis of polyoxide catalysts on of Mn, Cu, Ni, rare earth elements, alkaline earth elements base supported on 2 % Ce/θ-Al 2 O 3 are presented. This polyoxide catalysts are using for deep methane oxidation. DRON-4-7 X-ray diffractometers was applied for the analysis. It was found, that oxides in Ni-Cu-Cr catalysts after long time heating up to 1200 deg. C have been interacted with catalyst supports with Ni(Cu)Al 2 O 3 aluminates formation and due to its decomposition transformation degree of CH 4 to CO 2 are reduced. Activity of MnBaSrCeLa catalysts after heating up to 1200 deg. C does not changed

  17. Distribution of radioactive anomalies at Morro do Ferro hill in Pocos de Caldas Alkaline Complex, MG

    International Nuclear Information System (INIS)

    Fujimori, K.

    1980-10-01

    Sistematic radiation intensity measurements were alone at Morro do Ferro hill in the Pocos de Caldas Alkaline Complex, using portable Scintrex spectrometer for U, Th, K and total counting (TC). Complementary geochemical analyses were alone on selected 26 samples. It was observed that there are many radiation focii in that place and they are oriented in the E-W direction. The geochemical analyses show that Uranium has participated also in the inicial mineralization of radioactive elements. The contribution of 238 U series daugher elements is relatively strong although Uranium was 'washed' by leaching. (Author) [pt

  18. Dymethyl sulfoxide complexes of rare earth perrhenates

    International Nuclear Information System (INIS)

    Osorio, V.K.L.; Kawano, Y.; Kuya, M.K.; Perrier, M.

    1980-01-01

    The complexes Ln(ReO 4 ) 3 .8dmso (Ln = La-Lu, Y) and La(ReO 4 ) 3 .8dmso-d 6 have been prepared and characterized by conductance, infrared and Raman measurements. All the complexes have structures involving complex cation and non-coordinated anions in the solid state. The conductance values in nitromethane solution indicate a behavior near to a 1:1 electrolyte type. A comparative study with the data accumulated on the literature shows that perrhenate anion has higher coordinating capacity than perchlorate and hexafluorophosphate ones. (Author) [pt

  19. Tectonic significance of dykes in the Sarnu-Dandali alkaline complex, Rajasthan, northwestern Deccan Traps

    Directory of Open Access Journals (Sweden)

    Anjali Vijayan

    2016-09-01

    Full Text Available Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual case studies. The Sarnu-Dandali alkaline complex, near the northwestern limit of the Deccan Traps continental flood basalt province, contains mafic to felsic alkaline volcano-plutonic rocks and carbonatites. The complex is situated near the northern end of the 600 km long, NNW–SSE-trending Barmer-Cambay rift. Mafic enclave swarms in the syenites suggest synplutonic mafic dykes injected into a largely liquid felsic magma chamber. Later coherent dykes in the complex, of all compositions and sizes, dominantly strike NNW–SSE, parallel to the Barmer-Cambay rift. The rift formed during two distinct episodes of extension, NW–SE in the early Cretaceous and NE–SW in the late Cretaceous. Control of the southern Indian Dharwar structural fabric on the rift trend, as speculated previously, is untenable, whereas the regional Precambrian basement trends (Aravalli and Malani run NE–SW and NNE–SSW. We therefore suggest that the small-scale Sarnu-Dandali dykes and the much larger-scale Barmer-Cambay rift were not controlled by basement structure, but related to contemporaneous, late Cretaceous regional ENE–WSW extension, for which there is varied independent evidence.

  20. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design

    Science.gov (United States)

    Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce

    2017-01-01

    Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…

  1. Ethanol tolerant precious metal free cathode catalyst for alkaline direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Grimmer, Ilena; Zorn, Paul; Weinberger, Stephan; Grimmer, Christoph; Pichler, Birgit; Cermenek, Bernd; Gebetsroither, Florian; Schenk, Alexander; Mautner, Franz-Andreas

    2017-01-01

    Highlights: • Selective ORR catalysts are presented for alkaline direct ethanol fuel cells. • Perovskite based cathode catalysts show high tolerance toward ethanol. • A membrane-free alkaline direct ethanol fuel cell is presented. - Abstract: La 0.7 Sr 0.3 (Fe 0.2 Co 0.8 )O 3 and La 0.7 Sr 0.3 MnO 3 −based cathode catalysts are synthesized by the sol-gel method. These perovskite cathode catalysts are tested in half cell configuration and compared to MnO 2 as reference material in alkaline direct ethanol fuel cells (ADEFCs). The best performing cathode is tested in single cell setup using a standard carbon supported Pt 0.4 Ru 0.2 based anode. A backside Luggin capillary is used in order to register the anode potential during all measurements. Characteristic processes of the electrodes are investigated using electrochemical impedance spectroscopy. Physical characterizations of the perovskite based cathode catalysts are performed with a scanning electron microscope (SEM) and by X-ray diffraction showing phase pure materials. In half cell setup, La 0.7 Sr 0.3 MnO 3 shows the highest tolerance toward ethanol with a performance of 614 mA cm −2 at 0.65 V vs. RHE in 6 M KOH and 1 M EtOH at RT. This catalyst outperforms the state-of-the-art precious metal-free MnO 2 catalyst in presence of ethanol. In fuel cell setup, the peak power density is 27.6 mW cm −2 at a cell voltage of 0.345 V and a cathode potential of 0.873 V vs. RHE.

  2. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  3. Wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite

    Directory of Open Access Journals (Sweden)

    Malkin Polad

    2018-04-01

    Full Text Available Despite the wide practical use of sorption methods and complexones in treatment of industrial wastewater, some problems are still to be solved in this field. These are the most significant: insufficient sorption capacity of materials, lack of reliable methods for regenerating sorbents and resource-saving ecology friendly treatment technologies with the use of sorbents as well as methods of utilization of heavy metals from waste by complex formation. An important factor affecting the behavior of heavy metals in the soil is the medium acidity. With a neutral and slightly alkaline reaction of the medium, hardly soluble compounds are formed: hydroxides, sulphides, phosphates, carbonates, and oxalates of heavy metals. When acidity increases the reverse process runs in the soil: hardly soluble compounds become more mobile, while mobility of many heavy metals increases. However, the effect of soil acidity on mobility of heavy metals is ambiguous. Although mobility of many heavy metals decreases with increasing pH of the medium (for example, Fe, Mn, Zn, Co, etc., there are a number of metals whose mobility increases with soil neutralization. These include molybdenum and chromium, which are able to form soluble salts in a weak ly acidic and alkaline medium. In addition, heavy metals such as mercury and cadmium are able to maintain mobility in an alkaline medium through formation of complex compounds with organic matter in soils. Heavy metals interact with a solid phase of the soil by mechanisms of specific and nonspecific adsorption. In this article, a technique of wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite is proposed. This technique can reduce significant costs in preparation of raw materials and subsequent chemical modification of them. Technological solutions aimed at disposal and recycling of industrial wastewater have been proposed. These solutions make it possible to obtain the water

  4. The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes

    Science.gov (United States)

    Mostafavi, Najmeh; Ebrahimi, Ali

    2018-06-01

    In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.

  5. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.

    Science.gov (United States)

    Duguid, J G; Bloomfield, V A; Benevides, J M; Thomas, G J

    1995-12-01

    Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of DNA (Tm > 75.5 degrees C), whereas the transition metals Co2+, Ni2+, and Cd2+ lower Tm. Calorimetric (delta Hcal) and van't Hoff (delta HVH) enthalpies of melting range from 6.2-8.7 kcal/mol bp and 75.6-188.6 kcal/mol cooperative unit, respectively, and entropies from 17.5 to 24.7 cal/K mol bp. The average number of base pairs in a cooperative melting unit () varied from 11.3 to 28.1. No dichotomy was observed between alkaline earth and transition DNA-metal complexes for any of the thermodynamic parameters other than their effects on Tm. These results complement Raman difference spectra, which reveal decreases in backbone order, base unstacking, distortion of glycosyl torsion angles, and rupture of hydrogen bonds, which occur after thermal denaturation. Raman difference spectroscopy shows that transition metals interact with the N7 atom of guanine in duplex DNA. A broader range of interaction sites with single-stranded DNA includes ionic phosphates, the N1 and N7 atoms of purines, and the N3 atom of pyrimidines. For alkaline earth metals, very little interaction was observed with duplex DNA, whereas spectra of single-stranded complexes are very similar to those of melted DNA without metal. However, difference spectra reveal some metal-specific perturbations at 1092 cm-1 (nPO2-), 1258 cm-1 (dC, dA), and 1668 cm-1 (nC==O, dNH2 dT, dG, dC). Increased spectral intensity could also be observed near 1335 cm-1 (dA, dG) for CaDNA. Optical densitometry, employed to detect DNA

  6. Alkane Soluble Transition Metal Complexes.

    Science.gov (United States)

    1983-10-01

    lCam ludoalNm’s W S. has aA F. . Hadley. uppokli *mvahs Capm amAe Hall. 1~i. 6. 08 o.. ILDuataA ulpmr. Cai. 1d. CAM 4. 111aII. lop C Themm. - hftupvtm of...phoahines.3 descrbed previously.’ In this analyuis a series of assumption . isre onadc Our reasons for doing this were twofold. in order to enable a lhoea...nalytical method to be used. It sii be w-me First, pfmospftane complexes have been widely used as be. apparent that the assumptions that must be made

  7. Self-organization in metal complexes

    International Nuclear Information System (INIS)

    Radecka-Paryzek, W.

    1999-01-01

    Inorganic self-organization involves the spontaneous generation of well-defined supramolecular architectures from metal ions and organic ligands. The basic concept of supramolecular chemistry is a molecular recognition. When the substrate are metal ions, recognition is expressed in the stability and selectivity of metal ion complexation by organic ligands and depends on the geometry of the ligand and on their binding sites that it contains. The combination of the geometric features of the ligand units and the coordination geometries of the metal ions provides very efficient tool for the synthesis of novel, intriguing and highly sophisticated species such as catenanes, box structures, double and triple helicates with a variety of interesting properties. The article will focus on the examples of inorganic self-organization involving the templating as a first step for the assembly of supramolecular structures of high complexity. (author)

  8. The interaction of Np(V), Pu(VI) and Tc(VII) with metal in alkaline solutions

    International Nuclear Information System (INIS)

    Silin, V.I.; Kareta, A.V.

    1998-01-01

    The interaction of Np(V), Pu(VI) and Tc(VII) with metal reductants Zn, Cr, Sn and their alloys was investigated in 0.5-4 mol l -1 NaOH solutions in static and dynamic conditions (by filtration of solutions through the column filled with grains of metal). In this paper, it was found that the reduction and succeeding precipitation hydroxides of these elements, on the surface of metal grains from 0.5 to 4 mol l -1 NaOH solutions, gives a decontamination factor (DF) from 1.1 to 67. The best result was achieved for Pu (DF=67) on Cr grains after 2.5 h contact at 60 C with 0.5 mol l -1 NaOH solution containing Pu(VI). Increasing the NaOH concentration, and the addition of chromate ions and complex-forming agents to alkaline solution results in a decrease of the decontamination factor (DF). A better result for Np sorption from 1 mol l -1 NaOH solutions was achieved after longer contact, than for Pu, with Cr and Zn grains. The maximum DF=8.9 was achieved for Tc on a column with Zn grains after filtration with a 3.5 mol l -1 NaOH solution containing Tc(VII). Washing out of Np and Pu, sorbed on the Cr grain surfaces, was achieved using an acid solution (1 mol l -1 HNO 3 ). The technetium was desorbed from metal surface by 10% H 2 O 2 solution. (orig.)

  9. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  10. Multiple biological complex of alkaline extract of the leaves of Sasa senanensis Rehder.

    Science.gov (United States)

    Sakagami, Hiroshi; Zhou, Li; Kawano, Michiyo; Thet, May Maw; Tanaka, Shoji; Machino, Mamoru; Amano, Shigeru; Kuroshita, Reina; Watanabe, Shigeru; Chu, Qing; Wang, Qin-Tao; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Sekine, Keisuke; Shirataki, Yoshiaki; Zhang, Chang-Hao; Uesawa, Yoshihiro; Mohri, Kiminori; Kitajima, Madoka; Oizumi, Hiroshi; Oizumi, Takaaki

    2010-01-01

    Previous studies have shown anti-inflammatory potential of alkaline extract of the leaves of Sasa senanensis Rehder (SE). The aim of the present study was to clarity the molecular entity of SE, using various fractionation methods. SE inhibited the production of nitric oxide (NO), but not tumour necrosis factor-α by lipopolysaccharide (LPS)-stimulated mouse macrophage-like cells. Lignin carbohydrate complex prepared from SE inhibited the NO production to a comparable extent with SE, whereas chlorophyllin was more active. On successive extraction with organic solvents, nearly 90% of SE components, including chlorophyllin, were recovered from the aqueous layer. Anti-HIV activity of SE was comparable with that of lignin-carbohydrate complex, and much higher than that of chlorophyllin and n-butanol extract fractions. The CYP3A inhibitory activity of SE was significantly lower than that of grapefruit juice and chlorophyllin. Oral administration of SE slightly reduced the number of oral bacteria. When SE was applied to HPLC, nearly 70% of SE components were eluted as a single peak. These data suggest that multiple components of SE may be associated with each other in the native state or after extraction with alkaline solution.

  11. Isolation of radioactive strontium from natural samples. Separation of strontium from alkaline and alkaline earth elements by means of mixed solvent anion exchange

    International Nuclear Information System (INIS)

    Grahek, Z.; Kosutic, K.; Lulic, S.; Kvastek, K.; Eskinja, I.

    1999-01-01

    This paper presents the results of studies which led to the procedures for the chromatographic separation of radioactive strontium from alkaline, earth-alkaline and other elements in natural samples, on columns filled with strong base anion exchangers using alcoholic solutions of nitric acid as eluents. It has been shown that potassium, caesium, calcium, barium, yttrium and strontium can be adsorbed on strong base anion exchangers of the Dowex and Amberlite type, which contain the quaternary ammonium group with nitrate as counter-ion, from solutions of nitric acid in alcohol. Adsorption strength increases in the order methanol 3 in methanol, while they are adsorbed from ethanol and propanol. The adsorption strength is influenced by the polarity of alcohol, by the concentration of nitrate and by pH. The strength with which strontium adsorbs on the exchangers increases in the interval from 0 to 0.25M NH 4 NO 3 in methanol, after which it starts to decrease. Strontium adsorbs to the exchangers from the alcoholic solution of ammonium nitrate twice as strongly as from the alcoholic solution of nitric acid, while a fraction of water in pure alcohol exceeding 10% prevents adsorption. In the mixture of alcohol and nitric acid, the adsorption strength for calcium and strontium increases with the increase of the volume fraction of alcohol with a lower dielectric constant. The rate and strength of adsorption of ions on the exchanger also increase in the series 0.25M HNO 3 in methanol 3 in ethanol 3 in 1-propanol for each individual ion, as well as in the Ca 3 in methanol, 0.25M HNO 3 in ethanol and 0.25M HNO 3 in propanol. Separation is also possible from alcohol mixtures. Strontium separation is most difficult from calcium, while the efficiency of separation increases with a decrease of the polarity of the used alcohol or alcohol mixture. The first group elements of the periodic table are not separated from each other in this way, while the elements of the second group are

  12. Reaction mechanisms of metal complexes

    CERN Document Server

    Hay, R W

    2000-01-01

    This text provides a general background as a course module in the area of inorganic reaction mechanisms, suitable for advanced undergraduate and postgraduate study and/or research. The topic has important research applications in the metallurgical industry and is of interest in the science of biochemistry, biology, organic, inorganic and bioinorganic chemistry. In addition to coverage of substitution reactions in four-, five- and six-coordinate complexes, the book contains further chapters devoted to isomerization and racemization reactions, to the general field of redox reactions, and to the reactions of coordinated ligands. It is relevant in other fields such as organic, bioinorganic and biological chemistry, providing a bridge to organic reaction mechanisms. The book also contains a chapter on the kinetic background to the subject with many illustrative examples which should prove useful to those beginning research. Provides a general background as a course module in the area of inorganic reaction mechanis...

  13. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  14. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  15. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    International Nuclear Information System (INIS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-01-01

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH)_2. Ba(OH)_2 is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO_2/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH)_2. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO_2/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)_2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and

  16. Brief introduction to the geology of the Ilimaussaq alkaline complex, South Greenland, and its exploration history

    International Nuclear Information System (INIS)

    Soerensen, H.

    2001-01-01

    The Ilimaussaq alkaline complex, the type locality of agpaitic nepheline syenites, is made up of three intrusive phases, 1) augite syenite, 2) alkali acid rocks and 3) agpaitic nepheline syenites which occupy the major part of the complex. The agpaitic phase comprises a roof series, a floor series and an intermediate sequence of rocks. The roof series crystallised from the roof downwards beginning with non-agpaitic pulaskite and ending with distinctly agpaitic naujaite. The exposed part of the floor series is made up of the layered agpaitic nepheline syenite kakortokite. The intermediate sequence consists of several types of distinctly agpaitic lujavrites which are accompanied by occurrences of uranium and other rare elements. The complex was first visited by K.L. Giesecke in 1806 and 1809. The first detailed mapping of the complex was carried out by N.V. Ussing in 1900 and 1908. He presented a precise description of the major rock types and an illuminating discussion of the petrology of the complex in his 1912 memoir. In the period 1912-1955 there was very limited activity in the complex. Exploration for radioactive minerals in Ilimaussaq was initiated in 1955 and in subsequent years followed by geological mapping carried out by the Geological Survey of Greenland. This led to a series of detailed studies of the occurrences of not only U, but also Be, Nb, REE and Zr, and to mineralogical, geochemical and petrological studies as well as commercial evaluation and drilling. (au)

  17. Metal complex derivatives of hydrogen uranyl phosphate

    International Nuclear Information System (INIS)

    Grohol, D.; Blinn, E.L.

    1994-01-01

    Derivatives of hydrogen uranyl phosphate were prepared by incorporating transition metal complexes into the uranyl phosphate matrix. The transition metal complexes employed include bis(ethylenediamine)copper(II), bis(1,3-propanediamine)copper(II) chloride, (triethylenetetramine)copper(II), (1,4,8,11-tetraazacyclotetradecane)copper(II), (1,4,8,12-tetraazacyclopentadecane)copper(II), (1,4,8,11-tetraazacyclotetradecane)nickel(II) chloride, (triethylenetetramine)nickel(II) and others. The chemical analyses of these derivatives indicated that the incorporation of the transition metal complexes into the uranyl phosphate matrix via ion exchange was not stoichiometric. The extent of ion exchange is dependent on the size and structure of the transition metal complex. All complexes were characterized by X-ray powder diffractometry, electronic and infrared spectra, thermal analyses and chemical analysis. An attempt was made to correlate the degree of quenching of the luminescence of the uranyl ion to the spacing between the uranyl phosphate layers in the derivatives

  18. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  19. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Saleh A. Alkahtani

    2016-01-01

    Full Text Available The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

  20. A modelling exercise on the importance of ternary alkaline earth carbonate species of uranium(VI) in the inorganic speciation of natural waters

    International Nuclear Information System (INIS)

    Vercouter, Thomas; Reiller, Pascal E.; Ansoborlo, Eric; Février, Laureline; Gilbin, Rodolphe; Lomenech, Claire; Philippini, Violaine

    2015-01-01

    Highlights: • The U(VI) speciation in natural waters has been modelled through a modelling exercise. • The results evidence the importance of alkaline earth U(VI) carbonate complexes. • Possible solubility-controlling phases were reported and discussed. • The differences were related to the choice and reliability of thermodynamic data. • Databases need to be improved for reliable U(VI) speciation calculations. - Abstract: Predictive modelling of uranium speciation in natural waters can be achieved using equilibrium thermodynamic data and adequate speciation software. The reliability of such calculations is highly dependent on the equilibrium reactions that are considered as entry data, and the values chosen for the equilibrium constants. The working group “Speciation” of the CETAMA (Analytical methods establishment committee of the French Atomic Energy commission, CEA) has organized a modelling exercise, including four participants, in order to compare modellers’ selections of data and test thermodynamic data bases regarding the calculation of U(VI) inorganic speciation. Six different compositions of model waters were chosen so that to check the importance of ternary alkaline earth carbonate species of U(VI) on the aqueous speciation, and the possible uranium solid phases as solubility-limiting phases. The comparison of the results from the participants suggests (i) that it would be highly valuable for end-users to review thermodynamic constants of ternary carbonate species of U(VI) in a consistent way and implement them in available speciation data bases, and (ii) stresses the necessary care when using data bases to avoid biases and possible erroneous calculations

  1. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    Science.gov (United States)

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.

  2. A review of the compositional variation of amphiboles in alkaline plutonic complexes

    Science.gov (United States)

    Mitchell, Roger H.

    1990-12-01

    Compositional data for amphiboles occurring in alkaline plutonic complexes are reviewed and a standard procedure for plotting these data in an isometric prism is proposed. The main compositional trend found in both oversaturated and undersaturated complexes of either miascitic or peralkaline affinity is referred to as the primary magmatic trend. Amphiboles range in composition from magnesian hastingsitic hornblende and ferro-edenitic hornblende through katophorite to ferro-richterite and arfvedsonite. Individual complexes differ with respect to the amphibole {Mg}/{Fe} and {Si}/{Al} ratio and the extent of Na-enrichment. Extensive or limited ranges in the composition of amphiboles may occur in a given complex. A subtrend found only in oversaturated complexes is from ferro-edenitic hornblende to ferro-actinolite. This trend termed the ferro-actinolitic subtrend is found only in low temperature non-peralkaline residua. Some aluminous nepheline syenites and associated alkali gabbros contain amphiboles which range in composition from kaersutite through ferroan pargasitic hornblende to hastingsite. This trend termed the primary miascitic magmatic trend is is one of decreasing {Mg}/{Fe}, at essentially constant {Si}/{Al} and Ca content. Na-enrichment does not occur. Amphiboles formed by reactions of preexisting phases with hydrothermal or deuteric fluids are termed the late stage reaction assemblage. Amphibole compositional trends from calcic through sodic-calcic to sodic amphiboles reflect decreasing temperature and oxygen fugacity at or below the QFM oxygen buffer. The compositional trends are of use in determining petrogenetic relationships between apparently consanguineous syenites.

  3. Predictibility of the stability constant of a radium-cryptate by means of in vivo data from radioactive alkaline earthes.

    Science.gov (United States)

    Müller, W H

    1977-08-01

    By means of a formula, developed by J. Schubert[9] and A. Catsch, H.J. Heller[3] as well as a relation postulated by A. Catsch[1] the "thermodynamic" stability constant of the Radium (222)-cryptate (KRaRa(222) was calculated from measurements of the total body retention of the total body retention of the radioactive alkaline earthes 85SR, 140Ba and 224Ra and its (222)-cryptates in rats [5-7]. From the same in vivo data a direct lineary relationship between the log of the effectiveness quotient, log EQM(222), and the log of the "thermodynamic" stability log KMM(222) was found graphically. The values from the graph correspond with those of the calculation.

  4. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  5. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Science.gov (United States)

    Parker, David; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610

  6. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems

    International Nuclear Information System (INIS)

    Quemener, G.

    2006-10-01

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  7. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  8. Solution thermodynamics of rare-earth metal ions - physicochemical study-

    Energy Technology Data Exchange (ETDEWEB)

    Amerkhanova, Sh K; Shlyapov, R M; Uali, A S [Buketov Karaganda state university, University str., 28, Karaganda, 100028 (Kazakhstan)], E-mail: amerkhanova_sh@mail.ru

    2009-02-01

    The results of the studying of interactions in multicomponent systems 'polyvinyl alcohol (PVA) - rare-earth element ion - nitrate of sodium - water' are represented. It is established that for rubidium (I) ions temperature and ionic strength is render destroying action, and for yttrium (III) ions the influence of these factors has return character which is connected with features of an electronic structure of metal ion. It is revealed that a dominating role of non-electrostatic formation composed, hence, the formation of donor-acceptor connection of 'metal - ligand' occurs through atom of oxygen.

  9. Electronic Structure of Rare-Earth Metals. II. Positron Annihilation

    DEFF Research Database (Denmark)

    Williams, R. W.; Mackintosh, Allan

    1968-01-01

    of Loucks shows that the independent-particle model gives a good first approximation to the angular distribution, although correlation effects probably smear out some of the structure. The angular distributions from the heavy rare-earth metals are very similar to that from Y and can be understood....... In the spiral phase of Ho, the structure in the c-axis distribution is much reduced, indicating that the Fermi surface is substantially modified by the magnetic ordering, as expected. The photon distribution from the equiatomic Ho-Er alloy is very similar to those from the constituent metals, although...

  10. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Directory of Open Access Journals (Sweden)

    Khadijah M Emran

    Full Text Available The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9and Fe49Co49V2 (VX50 (at.%, were studied using electrochemical techniques including electrochemical frequency modulation (EFM, electrochemical impedance spectroscopy (EIS and cyclic polarization (CP measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and atomic force microscopy (AFM. The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  11. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  12. Hydrogen storage alloy electrode for metal-hydride alkaline storage battery its production method; Kinzoku-suisokabutsu aruakri chikudenchiyo no suiso kyuzo gokin denkyoku oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Y.; Nogami, K.; Kimoto, M.; Higashiyama, N.; Kuroda, Y.; Yonezu, I.; Nishio, K.

    1997-03-28

    Recently, it is proposed to employ the hydrogen storage alloy produced by means of rapidly solidifying single roll method, i.e., a method of projecting the molten alloy onto the surface of roll rotating in high speed as for the negative electrode material of the metal hydride alkaline battery. However, the hydrogen storage alloy produced by the single roll method has a heterogeneous grain size. So that the utilization of the hydrogen storage alloy is limited. This invention solves the problem. The rare earth-nickel system hydrogen storage alloy ribbon with average thickness of 0.08 - 0.35 mm is produced by means of single roll method. The grain size of the alloy is over 0.2 micrometer on roll surface side and below 20 micrometers on open surface side. The above said alloy is ground to average particle size of 25 - 70 micrometers to be used for the hydrogen absorbent. In this way, the metal hydride alkaline battery with excellent high rate discharge characteristic at the initial stage of charge-discharge cycle, excellent charge-discharge cycle characteristic, and excellent inner pressure characteristic can be produced. 2 figs., 5 tabs.

  13. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    Science.gov (United States)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  14. Influence of alkali and alkaline earth elements on the uptake of radionuclides by Pleurototus eryngii fruit bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, J., E-mail: fguillen@unex.es [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain); Baeza, A.; Salas, A. [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain)

    2012-04-15

    In the literature, there are many data available on radionuclide contents and their transfer to different species of mushrooms. There are some variables, however, which affect the transfer but are very difficult to observe in collected wild mushrooms. An example is the effect of different concentrations of alkali and alkaline earth elements in the soil. Modification of these concentrations in the soil solution has traditionally been used as a countermeasure to deal with radioactively contaminated areas. In the present work, fruiting bodies of Pleurotus eryngii, a saprophytic mushroom, were grown under controlled laboratory conditions, varying the content of alkali (potassium and caesium) and alkaline earth (calcium and strontium) elements. The transfer of {sup 134}Cs, {sup 85}Sr, and {sup 60}Co (added to the cultures) and of natural {sup 210}Pb was analysed by increasing the content of each stable element considered. A significant, but nonlinear, enhancement of stable caesium and {sup 134}Cs was observed with increasing content of stable caesium in the substrate/mycelium. The transfer of {sup 85}Sr decreased with the addition of each stable cation, whereas the {sup 60}Co and {sup 210}Pb transfers were unaffected. - Highlights: Black-Right-Pointing-Pointer The addition of stable potassium did not affect the uptake of radiocaesium. Black-Right-Pointing-Pointer The addition of stable caesium increased the stable caesium and {sup 134}Cs content in the fruiting bodies of Pleurotus eryngii. Black-Right-Pointing-Pointer The addition of calcium reduced the content of calcium and {sup 85}Sr in the fruiting bodies. Black-Right-Pointing-Pointer These countermeasures did not work properly in the case of {sup 60}Co and {sup 210}Pb, no effect was observed.

  15. Influence of alkali and alkaline earth elements on the uptake of radionuclides by Pleurototus eryngii fruit bodies

    International Nuclear Information System (INIS)

    Guillén, J.; Baeza, A.; Salas, A.

    2012-01-01

    In the literature, there are many data available on radionuclide contents and their transfer to different species of mushrooms. There are some variables, however, which affect the transfer but are very difficult to observe in collected wild mushrooms. An example is the effect of different concentrations of alkali and alkaline earth elements in the soil. Modification of these concentrations in the soil solution has traditionally been used as a countermeasure to deal with radioactively contaminated areas. In the present work, fruiting bodies of Pleurotus eryngii, a saprophytic mushroom, were grown under controlled laboratory conditions, varying the content of alkali (potassium and cæsium) and alkaline earth (calcium and strontium) elements. The transfer of 134 Cs, 85 Sr, and 60 Co (added to the cultures) and of natural 210 Pb was analysed by increasing the content of each stable element considered. A significant, but nonlinear, enhancement of stable cæsium and 134 Cs was observed with increasing content of stable cæsium in the substrate/mycelium. The transfer of 85 Sr decreased with the addition of each stable cation, whereas the 60 Co and 210 Pb transfers were unaffected. - Highlights: ► The addition of stable potassium did not affect the uptake of radiocaesium. ► The addition of stable caesium increased the stable caesium and 134 Cs content in the fruiting bodies of Pleurotus eryngii. ► The addition of calcium reduced the content of calcium and 85 Sr in the fruiting bodies. ► These countermeasures did not work properly in the case of 60 Co and 210 Pb, no effect was observed.

  16. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    Science.gov (United States)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the

  17. Electron states in thulium and other rare-earth metals

    International Nuclear Information System (INIS)

    Strange, P.; Fairbairn, W.M.; Lee, P.M.

    1983-01-01

    The LMTO method has been applied to calculate band structures for the heavier rare-earth metals. The calculations are relativistic. Thulium in particular has been considered, where a frozen core approximation is used, and the outer electrons are treated selfconsistently. Problems associated with the localisation and interactions of the 4f electrons are discussed. Teh comparisons between experimental data and calculated quantities are encouraging, but more data on high-purity single crystals would be helpful. (author)

  18. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth -transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co (20 to 70 atomic percent); and at least one of Ce, Pr, Na, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y (80 to 30 atomic percent). (author)

  19. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth-transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co; 20 - 70 atomic percent: at least one of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y; 80 - 30 atomic percent. (author)

  20. Anharmonic Vibrational Spectroscopy on Metal Transition Complexes

    Science.gov (United States)

    Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2014-06-01

    Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.

  1. Rare metal and rare earth pegmatites of Western India

    International Nuclear Information System (INIS)

    Maithani, P.B.; Nagar, R.K.

    1999-01-01

    Rajasthan Mica Belt in western India is one of the three major mica-producing Proterozoic pegmatite belts of India, the others being in Bihar and Andhra Pradesh. The pegmatites of these mica belts, in general, are associated with the rare metal (RM) and rare earth element (REE)-bearing minerals like columbite-tantalite, beryl, lepidolite and other multiple oxides. RM-REE pegmatites of Gujarat are devoid of commercially workable mica. These pegmatites are geologically characterised in this paper, based on their association with granite plutons geochemistry, and RM and REE potential. In addition to RM and RE-bearing pegmatites, granites of the Umedpur area, Gujarat also show anomalous concentration (0.97 wt%) of rare metals (6431 ppm Nb, 1266 ppm Ta, 454 ppm Sn, 173 ppm W), (1098 ppm Ce 1.36% Y 2 O 3 ) rare earths, and uranium (0.40% eU 3 O 8 ). Eluvial concentrations in the soil and panned concentrate (0.04-0.28 wt%) analysed up to 7.4%Nb 2 O 5 , 836 ppm Ta, and 1.31% Y. Discrete columbite-tantalite and betafite have been identified in these concentrates in addition to other minerals like zircon, rutile, sphene and xenotime. This area with discrete RM R EE mineral phases could be significant as a non-pegmatite source for rare metal and rare earths. (author)

  2. Contribution to the geochronology of the Lages alkaline complex, state of Santa Catarina, Brazil

    International Nuclear Information System (INIS)

    Scheibe, L.F.; Kawashita, K.; Barros Gomes, C. de

    1985-01-01

    Field evidences and petrogentic inferences at the Lages alkaline complex are indicative of a lithological sequence, considering a single petrogenetic linneage: ultrabasic alkaline rocks, porphyritic phonolites, agpaitic phonolites, analcite trachytes, carbonatites and pipe breccias. Eleven new K/Ar determinations, as well as six already available, show a major concentration in the 65 to 75 m.y. range, with a mode of Ca. 70 m.y. in place of the previously preferred K/Ar age of 65 m.y. for the complex. A Rb/Sr whole rock reference isochron diagram of analytical results for phonolites from the Serra da Chapada gives an age of 82 +- m.y. and an initial Sr 87 /Sr 86 ratio of 0.7060 +- 0.0015 which is in good agreement, considering the analytical error with the 0.7052 and 0.7056 +- 0.0014 ratios determined for the Sr-rich porphiritic nepheline syenites from the Cerro Alto de Cima. A hystogram of K/Ar ages shows a preference for older ages in the porphyritic nepheline syenites, while the phonolites prefer the 65-70 m.y. range. Most of the pipe breccias plot between 70 and 75 m.y. The two younger ages are for the olivine melilitite and the Janjao Kimberlite. Disregarding possible analitical imprecisions, these tendencies ractify the younger age for the agpaitic phonolites when compared to the porphyritic nepheline syenites, but do not fit with the petrogenetic scheme indicated above. This overall picture may suggest a revision of the proposed sequence or, alternatively, be interpreted as an indirect evidence that the determined K/Ar ages do not represent the crystallization age of these rocks, but later thermal events, as suggested by Kawashita et al. (1984) for the Pocos de Caldas massif. (D.J.M.) [pt

  3. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    International Nuclear Information System (INIS)

    Caravaca, C.; De Cordoba, G.

    2008-01-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  4. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  5. Distribution of Rare Earth Metals in Technogenic Wastes of Energy Enterprises (Results of the Laboratory Studies)

    OpenAIRE

    Alexandr Ivanovich Khanchuk; Aleksandr Alekseevich Yudakov; Mikhail Azaryevich Medkov; Leonid Nikolayevich Alekseyko; Andrey Vasilyevich Taskin; Sergey Igorevich Ivannikov

    2016-01-01

    The results of the research interaction between ash and slag samples from Vladivostok TPP’s landfills saturated with underburning and ammonium hydrodifluoride were given. It was found out that the reactions of the main components of a concentrate with NH4HF2 are flowing with creation of complex ammonium fluoro-metalate. It is shown that the distribution of REM (rare earth metals) between foam and heavier products is going during the flotation process of carbon-containing ash and slag samples ...

  6. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    Science.gov (United States)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  7. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    Science.gov (United States)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Bacontaining copper dopants.

  8. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  9. Influence of alkali and alkaline earth ions on the O-alkylation of the ...

    Indian Academy of Sciences (India)

    WINTEC

    have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as ... used in these O-alkylation reactions has no effect on the type of the amide ... product formed was precipitated out by adding water.

  10. A Kinetic Insight into the Activation of n-Octane with Alkaline-Earth ...

    African Journals Online (AJOL)

    NICOLAAS

    The metal present in the hydroxyapatite influences the acidity of the catalyst. ... reactions carried out in a continuous flow fixed bed reactor showed that the selectivity towards ... calcium-deficient non-stoichiometric HAp has 0 £ x £ 1.6 .... Gas phase oxidation reactions were carried out in a continuous ... Gaseous and liquid.

  11. Passive behavior of magnesium alloys (Mg-Zr) containing rare-earth elements in alkaline media

    International Nuclear Information System (INIS)

    Pinto, R.; Ferreira, M.G.S.; Carmezim, M.J.; Montemor, M.F.

    2010-01-01

    The passive behavior of magnesium alloys ZK31, EZ33 and WE54 was studied in alkaline media (NaOH - pH 13) in the presence and absence of chloride ions. The electrochemical properties were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and capacitance measurements. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed for the study of the chemical composition and surface morphology of the surface films, respectively. The electrochemical impedance results revealed that the film formed on the surface of the three alloys is characterized by an increasing resistance, which stabilized with time. In the absence of chloride the film resistance was identical for all the three alloys. However, in the presence of chloride, the resistance of the film formed on the EZ33 alloy dropped nearly one order of magnitude comparatively to the other alloys. Generally, in the presence of chloride there was a decrease of the conductive character of the film. The films are homogeneous and, according to the XPS results, the outer layer seemed mainly composed of Mg(OH) 2 and the internal layer composed of MgO, independently of the presence of chloride. The AFM study revealed that the presence of chloride affected film morphology, namely nano-crystallites dimensions and aggregates size that increased.

  12. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  13. Tertiary alkaline Roztoky Intrusive Complex, České středohoří Mts., Czech Republic: petrogenetic characteristics

    Czech Academy of Sciences Publication Activity Database

    Skála, Roman; Ulrych, Jaromír; Ackerman, Lukáš; Jelínek, E.; Dostal, J.; Hegner, E.; Řanda, Zdeněk

    2014-01-01

    Roč. 103, č. 5 (2014), s. 1233-1262 ISSN 1437-3254 R&D Projects: GA AV ČR IAA300130902 Institutional support: RVO:67985831 ; RVO:61389005 Keywords : Bohemian Massif * Cenozoic * continental rift * Roztoky Intrusive Complex * alkaline intrusions * geochemistry Subject RIV: DD - Geochemistry Impact factor: 2.093, year: 2014

  14. Dyrnaesite-(La) a new hyperagpaitic mineral from the Ilímaussaq alkaline complex, South Greenland

    DEFF Research Database (Denmark)

    Rønsbo, Jørn G.; Balic Zunic, Tonci; Petersen, Ole V.

    2017-01-01

    The new mineral, dyrnaesite-(La), is found in the Ilímaussaq alkaline complex, South Greenland. The holotype material originates from an arfvedsonite lujavrite sheet as an accessory mineral. Dyrnaesite-(La) is pale yellowish green, with no cleavage and an irregular fracture. Density is 3.68(2)/3....

  15. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. TDPAC studies on metal-complex ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yoshitaka [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Abe, Shizuko; Okada, Takuya [and others

    1997-03-01

    TDPAC spectra of {sup 117}In (left-arrow {sup 117}Cd) and {sup 111}Cd (left-arrow {sup 111m}Cd) in the mixed metal complex N(C{sub 4}H{sub 9}){sub 4}(M(II)Fe(III)(C{sub 2}O{sub 4}){sub 3})(M=Fe,Ni), the related substraces and LiNbO{sub 3} have been studied. In this paper, pure potassium iron (III) oxalate was prepared and mixed metal complexes were synthesized by changing amount of reagents and the order added, then observed by TDPAC. 2 mol%Cd was dispersed throughout potassium iron oxalate and potassium nickel oxalate, formulating M(II){sub 0.98}Cd(II){sub 0.02}C{sub 2}O{sub 4}{center_dot}2H{sub 2}O (M=Fe, Ni) with the same crystal structure. The formation reaction of mixed metal complex-Fe(II) was faster than that of iron oxalate. Its mixed metal complex-Ni(II) was slower than that of iron oxalate. The rate of quadrupole oscillation was obtained by {omega}{sub Q}({sup 117}In)=67.3 Mrad/s and {omega}{sub Q}({sup 111}Cd)=29.7 Mrad/s of which values were determined by TDPAC spectra of {sup 117}In and {sup 111}Cd in LiNbO{sub 3} at 4K. The value showed pure ion bond of oxygen coordinated with {sup 117}In and {sup 111}Cd. 0.08 {eta} was determined by TDPAC spectrum of {sup 111}Cd(left-arrow {sup 111m}Cd). The rate of {omega}{sub Q} of mixed metal oxalate complex was larger than 2.3, indicating 5s and 5p orbital electron took part in bond of oxygen of oxalic acid or approaching oxygen ion to In nucleus depend on the structual relaxation in decaying of {sup 117}In(left-arrow {sup 117}Cd). (S.Y.)

  17. TL process in europium doped alkaline earth sulphate phosphors- a review

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    2003-01-01

    CaSO 4 doped with the rare earth (RE) ion dysprosium or thulium is used routinely as a thermoluminescent dosimeter (TLD) to monitor personal exposure to x- and γ-radiation. The CaSO 4 :Eu phosphor is potentially important for radio photoluminescence (RPL) and ultraviolet (UV) dosimetry. Eu 3+ → Eu 2+ conversion is suggested to play a pivotal role in UV and γ-ray induced thermoluminescence. However, there is disagreement among different workers on the mechanism of gamma and UV induced TL in this phosphor system. This paper will review the work reported on CaSO 4 :Eu and make effects to project overall picture on this phosphor system. (author)

  18. Alkaline earth layered benzoates as reusable heterogeneous catalysts for the methyl esterification of benzoic acid

    Directory of Open Access Journals (Sweden)

    Swamy Arêa Maruyama

    2012-01-01

    Full Text Available This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.

  19. Biological activities of some Fluoroquinolones-metal complexes

    African Journals Online (AJOL)

    McRoy

    DNA cleavage studies of some synthesized metal complexes of fluoroquinolone ... Although the FQs are generally characterized by a broad antimicrobial spectrum ..... six Coordinate 3rd metal complexes with N- (5 –Phenyl-3,4- thiadiazol-2-yl).

  20. Rare earth element and rare metal inventory of central Asia

    Science.gov (United States)

    Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.

    2018-03-06

    Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.

  1. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    Science.gov (United States)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  2. Thermochemical properties of rare earth complexes with salicylic acid

    International Nuclear Information System (INIS)

    Yang Xuwu; Sun Wujuan; Ke Congyu; Zhang Hangguo; Wang Xiaoyan; Gao Shengli

    2007-01-01

    Fourteen rare earth complexes with salicylic acid RE(HSal) 3 .nH 2 O (HSal = C 7 H 5 O 3 ; RE = La-Sm, n = 2; RE = Eu-Lu, n = 1) were synthesized and characterized by elemental analysis, and their thermal decomposition mechanism were studied with TG-DTG technology. The constant-volume combustion energies of complexes, Δ c U, were determined by a precise rotating-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δ c H m 0 , and standard molar enthalpies of formation, Δ f H m o , were calculated

  3. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  4. Transfer of alkaline earth elements in mothers' milk and doses from 45Ca, 90Sr and 226Ra

    International Nuclear Information System (INIS)

    Smith, T.J.; Phipps, A.W.; Fell, T.P.; Harrison, J.D.

    2003-01-01

    An international programme of work is currently under way to develop methods for calculating doses to infants from ingestion of radionuclides present in mothers' milk. This paper considers the special case of the alkaline earth elements. Models have been developed for 45 Ca, 90 Sr and 226 Ra and the sensitivity of results to various changes in parameter values is discussed. A complication when calculating doses from intakes of radium is that the International Commission on Radiological Protection has previously recommended that doses from decay products of radium should be calculated using element-specific biokinetic models (so-called independent biokinetics). An extension of this method to the models for breastfeeding is proposed. Preliminary estimates of the doses received by the infant for a number of maternal intake scenarios show that doses to the infant can exceed the corresponding adult dose, such as for 45 Ca (ratio = 3.1) while, in other cases such as 90 Sr, the infant dose can be a significant fraction of the adult dose. (author)

  5. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    Science.gov (United States)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  6. Radium isotopes, alkaline earth diagenesis, and age determination of travertine from Mammoth Hot Springs, Wyoming, U.S.A

    International Nuclear Information System (INIS)

    Sturchio, N.C.

    1990-01-01

    Travertine from active springs, former vents, and drill core was analyzed for Ra isotopes, other alkaline earth elements, and mineralogical composition. Thermal water also was analyzed. Travertine, presently being deposited, contains 3.0-15.3 pCi/g 226 Ra, and has a 228 Ra/ 226 Ra ratio identical to that in thermal water. Travertine precipitates mostly as aragonite and experiences a complete diagenetic transformation to calcite within 9 a. Systematic compositional changes associated with this diagenetic transformation are enrichment of Mg and depletion of Sr, Ba and Ra. Apparent mineral-water distribution coefficients for Mg, Sr and Ba in aragonite and calcite are within the range of those determined experimentally, implying near-equilibrium conditions and high water-rock ratios during diagenesis. Impure travertine from near the base of a section in the Y-10 drill hole (at 72.9 m depth) has a 230 Th/ 234 U isochron age of 7700±440 a. The content of 226 Ra in the normal, subhorizontally layered, porous travertine decreases with depth. The observed 226 Ra vs depth relation is consistent with continuous deposition of travertine at the site from 7700 a BP to near present at a mean rate of ∼1.0 cm/a, and indicates minimal exchange of Ra between travertine and pore water after the early diagenetic transformation of aragonite to calcite. (author)

  7. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  8. Evaluation of heavy metal complex phytotoxicity

    Directory of Open Access Journals (Sweden)

    Vita Vasilyevna Datsenko

    2016-07-01

    Full Text Available The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc is manifested both in inhibition of lettuce growth and determined, above all, by the nature contamination, soil properties and biological specificity of the test plants.

  9. Coordination compounds of metals with imidazoles and benzimidazoles. [Metals: V, Th, Mo, Cd, rare earths, etc

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, G A; Molodkin, A K; Kukalenko, S S

    1988-12-01

    Methods of preparation, composition and structure of UO/sub 2//sup 2+/, Th/sup 4+/, Mo/sup 3+/, Cd/sup 2+/, Ln/sup 3+/ metal ion complexes with imidazoles and benzimidazoles are considered in reviews of native and foreign literature of up to 1985. Complexes are customarily prepared by direct interaction of ligands with inorganic salts in different organic solvents. Complex composition is defined by the nature of complexing metal and inorganic salt anion, ligand volume and basicity, as well as solvent characteristics. Effect of R substituent in imidazole and benzimidazole side chain on composition of coordination compounds is considered.

  10. Theoretical Study on the Extraction of Alkaline Earth Salts by 18-Crown-6: Roles of Counterions, Solvent Types and Extraction Temperatures

    Directory of Open Access Journals (Sweden)

    Saprizal Hadisaputra

    2014-07-01

    Full Text Available The roles of counterions, solvent types and extraction temperatures on the selectivity of 18-crown-6 (L toward alkaline earth salts MX2 (M = Ca, Sr, Ba; X = Cl-, NO3- have been studied by density functional method at B3LYP level of theory in gas and solvent phase. In gas phase, the chloride anion Cl- is the preference counterion than nitrate anion NO3-. This result is confirmed by the interaction energies, the second order interaction energies, charge transfers, energy difference between HOMO-LUMO and electrostatic potential maps. The presence of solvent reversed the gas phase trend. It is found that NO3- is the preference counterion in solvent phase. The calculated free energies demonstrate that the solvent types strongly change the strength of the complex formation. The free energies are exothermic in polar solvent while for the non polar solvent the free energies are endothermic. As the temperature changes the free energies also vary where the higher the temperatures the lower the free energy values. The calculated free energies are correlated well with the experimental stability constants. This theoretical study would have a strong contribution in planning the experimental conditions in terms of the preference counterions, solvent types and optimum extraction temperatures.

  11. Correlations in rare-earth transition-metal permanent magnets

    International Nuclear Information System (INIS)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-01-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo 5 . On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy

  12. Correlations in rare-earth transition-metal permanent magnets

    Science.gov (United States)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-05-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo5. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  13. Ground-state properties of rare-earth metals: an evaluation of density-functional theory

    International Nuclear Information System (INIS)

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-01-01

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called ‘standard model’ of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin–orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra. (paper)

  14. Magnetism in rare-earth metals and rare-earth intermetallic compounds

    International Nuclear Information System (INIS)

    Johansson, B.; Nordstroem, L.; Eriksson, O.; Brooks, M.S.S.

    1991-01-01

    Some of out recent local spin density electronic structure calculations for a number of ferromagnetic rare-earth systems are reviewed. A simplified model of the level densities for rare-earth (R) transition metal (M) intermetallic compounds, R m M n , is used to describe in a simple way the main features of their basic electronic structure. Explicit calculations for LuFe 2 and RFe 2 (R=Gd-Yb) systems are presented, where a method to treat simultaneously the localized 4f and the conduction electron spin magnetism is introduced. Thereby it becomes possible to calculate the K RM exchange coupling constant. This method is also used to study theoretically the permanent magnet material Nd 2 Fe 14 B. The electronic structure of the anomalous ferromagnets CeFe 2 and CeCo 5 is discussed and an induced 4f itinerant magnetism is predicted. The γ-α transition in cerium metal is considered, and results from calculations including orbital polarization are presented, where a volume collapse of 10% is obtained. On one side of the transition the 4f electrons are calculated to be essentially non-bonding (localized) and on the other side they are found to contribute to the metallic bonding and this difference in behaviour gives rise to the volume collapse. Recent calculations by Wills, Eriksson and Boring for the crystal structure changes in cerium metal under high pressure are discussed. Their successful results imply an itinerant picture for the 4f electrons in α-cerium. Consequently this strongly supports the view that the γ-α phase transformation is caused by a Mott transition of the 4f electrons. (orig.)

  15. Complexes in polyvalent metal - Alkali halide melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-03-01

    Experimental evidence is available in the literature on the local coordination of divalent and trivalent metal ions by halogens in some 140 liquid mixtures of their halides with alkali halides. After brief reference to classification criteria for main types of local coordination, we focus on statistical mechanical models that we are developing for Al-alkali halide mixtures. Specifically, we discuss theoretically the equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in mixtures of AlF 3 and NaF as a function of composition in the NaF-rich region, the effect of the alkali counterion on this equilibrium, the possible role of (AlF 5 ) 2- as an intermediate species in molten cryolite, and the origin of the different complexing behaviours of Al-alkali fluorides and chlorides. We also present a theoretical scenario for processes of structure breaking and electron localization in molten cryolite under addition of sodium metal. (author). 26 refs, 2 tabs

  16. Synthesis, characterization and solubility of alkaline earth uranyl carbonates M2[UO2(CO3)3].xH20; M: Mg, Ca, Sr, Ba

    International Nuclear Information System (INIS)

    Amayri, S.

    2002-11-01

    The release and dispersion of uranium from closed uranium mining sites and the resulting uranium contamination of the natural environment of such sites is a major problem examined in this dissertation. Knowledge of the pollution pathways and processes is indispensable for an assessment of the radiological implications for the human population, to be taken into account in the planning of site rehabilitation work. The formation of secondary uranium minerals may contribute to an immobilization of the uranium, but it is possible as well that such secondary uranium minerals will release uranium. A major task of this dissertation therefore was to examine the conditions of formation of alkaline earth uranyl carbonates in the context of their natural occurrence as observed at some sites, and to answer the question of whether hitherto unknown alkaline earth uranyl carbonates may form in the natural environment, and ought to be taken into account as new source terms. (orig./CB) [de

  17. Application of infrared spectroscopy for study of chemical bonds in complexes of rare earth nitrates with alkylammonium nitrates

    International Nuclear Information System (INIS)

    Klimov, V.D.; Chudinov, Eh.G.

    1974-01-01

    The IR absorption spectra for the tri-n-octylamine, methyl-di-n-octylamine, their nitrates and complexes with the rare element nitrates are obtained. The IR spectra analysis of the complexes has suggested that the degree of covalent character bond of a nitrate with a metal grows with the atomic number of the element. Based on the comparison of the obtained data with those available in literature for various rare-earth complexes a conclusion is made that the bond character of a metal with nitrate groups is influenced by all ligands constituting the inner coordinating sphere. As the donor capacity of a ligand grows the covalent character of the metal-nitrate bond is enhanced. The replacement of the outer-sphere cations (trioctylammonium or methyldioctylammonium) only slightly affects the bond character of a metal with the nitrate group. The distribution coefficients in the rare-earth series are shown to decrease as the electrostatic part in the metal-nitrate declines. The phenomenon is attributed to the competition between nitrate and water for the metal bond as concurrently with the intensification of metal-nitrate covalent bond in the organic phase the strength of metal hydrates in aqueous phase grows much faster. (author)

  18. Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2006-01-01

    The luminescence properties of Ce3+, Li+ or Na+ co-doped alkaline-earth silicon nitride M2Si5N8 (M=Ca, Sr, Ba) are reported. The solubility of Ce3+ and optical properties of M2-2xCexLixSi5N8 (x0.1) materials have been investigated as function of the cerium concentration by X-ray powder diffraction

  19. THEORETICAL-ANALYSIS OF THE O(1S) BINDING-ENERGY SHIFTS IN ALKALINE-EARTH OXIDES - CHEMICAL OR ELECTROSTATIC CONTRIBUTIONS

    NARCIS (Netherlands)

    PACCHIONI, G; BAGUS, PS

    1994-01-01

    We report results from ab initio cluster-model calculations on the O(1s) binding energy (BE) in the alkaline-earth oxides, MgO, CaO, SrO, and BaO; all these oxides have a cubic lattice structure. We have obtained values for both the initial- and final-state BE's. A simple point-charge model, where

  20. Narcissistic self-sorting in self-assembled cages of rare Earth metals and rigid ligands.

    Science.gov (United States)

    Johnson, Amber M; Wiley, Calvin A; Young, Michael C; Zhang, Xing; Lyon, Yana; Julian, Ryan R; Hooley, Richard J

    2015-05-04

    Highly selective, narcissistic self-sorting can be achieved in the formation of self-assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high-fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  2. TiO2 Photocatalyzed Oxidation of Free and Complex Metallic Cyanides.

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, J. E.; Esteghamatdarsthad, B.; Renteria, J.

    2006-07-01

    The TiO2 photo catalyzed oxidation of free cyanide and transition metal cyanide complexes often found in industrial mining wastes were studied. The photoreactor system used was a UV illuminated and stirred tank with suspended particles of TiO2. After to determine the optimization parameters such as light intensity, concentration of complex and free cyanides, in ideal conditions, the effect of the presence of different type of anions was also studied. The model substances chosen were potassium cyanide and cyanides complexes of Iron, Cobalt and Copper in a strong alkaline solution (pH = 11.0 - 12.0). The experimental results indicate that in the case of the hexaferricyanide complex Fe(CN)6 3, the reaction occur in two steps. The first step is the breakdown of the metal-cyanide bond (photo-dissociation) forming free cyanide (CN-) and Fe3+ ions. The second step is the photo-oxidation of the free cyanides formed before. The ions Fe3+ and OH- present in the alkaline solution, precipitate as iron hydroxide Fe(OH)3. During the photo-dissociation step of the iron complex, free CN- ions produced reaches a maximum concentration before it is eliminated by photo-oxidation. The free cyanide produced from the hexaferricyanide complex disappears rapidly at a velocity of 64.6 + - 5.0 ?M/min. This rate of photo-oxidation is comparable with the experiments using just alkaline solutions of potassium cyanide ('free cyanides'). In contrast, in alkaline solutions of cyanide complexes of Cu and Co the rate of photo-oxidation was substantially reduced (6.17+ - 0.80 ?M/min and 0.04 + - 0.010 ?M/min, respectively) and do not show any initial increase of free cyanides in the suspension. The slower rate of photo-oxidation suggests the formation of very stable hydroxyl-cyanide polymeric metallic complexes in the reaction mix. The photo-oxidation pathway of the nitrogen oxide products was also investigated and found that the final product consists mainly of nitrate ions. (Author)

  3. Teleconnections in complex human-Earth system models

    Science.gov (United States)

    Calvin, K. V.; Edmonds, J.

    2017-12-01

    Human systems and physical Earth systems are closely coupled and interact in complex ways that are sometimes surprising. This presentation discusses a few examples of system interactions. We consider the coupled energy-water-land-economy systems. We show how reductions in fossil fuel emissions are inversely coupled to land rents, food prices and deforestation. We discuss how water shortages in one part of the world is propagated to other distant parts of the world. We discuss the sensitivity of international trade patterns to energy and land systems technology and markets, and the potentially unanticipated results that can emerge.

  4. Alkaline-earth elements of scalp hair and presence of hypertension in housewives: A perspective of chronic effect.

    Science.gov (United States)

    Wang, Bin; Yan, Lailai; Sun, Ying; Yan, Jingjing; Lu, Qun; Zhang, Jingxu; Li, Zhiwen

    2017-08-01

    The relationship between population intakes of alkaline-earth elements (AEEs) and hypertension risk remains under discussion. Hair AEE concentrations can indicate their intake levels into human body. Thus, we aimed to investigate an association of hair AEE concentrations with hypertension risk, and the potential effect of dietary habit on this association. We recruited 398 housewives [163 subjects with hypertension (case group) and 235 subjects without hypertension (control group)] in Shanxi Province of north China. The scalp hair grown in the recent 2 years of each subject was collected and analyzed for the four concerned AEEs [i.e. calcium (Ca), magnesium (Mg), strontium (Sr), and barium (Ba)]. Our study results revealed that median concentrations (μg/g hair) of hair AEEs in the case group were systematically lower than those in control group [i.e. 701 vs. 1271 of Ca, 55.2 vs. 88.3 of Mg, 4.60 vs. 10.4 of Sr, and 1.02 vs. 1.68 of Ba]. Lower levels of the four individual AEEs of hair were associated with an increased presence of hypertension, respectively. Moreover, hair AEE concentrations were all positively correlated with the ingestion frequencies of meat, eggs, fresh vegetables, and fruits, while negatively with that of salted vegetables. A high ingestion frequency of fresh vegetables was associated with a lower prevalence of hypertension with or without adjusting confounders, while salted vegetables revealed a reverse tend. It was concluded that low hair AEEs, as markers of their long-term dietary intake, were associated with the presence of hypertension in a rural Chinese women. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Novel Metals and Metal Complexes as Platforms for Cancer Therapy

    OpenAIRE

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q. Ping

    2010-01-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coo...

  6. The magnetoresistivity of some rare-earth metals

    International Nuclear Information System (INIS)

    Webber, G.D.

    1978-10-01

    The thesis describes measurements of the low temperature transverse magnetoresistivities of single crystals of rare-earth metals in magnetic fields up to 8 Tesla. A general introduction to the rare-earths, their magnetic properties and a review of the basic theory and mechanism of magnetoresistivity is given. Details of the crystal structure, growth of single crystals and sample mounting method follow. The experimental equipment and measuring techniques are then described. The low temperature transverse magnetoresistivity of polycrystalline lanthanum and single crystal praseodymium for the temperature range 4.2 - 30K is measured. The separation of the spin-disorder and Fermi-surface orbital effect contributions are described and the theoretical and experimental spin-disorder values compared. Magnetoresistivity measurements for neodymium single crystals (4.2 - 30K) are compared with the magnetic properties determined from neutron diffraction studies. Results for gadolinium single crystals (4.2 - 200K) are compared for two different impurity levels and with previous work. (UK)

  7. Extraction of fluoride metal complexes by octanols

    International Nuclear Information System (INIS)

    Baklanova, I.V.; Nikolaev, A.I.; Il'in, E.G.; Majorov, V.G.

    2005-01-01

    The extraction of niobium(V) and tantalum(V) by octanols, including 1-octanol, 2-octanol, and iso-octanol (2-ethylhexanol), was studied. The composition of the octanols and their solubility in various aqueous solutions were evaluated. The capacity of the octanols for tantalum(V) and niobium(V), the extraction properties of the octanols, the viscosity of extracts under conditions of metal fluoride extraction, and the temperature dependence of the viscosity of the octanols were studied. The composition of the extracted complexes was studied by IR and NMR spectroscopy and chemical analysis, and the hydration-solvation mechanism of the extraction of tantalum(V) and niobium(V) was supported [ru

  8. Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes.

    Science.gov (United States)

    Moilanen, Jani O; Mansikkamäki, Akseli; Lahtinen, Manu; Guo, Fu-Sheng; Kalenius, Elina; Layfield, Richard A; Chibotaru, Liviu F

    2017-10-10

    The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl 2 ·THF 3 ) 2 ] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of single-molecule behaviour in 2 arises from the rotation of the principal magnetic axis as compared to the pseudo-C 5 axis of the pentagonal bipyramidal environment as suggested by ab initio calculations. The cyclic voltammetry and chemical reduction experiments demonstrated that complexes 1 and 2 can be reduced to radical species containing [BQ 3 ˙ - ]. This study establishes efficient synthetic strategy to make bridged redox-active multinuclear lanthanide complexes with a pentagonal bipyramidal coordination environment that are potential precursors for single-molecule magnets.

  9. METAL COMPLEXES OF SALICYLHYDROXAMIC ACID AND 1,10 ...

    African Journals Online (AJOL)

    Preferred Customer

    Metal complexes which are formed in biological systems between a ligand and a metal ion are in dynamic ... In a continuation of our research work oriented towards studying the .... Antimicrobial activity techniques. Preparation of test samples.

  10. Syntheses and structures of new rare-earth metal tetracyanidoborates

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Fanni; Hackbarth, Liisa; Koeckerling, Martin [Anorganische Festkoerperchemie, Institut fuer Chemie, Universitaet Rostock, Albert-Einstein-Str. 3a, 18059, Rostock (Germany); Herkert, Lorena; Mueller-Buschbaum, Klaus; Finze, Maik [Institut fuer Anorganische Chemie, Institut fuer nachhaltige Chemie and Katalyse mit Bor (ICB), Julius-Maximilians-Universitaet Wuerzburg, Am Hubland, 97074, Wuerzburg (Germany)

    2017-05-04

    Six new rare-earth metal tetracyanidoborates were prepared and characterized by single-crystal X-ray diffraction. Crystals of these salts contain co-crystallized solvent molecules, such as water, acetone, ethanol, or diethyl ether. In [La(EtOH){sub 3}(H{sub 2}O){sub 2}{B(CN)_4}{sub 3}] (1), [La(EtOH)(H{sub 2}O){sub 4}{B(CN)_4}{sub 3}].Et{sub 2}O (2), and [Y(EtOH)(H{sub 2}O){sub 4}{B(CN)_4}{sub 3}].EtOH (6) the tetracyanidoborate anions are all or in part bonded to the RE{sup 3+} ions, whereas in [Pr(H{sub 2}O){sub 9}][B(CN){sub 4}]{sub 3}.(CH{sub 3}){sub 2}CO (3), [Er(H{sub 2}O){sub 8}][B(CN){sub 4}]{sub 3}.(CH{sub 3}){sub 2}CO (4), and [Lu(EtOH)(H{sub 2}O){sub 7}][B(CN){sub 4}]{sub 3}.EtOH.0.5H{sub 2}O (5) the [B(CN){sub 4}]{sup -} anions are not coordinated to the central metal atoms. Only in 1, one of the three crystallographically independent [B(CN){sub 4}]{sup -} anions acts as a bridging ligand. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Selective modulation of the CD4 molecular complex by Pseudomonas aeruginosa alkaline protease and elastase

    DEFF Research Database (Denmark)

    Pedersen, B K; Kharazmi, A; Theander, T G

    1987-01-01

    The binding of monoclonal antibodies against CD4 was specifically inhibited by treatment of human CD4+ cells with either alkaline protease (AP) or elastase (Ela), purified from Pseudomonas aeruginosa. Binding of antibodies against CD3 (pan T), CD5 (pan T), CD8 (T suppressor/cytotoxic), HLA-ABC, HLA......-DR, HLA-DQ, HLA-DP/DR, and beta 2 microglobulin was not inhibited by AP or Ela. Heat-inactivation of the proteases at 65 degrees C for 20 min or treatment with the metal chelator EDTA abolished the inhibitory activity of both proteases. These findings may serve to develop novel immunological methods...

  12. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  13. Theoretical studies of transition metal complexes with nitriles and isocyanides

    International Nuclear Information System (INIS)

    Kuznetsov, Maksim L

    2002-01-01

    Theoretical studies of transition metal complexes with nitriles and isocyanides are reviewed. The electronic structures and the nature of coordination bonds in these complexes are discussed. The correlation between the electronic structures of transition metal complexes with nitriles and isocyanides and their structural properties, spectroscopic characteristics, and reactivities are considered. The bibliography includes 121 references.

  14. NMR study of rare earth and actinide complexes

    International Nuclear Information System (INIS)

    Villardi de Montlaur de, G.C.

    1978-01-01

    Proton magnetic resonance studies of lanthanide shift reagents with olefin-transition metal complexes, monoamines and diamines as substrates are described. Shift reagents for olefins are reported: Lnsup(III)(fod) 3 can induce substantial shifts in the nmr spectra of a variety of olefins when silver 1-heptafluororobutyrate is used to complex the olefin. The preparation, properties and efficiency of such systems are described. Configurational aspects and exchange processes of Lnsup(III)(fod) 3 complexes with secondary and tertiary monoamines are analysed by means of dynamic nmr. Factors influencing the stability and the stoichiometry of these complexes and various processes such as nitrogen inversion and ligand exchange are discussed. At low temperature, ring inversion can be slow on an nmr time-scale for Lnsup(III)(fod) 3 -diamino chelates. Barriers to ring inversion in substituted ethylenediamines and propanediamines are obtained. Steric factors appear to play an important role in the stability and kinetics of these bidentate species. The synthesis of uranium-IV crown-ether and cryptate complexes is described. A conformational study of these compounds show evidence of an insertion of the paramagnetic cation as witnessed by the large induced shifts observed. The insertion of uranium in the macrocyclic ligand of a UCl 4 -dicyclohexyl-18-crown-6 complex is confirmed by an X-ray structural determination [fr

  15. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    Science.gov (United States)

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  16. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    Alkaline electrolysis cells operating at 250°C and 40 bar are able to convert electrical energy into hydrogen at very high efficiencies and power densities. In the present work we demonstrate the application of a PTFE hydrophobic network and Ag nanowires as oxygen evolution electrocatalyst...

  17. Metal complexation capacity of Antarctic lacustrine sediments.

    Science.gov (United States)

    Alberti, Giancarla; Mussi, Matteo; Quattrini, Federico; Pesavento, Maria; Biesuz, Raffaela

    2018-04-01

    The purpose of this study is to implement a work that is a part of a project funded by the Italian National Antarctic Research Program (PNRA, Piano Nazionale di Ricerche in Antartide) within the main thematic focus "Chemical Contamination-Global Change". This research was devoted to detect and characterize micro and nano components with strong complexing capability towards metal ions at trace level in sea water, lakes and lacustrine sediments, sampled during the XXII expedition of PNRA. In particular, in the present work, the sorption complexation capacity of an Antarctic lacustrine sediments toward Cu(II) and Pb(II) is described. The characterization of the sorption was undertaken, studying kinetics and isotherm profiles. The lake here considered is Tarn Flat in the area of Terra Nova Bay. The sorption equilibria of Cu(II) and Pb(II) on the lacustrine sediments were reached in about 10 h, and they were best modelled by the Langmuir equation. Preliminary, to establish if the data here obtained were consistent with those reported for the same area in other expeditions, a common multivariate techniques, namely the principal component analysis (PCA), was applied and finally the consistency of the data has been confirmed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Study on silicon oxide coated on silver nanocrystal to enhance fluorescence intensity of rare earth complexes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yan-rong; Lin, Xue-mei; Wang, Ai-ling; Wang, Zhong-xia; Kang, Jie; Chu, Hai-bin, E-mail: binghai99@gmail.com; Zhao, Yong-liang, E-mail: hxzhaoyl@163.com

    2014-10-15

    Twelve kinds of rare earth complexes were synthesized using halo-benzoic acid as anion ligand and Sm{sup 3+} and Dy{sup 3+} as central ions, respectively. The complexes were characterized by elemental analysis, rare earth coordination titration and electrospray ionization mass spectra, from which the compositions of the complexes were confirmed to be RE(p-FBA){sub 3}·H{sub 2}O, RE(p-ClBA){sub 3}·2H{sub 2}O, RE(p-BrBA){sub 3}·H{sub 2}O, RE(o-FBA){sub 3}·2H{sub 2}O, RE(o-ClBA){sub 3}·H{sub 2}O, RE(o-BrBA){sub 3}·H{sub 2}O (RE=Sm{sup 3+}, Dy{sup 3+}). Besides, IR spectra and UV–visible absorption spectroscopy indicated that the carboxyl oxygen atoms of ligands coordinated to the rare earth ions. Moreover, Ag@SiO{sub 2} core–shell nanoparticles (NPs) were prepared via a modified Stöber method. The average diameters of silver cores were typically between 60 nm and 70 nm, and the thicknesses of the SiO{sub 2} shells were around 10 nm, 15 nm and 25 nm, respectively. The influence of Ag@SiO{sub 2} NPs on the luminescence properties of the rare earth complexes showed that the luminescence intensities of rare earth complexes were enhanced remarkably. As the thickness of SiO{sub 2} shell increases in the range of 10–25 nm, the effect of metal-enhanced fluorescence become obvious. The mechanism of the changes of the fluorescence intensity is also discussed. - Highlights: • Among 10–25 nm, the thicker the shell thickness, the better the fluorescence effect. • The strong the intensity of the pure complexes, the smaller the multiple enhanced. • The intensity of Sm(p-BrBA){sub 3}·H{sub 2}O is the strongest among Sm(p-XBA){sub 3}·nH{sub 2}O complexes. • The intensity of Dy(p-ClBA){sub 3}·2H{sub 2}O is the strongest among Dy(p-XBA){sub 3}·nH{sub 2}O complexes. • When halogen is in o-position, the intensity of RE(o-ClBA){sub 3}·H{sub 2}O is the strongest.

  19. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil

    Science.gov (United States)

    Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro

    2012-01-01

    The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.

  20. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  1. Targeting heavy rare earth elements in carbonatite complexes

    Science.gov (United States)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are

  2. Coordination of CO to the alkaline earth metallocene [(Me5C5)2Ca

    OpenAIRE

    Selg, Peter; Brintzinger, Hans-Herbert; Andersen, Richard A.; Horváth, István T.

    1995-01-01

    The exothermic formation of a Ca–CO complex [Eq.(a), ΔHo = −25 kJ mol−1] confirms that CO can bind to a metal center without π back donation from filled d orbitals. In its spectroscopic properties, the calcocene–carbonyl complex resembles "nonclassical" noble metal carbonyl complexes. Cp* = η5-C5Me5.

  3. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  4. Comparative study of binary and ternary complexes of some rare earths

    International Nuclear Information System (INIS)

    Makhijani, S.D.; Sangal, S.P.

    1978-01-01

    Modified form of Irving and Rossotti's pH titration technique has been used to evaluate and compare the stability constants of the binary and ternary complexes of Sc(III), Y(III), La(III), Pr(III), Nd(III) and Sm(III) at 30 0 at an ionic strength of 0.2M NaClO 4 . For the study of ternary complexes, nitrilotriacetic acid has been used as a primary ligand and polyhydroxy phenols i.e. pyrocatechol (PYC), pyrogallol (PYG) and gallic acid (GA) as secondary ligands. The stability constants of the binary complexes were found to be more than those of the corresponding ternary complexes which can reasonably be explained on the basis of electrostatic force between primary complex (metal in the case of binary complex) and secondary ligand, and space available to accommodate the secondary ligand. The stability decreases with the increase in ionic radii, i.e. Sc(III)>Y(III)>Sm(III)>Nd(III)>Pr(III)>La(III). In terms of secondary ligand, it follows the order PYC>GA>PYG. Rare earths form only 1:1 binary complex, and 1:1:1 mixed ligand complex in all the cases. (author)

  5. Rare-earth metal prices in the USA ca. 1960 to 1994

    Science.gov (United States)

    Hedrick, James B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  6. Half-metallic properties of the (1 1 0) surface of alkali earth metal monosilicides in the zinc blende phase

    International Nuclear Information System (INIS)

    Bialek, B; Lee, J I

    2011-01-01

    An all electron ab initio method was employed to study the electronic and magnetic properties of the (1 1 0) surface of alkaline-earth metal silicides: CaSi, SrSi and BaSi, in the zinc blende structure. The three surfaces are found to conserve the half-metallic properties of their bulk structures with a wide semiconducting energy gap in the spin-up channel. Half-metallic energy gap at the surfaces is small. In the CaSi surface it is of the order of k B T, which indicates that in the CaSi (1 1 0) a transition to a metallic state is possible due to temperature fluctuations. At the same time, the CaSi surface exhibits the strongest magnetic properties with 0.91 μ B magnetic moment on the Si atom in the topmost layer and 0.21 μ B magnetic moment on the Ca atom. In each of the three surfaces we observe a reduction of magnetic moments on the atoms in the subsurface layer and the enhancement of the magnetic moment on the atoms in the topmost layer, as compared with the properties of atoms in the bulk. An analysis of the calculated total and atom projected densities of states leads to a conclusion that the surface effects in the structures are short-range phenomena

  7. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated ... MoS3 dopant. Although inorganic metal complexes bear- ... distilled water and then with methanol and acetone until.

  8. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  9. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  10. Lability of Nanoparticulate Metal Complexes at a Macroscopic Metal Responsive (Bio)interface

    NARCIS (Netherlands)

    Duval, Jérôme F.L.; Town, Raewyn M.; Leeuwen, Van Herman P.

    2018-01-01

    The lability of metal complexes expresses the extent of the dissociative contribution of the complex species to the flux of metal ions toward a macroscopic metal-responsive (bio)interface, for example, an electrodic sensor or an organism. While the case of molecular ligands is well-established, it

  11. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    International Nuclear Information System (INIS)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-01

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials

  12. Use of EDTA for potentiometric back titration of rare earths and analysis of their mixtures

    International Nuclear Information System (INIS)

    Zayed, M.A.; Rizk, M.S.; Khalifa, H.; Omer, W.F.

    1987-01-01

    Advantage was taken of the stoichiometric reaction between mercury(II), rare earths, alkaline earths, heavy metal ions and EDTA in urotropine buffered media to determine rare earths by back-titration of excess EDTA in the course of estimating a variety of lanthanides or analysing their binary mixture with one of the alkaline earth metals by selective control of pH; or analysing their binary mixtures with heavy metals using fluoride as a good masking agent for rare earths; or analysing their ternary mixtures with both heavy and alkaline earth metals in two steps, one by selective control of pH and the other by masking of rare earths with fluoride at lower pH to estimate the heavy metal. The procedures given are simple, rapid and extremely reliable. 19 refs. (author)

  13. Plasmon hybridization in complex metallic nanostructures

    Science.gov (United States)

    Hao, Feng

    With Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) method, we theoretically investigated the optical properties of some complex metallic nanostructures (coupled nanoparticle/wire, nanostars, nanorings and combined ring/disk nanocavity systems). We applied the analytical formulism of PH studying the plasmonic coupling of a spherical metallic nanoparticle and an infinite long cylindrical nanowire. The plasmon resonance of the coupled system is shown shifted in frequency, which highly depends on the polarization of incident light relative to the geometry of the structure. We also showed the nanoparticle serves as an efficient antenna coupling the electromagnetic radiation into the low-energy propagating wire plasmons. We performed an experimental and theoretical analysis of the optical properties of gold nanorings with different sizes and cross sections. For light polarized parallel to the ring, the optical spectrum sensitively depends on the incident angle. When light incidence is normal to the ring, two dipolar resonance is observed. As the incident light is titled, some previously dark mulipolar plasmon resonances will be excited as a consequence of the retardation. The concept of plasmon hybridization is combined with the power of brute-force numerical methods to understand the plasmonic properties of some very complicated nanostructures. We showed the plasmons of a gold nanostar are a result of hybridization of the plasmons of the core and the tips of the particle. The core serves as a nanoantenna, dramatically enhanced the optical spectrum and the field enhancement of the nanostar. We also applied this method analyzing the plasmonic modes of a nanocavity structure composed of a nanodisk with a surrounding minoring. For the concentric combination, we showed the nature of the plasmon modes can be understood as the plasmon hybrization of an individual ring and disk. The interation results in a blueshifted and broadened superradiant antibonding

  14. Cell complexes of transition metals in biochemistry and medicine

    International Nuclear Information System (INIS)

    Voloshin, Ya.Z.; Varzatskij, O.A.; Bubnov, Yu.N.

    2007-01-01

    Basic directions and prospects of use of cell complexes of transition metals in medicine and biochemistry are considered: incapsulation of radioactive metal ions for radiotherapy and diagnostics; preparation of contrast compounds for magnetic resonance tomography, antidotes and pharmaceutical preparation of prolonged effect, preparations for boron-neutron-capture therapy of neoplasms, antioxidants; membrane transport of metal ions; study of interaction of cell metal complexes with nucleic acids; possibility of use of self-assembly of cell complexes for imitation of ligases and use of clathrochelates as linkers; design of inhibitors of viruses for AIDS therapy [ru

  15. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Diazo substituted carbomonocyclic... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...

  16. Tris-diamine-derived transition metal complexes of flurbiprofen as ...

    African Journals Online (AJOL)

    admin

    butyrylcholinesterase (BChE) inhibitory activities. Method: Tris-diamine-derived transition metal complexes of Co(II), Ni(II), and Mn(II) were synthesized and characterized ... Conductance measurements indicated that diamine-derived metal complexes of ..... contributes to enhanced biological activity, and provides novel ...

  17. Mixed Metal Complexes of Isoniazid and Ascorbic Acid: Chelation ...

    African Journals Online (AJOL)

    HP

    these ligands and their metal complexes have revealed the bi-dentate coordination of isoniazid ligand to ... of the drugs on coordination with a metal is enhanced ..... James, O.O., Nwinyi, C.O. and. Allensela, M.A. (2008). Cobalt(II) complexes of mixed antibiotics: Synthesis,. Characterization, antimicrobial potential and their.

  18. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  19. Equilibrium studies on mixed ligand complexes of some tripositive rare earth ions

    International Nuclear Information System (INIS)

    Vimal, Rashmi; Singh, Mamta; Ram Nayan

    1996-01-01

    Interaction of the rare earth ions, La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ and Eu 3+ with the pair of ligands 1-amino-2-naphthol-4-sulphonic acid (an, H 2 A) and o-aminophenol (ap, HB) have been studied in aqueous solution at 25 degC (μ=0.1 M KNO 3 /NaCl). Equilibrium constants of the reactions involving the formations of the mixed ligand species MAB, MA 2 B 2- , MB 2 A - (M = metal ion) and the binary complexes containing up to three ligand molecules have been evaluated from the pH-metric data, and coordinating behaviour of the ligands in the formation of the mixed ligand complexes has been discussed. (author). 10 refs., 1 tab., 1 fig

  20. Molecular dynamics of liquid alkaline-earth metals near the melting ...

    Indian Academy of Sciences (India)

    Results of the studies of the properties like binding energy, the pair distrib- ... of the pseudopotential used from solid to liquid environment in the case of .... In this expression, Eeg represents the ground state energy of the electron gas, for.

  1. Boson peak of alkali and alkaline earth silicate glasses: influence of the nature and size of the network-modifying cation.

    Science.gov (United States)

    Richet, Nicolas F

    2012-01-21

    The influence of the size of the alkaline earth cation on the boson peak of binary metasilicate glasses, MSiO(3) (M = Mg, Ca, Sr, Ba), has been investigated from vibrational densities of states determined by inversion of low-temperature heat capacities. As given both by C(p)/T(3) and g(ω)/ω(2), the intensity of the boson peak undergoes a 7-fold increase from Mg to Ba, whereas its temperature and frequency correlatively decrease from 18 to 10 K and from 100 to 20 cm(-1), respectively. The boson peak results from a combination of librations of SiO(4) tetrahedra and localized vibrations of network-modifying cations with non-bridging oxygens whose contribution increases markedly with the ionic radius of the alkaline earth. As a function of ionic radii, the intensity for Sr and Ba varies in the same way as previously found for alkali metasilicate glasses. The localized vibrations involving alkali and heavy alkaline earth cations appear to be insensitive to the overall glass structure. Although the new data are coherent with an almost linear relationship between the temperature of the boson peak and transverse sound velocity, pure SiO(2) and SiO(2)-rich glasses make marked exceptions to this trend because of the weak transverse character of SiO(4) librations. Finally, the universality of the calorimetric boson peak is again borne out because all data for silicate glasses collapse on the same master curve when plotted in a reduced form (C(P)∕/T(3))/(C(P)/T(3))(b) vs. T/T(b). © 2012 American Institute of Physics

  2. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  3. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    Science.gov (United States)

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  4. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth; Effet de la nature des ions alcalins et alcalino-terreux sur la structure d un verre riche en terre

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile [Laboratoire de Chimie Appliquee de l Etat Solide, UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, (France); Lenoir, Marion; Dussossoy, Jean-Luc [Commissariat a l Energie Atomique, Centre d Etudes de la Vallee du Rhone, DIEC/SCDV/LEBM, 30207 Bagnols-sur-Ceze, (France); Charpentier, Thibault [Service de Chimie Moleculaire, DSM/DRECAM/CEA Saclay, 91191 Gif-sur-Yvette Cedex, (France); Neuville, Daniel R. [Laboratoire de Physique des Mineraux et des Magmas, UMR 7047-CNRS-IPGP, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, (France); Gervais, C. [Laboratoire de Chimie de la matiere condensee, UMR7574, Universite Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, (France)

    2006-07-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na{sup +} ion (respectively Ca{sup 2+} ions) present in the standard composition is totally substituted by another alkaline ion Li{sup +}, K{sup +}, Rb{sup +} or Cs{sup +} (respectively another rare earth ion Mg{sup 2+}, Sr{sup 2+} or Ba{sup 2+}). These glasses, analyzed by optical absorption, Raman and {sup 27}Al or {sup 11}B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO{sub 3}/BO{sub 4} and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  5. Dependence of ultrasound attenuation in rare earth metals on ratio of grain size and wavelength

    International Nuclear Information System (INIS)

    Kanevskij, I.N.; Nisnevich, M.M.; Spasskaya, A.A.; Kaz'mina, V.I.

    1978-01-01

    Results of investigation of dependences of ultrasound attenuation coefficient α on the ratio of grain average size D and wavelength lambda are presented. The investigations were carried out on rare earth metal samples produced by arc remelting in a vacuum furnace. It is shown that the way of α dependence curves of D/lambda for each of the rare earth metal is determined only by the D. This fact permits to use ultrasound measurement for control average diameter of the rare earth metal grain

  6. Sequential Washing with Electrolyzed Alkaline and Acidic Water Effectively Removes Pathogens from Metal Surfaces.

    Directory of Open Access Journals (Sweden)

    Yuichiro Nakano

    Full Text Available Removal of pathogenic organisms from reprocessed surgical instruments is essential to prevent iatrogenic infections. Some bacteria can make persistent biofilms on medical devices. Contamination of non-disposable equipment with prions also represents a serious risk to surgical patients. Efficient disinfection of prions from endoscopes and other instruments such as high-resolution cameras remains problematic because these instruments do not tolerate aggressive chemical or heat treatments. Herein, we develop a new washing system that uses both the alkaline and acidic water produced by electrolysis. Electrolyzed acidic water, containing HCl and HOCl as active substances, has been reported to be an effective disinfectant. A 0.15% NaCl solution was electrolyzed and used immediately to wash bio-contaminated stainless steel model systems with alkaline water (pH 11.9 with sonication, and then with acidic water (pH 2.7 without sonication. Two bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa and a fungus (Candida albicans were effectively removed or inactivated by the washing process. In addition, this process effectively removed or inactivated prions from the stainless steel surfaces. This washing system will be potentially useful for the disinfection of clinical devices such as neuroendoscopes because electrolyzed water is gentle to both patients and equipment and is environmentally sound.

  7. Anodic solution of alkali earth alloys in potassium chloride-sodium chloride melts

    International Nuclear Information System (INIS)

    Volkovich, A.V.

    1997-01-01

    Generalized results of studying the process of anodic dissolution of alkaline-earth metal alloys with zinc, aluminium and copper in the melts of KCl-NaCl equimolar mixture containing alkaline-earth metal chlorides, are presented. It is shown that during dissolution of both pure liquid metals and their alloys there is no electrode polarization in the range of the current densities lower or comparable in their values to corrosion current

  8. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.

    Science.gov (United States)

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2016-05-01

    Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features. Copyright © 2015. Published by Elsevier Ltd.

  9. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    Science.gov (United States)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  10. Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter

    Science.gov (United States)

    Farouk, M.; Samir, A.; El Okr, M.

    2018-02-01

    Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.

  11. Joint influence of temperature and ions of metals on level of activity alkaline phosphatase the mucous membrane of intestines beluga, the starlet and their hybrid

    Directory of Open Access Journals (Sweden)

    D. A. Bednyakov

    2010-01-01

    Full Text Available In work joint influence of ions of bivalent metals (Mn, Fe, Co, Ni, Cu and Zn and temperatures on level of activity alkaline phosphatase mucous membrane beluga, starlet and their hybrid is shown. Dependence of response of enzyme on action of ions of metals according to their position in a periodic table of chemical elements is shown. The given dependence remains and at temperature change incubation, only at low temperatures the activating effect of metals being in the period beginning is maximum, and at high, is maximum inhibiting effect of metals being in the period end.

  12. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  13. Interaction of copper metallization with rare-earth metals and silicides

    International Nuclear Information System (INIS)

    Molnar, G. L.; Peto, G.; Zsoldos, E.; Horvath, Z. E.

    2001-01-01

    Solid-phase reactions of copper films with underlying gadolinium, erbium, and erbium - silicide layers on Si(100) substrates were investigated. For the phase analysis, x-ray diffraction and cross-sectional transmission electron microscopy were used. In the case of Cu/Gd/Si(100), an orthorhombic GdSi 2 formed, and, at higher temperatures, copper aggregated into islands. Annealed Cu/Er/Si(100) samples resulted in a hexagonal Er 5 Si 3 phase. In the Cu/ErSi 2-x /Si system, the copper catalyzes the transformation of the highly oriented hexagonal ErSi 2-x phase into hexagonal Er 5 Si 3 . Diverse phase developments of the samples with Gd and Er are based on reactivity differences of the two rare-earth metals. [copyright] 2001 American Institute of Physics

  14. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  15. Preliminary analysis on tectonic movement and uranium metallization in Kang-Dian the earth's axis

    International Nuclear Information System (INIS)

    Luo Yiyue; Wei Mingji; Ma Guangzhong

    1998-01-01

    On the basis of analyzing available data the authors expounds the regional geology, tectonic movement, as well as the relationship between geological evolution and uranium metallization in Kang-Dian the earth's axis and propose that the Jinning Period (960-1006 Ma) is the first metallogenic epoch of uranium in Kang-Dian the earth's axis

  16. The recent development of efficient Earth-abundant transition-metal nanocatalysts.

    Science.gov (United States)

    Wang, Dong; Astruc, Didier

    2017-02-06

    Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.

  17. Alkylation and arylation of alkenes by transition metal complexes

    International Nuclear Information System (INIS)

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  18. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  19. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    International Nuclear Information System (INIS)

    Selle, J.E.

    1992-01-01

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented

  20. Chabazite and dolomite formation in a dolocrete profile: An example of a complex alkaline paragenesis in Lanzarote, Canary Islands

    Science.gov (United States)

    Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José

    2016-05-01

    This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.

  1. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    Unknown

    Thiosemicarbazone complexes; platinum metals; variable coordination; ... carbonylic carbon via one or two intervening atoms, D,N,S tricoordination usually takes .... modelling studies show that in this coordination mode, the phenyl ring of the.

  2. 3d-METAL COMPLEXES WITH BARBITURIC ACID DERIVATIVES

    Directory of Open Access Journals (Sweden)

    T. V. Koksharova

    2015-04-01

    Full Text Available The various aspects of the 3d-metal complexes with barbiturates and uric acid chemistry such as composition, structure, physicochemical properties, possible fields of application – have been illustrated in this review

  3. Structural systematics of some metal complexes with 4,5 ...

    Indian Academy of Sciences (India)

    study reveals that each metal(II) centre in the four complexes adopts distorted octahedral geometry with MN6 ... potassium permanganate (E Merck, India), potassium. 717 ... The final reaction solu- ..... ble in water, methanol, acetonitrile, etc.

  4. Sub-chronic toxicological studies of transition metal complexes of ...

    African Journals Online (AJOL)

    Md. Sharif Hasan

    2017-01-18

    Jan 18, 2017 ... naproxen showed more side effects than metal complexes which ..... Fosslein E. Adverse effects of nonsteroidal anti-inflammatory drugs on the ... association increases the anti-inflammatory and analgesic activity of ibuprofen.

  5. Synthesis and characterization of some metal complexes of a Schiff ...

    African Journals Online (AJOL)

    KEY WORDS: Metal complexes, Schiff base, Ninhydrin, α,L-Alanine, .... Buck Scientific Infrared Spectrophotometer Model 500 in the range of 4000 .... Assignments based on Nakamoto [35], ν - stretching vibration, δ - bending or deformation.

  6. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    Key Lab. Eco-Environment-Related Polymer Materials of Ministry of Education, Key Lab. ... scaffold and the metal complex functioned as the catalytic active center. ... small molecule.22 It is found that the antioxidative ... and absence, respectively, of the measured compound. ... monitor the interaction of metal ions with BSA.

  7. Inkjet Printing of 3D Metallic Silver Complex Microstructures

    NARCIS (Netherlands)

    Wits, Wessel Willems; Sridhar, Ashok; Dimitrov, D.

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief

  8. Revisited: the conception of lability of metal complexes

    NARCIS (Netherlands)

    Leeuwen, van H.P.

    2001-01-01

    Starting from the original reaction layer concept, the voltammetric properties of electroinactive metal complexes are critically reviewed in terms of their finite rates of dissociation into electroactive free metal ions. The limiting conditions for the reaction layer-based flux expressions are made

  9. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  10. Selection of lixiviant System for the alkaline in-situ Leaching of uranium from an arkosic type of sandstone and measuring the dissolution behaviour of some metals and non-metals

    International Nuclear Information System (INIS)

    Khan, Y.; Shah, S.S.; Siddiq, M.

    2012-01-01

    A laboratory simulation study was carried out to check the possibility of alkaline in-situ leaching of uranium from an arkosic type of sandstone recovered from a specific location at a depth of 300-500 m. The ore body was overlaying impervious clay shale below the water table. Different CO/sub 3/ containing soluble salts were tested as complexing agent of the UO/sup +2/ ions along with H/sub 2/O/sub 2/ as oxidizing agent. The lixiviant system, comprising NH/sub 4/HCO/sub 3/ as complexing agent along with H/Sub 2/O/sub 2/ as oxidizing agent in concentrations of 5 g/L and 0.5 g/L respectively, was found to be the most efficient for the leaching of uranium among the 25 different compositions employed. Along with uranium, the dissolution behaviour of 15 other metals, non-metals and radicals, including eight transition metals, was also observed in the lixiviant employed. These were Na, K, Ca, Mg, Cl, SO/sub 4/, CO/sub 3/, Ti, V, Cr, Mn, Fe, Cu, Zn and Mo. It was found that the leaching of uranium compared to non-transition et als/radicals followed the trend Cl > SO > U > Na > K > Mg > Ca > CO. The comparison of uranium leaching to the transition metals was in the order U > Cr > Mo > V > Ti > Cu > Zn > Mn > Fe. Physical parameters like pH, oxidation reduction potential (ORP) and conductivity were also measured for the fresh and pregnant lixiviants. It was found that the leaching of uranium is directly related to the concentration of native soluble hexavalent uranium, contact time of the lixiviant and ore and to some extent with the total concentration of uranium as well as the porosity and permeability of the ore. (author)

  11. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  12. Synthesis, characterization and biological profile of metal and azo-metal complexes of embelin

    Directory of Open Access Journals (Sweden)

    R. Aravindhan

    2014-12-01

    Full Text Available The present study emphasizes synthesis and bioprofiling of embelin, embelin-metal (EM and embelin-azo-metal (EAM complexes in detail. EM complexes were prepared using pure embelin and d-block transition elements, namely Mn, Fe, Co, Ni, Cu, and Zn. Similarly, EAM complexes were synthesized using phenyl azo-embelin with the said transition metals. Embelin, EM, and EAM complexes were subjected to ultra violet visible spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, electrospray ionization mass spectrometry, thermogravimetric analysis, carbon hydrogen nitrogen sulfur analysis. With regard to bioprofiling, the test complexes were studied for the antioxidant and antimicrobial activities. Results revealed that the prepared EM and EAM complexes form octahedral complexes with embelin with the yield in the range of 45–75%. All the instrumental analyses authenticate the interaction of metals with bidentate embelin through its enolic and quinonic oxygen atoms as [M(Emb2(H2O2]H2O and [M(Emb-Azo2(H2O2]. The antioxidant profile studies suggested that upon complexation with metals, the free radical scavenging activity of embelin reduced significantly. But, with regard to antimicrobial activity, cobalt and nickel embelin complexes displayed>80% growth inhibition in comparison with embelin alone. The hemolytic activity studies suggested that both embelin and the metal complexes are non-hemolytic. The reason for the reduction in antioxidant and an increase in antimicrobial activities were discussed in detail.

  13. Geology and U-Pb geochronology of the Kipawa Syenite Complex - a thrust related alkaline pluton - and adjacent rocks in the Grenville Province of western Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Van Breemen, O.; Currie, K.L. [Geological Survey of Canada, Ottawa, Ontario (Canada)]. E-mail: ovanbree@nrcan.gc.ca

    2004-07-01

    The Kipawa Syenite Complex, a thin, folded sheet of amphibole syenite, quartz syenite and minor nepheline syenite, lies along a west-vergent thrust separating a lower slice comprising the Kikwissi granodiorite and biotite tonalite dated at 2717 {sub -11}{sup +15} Ma, and unconformably overlying metasedimentary rocks from an overlying slice containing the Red Pine Chute orthogneiss, an alkali granite gneiss, and the Mattawa Quartzite. The syenite complex, dated at 1033 {+-} 3 Ma, lies within the lower slice but has metasomatically altered the overlying slice. Texturally guided U-Pb spot analyses on partially metasomatised zircons from the alkali granite gneiss yield a cluster of {sup 207}G'Pb/{sup 206}Pb ages at 1389 {+-} 8 Ma, interpreted as the time of igneous crystallization and four ages overlapping the time of syenite emplacement, interpreted as in situ, metasomatic growth. The highest structural slice comprises garnet amphibolite separated from lower slices by the Allochthon Boundary Thrust. Metamorphic grade increases upward from greenschist grade in the biotite tonalite to amphibolite grade (690 {sup o}C, 9 kbar (1 kbar = 100 MPa)) at the lower boundary of the alkali granite. Emplacement of the Kipawa Syenite Complex took place after assembly of the thrust stack had begun and after emplacement of the allochthon or hot slab responsible for the inverted metamorphic gradient. Origin of the syenite is tentatively ascribed to anatexis of material metasomatized by flow of alkaline solutions along a major shear surface. Crystallization of new zircon in the margins of the syenite shows that metasomatism continued from ca. 1035 to 990 Ma, redistributing alkalies, fluorine, rare-earth elements and zirconium. (author)

  14. Nuclear orientation of rare earth impurities in ferromagnetic host metals

    International Nuclear Information System (INIS)

    Keus, H.E.

    1981-01-01

    Experiments are described investigating the behaviour of the metals Nd and Lu as impurities in a ferromagnetic host metal - iron, cobalt and nickel. The systems have been studied with the aid of nuclear orientation, making use of the interactions between the atom nuclei and the electrons - the so called hyperfine interactions. (C.F.)

  15. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition

    International Nuclear Information System (INIS)

    Restivo, T.A.G.

    1994-01-01

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800 C was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs

  16. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    DEFF Research Database (Denmark)

    van Leeuwen, Herman P.; Town, Raewyn M.

    2016-01-01

    Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain...... equilibrium with the reduced concentration of the electroactive free M2+ in its diffusion layer. Since the metal ion binding sites are confined to the NP body, the conventional reaction layer in the form of a layer adjacent to the electrode surface is immaterial. Instead an intraparticulate reaction zone may...... of the electrochemical technique is crucial in the lability towards the electrode surface. In contrast, for nanoparticulate complexes it is the dynamics of the exchange of the electroactive metal ion with the surrounding medium that governs the effective lability towards the electrode surface....

  17. Crystal Fields in Dilute Rare-Earth Metals Obtained from Magnetization Measurements on Dilute Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.

    1974-01-01

    Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute....... B40, B60, and B66 are similar in Y and Lu. Crystal field parameters for the pure metals Tb, Dy, and Er are estimated from the crystal fields in Y and Lu....

  18. Mixed metal complexes of isoniazid and ascorbic acid: chelation ...

    African Journals Online (AJOL)

    Novel mixed complexes of isoniazid and ascorbic acid have been synthesized and characterized using infrared, electronic absorption data, elemental analysis, molar conductivity, melting point, thin layer chromatography and solubility. The metal ions involved in the complex formation are Cu2+, Zn2+ and Cd2+. The melting ...

  19. Metal complex catalysis in the synthesis of organoaluminium compounds

    International Nuclear Information System (INIS)

    Dzhemilev, Usein M; Ibragimov, Askhat G

    2000-01-01

    The published data on the synthesis of organoaluminium compounds involving metal complex catalysts are generalised and systematised. Hydro-, carbo- and cycloalumination reactions of alkenes, conjugated dienes and alkynes catalysed by Ti and Zr complexes are considered in detail. The use of organoaluminium reagents in organic synthesis and novel reactions involving these compounds are discussed. The bibliography includes 240 references.

  20. An Experiment on Isomerism in Metal-Amino Acid Complexes.

    Science.gov (United States)

    Harrison, R. Graeme; Nolan, Kevin B.

    1982-01-01

    Background information, laboratory procedures, and discussion of results are provided for syntheses of cobalt (III) complexes, I-III, illustrating three possible bonding modes of glycine to a metal ion (the complex cations II and III being linkage/geometric isomers). Includes spectrophotometric and potentiometric methods to distinguish among the…

  1. Synthesis of rare-earth metal amides bearing an imidazolidine-bridged bis(phenolato) ligand and their application in the polymerization of L-lactide.

    Science.gov (United States)

    Zhang, Zhongjian; Xu, Xiaoping; Li, Wenyi; Yao, Yingming; Zhang, Yong; Shen, Qi; Luo, Yunjie

    2009-07-06

    A series of neutral rare-earth metal amides supported by an imidazolidine-bridged bis(phenolato) ligand were synthesized, and their catalytic activity for the polymerization of l-lactide was explored. The amine elimination reactions of Ln[N(TMS)(2)](3)(mu-Cl)Li(THF)(3) with H(2)[ONNO] {H(2)[ONNO] = 1,4-bis(2-hydroxy-3,5-di-tert-butyl-benzyl)-imidazolidine} in a 1:1 molar ratio in tetrahydrofuran (THF) gave the neutral rare-earth metal amides [ONNO]Ln[N(TMS)(2)](THF) [Ln = La (1), Pr (2), Nd (3), Sm (4), Yb (5), and Y (6)] in high isolated yields. All of these complexes are fully characterized. X-ray structural determination revealed that complexes 1-6 are isostructural and have a solvated monomeric structure. The coordination geometry around each of the rare-earth metal atoms can be best described as a distorted trigonal bipyramid. It was found that complexes 1-6 are efficient initiators for the ring-opening polymerization of l-lactide, and the ionic radii of the central metals have a significant effect on the catalytic activity. A further study revealed that these rare-earth metal amides can initiate l-lactide polymerization in a controlled manner in the presence of 1 equiv of isopropyl alcohol.

  2. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1:1 complexes.

    Science.gov (United States)

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Poussereau, Sandrine; Sorace, Lorenzo

    2004-04-07

    We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.

  3. Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations

    Science.gov (United States)

    Hinkley, T.K.; Le Cloarec, M.-F.; Lambert, G.

    1994-01-01

    Chemical families of metals fractionate systematically as they pass from a silicate melt across the interface with the vapor phase and on into a cooled volcanic plume. We measured three groups of metals in a small suite of samples collected on filters from the plumes of Kilauea (Hawaii, USA), Etna (Sicily), and Merapi (Java) volcanoes. These were the major, minor, and trace metals of the alkali and alkaline earth families (K, Rb, Cs, Ca, Sr, Ba), a group of ordinarily rare metals (Cd, Cu, In, Pb, Tl) that are related by their chalcophile affinities, and the radon daughter nuclides 210Po, 210Bi, and 210Pb. The measurements show the range and some details of systematic melt-vapor fractionation within and between these groups of metals. In the plumes of all three volcanoes, the alkali metals are much more abundant than the alkaline earth metals. In the Kilauea plume, the alkali metals are at least six times more abundant than the alkaline earth metals, relative to abundances in the melt; at Etna, the factor is at least 300. Fractionations within each family are, commonly, also distinctive; in the Kilauea plume, in addition to the whole alkaline earth family being depleted, the heaviest metals of the family (Sr, Ba) are progressively more depleted than the light metal Ca. In plumes of fumaroles at Merapi, K/Cs ratios were approximately three orders of magnitude smaller than found in other earth materials. This may represent the largest observed enrichment of the "light ion lithophile" (LIL) metals. Changes in metal ratios were seen through the time of eruption in the plumes of Kilauea and Etna. This may reflect degree of degassing of volatiles, with which metals complex, from the magma bodies. At Kilauea, the changes in fractionation were seen over about three years; fractionation within the alkaline earth family increased, and that between the two families decreased, over that time. All of the ordinarily rare chalcophile metals measured are extremely abundant in

  4. DFT study on metal-mediated uracil base pair complexes

    Directory of Open Access Journals (Sweden)

    Ayhan Üngördü

    2017-11-01

    Full Text Available The most stable of metal-mediated uracil base pair complexes were determined. Method was used density functional theory, B3LYP. The calculations of systems containing C, H, N, O were described by 6-311++G(d,p and cc-PVTZ basis sets and LANL2DZ and SDD basis sets was used for transition metals. Then Egap values of complexes were calculated and the electrical conductivity of the complexes for single nanowires was studied by band theory. Metal-mediated uracil base pair complexes which will be used as conductive wires in nanotechnology were predicted. In nanoworld, this study is expected to show a way for practical applications.

  5. Electron-phonon coupling in the rare-earth metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Mertig, I.

    1990-01-01

    -phonon parameters were calculated within the Gaspari-Gyorffy formulation. For the heavier rare earths Gd–Tm spin polarization was included both in the band-structure calculations and in the treatment of the electron-phonon coupling to take into account the spin splitting of the conduction electrons induced by the 4...

  6. Local magnetism in rare-earth metals encapsulated in fullerenes

    NARCIS (Netherlands)

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical

  7. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    Burzo, E.

    1975-01-01

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  8. Electrons and Spin Waves in Heavy Rare Earth Metals

    DEFF Research Database (Denmark)

    Mackintosh, A. R.

    1972-01-01

    this understanding on a more quantitative basis. The experimental evidence on the electronic structure of the rare earths is still rather meager but, so far as it goes, is in accord with the detailed description provided by band structure calculations. On the other hand, the experimental study of the magnon...

  9. Synthesis, structures, and properties of alkali and alkaline earth coordination polymers based on V-shaped ligand

    Czech Academy of Sciences Publication Activity Database

    Cheng, P. C.; Tseng, F. S.; Yeh, C. T.; Chang, T. G.; Kao, C. C.; Lin, C. H.; Liu, W. R.; Chen, J. S.; Zima, Vítězslav

    2012-01-01

    Roč. 14, č. 20 (2012), s. 6812-6822 ISSN 1466-8033 Institutional support: RVO:61389013 Keywords : metal organic frameworks * structure * carboxylates Subject RIV: CA - Inorganic Chemistry Impact factor: 3.879, year: 2012

  10. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  11. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  12. The electrodeposition and rare earths reduction in the molten salt actinides recovery systems using liquid metal

    International Nuclear Information System (INIS)

    Shim, J-B.; Lee, J-H.; Kwon, S-W.; Ahn, B-G.; Woo, M-S.; Lee, B-J.; Kim, E-H.; Park, H-S.; Yoo, J-H.

    2005-01-01

    A pyrochemical partitioning system uses liquid metals such as cadmium and bismuth in order to recover the actinide metals from a molten salt mixture containing rare earth fission product metals. The liquid metals play roles as a cathode in the electrowinning or an extracting phase in the reductive extraction operation. The product resulting from the above operations is metal-cadmium or-bismuth alloy, which should contain the rare earth element amounts as low as possible for a transmutation purpose. In this study, the electrodeposition behaviours of uranium and lanthanide elements such as La, Ce and Nd were investigated for solid molybdenum and liquid cadmium electrodes in a molten LiCl-KCl eutectic salt. Electrochemical methods used are a cyclic voltammetry (CV) and a chronopotentiometry for monitoring the salt phase and recovering the metals, respectively. The CV graphs for monitoring the oxidizing agent CdCl 2 in the salt phase were obtained. These show a time dependently disappearance of the oxidizing agent corresponding to the formation of UCl 3 by inserting the uranium metal into the salt. Also, a sequential oxidation technique which is added at a controlled amount of the oxidizing agents into the salt phase was applied. It was found that this method is feasible for the selective reduction of the rare earths content in liquid metal alloys. (author)

  13. Metal Complexes for Organic Optoelectronic Applications

    Science.gov (United States)

    Huang, Liang

    Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i

  14. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    Science.gov (United States)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  15. Effect of second-sphere cation nature on the character of IR spectra of molybdeum(4, 5) cyanide complexes

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Semenishin, D.I.; Vretsena, N.B.; Chernyak, B.I.

    1989-01-01

    The effect of nature of second-sphere cations on IR spectra of molybdeum (4, 5) cyanide complexes is studied. It is found that the increase in the first ionization potential (radius decrease) brings about the increase in the frequency of valent variations ν (CN). This proves the possibility of formation of bridge bonds Mo-CN-M in the compounds (M-alkali, alkaline earth or rare earth metal, Cs, Y). The conclusion is made on a considerable effect of the nature of second-sphere cations and oxidation degree of complexing agent atoms on the nature of IR spectra of octacyanomolybdates (4, 5)

  16. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi

    2004-01-01

    Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.

  17. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater.

    Science.gov (United States)

    Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang

    2017-06-01

    High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag + (123.05mg/g) and Pb 2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.

  18. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  19. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils.

    Science.gov (United States)

    Zhu, Saiyong; Ma, Xinwang; Guo, Rui; Ai, Shiwei; Liu, Bailin; Zhang, Wenya; Zhang, Yingmei

    2016-10-02

    The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature. The biggest biomass, highest extraction content, and lowest heavy metals bioaccumulation level occurred at physiological maturity. Among the different planting patterns, including monocropping and intercropping of maize and/or soybean (Glycine max), pea (Pisum sativum), and alfalfa (Medicago sativa), the extraction efficiency of Cu, Zn, Pb, and Cd varied greatly. Only intercropping of maize and soybean yielded relatively higher extraction efficiency for the four metals with no significant difference in the total biomass. Moreover, the heavy metals concentrations in dry biomass from all the planting patterns in the present study were within China's national legal thresholds for fodder use. Therefore, slightly polluted alkaline soils can be safely used through monocropping and intercropping of maize and/or legumes for a range of purposes. In particular, this study indicated that intercropping improves soil ecosystems polluted by heavy metals compared with monocropping.

  20. Leaching Process of Rare Earth Elements, Gallium and Niobium in a Coal-Bearing Strata-Hosted Rare Metal Deposit—A Case Study from the Late Permian Tuff in the Zhongliangshan Mine, Chongqing

    OpenAIRE

    Jianhua Zou; Heming Tian; Zhen Wang

    2017-01-01

    The tuff, a part of coal-bearing strata, in the Zhongliangshan coal mine, Chongqing, southwestern China, hosts a rare metal deposit enriched in rare earth elements (REE), Ga and Nb. However, the extraction techniques directly related to the recovery of rare metals in coal-bearing strata have been little-studied in the literature. The purpose of this paper is to investigate the extractability of REE, Ga and Nb in the tuff in the Zhongliangshan mine using the alkaline sintering-water immersion-...