WorldWideScience

Sample records for alkali-metal atoms li

  1. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  2. Developments in alkali-metal atomic magnetometry

    Science.gov (United States)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  3. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  4. Momentum densities and Compton profiles of alkali-metal atoms

    International Nuclear Information System (INIS)

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree-Fock-Roothan values only, for want of data from other realistic calculations. (author)

  5. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  6. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  7. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  8. Optical response of alkali metal atoms confined in nanoporous glass

    International Nuclear Information System (INIS)

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  9. Reactions between cold methyl halide molecules and alkali-metal atoms

    CERN Document Server

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  10. Reactions between cold methyl halide molecules and alkali-metal atoms

    International Nuclear Information System (INIS)

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow

  11. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  12. Higher-order Cn dispersion coefficients for the alkali-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients, from C11 through to C16 resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the Cn/rn potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C10/r10 results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a0. This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C11,C13,C15) and attractive (C12,C14,C16) dispersion forces

  13. Properties of alkali metal atoms deposited on a MgO surface: a systematic experimental and theoretical study.

    Science.gov (United States)

    Finazzi, Emanuele; Di Valentin, Cristiana; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio; Gao, Hongjun; Lian, Jichun; Risse, Thomas; Freund, Hans-Joachim

    2008-01-01

    The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed. PMID:18381711

  14. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators

    International Nuclear Information System (INIS)

    High scintillation efficiency of Eu-doped LiSrAlF6 (LiSAF) and LiCaAlF6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce3+, and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one. -- Highlights: ► Ce-doped and alkali metal co-doped LiSAF crystals were grown by μ-PD method. ► Alkali metal co-doped crystals showed higher light yield than Ce only doped crystal. ► Decay time of alkali metal co-doped LiSAF were longer than that of Ce only doped one

  15. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients C6, C8, and C10 for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C6 at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)

  16. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients, C6, C8, and C10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D8 and the three-body coefficient, C9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  17. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms

    CERN Document Server

    Derevianko, Andrei; Babb, James F

    2009-01-01

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline earth atoms, and the inert gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  18. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Lin, Nan, Kn, Rbn, and Csn with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  19. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms - a new hope

    CERN Document Server

    Soldán, Pavel; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab-initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  20. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  1. Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K)

    OpenAIRE

    Liqing He; Hai-Wen Li; Etsuo Akiba

    2015-01-01

    Metal dodecaborates M2/nB12H12 are regarded as the dehydrogenation intermediates of metal borohydrides M(BH4)n that are expected to be high density hydrogen storage materials. In this work, thermal decomposition processes of anhydrous alkali metal dodecaborates M2B12H12 (M = Li, Na, K) synthesized by sintering of MBH4 (M = Li, Na, K) and B10H14 have been systematically investigated in order to understand its role in the dehydrogenation of M(BH4)n. Thermal decomposition of M2B12H12 indicates m...

  2. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi2Se3

    International Nuclear Information System (INIS)

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi2Se3 has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data

  3. Atomic arrangement and electron band structure of Si(1 1 1)-ß-√3 x √3-Bi reconstruction modified by alkali-metal adsorption: ab initio study.

    Science.gov (United States)

    Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A

    2015-08-01

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications. PMID:26151642

  4. Atomic many-body effects and Lamb shifts in alkali metals

    Science.gov (United States)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We present a detailed study of the radiative potential method [V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005), 10.1103/PhysRevA.72.052115], which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms and ions over the range 10 ≤Z ≤120 , where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s , p , and d waves over the series of alkali-metal atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s -wave shifts. It is shown that taking into account many-body effects is essential for an accurate description of the Lamb shift.

  5. The Alkali Metal Interactions with MgO Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi; Bagheri, Zargham [Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Kamfiroozi, M. [Islamic Azad University, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2012-06-15

    Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of .0.25 to .0.74 eV. HOMO-LUMO gap (E{sub g}) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of E{sub g} decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased

  6. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  7. Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions

    OpenAIRE

    Aymar, Mireille; Guérout, Romain; Dulieu, Olivier

    2011-01-01

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a Strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging ...

  8. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    Science.gov (United States)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  9. Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments

    International Nuclear Information System (INIS)

    We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed rubidium alkali metal dispenser in -10 Torr ultrahigh vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing 'shroud' held at ≤0 deg. C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly switched, two-temperature thermal beam, and was used to load a MOT with 3x108 atoms

  10. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  11. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    International Nuclear Information System (INIS)

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system

  12. Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO)

    International Nuclear Information System (INIS)

    The recombination processes and lattice defects in crystals of alkali metal borate LiB3O5 (LBO) were studied by the means of the thermally stimulated luminescence (TL) and electron spin resonance (ESR) techniques. The glow curves, the spectra of the LBO recombination luminescence, and the angular variations of ESR-spectra of the O- center in three different planes were measured in the temperature range from 80 to 400 K. The luminescence bands were assigned to the electron (Em=4.0 eV) and hole (Em=4.2 eV) recombination processes. The model of the trapped hole center O- was proposed. The processes responsible for the formation of localised electronic excitations in LBO were discussed and compared with those taking place in other wide-gap oxides

  13. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    OpenAIRE

    Beterov, I. I.; Mansell, C. W.; Yakshina, E. A.; Ryabtsev, I. I.; Tretyakov, D. B.; Entin, V. M.; MacCormick, C.; Piotrowicz, M. J.; Kowalczyk, A.; S. Bergamini

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transi...

  14. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    CERN Document Server

    Beterov, I I; Yakshina, E A; Ryabtsev, I I; Tretyakov, D B; Entin, V M; MacCormick, C; Piotrowicz, M J; Kowalczyk, A; Bergamini, S

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.

  15. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    Science.gov (United States)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  16. Alkali metal sources for OLED devices

    Science.gov (United States)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  17. Long-range interactions between the alkali-metal atoms and alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2014-01-01

    Accurate knowledge of interaction potentials among the alkali atoms and alkaline earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali atoms with the Ca$^+$, Ba$^+$, Sr$^+$, and Ra$^+$ alkaline earth ions systematically which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above mentioned systems which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random phase approximation. We also compare our estim...

  18. Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    OpenAIRE

    Scherer, David R.; Fenner, David B.; Hensley, Joel M.

    2012-01-01

    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical ab...

  19. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF6 single crystals for thermal neutron detector

    International Nuclear Information System (INIS)

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF6 (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and α-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu2+ were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under 252Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Thermodynamic properties of two mixed alkali metal borates with NLO behaviour: Li6Rb5B11O22 and Li4Cs3B7O14

    International Nuclear Information System (INIS)

    Highlights: • Li6Rb5B11O22 and Li4Cs3B7O14 have been synthesized and characterized. • The enthalpies of solution of title two borates were measured. • The enthalpies of solution of LiCl·H2O(s) were measured. • ΔfHmo for title two borates were obtained by the thermochemical cycles. -- Abstract: Two pure mixed alkali metal borates with Non-Linear Optical (NLO) properties, Li6Rb5B11O22 and Li4Cs3B7O14, have been synthesized by a high-temperature solid state reaction, and characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Li6Rb5B11O22 and Li4Cs3B7O14 in 1 mol · dm−3 HCl (aq), and of LiCl·H2O(s) in (1 mol · dm−3 HCl + H3BO3 + RbCl/CsCl) (aq) have been determined by microcalorimeter at T = 298.15 K, respectively. From these data and with the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl (aq), together with the use of the standard molar enthalpies of formation for LiCl·H2O(s), RbCl(s)/CsCl(s), H3BO3(s), HCl(aq) and H2O(l), the standard molar enthalpies of formation of −(11173.1 ± 9.5) kJ · mol−1 for Li6Rb5B11O22 and −(7145.1 ± 5.9) kJ · mol−1 for Li4Cs3B7O14 were obtained on the basis of the appropriate thermochemical cycles

  1. Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s

    Science.gov (United States)

    Ha, Nguyen Thi Thu; Lefedova, O. V.; Ha, Nguyen Ngoc

    2016-01-01

    Density functional theory (DFT) calculations were performed to investigate the adsorption of carbon dioxide (CO2) on metal-organic framework (MOF-5) and alkali-metal (Li, K, Na) doped MOF-5s. The adsorption energy calculation showed that metal atom adsorption is exothermic in MOF-5 system. Moreover, alkali-metal doping can significantly improve the adsorption ability of carbon dioxide on MOF-5. The best influence is observed for Li-doping.

  2. Molecular-orbital theory for the stopping power of atoms in the low velocity regime:the case of helium in alkali metals

    OpenAIRE

    Dorado, Jose J.; Flores, F.

    1993-01-01

    A free-parameter linear-combination-of-atomic-orbitals approach is presented for analyzing the stopping power of slow ions moving in a metal. The method is applied to the case of He moving in alkali metals. Mean stopping powers for He present a good agreement with local-density-approximation calculations. Our results show important variations in the stopping power of channeled atoms with respect to their mean values.

  3. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    International Nuclear Information System (INIS)

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  4. Theoretical assessment of the electro-optical features of the group III nitrides (B12N12, Al12N12 and Ga12N12) and group IV carbides (C24, Si12C12 and Ge12C12) nanoclusters encapsulated with alkali metals (Li, Na and K)

    Science.gov (United States)

    Tahmasebi, Elham; Shakerzadeh, Ehsan; Biglari, Zeinab

    2016-02-01

    Density functional theory (DFT) calculations have been carried out to study the influence of alkali metals (Li, Na and K) encapsulation within the group III nitrides (B12N12, Al12N12 and Ga12N12) and the group IV carbides (C24, Si12C12and Ge12C12) nanoclusters. The encapsulation of Li, Na and K atoms is found to narrow the HOMO-LUMO gaps of the considered clusters. The electronic properties of these clusters, especially the group III nitrides nanoclusters, are strongly sensitive to interaction with the alkali metals. Moreover it is observed that the encapsulation of alkali metals enhances the first hyperpolarizabilities of B12N12 nanocluster. Surprisingly, due to the alkali metals encapsulation within B12N12 nanocluster, the first hyperpolarizability values are remarkably increased to 8505.49 and 122,503.76 a.u. for Na@B12N12 and K@B12N12, respectively. Also the TD-DFT calculations at both CAM-B3LYP/6-311+G(d) and PBE0/6-311+G(d) levels of theory are also performed to investigate the origin of first hyperpolarizabilities.

  5. Long-range dispersion interactions. II. Alkali-metal and rare-gas atoms

    International Nuclear Information System (INIS)

    The dispersion coefficients for the van der Waals interactions between the rare gases Ne, Ar, Kr, and Xe and the low-lying states of Li, Na, K, and Rb are estimated using a combination of ab initio and semiempirical methods. The rare-gas oscillator strength distributions for the quadrupole and octupole transitions were derived by using high-quality calculations of rare-gas polarizabilities and dispersion coefficients to tune Hartree-Fock single-particle energies and expectation values

  6. Theoretical investigation of the interaction of cytosine and its tautomers with alkali metals

    International Nuclear Information System (INIS)

    Quantum-chemical calculations have been applied in order to explore the interaction of alkali metals (M=Li-Cs) with cytosine and its tautomers. The optimized geometries, harmonic vibrational frequencies, and the energies of cytosine, metallated cytosine, and its tautomers have been calculated. The calculations show that metallated cytosine is more stable than non metallated one. The stability of metallated cytosine decreases with the growth of atomic number of alkali metals. Estimated charge on the metals demonstrates that there is some covalency in the metal-ligand interaction, especially in the Li+ system

  7. Atomic many-body effects and Lamb shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2016-01-01

    We present a detailed study of the Flambaum-Ginges radiative potential method which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms, ions, and molecules over the range 10<=Z<=120, where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s, p, and d waves over the series of alkali atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s-wave shifts. It is shown th...

  8. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li+ + K, Na+ + K, K+ + K, and Rb+ + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG)

  9. Synthesis and crystal structure of alkali metal uranium sulfides, Li2US3 and Na2US3

    International Nuclear Information System (INIS)

    New mixed uranium sulfides, A2US3 (A=Li,Na), in which uranium is in a tetravalent state, have been synthesized. In the disordered state, the compounds are written as A(A1/3,U2/3)S2 which have a hexagonal (R anti 3m) structure the same as the lanthanide homologue, ALnS2 (Ln=trivalent lanthanides). In the ordered state, the compounds take on a monoclinic (C2/m) structure in which the atom arrangement is very close to the above hexagonal structure. The partial ordering is realized by the coexistence of the two phases. The lattice parameters of hexagonal Li2US3 are a=3.898 and c=18.391 A, while those of monoclinic Li2US3 are a=6.747, b=11.679, c=6.537 A and β=110.2 . The lattice parameters of hexagonal Na2US3 are a=4.036 and c=19.780 A. Those of monoclinic Na2US3 are a=6.990, b=12.105, c=6.992 A and β=109.5 . The molar ratios of the hexagonal and monoclinic phases are 52.2:47.8 for Li2US3 and 68.0:32.0 for Na2US3, respectively. The atom parameters of uranium and sulfur were obtained by Rietveld calculation of the observed X-ray peaks. The atom separations are discussed in relation to the crystal radii of the component ions. (orig.)

  10. Structural phase stability, electronic structure and mechanical properties of alkali metal hydrides AMH4 (A=Li, Na; M=B, AL)

    Science.gov (United States)

    Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.

  11. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  12. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ryabishchenkova, A. G., E-mail: ryaange@gmail.com; Otrokov, M. M.; Kuznetsov, V. M.; Chulkov, E. V. [Tomsk State University (Russian Federation)

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data.

  13. Alkali metal ionization detector

    Science.gov (United States)

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  14. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells

    Science.gov (United States)

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-02-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells.

  15. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells.

    Science.gov (United States)

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-01-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber(|)buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells. PMID:26916212

  16. The effects of correlation, relativity, exchange, channels coupling and polarization in scattering of electrons by alkali-metal atoms and alkali-like ions

    International Nuclear Information System (INIS)

    The present review briefly presents the growing experimental as well as theoretical interest in recent years in the effects of correlation, relativity, exchange, channels coupling and polarization on the high precision scattering of electron by alkali-metal atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Several sophisticated theoretical techniques have been developed for inclusion of the above mentioned effects which play an extremely important role in order to obtain results of high accuracy for understanding experimental observation of high precision. At present, we do not have a comprehensive and practical atomic scattering theory which accounts for all these effects on an equal footing. Future challenges and directions, in reliable electron-atom scattering calculations, have been discussed and suggested. (author). 136 refs, 16 figs

  17. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  18. Superconductivity in ternary iron pnictides: AFe2As2 (A = alkali metal) and LiFeAs

    International Nuclear Information System (INIS)

    Superconductivity is observed in AFe2As2 (A = Cs, Rb, K) at temperatures below 4 K. The metastable compound NaFe2As2 displays superconductivity with a high Tc=25K. These compounds are considered to be strongly hole-overdoped. The stoichiometric LiFeAs is superconducting below 18 K. The origin of superconductivity in LiFeAs is critically investigated and we show that Li deficiency cannot explain the experimental results. We propose that superconducting LiFeAs is stoichiometric and it is equivalent to the high-pressure state of other undoped iron pnictides.

  19. Hydrothermal alkali metal recovery process

    Science.gov (United States)

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  20. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  2. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO, or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity.

    Science.gov (United States)

    Nowiak, Grzegorz; Skurski, Piotr; Anusiewicz, Iwona

    2016-04-01

    The existence of a series of neutral triatomic metal oxides MON and their corresponding cations MON (+) (M = Be, Mg, Ca; N = Li, Na, K) was postulated and verified theoretically using ab initio methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(3df) level of theory. The calculations revealed that the vertical ionization potentials (IPs) of the MON radicals (calculated using the outer-valence Green's function technique (OVGF) with the 6-311+G(3df) basis set) were ca. 2-3 eV smaller than the IPs of the corresponding MO and NO systems or that of the isolated M atom. Population analysis of the neutral triatomic MON molecules and their corresponding MO counterparts indicated that the attachment of an alkali metal atom to any oxide MO (BeO, MgO, CaO) reverses its polarity, which manifests itself as the redirection of the dipole moment vector. PMID:26994021

  3. Modulation of the work function of fullerenes C60 and C70 by alkali-metal adsorption: A theoretical study

    International Nuclear Information System (INIS)

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C60 and C70 was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C60 and C70 decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C60 and C70. The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C60 and C70.

  4. A new route to the syntheses of alkali metal bis(fluorosulfuryl)imides: Crystal structure of LiN(SO2F)2

    Czech Academy of Sciences Publication Activity Database

    Beran, Martin; Příhoda, J.; Žák, Z.; Černík, M.

    2006-01-01

    Roč. 25, č. 6 (2006), s. 1292-1298. ISSN 0277-5387 Institutional research plan: CEZ:AV0Z40310501 Keywords : imido-bis( sulfuric acid ) difluoride * lithium bis(fluorosulfuryl)imide * alkali metal bis(fluorosulfuryl)imides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.843, year: 2006

  5. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    Science.gov (United States)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  6. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  7. Precision measurements of cross sections of inelastic processes realized in collisions of alkali metal ions with atoms of rare gases

    CERN Document Server

    Lomsadze, R A; Mosulishvili, N O; Kezerashvili, R Ya

    2015-01-01

    This work presents a multifaceted experimental study of collisions of Na$^{+}$ and K$^{+}$ ions in the energy range 0.5 -- 10 keV with He and Ar atoms. Absolute cross sections for charge-exchange, ionization, stripping and excitation were measured using a refined version of the transfer electric field method, angle- and energy-dependent collection of product ions, energy loss, and optical spectroscopy. The experimental data and the schematic correlation diagrams have been employed to analyze and determine the mechanisms for these processes.

  8. QED radiative corrections and many-body effects in atoms: the Uehling potential and shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2015-01-01

    We consider the largest (Uehling) contribution to the one-loop vacuum polarization correction to the binding energies in neutral alkali atoms, from Na through to the superheavy element E119. We use the relativistic Hartree-Fock method to demonstrate the importance of core relaxation effects. These effects are sizeable everywhere, though particularly important for orbitals with angular momentum quantum number l > 0. For d waves, the Uehling shift is enhanced by many orders of magnitude: for Cs the enhancement is more than four orders of magnitude and for the lighter alkali atoms it is even larger. We also study the effects of second- and higher-order many-body perturbation theory on the valence level shifts through inclusion of the correlation potential. The many-body enhancement mechanisms that operate in the case of the Uehling potential apply also to the case of the larger QED self-energy radiative corrections. The huge enhancement for d level shifts makes high-precision studies of transition frequencies in...

  9. Density dependence of the diffusion coefficient of alkali metals

    International Nuclear Information System (INIS)

    The effect of density on transport coefficients of liquid Li, Na and K at high temperatures using the method of Molecular Dynamics simulation has been studied. Simulation of these liquid alkali metals were carried out with 800 particles in simulation boxes with periodic boundary conditions imposed. In order to test the reliability of the interatomic potential used in the calculations, experimental data on the structural properties were compared with calculated results. The calculations showed a linear relationship between the density and the diffusion coefficient in all the systems investigated except in lithium, where, due to the small size of the atom, standard molecular dynamics simulation method may not be appropriate for calculating the properties of interest. (author)

  10. QED radiative corrections and many-body effects in atoms: vacuum polarization and binding energy shifts in alkali metals

    Science.gov (United States)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We calculate vacuum polarization corrections to the binding energies in neutral alkali atoms Na through to the superheavy element E119. We employ the relativistic Hartree–Fock method to demonstrate the importance of relaxation of the electronic core and the correlation potential method to study the effects of second and higher orders of perturbation theory. These many-body effects are sizeable for all orbitals, though particularly important for orbitals with angular momentum quantum number l\\gt 0. The orders of magnitude enhancement for d waves produces shifts that, for Rb and the heavier elements, are larger than those for p waves and only an order of magnitude smaller than the s-wave shifts. The many-body enhancement mechanisms that operate for vacuum polarization apply also to the larger self-energy corrections.

  11. Evidence of Production of Neutral Cl35 Atoms by the Cl35 (n, p)S35 Process in Alkali Metal Chlorides

    International Nuclear Information System (INIS)

    A number of investigations reported in the literature have shown that S35 produced by the Cl35 (n, p)S35 process in neutron-irradiated alkali metal halides may be separated as S= , SO=3 and SO=4 after the irradiated crystals are dissolved in aqueous solutions of the appropriate carriers. The relative amounts of the three chemical forms depend on the purity of the sample and the conditions of irradiation and analysis. Attempts to identify neutral S35 atoms among the products of the neutron irradiation have been limited by the fact that elemental sulphur is too insoluble to use as a carrier in aqueous solution and by the exchange and adsorption processes which interfere when heterogeneous extraction processes are used. However, we have observed chemical evidence for an S35 species with properties which might be expected for neutral monatomic sulphur. When vacuum-sublimed, neutron-irradiated KCl is dissolved in degassed 0.3N aqueous NaOH containing S=, SO=3 and SO=4 , analysis for the three species typically shows 90% of the S35 activity as S=, 7% as SO=3 and 3% as SO=4 . When an identical experiment is done in which the carriers are added to the 0.3N NaOH solution after adding the KCl the typical S35 yields are 30% S=, 30% SO3 and 40% SO=4. Thus some 60% of the S35 species found in the S=3 fraction when the KCl is dissolved in the presence of carriers is found as SO=4 and SO=3 when the carriers are added after dissolution of the KCl. Since monatomic sulphur is thermodynamically unstable in H2O with respect to oxidation (ΔF = -5900 kcal/mole for S + 4H2O → 3H2O → 3H2 + H2SO4), and since it would also be expected to exchange readily with S= carrier these results suggest that some 60% of the S35 may be present in the irradiated KCl crystals as neutral monatomic S. Similar evidence for neutral S35 atoms has been obtained from neutron-irradiated crystals of NaCl, RbCl and CsCl. The effects of S= carrier concentration at the time of dissolution and of gamma

  12. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  13. Corrosion by the Alkali Metals

    International Nuclear Information System (INIS)

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or

  14. Design of low work function materials using alkali metal-doped transition metal dichalcogenides

    Science.gov (United States)

    Kim, Sol; Lee, Man Young; Lee, Seong; Jhi, Seung-Hoon

    Engineering the work function is a key issue in surface science. Particularly, discovering the materials that have work functions less than 1eV is essential for efficient thermionic energy conversion. The lowest work function of materials, reported so far, is in a range of about 1eV. To design low work function materials, we chose MX2 (M =Mo and W; X =S, Se and Te) as substrates and alkali metals (Li, Na, K, Rb and Cs) as dopants, and studied their electronic structures, charge transfer, induced surface dipole moment, and work function using first-principles calculations. We found that the charge transfer from alkali metals to MX2 substrates decreases as the atomic radius of alkali metals increases. Regardless of the amount of the charge transfer, K on WTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. Also, we found a correlation between the binding distance and the work function.

  15. Electron Mean-Free Paths in the Alkali Metals

    OpenAIRE

    Wertheim, G.K.; Riffe, D. Mark; Smith, N.V.; Citrin, P. H.

    1992-01-01

    Photoemission data in which the signal from the first atomic layer is well resolved from that of the bulk are used to determine accurately the kinetic-energy dependence of the inelastic-electron mean free path in the alkali metals. At the higher kinetic energies, the data are in very good agreement with the theory of Penn. Below about 10 eV, the mean free path in the heavier alkali metals drops markedly below the theoretical values. This is attributed to electron decay processes involvi...

  16. Alkali-metal intercalation in carbon nanotubes

    Science.gov (United States)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  17. Structural models for alkali-metal complexes of polyacetylene

    Science.gov (United States)

    Murthy, N. S.; Shacklette, L. W.; Baughman, R. H.

    1990-02-01

    Structural models for a stage-2 complex are proposed for polyacetylene doped with less than about 0.1 potassium or rubidium atoms per carbon. These structures utilize as a basic motif an alkali-metal column surrounded by four planar-zig-zag polyacetylene chains, a structure found at the highest dopant levels. In the new stage-2 structures, each polyacetylene chain neighbors only one alkali-metal column, so the phase contains four polymer chains per alkali-metal column. Basic structural aspects for stage-1 and stage-2 structures are now established for both potassium- and rubidium-doped polyacetylene. X-ray-diffraction and electrochemical data show that undoped and doped phases coexist at low dopant concentrations (<0.06 K atom per C). X-ray-diffraction data, down to a Bragg spacing of 1.3 Å, for polyacetylene heavily doped with potassium (0.125-0.167 K atom per C) is fully consistent with our previously proposed stage-1 tetragonal unit cell containing two polyacetylene chains per alkali-metal column. There is no evidence for our samples requiring a distortion to a monoclinic unit cell as reported by others for heavily doped samples. The nature of structural transformations and the relationship between structure and electronic properties are discussed for potassium-doped polyacetylene.

  18. Synthesis and Structural Characterization of Alkali Metal Guanidinates

    Institute of Scientific and Technical Information of China (English)

    LUO,Yun-Jie; YAO,Ying-Ming; ZHANG,Yong; SHEN,Qi

    2007-01-01

    Reactions of 1,3-diisopropylcarbodiimide with alkali metal amides,MN(SiMe3)2(M=Li or Na)in hexane or THF produced the alkali metal guanidinates{(j-PrN)2C[N(SiMe3)2]Li}2(1)and{(i-PrN)2C[N(SiMe3)2]Na(THF)}2(2)in nearly quantitative yields.Both complexes 1 and 2 were well characterized by elemental analysis,IR spectra,1H and 13C NMR spectra,and X-ray diffraction.It was found that the guanidinates adopt different coordination modes in these complexes.

  19. Modification of alkali metals on silicon-based nanoclusters: An enhanced nonlinear optical response

    Science.gov (United States)

    Li, Xiaojun; Han, Quan; Yang, Xiaohui; Song, Ruijuan; Song, Limei

    2016-08-01

    Structures, chemical stabilities and nonlinear optical properties of alkali metals-adsorbed niobium-doped silicon (M@SinNb+) clusters are investigated using the DFT methods. The alkali metals prefer energetically to be attached as bridged bond rather than M-Si single bond in most of optimized structures. Adsorption of alkali metals on doped silicon clusters gradually enhances their chemical stabilities with increasing cluster size. Noteworthily, the first hyperpolarizabilities (βtot) of the M@SinNb+ clusters, obtained by using the long-range corrected CAM-B3LYP functional, are large enough to establish their strong nonlinear optical behavior, especially for M@Si9Nb+ (M = Li, Na, and K), and the enhanced βtot ordering by alkali metals is Na > K > Li.

  20. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  1. The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum

    OpenAIRE

    Previdello, B.; E. Machado; Varela, H.

    2014-01-01

    Non-covalent interactions between hydrated alkali metal cations and adsorbed oxygenated species on platinum might considerably inhibit some electrocatalytic reactions. We report in this communication the effect exerted by electrolyte alkali metal cations on the electro-oxidation of formate ions on platinum. The system was investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing Li+, Na+, or K+. As already observed for other systems, the ge...

  2. Gaussian-basis LDA and GGA calculations for alkali-metal equations of state

    International Nuclear Information System (INIS)

    Recently there has been renewed interest in implementations of density-functional theory for solids using various types of localized basis sets, including atom-centered Gaussian-type functions. While such methods are clearly well adapted to most insulating and semiconducting systems, one might expect them to give a less-than-optimal description of metals relative to plane-wave-type methods. Nevertheless, several successful applications of local-basis methods to metals have recently been reported. Here, we report an application of our Gaussian linear combination of atomic orbitals (LCAO) code to some extremely free-electron-like metals, namely, the alkali metals Li, Na, and K. In agreement with other calculations (both local and plane wave) we find that the local-density approximation (LDA) lattice constants are relatively poor (∼-3% from experiment for the alkali metals versus ±1% for many other solids) and that the LDA bulk moduli are ∼30% too high. We find that the Perdew-Burke-Enzerhof (PBE) version of the generalized-gradient approximation (GGA) corrects most of this error, in agreement with earlier calculations using similar GGA functionals. The Becke-Lee-Yang-Parr GGA functional gives similar results for the alkali-metal equations of state but is found to overcorrect the errors of the LDA for the cohesive energies, for which the PBE functional is in better agreement with experiment. Our results indicate that the Gaussian-LCAO method should be able to give accurate results for nearly any crystalline solid, since it succeeds even where it would be expected to have the most difficulty. copyright 1998 The American Physical Society

  3. The first pseudo-ternary thiocyanate containing two alkali metals. Synthesis and single-crystal structure of LiK{sub 2}[SCN]{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    A procedure was empirically developed to prepare the compound LiK{sub 2}[SCN]{sub 3}, which forms colorless, transparent, very fragile, and extremely hygroscopic thin rectangular plates. Its unique crystal structure was determined by single-crystal X-ray diffraction. LiK{sub 2}[SCN]{sub 3} adopts the orthorhombic space group Pna2{sub 1} (no. 33, Z = 4) with the cell parameters a = 1209.32(9), b = 950.85(9), and c = 849.95(6) pm.

  4. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF6 single crystals for thermal neutron detector

    Czech Academy of Sciences Publication Activity Database

    Wakahara, S.; Yanagida, T.; Yokota, Y.; Yamaji, A.; Pejchal, Jan; Fujimoto, Y.; Sugiyama, M.; Kurosawa, S.; Kawaguchi, N.; Fukuda, K.; Yoshikawa, A.

    2012-01-01

    Roč. 9, č. 12 (2012), s. 2235-2238. ISSN 1862-6351 Institutional research plan: CEZ:AV0Z10100521 Keywords : thermal neutron * scintillator material * LiSrAlF6 * scintillation yield Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Alkali Metal Complexes: Mixed Ligand Complexes of Some Alkali Metal Salts of Some Organic Acids with Isonitroso-PMethylace to phenone

    Directory of Open Access Journals (Sweden)

    O.P. Gupta

    2016-02-01

    Full Text Available A number of mixed ligand complexes of alkali metal salts of o-nitrophenol,2,4-dinitrophenol, 2,4,6,- trinitrophenol, 1-nitroso-2- naphthol and 8- hydroxyquinoline with Insoniroso–p methylacetopheone have been synthesized in absolute ethanol & characterized by elemental analysis and I .B. spectral data. Their I.R spectral data indicate the presence of hydrogen bonding in them, which many be one of the dominant factors of their stability. Further appreciable shift in 1650 cm-1 band (possibly vC=O and 1600 cm-1 band (possibly vC=NSuggests their coordination behavior in these mixed ligand complexes The reactions that take place in natural systems are highly specific and selective. Alkali metal ions actively participate in most of the reaction occurring in the biological systems, which are dominated by mixed ligand complexes. Studies of such mixed ligand complexes of alkali metals can threw light in understanding the role and mechanism of selective absorption of alkali metals ions by plants Coordinating ability of alkali metal with isonitrosoacetophenone1-2 and transition metals with isonitrosoacetophenone3 and isonitroso-p-methylacetophenone4 have been reported earlier. In the present paper we report the mixed ligand complexes of alkali metal salts having the general formula ML.HL, ‘ where M=Li, Na & K and L=deprotonated o- nitrophenol, 2,4 dinitrophenol, 2, 4, 6- trinitrophenol, 1-nitroso-2-naphthol or 8- hydroxquinoline; HL’= p -MeHINAP (isonitroso-p-methylacetophenone.

  6. Interaction of antiprotons with Rb atoms and a comparison of antiproton stopping powers of the atoms H, Li, Na, K, and Rb

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Fischer, Nicolas; Saenz, Alejandro

    Ionization and excitation cross sections as well as electron-energy spectra and stopping powers of the alkali metal atoms Li, Na, K, and Rb colliding with antiprotons were calculated using a time-dependent channel-coupling approach. An impact-energy range from 0.25 to 4000 keV was considered. The...... target atoms are treated as effective one-electron systems using a model potential. The results are compared with calculated cross sections for antiproton-hydrogen atom collisions....

  7. Quasiparticle electronic band structure of the alkali metal chalcogenides

    Directory of Open Access Journals (Sweden)

    S.V. Syrotyuk

    2015-09-01

    Full Text Available The electronic energy band spectra of the alkali metal chalcogenides M2A (M: Li, Na, K, Rb; A: O, S, Se, Te have been evaluated within the projector augmented waves (PAW approach by means of the ABINIT code. The Kohn-Sham single-particle states have been found in the GGA framework. Further, on the basis of these results the quasiparticle energies of electrons as well as the dielectric constants were obtained in the approximation GW. The calculations based on the Green's function have been originally done for all the considered M2A crystals, except Li2O.

  8. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  9. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  10. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  11. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    Science.gov (United States)

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  12. Crystal-structural study of zirconium chelates with alkali metals of composition A2[Zr(Nta)2]·xH2O (A=Li, Na, K, Rb, Cs or CH3H6)

    International Nuclear Information System (INIS)

    Some zirconium complexes with nitrile triacetate and with alkali metal in the external sphere were studied crystalostructurally. Packing of complexes and extra-sphere cations was studied. Plane or slightly corrugated anion layers of two essentially different types arranged according to the principle of trigonal and square grids represent the standard element of crystal structure. Water molecules are located both in anion and cation layers. CN and coordination polyhedron of cations are different even in case of stereotype nature of reasons of their location in the interlayer space. In Cs-, Rb- and K- compounds polyhedrons of alkali metal form specific doubled chains. These compounds are not isomorphous ones and are characterized by a specific way of water molecule location. Structure of sodium compound differs fundamentally from other ones. Ionic conductivity may be expected in crystals. 4 refs., 6 figs., 2 tabs

  13. Rydberg Matter clusters of alkali metal atoms: the link between meteoritic matter, polar mesosphere summer echoes (PMSE), sporadic sodium layers, polar mesospheric clouds (PMCs, NLCs), and ion chemistry

    CERN Document Server

    Olofson, Frans; Holmlid, Leif

    2010-01-01

    A material exists which links together the influx of meteoritic matter from interplanetary space, the polar mesosphere summer echoes (PMSE), the sporadic sodium layers, the polar mesospheric clouds (PMCs, NLCs), and the observed ion chemistry in the mesosphere. The evidence in these research fields is here analyzed and found to agree well with the properties of Rydberg Matter (RM). This material has been studied with numerous methods in the laboratory. Alkali atoms, mainly Na, reach the mesosphere in the form of interplanetary (meteoritic, cometary) dust. The planar RM clusters NaN usually contain N = 19, 37 or 61 atoms, and have the density of air at 90 km altitude where they float. The diameters of the clusters are 10-100 nm from laboratory high precision radio frequency spectroscopic studies. Such experiments show that RM clusters interact strongly with radar frequencies: this explains the radio frequency heating and reflection studies of PMSE layers. The clusters give the low temperature in the mesosphere...

  14. Phonon Dispersion Relations in Alkali Metals

    International Nuclear Information System (INIS)

    It has been shown in this paper that the phonon dispersion curves of sodium in the [100], [110] and [111] symmetry directions can be explained well on the basis of a simple model, where one has to consider only central force constants between nearest and next nearest neighbours. The tangential force constant between the nearest neighbours is very much smaller as compared to the radial force constant, while for the next nearest neighbours the radial and tangential force constants are comparable. The calculation is carried out on the basis of the model suggested by de Launay, where it is shown that the conduction electrons exert a volume force for longitudinal modes. The stiffness constant of the electron gas is its bulk modulus which in de Launay's model is equal to the Cauchy discrepancy (C12-C14) for the cubic crystals. The three force constants α1, α2 and α1' can be determined from the measured elastic constants and the secular equation can be solved to give the dispersion curves. The dispersion curves have also been obtained using the calculated values of the bulk modulus of the electron gas after considering not only the exchange and correlation energies but also the Fermi kinetic energy. These also agree fairly well with experiment. The measured elastic constants as well as calculated bulk modulus of the electron gas indicate that the Cauchy relation C12 = C44 holds good approximately in alkali metals. This result is rather surprising as it requires that the interaction between the atoms be central in nature in spite of the metallic binding. A justification for this has been given by Cochran. A model with four force constants is being worked out. They can be determined from the three elastic constants and calculated bulk modulus of the electron gas. (author)

  15. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  16. Thermochemistry of complex oxides of uranium(6), arsenic and alkali metals

    International Nuclear Information System (INIS)

    Standard reaction enthalpies for stoichiometric mixtures of mono-potassium orthoarsenate, uranium(6) and alkali metal nitrate oxides as well as mixtures of complex oxides of the M1AsUO6 (M1 = Li, Na, K, Rb, Cs) general formulas and potassium nitrate with hydrofluoric acid are determined in adiabatic calorimeter at the temperature of 298.15 K. Standard enthalpies for formation of complex oxides of uranium(6), arsenic and alkali metals at the temperature of 298.15 K are calculated by the obtained results. 8 refs., 1 tab

  17. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Volatilities of GaCl3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl3; their variation permits altering parameters of GaCl3 distillation from the salt melt in a wide range

  18. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  19. Magnetic control of ultra-cold $^6$Li and $^{174}$Yb($^3P_2$) atom mixtures with Feshbach resonances

    CERN Document Server

    Petrov, Alexander; Kotochigova, Svetlana

    2015-01-01

    We theoretically evaluate the feasibility to form magnetically-tunable Feshbach molecules in collisions between fermionic $^6$Li atoms and bosonic metastable $^{174}$Yb($^3$P$_2$) atoms. In contrast to the well-studied alkali-metal atom collisions, collisions with meta-stable atoms are highly anisotropic. Our first-principle coupled-channel calculation of these collisions reveals the existence of broad Feshbach resonances due to the combined effect of anisotropic-molecular and atomic-hyperfine interactions. In order to fit our predictions to the specific positions of experimentally-observed broad resonance structures \\cite{Deep2015} we optimized the shape of the short-range potentials by direct least-square fitting. This allowed us to identify the dominant resonance by its leading angular momentum quantum numbers and describe the role of collisional anisotropy in the creation and broadening of this and other resonances.

  20. Superconductivity in the alkali metal intercalates of molybdenum disulphide

    Science.gov (United States)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1972-01-01

    The complete series of alkali metals, lithium through cesium, have been intercalated into molybdenum disulphide, using both the liquid ammonia and vapor techniques. All the intercalates with the exception of lithium yielded full superconducting transitions with onset temperatures of 6 K for AxMoS2(Ax=K,Rb,Cs) and 4 K for BxMoS2(Bx=Li,Na). The superconducting transition for lithium was incomplete down to 1.5 K. Stoichiometries and unit cell parameters have been determined for the intercalation compounds. Both rhombohedral and hexagonal polymorphs of MoS2 have been intercalated and found to exhibit the same superconductivity behavior. The nature of the extraneous superconducting transition of some intercalated samples on exposure to air was elucidated.

  1. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  2. Superconductivity in alkali metal intercalated iron selenides.

    Science.gov (United States)

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  3. Superconductivity in alkali metal intercalated iron selenides

    Science.gov (United States)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  4. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-10-01

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed. PMID:26331776

  5. Conductometric determination of dissociation constants of alkali metal monopyrocatechinborates in alcohols

    International Nuclear Information System (INIS)

    Dissociation constants of alkali metal monopyrocatechinborates of Me[(C6H4O2)B(OH)2]xnH2O (Me = Na+, Li+) composition are determined using conductometric method based on equivalent electric conductivity values, in methanol and ethanol at 25 deg C. Dissociation constants of weak electrolytes are calculated by the Fuoss-Kraus method. Conditions of Valden raw action are determined which connects concentrations with permittivity of medium

  6. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    Science.gov (United States)

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies. PMID:26925968

  7. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations

    OpenAIRE

    Wang, Zhaohui; Ratvik, Arne Petter; Grande, Tor; Selbach, Sverre Magnus

    2015-01-01

    Diffusion of alkali metal cations in the first stage graphite intercalation compounds (GIC) LiC6, NaC6, NaC8 and KC8 has been investigated with density functional theory (DFT) calculations using the optPBE-vdW van der Waals functional. The formation energies of alkali vacancies, interstitials and Frenkel defects were calculated and vacancies were found to be the dominating point defects. The diffusion coefficients of the alkali metals in GIC were evaluated by a hopping model of point defects ...

  8. Study on alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20-40%), high power densities (1 W/cm2), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported. (J.P.N.) 79 refs

  9. Equation of state for solid rare gases and alkali metals under pressure

    Science.gov (United States)

    Bonnet, Pierre

    2016-07-01

    This investigation is based on an atomic equation of state which takes into account the excluded volume of the atom being considered. Study of solid rare gases allows following the packing factor of the solid in equilibrium with the gas at different temperatures and of the solid and the liquid in the case of solid-liquid equilibria. The application of a pressure to the solid up to 9800 MPa allows determining the decrease in atomic volume and thus the compressibility. Such a study leads to proposing a new expression through dividing the pressure derivative (as a function of the excluded volume) by the pressure. This new coefficient is a pressure-independent constant but varies with the atom considered. Multiplied by the initial atomic volume, this coefficient has a unique value for all the rare gases. Furthermore, this is also true for the series of alkali metals with however a lower value of the coefficient. The atomic configurations of the two series are very different with one free electron for the alkali metals but closed shells for the rare gases. The alkali metals are therefore more complex than the rare gases. It is worthwhile to note that study of the equilibrium has not required the use of the principles of thermodynamics.

  10. Corrosion in alkali metal/molybdenum heat pipes

    International Nuclear Information System (INIS)

    Molybdenum/sodium (Mo/Na) and molybdenum/lithium (Mo/Li) heat pipes have been operated for long periods of time in a study of their resistance to failure by alkali metal corrosion. Some Mo/Na heat pipes have operated over 20,600 h at 1400 K without failure, while at least one similar heat pipe failed in less than 14 hours at 1435 K. Detailed post-mortem analyses which have been performed on three failed Mo/Na heat pipes all indicated impurity controlled corrosion of their evaporators. Impurities observed to be transported included carbon, oxygen, and silicon. A Mo/Li heat pipe that failed after 25,216 h of operation at 1700 K was also examined in detail. This failure was due to nickel impurities being transported to the evaporator resulting in perforation of the container tube by the formation of a low melting Mo-Ni alloy. Theoretical thermochemical calculations were conducted for these systems with the objective of corroborating the corrosion mechanisms in both types of heat pipes. The results of these calculations are in general agreement with the observed corrosion a phenomena

  11. Phase behaviour and thermodynamics of poly(1,4-phenylene ether sulphone) and poly(ethylene oxide)/alkali-metal salt complex blends: a thermal analysis study

    International Nuclear Information System (INIS)

    The phase behaviour and thermodynamics of poly(1,4-phenylene ether sulfone) (PES) and poly(ethylene oxide) (PEO)/alkali-metal salt complex blends were investigated by means of differential scanning calorimetry (DSC) and modulated DSC (MDSC). Experimental results show that the blend systems remain miscible after incorporating various alkali-metal salts: CF3SO3Li, CF3SO3Na and CF3SO3K. The cloud point temperature strongly depended on the Li (Na or K)/O ratio in the PES-PEO/alkali-metal salt complex blends. With increasing the Li+ (Na+ or K+)/O ratio, the phase diagram of the PES-PEO/alkali-metal salt complex blends tended to be symmetrical. When Li+/O = 0.02, the lower critical solution temperature (LCST) of the PES-PEO/CF3SO3Li complex blends was located at the 30/70 PES/PEO composition. The mixing enthalpy decreased in the PES-PEO/alkali-metal salt complex blends with increasing Li+ (Na+ or K+)/O ratio. The radius of ion has significant influence on the phase behaviour of PES/PEO blends. MDSC results showed that the change of heat capacity at the temperature of the binodal phase separation is similar to that of a melt transition in semi-crystalline polymers, which confirms the mechanism of binodal phase separation: nucleation and growth

  12. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    Science.gov (United States)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  13. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  14. Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution.

    Science.gov (United States)

    Jeliński, Tomasz; Cysewski, Piotr

    2016-06-01

    Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution. Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space. PMID:27178415

  15. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    In aqueous solutions, the alkali metals ions, Li+, Na+, K+, Rb+ and Cs+ are known to be associated with a number of H2O molecules. Traditionally, a distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and...... a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different...... necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique of...

  16. Ab initio GW quasiparticle calculation of small alkali-metal clusters

    International Nuclear Information System (INIS)

    Quasiparticle energies of small alkali-metal clusters are evaluated from first principles by means of the GW approximation with the generalized plasmon-pole model. An all-electron mixed-basis approach, in which wave function is represented as a linear combination of both plane waves and atomic orbitals, is adopted in the calculation. Obtained quasiparticle energies (ionization potential and electron affinity) are in good agreement with experimental data

  17. Effect of radiation trapping on the polarization of an optically pumped alkali-metal vapor

    International Nuclear Information System (INIS)

    Calculations are presented of the limitations imposed by radiation trapping on the electron spin polarization produced in an alkali-metal vapor by optical pumping in a large magnetic field. It is found that electron spin polarizations of 90% are possible with Na densities up to 1019 atoms/m3 and ground-level relaxation times of 150 μs in a large magnetic field using a cylindrical geometry of radius 7.5 x 10-3 m

  18. Ab initio GW quasiparticle calculation of small alkali-metal clusters

    CERN Document Server

    Ishii, S; Louie, S G; Ohno, K

    2001-01-01

    Quasiparticle energies of small alkali-metal clusters are evaluated from first principles by means of the GW approximation with the generalized plasmon-pole model. An all-electron mixed-basis approach, in which wave function is represented as a linear combination of both plane waves and atomic orbitals, is adopted in the calculation. Obtained quasiparticle energies (ionization potential and electron affinity) are in good agreement with experimental data.

  19. Long range interactions between alkali and alkaline-earth atoms

    CERN Document Server

    Jiang, Jun; Mitroy, J

    2013-01-01

    Dispersion coefficients between the alkali metal atoms (Li-Rb) and alkaline-earth metal atoms (Be-Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low lying excited state.

  20. Fundamental study on alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina is a device to convert heat energy to electric energy directly. In this paper, the results of theoretical and experimental studies on AMTEC power generating characteristics, internal electrical resistances of single cell, and system analysis of AMTEC power generating systems are reported. This paper consists of 5 chapters, which are summarized as follows: In chapter 1, a theoretical explanation of AMTEC, a brief survey of the research and development history of AMTEC and a purpose of this paper are reported. In chapter 2, the properties of β''-alumina, preparations of thin film electrodes, and special attention points to be paid in handling of β''-alumina and film electrodes are reported. The AMTEC power generating characteristics of the tubular cells are also reported. In chapter 3, the experimental results of the disk type cells and the theoretical considerations about internal resistances are reported. The causes of electrode erosion are also reported. In chapter 4, the system analysis on AMTEC steam-turbine combined cycle for a dispersed power station and AMTEC power system for a aerospace power are reported. Chapter 5 summarizes major results achieved in the preceding four chapters as a concluding remark. (J.P.N.) 62 refs

  1. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  2. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.; Nielsen, M.; Feidenhans'l, R. Falkenberg; Johnson, R.L.; Gierer, M.; Seitsonen, A.P.; Kleine, H.; Bludau, H.; Over, H.; Kim, S.K.; Jona, F.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society......The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...

  3. Hartree-Fock ground-state properties for the group 1 alkali metals and the group 11 noble metals

    International Nuclear Information System (INIS)

    In order to use wavefunction-based correlation methods in solids it is necessary to have reliable Hartree-Fock results for the infinite system of interest. Therefore we performed Hartree-Fock calculations for the group 1 alkali metals (Li to Cs) and group 11 noble metals (Cu, Ag and Au). We optimized a basis set of valence-double-ζ quality for the periodic system. For the lighter atoms all-electron basis sets are applied, whereas for the heavier atoms small-core pseudopotentials with the corresponding basis sets were used to deal with the scalar-relativistic effects. We determine the cohesive energy, the lattice constant and the bulk modulus of the systems at the Hartree-Fock level. We use the counterpoise correction for the free atom to minimize the basis set superposition error occurring for finite basis sets. The effects due to the counterpoise correction not only for the cohesive energy but also for the lattice structure and bulk modulus are discussed in detail

  4. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  5. Surface tension of molten alkali metal halides as a function of ion sizes

    International Nuclear Information System (INIS)

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  6. A hexagonal structure for alkali-metal doped poly (p-phenylene)

    Science.gov (United States)

    Murthy, N. S.; Baughman, R. H.; Shacklette, L. W.; Fark, H.; Fink, J.

    1991-05-01

    An hexagonal structure (space group p overline62m, a = 8.6 Å) is proposed for sodium-doped poly(p-phenylene), PPP. The diffraction pattern calculated using only one freely adjustable parameter (the distance between the alkali-metal column and the polymer backbone) is in good agreement with the observed electron diffraction patterns. A similar structure ( a = 9.2 Å) is also suggested by diffraction data for potassium-doped PPP. This hexagonal structure is analogous to that reported for sodium-doped poly(p-phenylene vinylene), lithium-doped polyacetylene, and sodium-doped polyacetylene. The three chain per column arrangement provides a fundamental structural motif which maximizes the coordination of the negatively charged carbon atoms with both the alkali metal ions and the hydrogens, and maximizes interchain, intercolumn, and hydrogen to alkali-metal separations. The size of the dopant-ion relative to the cross-sectional dimensions of the host polymer determines whether the dopant-ion columns are formed in triangular (three chain per column) or tetragonal (four chain per column) channels.

  7. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity. PMID:27185388

  8. Heat transfer characteristics of alkali metals flowing across tube banks

    International Nuclear Information System (INIS)

    For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)

  9. Electrothermal atomic absorption spectrometric determination of lithium, sodium, potassium and copper in uranium without preliminary chemical separation

    International Nuclear Information System (INIS)

    Graphite furnace atomization is used for the direct determination of Li (0.25-4 ppm), Na (8-70 ppm), K (20-300 ppm) and Cu (0.5-25 ppm) in uranium dissolved in nitric acid, with relative standard deviations of 4-9%. Only iron seriously depresses the signals from the alkali metals. (Auth.)

  10. Phase behaviour and thermodynamics of poly(1,4-phenylene ether sulphone) and poly(ethylene oxide)/alkali-metal salt complex blends: a thermal analysis study

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J. [Institute of Polymer Technology and Materials Engineering, Loughborough University, Loughborough LE113TU (United Kingdom); Song, M. [Institute of Polymer Technology and Materials Engineering, Loughborough University, Loughborough LE113TU (United Kingdom)]. E-mail: m.song@lboro.ac.uk

    2005-02-01

    The phase behaviour and thermodynamics of poly(1,4-phenylene ether sulfone) (PES) and poly(ethylene oxide) (PEO)/alkali-metal salt complex blends were investigated by means of differential scanning calorimetry (DSC) and modulated DSC (MDSC). Experimental results show that the blend systems remain miscible after incorporating various alkali-metal salts: CF{sub 3}SO{sub 3}Li, CF{sub 3}SO{sub 3}Na and CF{sub 3}SO{sub 3}K. The cloud point temperature strongly depended on the Li (Na or K)/O ratio in the PES-PEO/alkali-metal salt complex blends. With increasing the Li{sup +} (Na{sup +} or K{sup +})/O ratio, the phase diagram of the PES-PEO/alkali-metal salt complex blends tended to be symmetrical. When Li{sup +}/O = 0.02, the lower critical solution temperature (LCST) of the PES-PEO/CF{sub 3}SO{sub 3}Li complex blends was located at the 30/70 PES/PEO composition. The mixing enthalpy decreased in the PES-PEO/alkali-metal salt complex blends with increasing Li{sup +} (Na{sup +} or K{sup +})/O ratio. The radius of ion has significant influence on the phase behaviour of PES/PEO blends. MDSC results showed that the change of heat capacity at the temperature of the binodal phase separation is similar to that of a melt transition in semi-crystalline polymers, which confirms the mechanism of binodal phase separation: nucleation and growth.

  11. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  12. An equation of state for alkali metals

    Science.gov (United States)

    Arafin, Sayyadul; Singh, Ram N.

    2016-04-01

    Semi-empirical equations of state based on Lindemann's law have been developed to determine the pressure (P) dependence of the melting temperature (Tm) of Li, K, Rb and Cs. The basic inputs are Grüneisen parameter and the bulk modulus. Tm-P variations exhibit maximum melting temperature with concave downwards. The maximum in Tm for Cs is found to occur at pressure of 2.2 GPa whereas for Li, K and Rb it falls in the range of 7-9.5 GPa. The predicted values of Tm as a function of pressure, based on the present empirical relation, fit quite well with the available experimental data. The empirical relation can also be used to extrapolate Tm at higher pressure from the values available at lower pressures.

  13. Alkali Metal Control over N–N Cleavage in Iron Complexes

    OpenAIRE

    Grubel, Katarzyna; Brennessel, William W.; Mercado, Brandon Q.; Holland, Patrick L.

    2014-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N...

  14. Reasons for different solubility of alkali metal chlorides in cadmium nitrate solutions

    International Nuclear Information System (INIS)

    Maximum solubility of MCl salts (M=Li, Na, K, Cs) in solutions of cadmium nitrate and perchlorate of different concentration was measured in detail for studying the reason for different solubility of alkali metal chlorides in aqueous solutions of cadmium nitrate with concentration of 0.9 and 4.1 mol/l. It is shown that in the framework of phenomenological model of the solutions concentrated solutions of salts forming several crystallohydrates can be considered as a system of mixed solvents. In this case, preferable interaction of LiCl and CsCl with the Cd(NO3)2·9H2O type solvent, while NaCl and KCl - with the Cd(NO3)2·4H2O type solvent can be mentioned

  15. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  16. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  17. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    Prasenjit Sen

    2010-04-01

    Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.

  18. Apparatus for use in a liquid alkali metal environment

    International Nuclear Information System (INIS)

    Apparatus is described for use in a liquid alkali metal environment consisting of components having complementary bearing surfaces in which one of the components has a bearing surface of stainless steel and another of the components has an aluminised complementary bearing surface. Examples are given of the use of the invention in heat exchange apparatus in liquid metal cooled fast breeder reactors; one example is in connection with the fuel subassembly in such a reactor. (U.K.)

  19. The structure of metallic complexes of polyacetylene with alkali metals

    Science.gov (United States)

    Baughman, R. H.; Murthy, N. S.; Miller, G. G.

    1983-07-01

    The crystal structures of sodium, potassium, rubidium, and cesium doped polyacetylene have been determined using crystal packing and x-ray diffraction analyses. Each of these metallic complexes is tetragonal, with the polyacetylene chains forming a host lattice in which the alkali metal ions are present in channels. Lithium appears to be too small to stabilize the channel structure and an amorphous structure is observed. Predicted unit cell parameters and x-ray diffraction intensities are in agreement with observed values. Similarities with the alkali metal doped graphite suggest that hybridization between carbon pz orbitals and metal s orbitals occurs. Such hybridization is expected to result in a high conductivity component normal to the chain direction. On the other hand, direct overlap between polymer chains appears small, since alkali metal columns separate polymer chains. Compositions calculated for the channel structures (from meridional diffraction spacings, the intensity of equatorial diffraction lines, measured volume expansion, and distances in model complexes) all range from y=0.12 to 0.18 for (CHMy)x, where M is sodium, potassium, rubidium, or cesium.

  20. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Science.gov (United States)

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  1. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  2. Transport properties of alkali metal doped fullerides

    International Nuclear Information System (INIS)

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity

  3. Transport properties of alkali metal doped fullerides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Daluram, E-mail: daluramyadav@gmail.com; Yadav, Nishchhal, E-mail: somyadav@gmail.com [School of studies in Physics, Vikram University, Ujjain (M.P) India (India)

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  4. Coordination polymers based on diiron tetrakis(dithiolato) bridged by alkali metals, electrical bistability around room temperature, and strong antiferromagnetic coupling.

    Science.gov (United States)

    Benmansour, Samia; Delgado, Esther; Gómez-García, Carlos J; Hernández, Diego; Hernández, Elisa; Martin, Avelino; Perles, Josefina; Zamora, Félix

    2015-03-01

    Coordination polymer chains have been formed by the direct reaction between HSC6H2Cl2SH and FeCl3·6H2O in the presence of an aqueous solution of the corresponding alkali-metal hydroxide (M = Li, Na, and K) or carbonate (M = Rb and Cs). The structures consist of dimeric [Fe2(SC6H2Cl2S)4](2-) entities bridged by [M2(THF)4] [M = K (1), Rb (2), and Cs (3); THF = tetrahydrofuran] or {[Na2(μ-H2O)2(THF)2] (5 and 5') units. The smaller size of the lithium atom yields an anion/cation ion-pair molecule, [Li(THF)4]2[Fe2(SC6H2Cl2S)4] (4), in which the dianionic moieties are held together by Cl···Cl interactions. Electrical characterization of these compounds shows a general semiconductor behavior in which the conductivity and activation energies are mainly determined by the M-Cl and M-S bond distances. Compounds 1 and 5' are interesting examples of bistability showing reversible transitions centered at ca. 350 and 290 K with very large hysteresis of ca. 60 and 35 K, respectively. All of these compounds exhibit intradimer strong antiferromagnetic Fe···Fe interactions. PMID:25667965

  5. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca2+, Li+, Na+, NH4+) at concentrations up to 25 mM. This......We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  6. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  7. Chemical compatibility of structural materials in alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L.; Haglund, R. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments.

  8. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance.

    Science.gov (United States)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-19

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior. PMID:27109698

  9. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  10. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  11. Luminescence properties of alkali metal ions sensitized CaFCl:Tb3+ nanophosphors

    Institute of Scientific and Technical Information of China (English)

    林林; 林慧; 王哲哲; 郑标; 谌基兴; 徐森元; 冯卓宏; 郑志强

    2015-01-01

    A series of CaFCl:Tb3+ and CaFCl:Tb3+,A+ (A=Li, Na and K) nanophosphors were synthesized by the one-step sol-gel method, which were reported for the first time. The sample consisted of monodisperse particles, the average size of which was 37 nm. The emissions of Tb3+ ions and oxygen defects OF? were demonstrated in the CaFCl:Tb3+ samples. The former was made up of sev-eral peaks at 488, 545, 587 and 623 nm, ascribed to5D4→7FJ (J=6–3) transitions of Tb3+ ions. The latter was shown as a broad band peaked at about 450 nm. Alkali metal ions A+(A=Li, Na and K) were introduced asthe charge compensators to improve the lumines-cence of samples. The influence of charge compensators on the emissions of Tb3+ ions and oxygen defects OF? was investigated by the measurement of fluorescence spectra and luminescence decay curves. The results indicated that all the charge compensators weakened the defects emission. Furthermore, Li+ ion was the best charge compensator, because it not only reduced the defects emis-sion but also increased the emission intensity of Tb3+ significantly. Our results suggested that this nanophosphor sensitized by the charge compensator might broaden potential applications of rare-earth doped CaFCl.

  12. Transport properties derived from ion-atom collisions: 6Li-6Li+ and 6Li-7Li+ Cases

    Science.gov (United States)

    Bouledroua, Moncef; Bouchelaghem, Fouzia; LPR Team

    2014-10-01

    This investigation treats quantum-mechanically the ion- atom collisions and computes the transport coefficients, such as the coefficients of mobility and diffusion. For the case of lithium, the calculations start by determining the gerade and ungerade potential curves through which ionic lithium approaches ground lithium. Then, by considering the isotopic effects and nuclear spins, the elastic and charge-transfer cross sections are calculated for the case of 6Li+and7Li+ colliding with 6Li. Finally, the temperature-dependent diffusion and mobility coefficients are analyzed, and the results are contrasted with those obtained from literature. The main results of this work have been recently published in. This work has been realized within the frames of the CNEPRU Project D01120110036 of the Algerian Ministry of Higher Education.

  13. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides

    Czech Academy of Sciences Publication Activity Database

    Lochmann, Lubomír; Janata, Miroslav

    2014-01-01

    Roč. 12, č. 5 (2014), s. 537-548. ISSN 1895-1066 R&D Projects: GA ČR GAP106/12/0844 Institutional support: RVO:61389013 Keywords : superbases * heavier alkali metal compounds * lithium -heavier alkali metal interchange Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.329, year: 2013

  14. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  15. Synthesis, structure peculiarities and electric conductivity of alkali metal-rare earth silicates (germanates)

    International Nuclear Information System (INIS)

    The process of obtaining of rare earth-alkali metal silicates (germanates) is studied. The analysis of possibilities of structural disordering of alkaline cations in these structures is given. The interaction of the structure of different by the composition alkali alkali metal - rare earth silicates with electric conductivity values is shown

  16. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  17. Ion-exchange behavior of alkali metals on treated carbons

    International Nuclear Information System (INIS)

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature

  18. Alkali metal thermoelectric conversion (AMTEC) technology status review

    International Nuclear Information System (INIS)

    The Alkali Metal Thermoelectric Converter (AMTEC) or sodium heat engine has been the subject of experimental and systems investigations to assess its potential and feasibility for several space and terrestrial power applications. AMTEC is a thermally regenerative electrochemical system operating between a high temperature reservoir at 900-1400K and a sodium condenser at 400-BOOK. Its operation is based on the sodium ion conductor beta-alumina solid electrolyte(BASE), where thermal to electric conversion efficiencies of 20-40% have been predicted for practical systems. Other AMTEC characteristics that make it attractive for space applications are compactness, light weight, no moving parts, modularity and long lifetime potential. This paper reviews AMTEC operating principles and technical challenges, reports on recent electrode research results, and summarizes the status of AMTEC device experiments at JPL and elsewhere. Also, updated projections for AMTEC space nuclear power system characteristics is presented

  19. Relativistic optimized effective potential method-application to alkali metals.

    Science.gov (United States)

    Ködderitzsch, D; Ebert, H; Akai, H; Engel, E

    2009-02-11

    We present a relativistic formulation of the optimized effective potential method (ROEP) and its implementation within the Korringa-Kohn-Rostoker multiple scattering formalism. The scheme is an all-electron approach, treating core and band states formally on the same footing. We use exact exchange (EXX) as an approximation to the exchange correlation functional. Numerical four-component wavefunctions for the description of core and valence electrons and the corresponding ingredients of the ROEP integral equation are employed. The exact exchange expression for the valence states is reformulated in terms of the electronic Green's function that in turn is evaluated by making use of multiple scattering formalism. We present and discuss the application of the formalism to non-magnetic alkali metals. PMID:21715911

  20. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  1. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  2. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  3. H- and D- production by backscattering from alkali-metal targets

    International Nuclear Information System (INIS)

    Measurements have been made of the total backscattered D- and H- yields from thick, clean targets of Cs, Rb, K, Na, and Li, bombarded with H+2, H+3, D+2, D+3 with incident energies from 0.15 to 4.0 keV/nucleus. All of the measurements were made at background pressures less than 10-9 Torr, and the alkali-metal targets were evaporated onto a cold substrate (Tapprox.77 K) in situ to assure thick, uncontaminated targets. For each target, the H- and D- yields exhibited maxima (as high as 0.08 per incident proton or deuteron) at incident energies between 0.3 and 1.4 keV/nucleus. For both hydrogen and deuterium incident at any energy, the negative-ion yield decreases in going form Cs to Li in the order given above. Also, a definite isotope effect was observed for every target used, with the H- yield peaking at a lower incident energy than the D- yield and in most cases, the maximum H- yield was higher than the maximum D- yield. Measurements of the D- yield as a function of Cs coverage were also made for D3/sup ts+/ bombarding a Ni substrate. The D- yield maximized at or near the coverage at which the surface work function reached a minimum

  4. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-01

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. PMID:27136376

  5. Synthesis and luminescence of high-brightness Gd2O2SO4:Tb3+ nanopieces and the enhanced luminescence by alkali metal ions co-doping

    International Nuclear Information System (INIS)

    Gd2O2SO4:Tb3+ nanopieces were synthesized by a combined approach of electrospinning and calcination at 1000 °C in mixed gas of sulfur dioxide and air. The nanopieces excited by a 230 nm light showed excellent green luminescence with the strongest emission peak at 545 nm due to the 5D4→7F5 transition of Tb3+. Interestingly, the intensity of emission peak at 545 nm of Gd2O2SO4:Tb3+ nanopieces exhibited about two times stronger than that of the bulk Gd2O2SO4:Tb3+ at the same doping concentrations of Tb3+. Besides, the effects of alkali metal ions doping on the luminescence of the nanopieces have been examined. The emission intensities were further enhanced by alkali metal ions doping, especially for Gd2O2SO4:Tb3+/Li+. The optimal doping concentration of Li+ was 7%. -- Highlights: •Gd2O2SO4:Tb3+ nanopieces were prepared via electrospinning followed by calcination. •A comparison between the nanopieces and the bulk was conducted. •The effects of alkali metal ions on the luminescence of nanopieces are examined. •The content of co-dopant in nanopieces is optimized. •The potential applications of the nanopieces and the facile method are suggested

  6. Charge transfer activation energy for alkali atoms on Re and Ta

    Science.gov (United States)

    Gładyszewski, Longin

    1993-09-01

    Ion and atom desorption energies for five alkali metals on Re and Ta were determined using the ion thermal emission noise method. The activation energies for the charge transfer process in the adsorbed state were calculated using a special energetic balance equation, which describes the surface ionization and thermal desorption effect. Energies for desorption of Li, Na, K, Rb and Cs from Re and Ta surfaces were determined by measuring the time autocorrelation function of the ion thermoemission current fluctuations.

  7. Effect of Li atoms in solid solution on recrystallization and texture development in model Al-0.8%Li alloy

    International Nuclear Information System (INIS)

    In this work the influence of Li atoms in solid solution on plastic deformation, recrystallization and texture development in model Al-0.8%Li alloy was investigated. It was stated that Li atoms lead to shear band formation during cold rolling. Moreover, in compare with traditional aluminium alloys, the interactions between grain boundaries and Li atoms causes a continuous recrystallization and the formation of a different texture. (author)

  8. Effect of Li atoms in solid solution on recrystallization and texture development in model Al-0.8%Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska, M.; Mizera, J.; Wawrzykowski, J.W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    1995-12-31

    In this work the influence of Li atoms in solid solution on plastic deformation, recrystallization and texture development in model Al-0.8%Li alloy was investigated. It was stated that Li atoms lead to shear band formation during cold rolling. Moreover, in compare with traditional aluminium alloys, the interactions between grain boundaries and Li atoms causes a continuous recrystallization and the formation of a different texture. (author). 6 refs, 6 figs.

  9. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    Science.gov (United States)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and

  10. Synthesis and properties of alkali metal intercalated fullerene-like MS2 (M=W,Mo) nanoparticles

    International Nuclear Information System (INIS)

    Layered metal disulfides - MoS2 and WS2 in the form of fullerene-like (IF) nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). X-ray powder diffraction (XRD) analysis and transmission electron microscopy (TEM) of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 Aa) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. The modifications in magnetic and transport properties of the intercalated materials were investigated, and are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Restacking of the MS2 layers after prolonged exposure to the atmosphere and recovery of the pristine compound properties were observed as a result of deintercalation of the metal atoms

  11. Stability of alkali-metal hydrides: effects of n-type doping

    Science.gov (United States)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  12. Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A microwave plasma torch(MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0.8 and 1.0 L/min, respectively. The HCl concentration in the solution was 0.02 mol/L. The observation height was 9.0 mm. The detection limits of Li, Na, K, Rb, and Cs were 0.0003, 0.0004, 0.009, 0.07 and2.4 mg/L, respectively, and the results obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.

  13. Second virial coefficients and viscosity property of monatomic alkali-metal gases

    International Nuclear Information System (INIS)

    In this work, we have calculated the second virial coefficients B2 of monatomic lithium, sodium, and potassium gases by using the most recent 1Σg+ and 3Σu+ Rydberg-Klein-Rees interatomic potentials. We have also determined the viscosity η and thermal conductivity λ coefficients of the alkali-metal vapors as a function of the temperature T. The results we have found of the collision integrals and of the coefficients η and λ agree quite well with some available experimental data. Besides, we have investigated the variation law with temperature T of the above thermophysical quantities. For temperatures ranging from 100 K to 3,000 K, the results can be reproduced by simple formulas η(T)=ATα and λ(T)=BTα, where for T in Kelvin, η in micropoise, and λ in 10-3 W·m-1·K-1, for lithium Li:A=0.314, B=0.1398, and α=0.863; for sodium Na:A=0.624, B=0.0846, and α=0.827; for potassium K:A=0.400, B=0.0320, and α=0.883. (author)

  14. Study on the electrode characteristics of alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter utilizing the sodium ion conducting β''-alumina is a device to convert directly heat energy to electric energy. It is characterized by high conversion efficiencies, high power densities, no moving parts and low maintenance requirements. Because of these merits, AMTEC is one of the most promising candidate for aerospace power systems, remote power station and dispersed small scale power station. In this paper, the experimental results of the disk type cell and the theoretical considerations about internal resistances have been reported. The film electrode was made with a magnetron sputtering system. The open voltage of 0.98 V and the maximum power density of 0.38 W/cm2 at the sodium temperature of 1,073 K have been obtained. It became clear after the theoretical investigation on the internal resistance that the most largest internal resistance was the resistance of β''-alumina. And so, it is necessary to reduce the thickness of β''-alumina to improve the generating power densities. It was also clarified that the sodium gas flow in the small holes of molybdenum thin film electrode was a free molecular flow and the experimental results became agree well with the theoretical results considering the pressure rise due to this sodium free molecular flow. It was also necessary to develop the more porous and lower resistivity thin film electrodes because this pressure rise were fairly large. (author)

  15. Superconductivity of graphite intercalation compounds with alkali-metal amalgams

    International Nuclear Information System (INIS)

    Superconductivity of the alkali-metal amalgam graphite intercalation compounds of stage 1 (C4KHg, C4RbHg) and stage 2 (C8KHg, C8RbHg) has been studied as well as that of the pristine amalgams (KHg, RbHg). The transition temperatures are 0.73, 0.99, 1.90, and 1.40 K for C4KHg, C4RbHg, C8KHg, and C8RbHg, respectively. The critical-field anisotropy ratio H/sup parallel//sub c/2/H/sup perpendicular//sub c/2 is about 10 for the stage 1 and about 15 to 40 for the stage 2. It is argued that electrons in the intercalant bands rather than the graphitic bands play the main role in the superconductivity. An interesting feature is that the stage-2 compound, which has a lower density of states at the Fermi level, has a higher transition temperature than the corresponding state-1 compound

  16. Experimental and theoretical determinations of the absolute ionization cross section of alkali metals by electron impact in the energy range from 100 to 2000 eV

    International Nuclear Information System (INIS)

    The absolute electron impact ionization cross sections for the alkali metals in the energy range between 100 eV and 2000 eV were measured by the non-modulated crossed beam technique. The neutral beam of alkali atoms is produced by a Knudsen cell and crossed at right angles with the electron beam. The ions formed are collected on a plate and their intensity determined with a D.C. amplifier. The neutral beam is condensed on a cold trap cooled with liquid nitrogen, this temperature being much lower than that required to obtain total condensation. The amount of metal deposited is measured by the isotopic dilution technique and by atomic absorption, and the density of the atoms in the neutral beam is calculated. The total absolute ionization cross sections can then be determined. All possible errors have been carefully analyzed and their magnitudes estimated. The absolute ionization cross section for Li at an energy of 500 eV is: QLi = 0,358 x 10-16 cm2. This value is half of that obtained by Mac Farland and Kinney. The partial ionization cross sections for the singly and multiply charged ions is determined with a mass spectrometer attached to this apparatus. For the singly charged ions, the variation of the cross section with the energy of the ionizing electrons is in agreement with the optically allowed transition law: Q = A log BE/E. From the variation of Q with E, the squared matrix elements of the transition moment (|Mi|)2 are determined for all the elements studied. New calculations of the ionization cross section of Li and Na were performed in the framework of the Born-Bethe approximation as modified by Gaudin and Botter to take into account collisions with large momentum variation of the incident electron. Hartree-Fock type wave functions for the ground state atom (tabulated by Clementi) were used. The calculated values are in good agreement with our experimental results and with the former theoretical results calculated by various methods. This work also

  17. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  18. Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research

    Directory of Open Access Journals (Sweden)

    E. Garrone

    2002-07-01

    Full Text Available Abstract: When adsorbed (at a low temperature on alkali-metal-exchanged zeolites, CO forms both M(CO+ and M(OC+ carbonyl species with the extra-framework alkali-metal cation of the zeolite. Both quantum chemical and experimental results show that C-bondend adducts are characterized by a C−O stretching IR band at a frequency higher than that of 2143 cm-1 for free CO, while for O-bonded adducts this IR band appears below 2143 cm-1. The cation-CO interaction energy is higher for M(CO+ than for M(OC+ carbonyls, although the corresponding difference decreases substantially when going from Li+ to Cs+. By means of variable-temperature FTIR spectroscopy, this energy difference was determined for several alkali-metal cations, and the existence of a thermal equilibrium between M(CO+ and M(OC+ species was established. The current state of research in this field is reviewed here, with a view to gain more insight into the thermal isomerization process.

  19. On the hyperfine structures of the ground state(s) in the ${}^{6}$Li and ${}^{7}$Li atoms

    CERN Document Server

    Frolov, Alexei M

    2016-01-01

    Hyperfine structure of the ground $2^{2}S-$states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus we determine the hyperfine structure of the ground (doublet) $2^{2}S-$state(s) in the ${}^{6}$Li and ${}^{7}$Li atoms.

  20. Near-infrared luminescence enhancing by introducing alkali metal ions in Sr2CeO4:Yb3+

    International Nuclear Information System (INIS)

    NIR luminescence phosphors Sr2CeO4:Yb3+, M+ (M+=Li+, Na+, K+) were synthesized by conventional solid-state method in the present paper. The prepared phosphors are characterized by XRD and fluorescence spectrometer. Under UV light excitation, the NIR emission intensity of Yb3+:2F5/2→2F7/2 around 1 μm of Sr2CeO4:Yb3+ is strengthened significantly by introducing appropriate alkali metal cations dopants (Li+, Na+, K+) into the crystalline lattice. The relevant mechanisms have been discussed in detail. The peculiar optical properties make Sr2CeO4:Yb3+, M+ (M+=Li+, Na+, K+) promising for potential application in the high efficiency silicon-based solar cells. -- Highlights: • Pure orthorhombic Sr2CeO4:Yb3+, M+ (M+=Li+, Na+, K+) were successfully synthesized. • The structural and photoluminescence of these samples were characterized by XRD and fluorescence spectrometer. • The effect of Li+/Na+/K+ on the properties of samples had been researched and the relevant mechanisms have been discussed in detail. • These NIR materials could have potential application in the high efficiency silicon-based solar cells

  1. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  2. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  3. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al2O3 substrates indicated polycrystalline films with a LiAlO2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  4. Ultracold spin-polarized mixtures of 2Sigma molecules with S-state atoms: Collisional stability and implications for sympathetic cooling

    CERN Document Server

    Tscherbul, T V; Buchachenko, A A

    2011-01-01

    The prospects of sympathetic cooling of polar molecules with magnetically co-trapped alkali-metal atoms are generally considered poor due to strongly anisotropic atom-molecule interactions leading to large spin relaxation rates. Using rigorous quantum scattering calculations based on ab initio interaction potentials, we show that inelastic spin relaxation in low-temperature collisions of CaH(2Sigma) molecules with Li and Mg atoms occurs at a slow rate despite the strongly anisotropic interactions. This unexpected result, which we rationalize using multichannel quantum defect theory, opens up the possibility of sympathetic cooling of polar 2Sigma molecules with alkali-metal and alkaline-earth atoms in a magnetic trap.

  5. On metal oxide solubilities in some molten alkali metal bromides at T = 973 K

    International Nuclear Information System (INIS)

    Highlights: • Solubility products of MeO oxides in KBr–NaBr and KBr–LiBr eutectics are presented. • Correlation between radius of cation entering in oxide and its solubility is found. • Melt acidity increases in CsBr − KBr → KBr − NaBr → KBr − LiBr sequence. • The common oxoacidity scale of alkali metal chlorides and bromides is constructed. - Abstract: Reactions of Me2+ cations with O2− in molten (KBr + NaBr) (0.5:0.5) and (KBr + LiBr) (0.4:0.6) mixtures at T = 973 K were studied by potentiometric titration method using Pt(O2)|ZrO2(Y2O3) indicator electrode. In the former melt, the set of cations available for investigation was wide enough (Me = Sr, Ca, Mn, Co, Ni and Pb) and the corresponding solubility product indices (pKs,MeO, molalities) were found to be (3.81 ± 0.3) (SrO), (5.00 ± 0.3) (CaO), (7.85 ± 0.3) (MnO), (8.80 ± 0.1) (CoO), (9.72 ± 0.04) (NiO) and (5.20 ± 0.3) (PbO). A correlation between pKs,MeO and the polarisation action of the metal cation by Goldschmidt (ZerMe2+-2) was obtained. The oxide solubilities on the mole fraction scale were shown to be close to those obtained in molten (KCl + NaCl) equimolar mixture. On the basis of the solubility data the oxobasicity index (primary medium effect for oxide ion) for the (KBr + NaBr) melt was estimated as pI{KBr–LiBr} = −0.24. Due to considerable oxoacidic properties of Li+ cation in the molten (KBr + LiBr) eutectic, it was possible to study only three from the above cations (Me = Mn, Co and Ni) and their pKs,MeO values were (4.36 ± 0.2), (5.19 ± 0.05) and (6.25 ± 0.03), respectively. Comparison with the corresponding data for (KBr + NaBr) equimolar mixture showed that the Li+-based melt dissolved all the studied oxides in more extent. On the basis of the data obtained, the oxobasicity index value pI{KBr−LiBr} was estimated as (3.01 ± 0.5), that was close to the similar parameter of the chloride analogue (KCl + LiCl) (3.36). The change of the constituent anion of the

  6. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge and...

  7. Charge oscillations and structure for alkali-metal-doped polyacetylene

    Science.gov (United States)

    Baughman, R. H.; Murthy, N. S.; Eckhardt, H.; Kertesz, M.

    1992-11-01

    predictions for oligomers, and good agreement is obtained between calculated and observed x-ray photoelectron spectra for sodium-doped polyacetylene. Emphasis is placed on the results of crystallographic studies of alkali-metal-doped polyacetylene and on the relationship between the experimentally derived symmetry breaking in interchain packing and the molecular symmetry breaking predicted by theory. Since presently available experimental data are insufficient for complete determination of structure, the present theoretical results can be useful for refinements in the interpretation of these data, as well as for refined crystal-packing calculations.

  8. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  9. M@B40 (M = Li, Na, K) serving as a potential promising novel NLO nanomaterial

    Science.gov (United States)

    Shakerzadeh, Ehsan; Biglari, Zeinab; Tahmasebi, Elham

    2016-06-01

    Density functional theory (DFT) calculations have carried out to investigate the nonlinear optical response of the B40 fullerene by interaction with the alkali metals (Li, Na, K). The results reveal that the interacted fullerenes are energetically favorable. The B40 electronic properties are strongly sensitive to the interaction with the alkali metals. Furthermore, the adsorption of the alkali metals over the B40 hexagonal ring remarkably enhances the first hyperpolarizability up to 23111.72 a.u. Therefore, the B40 fullerene interacted with the alkali metals could be introduced as a promising innovative nonlinear optical boron-based nanomaterial.

  10. Quantum phase transition and entanglement in Li atom system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.

  11. Atomic resolution of Lithium Ions in LiCoO

    Energy Technology Data Exchange (ETDEWEB)

    Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, Chris; O' Keefe, Michael A.

    2003-03-18

    LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices such as laptop computers. Lithium arrangements in the CoO2 framework have a profound effect on the structural stability and electrochemical properties of LixCoO2 (0 < x < 1), however, probing lithium ions has been difficult using traditional X-ray and neutron diffraction techniques. Here we have succeeded in simultaneously resolving columns of cobalt, oxygen, and lithium atoms in layered LiCoO2 battery material using experimental focal series of LiCoO2 images obtained at sub-Angstrom resolution in a mid-voltage transmission electron microscope. Lithium atoms are the smallest and lightest metal atoms, and scatter electrons only very weakly. We believe our observations of lithium to be the first by electron microscopy, and that they show promise to direct visualization of the ordering of lithium and vacancy in LixCoO2.

  12. Phosphorus-containing podands. 9. Synthesis of oligoethylene glycol bis(diphenylphospinylethyl) esters and their complexing properties with respect to alkali metal cations in a low-polarity solvent

    International Nuclear Information System (INIS)

    The complexing ability of phosphoryl-containing monopodands with the general formula Ph2P(O)CH2CH2O(CH2CH2O)nCH2CH2P(O)Ph2 (n = 0-5, 6.4, 8.7, 13.2) with respect to alkali metal cations was investigated conductometrically in tetrahydrofuran:chloroform mixed solvent (4:1, vol.) at 25 degrees C. It was found that ligands of this type are efficient complexing agents relative to all alkali metal cations, and the monopodand with n = 0 also exhibits elevated Li/Na and Li/K selectivity. The effect of the structure, particularly the rigidity of the terminal fragments of the monopodands, on their complexing capacity was discussed. The method of synthesis of this type of ligand was described. 12 refs., 1 fig., 3 tabs

  13. Ionic conduction in alkali metal doped ZnFe/sub 2/O/sub 4/ compound

    International Nuclear Information System (INIS)

    Zinc ferric oxide (ZnFe/sub 2/O/sub 4/) has been synthesized by liquid phase chemical reaction from aqueous mixture of zinc chloride and ferric chloride in sodium hydroxide (4N) solution and effect of alkali metal on electrical characteristics was explored. The well characterized powder was pressed into pellets and dried at 80 degree C. Samples with alkali metal concentrations 10-100 ppm have been investigated to I-V measurements. The conductivity of pure compound (10-/sub 2/omega-cm)/sup-1/) lies in the semiconductor range but due to alkali metal doping the compound shows ionic conduction at room temperature. The ionic conduction is found to be increased as the dopant concentration increases.(author)

  14. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting of...... all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile...

  15. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10-4 T-(1.67-10-4T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10-4T-(0.71x10-4T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  16. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    Science.gov (United States)

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand. PMID:24336897

  17. A stochastic optimization method based technique for finding out reaction paths in noble gas clusters perturbed by alkali metal ions

    International Nuclear Information System (INIS)

    Graphical abstract: The structure of a minimum in Ar19K+ cluster. Abstract: In this paper we explore the possibility of using stochastic optimizers, namely simulated annealing (SA) in locating critical points (global minima, local minima and first order saddle points) in Argon noble gas clusters perturbed by alkali metal ions namely sodium and potassium. The atomic interaction potential is the Lennard Jones potential. We also try to see if a continuous transformation in geometry during the search process can lead to a realization of a kind of minimum energy path (MEP) for transformation from one minimum geometry to another through a transition state (first order saddle point). We try our recipe for three sizes of clusters, namely (Ar)16M+, (Ar)19M+ and (Ar)24M+, where M+ is Na+ and K+.

  18. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  19. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2 SiMe3 )2 and the heavier alkali-metal alkyls M(CH2 SiMe3 ) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2 SiMe3 )3 ] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2 SiMe3 )3 ⋅C6 H6 }2 ] (2) and [{NaMn(CH2 SiMe3 )3 }2 (dioxane)7 ] (5); and to more complex supramolecular networks [{NaMn(CH2 SiMe3 )3 }∞ ] (1) and [{Na2 Mn2 (CH2 SiMe3 )6 (DABCO)2 }∞ ] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6 K2 Mn2 (CH2 SiMe3 )4 (O(CH2 )2 OCH=CH2 )2 }∞ ] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways. PMID:26916525

  20. Ultracold chemistry with alkali-metal-rare-earth molecules

    CERN Document Server

    Makrides, C; Pradhan, G B; Petrov, A; Kendrick, B K; González-Lezana, T; Balakrishnan, N; Kotochigova, S

    2014-01-01

    A first principles study of the dynamics of $^6$Li($^{2}$S) + $^6$Li$^{174}$Yb($^2\\Sigma^+$)$ \\to ^6$Li$_2(^1\\Sigma^+$) + $^{174}$Yb($^1$S) reaction is presented at cold and ultracold temperatures. The computations involve determination and analytic fitting of a three-dimensional potential energy surface for the Li$_2$Yb system and quantum dynamics calculations of varying complexities, ranging from exact quantum dynamics within the close-coupling scheme, to statistical quantum treatment, and universal models. It is demonstrated that the two simplified methods yield zero-temperature limiting reaction rate coefficients in reasonable agreement with the full close-coupling calculations. The effect of the three-body term in the interaction potential is explored by comparing quantum dynamics results from a pairwise potential that neglects the three-body term to that derived from the full interaction potential. Inclusion of the three-body term in the close-coupling calculations was found to reduce the limiting rate ...

  1. Sorption selectivity of alkali metal ions in polymer inclusion ion exchange membranes

    International Nuclear Information System (INIS)

    Sorption selectivity of different alkali metal ions in polymer inclusion cation exchange membranes has been studied. The concentration of the metal ions were measured using neutron activation analysis. The results show the selectivity of polymer inclusion membranes for metal ions in the order Na++++. The trend have been explained in terms of the radius of the hydrated metal ion. (author)

  2. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  3. Low-polarity electrolytes on the base of crown ether complexes with alkali metal ions

    International Nuclear Information System (INIS)

    New low-polar electrolytes on the basis of 15-crown-5 complexes with alkali metal (lithium, sodium) ions in solvent characterized by low dielectrical permittivity: benzene, toluene, ethylene glycol dimethyl ether, tetrahydrofuran and methylene chloride, characterized by specific electrical permittivity equal to 10-5-10-2 Ohm-1·cm-1, are suggested and studied. 15 refs., 2 figs.,

  4. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  5. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The gas-phase structures of alkali-metal cationized glutamine are investigated by using both infrared multiple photon dissociation (TRMPD) action spectroscopy, utilizing light generated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent with gl

  6. Unidirectional thermal expansion in KZnB3O6: role of alkali metals.

    Science.gov (United States)

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Zhang, Han; Jin, Shifeng; Chen, Xiaolong

    2015-12-14

    The driving force of the unidirectional thermal expansion in KZnB3O6 has been studied experimentally and theoretically. Our results show that the low-energy vibrational modes of alkali metals play a crucial role in this unusual thermal behavior. PMID:26515521

  7. Mechanism of alkali metal insertion into TiO2 polymorphs

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Lásková, Barbora; Kavan, Ladislav

    Toulouse: Phantoms Foundation, 2015. s. 139-139. [TNT2015. Trends in Nanotechnology /16./. 07.09.2015-11.09.2015, Toulouse] R&D Projects: GA ČR GA13-07724S; GA ČR(CZ) GA15-06511S Institutional support: RVO:61388955 Keywords : TiO2 * alkali metal insertion Subject RIV: CG - Electrochemistry

  8. Alkali metal insertion into TiO2 polymorphs for battery applications

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Pitňa Lásková, Barbora; Kavan, Ladislav

    Dubai: EMN Dubai, 2016. s. 13-14. [EMN Dubai Meeting. Energy Materials Nanotechnology . 01.04.2016-04.04.2016, Dubai] R&D Projects: GA ČR GA15-06511S Institutional support: RVO:61388955 Keywords : TiO2 polymorphs * alkali metal insertion * LTO Subject RIV: CG - Electrochemistry

  9. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B36N36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B36N36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li6B36N36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li6B36N36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  10. The interaction of atoms with LiF(001) revisited

    CERN Document Server

    Miraglia, J E

    2016-01-01

    Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as non-local electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of an onion approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known non-local functionals for the kinetic, exchange and correlation terms. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included in an analogous fashion. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell - He, Ne, Ar, Kr, and Xe - and open-shell - N, S, and Cl - atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the...

  11. Interactions of alkali metals and electrolyte with cathode carbons

    Energy Technology Data Exchange (ETDEWEB)

    Naas, Tyke

    1997-12-31

    The Hall-Heroult process for electrolytic reduction of alumina has been the only commercial process for production of primary aluminium. The process runs at high temperature and it is important to minimize the energy consumption. To save energy it is desirable to reduce the operating temperature. This can be achieved by adding suitable additives such as LiF or KF to the cryolitic electrolyte. This may conflict with the objective of extending the lifetime of the cathode linings of the cell as much as possible. The thesis investigates this possibility and the nature of the interactions involved. It supports the hypothesis that LiF-additions to the Hall-Heroult cell electrolyte is beneficial to the carbon cathode performance because the diminished sodium activity reduces the sodium induced stresses during the initial period of electrolysis. The use of KF as an additive is more dangerous, but the results indicate that additions up to 5% KF may be tolerated in acidic melts with semigraphitic or graphitic cathodes with little risk of cathode problems. 153 refs., 94 figs., 30 tabs.

  12. Near-threshold photodetachment of heavy alkali-metal anions

    International Nuclear Information System (INIS)

    We calculate near-threshold photodetachment cross sections for Rb-, Cs-, and Fr- using the Pauli equation method with a model potential describing the effective electron-atom interaction. Parameters of the model potential are fitted to reproduce ab initio scattering phase shifts obtained from Dirac R-matrix calculations. Special care is taken to formulate the boundary conditions near the atomic nucleus for solving the Pauli equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We find a 3P1o resonance contribution to the photodetachment cross section of Rb-, Cs-, and Fr- ions. Our calculated total photodetachment cross sections for Cs agree with experiments after tuning the resonance position by 2.4 meV. For Rb- and Fr- the resonance contribution is much smaller than for Cs. We therefore also provide angle-differential cross sections and asymmetry parameters which are much more sensitive to the resonant contribution than total cross sections

  13. Atomic structure and one-dimensional ionic conductivity of LiB3O5

    International Nuclear Information System (INIS)

    X-ray diffraction and electrophysical investigations into lithium triborate (LiB3O5) are presented. Specification of the atomic model is performed using the least square method in the full-matrix variant with regard to the atom thermal oscillation anisotropy in harmonic approximation. The results of investigations conducted allow one to conclude that conductivity in LiB3O5 is conditioned by Li+ ion mobility

  14. FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Khachai, H; Haddou, A; Rached, D; Soudini, B [Applied Materials Laboratory (AML), Electronics Department, University of Sidi-bel-Abbes, Sidi-bel-Abbes 22000 (Algeria); Khenata, R; Amrani, B [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, Setif 19000 (Algeria); Reshak, Ali H [Institute of Physical Biology, South Bohemia University, Nove Hrady 373 33 (Czech Republic)], E-mail: khenata_rabah@yahoo.fr, E-mail: a_bouhemadou@yahoo.fr

    2009-03-04

    The electronic and optical properties of M{sub 2}S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the {gamma} point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions {epsilon}{sub 2}({omega}) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

  15. Solubility of some phenolic compounds in aqueous alkali metal nitrate solutions from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO3 and NaNO3) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC (ΔtrG0) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive ΔtrG0 value which is mainly of enthalpic origin

  16. Hydration to the poly(oxyethylene) derivative complexes of alkali metal ions and barium ion in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    A series of poly(oxyethylene) derivatives (POE compound) complexes of alkali metal and barium ions were extracted into 1,2-dichloroethane (1,2-DCE) by forming ion-pairs with picrate ion. Water molecules were coextracted into 1,2-DCE with the ion-pairs. The mean number of water molecules bound to the POE compound, XH2O,S, and its complex, XH2O,comp, in water saturated with 1,2-DCE was determined by means of aquametry. The XH2O,S value increases with the increase in the number of the oxyethylene units (EO unit) of the POE compound. The XH2O,comp value decreases in the order Li+>Na+>K+≅Rb+≅Cs+ in any POE compound systems, and increases with the number of EO units of the POE compounds for a given metal ion. These results are interpreted by the hypothesis that the water molecules bound to the complex are those hydrated to the central metal ion, and the hydrated metal ion is surrounded by the EO chain with a helical conformation in the complex. The large number of water molecules are coordinating to the lithium ion complexes and bring about a serious distortion in the helical structure of the complexes. Because of the ion-pair formation with two picrate ions, the XH2O,comp values of barium ion complexes are smaller than those of potassium ion complexes. (author)

  17. FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure

    International Nuclear Information System (INIS)

    The electronic and optical properties of M2S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the Γ point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions ε2(ω) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

  18. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  19. Enrichment of hydrogen isotopes while decomposition of alkali metal amalgams (Preprint No. CA-11)

    International Nuclear Information System (INIS)

    Sodium amalgam was prepared by electrolyzing caustic soda solution in a cell with flowing mercury as cathode. On decomposition of amalgam with aqueous sodium hydroxide solution in a denuder column packed with graphite pieces, the resultant hydrogen gas was depleted in deuterium. The alkali solution was enriched in deuterium content. The separation of the isotopes of some amalgam forming metals while decomposition of the amalgam of these metals with water has already been described. The separation is due to differential reaction rates of alkali metal amalgams with water containing light and heavy isotopes of hydrogen. However in the present investigation, the separation factor obtained is considerably higher than earlier reported due to possible chemical exchange between resultant hydrogen and the alkali metal hydroxide in presence of graphite surface and/or exchange of water with nascent hydrogen catalysed by OH- ions. (author). 18 refs., 3 tabs., 1 fig

  20. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  1. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Mousazadeh, M.H., E-mail: mmousazadeh@aeoi.org.ir [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of); Faramarzi, E. [Department of Physical Chemistry, School of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Maleki, Z. [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of)

    2010-11-20

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, {sigma}, and segment energy, {epsilon}. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  2. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    International Nuclear Information System (INIS)

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article

  3. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  4. Dimensional Reduction in Bose-Condensed Alkali-Metal Vapors

    OpenAIRE

    Salasnich, L.; Parola, A.; Reatto, L.

    2004-01-01

    We investigate the effects of dimensional reduction in atomic Bose-Einstein condensates (BECs) induced by a strong harmonic confinement in the cylindric radial direction or in the cylindric axial direction. The former case corresponds to a transition from 3D to 1D in cigar-shaped BECs, while the latter case corresponds to a transition from 3D to 2D in disc-shaped BECs. We analyze the first sound velocity in axially-homogeneous cigar-shaped BECs and in radially-homogeneous disc-shaped BECs. We...

  5. 气相中碱金属离子与丝氨酸、亮氨酸和赖氨酸五肽复合物的裂解反应%Fragmentation Reactions of Complexes of Alkali Metal Ions with Pentaserine, Pentaleucine and Pentalysine in Gas Phase

    Institute of Scientific and Technical Information of China (English)

    魏王慧; 王青; 储艳秋; 汪日志; 丁传凡

    2014-01-01

    为了探索金属离子对含有不同侧链的多肽气相解离的影响,采用质谱法研究了碱金属离子Li+, Na+, K+, Rb+和Cs+分别与丝氨酸、亮氨酸和赖氨酸五肽(分别简写为S5, L5和K5)形成的复合物的裂解反应.质谱定性结果表明,5种碱金属离子均可以在气相中与丝氨酸、亮氨酸和赖氨酸五肽形成配合比为1:1和2:1的非共价复合物;竞争反应结果表明,随着碱金属离子半径的增加,它们与3种五肽的结合能力逐渐减弱.质谱定量结果表明, K+与丝氨酸、亮氨酸和赖氨酸五肽复合物的结合常数分别为8.94×104,2.83×104和2.50×103 L/mol,表明K+与五肽复合物的结合强度按照丝氨酸、亮氨酸和赖氨酸的顺序依次减小.含不同侧链碱金属离子-五肽复合物的碰撞诱导解离结果表明,复合物的碎裂主要发生在骨架上,丝氨酸五肽复合物最易碎裂,亮氨酸五肽复合物其次,赖氨酸五肽复合物则较难碎裂,且3种复合物的侧链断裂情况也呈现明显差异.此外,研究了Na+与亮氨酸五肽复合物所产生的碎片离子,分析了不同离子之间的来源关系,并以Dunbar的复合物理论模型为依据,推测在碎裂过程中,碱金属离子可能向五肽的碳端或氮端偏移.质谱碎片分析结果表明,在2:1的非共价复合物中,第一个碱金属离子与五肽上4个酰胺键的羰基结合,第二个碱金属离子与五肽的羧基氧原子结合.%For exploring the effects of alkali metal ions on the dissociations of peptides with different side chains in the gas phase, the complexes of Li+, Na+, K+, Rb+ and Cs+ with pentapeptides, Ser-Ser-Ser-Ser-Ser( S5 ) , Leu-Leu-Leu-Leu-Leu ( L5 ) and Lys-Lys-Lys-Lys-Lys ( K5 ) , were chosen to investigate the frag-mentation reaction pathways by mass spectrometry. The experimental results indicated that alkali metal ions and S5, L5, K5 can form 1:1 and 2:1 non-covalent complexes in the gas phase, and the binding

  6. Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure

    OpenAIRE

    Udvardi, Laszlo; Szabo, Gyorgy

    1995-01-01

    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centered-cubic structure assuming the electric charge of alkali ions residing in either octahedral or tetrahedral interstitial sites is completely screened by the first-neighbor C_60 molecules. This approximation allows us to derive an effective ion-ion interaction. The van der Waals interaction between the ion and C_60 molecule is characterized by introducing an additional energy at the ...

  7. Characterization of the conduction properties of alkali metal ion conducting solid electrolytes using thermoelectric measurements

    OpenAIRE

    Gautam, Devendraprakash

    2006-01-01

    Under certain circumstances the electronic conductivity of the solid electrolyte may play a pivotal role for the behaviour of a solid state galvanic cell. Quantitatively, the extent of the electronic conductivity is expressed by the electronic conduction parameters, a and a, that denote the alkali metal activities at which the n and p-type electronic conductivities, respectively, of the electrolyte are equal to its ionic conductivity. Previous findings demonstrated the existen...

  8. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  9. Alkali Metal Modification of Silica Gel-Based Stationary Phase in Gas Chromatography

    OpenAIRE

    Ashraf Yehia El-Naggar

    2013-01-01

    Modification of the precipitated silica gel was done by treatment with alkali metal (NaCl) before and after calcination. The silica surfaces before and after modification were confirmed by infrared spectroscopy in order to observe the strength and abundance of the acidic surface OH group bands which play an important role in the adsorption properties of polar and nonpolar solutes. The surface-modified silica gels were tested as GC solid stationary phases in terms of the separation efficiency ...

  10. Electrohydrodynamic emission of positive and negative ions from alkali-metal halide melts

    International Nuclear Information System (INIS)

    The characteristics of electrohydrodynamic (EHD) emission of positive and negative ions from melts of alkali-metal metals are presented. The angular current density is 3-4 μA/sr with emission currents of 0.1-0.5 μA. The salt EHD sources which have been developed yield stable currents of K+, Rb+, Cs+, F-, Cl-, and I- ions for several tens of hours. 10 refs., 4 figs., 1 tab

  11. Active-alkali metal promoted reductive desulfurization of dibenzothiophene and its hindered analogues

    OpenAIRE

    Pittalis, Mario; Azzena, Ugo Gavino; Carraro, Massimo; Pisano, Luisa

    2013-01-01

    Reductive desulfurisation of organic compounds is of importance both in organic synthesis and in industry. Benzo- and dibenzothiophenes are between the most abundant sulphur containing impurities in crude oils, and their desulfurization is a mandatory issue in the production of non polluting fuels. Following our interest in the development of efficient alkali metal-mediated synthetic procedures and alternative protocols for the chemical transformation of widespread environmental contaminants ...

  12. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  13. Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy

    Science.gov (United States)

    Rani, Babita; Jindal, V. K.; Dharamvir, Keya

    2016-08-01

    We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates. Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene.

  14. Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: NaAlH4 and LiAlH4

    International Nuclear Information System (INIS)

    Research highlights: → Catalytic effect of fullerenes on the reversible hydrogen storage → Hydrogen storage properties of alkali metal hydrides and fullerene mix forming nanocomposites → Novel ways of intercalating Na and Li atoms into C60 → Destabilization of hydrides → Potential to enable the formation of other high capacity hydrogen storage materials - Abstract: Carbonaceous nanomaterials utilized as scaffolds, catalysts, and additives in conjunction with complex metal hydrides have shown remarkable hydrogen sorption properties. Our studies have confirmed fullerene-C60 is an excellent catalyst for temperature induced hydrogen desorption for both NaAlH4 and LiAlH4. Fullerene-containing complex metal hydride composites comprised of fullerene-C60 with NaAlH4 or LiAlH4 desorbed hydrogen at elevated temperature and go onto form alkali metal fullerides and aluminum metal as final products. The as-prepared composites exhibit rapid hydrogen desorption at onset temperatures of 130 deg. C and 150 deg. C, and released hydrogen content of 5.9 and 2.2 wt.% (LiAlH4 and NaAlH4, respectively) relative to the composite. The resultant alkali metal fulleride containing composites have been characterized and are capable of reversible hydrogen storage. A series of desorption/absorption experiments on the Na-C60 and Li-C60 based composites demonstrate a 1.5 wt.% and a 1.2 wt.% reversible capacity, respectively. The complex metal hydride-C60 systems were characterized by PCT, XRD, FT-IR, and TGA-RGA and demonstrate the formation of fulleride material similar to traditional hydrofullerenes which appear to be responsible for the observed reversible hydrogen storage.

  15. Electronic structure of alkali metal hydrides on data of cluster calculations by LCAO MO SCF CNDO

    International Nuclear Information System (INIS)

    The results of quantum-chemical study in where by M = Li, Na, K, Rb and Cs, are presented. The calculation expresses the expected electron density distributions in hydrides on the hydrogen and metal atoms as well as the energy characteristics: M-H, M-M and compounds binding energies. The latter ones qualitatively correlate with the binding energies of LiH-CsH compounds. The calculated values for the Fermi energy and the width of the forbidden zone at the Fermi level make it possible to suppose that the ideally formed lithium hydride crystal will be characterized by the highest electrical resistance. It is established that quantum-chemical characteristics of the MH hydrides structure change nonmonotonously by transfer from Li to Cs

  16. Efficiency enhancement of organic light-emitting diodes with an oxygen-plasma-treated ITO substrate and an electron-injection layer of alkali-metal carbonates

    International Nuclear Information System (INIS)

    The efficiency enhancement of organic light-emitting diodes with an oxygen-plasma-treated substrate and an electron-injection layer of alkali-metal carbonates (Li2CO3 and Cs2CO3) was studied. The Li2CO3 and the Cs2CO3 carbonates were thermally evaporated to a thickness of 1 nm. For the device with a Li2CO3 layer, the luminance at 9.25 V of the device with the plasma-treated ITO substrate was found to be improved by approximately 10% compared to that of the device with the plasma-untreated ITO substrate, and the maximum luminance driving voltage was lowered by 1.0 V. For the device with a Cs2CO3 layer, the luminance at 11.25 V of the device with the oxygen plasma-treated ITO substrate was found to be improved by approximately 42.3% compared to that of the device with plasma-untreated ITO substrate, and the maximum luminance driving voltage was lowered by 1.25 V. Especially, the luminous efficiencies of the devices with the Li2CO3 and the Cs2CO3 layers were confirmed to have been increased by 50.0% and 78.1%, respectively, when the oxygen-plasma-treated ITO substrate was used.

  17. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  18. Conductimetric determination of dissociation constants of alkali metal (bis)pyrocatechol borates in alcohols

    International Nuclear Information System (INIS)

    Dissociation constants of dipyrocatechinborates of the alkali metals of the Me[C6H4O2)2B] composition, where M - Na, K, Rb, Cs in the methanol and ethanol medium at 25 deg C, are determined through conductometric method on the basis of values of equiva lent electroconductivities. The dissociation constants of low power electrolytes are calculated through the Fuoss-Kraus method. The performance conditions of the Valden rule, binding the substances concentrations with dielectric permittivity of the medium, are identified

  19. Cycle analysis of an alkali metal thermo-electric converter for small capillary type

    International Nuclear Information System (INIS)

    This paper describes the design of a small size Alkali Metal Thermal to Electric Converter (AMTEC) which employs a capillary structure for recirculating sodium working fluid. The cycle is based on the simple and small capillary type β-alumina and wick tube element. The proposed cell consists of the 37 conversion elements with capillary tube of 50μm in diameter and the sealed cylindrical vessel of 22mm in outer diameter. Results on the cycle analysis of sodium flow and heat transfer in the cell showed that the expected power output was 4.65 W and the conversion efficiency was 19% for the source temperature of 900 K

  20. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    W and a 6 MW LTCFBgasifier. Of the total fuel ash entering the system, the largest fraction (40−50%) was retained in the secondary cyclone bottoms,while a lower amount (8−10%) was released as dust in the exit gas. Most of the alkali and alkaline earth metals were retained inthe solid ash, along with Si......, the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k...

  1. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India)

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  2. Structures of Li-Doped Alkali Clusters are Dictated by AO-Hybridization

    CERN Document Server

    Alexandrova, Anastassia N

    2012-01-01

    Hybridization of atomic orbitals is a widely appreciated phenomenon whose impact on the structure and properties of, for example, organic molecules is well-established. Here, we demonstrate that hybridization also dramatically impacts the shapes of small alkali metal clusters. The seemingly similar and valence-iso-electronic LiNa4- and LiK4- clusters adopt very different global minimum structures: LiNa4- is a planar C2v (1A1) species distorted from the perfect pentagon due to the pseudo Jahn-Teller effect, and LiK4- is a planar square D4h (1A1g) species with Li being in the centre. This effect is rooted in the different degrees of the 2s-2p hybridization in Li in response to binding to Na versus K. Li inside the Na cluster exhibits a strong 2s-2p mixing, to achieve stronger covalent bonding. In contrast, Li inside of the K cluster does not show any hybridization, and the LiK4- cluster is reminiscent of an ionic salt. These differences are tied to the relative electronegativities of Li, Na, and K, and overlap ...

  3. Some properties of atomic beam produced by laser induced ablation of Li target

    International Nuclear Information System (INIS)

    Pulsed atomic beams produced in vacuum by laser induced ablation from a lithium target are analyzed by laser induced fluorescence (LIF). The 1-mixing processes induced in the n = 9, 10 Li Rydberg states by collisions with CO2 molecules illustrate the application of the method. Resolution is limited by the 1 mm diameter of the probe laser beam. Combining LIF and absorption measurements gives nLi as a function of time at various distances from the target surface. The investigation of the Li-C02 1-mixing process in a heat pipe oven proved impossible due to the high reactivity of Li with C02. This problem was solved by renewing the Li atoms at each laser shot. Values obtained for n = 9, n = 10 are k = 17 x 10-8 and 15 x 10-8 cc/sec, respectively

  4. Alkali metal ion-proton exchange equilibria and water sorption studies on nafon 117 membrane and dowex 50 W exchange resins: effect of long storage or aging

    International Nuclear Information System (INIS)

    Alkali metal ion -H+ exchanges on Nafion 117 membrane treated differently, Dowex 50 W x 4 and Dowex 50 W x 8 resins have been studied at a total ionic strength of 0.1 mol dm-3. The water sorption isotherms of these exchangers in different ionic forms generated over the entire range of water activity, have been analysed by the D'Arcy and Watt equation (DWE). Water sorption studies have shown that the physical structure of the exchangers have changed due to long -storage or aging, resulting in poorer water sorption and even formation of pores in the case of Dowex 50 W x 8 resin. As a result, the counter ions in the exchangers are not hydrated and the water is present in a free form, albeit structured, in the resin phase. The selectivity sequence for the alkali metal ions with reference to the H+ (Li+++) for the exchangers used in the present study is in accordance with that reported in the literature for the ionomers having sulphonic acid as the functional group. In view of the absence of hydration of the cations in the resin phase, the driving force for the selectivity of the cation, namely, the net gain in entropy, is expected to come from the loss of structured water during the exchange process. Pre treating the Nafion 117 membrane with boiling acid solution activates the clustered region of the membrane in the H+ form, while pretreatment with boiling water expands the non-ionic domain (the region connecting the clusters). These modifications influence the state of water present in the Nafion 117 membrane and the ion exchange equilibria. As a result of long storage or aging, the ion exchangers lose their elasticity or swelling characteristics. The results obtained in the present study indicate that in aged materials, the ionogenic groups are existing as isolated ion -pairs rather than in a clustered morphology. (author)

  5. Intercalation of heavy alkali metals (K, Rb and Cs) in the bundles of single wall nanotubes

    Science.gov (United States)

    Duclaux, L.; Méténier, K.; Lauginie, P.; Salvetat, J. P.; Bonnamy, S.; Beguin, F.

    2000-11-01

    The electric-arc discharge carbon deposits (collaret) containing Single Wall Carbon Nanotubes (SWNTs) were heat treated at 1600 °C during 2 days under N2 flow in order to eliminate the Ni catalyst by sublimation, without modifications of the SWNTs ropes. Sorting this deposit by gravity enabled to obtain in the coarsest particles higher amount of SWNTs ropes than in other particle sizes. The coarser particles of the carbon deposits were reacted with the alkali metals vapor giving intercalated samples with a MC8 composition. The intercalation led to an expansion of the 2D lattice of the SWNTs so that the alkali metals were intercalated in between the tubes within the bundles. Disordered lattices were observed after intercalation of Rb and Cs. The simulations of the X-ray diffractograms of SWNTs reacted with K, gave the best fit for three K ions occupying the inter-tubes triangular cavities. The investigations by EPR, and 13C NMR, showed that doped carbon deposits are metallic.

  6. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  7. Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid

    International Nuclear Information System (INIS)

    The evaluation of thermodynamic properties of liquid alkali metals is re-examined in the approach based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean spherical approximation as reference system, with a view to achieving consistency with the liquid structure factor. The perturbative variational calculation of the Helmholtz free energy is based on an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the calculated thermodynamic functions, even when full advantage is taken of the two variational parameters inherent in this approach. The role of thermodynamic self-consistency between the equations of state of the reference fluid derived from the routes of the internal energy and of the virial theorem is then discussed, using previous results by Hoye and Stell. An approximate evaluation of the corresponding contribution to the free energy of liquid alkali metals yields appreciable improvements in both the thermodynamic functions and the liquid structure factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in the evaluation of thermodynamic and structural properties of liquid metals. (author). 55 refs, 4 figs, 4 tabs

  8. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  9. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Science.gov (United States)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  10. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  11. Density functional study of electronic structure, elastic and optical properties of MNH2 (M=Li, Na, K, Rb)

    International Nuclear Information System (INIS)

    We report a systematic first principles density functional study on the electronic structure, elastic and optical properties of nitrogen based solid hydrogen storage materials LiNH2, NaNH2, KNH2, and RbNH2. The ground state structural properties are calculated by using standard density functional theory, and also dispersion corrected density functional theory. We find that van der Waals interactions are dominant in LiNH2 whereas they are relatively weak in other alkali metal amides. The calculated elastic constants show that all the compounds are mechanically stable and LiNH2 is found to be a stiffer material among the alkali metal amides. The melting temperatures are calculated and follow the order RbNH2 2 2 2. The electronic band structure is calculated by using the Tran–Blaha modified Becke–Johnson potential and found that all the compounds are insulators, with a considerable band gap. The [NH2]− derived states completely dominate in the entire valence band region while the metal atom states occupy the conduction band. The calculated band structure is used to analyze the different interband optical transitions occurring between valence and conduction bands. Our calculations show that these materials have considerable optical anisotropy. (paper)

  12. SOME PROPERTIES OF ATOMIC BEAM PRODUCED BY LASER INDUCED ABLATION OF Li TARGET

    OpenAIRE

    Harnafi, M.; Dubreuil, B.

    1987-01-01

    In this experiment, pulsed atomic beams produced in vacuum by laser induced ablation from lithium target are analyzed by laser-induced fluorescsence (LIF). As an application of this atomic beam production technique, the l-mixing processes induced in the n = 9, 10 Li Rydberg states by collisions with CO2 molecules have been investigated.

  13. Molecular Beam Epitaxy of LiMnAs

    OpenAIRE

    Novak, V.; Cukr, M.; Soban, Z.; Jungwirth, T.; Marti, X.; Holy, V.; Horodyska, P.; Nemec, P.

    2010-01-01

    We report on the molecular beam epitaxy (MBE) growth of high crystalline quality LiMnAs. The introduction of a group-I alkali metal element Li with flux comparable to fluxes of Mn and As has not caused any apparent damage to the MBE system after as many as fifteen growth cycles performed on the system to date.

  14. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  15. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The coefficient of HfCl4 and ZrCl4 separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl4+HfCl4). HfCl4 and ZrCl4 are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl

  16. Secondary transformation mechanism of paramagnetic centers in irradiated alkali metal perchlorates

    International Nuclear Information System (INIS)

    The EPR method has been used to study thermal transformations of paramagnetic centres (PC) in X-ray irradiated potassium, rubidium and cesium perchlorates. Experimental data make it possible to suppose that diffusion coefficient of O- ion a rather high and this ion is freely diffused already at 262 K. Colliding with [MeClO4]+ centres it is transformed in a molecule of oxygen. Another part of O- is transformed in stable ozonide-ion at 300 K. About room temperature hole centres dissociate with formation of ClO2 radical. It is supposed that part of electron and hole centres is not stabilized but at 77 K it is transformed in stable radiolysis products. This process most effective proceeds in dislocations and on the surface of microcrystals. The suggested model of thermal transformations of primary PC in irradiated perchlorates of alkali metals explains formation of all the finite ion and paramagnetic radiolysis products

  17. Thermal characterization of an AMTEC recirculating test cell. [Alkali Metal ThermoElectric Converter

    Science.gov (United States)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Bankston, C. P.

    1990-01-01

    An alkali metal thermoelectric converter (AMTEC) recirculating test cell has been operated in order to determine the magnitudes of the primary heat losses of the cell and the value of the emissivity of the condenser surface. The energy balance included radiation losses, conductive losses, and losses due to the flow of sodium into the cell. The radiative heat flux dominated the heat loss mechanism of the cell at open circuit, and the condenser emissivity was calculated to be about 0.1. It is shown that, if this emissivity can be reduced to 0.02, then parasitic losses in an AMTEC recirculating test cell operating near peak power would be less than 40 percent of the heat required by the cell. The condenser emissivity decreases with elapsed time, resulting in improved thermal performance of the cell.

  18. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  19. Liquid metal cooled reactor - alkali metal thermoelectric space power system concept for multi megawatt applications

    International Nuclear Information System (INIS)

    A number of Strategic Defense Initiative missions require space power systems with lifetime on the order of 7 to 10 years and systems with reliabilities greater than 0.95. In addition, power source system mass must be as low as possible, consistent with existing and projected launch capabilities. For steady state power sources greater than tens of kilowatts, nuclear reactor systems would yield the lowest system mass. Among potential power conversion systems, Alkali Metal Thermoelectric (AMTEC) is highly attractive from a number of standpoints: it has the highest conversion efficiencies among the different types of static energy conversion systems at moderate operating temperatures that are reasonably high so that waste heat rejection can be carried out with relatively low system mass

  20. Structural systematic and crystal chemistry of novel borates with REE, Pb, Sr, and alkali metals

    International Nuclear Information System (INIS)

    Crystal structures of novel borates with REE, Pb, Sr and alkali metals were analyzed using classical fundamental buildings blocks approach. It is demonstrated that hexa-, penta-, tetra-, tri- and diborates subdivisions in systematic are real families of structures with the common peculiarities. According to the symmetrical way and the degree of FBB condensation structural-generic rows exist in every of subdivisions. Mega- or polyborates subdivision is valid for the structures with the different types of simplest FBB. In all new complex borates it is possible to separate FBB of equal or different types which are presented in isolated form or are connected into chains, layers or frameworks, and to find unexpected correlation between structures. The possibility to recognize and to visualize in this approach the polarity or non-polarity of the structural units and correspondingly the polarity or nonpolarity of the structures in the whole is very important for the conclusion on structure-properties relation. (orig.)

  1. Poetry and Alkali Metals: Building Bridges to the Study of Atomic Radius and Ionization Energy

    Science.gov (United States)

    Araujo, J. L.; Morais, C.; Paiva, J. C.

    2015-01-01

    Exploring chemistry through its presence in the literature in general, and poetry in particular, may increase students' curiosity, may enhance several basic skills, such as writing, reading comprehension and argumentative skills, as well as may improve the understanding of the chemistry topics covered. Nevertheless, the pedagogical potential of…

  2. Experience in the Design and Operation of High-Temperature Alkali Metal Systems

    International Nuclear Information System (INIS)

    Our experience with the alkali metals began in 1942, when it became necessary to manufacture potassium as an intermediate step in producing potassium superoxide and oxygen generator chemicals for use in rebreather safety equipment evaluation. Study of the alkali metals has continued to the present with measurement of the physical properties, high temperature heat transfer properties, followed by the development of liquid metal instruments and the design and reliable manufacture of components. The present operation (up to 1200°F) of two sodium systems to study the instream mechanical properties of materials for long periods of time reveals the satisfactory operation of many components and the trouble to be experienced when operation is attempted with impurities added to the sodium. Cold-trap purification of 1200°F sodium systems is sufficient for low-corrosion operation over a 2-yr period in an AISI, Type 316 stainless-steel system. The adding of new specimens always raises the oxygen level, requiring repurification of the sodium. Some carbon was removed by the cold trap when high carbon-sodium conditions prevailed, but removal is not complete enough for satisfactory operation; therefore great care should be taken in preventing the carbon contamination. Plugging indicators were a good tool for normal operation. Under high carbon conditions the initial break in the plugging indicator curve can be related to the carburization potential of the sodium. Inert gas lines in sodium systems need to be heated above the melting point of sodium to prevent plugging. However, under high oxygen-sodium conditions, solids deposit in the cover gas regions under ambient temperatures above the melting point of sodium. It is observed that the main difficulty incurred in running with high oxygen - sodium systems is the oxide plugging of small lines. In high carbon sodium systems, the failure of valve bellows by carburization causes operational difficulties. Stability of magnetic flow

  3. Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Dongping; Yuan Yi; Xiao Yanjing; Wu Bingliang; Shao Yuanhua

    2002-10-30

    In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs{sup +}. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3{+-}0.2)x10{sup -6} cm{sup 2} s{sup -1}. The experimental results indicate that a 1:1 (metal:ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na{sup +}>Li{sup +}>K{sup +}>Rb{sup +}>Cs{sup +}. The logarithm of the association constants (log {beta}{sub 1}{sup o}) of the LiL{sup +}, NaL{sup +}, KL{sup +} and RbL{sup +} complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k{sup 0}) for Li{sup +}, Na{sup +}, K{sup +} and Rb{sup +} transfers facilitated by L are 0.54{+-}0.05, 0.63{+-}0.09, 0.51{+-}0.04 and 0.46{+-}0.06 cm s{sup -1}, respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

  4. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained

  5. Theoretical study on the ground state of the polar alkali-metal-barium molecules: potential energy curve and permanent dipole moment.

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the (2)Σ(+) ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained. PMID:25612710

  6. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  7. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    Science.gov (United States)

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  8. Synergistic solvent extraction of crown ether complexes with alkali metal picrates by neutral donor solvents

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.

    1983-09-01

    The solvent extraction of rubidium and cesium picrates has been studied at 25/sup 0/C with mixtures of crown ether and tributyl phosphate (TBP) or trioctylphosphine oxide (TOPO) in benzene, and the adduct-formation constants in the benzene solution have been calculated. The crown ethers used in this work were 12-crown-4 (12C4), 15-crown-5 (15C5), and benzo-15-crown-5 (B15C5). The stoichiometric composition of any extracted complex under the present experimental conditions is alkali metal ion : crown ether : TBP or TOPO : picrate ion = 1 : 1 : 1 : 1. The TOPO complex is more extractable than the corresponding TBP complex. The extractability of the Rb/sup +/ complex is larger than that of the corresponding Cs/sup +/ complex. For both TBP and TOPO, the adduct-formation constant value sequences of Rb/sup +/ and Cs/sup +/ are B15C5 > 12C4 > 15C5 and 12C4 > B15C5 > 15C5, respectively. 2 figures, 1 table.

  9. Interaction of alkali metals with perylene-3,4,9,10- tetracarboxylic-dianhydride thin films

    International Nuclear Information System (INIS)

    n doping of the molecular organic semiconductor perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) is often achieved by use of alkali metals as dopants. This doping process is commonly performed in two steps. In the first the dopant is evaporated onto the surface of the PTCDA film. As it has been believed that the dopant shows an inhomogeneous diffusion profile through the layer with most of the dopant accumulated in the first few layers, a subsequent annealing step has been performed in order to reach a homogeneous distribution of the dopant in the whole layer. In this paper experimental results concerning chemical composition ((angle resolved) X-ray photoemission spectroscopy, secondary-ion-mass spectrometry, Fourier transform infrared spectroscopy), electronic structure (ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy), as well as electrical properties (conductivity, Seebeck coefficient) are shown before and after doping and before and after annealing. These results suggest that the deposited dopant is redistributed and partially removed during the annealing step. A model for the dopant distribution is suggested

  10. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    Science.gov (United States)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  11. Study of complex amalgams containing alkali metals by method of broken thermometric titration

    International Nuclear Information System (INIS)

    Complex potassium-cadmium and sodium-cadmium amalgams containing different amounts of the alkali metal nad cadmium have been studied by thermometric titration with mercury. The experiments have been carried out in argon atmosphere at 25 deg C. As evidenced by the titration of sodium-cadmium amalgams, in the range of concentrations studied (Csub(Na)=0.71-2.95, Csub(Cd)=4.38-6.45 g-at/lHg) no solid phase is formed in them. Potassium-cadmium amalgams where the metals content is no higher than their individual solubility in mercury, display, when being mercury-titrated, negative heat effects due to solid phase formation. An estimation is made of the solid phase composition, its solubility in mercury and the heat of dissolution. The solid phase appearing in complex K-Cd amalgams is likely to contain K and Cd in a ratio 1:1 its conventional solubility product is 5.4 g-at/l Hg, and the heat of dissolution in mercury at 25 deg is -21 +-4 kJ/g-at

  12. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  13. Dynamic dipole polarizabilities of the Li atom and the Be+ ion

    International Nuclear Information System (INIS)

    The dynamic dipole polarizabilities for Li atoms and Be+ ions in the 2 2S and 2 2P states are calculated using the variational method with a Hylleraas basis. The present polarizabilities represent the definitive values in the nonrelativistic limit. Corrections due to relativistic effects are also estimated. Analytic representations of the polarizabilities for frequency ranges encompassing the n=3 excitations are presented. The recommended polarizabilities for 7Li and 9Be+ are 164.11±0.03 a03 and 24.489±0.004 a03, respectively.

  14. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    Science.gov (United States)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  15. Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex

    Indian Academy of Sciences (India)

    Purnandhu Bose; Ranjan Dutta; I Ravikumar; Pradyut Ghosh

    2011-11-01

    A solution of N, N'-diacylhydrazine ligand in organic solvent is potential for colourimetric detection of F−/AcO−/PO$^{3−}_{4}$ via -NH deprotonation, tautomerization and its stabilization as a colour alkali metal complex.

  16. Nano-baskets of Calix[4]-1,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    Bahram Mokhtari; Kobra Pourabdollah

    2013-01-01

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclu-sion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of diacid calix[4]-1,3-crowns-4,5 were synthesized, and their inclusion-extraction parameters were optimized including the calixcrown scaffold (4.4%, by mass) as the carrier/demulsifier, the commercial kero-sene as diluent in membrane, sulphonic acid (0.2 mol·L-1) and ammonium carbonate (0.4 mol·L-1) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 r·min-1), and initial solute concen-tration (100 mg·L-1). The selectivity of membrane over more than ten interfering cations was examined and the re-sults reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98%-99%.

  17. Calculation of the elastic collision properties of Na and Li atoms at ultracold temperature

    Institute of Scientific and Technical Information of China (English)

    Zhang Ji-Cai; Zhang Ying; Du Bing-Ge; Sun Jin-Feng

    2009-01-01

    This paper firstly reports a theoretical study of elastic scattering properties in a mixture of 23Na and 7Li atoms at cold and ultracold temperatures in detail.Based on the new constructed accurate singlet X1∑+g and the triplet a3∑+u states interatomic potentials for 23Na7Li mixture,it calculates the scattering lengths and the effective ranges by three computational methods,and obtains good agreements.Using the mass scaling method,it also calculates 23Na6Li scattering lengths and s-wave and total elastic cross sections,whose rich resonance structures were found and interpreted in terms of quasibound diatomic levels trapped behind a centrifugal barrier.

  18. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  19. Collision processes of Li3+ with atomic hydrogen: cross section database

    International Nuclear Information System (INIS)

    Using the available experimental and theoretical data, as well as established cross section scaling relationships, a cross section database for excitation, ionization and charge exchange in collisions of Li3+ ion with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form. (author)

  20. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  1. Rapid and efficient synthesis of alkali metal-C[sub 60] compounds in liquid ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Buffinger, D.R.; Ziebarth, R.P.; Stenger, V.A.; Recchia, C.; Pennington, C.H. (Ohio State Univ., Columbus, OH (United States))

    1993-10-06

    The reaction of stoichiometric amounts of alkali metals with C[sub 60] in liquid ammonia provides a rapid and quantitative route to M[sub x]C[sub 60] superconductors (M[sub x] = K[sub 3]/, Rb[sub 3]/, CsRb[sub 2], RbCs[sub 2], KRbCs). Annealing of the samples for 24-48 h at 375[degrees]C is required to obtain large superconducting fractions. [sup 13]C and [sup 87]Rb NMR line shapes are reported for Rb[sub 3]C[sub 60]. The [sup 13]C line shapes show the degree of rotational motion of the C[sub 60] ions varies considerably from sample to sample and is dependent on the method of preparation and subsequent heat treatment. A correlation between the degree of rotational motion and the superconducting fraction is noted and attributed to the amount of disorder in the sample. [sup 87]Rb NMR shows three peaks indicating that Rb[sub 3]C[sub 60] actually contains three different cation sites, rather than the two suggested by X-ray powder diffraction data. The third site is occupied by approximately 15% of the Rb ions in Rb[sub 3]C[sub 60] and is shown to be a subset of the tetrahedral sites in the cubic close-packed C[sub 60] lattice. Although the exact nature of the distortion required to produce the third site is unknown, it appears to be unrelated to the orientations of the C[sub 60] ions creating the site. 18 refs., 2 figs.

  2. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR

    OpenAIRE

    Martin, R A; Twyman, H.L.; Rees, G.J.; Smith, J M; Barney, E. R.; Smith, M E; Hanna, J. V.; Newport, Robert J.

    2012-01-01

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a simila...

  3. Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi3-M-Li3O (M=Li, Na and K) Complexes

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Alkalides possess enhanced nonlinear optical (NLO) responses due to localization of excess electrons on alkali metals. We have proposed a new class of alkalides by sandwiching alkali atoms (M) between two Li3O superalkali clusters at MP2/6-311++G(d,p) level. We notice a competition between alkalide characteristics and NLO properties in OLi3-M-Li3O (M=Li, Na and K) isomers. For instance, the atomic charge on M (qM) in D2h structure is -0.58e for M=Li and its first static mean hyperpolarizablity (\\b{eta}o) is 1 a.u., but in C2v structure, qM=-0.12e and \\b{eta}o= 3.4*103 a.u. More interestingly, the \\b{eta}o value for M=K (C2v) increases to 1.9*104 a.u. in which qM=0.24e. These findings may provide new insights into the design of alkalides, an unusual class of salts and consequently, lead to further researches in this direction.

  4. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structural study and properties of the alkali metal, nitrosyl, and ammonium hepta- and octafluorouranates(VI)

    International Nuclear Information System (INIS)

    The thermal decomposition of the heptafluorouranates(VI) of the alkali metals is shown to take place in two steps. The first step gives the octafluorouranates(VI) and UF6, and the decomposition rate is noticeable at temperatures above 100, 130, 150, and 2100C for the Na, K, Rb, and Cs salts, respectively. The second step for Na2UF8 yields pure NaF and UF6 above 3000C, whereas the decomposition temperatures for the K, Rb, and Cs salts are above 300, 350, and 4000C, respectively. Depending on the decomposition conditions, F2 and M2UF7(M = K, Rb, Cs) or F2, UF6, and M3UF8 are formed. The heptafluorouranates(VI) of all the cations studied, except for ammonium, were shown to exhibit dimorphism. The parameters of their cubic form were obtained and are as follows: KUF7; a = 5.22 A; RbUF7; a = 5.385 A; CsUF7; a = 5.517 A; NOUF7; a = 5.334 A; NH4UF7; a = 5.393 A; NaUF7(fccub), a = 8.511 A, Z = 4. The x-ray pattern of the low-symmetry form of CsUF7 just below the solid transition temperature (15 +- 10C) was indexed with a tetragonal cell where a = 5.50 A and c = 5.37 A. The x-ray diagrams of the low symmetry form of the other MUF7 salts were not indexed, whereas those of the octafluorouranates were indexed with orthorhombic cells. The vibrational spectra of the hepta- and octafluorouranates were found to be very dependent on the temperature, and for the same temperature on the cation size. Some trends observed in this study, like the thermal decomposition temperatures or the relative symmetries, are thought to arise from the differences in the cation--anion interaction. This interaction is stronger with smaller cations, which results in more distorted anions, less ionic U--F bonds, and paradoxically less stable complexes

  6. Similarities and differences of alkali metal chlorides applied in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Zhaoyue [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng, Zhenbo [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Hou, Ying [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Xu, Haisheng, E-mail: hsxu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Kunshan Hisense Electronics, Co., Ltd., Kunshan, Jiangsu 215300 (China)

    2012-12-15

    The similarities and differences of alkali metal chlorides (sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl) and cesium chloride (CsCl)) applied in organic light-emitting diodes (OLEDs) are investigated. The behavior is similar for the OLEDs with these four chlorides as electron injection layer (EIL). Their maximum luminance and efficiency at 100 mA/cm{sup 2} are within the ranges of 18 550 {+-} 600 (cd/m{sup 2}) with an error of 3.23% and 4.09 {+-} 0.15 (cd/A) within an error of 3.67%, respectively. The similar performance is due to almost identical electron injection barrier for NaCl, KCl, RbCl and CsCl as EIL. Interestingly, the properties are different for devices with chlorides inserted inside tris (8-hydroxyquinoline) aluminum at the position of 20 nm away from aluminum cathode, labeled as NaCl-, KCl-, RbCl- and CsCl- devices. The relation of luminance is CsCl- > RbCl- = KCl- > NaCl-, where '>' and '=' mean 'better than' and 'the same as', respectively. And the device efficiencies are decreased from CsCl to NaCl. That is, the sort order of the efficiencies is CsCl- > RbCl- > KCl- > NaCl-. The mechanism is explained by tunneling model in terms of various energy gaps estimated by optical electronegativity of NaCl, KCl, RbCl and CsCl. - Highlights: Black-Right-Pointing-Pointer Effects of NaCl, KCl, RbCl and CsCl in organic light-emitting diodes are compared. Black-Right-Pointing-Pointer The similar performance is due to almost identical electron injection barrier. Black-Right-Pointing-Pointer The different behavior of chlorides inside Alq{sub 3} is explained by tunneling model. Black-Right-Pointing-Pointer The different behavior is attributed to various energy gaps of different chlorides. Black-Right-Pointing-Pointer The efficiency of device with chlorides inside Alq{sub 3} is decreased from CsCl to NaCl.

  7. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  8. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  9. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor

    OpenAIRE

    NOZAKI, Kazuyoshi; TARUI, Akira; OSAKA, Issey; Kawasaki, Hideya; ARAKAWA, Ryuichi; 荒川, 隆一

    2010-01-01

    The effects of an on-line ion suppressor device on alkali metal ion adduct formations of the model compound tacrolimus were investigated. The base peak ion in the positive ion ESI-MS spectrum of tacrolimus was a sodium ion adduct, [M+Na]+. On the other hand, an ammonium ion adduct, [M+NH4]+, was the base peak ion in the full-scan mass spectrum of tacrolimus with a cation-exchange suppressor resin, and both [M+Na]+ and [M+K]+ were eliminated. These results indicate that the combination of an o...

  10. Thermophysical properties of alkali metal vapours. Part II - assessment of experimental data on thermal conductivity and viscosity

    OpenAIRE

    Fialho, Paulo; Ramires, Maria de Lurdes V.; Nieto de Castro, Carlos A.; João M. N. A. Fareleira; Mardolcar, Umesh V.

    1994-01-01

    Copyright © 1994 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Article first published online: 8 MAY 2010. An analysis of the available data on the viscosity and thermal conductivity coefficients of the alkali metal vapours is presented. The analysis is based upon theoretical calculations of the properties of the monatomic systems, described in the preceding parts I and I.A of the present paper, and making use of the kinetic theory of a binary gas reacting mixture. A summary of the measur...

  11. X-ray diffraction analysis of LiCu2O2 crystals with additives of silver atoms

    International Nuclear Information System (INIS)

    Silver-containing LiCu2O2 crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1-x)CuO · 20xAgNO3 · 20Li2CO3 (0 ≤ x ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu2O2 structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter c of the LiCu2O2 rhombic unit cell, a slight increase in parameter a, and a slight decrease in parameter b

  12. Preparation, characterization and applications of novel iminodiacetic polyurethane foam (IDA-PUF) for determination and removal of some alkali metal ions from water

    International Nuclear Information System (INIS)

    The new type of ion chelating resin (IDA-PUF) has iminodiacetic group that was prepared from polyurethane foam (PUF) by the reaction between primary amine of PUF and monochloro-acetic acid. The IDA-PUF was characterized using infrared spectra, elemental and thermal analysis. The exchange properties and chromatographic behaviour of the new chelating resin were investigated for removal of some alkali metal ions (lithium, sodium and potassium) using batch and column processes. The maximum distribution coefficient (KD) of trace alkali metal ions was in the pH range of 8-10. The kinetics of sorption of the alkali metal ions was found to be fast with average values of half-life of sorption (t1/2) of 4.93 min. The values of ΔG, ΔS and ΔH were -3.86 kJ mol-1, 57.73 J mol-1 K-1 and 14.41 kJ mol-1, respectively, which reflects the spontaneous and endothermic nature of ion exchanger process. The average sorption capacity of IDA-PUF is 4.8 mmol/g for alkali metal ions, enrichment factors ∼40 and the recovery 95-100% were also achieved with average value of RSD% = 1.67. The proposed method has been successfully applied to preconcentrate, determinate and remove the alkali metal ions from different samples of water

  13. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    Science.gov (United States)

    Aguado, Andrés; López, José M

    2010-09-01

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions. PMID:20831313

  14. XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions

    Science.gov (United States)

    Saáedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Zak, Ali Khorsand; Cheraghizade, Mohsen; Mahmoudian, M. R.; Baghchesara, Mohammad Amin; Dezaki, Abbas Shirmardi

    2016-05-01

    The present work is a study about a relationship between X-ray photoelectron spectrometer (XPS) results and photocurrent intensity of alkali-metals-elements doped ZnO nanoparticles, which is carried out under visible illumination conditions. The nanoparticles were synthesized by a simple sol-gel method. Structure and morphology studies of the NPs were carried out by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The effect of doping on the optical band-gap was investigated by using UV-visible spectrometer. The absorption peak of the doped ZnO NPs was red-shifted with respect to that of the undoped ZnO NPs. After that, the photocurrent application of the products was examined under a white light source at 2 V bias. The photocurrent results showed that, the current intensity of the ZnO NPs was increased by doping materials. However, K-doped ZnO NPs showed the highest photocurrent intensity. Finally, a discussion was carried out about the obtained photocurrent results by the O-1s spectra of the XPS of the samples. Our results suggest that the alkali-metals-doped ZnO NPs exhibit considerable promise for highly sensitive visible-light photodetectors.

  15. Study of complexation between two 1,3-alternate calix[4]crown derivatives and alkali metal ions by electrospray ionization mass spectrometry and density functional theory calculations

    Science.gov (United States)

    Shamsipur, Mojtaba; Allahyari, Leila; Fasihi, Javad; Taherpour, Avat (Arman); Asfari, Zuhair; Valinejad, Azizollah

    2016-03-01

    Complexation of two 1,3-alternate calix[4]crown ligands with alkali metals (K+, Rb+ and Cs+) has been investigated by electrospray ionization mass spectrometry (ESI-MS) and density functional theory calculations. The binding selectivities of the ligands and the binding constants of their complexes in solution have been determined using the obtained mass spectra. Also the percentage of each formed complex species in the mixture of each ligand and alkali metal has been experimentally evaluated. For both calix[4]crown-5 and calix[4]crown-6 ligands the experimental and theoretical selectivity of their alkali metal complexes found to follow the trend K+ > Rb+ > Cs+. The structures of ligands were optimized by DFT-B3LYP/6-31G method and the structures of complexes were obtained by QM-SCF-MO/PM6 method and discussed in the text.

  16. Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion

    International Nuclear Information System (INIS)

    The lattice-inversion embedded-atom-method interatomic potential developed previously by us is extended to alkaline metals including Li, Na, and K. It is found that considering interatomic interactions between neighboring atoms of an appropriate distance is a matter of great significance in constructing accurate embedded-atom-method interatomic potentials, especially for the prediction of surface energy. The lattice-inversion embedded-atom-method interatomic potentials for Li, Na, and K are successfully constructed by taking the fourth-neighbor atoms into consideration. These angular-independent potentials markedly promote the accuracy of predicted surface energies, which agree well with experimental results. In addition, the predicted structural stability, elastic constants, formation and migration energies of vacancy, and activation energy of vacancy diffusion are in good agreement with available experimental data and first-principles calculations, and the equilibrium condition is satisfied. (atomic and molecular physics)

  17. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    Science.gov (United States)

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  18. Explicitly correlated wave functions for atoms and singly charged ions from Li through Sr: Variational and Diffusion Monte Carlo results

    Science.gov (United States)

    Buendía, E.; Gálvez, F. J.; Maldonado, P.; Sarsa, A.

    2014-11-01

    Total energies calculated from explicitly correlated wave functions for the ground state of the atoms Li to Sr and their singly charged anions and cations are obtained. Accurate all electron, non-relativistic Variational and Diffusion Monte Carlo energies are reported. The quality of the results, when comparing with exact estimations and experimental electron affinities and ionization potential is similar for all of the atoms studied. The parameterization of the explicitly correlated wave functions for all of the atomic systems studied is provided.

  19. Fabrication of aluminum nitride and its stability in liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L. [Argonne National Lab., Chicago, IL (United States)

    1995-04-01

    The objective of this task are to (a) evaluate several fabrication procedures for development of aluminum nitride (AlN) coatings on the candidate first-wall structural material V-5wt.%Cr-5wt.%Ti, (b) evaluate the stability of coatings in contact with the structural alloy and liquid Li at temperatures of 200 to 400{degrees}C, (c) measure the electrical resistivity of the coated films after exposure to liquid Li, (d) evaluate the effects of coating defects on electrical resistivity, and (e) establish in-situ repair procedures to maintain adequate electrical insulating properties for the coatings.

  20. Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion

    Institute of Scientific and Technical Information of China (English)

    Yuan Xiao-Jian; Chen Nan-Xian; Shen Jiang

    2012-01-01

    The lattice-inversion embedded-atom-method interatomic potential developed previously by us is extended to alkaline metals including Li,Na,and K.It is found that considering interatomic interactions between neighboring atoms of an appropriate distance is a matter of great significance in constructing accurate embedded-atom-method interatomic potentials,especially for the prediction of surface energy.The lattice-inversion embedded-atom-method interatomic potentials for Li,Na,and K are successfully constructed by taking the fourth-neighbor atoms into consideration.These angular-independent potentials markedly promote the accuracy of predicted surface energies,which agree well with experimental results.In addition,the predicted structural stability,elastic constants,formation and migration energies of vacancy,and activation energy of vacancy diffusion are in good agreement with available experimental data and first-principles calculations,and the equilibrium condition is satisfied.

  1. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    International Nuclear Information System (INIS)

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5--13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 A2 are measured; they increase with n as opposed to the plateau observed for Li/sup */ colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n yields n' changing processes with large cross sections (10--100 A2) are also observed even in the case of large electronic energy change (ΔE/sub nn'/>103 cm/sup -1/). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes

  2. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  3. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  4. High pressure study of Li-doped fullerides, LixC60 (x = 4,12), by x-ray diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    In this article we study the alkali metal-intercalated 2D polymeric Li4C60 and the monomeric Li12C60 under pressure up to 40 GPa at room temperature, using x-ray diffraction and Raman spectroscopy. Li4C60 undergoes several transitions in the studied pressure range. At pressures lower than 8 GPa, we observed changes in both diffraction patterns and Raman scattering spectra, probably due to the displacement of Li atoms. At 8 GPa another structural and electronic transition occurs. We observe an enhancement of background and a broadening of diffraction peaks. Raman modes weaken and broaden considerably. An important structural transition occurs at around 16 GPa, in which new Raman bands exhibit features similar to those of a reported 3D C60 polymeric structure. The XRD data shows a collapse in volume with the simultaneous formation of amorphous material. The cell parameters deviate from their early pressure evolution and become less compressible. The high pressure study of highly doped monomeric Li12C60 shows that its structural integrity is retained up to 13 GPa, with increasing pressure-induced structural distortion and disorder. Above 13 GPa, Li12C60 transforms to a highly disordered state. (paper)

  5. Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione

    Indian Academy of Sciences (India)

    Mengfan Yin; Gengxing Cai; Peng Wang; Xihui Chao; Jibo Liu; Haohong Li; Zhirong Chen

    2015-09-01

    Alkali metals were introduced into heavy main-group iodometallates to get two new IA/IVAheterometallic frameworks [PbI3K(pdon)(H2O)2] (1) and {[Pb3I9K2(pdon)2(H3O)]·H2O} (2) (pdon=1,10-phenanthroline-5,6-dione), which were obtained as single phases by hydrothermal method at different pH values. Compounds 1 and 2 are three-dimensional heterometallic frameworks constructed from the linkage of pdon ligand between iodometallate chains and potassium oxides/iodide clusters. Specially, these two heterometallic frameworks exhibit broadened absorption bands at 700 and 750 nm compared with those of bulk PbI2 and pdon ligand. The band gap of 2 is wider than that of 1, which is due to the absence of · · · interaction in 2. Their thermal stabilities are also discussed.

  6. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    International Nuclear Information System (INIS)

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  7. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-01

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin. PMID:26184478

  8. Synthesis and X-ray Characterization of Alkali Metal 2-Acyl-1,1,3,3-tetracyanopropenides.

    Science.gov (United States)

    Karpov, Sergey V; Grigor'ev, Arthur A; Kayukov, Yakov S; Karpova, Irina V; Nasakin, Oleg E; Tafeenko, Victor A

    2016-08-01

    A novel route for synthesis of 2-acyl-1,1,3,3-tetracyanopropenides (ATCN) salts in high yields and excellent purities starting from readily available methyl ketones, malononitrile, bromine, and alkali metal acetates is reported. The starting aryl(heteroaryl) methyl ketones were oxidized to the corresponding α-ketoaldehydes by new a DMSO-NaBr-H2SO4 oxidation system in yields up to 90% within a short reaction time of 8-10 min. The subsequent stages of ATCN preparation are realized in aqueous media without use of any toxic solvents, in accordance with principle 5 of "green chemistry". Lithium, sodium, potassium, rubidium, and cesium 2-benzoyl-1,1,3,3-tetracyanopropenides were characterized by X-ray diffraction analysis. These salts show a good potential for synthesis of five- and six-membered heterocycles and may serve as potentially useful ligands in coordination and supramolecular chemistry. PMID:27384963

  9. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Indian Academy of Sciences (India)

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  10. A series of new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems.

    Science.gov (United States)

    Gu, Qian-Hua; Hu, Chun-Li; Zhang, Jian-Han; Mao, Jiang-Gao

    2011-03-21

    Six new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems have been prepared by solid-state reactions at high-temperatures. Their structures were determined by single-crystal X-ray diffraction studies. AM(3)O(6)(QO(3))(2) (A = K, Rb, M = Nb, Ta, Q = Te; A = K, M = Nb, Q = Se) are isomorphous and their structures feature a 3D network with 1D 4- and 6-MRs tunnels along the a-axis which is composed of 2D layers of corner-sharing MO(6) octahedra bridged by QO(3) groups. The alkali metal ions are located at the above 1D tunnels of 6-MRs. The structure of Cs(3)Nb(9)O(18)(TeO(3))(2)(TeO(4))(2) features a thick Nb-Te-O layer built of corner-sharing NbO(6) octahedra, TeO(3) and TeO(4) groups. The 2D layer of the NbO(6) octahedra with 1D tunnels of 6-MRs along the c-axis are formed by 1D chains of NbO(6) chains along the c-axis and linear Nb(4)O(21) tetramers by corner-sharing. The TeO(3) and TeO(4) groups are grafted on both sides of the niobium-oxide layer via Nb-O-Te or/and Te-O-Te bridges. The caesium(i) ions are located at the above 1D tunnels of 6-MRs. TGA, UV-vis and infrared spectral measurements as well as electronic structure calculations have also been performed. PMID:21293821

  11. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  12. Development of operationally stable inverted organic light-emitting diode prepared without using alkali metals (Presentation Recording)

    Science.gov (United States)

    Fukagawa, Hirohiko; Morii, Katsuyuki; Hasegawa, Munehiro; Gouda, Shun; Tsuzuki, Toshimitsu; Shimizu, Takahisa; Yamamoto, Toshihiro

    2015-10-01

    The OLED is one of the key devices for realizing future flexible displays and lightings. One of the biggest challenges left for the OLED fabricated on a flexible substrate is the improvement of its resistance to oxygen and moisture. A high barrier layer [a water vapor transmission rate (WVTR) of about 10-6 g/m2/day] is proposed to be necessary for the encapsulation of conventional OLEDs. Some flexible high barrier layers have recently been demonstrated; however, such high barrier layers require a complex process, which makes flexible OLEDs expensive. If an OLED is prepared without using air-sensitive materials such as alkali metals, no stringent encapsulation is necessary for such an OLED. In this presentation, we will discuss our continuing efforts to develop an inverted OLED (iOLED) prepared without using alkali metals. iOLEDs with a bottom cathode are considered to be effective for realizing air-stable OLEDs since the electron injection layer (EIL) can be prepared by fabrication processes that might damage the organic layers, resulting in the enhanced range of materials suitable for EILs. We have demonstrated that a highly efficient and relatively air-stable iOLED can be realized by employing poly(ethyleneimine) as an EIL. Dark spot formation was not observed after 250 days in the poly(ethyleneimine)-based iOLED encapsulated by a barrier film with a WVTR of 10-4 g/m2/day. In addition, we have demonstrated the fabrication of a highly operational stable iOLED utilizing a newly developed EIL. The iOLED exhibits an expected half-lifetime of over 10,000 h from an initial luminance of 1,000 cd/m2.

  13. Adiabatic Channel Capture Theory Applied to Cold Atom-Molecule Reactions: Li + CaH -> LiH + Ca at 1 K

    CERN Document Server

    Tscherbul, Timur V

    2014-01-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH -> LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the atom-molecule Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K [V. Singh et al., Phys. Rev. Lett. 108, 203201 (2012)], suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple partial wave regime of relevance to the experiment. Significant differen...

  14. Exchange reactions in the systems of alkali metal, silver and thallium, sulfates, niobates and tantalates

    International Nuclear Information System (INIS)

    Investigated are exchange interactions in diagonal cross sections of twenty triple mutual systems with A and A' cations and SO4 and MO3 anions where A and A'-Li, Na, K, Ag, Tl, M-Nb, Ta using the methods of X-ray phase, chemical and differential thermal analyses. Exchange reaction between crystal complex oxide and melted salt are effective synthesis method. These reactions in particular permitted to obtain pure AgNbO3, AgTaO3 and their solid solutions at temperatures hundreds degrees lower than in displacement reactions. Equilibrium samples of AMO3-A'MO3 systems, continuous or discontinuous solid solutions, compounds (except NaMO3-KMO3, and also LiTaO3-KTaO3) are formed in exchange reactions when there is sulfate shortage. Thus, exchange reactions can be applied for solid solution synthesis, and also for phase diagram study

  15. Relation of physico-chemical properties of electrolytes with electronic structure of solvated alkali metal ions

    International Nuclear Information System (INIS)

    The nature of bonds, their strength and, accordingly, electric mobility of cation and electrolyte viscosity depending on the type of cation (Li+, Na+, K+, Rb+, Cs+) and molecules (H2O, NH3, H2CO, (CH3)2CO, CH3CN) were ascertained by the method of theoretical-group analysis and linear combinations of solvent cation and molecules orbitals. Regularities of solvation effect on electronic UV-, intramolecular vibrational IR and NMR spectra were revealed

  16. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.;

    2004-01-01

    Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states at...

  17. Use of ionic model for analysis of intramolecular movement in alkali metal metaborate molecules

    International Nuclear Information System (INIS)

    To clear out the peculiarities of intramolecular movement in MBO2 (where M=Li, Na, K, Rb, Cs) molecules the energy dependence of cation electrostatic interaction with BO2 anion on the charge value of oxygen, values of the MOB valence angle and internuclear distance r(M-O) is calculated. The calculation results on the base of ionic model show that the minimum of potential energy function corresponds to angular configuration of the MBO2 molecules. Parameters of potential function of deformation oscillation connected with the change of MOB angle, are evaluated

  18. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  19. Dislocation Line Tensions in the Noble Metals, the Alkali Metals and β-Brass

    International Nuclear Information System (INIS)

    The line tension for a straight partial dislocation which can produce the necessary slip for a martensitic phase transformation of the bcc-fcc or bcc-hcp type has been calculated in ordered 6-brass and in Li, Na and K. Also the line tension for a Shockley partial dislocation in Cu, Ag and Au has been calculated. Negative line tension is found for certain dislocation directions, and the possible influence of this on the stability of a stacking fault bounded by these partials is discussed

  20. Study of solid-phase interaction of antimony and bismuth trifluorides with alkali metal fluorides

    International Nuclear Information System (INIS)

    Methods of X-ray phase, differential thermal and chemical analyses have been used to study and plot phase diagrams of RbF-SbF3, CSF-SbF3, RbF-BjF,L3, CSF-BjF3 systems. X-ray diffraction study on the phases formed in the systems is conducted temperatures of phase transitions are determined, General regularities displayed in M'F-MF3 systems (M'=Li, Na, K, Rb, Cs, M=Sb, Bi) are discussed

  1. Clusters of atoms and molecules theory, experiment, and clusters of atoms

    CERN Document Server

    1994-01-01

    Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

  2. Native defects affecting the Li atom distribution tune the optical emission of ZnO:Li epitaxial thin film

    International Nuclear Information System (INIS)

    It is found that the oxygen vacancy (VO) defect concentration affecting the separation between individual species in LiZn-Lii complex influences the optical emission property of Li0.06Zn0.94O epitaxial thin film grown by pulsed laser deposition. The film grown under low oxygen partial pressure (n-type conductivity)/higher partial pressure (resistive-type) has broad emission at ∼2.99 eV/∼2.1 eV and a narrower emission at 3.63 eV/3.56 eV, respectively. First principle based mBJLDA electronic structure calculation suggests that the emission at 2.99 eV is due to the LiZn-Lii pair complex and the emission at 2.1 eV is when the component species are away from each other

  3. Native defects affecting the Li atom distribution tune the optical emission of ZnO:Li epitaxial thin film

    Science.gov (United States)

    Sahu, R.; Dileep, K.; Loukya, B.; Datta, R.

    2014-02-01

    It is found that the oxygen vacancy (VO) defect concentration affecting the separation between individual species in LiZn-Lii complex influences the optical emission property of Li0.06Zn0.94O epitaxial thin film grown by pulsed laser deposition. The film grown under low oxygen partial pressure (n-type conductivity)/higher partial pressure (resistive-type) has broad emission at ˜2.99 eV/˜2.1 eV and a narrower emission at 3.63 eV/3.56 eV, respectively. First principle based mBJLDA electronic structure calculation suggests that the emission at 2.99 eV is due to the LiZn-Lii pair complex and the emission at 2.1 eV is when the component species are away from each other.

  4. Theoretical study on the correlation between the nature of atomic Li intercalation and electrochemical reactivity in TiS2 and TiO2.

    Science.gov (United States)

    Kim, Yang-Soo; Kim, Hee-Jin; Jeon, Young-A; Kang, Yong-Mook

    2009-02-12

    The electronic structures of LiTiS(2) and LiTiO(2) (having alpha-NaFeO(2) structure) have been investigated using discrete variational Xalpha molecular orbital methods. The alpha-NaFeO(2) structure is the equilibrium structure for LiCoO(2), which is widely used as a commercial cathode material for lithium secondary batteries. This study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. When the average voltage of lithium intercalation was calculated using pseudopotential methods, the average intercalation voltage of LiTiO(2) (2.076 V) was higher than that of LiTiS(2) (1.958 V). This can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anion in LiTiO(2) as well as LiTiS(2). The Mulliken charge, which is the ionicity of Li atom, was approximately 0.12 in LiTiS(2), and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. When compared with the BOP (0.6) of C-H, which is one of the most famous example of covalent bonding, the intercalated Li ions in LiTiS(2) tend to form a quite strong covalent bond with the host material. In contrast, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized and the BOP, the covalency between Ti and O, was 0.181 in LiTiO(2). Because of the high ionicity of Li and the weak covalency between Ti and the nearest anion, LiTiO(2) has a higher intercalation voltage than LiTiS(2). PMID:19138089

  5. Tritium and deuterium labelling studies of alkali metal borohydrides and their application to simple reductions

    International Nuclear Information System (INIS)

    Simple and facile syntheses of highly deuterated and tritiated LiBH4, NaBH4 and KBH4 were achieved by hydrogen isotope exchange with deuterium or tritium gas at elevated temperatures. The exchange products were characterized by boron, proton and deuterium or tritium NMR spectroscopy. The extent of isotope (2H or 3H) incorporation was calculated from the patterns of 11B NMR spectra. Several samples of tritiated NaBH4 were treated with BF3-Et2O to produce tritiated borane-THF complex, which is an electrophilic reducing agent. The utility of both the borohydride reagents and borane-THF complex in labelling reactions was confirmed by exemplary reductions leading to specifically labelled products. The extent and orientation of labelling in the reduction products was assessed by a combination of radio-HPLC analysis, 1H, 2H or 3H NMR and mass spectrometry. (author)

  6. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  7. Spatial dynamics of laser-induced fluorescence in an intense laser beam: experiment and theory in alkali metal atoms

    CERN Document Server

    Auzinsh, Marcis; Ferber, Ruvin; Gahbauer, Florian; Kalnins, Uldis

    2015-01-01

    We have shown that it is possible to model accurately optical phenomena in intense laser fields by taking into account the intensity distribution over the laser beam. We developed a theoretical model that divided an intense laser beam into concentric regions, each with a Rabi frequency that corresponds to the intensity in that region, and solved a set of coupled optical Bloch equations for the density matrix in each region. Experimentally obtained magneto-optical resonance curves for the $F_g=2\\longrightarrow F_e=1$ transition of the $D_1$ line of $^{87}$Rb agreed very well with the theoretical model up to a laser intensity of around 200 mW/cm$^2$ for a transition whose saturation intensity is around 4.5 mW/cm$^2$. We have studied the spatial dependence of the fluorescence intensity in an intense laser beam experimentally and theoretically. An experiment was conducted whereby a broad, intense pump laser excited the $F_g=4\\longrightarrow F_e=3$ transition of the $D_2$ line of cesium while a weak, narrow probe ...

  8. Release and transformation of alkali metals during co-combustion of coal and sulfur-rich wheat straw

    International Nuclear Information System (INIS)

    Highlights: • Wheat straw rich in sulfur compared to coal was chosen as biomass material. • The behavior of alkali metal species during co-combustion was investigated. • The amount of KCl(g) and NaCl(g) was decreased by adding coal to wheat straw. • Most of fuel K was retained in the bottom ash as K2SO4, KAlSiO4 and KAlSiO6. • The amount of K2SO4 in the bottom ash decreased with temperature increase. - Abstract: Co-combustion of coal and biomass is a low-cost, large-scale, and efficient way to utilize biomass energy, which has a wide range of potential applications. However, biomass, especially herbaceous fuels, contains high levels of volatile K, Na, and Cl, the use of which may result in ash-related operational problems, such as corrosion, fouling, and slagging during thermal utilization. The aim of this study is to investigate the effects of wheat straw and temperature on the release and transformation of alkali metal species during co-combustion of coal and S-rich wheat straw. Results indicate that the amounts of K and Na released during co-combustion could be reduced by the effects of Fe, Ti, S, Si, and Al from blended fuels. At lower wheat straw shares, the release of K decreased due to reactions of KCl with Fe species, and Ti species, forming K2Fe2O4 and K2TiO3. At high wheat straw shares, the release of K could be mainly captured in the form of K2SO4; small amounts of KAlSiO4 were also observed in the bottom ash. When the wheat straw share was 80 wt.%, increasing temperatures enhanced the release of KCl(g) and NaCl(g) at 600–800 °C. By contrast, in the range of 800–1000 °C, the amounts of these gases released exhibited no apparent association with temperature. Compared with the release of K, fuel K was mainly retained in the bottom ash. The K2SO4 content in the bottom ash decreased with increasing temperature in the range of 600–1000 °C, whereas the fraction of K in the form of KAlSiO4 and KAlSiO6 increased with increasing temperature

  9. X-ray and neutron diffraction studies of some liquid alkali metals and alloys

    International Nuclear Information System (INIS)

    Experimental techniques and correction procedures have been searched for, which allow a reliable and accurate determination of the structure factors of simple liquid metals, particularly in the small-angle region. A study of binary alloys was carried out and showed that clustering of like atoms (a tendency to phase separation) occurs, indicating special structural aspects. The densities of Na-K, Na-Cs, K-Rb alloys were also measured. (C.F.)

  10. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    International Nuclear Information System (INIS)

    The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A3Y(BH4)6 or c-A2LiY(BH4)6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH4)4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y3+ is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH4)4 structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH4 (A=K, Rb, Cs) contains nine compounds in total. • Y3+ forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH4)4 crystallize with structure types analogous to metal oxides. • Double-perovskites decompose and form a novel borohydride-closo-borane

  11. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    Energy Technology Data Exchange (ETDEWEB)

    Sadikin, Yolanda [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Stare, Katarina [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Schouwink, Pascal [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Brix Ley, Morten; Jensen, Torben R. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C (Denmark); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Černý, Radovan, E-mail: radovan.cerny@unige.ch [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland)

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  12. Direct imaging of the alkali metal site in K-doped fullerene peapods.

    Science.gov (United States)

    Guan, Lunhui; Suenaga, Kazu; Shi, Zujin; Gu, Zhennan; Iijima, Sumio

    2005-02-01

    The structure of K-doped fullerene peapods has been investigated by means of high-resolution transmission electron microscopy and electron energy-loss spectroscopy (EELS). It is proven that the potassium atoms can be doped at the intermolecular sites within C60 peapods. The EELS spectrum of potassium (K) L edge clearly exhibits the feature of K+ in the doped peapod and consequently suggests n-type doping. These results encourage the realization of a one-dimensional superconducting wire based on the nanotube peapods. PMID:15783568

  13. A study of the chemistry of alkali metals in the upper atmosphere

    Science.gov (United States)

    Silver, J. A.; Kolb, C. E.

    1985-01-01

    The reactions of metallic species introduced into the atmosphere by meteor ablation may play a significant role in mesospheric and stratospheric chemistry. During this second year of a three year program to investigate these phenomena, we have completed measurements for the reactions of atomic sodium with ozone, and of NaO with ozone. Preliminary measurements of the rate constant for the reaction of NaO2 + HCl have been done, as well as an initial photodissociation cross section determination for NaCl at 193 nm. We have also begun to investigate the means by which neutral gas phase alkali species may be removed from the mesosphere and stratosphere.

  14. Understanding Li-ion battery processes at the atomic to nano-scale.

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yongjie (Rice University, Houston, TX); Subramanian, Arunkumar; Hudak, Nicholas; Sullivan, John Patrick; Shaw, Michael J.; Huang, Jian Yu

    2010-05-01

    Reducing battery materials to nano-scale dimensions may improve battery performance while maintaining the use of low-cost materials. However, we need better characterization tools with atomic to nano-scale resolution in order to understand degradation mechanisms and the structural and mechanical changes that occur in these new materials during battery cycling. To meet this need, we have developed a micro-electromechanical systems (MEMS)-based platform for performing electrochemical measurements using volatile electrolytes inside a transmission electron microscope (TEM). This platform uses flip-chip assembly with special alignment features and multiple buried electrode configurations. In addition to this platform, we have developed an unsealed platform that permits in situ TEM electrochemistry using ionic liquid electrolytes. As a test of these platform concepts, we have assembled MnO{sub 2} nanowires on to the platform using dielectrophoresis and have examined their electrical and structural changes as a function of lithiation. These results reveal a large irreversible drop in electronic conductance and the creation of a high degree of lattice disorder following lithiation of the nanowires. From these initial results, we conclude that the future full development of in situ TEM characterization tools will enable important mechanistic understanding of Li-ion battery materials.

  15. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    International Nuclear Information System (INIS)

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  16. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Zou Ye [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng Zhenbo, E-mail: zbdeng@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Xu Denghui [Department of Mathematics and Physics, Beijing Technology and Business University, Beijing 100037 (China); Lue Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2012-02-15

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N Prime -diphenyl-N,N Prime -bis(1-napthyl-phenyl)-1.1 Prime -biphenyl-4.4 Prime -diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3})/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq{sub 3} layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: Black-Right-Pointing-Pointer Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. Black-Right-Pointing-Pointer Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. Black-Right-Pointing-Pointer The Improved OLED performance was attributed to the possible interfacial chemical reaction. Black-Right-Pointing-Pointer Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  17. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  18. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)

    2013-07-15

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  19. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Indian Academy of Sciences (India)

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh

    2005-04-01

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  20. Efficient plasma-enhanced method for layered LiNi1/3Co1/3Mn1/3O2 cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries

    Science.gov (United States)

    Jiang, Qianqian; Chen, Ning; Liu, Dongdong; Wang, Shuangyin; Zhang, Han

    2016-05-01

    In order to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 as a lithium insertion positive electrode material, atom-scale modification was realized to obtain the layered oxysulfide LiNi1/3Co1/3Mn1/3O2-xSx using a novel plasma-enhanced doping strategy. The structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2-xSx are investigated systematically, which confirms that the S doping can make the structure stable and benefit the electrochemical performance. The phys-chemical characterizations indicate that oxygen atoms in the initial LiNi1/3Co1/3Mn1/3O2 have been partially replaced by S atoms. It should be pointed out that the atom-scale modification does not significantly alter the intrinsic structure of the cathode. Compared to the pristine material, the LiNi1/3Co1/3Mn1/3O2-xSx shows a superior performance with a higher capacity (200.4 mA h g-1) and a significantly improved cycling stability (maintaining 94.46% of its initial discharge capacity after 100 cycles). Moreover, it has an excellent rate performance especially at elevated performance, which is probably due to the faster Li+ transportation after S doping into the layered structure. All the results show that the atom-scale modification with sulfur atoms on LiNi1/3Co1/3Mn1/3O2, which significantly improved the electrochemical performance, offers a novel anionic doping strategy to realize the atom-scale modification of electrode materials to improve their electrochemical performance.In order to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 as a lithium insertion positive electrode material, atom-scale modification was realized to obtain the layered oxysulfide LiNi1/3Co1/3Mn1/3O2-xSx using a novel plasma-enhanced doping strategy. The structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2-xSx are investigated systematically, which confirms that the S doping can make the structure stable and benefit the electrochemical performance. The phys

  1. Control of inhomogeneous atomic ensembles of hyperfine qudits

    DEFF Research Database (Denmark)

    Mischuck, Brian Edward; Merkel, Seth T.; Deutsch, Ivan H.

    2012-01-01

    We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential to the...

  2. Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities

    International Nuclear Information System (INIS)

    Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination

  3. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  4. Stability of atoms in the anionic domain (Z

    CERN Document Server

    Gil, G

    2013-01-01

    We study the stability and universal behaviour of the ionization energy of N-electron atoms with nuclear charge Z in the anionic domain (Zatom region to the anionic instability threshold. As testing systems we choose inert gases (He-like, Ne-like and Ar-like isoelectronic sequences) and alkali metals (Li-like, Na-like, K-like sequences). From the results, it is apparent that, for inert gases case, the stability relation with N is completely inverted in the singly-charged anion region (Z=N-1) with respect to the neutral atom region (Z=N), i.e. larger systems are more stable than the smaller ones. We devised a semi-analytical model (inspired by the zero-range forces theory) which lead us to establish the ionization energy dependence on the nuclear charge n...

  5. Efficient plasma-enhanced method for layered LiNi1/3Co1/3Mn1/3O2 cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries.

    Science.gov (United States)

    Jiang, Qianqian; Chen, Ning; Liu, Dongdong; Wang, Shuangyin; Zhang, Han

    2016-06-01

    In order to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 as a lithium insertion positive electrode material, atom-scale modification was realized to obtain the layered oxysulfide LiNi1/3Co1/3Mn1/3O2-xSx using a novel plasma-enhanced doping strategy. The structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2-xSx are investigated systematically, which confirms that the S doping can make the structure stable and benefit the electrochemical performance. The phys-chemical characterizations indicate that oxygen atoms in the initial LiNi1/3Co1/3Mn1/3O2 have been partially replaced by S atoms. It should be pointed out that the atom-scale modification does not significantly alter the intrinsic structure of the cathode. Compared to the pristine material, the LiNi1/3Co1/3Mn1/3O2-xSx shows a superior performance with a higher capacity (200.4 mA h g(-1)) and a significantly improved cycling stability (maintaining 94.46% of its initial discharge capacity after 100 cycles). Moreover, it has an excellent rate performance especially at elevated performance, which is probably due to the faster Li(+) transportation after S doping into the layered structure. All the results show that the atom-scale modification with sulfur atoms on LiNi1/3Co1/3Mn1/3O2, which significantly improved the electrochemical performance, offers a novel anionic doping strategy to realize the atom-scale modification of electrode materials to improve their electrochemical performance. PMID:27189799

  6. Influence Of Inelastic Ridberg Atom-Atom Collisional Process On Kinetic And Optical Properties Of Low-Temperature Laboratory And Astrophysical Plasmas

    Science.gov (United States)

    Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatovic, Lj. M.

    2010-07-01

    Elementary processes in plasma phenomena traditionally attract physicist`s attention. The channel of charged-particle formation in Rydberg Atom-Atom thermal and subthermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI), atomic ions - penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H- , H+, H2, He, He+ ), Hydrogen-like alkali-metal Litium (Li, Li+, Li-) and combinations (HeH+ , LiH- , LiH+). There is a wide range of plasma parameters in which the Rydberg Atoms of the elements called above make the dominant construction to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The first series of quantitative measurements of the rate constants for Rydberg Atoms starts in 1978 (Devdariani, Klyucharev et al.). The method of AI and PI calculations, so-called "dipole resonant" mechanism proposed in 1971 (Smirnov, Mihaylov) was used in semiclassical (Mihailov and Janev 1981) and quantum mechanical theories (Duman, Shmatov, 1980). The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg Atom - Atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modeled as diffusion in the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum (Bezuglov, Borodin, Klyucharev et al. 1997). Such approach makes it possible to operate on efficiently of inelastic collisional processes and sometimes to operate on time of Rydberg Atoms life. This may lead to anomalies of Rydberg Atoms spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed

  7. Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes.

    Science.gov (United States)

    Nisula, Mikko; Karppinen, Maarit

    2016-02-10

    We demonstrate the fabrication of high-quality electrochemically active organic lithium electrode thin films by the currently strongly emerging combined atomic/molecular layer deposition (ALD/MLD) technique using lithium terephthalate, a recently found anode material for lithium-ion battery (LIB), as a proof-of-the-concept material. Our deposition process for Li-terephthalate is shown to well comply with the basic principles of ALD-type growth including the sequential self-saturated surface reactions, a necessity when aiming at micro-LIB devices with three-dimensional architectures. The as-deposited films are found crystalline across the deposition temperature range of 200-280 °C, which is a trait highly desired for an electrode material but rather unusual for hybrid inorganic-organic thin films. Excellent rate capability is ascertained for the Li-terephthalate films with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate; this yields highly stable structures with capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C. PMID:26812433

  8. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.;

    2012-01-01

    We report on a directional atomic beam created using an alkali metal dispenser and a nozzle. By applying a high current (15 A) pulse to the dispenser at room temperature we can rapidly heat it to a temperature at which it starts dispensing, avoiding the need for preheating. The atomic beam produced...

  9. Corrosion testing of zirconia, beryllia and magnesia ceramics in molten alkali metal carbonates at 900 °C

    Science.gov (United States)

    Kaplan, Valery; Bendikov, Tatyana; Feldman, Yishay; Gartsman, Konstantin; Wachtel, Ellen; Lubomirsky, Igor

    2016-01-01

    An electrochemical cell containing molten Li2CO3-Li2O at 900 °C has been proposed for the conversion of the greenhouse gas CO2 to CO for chemical energy storage. In the current work, we have examined the corrosion resistance of zirconia, beryllia and magnesia ceramics at 900 °C in the Li2CO3-Li2O and Li-Na-K carbonate eutectic mixtures to identify suitable electrically insulating materials. Conclusions regarding material stability were based on elemental analysis of the melt, primarily via X-ray photoelectron spectroscopy, a particularly sensitive technique. It was found that magnesia is completely stable for at least 33 h in a Li2CO3-Li2O melt, while a combined lithium titanate/lithium zirconate layer forms on the zirconia ceramic as detected by XRD. Under the same melt conditions, beryllia shows considerable leaching into solution. In a Li-Na-K carbonate eutectic mixture containing 10.2 mol% oxide at 900 °C under standard atmospheric conditions, magnesia showed no signs of degradation. Stabilization of the zirconia content of the eutectic mixture at 0.01-0.02 at% after 2 h is explained by the formation of a lithium zirconate coating on the ceramic. On the basis of these results, we conclude that only magnesia can be satisfactorily used as an insulating material in electrolysis cells containing Li2CO3-Li2O melts.

  10. X-ray diffraction analysis of LiCu{sub 2}O{sub 2} crystals with additives of silver atoms

    Energy Technology Data Exchange (ETDEWEB)

    Sirotinkin, V. P., E-mail: irotinkin.vladimir@mail.ru; Bush, A. A.; Kamentsev, K. E. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation); Dau, H. S. [People’s Friendship University of Russia (Russian Federation); Yakovlev, K. A. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation); Tishchenko, E. A. [People’s Friendship University of Russia (Russian Federation)

    2015-09-15

    Silver-containing LiCu{sub 2}O{sub 2} crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1-x)CuO · 20{sub x}AgNO{sub 3} · 20Li{sub 2}CO{sub 3} (0 ≤ x ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu{sub 2}O{sub 2} structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter c of the LiCu{sub 2}O{sub 2} rhombic unit cell, a slight increase in parameter a, and a slight decrease in parameter b.

  11. Analysis of polarizability measurements made with atom interferometry

    CERN Document Server

    Gregoire, Maxwell D; Trubko, Raisa; Cronin, Alexander D

    2016-01-01

    We present revised measurements of the static electric dipole polarizabilities of K, Rb, and Cs based on atom interferometer experiments presented in [Phys. Rev. A 2015, 92, 052513] but now re-analyzed with new calibrations for the magnitude and geometry of the applied electric field gradient. The resulting polarizability values did not change, but the uncertainties were significantly reduced. Then we interpret several measurements of alkali metal atomic polarizabilities in terms of atomic oscillator strengths $f_{ik}$, Einstein coefficients $A_{ik}$, state lifetimes $\\tau_{k}$, transition dipole matrix elements $D_{ik}$, line strengths $S_{ik}$, and van der Waals $C_6$ coefficients. Finally, we combine atom interferometer measurements of polarizabilities with independent measurements of lifetimes and $C_6$ values in order to quantify the residual contribution to polarizability due to all atomic transitions other than the principal $ns$-$np_J$ transitions for alkali metal atoms.

  12. Analysis of Polarizability Measurements Made with Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Maxwell D. Gregoire

    2016-07-01

    Full Text Available We present revised measurements of the static electric dipole polarizabilities of K, Rb, and Cs based on atom interferometer experiments presented in [Phys. Rev. A 2015, 92, 052513] but now re-analyzed with new calibrations for the magnitude and geometry of the applied electric field gradient. The resulting polarizability values did not change, but the uncertainties were significantly reduced. Then, we interpret several measurements of alkali metal atomic polarizabilities in terms of atomic oscillator strengths fik, Einstein coefficients Aik, state lifetimes τk, transition dipole matrix elements Dik, line strengths Sik, and van der Waals C6 coefficients. Finally, we combine atom interferometer measurements of polarizabilities with independent measurements of lifetimes and C6 values in order to quantify the residual contribution to polarizability due to all atomic transitions other than the principal ns-npJ transitions for alkali metal atoms.

  13. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  14. Calculation of van der Walls coefficients of alkali metal clusters by hydrodynamic approach to time-dependent density-functional theory

    CERN Document Server

    Banerjee, A; Banerjee, Arup; Harbola, Manoj K.

    2004-01-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waal coefficients $C_{6}$ and $C_{8}$ of alkali-metal clusters of various sizes including very large clusters. Such calculation becomes computationally very demanding in the orbital-based Kohn-Sham formalism, but quite simple in the hydrodynamic approach. We show that for interactions between the clusters of same sizes, $C_{6}$ and $C_{8}$ sale as the sixth and the eighth power of the cluster radius rsepectively, and approach the respective classically predicted values for the large size clusters.

  15. Analysis of polarizability measurements made with atom interferometry

    OpenAIRE

    Gregoire, Maxwell D.; Brooks, Nathan; Trubko, Raisa; Cronin, Alexander D

    2016-01-01

    We present revised measurements of the static electric dipole polarizabilities of K, Rb, and Cs based on atom interferometer experiments presented in [Phys. Rev. A 2015, 92, 052513] but now re-analyzed with new calibrations for the magnitude and geometry of the applied electric field gradient. The resulting polarizability values did not change, but the uncertainties were significantly reduced. Then we interpret several measurements of alkali metal atomic polarizabilities in terms of atomic os...

  16. Rotationally inelastic collisions of LiH with He: Quasiclassical dynamics of atom-rigid rotor trajectories

    International Nuclear Information System (INIS)

    Rotationally inelastic cross sections for the LiH--He collision system are computed classically using a previously derived ab initio potential energy surface [D. M. Silver, J. Chem. Phys. 72, 6445 (1980)]. The LiH is in its ground vibronic state and is initially taken to be in its j = 1 rotational state. The He is in its ground electronic state. The system is treated as an atom-rigid rotor interaction. The results are compared with previously computed cross sections derived from the same ab initio potential energy surface using the coupled states approximation for quantum mechanical scattering [E. F. Jendrek and M. H. Alexander, J. Chem. Phys. 72, 6452 (1980)]. The theoretical total cross sections are averaged over a temperature distribution and are then compared with experimental measurements of corresponding cross sections for a rotationally resolved LiH beam ( j = 1) incident on a He gas target in thermal equilibrium at room temperature [P. J. Dagdigian and B. E. Wilcomb, J. Chem. Phys. 72, 6462 (1980)]. The agreement between classical, quantum and experimental results is discussed

  17. Long-range interactions between alkali and alkaline-earth atoms

    International Nuclear Information System (INIS)

    Dispersion coefficients between the alkali metal atoms (Li–Rb) and alkaline-earth metal atoms (Be–Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low-lying excited state. (paper)

  18. Characterization of charge-exchange collisions between ultracold $\\rm{^6Li}$ atoms and $\\rm{^{40}Ca^+}$ ions

    CERN Document Server

    Saito, R; Sasakawa, M; Nakai, R; Raoult, M; Silva, H Da; Dulieu, O; Mukaiyama, T

    2016-01-01

    We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of $^6$Li atoms and $^{40}$Ca$^+$ ions in the collision energy range from 0.2 mK to 1 K. Deliberately excited ion micromotion is used to control the collision energy of atoms and ions. The energy dependence of the charge-exchange collision cross section obeys the Langevin model in the temperature range of the current experiment, and the measured magnitude of the cross section is correlated to the internal state of the $^{40}$Ca$^+$ ions. Revealing the relationship between the charge-exchange collision cross sections and the interaction potentials is an important step toward the realization of the full quantum control of the chemical reactions at an ultralow temperature regime.

  19. Confocal and Atomic Force Microscopies of Color Centers Produced by Ultrashort Laser Irradiation in LiF Crystals

    Science.gov (United States)

    Courrol, Lilia Coronato; Martinez, Oscar; Samad, Ricardo Elgul; Gomes, Laércio; Ranieri, Izilda Márcia; Baldochi, Sonia Licia; de Freitas, Anderson Zanardi; Junior, Nilson Dias Vieira

    2008-04-01

    We report properties of the spatial and spectral distribution of color centers produced in LiF single crystals by ultrashort high intensity laser pulses (60 fs, 10 GW) using confocal spectral microscopy and atomic force microscopy. We could identify a large amount of F centers that gave rise to aggregates such as F2, F4, F2+ and F3+ distributed in cracked shape brownish areas. We have taken a 3D image using confocal microscopy of the sample (luminescent image) and no difference is observed in the different planes. The atomic force microscopy image clearly shows the presence of defects on the modified surface. The formation of micrometer or sub-micrometer voids, filaments and void strings was observed and related to filamentation process.

  20. Gallium phosphide as a new material for anodically bonded atomic sensors

    Directory of Open Access Journals (Sweden)

    Nezih Dural

    2014-08-01

    Full Text Available Miniaturized atomic sensors are often fabricated using anodic bonding of silicon and borosilicate glass. Here we describe a technique for fabricating anodically bonded alkali-metal cells using GaP and Pyrex. GaP is a non-birefringent semiconductor that is transparent at alkali-metal resonance wavelengths, allowing new sensor geometries. GaP also has a higher thermal conductivity and lower He permeability than borosilicate glass and can be anodically bonded below 200 °C, which can also be advantageous in other vacuum sealing applications.

  1. Three Alkali-Metal-Gold-Gallium Systems. Ternary Tunnel Structures and Some Problems with Poorly Ordered Cations

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr; Miller, Gordon J.; Corbett, John D.

    2012-06-27

    Six new intermetallic compounds have been characterized in the alkali metal (A = Na, Rb, Cs)–gold–gallium systems. Three isostructural compounds with the general composition A0.55Au2Ga2, two others of AAu3Ga2 (A = Rb, Cs), and the related Na13Au41.2Ga30.3 were synthesized via typical high-temperature reactions and their crystal structures determined by single-crystal X-ray diffraction analysis: Na0.56(9)Au2Ga2 (I, I4/mcm, a = 8.718(1) Å, c = 4.857(1) Å, Z = 4), Rb0.56(1)Au2Ga2 (II, I4/mcm, a = 8.950(1) Å, c = 4.829(1) Å, Z = 4), Cs0.54(2)Au2Ga2 (III, I4/mcm, a = 9.077(1) Å, c = 4.815(1) Å, Z = 4), RbAu3Ga2 (IV, Pnma, a = 13.384(3) Å, b = 5.577(1) Å, c = 7.017(1) Å, Z = 4), CsAu3Ga2 (V, Pnma, a = 13.511(3) Å, b = 5.614(2) Å, c = 7.146(1) Å, Z = 4), Na13Au41.2(1)Ga30.3(1) (VI, P6 mmm, a = 19.550(3) Å, c = 8.990(2) Å, Z = 2). The first three compounds (I–III) are isostructural with tetragonal K0.55Au2Ga2 and likewise contain planar eight-member Au/Ga rings that stack along c to generate tunnels and that contain varying degrees of disordered Na–Cs cations. The cation dispositions are much more clearly and reasonably defined by electron density mapping than through least-squares refinements with conventional anisotropic ellipsoids. Orthorhombic AAu3Ga2 (IV, V) are ordered ternary Rb and Cs derivatives of the SrZn5 type structure, demonstrating structural variability within the AAu3Ga2 family. All attempts to prepare an isotypic “NaAu3Ga2” were not successful, but yielded only a similar composition Na13Au41.2Ga30.3 (NaAu3.17Ga2.33) (VI) in a very different structure with two types of cation sites. Crystal orbital Hamilton population (COHP) analysis obtained from tight-binding electronic structure calculations for idealized I–IV via linear muffin-tin-orbital (LMTO) methods emphasized the major contributions of heteroatomic Au–Ga bonding to the structural stability of these compounds. The relative minima (pseudogaps) in the DOS curves for IV

  2. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    International Nuclear Information System (INIS)

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  3. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S., E-mail: s.oswald@ifw-dresden.de

    2015-10-01

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  4. Comparative and complementary characterization of precipitate microstructures in Al-Mg-Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography

    International Nuclear Information System (INIS)

    Highlights: • Microalloying addition of Li enhances the age-hardening response of Al-Mg-Si alloys. • Size and number density of nanoclusters or precipitates are increased by Li addition. • Mg and Si contents within the aggregates are inversely decreased by Li addition. • Microalloying Li accelerates heterogeneous nucleation of such Mg-Si aggregates. - Abstract: In this study, comparative and complementary characterization of precipitate microstructures by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and atom probe tomography (APT) has been performed for Al-0.55 wt%Mg-0.89 wt%Si(-0.043 wt%Li) alloys aged at 433 K for 1.2 ks (under aging) and 36 ks (peak aging). Quantitative estimation of nanometer-scale clusters (nanoclusters) and β″ precipitates by TEM and APT revealed that microalloying addition of Li increases the size and number density of these Mg-Si aggregates, resulting in the enhanced age-hardening response. Positive evidence by APT for the segregation of Li suggests that heterogeneous nucleation of such Mg-Si aggregates with the aid of Li is attributed to the modified precipitate microstructures and thus improved mechanical strength of this alloy system

  5. Comparative and complementary characterization of precipitate microstructures in Al-Mg-Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Koshino, Yuki [Department of Mechanical Engineering and Materials Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Kozuka, Masaya [Materials Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan); Hirosawa, Shoichi, E-mail: hirosawa@ynu.ac.jp [Department of Mechanical Engineering and Materials Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Aruga, Yasuhiro [Materials Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan)

    2015-02-15

    Highlights: • Microalloying addition of Li enhances the age-hardening response of Al-Mg-Si alloys. • Size and number density of nanoclusters or precipitates are increased by Li addition. • Mg and Si contents within the aggregates are inversely decreased by Li addition. • Microalloying Li accelerates heterogeneous nucleation of such Mg-Si aggregates. - Abstract: In this study, comparative and complementary characterization of precipitate microstructures by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and atom probe tomography (APT) has been performed for Al-0.55 wt%Mg-0.89 wt%Si(-0.043 wt%Li) alloys aged at 433 K for 1.2 ks (under aging) and 36 ks (peak aging). Quantitative estimation of nanometer-scale clusters (nanoclusters) and β″ precipitates by TEM and APT revealed that microalloying addition of Li increases the size and number density of these Mg-Si aggregates, resulting in the enhanced age-hardening response. Positive evidence by APT for the segregation of Li suggests that heterogeneous nucleation of such Mg-Si aggregates with the aid of Li is attributed to the modified precipitate microstructures and thus improved mechanical strength of this alloy system.

  6. Light-induced atomic desorption and related phenomena

    International Nuclear Information System (INIS)

    We review some recent studies on light-induced atomic desorption (LIAD) from dielectric surfaces. Alkali-metal atoms adsorbed either on organic films or on porous glass are released into the vapor phase under illumination. The measurements were performed in Pyrex resonance cells either coated with siloxane films or containing a porous glass sample. In both cases, the experimental results show that LIAD can be used to produce atomic densities suitable for most atomic physics experiments. Moreover, we find that photoinduced effects, correlated with LIAD, produce reversible formation and evaporation of alkali-metal clusters in porous glass. These processes depend on the light frequency, making the porous glass transmittance controllable by light.

  7. Single-atom electron energy loss spectroscopy of light elements

    OpenAIRE

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of e...

  8. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Science.gov (United States)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  9. Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material

    International Nuclear Information System (INIS)

    Atomic layer deposition (ALD) was used to deposit ZrO2 directly on Li4Ti5O12 electrode to improve its electrochemical performance. The thickness of the deposited ZrO2 was controlled by adjusting ALD cycles from 0 to 1, 2, 5, 10 and 50. The Li4Ti5O12 electrodes with and without ZrO2 coating were characterized by scanning electron microscope, energy dispersive X-ray spectroscopy, high-resolution transmission electron microscope, cyclic voltammetry (CV) and galvanostatic charge-discharge test. The CV result indicated that ZrO2 coating with 2, 5 and 10 ALD cycles could effectively reduce the electrochemical polarization of the Li4Ti5O12 electrode. Charge-discharge test revealed that the Li4Ti5O12 electrodes with 1-, 2- and 5-cycle ZrO2 coating exhibited higher specific capacity, better cycling performance and rate capability than the pristine Li4Ti5O12 in a voltage range of 0.1–2.5 V. However, ZrO2 coating with more than 5 ALD cycles could lead to degraded performance of Li4Ti5O12. Mechanism for the enhanced electrochemical performance of Li4Ti5O12 was explored by electrochemical impedance spectroscopy, and the reason was attributed to the suppressed formation of solid electrolyte interphase and the improved electron transport by ultrathin ZrO2 coating

  10. Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach

    Science.gov (United States)

    Ji, Xiaohua; He, Jian; Su, Zhe; Gothard, Nick; Tritt, Terry M.

    2008-08-01

    We report herein a proof-of-principle study of grain boundary engineering in the polycrystalline p-type Bi2Te3 system. Utilizing the recently developed hydrothermal nanocoating treatment technique, we fabricated an alkali-metal(s)-containing surface layer on the p-Bi2Te3 bulk grain, which in turn became part of the grain boundary upon hot pressing densification. Compared to the untreated bulk reference, the dimensionless figure of merit ZT has been improved by ˜30% in the Na-treated sample chiefly due to the reduced thermal conductivity, and ˜38% in the Rb-treated sample mainly owing to the improved power factor. The grain boundary phase provides a new avenue by which one can potentially decouple the otherwise inter-related electrical resistivity, Seebeck coefficient, and thermal conductivity within one thermoelectric material.

  11. "XA6" octahedra influencing the arrangement of anionic groups and optical properties in inverse-perovskite [B6O10]XA3 (X = Cl, Br; A = alkali metal).

    Science.gov (United States)

    Yang, Zhihua; Lei, Bing-Hua; Yang, Bin; Pan, Shilie

    2016-06-01

    Exploring the effect of microscopic units, which set up the perovsikte framework, is of importance for material design. In this study, a series of borate halides with inverse-perovskite structures [B6O10]XA3 (X = Cl, Br; A = alkali metal) have been studied. It was revealed that the distortion and volume of XA6 octahedra influence the arrangement of anionic groups, which leads to the flexibility of the perovskite-related framework and differences in optical properties. Under the structural control scheme, the structure of Rb3B6O10Cl was predicted. The stability of the predicted structure was confirmed by an ab initio density functional theory-based method. The calculation shows Rb3B6O10Cl has a short UV cutoff edge of less than 200 nm, a moderate birefringence and a large second harmonic generation response. PMID:27211304

  12. Design study of a 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, G.; Graves, R. L.; Lackey, M. E.; Tudor, J. J.; Zimmerman, G. P.

    1978-04-01

    The results of a study of 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace are described. Both cesium and potassium were evaluated for the topping cycle working fluid and cesium was selected. The fuel used was Illinois No. 6 coal, and limestone was used as the bed sorbent material. For the reference design, the furnace operated at atmospheric pressure and the cycle conditions for the power conversion system were 1500/sup 0/F to 900/sup 0/F for the topping cycle and 2400 psi 1000/sup 0/F to 1/sup 1///sub 2/ in. Hg for the steam system. Several variations of the plant were briefly evaluated. These variations included using a supercritical steam system and using a pressurized furnace. The principal conclusions of the study are as follows: a satisfactory design of an atmospheric pressure fluidized bed furnace binary power plant was evolved which uses a variation of the conventional binary cycle which permits utilizing the full potential of the alkali metal topping cycle; the net plant efficiency (coal to busbar) of the reference system was 44.6%; the net plant efficiency of a larger system with a 3500 psi 1000/sup 0/F steam system was 46.8%; an intermediate pressure turbocharged system with a furnace pressure of 4 atm (0.4 MPa) would have many advantages in comparison to the atmospheric pressure system, including a plant efficiency about one percentage point higher than the reference design, reduced limestone requirement and potential capital cost saving; and although cost estimates were not a part of the design study, a comparison of the design of this study to that of the Energy Conversion Alternative Study (ECAS) indicates plant costs 20 to 25% less than that of the final ECAS design.

  13. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  14. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; DING Shi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the closed-orbit theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases; others persist till much higher f . As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  15. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; DINGShi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the dosed-orblt theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases, others persist till much higher f. As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  16. Structure and properties of a rapidly solidified Al-Li-Mn-Zr alloy for high-temperature applications: Part II. spray atomization and deposition processing

    Science.gov (United States)

    Baram, Joseph

    1991-10-01

    A new Al-Li alloy containing 2.3 wt pct Li, 6.5 wt pct Mn, and 0.65 wt pet Zr for high-temperature applications has been processed by a rapid solidification (RS) technique (as compacts by spray atomization and deposition) and then thermomechanically treated by hot extrusion. As-received and thermomechanically treated deposits were characterized by X-ray diffraction and scanning electron microscopy (SEM). Phase analyses in the as-processed materials revealed the presence of two Mn phases (Al4Mn and Al6Mn), one Zr phase (Al3Zr), two Li phases (the stable AlLi and the metastable Al3Li), and the aAl solid solution with high excess in Mn solubility (up to close the nominal composition in the as-atomized powders). As-deposited and extruded pieces were given heating treatments at 430 °C and 530 °C. A two-step aging treatment was practiced, to check for the optimal (for tensile properties) aging procedure, which was found to be the following: solutioning at 430 °C for 1 hour and water quenching + a first-step aging at 120 °C for 12 hours + a second-step aging at 175 °C for 15 hours. The mechanical properties, at room and elevated temperatures, of the hot extruded deposits are compared, following the optimal solutioning and aging treatments. The room-temperature (RT) strength of the proposed alloy is distinctly better for the as-deposited specimens (highest yield strength, 320 MPa) than for the as-atomized (highest yield strength, 215 MPa), though less than 65 pct of the RT strength is conserved at 250 °C. Ultimate strengths are quite comparable (in the 420 to 470 MPa range). Ductilities at RTs are in the low 1.5 to 2.5 pct range and show no improvement over other Al-Li alloys.

  17. Versatile Coordination Mode of LiNaB8O13 and α- and β-LiKB8O13 via the Flexible Assembly of Four-Connected B5O10 and B3O7 Groups.

    Science.gov (United States)

    An, Donghai; Kong, Qingrong; Zhang, Min; Yang, Yun; Li, Danni; Yang, Zhihua; Pan, Shilie; Chen, Huimin; Su, Zhi; Sun, Yi; Mutailipu, Miriding

    2016-01-19

    Three new alkali-metal mixed borates, LiNaB8O13, α-LiKB8O13, and β-LiKB8O13, containing a (3)∞[B8O13] three-dimensional network have been successfully synthesized. Their fundamental building block is [B8O16](8-) formed by the vertex-sharing [B5O10](5-) and [B3O7](5-) groups, which are topologically identical when they are considered as four-connected nodes. The viewpoints give us a feasible way to investigate the versatile structure assembly of borates with a complex network. PMID:26692328

  18. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    Science.gov (United States)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  19. Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography

    International Nuclear Information System (INIS)

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO4 by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of 16O2+ ions. Green laser assisted field evaporation led to the selective loss of Li (∼33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO4. Plotting of multihit events on Saxey plots also revealed a strong neutral O2 loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency. - Highlights: • Laser wavelength and pulse energy affect accuracy of APT analysis of LiFePO4. • Oxygen deficiency observed for UV laser; stronger at higher laser energies. • Selective loss of Li with green laser due to dc evaporation. • Saxey plots reveal prevalent formation of O2 neutrals. • Quantification of molecular dissociations cannot account for O deficiency

  20. Effects of laser energy and wavelength on the analysis of LiFePO{sub 4} using laser assisted atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran [Department of NanoEngineering, University of California San Diego, CA 92093 (United States); Schreiber, Daniel K. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Martens, Richard L. [Central Analytical Facility, University of Alabama, Tuscaloosa, AL 35487 (United States); Janssen, Yuri [Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400 (United States); Khalifah, Peter [Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400 (United States); Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11793-5000 (United States); Meng, Ying Shirley, E-mail: shirleymeng@ucsd.edu [Department of NanoEngineering, University of California San Diego, CA 92093 (United States)

    2015-01-15

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO{sub 4} by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of {sup 16}O{sub 2}{sup +} ions. Green laser assisted field evaporation led to the selective loss of Li (∼33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO{sub 4}. Plotting of multihit events on Saxey plots also revealed a strong neutral O{sub 2} loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency. - Highlights: • Laser wavelength and pulse energy affect accuracy of APT analysis of LiFePO{sub 4}. • Oxygen deficiency observed for UV laser; stronger at higher laser energies. • Selective loss of Li with green laser due to dc evaporation. • Saxey plots reveal prevalent formation of O{sub 2} neutrals. • Quantification of molecular dissociations cannot account for O deficiency.

  1. Evaluation of Ce.sup.3+./sup. and alkali metal ions Co-doped LiSrAlF.sub.6./sub. crystalline scintillators

    Czech Academy of Sciences Publication Activity Database

    Wakahara, S.; Yanagida, T.; Fujimoto, Y.; Yokota, Y.; Pejchal, Jan; Kurosawa, S.; Suzuki, S.; Kawaguchi, N.; Fukuda, K.; Yoshikawa, A.

    2013-01-01

    Roč. 56, SI (2013), s. 111-115. ISSN 1350-4487. [International Conference on Luminescence Detectors and Transformers of Ionizing Radiation /8./ (LUMDETR 2012). Halle, 10.09.2012-14.09.2012] Institutional support: RVO:68378271 Keywords : thermal neutron * neutron detection * growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.140, year: 2013

  2. Multi-reference Hartree-Fock configuration interaction calculations of LiH and Be using a new double-zeta atomic base.

    Science.gov (United States)

    de Cerqueira Sobrinho, Antonio Moreira; de Andrade, Micael Dias; Nascimento, Marco Antônio Chaer; Malbouisson, Luiz Augusto Carvalho

    2014-08-01

    In this work, we propose new double-zeta atomic bases for the Li and Be atoms. These were obtained by applying the Hartree-Fock-Gauss generalized simulated annealing (GSA) method-a modified form of the GSA algorithm. The new bases were generated through optimization of the atomic electronic energy functional with regards to the linear combination of atomic orbitals-molecular orbital (LCAO-MO) coefficients, and exponent and contraction coefficients of the primitive Gaussian functions, simultaneously. These new bases were tested by performing calculations of the ground state energy of the Be atom, and the ground state energy and permanent electrical dipole moment of the LiH molecule, using the multi-reference Hartree-Fock (HF) configuration interaction method-a multi-reference method based on multiple HF solutions. In addition, multi-reference HF configuration interaction calculations were performed for the Be atom using the standard double-zeta, triple-zeta and polarized double-zeta bases. With the new double-zeta bases and with reduced multi-reference HF bases, it was possible to obtain lower energies than those obtained with the full configuration interaction calculations using the standard double-zeta bases and dipole moment values in close agreement with experimental values. PMID:25102937

  3. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    Directory of Open Access Journals (Sweden)

    Yosuke Ishii

    2016-03-01

    Full Text Available We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC and two kinds of single-walled carbon nanotubes (SWCNTs having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs. It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  4. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    Science.gov (United States)

    Ishii, Yosuke; Sakamoto, Yuki; Song, Hayong; Tashiro, Kosuke; Nishiwaki, Yoshiki; Al-zubaidi, Ayar; Kawasaki, Shinji

    2016-03-01

    We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC) and two kinds of single-walled carbon nanotubes (SWCNTs) having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs). It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  5. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries

    Science.gov (United States)

    Bai, Ying; Yan, Dong; Yu, Caiyan; Cao, Lina; Wang, Chunlei; Zhang, Jinshui; Zhu, Huiyuan; Hu, Yong-Sheng; Dai, Sheng; Lu, Junling; Zhang, Weifeng

    2016-03-01

    Silicon (Si) has been regarded as next-generation anode for high-energy lithium-ion batteries (LIBs) due to its high Li storage capacity (4200 mA h g-1). However, the mechanical degradation and resultant capacity fade critically hinder its practical application. In this regard, we demonstrate that nanocoating of Si spheres with a 3 nm titanium dioxide (TiO2) layer via atomic layer deposition (ALD) can utmostly balance the high conductivity and the good structural stability to improve the cycling stability of Si core material. The resultant sample, Si@TiO2-3 nm core-shell nanospheres, exhibits the best electrochemical performance of all with a highest initial Coulombic efficiency and specific charge capacity retention after 50 cycles at 0.1C (82.39% and 1580.3 mA h g-1). In addition to making full advantage of the ALD technique, we believe that our strategy and comprehension in coating the electrode and the active material could provide a useful pathway towards enhancing Si anode material itself and community of LIBs.

  6. Low-energy collisions of antiprotons with atoms and molecules

    International Nuclear Information System (INIS)

    Time-dependent close-coupling calculations were performed using the impact parameter method for antiproton and proton collisions with alkali-metal atoms and hydrogen molecules. The targets are described as effective one-electron systems using appropriate model potentials. The proton data verify the employed method while the results for antiprotons improve the literature on these systems considerably. Cross sections for ionization and excitation as well as electron-energy spectra and stopping power will be presented.

  7. Statistics of electron and exciton production for grazing impact of keV hydrogen atoms on a LiF(001) surface

    Science.gov (United States)

    Winter, H.; Lederer, S.; Maass, K.; Mertens, A.; Aumayr, F.; Winter, HP

    2002-08-01

    The energy loss of kilo-electronvolt hydrogen atoms for scattering from a LiF(001) surface under a grazing angle of incidence is measured in coincidence with the number of emitted electrons. The combined time-of-flight and electron number distributions show discrete features which are attributed to specific numbers for emitted electrons and production of surface excitons. The distributions are fairly well reproduced in terms of binomial distributions. The corresponding probabilities for electron and exciton production can consistently be related to a model where the formation of negative hydrogen atoms via local electron capture from halogen lattice sites is considered as a precursor for both processes.

  8. Thermal and optical properties of Nd{sup 3+} doped lead zinc borate glasses—Influence of alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, M.V.; Rajesh, D.; Balakrishna, A. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-04-15

    In the present investigation a new series of six different Nd{sup 3+} doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (A{sub T}), branching ratios (β), radiative lifetimes (τ{sub R}) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σ{sub P}) are obtained for all the observed emission transitions.

  9. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    International Nuclear Information System (INIS)

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions

  10. Diode laser spectroscopy of NaD, KD, RbD, and CsD: determination of the mass independent parameters and mass scaling coefficients of the alkali metal hydrides

    International Nuclear Information System (INIS)

    The infrared spectrum of the monodeuterides of the alkali metals, sodium, potassium, rubidium, and cesium have been measured with a nominal accuracy of ±0.001 cm-1 using a diode laser spectrometer. Spectral lines of both the fundamental and the first hot band were observed for all the deuterides except RbD where only the fundamental was measured. The accuracy of previously published data on KH was also improved. Combination of these new data with similar results obtained previously for the equivalent monohydrides allowed the determination of a set of mass-independent parameters and mass-scaling coefficients for the hydrides of all of the alkali metals. This has allowed the relative magnitudes of the parameters to be compared for the first time. The results indicate that non-adiabatic effects are most prevalent in CsH. (orig.)

  11. Lifetime studies of high power rhodium/tungsten and molybdenum electrodes for application to AMTEC (alkali metal thermal-to-electric converter)

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter (AMTEC) is a passive, direct energy conversion device potentially capable of near-Carnot efficiencies and demonstrated to perform to 19% efficiency and up to 1.0 W/cm2 power densities. It utilizes a high sodium activity gradient across a beta alumina solid electrolyte (BASE) and the properties of the porous metal electrode (PME) on the low pressure side of the electrolyte is critical to device performance. Sintering of the electrode, reaction between its constituents and BASE at their common interface, and metal migration within the electrode structure are all potential routes to long term degradation of electrode performance. Evaluation of these processes, which often may be measured at levels far below those affecting overall electrode performance, is necessary to construction of a valid lifetime performance model for AMTEC electrodes. Results of modeling with the limited available data indicate that thin Mo electrodes may show significant performance degradation for extended operation (>10,000 hrs) at higher operating temperatures (>1150K), while W/Rh and W/Pt electrodes are expected to show adequate performance at 1200K for lifetimes >10,000 hrs

  12. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  13. The approach to chaos in ultracold atomic and molecular physics: statistics of near-threshold bound states for Li+CaH and Li+CaF

    CERN Document Server

    Frye, Matthew D; Vaillant, Christophe L; Green, Dermot G; Hutson, Jeremy M

    2015-01-01

    We calculate near-threshold bound states for the highly anisotropic systems Li+CaH and Li+CaF and perform statistical analysis on the resulting level positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum $J=0$ we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for $J>0$ we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF ($J=0$) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. We suggest this may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behaviour.

  14. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    Science.gov (United States)

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  15. Long-range dispersion interactions. I. Formalism for two heteronuclear atoms

    International Nuclear Information System (INIS)

    A general procedure for systematically evaluating the long-range dispersion interaction between two heteronuclear atoms in arbitrary states is outlined. The C6 dispersion parameter can always be written in terms of sum rules involving oscillator strengths only and formulas for a number of symmetry cases are given. The dispersion coefficients for excited alkali-metal atoms interacting with the ground-state H and He are tabulated

  16. Structure Refinement of Cs-rich Na-Li Beryl and Analysis of Its Typomorphic Characteristics of Configurations

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; DENG Jun; LI Guowu; SHI Guanghai

    2007-01-01

    The tabular beryl found in Huya Country, Sichuan Province is a rare and special member among beryls. Chemical analysis reveals that the beryl is a new type of Cs-rich Na-Li beryl, and the content of alkalis (Li2O, Na2O, K2O, Rb2O, Cs2O) is up to 2.41%. The CCD system on the SMART APEX four circle single crystal diffractometer was used in this experiment to determine the structure of the sample accurately. The beryl belongs to the hexagonal system; its space group is P6/mcc. The dimensions of the unit cell are as follows: a = 0.91961(3) nm, c = 0.91969(7) nm, c/a= 1.0000, V= 0.67357nm3, γ = 120°, a = 90°, β = 90°. The accurate atomic coordinates of alkali metal ions and other crystallographic parameters are also obtained: Z = 2, the calculated density D = 2.754 g/cm3 and final R ( Ⅰ> 2 σ (Ⅰ))= 0.046 for 5597 reflections. The crystal structure was described by coordination polyhedron. Based on the data gained, a three-dimensional graph of the crystal structure of tabular beryl was made with the ATOMS 6.0 software. The refinement of crystal structure indicates that there are two main reasons for the cause of the tabular configuration: (1) The substitution of Be by Li into the tetrahedral framework weakened the stacked six-sided rings [Si6O1s]12- of the tetrahedral Si; (2) Alkalis (mainly Na and Cs) are too large to substitute in four-fold or six-fold coordination within the structure and are accommodated in the vacant channel. The accommodation of these alkalis strengthened the structure of six-sided rings of the tetrahedral Si. And other alkali metal ions and free volatile molecules such as H2O and CO2 occupy variable positions in the channel. The equation of the electrovalence is Li++Na+→Be2+. According to structural and compositional differences, the monoclinic crystal of tabular beryl is considered to be a new member of the beryl group. Chemical constraints of the environment, namely, the bulk-rock chemistry and the fluid-phase composition and

  17. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  18. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition Towards High Rate Durable Li Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2015-06-03

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in Lithium (Li) ion batteries at high rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2 coated MoO3 electrodes is 68% higher than bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2 coated MoO3 electrodes exhibited specific capacity of 657 mAh/g, on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2 coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li–ions through the passivation layer to the active material. Furthermore, ex–situ HRTEM, X–ray photoelectron spectroscopy (XPS), Raman spectroscopy and X–ray diffraction was carried out to explain the capacity retention mechanism after HfO2 coating.

  19. Structure and properties of a rapidly solidified Al-Li-Mn-Zr Alloy for high-temperature applications: Part I. inert gas atomization processing

    Science.gov (United States)

    Ruhr, Michael; Baram, Joseph

    1991-10-01

    A new Al-Li alloy containing 2.3 wt pct Li, 6.5 wt pct Mn, and 0.65 wt pet Zr, for high-temperature applications, has been processed by a rapid solidification (RS) technique (as powders by inert gas atomization) and then thermomechanically treated by hot isostatic pressing (hipping) and hot extrusion. As-received and thermomechanically treated powders (of various size fractions) were characterized by X-ray diffraction and scanning and transmission electron microscopy (SEM and TEM, respectively). Phase analyses in the as-processed materials revealed the presence of two Mn phases (Al4Mn and Al6Mn), one Zr phase (Al3Zr), two Li phases (the stable AlLi and the metastable Al3Li), and the αAl solid solution with high excess in Mn solubility (up to close the nominal composition in the as-atomized powders). Extruded pieces were solutionized at 370 °C and 530 °C for various soaking times (2 to 24 hours). A variety of aging treatments was practiced to check for the optimal (for tensile properties) aging procedure, which was found to be the following: solutioning at 370 °C for 2 hours and water quenching + 1 pct mechanical stretching + one step aging at 120 °C for 3 hours. The mechanical properties, at room and elevated temperatures, of the “hipped” and hot extruded powders are compared following the optimal solutioning and aging treatments. The results indicate that Mn is indeed a favorable alloying element for rapidly solidified Al-Li alloys to retain about 85 to 95 pct of the room-temperature tensile properties even at 250 °C, though room-temperature strength is not satisfactory in itself. However, specific moduli are by 20 to 25 pet higher than those of the 2024 series duralumin-type alloys. Ductilities at room temperatures are in the low 1 to 2.5 pct range and show no improvement over other Al-Li alloys.

  20. Atoms

    International Nuclear Information System (INIS)

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  1. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  2. Analysis on Alkali Metal Migration Law in Process of Eucalyptus Branches Direct Combustion%桉树枝直燃利用过程中碱金属迁移规律分析

    Institute of Scientific and Technical Information of China (English)

    韦威; 廖艳芬; 陈拓; 马晓茜; 杨云金; 余勇强

    2014-01-01

    For knowing alkali metal migration law in eucalyptus branches burned in some biomass power plant,this paper studies it by combustion experiment.The experimental sample is eucalyptus branch particle with grain size of 1 80μm which is used for repeat combustion experiment in pipe burner in order to get residual samples under different temperatures and with different combustion time.By proximate analysis on residual samples,it is able to get combustion laws of volatiles and fixed carbon.The experimental result shows that volatility of alkali metal in eucalyptus branches is very strong and there is 87%potassium released into gas phase in process of high temperature burning.Meanwhile,precipitation of alkali metal is speeding up with increase of temperature and precipitation volume dose is increasing with temperature and stop time.In addition,tak-ing kaolin as additive,it conducts quantitative analysis on its impact on retention rate of alkali metal in ash.The analysis re-sult indicates that kaolin has very good retention role for alkali metal in eucalyptus branches and retention effect of 5% kao-lin is the best.%为了解某生物质电厂燃用的桉树枝的碱金属迁移规律,对其进行了燃烧实验研究。实验样品为粒径180μm的桉树枝颗粒,在管式燃烧器中进行燃烧重复实验,获得不同温度和燃烧时间下的残留物样品,然后对残留物进行工业分析,获得挥发分、固定碳的燃烧规律;实验结果表明桉树枝碱金属挥发性很强,高温燃尽时有87%的钾释放进入气相,碱金属的析出随温度的增高而加快,析出总量也随温度和停留时间而增加。另外,以高岭土作为添加剂,定量分析了其对桉树枝碱金属在灰渣中的固留率的影响,分析结果表明高岭土对桉树枝的碱金属有很好固留作用,5%的高岭土添加量固留效果最佳。

  3. Theoretical Penning electron-energy distributions for alkali-metal atoms: He(2 /sup 1,3/S) collisions with sodium and potassium

    Energy Technology Data Exchange (ETDEWEB)

    Padial, N. T.; Cohen, J. S.; Martin, R. L.; Lane, N. F.

    1989-07-01

    Penning electron-energy distributions are calculated for collisions ofHe(2 /sup 1/S) and He(2 /sup 3/S) with sodium and potassiumatoms. The formulation is in terms of quantum-mechanical wave functions, whichare determined using previously published complex potentials for the initialstates and available experimental or presently calculated Hartree-Fockpotential curves for the final state. Sensitivities to these potentials aretested. The mechanisms for the observed energy structure are analyzed, and theeffects of experimental finite energy resolution and collisional velocityspread on the structure are shown.

  4. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    CERN Document Server

    Khushaim, Muna; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser energy of 100 pJ was in fairly good agreement with reported range of $\\delta^{'}$ solvus temperature, suggesting a result of reversion upon heating due to laser pulsing.

  5. New hypodiphosphates of the alkali metals: Synthesis, crystal structure and vibrational spectra of the hypodiphosphates(IV) M{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (M=Rb and Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Peng [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany); Wiegand, Thomas; Eckert, Hellmut [Institut fuer Physikalische Chemie and Graduate School of Chemistry, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 28/30, D-48149 Muenster (Germany); Gjikaj, Mimoza, E-mail: mimoza.gjikaj@tu-clausthal.de [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany)

    2012-10-15

    The new hypodiphosphates(IV) Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (1) and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (2) were synthesized by soft chemistry reactions from aqueous solutions of hypophosphoric acid and the corresponding heavy alkali-metal carbonates. Their crystal structures were determined by single crystal X-ray diffraction. Both compounds crystallize isotypic in the triclinic space group P-1 with one formula unit in the unit cell. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units in staggered conformation for the P{sub 2}O{sub 6} skeleton and the corresponding alkali-metal cations. In the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} ion the hydrogen atoms are in a 'trans-trans' conformation. O{center_dot}H-O hydrogen bonds between the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups consolidate the structures into a three-dimensional network. The FT-Raman and {sup 31}P and {sup 1}H and MAS NMR spectra of the title compounds have been recorded and interpreted, especially with respect to their assignment to the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups. Thermogravimetric data of 2 have been interpreted in terms of a thermal decomposition model. - Graphical Abstract: The layered compounds Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] have been synthesized and investigated. Both crystallize isotypic. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units and the corresponding alkali-metal cations. Highlights: Black-Right-Pointing-Pointer Synthesis and single-crystal structure of new alkali hypodiphosphates. Black-Right-Pointing-Pointer Structures are characterized by [(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})]{sup 2-} units and M

  6. Spinel LiMn2O4 Crystal Structure and Lithium Ion-Sieve Property of H+/Li+ Exchange%尖晶石型LiMn2O4晶体结构及锂离子筛H+/Li+交换性质研究

    Institute of Scientific and Technical Information of China (English)

    刘肖丽; 杨立新; 邬赛祥; 李芬

    2012-01-01

    The crystal structures and properties of spinel-type LiMn2O4 and lithium ion-sieve HMn2O4 were investigated by using the plane-wave ultrasoft pseudopotential and the generalized gradient approximation based on density functional theory. The PW91 functional was the most beneficial. HMn2O4 unit cell contracted after Li+ was substituted by H+, the lattice constant decreased to 0.799 nm from 0.823 nm of LiMn2O4, and the XRD peaks also obviously shifted toward high angle correspondingly. According to the XRD analyses of homologous lattice atoms, we concluded that two elements Mn and 0 play a decisive role in the XRD mode and intensity. Among them, Li presents +1 valence and is completely ionized, and can be exchanged by H+ thoroughly; while H displays the mutual connections of electron clouds with ambient 0 in the isoelectronic density map, and only takes 0.42 positive charge. Atomic partial densities of states show that the strong covalent bonding between Mn-0 is mainly attributed to the orbital overlap of Mn-d and O-p between -7.3~-1.6 eV below the Fermi level, and forms the hole tunnels of framework that are beneficial to ion exchange. The volumes of lattice point and hole polyhedrons comply with the following sequences: V8a>V48f>V8b, V16c>16d, V16c>V48f· Li+ is most apt to migrate to an adjacent 16c position, and alkali metal ion exchanges are subjected to the limitation of ionic radius and the size of acting energy.%采用密度泛函理论平面波超软赝势和广义梯度近似法对尖晶石型LiMn2O4及其锂离子筛HMn2O4的晶体结构和性质进行了从头计算.PW91泛函最为有效,Li+被H+取代后HMn2O4晶胞收缩,点阵常数从LiMn2O4的0.823 nm减小至0.799 nm,其XRD峰也相应向高角度方向明显位移.经同种格点原子的XRD分析表明,Mn、O两元素对XRD方式和强度起着决定作用.其中Li呈+1价完全离子化,可被H+彻底交换,H与周围O在等电子密度图中呈现电子云相互连接,只带有0.42个正电荷.

  7. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    DEFF Research Database (Denmark)

    Poel, Mike van der; Nielsen, C.V.; Rybaltover, M.;

    2002-01-01

    We measure angle differential cross sections (DCS) in Li+ + Na --> Li + Na+ electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target...... quantum scattering amplitudes are derived by the eikonal method. The resulting angle-differential electron transfer cross sections and their diffraction patterns agree with the experimental level-to-level results over most scattering angles in the energy range....

  8. Syntheses and characterization of one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2015-01-15

    Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic and partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.

  9. Recommended atomic data for collisional-radiative model of Li-like ions and gain calculation for Li-like Al ions in the recombining plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, T. [Okayama Univ. (Japan). Faculty of Engineering; Kawachi, T.; Nishihara, K.; Fujimoto, T.

    1995-09-01

    We have assessed atomic data for lithium-like ions for the purpose of constructing a reliable collisional-radiative model. We show several examples of the atomic data for aluminum and oxygen ions, and comparison of data from several sources is done in detail. For ions with nuclear charge z, the scaling formulas and fitting parameters, which are based on the data of oxygen ions, are presented. By use of these data, we have constructed two collisional-radiative models: the one for aluminum ions and the one for ions according to the scaling for z. The population inversion and the amplification gain of the soft x-ray laser lines in the recombining aluminum plasma are calculated for several electron temperatures. We also examine the effects of ion collisions for {Delta}n=0 transitions on the excited level populations.

  10. Determination of Ca, Mg, Na, Cd, Cu, Fe, K, Li and Zn in acid mine and reference water samples by inductively coupled plasma atomic fluorescence spectrometry

    Science.gov (United States)

    Sanzolone, R.F.; Meier, A.L.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric (ICP-AFS) method was used for the determination of nine elements in natural water. Reference and acid mine water samples were analysed by this method to demonstrate its usefulness for hydrogeochemical exploration. The elements were determined in two groups based on the compatibility of operating conditions and consideration of element abundance levels in natural water. Ca, Mg and Na were determined as a group using one set of instrumental conditions and a 1 + 99 dilution of the sample, and Cd, Cu, Fe, K, Li and Zn were determined using another set of conditions and the undiluted sample. The detection limits for the elements are as follows: Ca, 1.4; Mg, 1.7; Na, 2.0; Cd, 1.8; Cu, 6.2; Fe, 15.8; K, 3.5; Li, 0.3; and Zn, 1.2 ng m1-1. Each element has a linear range spanning about four orders of magnitude. The method has good precision and accuracy, as shown by statistics on replicate analyses and by the agreement between values obtained and those recommended for the reference water samples, and also those obtained by atomic absorption spectrometry for the acid mine water samples.

  11. Analytical investigation of the feasibility of sacrificial microchannel sealing for Chip-Scale Atomic Magnetometers

    OpenAIRE

    Tsujimoto, Kazuya; Hirai, Yoshikazu; Sugano, Koji; Tsuchiya, Toshiyuki; TABATA, Osamu

    2014-01-01

    An alkali metal vapor cell is a crucial component of the highly sensitive Chip Scale Atomic Magnetometers (CSAMs) that are increasingly deployed in a variety of electronic devices. Herein, we propose a novel microfabrication technique utilizing an array of microchannels at a bonded interface, to enable gas feedthrough for evacuation of unwanted gases from a vapor cell and subsequent introduction of an inert gas, followed by permanent sealing of the microchannels by reflow of a glass frit. The...

  12. Atomic orientation driven by broadly-frequency-modulated radiation: Theory and experiment

    Science.gov (United States)

    Bevilacqua, G.; Biancalana, V.; Dancheva, Y.

    2016-07-01

    We investigate magnetic resonances driven in thermal vapor of alkali-metal atoms by laser radiation broadly modulated at a frequency resonant with the Zeeman splitting. A model accounting for both hyperfine and Zeeman pumping is developed, and its results are compared with experimental measurements performed at relatively weak pump irradiance. The interplay between the two pumping processes generates intriguing interaction conditions, often overlooked by simplified models.

  13. van der Waals interaction of finite metallic systems: A study of cluster-atom scattering

    International Nuclear Information System (INIS)

    Absolute integral cross sections for elastic collisions of neutral sodium clusters Nan (n=2--20) with sodium atoms have been measured and the van der Waals interaction constants determined. The center-of-mass cross sections are very large (up to thousands of square angstroms), reflecting high cluster polarizabilities. It is found that the dispersion theory based on measured response parameters of alkali-metal clusters tends to overestimate the interaction strength

  14. Electron emission and exciton production of LiF surfaces by grazing impact of hydrogen neutral atoms

    International Nuclear Information System (INIS)

    We put forward an alternative mechanism to understand the physics underlying the electron emission and exciton formation occurring during grazing collision of neutral hydrogen on LiF(001) surfaces. Instead of visualizing the negative ion formation as the precursor, we propose the formation of excited H(n=2) as a catalyzer to produce excitons and electrons

  15. Strong field atomic physics in the mid-infrared

    International Nuclear Information System (INIS)

    We examine strong field atomic physics in a wavelength region (3-4 microns) where very little work has previously been done. The soft photon energy allows the exploration of one-electron atoms with low binding energies (alkali metals). We find that photoionization spectra differ from rare gas studies at shorter wavelengths due to more complex ion core potentials. Harmonic generation is studied, and we find that harmonic bandwidths are consistent with theory and the possibility of compression to pulse widths much shorter than that of the driving pulse. Harmonic yields in the visible and UV are sufficient for a complete study of their amplitude and phase characteristics.

  16. Collisional stability of localized Yb(${}^3\\mathrm{P}_2$) atoms immersed in a Fermi sea of Li

    CERN Document Server

    Konishi, Hideki; Ueda, Shinya; Takahashi, Yoshiro

    2016-01-01

    We establish an experimental method for a detailed investigation of inelastic collisional properties between ytterbium (Yb) in the metastable ${}^3\\mathrm{P}_2$ state and ground state lithium (Li). By combining an optical lattice and a direct excitation to the ${}^3\\mathrm{P}_2$ state we achieve high selectivity on the collisional partners. Using this method we determine inelastic loss coefficients in collisions between $^{174}$Yb(${}^3\\mathrm{P}_2$) with magnetic sublevels of $m_J=0$ and $-2$ and ground state $^6$Li to be $(4.4\\pm0.3)\\times10^{-11}~\\mathrm{cm}^3/\\mathrm{s}$ and $(4.7\\pm0.8)\\times10^{-11}~\\mathrm{cm}^3/\\mathrm{s}$, respectively. Absence of spin changing processes in Yb(${}^3\\mathrm{P}_2$)-Li inelastic collisions at low magnetic fields is confirmed by inelastic loss measurements on the $m_J=0$ state. We also demonstrate that our method allows us to look into loss processes in few-body systems separately.

  17. Studies of the Effects of Alkali Metal Oxides Promoter on the Oxidative Methylation of Toluene with Methane over KY Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The toluene conversion, the selectivity to styrene and ethylbenzene( C8 selectivity) in the oxidative methylation of toluene with methane have been studied comparatively for the KY zeolite catalyst promoted with Li2O, Na2O, K2O, and Cs2O respectively. It was found that the effect of promoter decreased in the order: Cs2O>Na2O>Li2O>K2O.

  18. Asymptotics-based CI models for atoms:Properties, exact solution of a minimal model for Li to Ne, and application to atomic spectra

    OpenAIRE

    Friesecke, G.; Goddard, B.D.

    2009-01-01

    Configuration-interaction (CI) models are approximations to the electronic Schrödinger equation which are widely used for numerical electronic structure calculations in quantum chemistry. Based on our recent closed-form asymptotic results for the full atomic Schrödinger equation in the limit of fixed electron number and large nuclear charge [SIAM J. Math. Anal., 41 (2009), pp. 631-664], we introduce a class of CI models for atoms which reproduce, at fixed finite model dimension, the correct S...

  19. Directed reflectivity, long life AMTEC condenser (DRC). Final report of Phase II SBIR program[Alkali Metal ThermoElectric Converter

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Thomas K.

    2001-09-10

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a static energy conversion device that operates at high thermal to electric conversion efficiencies that are essentially independent of size, have reached 19% and are expected to reach 25% to 30% in 1997. AMTEC systems have been chosen by NASA and DOE for spacecraft applications and have considerable promise for a wide variety of terrestrial applications. Reduction of parasitic heat losses in AMTEC systems related to radiative heat transfer from the hot side to the condenser can make a substantial contribution to system efficiency. Through design, analysis and the fabrication and testing of cells and systems, the proposed program to develop a Directed Reflectivity Condenser (DRC) has investigated the feasibility of an improved AMTEC condenser component. Phase 1 work showed the potential for adding from 4% to 7% to overall system efficiency for identical operating conditions using the concept. A detailed thermal analysis of several DRC capped cell designs was carried out and some of the conditions under which a DRC, used as the condenser at an end cap of a cylindrical converter, can reduce thermal radiation related losses were determined. A model experimental converter was built and tested to compare DRC and planar condenser surfaces. The results of both analysis and experiment indicate that for moderate aspect ratios of a cylindrical, end condensed converter, the DRC can reduce overall thermal losses by up to 4%. The initial effort in Phase 2 extended the analysis to a novel 150 watt radial AMTEC cell design. This analysis indicated that for the effective aspect ratio of this new converter design, the system performance at the 100+ watt level was not significantly improved by use of a DRC type condenser surface. Further analyses however showed that for cylindrical, end-condensed converters, optimized for use with internal radiation shields, the use of DRC surfaces on the side walls of the converter could be

  20. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery.

    Science.gov (United States)

    Luo, Xiangyi; Piernavieja-Hermida, Mar; Lu, Jun; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Miller, Dean; Zak Fang, Zhigang; Lei, Yu; Amine, Khalil

    2015-04-24

    Uniformly dispersed Pd nanoparticles on ZnO-passivated porous carbon were synthesized via an atomic layer deposition (ALD) technique, which was tested as a cathode material in a rechargeable Li-O2 battery, showing a highly active catalytic effect toward the electrochemical reactions-in particular, the oxygen evolution reaction. Transmission electron microscopy (TEM) showed discrete crystalline nanoparticles decorating the surface of the ZnO-passivated porous carbon support in which the size could be controlled in the range of 3-6 nm, depending on the number of Pd ALD cycles performed. X-ray absorption spectroscopy (XAS) at the Pd K-edge revealed that the carbon-supported Pd existed in a mixed phase of metallic palladium and palladium oxide. The ZnO-passivated layer effectively blocks the defect sites on the carbon surface, minimizing the electrolyte decomposition. Our results suggest that ALD is a promising technique for tailoring the surface composition and structure of nanoporous supports for Li-O2 batteries. PMID:25829367

  1. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantum stability and magic lengths of metal atom wires

    Science.gov (United States)

    Cui, Ping; Choi, Jin-Ho; Lan, Haiping; Cho, Jun-Hyung; Niu, Qian; Yang, Jinlong; Zhang, Zhenyu

    2016-06-01

    Metal atom wires represent an important class of nanomaterials in the development of future electronic devices and other functional applications. Using first-principles calculations within density functional theory, we carry out a systematic study of the quantum stability of freestanding atom wires consisting of prototypical metal elements with s -, s p -, and s d -valence electrons. We explore how the quantum mechanically confined motion and local bonding of the valence electrons in these different wire systems can dictate their overall structural stability and find that the formation energy of essentially all the wires oscillates with respect to their length measured by the number n of atoms contained in the wires, establishing the existence of highly preferred (or magic) lengths. Furthermore, different wire classes exhibit distinctively different oscillatory characteristics and quantum stabilities. Alkali metal wires possessing an unpaired s valence electron per atom exhibit simple damped even-odd oscillations. In contrast, Al and Ga wires containing three s2p1 valence electrons per atom generally display much larger and undamped even-odd energy oscillations due to stronger local bonding of the p orbitals. Among the noble metals, the s -dominant Ag wires behave similarly to the linear alkali metal wires, while Au and Pt wires distinctly prefer to be structurally zigzagged due to strong relativistic effects. These findings are discussed in connection with existing experiments and should also be instrumental in future experimental realization of different metal atom wires in freestanding or supported environments with desirable functionalities.

  3. Two-stage magneto-optical trapping and narrow-line cooling of $^6$Li atoms to high phase-space density

    CERN Document Server

    Sebastian, Jimmy; Li, Ke; Gan, Huat Chai Jaren; Li, Wenhui; Dieckmann, Kai

    2014-01-01

    We report an experimental study of peak and phase-space density of a two-stage magneto-optical trap (MOT) of 6-Li atoms, which exploits the narrower $2S_{1/2}\\rightarrow 3P_{3/2}$ ultra-violet (UV) transition at 323 nm following trapping and cooling on the more common D2 transition at 671 nm. The UV MOT is loaded from a red MOT and is compressed to give a high phase-space density up to $3\\times 10^{-4}$. Temperatures as low as 33 $\\mu$K are achieved on the UV transition. We study the density limiting factors and in particular find a value for the light-assisted collisional loss coefficient of $1.3 \\pm0.4\\times10^{-10}\\,\\textrm{cm}^3/\\textrm{s}$ for low repumping intensity.

  4. Trajectory dependent energy loss in grazing collisions of keV He atoms from a LiF(0 0 1) surface

    International Nuclear Information System (INIS)

    Angular distributions for scattering of 12 keV He atoms from a LiF(0 0 1) surface under a grazing angle of incidence were recorded in coincidence with the projectile energy loss and the number of electrons emitted from the target surface during the collision. For scattering along the low indexed 〈1 1 0〉 and 〈1 0 0〉 directions of the crystal surface collisional rainbow peaks were observed. For scattering along a 〈1 1 0〉 direction the resulting rainbow peaks can be attributed to scattering from strings of anions which form active sites for charge exchange and emission of electrons. The data can be interpreted by trajectory computer simulations where charge transfer takes place from F− sites

  5. Influence of the alkali metal cation on the fragmentation of monensin in ESI-MS/MS Influência de cátions de metais alcalinos sobre a fragmentação de monensina em ESI-MS/MS

    OpenAIRE

    Norberto Peporine Lopes; Filipe Alexandre Almeida-Paz; Paul Jonathan Gates

    2006-01-01

    The MS/MS fragmentation of the alkali metal complexes of monensin A are studied. The increase in alkali metal ionic radii decreases the ability of the Grob-Wharton fragmentation mechanism to occur and reduces the overall degree of fragmentation. Conversely, the electronegativity of the metal cation is related to the number of fragment ions observed.O presente trabalho relata os estudos de fragmentação por espectrometria de massas seqüencial de complexos formados pela monensina A e uma série d...

  6. Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate) Using Alkali Metals as Catalysts%碱金属化合物催化同时合成碳酸二甲酯和聚对苯二甲酸乙二醇酯

    Institute of Scientific and Technical Information of China (English)

    张丹; 王庆印; 姚洁; 王越; 曾毅; 王公应

    2007-01-01

    Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carried out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3: 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.

  7. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    International Nuclear Information System (INIS)

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O4 ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime

  8. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  9. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Science.gov (United States)

    Miake, Yudai; Mukaiyama, Takashi; O'Hara, Kenneth M.; Gensemer, Stephen

    2015-04-01

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O4 ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  10. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  11. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    International Nuclear Information System (INIS)

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mEh) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies

  12. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar.

    Science.gov (United States)

    Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A

    2015-12-01

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mEh) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies. PMID:26646872

  13. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    Energy Technology Data Exchange (ETDEWEB)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu [Hall-Atwater Laboratories of Chemistry, Wesleyan University, Middletown, Connecticut 06459-0180 (United States)

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  14. Spin texture formation induced by weak magnetic dipole interaction in a Bose-Einstein condensate. Magnetic gas of ultracold Rb atoms

    International Nuclear Information System (INIS)

    We observed the spin texture formation and the spatial modulation of the longitudinal magnetization in a spin-2 87Rb Bose-Einstein condensate. The observed results are compared with numerical simulations of the Gross-Pitaevskii equation, which are the effects due to the magnetic dipole-dipole interaction. These results show that the magnetic dipole-dipole interaction has significant effects even on spinor condensates of alkali metal atoms. (author)

  15. Experimental studies of collisions of excited Li(4p) atoms with C2H4, C2H6, C3H8 and theoretical interpretation of the Li-C2H4 system

    International Nuclear Information System (INIS)

    Collisions of excited Li(4p) states with C2H4, C2H6 and C3H8 are studied experimentally using far-wing scattering state spectroscopy techniques. High-level ab initio quantum mechanical studies of the Li-C2H4 system are conducted to explain the results of the experiment for this system. The recent and present works indicate that knowledge of the internal structure of the perturber (C2H4, C2H6 and C3H8) is essential to fully understand the interaction between the metal and the hydrocarbon molecules. The ab initio calculation shows that the Li(4d) (with little probability under the experimental conditions) and the Li(4p) can be formed directly through the laser pumping. It also shows that the Li(4s) and Li(3d) states can be formed through an electronic diabatic coupling involving a radiationless process. However, the Li(3p), Li(3s) and Li(2p) states can only be formed through a secondary diabatic coupling which is a much less probable process than the primary one. The calculation limited to two C2v sections of the potential energy surfaces (PESs) shows peculiar multi-state crossings that we have never seen in other lithium complexes we studied

  16. Atomic Layer Deposited MoS2 as a Carbon and Binder Free Anode in Li-ion Battery

    International Nuclear Information System (INIS)

    Molybdenum sulfide is deposited by atomic layer deposition (ALD) using molybdenum hexacarbonyl and hydrogen sulfide. Film growth is studied using in-situ quartz crystal microbalance, ex-situ X-ray reflectivity and ellipsometry. Deposition chemistry is further investigated with in-situ Fourier transform infrared spectroscopy. Self-limiting nature of the reaction is observed, typical of ALD. Saturated growth rate of 2.5 Å per cycle at 170 °C is obtained. As-deposited films are found amorphous in nature. As-grown films are tested as lithium-ion battery anode under half cell configuration. Electrochemical charge-discharge measurements demonstrate a stable cyclic performance with good capacity retention. Discharge capacity of 851 mAh g−1 is obtained after 50 cycles which corresponds to 77% of capacity retention of the initial capacity

  17. Synthesis and single-crystal structure of the pseudo-ternary compounds LiA[N(CN){sub 2}]{sub 2} (A = K or Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    Crystals of LiA[N(CN){sub 2}]{sub 2} were obtained from the reaction of LiCl and ACl (A = K or Rb) with Ag[N(CN){sub 2}] in water and subsequent evaporation of the filtered solution at 80 C under normal atmospheric conditions. Crystals of the title compound form thin rectangular plates that are transparent, colorless, and very fragile. Single-crystal structure analyses have shown that both compounds are isotypic and adopt the tetragonal space group I4/mcm (no. 140, Z = 4) with the cell parameters a = 701.53(12) and c = 1413.7(5) pm for LiK[N(CN){sub 2}]{sub 2} and a = 730.34(10) and c = 1414.4(4) pm for LiRb[N(CN){sub 2}]{sub 2}. The crystal structure is described and compared to that of the pseudo-binary alkali metal dicyanamides.

  18. Fourier transform infrared spectroscopic study on microemulsion systems of alkali metal salts of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester

    Science.gov (United States)

    Zhou, Weijin; Shi, Nai; Xu, Zhen-hua; Wu, JinGuang

    1994-01-01

    There has recently been a growing interest in the reverse micelle and microemulsion formation in the solvent extraction process. In our previous papers, the formation of W/O type microemulsions in the organic phase of sodium or potassium salt of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester was investigated by using the subtraction technique on FTIR. In this paper, the conductance and the FTIR spectroscopic study on the microemulsion systems of Li, Na, and K salts of this acidic extractant was reported.

  19. Structural and electronic properties of AB- and AA-stacking bilayer-graphene intercalated by Li, Na, Ca, B, Al, Si, Ge, Ag, and Au atoms

    Science.gov (United States)

    Tayran, Ceren; Aydin, Sezgin; Çakmak, Mehmet; Ellialtıoğlu, Şinasi

    2016-04-01

    The structural and electronic properties of X (=Li, Na, Ca, B, Al, Si, Ge, Ag, and Au)-intercalated AB- and AA-stacking bilayer-graphene have been investigated by using ab initio density functional theory. It is shown that Boron (Lithium)-intercalated system is energetically more stable than the others for the AB (AA) stacking bilayer-graphene systems. The structural parameters, electronic band structures, and orbital nature of actual interactions are studied for the relaxed stable geometries. It is seen that the higher the binding energy, the smaller is the distance between the layers, in these systems. The electronic band structures for these systems show that different intercalated atoms can change the properties of bilayer-graphene differently. For qualitative description of the electronic properties, the metallicities of the systems are also calculated and compared with each other. The Mulliken analysis and electron density maps clearly indicate that the interactions inside a single layer (intralayer interactions) are strong and highly covalent, while the interactions between the two layers (interlayer interactions) are much weaker.

  20. A Subfemtotesla Atomic Magnetometer Based on Hybrid Optical Pumping of Potassium and Rubidium

    Science.gov (United States)

    Li, Yang; Cai, Hongwei; Ding, Ming; Quan, Wei; Fang, Jiancheng

    2016-05-01

    Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have been researched and applied extensively. Higher sensitivity and spatial resolution combined with no cryogenic cooling of atomic magnetometers would enable many applications with low cost, including the magnetoencephalography (MEG). Ultrahigh sensitivity atomic magnetometer is considered to be the main development direction for the future. Hybrid optical pumping has been proposed to improve the efficiency of nuclear polarization. But it can also be used for magnetic field measurement. This method can control absorption of optical pumping light, which is benefit for improving the uniformity of alkali metal atoms polarization and the sensitivity of atomic magnetometer. In addition, it allows optical pumping in the absence of quenching gas. We conduct experiments with a hybrid optically pumped atomic magnetometer using a cell containing potassium and rubidium. By adjusting the density ratio of alkali metal and the pumping laser conditions, we measured the magnetic field sensitivity better than 0.7 fT/sqrt(Hz).

  1. Optical tuning of the scattering length of cold alkaline earth atoms

    OpenAIRE

    Ciurylo, R.; Tiesinga, E.; P.S. Julienne

    2004-01-01

    It is possible to tune the scattering length for the collision of ultra-cold 1S0 ground state alkaline-earth atoms using an optical Feshbach resonance. This is achieved with a laser far detuned from an excited molecular level near the frequency of the atomic intercombination 1S0--3P1 transition. Simple resonant scattering theory, illustrated by the example of 40Ca, allows an estimate of the magnitude of the effect. Unlike alkali metal species, large changes of the scattering length are possib...

  2. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO{sub 3} films on SiO{sub 2}/LiNbO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gainutdinov, R. V.; Volk, T. R. [Shubnikov Institute of Crystallography RAS, 119333 Moscow (Russian Federation); Zhang, H. H. [Jinan Jingzheng Electronics Co., Ltd., 250101 Jinan (China)

    2015-10-19

    We report on studies on writing of micro- and nanodomains and specified domain patterns by AFM-tip voltages U{sub DC} in thin (0.5 μm thick) ion-sliced LiNbO{sub 3} films embedded to SiO{sub 2}/LiNbO{sub 3} substrates. A peculiar feature is an overlapping of domains as the distance between them decreases. Piezoelectric hysteresis loops were measured in a wide range of U{sub DC} pulse durations. Domain dynamics and characteristics of hysteresis loops reveal marked distinctions from those observed so far in LiNbO{sub 3} films and bulk crystals.

  3. Influence of the alkali metal cation on the fragmentation of monensin in ESI-MS/MS Influência de cátions de metais alcalinos sobre a fragmentação de monensina em ESI-MS/MS

    Directory of Open Access Journals (Sweden)

    Norberto Peporine Lopes

    2006-09-01

    Full Text Available The MS/MS fragmentation of the alkali metal complexes of monensin A are studied. The increase in alkali metal ionic radii decreases the ability of the Grob-Wharton fragmentation mechanism to occur and reduces the overall degree of fragmentation. Conversely, the electronegativity of the metal cation is related to the number of fragment ions observed.O presente trabalho relata os estudos de fragmentação por espectrometria de massas seqüencial de complexos formados pela monensina A e uma série de metais alcalinos. Foi observado que o aumento do raio iônico do metal alcalino levou a uma diminuição do mecanismo de fragmentação do tipo Grob-Wharton e ao grau de fragmentação. Por outro lado, a maior eletronegatividade mostrou estar relacionada ao número de fragmentos observados.

  4. Enhanced high-rate electrochemical performance of Li3V1.8Mn0.2(PO4)3 by atomic doping of Mn(III)

    International Nuclear Information System (INIS)

    Mn(III) doped Li3V2-xMnx(PO4)3/C (x = 0.2) is prepared by sol-gel method. Mn(III) is well substituted the position of V in Li3V2(PO4)3 (LVP) without any Mn-contained impurity phase. The crystal structure and morphology in Mn-substituted Li3V2(PO4)3 are studied by X-ray diffraction patterns (XRD), XPS and scanning and high-resolution transmission electronic microscopy (SEM and HRTEM). Mn(III) substitution increases the electrochemical performance of Li3V2(PO4)3 at high cut-off voltage of 4.8 V. Li3V1.8Mn(III)0.2(PO4)3 delivers 185 mAh g−1 at 0.1 C, close to the theoretical capacity of Li3V2(PO4)3, and delivers initial capacities of 130 and 126 mAh g−1 at 5 C and 10 C-rate, remaining 95% and 97% of the initial capacities after 100 cycles when charged to 4.8 V. Mn(III) plays an important role in maintaining the three-dimensional (3D) solid framework structure to provide an improved cycle life at higher cut-off voltage of 4.8 V and improving the high-rate performance of Li3V2(PO4)3

  5. Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI

    Energy Technology Data Exchange (ETDEWEB)

    McOwen, Dennis W.; Delp, Samuel A.; Paillard, Elie; Herriot, Cristelle; Han, Sang D.; Boyle, Paul D.; Sommer, Roger D.; Henderson, Wesley A.

    2014-04-17

    Lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) and lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI) are two salts proposed for lithium battery electrolyte applications, but little is known about the manner in which the DCTA- and TDI- anions coordinate Li+ cations. To explore this in-depth, crystal structures are reported here for two solvates with LiDCTA: (G2)1:LiDCTA and (G1)1:LiDCTA with diglyme and monoglyme, respectively, and seven solvates with LiTDI: (G1)2:LiTDI, (G2)2:LiTDI, (G3)1:LiTDI, (THF)1:LiTDI, (EC)1:LiTDI, (PC)1:LiTDI and (DMC)1/2:LiTDI with monoglyme, diglyme, triglyme, tetrahydrofuran, ethylene carbonate, propylene carbonate and dimethyl carbonate, respectively. These latter solvate structures are compared with the previously reported acetonitrile (AN)2:LiTDI structure. The solvates indicate that the LiTDI salt is much less associated than the LiDCTA salt and that the ions in LiTDI, when aggregated in solvates, have a very similar TDI-...Li+ cation mode of coordination through both the anion ring and cyano nitrogen atoms. Such coordination facilitates the formation of polymeric ion aggregates, instead of dimers. Insight into such ion speciation is instrumental for understanding the electrolyte properties of aprotic solvent mixtures with these salts.

  6. Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography

    Directory of Open Access Journals (Sweden)

    Yosuke Ito

    2012-09-01

    Full Text Available We have developed an optically pumped atomic magnetometer using a hybrid cell of K and Rb. The hybrid optical pumping technique can apply dense alkali-metal vapor to the sensor head and leads to high signal intensity. We use dense Rb vapor as probed atoms, and achieve a sensitivity of approximately 100 fTrms/Hz1/2 around 10 Hz. In this case, the sensitivity is limited by the system noise, and the magnetic linewidth is narrower than that for direct Rb optical pumping. We demonstrated magnetocardiography using the magnetometer and obtained clear human magnetocardiograms.

  7. Light-induced ejection of calcium atoms from polymer surfaces

    Science.gov (United States)

    Mango, F.; Maccioni, E.

    2008-12-01

    Laser-induced fluorescence (LIF) of calcium atoms at room temperature has been observed in a polydimethylsiloxane (PDMS) coated cell when the walls are illuminated with non resonant visible light. Ca atomic density in the gas phase, monitored by the LIF, is much higher than normal room-temperature vapour pressure of calcium. In past years photon-stimulated desorption (PSD) was observed for several alkali metals that adsorbed to solid films of PDMS polymers. High yields of photo-desorbed atoms (and molecules in the case of sodium) can be induced, at room temperature and below, by weak intensity radiation. The desorption is characterised by a frequency threshold, whereas any power threshold is undetectable. The calcium photo-ejection is characterised both by a frequency threshold (about 18 500 cm-1) and by an observable power threshold (whose value becomes lower when the photo-ejecting light wavelength decreases).

  8. A3V2(PO4)3 (A = Na or Li) probed by in situ X-ray absorption spectroscopy

    Science.gov (United States)

    Pivko, Maja; Arcon, Iztok; Bele, Marjan; Dominko, Robert; Gaberscek, Miran

    2012-10-01

    Two stable modifications of A3V2(PO4)3 (A = Na or Li) were synthesized by citric acid assisted modified sol-gel synthesis. The obtained samples were phase pure Li3V2(PO4)3 and Na3V2(PO4)3 materials embedded in a carbon matrix. The samples were tested as half cells against lithium or sodium metal. Both samples delivered about 90 mAh g-1 at a C/10 cycling rate. The change of vanadium oxidation state and changes in the local environment of redox center for both materials were probed by in-situ X-ray absorption spectroscopy. Oxidation state of vanadium was determined by energy shift of the absorption edge. The reversible change of valence from trivalent to tetravalent oxidation state was determined in the potential window used in our experiments. Small reversible changes in the interatomic distances due to the relaxation of the structure in the process of alkali metal extraction and insertion were observed. Local environment (vanadium-oxygen bond distances) after 1st cycle were found to be the same as in the starting material. Both structures have been found very rigid without significant changes during alkali metal extraction.

  9. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    Science.gov (United States)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  10. Spectroscopic properties of the low-lying electronic states of RbHen (n = 1, 2) and their comparison with lighter alkali metal-helium systems

    International Nuclear Information System (INIS)

    Ab initio-based configuration interaction studies on RbHe and He–Rb–He have explored some key features of the low-lying electronic states of these van der Waals systems. The radiative lifetime of the Rb*He exciplex has been calculated to be around 24.5 ns, which is slightly higher than the HeRb*He lifetime (∼20 ns) and lower than the atomic fluorescence lifetime of Rb, by roughly 3.5 ns. Better exciplex stability of the symmetric triatomic system is evidenced by its higher binding energy value in comparison to the diatomic system by a substantial margin. BSSE-corrected spin–orbit calculations of RbHe have predicted a potential barrier of the 12Π1/2 state with a height of 15 cm−1 and width of 2.57 Å. The 2Πu state of the triatomic molecule shows a conical intersection of its Renner–Teller components (12A1 and 12B2) near a 99° bond angle along the bending path. Their unstable higher excited states (12Σ+1/2 or 12Σ+g,1/2) can trigger the pumping of the blue side of the ns2S1/2 → np2P3/2 transition, and this may eventually lead to the np2P1/2 →ns2S1/2 lasing transition. The broad fluorescence band with a peak near 11 900 cm−1 is found to arise from the 12Π3/2–X2Σ+1/2 transition of RbHe. (paper)

  11. Nano-sized Li-Fe composite oxide prepared by a self-catalytic reverse atom transfer radical polymerization approach as an anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    A novel Self-catalytic Reverse Atom Transfer Radical Polymerization (RATRP) approach that can provide the radical initiator and the catalyst by the system itself is used to synthesize a nano-sized Li-Fe composite oxide powder in large scale. Its crystalline structure and morphology have been characterized by X-ray diffraction and scanning electron microscopy. The results reveal that the composite is composed of nano-sized LiFeO2 and Fe3O4. Its electrochemical properties are evaluated by charge/discharge measurements. The results show that the Li-Fe composite oxide is an excellent anode material for lithium-ion batteries with good cycling performance (1249 mAh g-1 at 100th cycle) and outstanding rate capability (967 mAh g-1 at 5 C). Such a self-catalytic RATRP approach provides a way to synthesize nano-sized iron oxide-based anode materials industrially with preferable electrochemical performance and can also be applied in other polymer-related area.

  12. Structural and optical properties of LiKB4O7 single crystals grown by Czochralski technique

    International Nuclear Information System (INIS)

    One of the alkali metal borates, lithium potassium borate (LiKB4O7) single crystal, was grown following two different micro step pulling movements employing the modified crystal puller. The influence of two different micro step pulling movements on the crystalline nature, optical properties and micro morphology of the grown LiKB4O7 crystal was investigated by high resolution X-ray diffraction (HRXRD) analysis and birefringence interferometry and chemical etching techniques, respectively. HRXRD studies revealed that the crystalline perfection of the grown crystals is reasonably good. Interferometric images showed that the crystal grown under higher micro step pulling movement has very less number of scattering centers. The etching studies revealed that the crystal grown under higher micro steps pulling movement contains relatively low level dislocation density. - Graphical abstract: Diffraction curve recorded for LiKB4O7 crystal from (a) top portion and (b) bottom portion. - Highlights: • LiKB4O7 crystal was grown under two different micro stepping movements by the crystal puller. • Crystalline nature, optical properties and micro morphology of LiKB4O7 were investigated. • The micro stepping pull movement reduces the dislocation density during the growth of LiKB4O7 crystals

  13. Structural and optical properties of LiKB{sub 4}O{sub 7} single crystals grown by Czochralski technique

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, M. [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Ramamurthi, K. [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur 603 203, Tamil Nadu (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India)

    2015-06-15

    One of the alkali metal borates, lithium potassium borate (LiKB{sub 4}O{sub 7}) single crystal, was grown following two different micro step pulling movements employing the modified crystal puller. The influence of two different micro step pulling movements on the crystalline nature, optical properties and micro morphology of the grown LiKB{sub 4}O{sub 7} crystal was investigated by high resolution X-ray diffraction (HRXRD) analysis and birefringence interferometry and chemical etching techniques, respectively. HRXRD studies revealed that the crystalline perfection of the grown crystals is reasonably good. Interferometric images showed that the crystal grown under higher micro step pulling movement has very less number of scattering centers. The etching studies revealed that the crystal grown under higher micro steps pulling movement contains relatively low level dislocation density. - Graphical abstract: Diffraction curve recorded for LiKB{sub 4}O{sub 7} crystal from (a) top portion and (b) bottom portion. - Highlights: • LiKB{sub 4}O{sub 7} crystal was grown under two different micro stepping movements by the crystal puller. • Crystalline nature, optical properties and micro morphology of LiKB{sub 4}O{sub 7} were investigated. • The micro stepping pull movement reduces the dislocation density during the growth of LiKB{sub 4}O{sub 7} crystals.

  14. Beams made of twisted atoms: A theoretical analysis

    International Nuclear Information System (INIS)

    We have analyzed Bessel beams of two-level atoms that are driven by a linearly polarized laser light. Based on the Schroedinger equation for two-level systems, we first determine the states of two-level atoms in a plane-wave field by taking into account propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams by going beyond the typical paraxial approximation. In particular, we show that the probability density of these atomic beams exhibits a non-trivial, Bessel-squared-type behavior. The profile of such twisted atoms is affected by atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic and nuclear processes as well as in quantum communication.

  15. A new mass value for 7Li

    CERN Document Server

    Nagy, Sz; Suhonen, M; Schuch, R; Blaum, K; Björkhage, M; Bergström, I; 10.1103/PhysRevLett.96.163004

    2012-01-01

    A high-accuracy mass measurement of 7Li was performed with the Smiletrap Penning trap mass spectrometer via a cyclotron frequency comparison of Li3+ and H2+. A new atomic mass value of 7Li has been determined to be 7.016,003,425,6,(45)u with a relative uncertainty of 0.63 ppb. It has uncovered a discrepancy as large as 14 sigma (1.1 micro u) deviation relative to the literature value given in the Atomic-Mass Evaluation AME 2003. The importance of the improved and revised 7Li mass value, for calibration purposes in nuclear-charge radii and atomic mass measurements of the neutron halos 9Li and 11Li, is discussed.

  16. Collisions of low-energy antiprotons and protons with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Luehr, Armin

    2010-02-18

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (<40 keV), stimulating a vivid theoretical activity. On the other hand, only very few theoretical anti p studies can be found considering molecular as well as other atomic targets, in contrast to proton (p) collisions. This is in particular true for anti p impacts on H{sub 2} despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H{sub 2} is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H{sub 2} molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H{sub 2}{sup +}, and H{sub 2} as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H{sub 2}, Li, Na, and K. The developed method is tested and validated by detailed

  17. Measurement of surface phonon dispersion relations for LiF, NaF, and KCl through energy-analysed inelastic scattering of a helium atomic beam

    International Nuclear Information System (INIS)

    A crystal surface terminates abruptly one dimension of lattice periodicity, constituting a lattice defect with concomitant localized modes of vibration, termed surface phonons. Such surface phonons have previously been investigated in the long wavelength, non-dispersive regime. The present work reports the first observation of surface phonons in the short wavelength, dispersive range. The data allow for the first time a surface phonon dispersion curve to be plotted completely from origin to edge of the surface Brillouin zone. Measurements were made of phonons along the (anti GAMMA anti M) and (anti GAMMA anti X) azimuths of the LiF(001) surface and along the azimuth of NaF(001) and KC1(001) surfaces. The results are in substantial agreement with theoretical predictions, although for LiF the measured Rayleigh dispersion curve at M lies appreciably below the theoretical value, possibly reflecting the effects of surface relaxation. (orig.)

  18. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bryk, Taras [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv (Ukraine); Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv (Ukraine); Ruocco, G. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161 Roma (Italy); Scopigno, T. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); IPCF-CNR, c/o Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Seitsonen, Ari P. [Département de Chimie, Université de Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Département de Chimie, École Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France)

    2015-09-14

    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.

  19. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    International Nuclear Information System (INIS)

    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics

  20. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  1. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  2. Optical tuning of the scattering length of cold alkaline earth atoms

    CERN Document Server

    Ciurylo, R; Julienne, P S

    2004-01-01

    It is possible to tune the scattering length for the collision of ultra-cold 1S0 ground state alkaline-earth atoms using an optical Feshbach resonance. This is achieved with a laser far detuned from an excited molecular level near the frequency of the atomic intercombination 1S0--3P1 transition. Simple resonant scattering theory, illustrated by the example of 40Ca, allows an estimate of the magnitude of the effect. Unlike alkali metal species, large changes of the scattering length are possible while atom loss remains small, because of the very narrow line width of the molecular photoassociation transition. This raises prospects for control of atomic interactions for a system without magnetically tunable Feshbach resonance levels.

  3. Observation of excited level populations of Li-like aluminium ions in a recombining plasma: role of atomic processes involving doubly excited levels of Be-like ions

    International Nuclear Information System (INIS)

    An aluminium slab target was irradiated by multiple pulses of Nd:glass laser light with the irradiance of 1.5x1012 W cm-2. After the laser irradiation, a laser-produced aluminium plasma was observed in its recombining phase using a spectrometer whose relative sensitivity was calibrated. We measured relative intensities of the resonance series lines and the lines of the 2p2P-nd2D and 2p2P-ns2S series of the Li-like aluminium ions and derived the excited level populations of the upper levels. >From the slope of the population distribution of the high-lying excited levels and the transition from the series lines to the continuum, the electron temperature and the electron density were estimated to be 8 eV and 3.5x1025 m-3. A comparison of the experimental population distribution with a collisional-radiative (CR) model calculation indicates that recombination of the excited Li-like ions through doubly excited levels of the Be-like ions plays an important role in the population kinetics of the Li-like ions. (author)

  4. AI-Li/SiCp composites and Ti-AI alloy powders and coatings prepared by a plasma spray atomization (PSA) technique

    Science.gov (United States)

    Khor, K. A.; Boey, F. Y. C.; Murakoshi, Y.; Sano, T.

    1994-06-01

    There has been increasing use of Al-Li alloys in the aerospace industry, due mainly to the low density and high elastic modulus of this material. However, the problem of low ductility and fracture toughness of this material has limited its present application to only weight- and stiffness-critical components. Development of Al-Li/ceramic composites is currently being investigated to enhance the service capabilities of this material. The Ti-Al alloy is also of interest to aerospace-type applications, engine components in particular, due to its attractive high-temperature properties. Preparation of fine powders by plasma melting of composite feedstock and coatings formed by plasma spraying was carried out to examine the effect of spray parameters on the microstructure and properties of these materials. Characterization of the powders and coatings was performed using the scanning electron microscope and image analyzer. Examination of the plasma-sprayed powders and coatings has shown that in the Al-Li/SiC composite there is melting of both materials to form a single composite particle. The SiC reinforcement was in the submicron range and contributed to additional strengthening of the composite body, which was formed by a cold isostatic press and consolidated by hot extrusion or hot forging processes. The plasma-sprayed Ti-Al powder showed four categories of microstructures: featureless, dendritic, cellular, and martensite-like.

  5. Double layer effects in electrocatalysis: the oxygen reduction reaction and ethanol oxidation reaction on Au(111), Pt(111) and Ir(111) in alkaline media containing Na and Li cations.

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pietro P.; Strmcnik, Dusan; Jirkovsky, Jakub S.; Connell, Justin G.; Stamenkovic, Vojislav; Markovic, Nenad

    2016-03-15

    Oxygen reduction and ethanol oxidation reactions were studied on Au(111), Pt(111) and Ir(111) in alkaline solutions containing sodium and/or lithium cations. By keeping the same (111) surface orientation and exploring oxophilicity trends and non-covalent interactions between OHad and alkali metal cations (AMCn+), we were able to gain deep insights into the multiple roles that OHad plays in these important electrocatalytic reactions. Cyclic voltammetry experiments revealed that OHad formation initiates at distinct electrode potentials, governed by the oxophilicity of the specific metal surface, with further OHad adlayer stabilization by non-covalent alkali-cation interactions and affecting the formation of a “true oxide” layer at higher electrode potentials. Although OHad is a simple spectator for the ORR, it promotes the ethanol oxidation reaction (EOR) at lower potentials and act as spectator at high OHad coverages. By changing the alkali metal cation at the interface (Li+) on more oxophilic surfaces, it was possible to promote the EOR even more, relative to Na+, without changing the product distribution for the reaction. This cation effect suggests that OHad---Li+(H2O)x clusters can stabilize the ethoxide adlayer, thus improving the EOR activity. Our results indicate the importance of the entire electrochemical interface in determining the electrocatalytic activity during reaction.

  6. Electric and magnetic dipole allowed transitions of atoms for three-dimensionally isotropic left handedness in a mixed atomic vapor

    Science.gov (United States)

    Shen, Jian Qi

    2014-03-01

    Since previous negative-index atomic media based on quantum optical approaches are highly lossy, a proposal for realizing a three-dimensionally isotropic left-handed atomic vapor medium is suggested based on a mechanism of incoherent gain assisted atomic transitions. Two three-level atomic systems are utilized for producing simultaneously negative permittivity and negative permeability, respectively, in the same frequency band. We suggest that fine and hyperfine level transitions of atoms (e.g., a hyperfine level transition in a hydrogen atomic system and a fine level transition in an alkali-metal atomic system) would be applicable to realization of such a negatively refracting atomic vapor. The attractive features of the present scenario include: i) three-dimensionally isotropic negative indices; ii) incoherent gain wave amplification in the negative-index atomic vapor; iii) tunable negative indices depending upon external fields. Such a left-handed quantum optical medium can serve as a supporting substrate for lossy negative-index materials for loss compensation. It can also be used in designing new quantum optical and photonic devices (e.g., a subwavelength focusing system and a negative-index superlens for perfect imaging) because of its attractive properties of three-dimensional isotropy and high-gain wave amplification.

  7. Remote Control Effect of Li+, Na+, K+ Ions on the Super Energy Transfer Process in ZnMoO4:Eu3+, Bi3+ Phosphors

    Science.gov (United States)

    Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng

    2016-06-01

    Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials.

  8. Remote Control Effect of Li(+), Na(+), K(+) Ions on the Super Energy Transfer Process in ZnMoO4:Eu(3+), Bi(3+) Phosphors.

    Science.gov (United States)

    Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng

    2016-01-01

    Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi(3+), Eu(3+) phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li(+) and K(+) ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na(+) ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi(3+) and Eu(3+) ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286

  9. Remote Control Effect of Li+, Na+, K+ Ions on the Super Energy Transfer Process in ZnMoO4:Eu3+, Bi3+ Phosphors

    Science.gov (United States)

    Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng

    2016-01-01

    Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286

  10. Collisions of low-energy antiprotons and protons with atoms and molecules

    International Nuclear Information System (INIS)

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (2 despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H2 is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H2 molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H2+, and H2 as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H2, Li, Na, and K. The developed method is tested and validated by detailed comparison of the present findings for p impacts and for anti p+He collisions with literature data. On the other hand, total and differential cross sections for ionization and excitation of the targets by anti p impact complement the sparse literature data of this kind. Results gained from different targets as well

  11. Li2Sr4B12O23: A new alkali and alkaline-earth metal mixed borate with [B10O18]6− network and isolated [B2O5]4− unit

    International Nuclear Information System (INIS)

    A novel ternary lithium strontium borate Li2Sr4B12O23 crystal with size up to 20 mm×10 mm×4 mm has been grown via the top-seeded solution growth method below 730 °C. Single-crystal XRD analyses showed that Li2Sr4B12O23 crystallizes in the monoclinic space group P21/c with a=6.4664(4) Å, b=8.4878(4) Å, c=15.3337(8) Å, β=102.02(3)°, Z=2. The crystal structure is composed of [B10O18]6− network and isolated [B2O5]4− unit. The IR spectrum further confirmed the presence of both BO3 and BO4 groups. TG-DSC and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li2Sr4B12O23, has been discovered in the ternary M2O–M′O–B2O3 (M=alkali-metal, M′=alkalineearth metal) system. The crystal structure consists of [B10O18]6− network and isolated [B2O5]4− unit. Highlights: ► Li2Sr4B12O23 is a a novel borate discovered in the M2O–M′O–B2O3 (M=alkali-metal, M′=alkaline-earth metal) system. ► Li2Sr4B12O23 crystal structure has a three-dimensional crystal structure with [B10O18]6− network and isolated [B2O5]4− unit. ► Sr1 and Sr2 are located in two different channels constructed by 3∞[B10O18] network.

  12. Control of inhomogeneous atomic ensembles of hyperfine qudits

    CERN Document Server

    Mischuck, Brian E; Deutsch, Ivan H

    2011-01-01

    We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential to the design of robust pulses that mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space from an initial fiducial state. We prove that inhomogeneous control of qudit ensembles is possible based on a semi-analytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the semi-analytic protocol is compared to a brute force, full numerical search. For small inhomogeneities, < 1%, both approaches achieve average fide...

  13. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  14. Coherent control of charge exchange in strong-field dissociation of LiF

    Science.gov (United States)

    Armstrong, Greg; Esry, Brett

    2016-05-01

    The alkali-metal-halides family of molecules are useful prototypes in the study of laser-assisted charge exchange. Typically these molecules possess a field-free crossing between the ionic and covalent diabatic Born-Oppenheimer potential curves, leading to Li+ + F- and Li + F in LiF. These channels are energetically well-separated from higher-lying potentials, and may be easily distinguished experimentally. Moreover, charge exchange involves non-adiabatic transitions between the ionic and covalent channels, thereby allowing the investigation of physics beyond the Born-Oppenheimer approximation. The focus of this work is to control the preference between ionic and covalent dissociative products. We solve the time-dependent Schrödinger equation for the nuclear motion in full dimensionality, and investigate a pump-probe scheme for charge-exchange control. The degree of control is investigated by calculating the kinetic-energy release spectrum as a function of pump-probe delay for the ionic and covalent fragments. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  15. Structure factors and phonon dispersion in liquid Li0.61Na0.39 alloy

    Indian Academy of Sciences (India)

    Arun Pratap; Kirit N Lad; K G Raval

    2004-08-01

    The phonon spectra for liquid Li and Na have been computed through the phenomenological model of Bhatia and Singh for disordered systems like liquids and glasses and the obtained results have been compared with the available data obtained by inelastic neutron scattering (INS) and inelastic X-ray scattering (IXS) experiments. The effective pair potentials and their space derivatives are important ingredients in the computation of the dispersion curves. The pair potentials are obtained using the pseudo-potential theory. The empty core model proposed by Ashcroft is widely used for pseudo-potential calculations for alkali metals. But, it is thought to be unsuitable for Li because of its simple 1s electronic structure. However, it can be used with an additional term known as Born–Mayer (BM) core term. The influence of the BM core term on the phonon dispersion is discussed. The same pseudo-potential formalism has been employed to obtain the dispersion relation in liquid Li0.61Na0.39 alloy. Apart from the phonon spectra, the Ashcroft–Langreth structure factors in the alloy are derived in the Percus–Yevick approximation.

  16. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    International Nuclear Information System (INIS)

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h-1) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  17. Quantum effects in the case of (6)Li+ and (7)Li+ ions evolving in a neutral (6)Li gas at a wide range of temperatures.

    Science.gov (United States)

    Bouchelaghem, F; Bouledroua, M

    2014-02-01

    This work deals with the quantum-mechanical calculation of the temperature-dependent mobility of ionic lithium atoms diffusing in their parent gas. The computation of the quantal phase shifts in connection with the gerade and ungerade potential-energy curves, through which Li(+) approaches Li(2s), leads to the computation of the charge-transfer and diffusion cross sections. The behavior of the coefficients of diffusion and mobility with temperature is also examined. Throughout this work, the isotopic effects in the (6)Li(+)-(6)Li and (7)Li(+)-(6)Li collisions are emphasized. PMID:24326775

  18. The start-up and observation of the Li target in the EVEDA Li test loop

    International Nuclear Information System (INIS)

    Highlights: • The EVEDA Li test loop (ELTL) is a major Japanese activity for the validation of the Li target facility for the IFMIF. • The first operational results of the Li target in the ELTL are obtained. • The start-up procedure of the Li target was examined and consequently achieved. • The Li target whose velocity was 20 m/s in pressurized and vacuum conditions was observed by image devices and confirmed to be stable. - Abstract: Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) have been carried out under the “Broader Approach” (BA) agreement. As a major activity for the Li target facility, the EVEDA Li test loop (ELTL) was constructed at the Japan Atomic Energy Agency's Oarai site to validate the hydraulic conditions of the IFMIF Li target. This paper presents the first operational results of the Li target in the ELTL. A series of tests were performed to check the operational performance of the Li target. The conclusions are as follows: (1) the start-up procedure of the Li target was examined and consequently achieved the Li target and (2) the Li target whose velocity was 20 m/s under pressurized and vacuum conditions was observed by image devices and confirmed to be stable

  19. New intermetallic phases in the Cu-Li-Sn system. The lithium-rich phases Li3CuSn and Li6Cu2Sn3

    International Nuclear Information System (INIS)

    The Li-rich ternary intermetallic compounds with the idealized end-member compositions Li3CuSn (CSD-427099) and Li6Cu2Sn3 (CSD-427100) were synthesized from the pure elements by induction melting in Ta crucibles and annealing at 400 circle C. Both powder and single-crystal XRD investigations were performed. Li3CuSn crystallizes in space group P6/mmm [a=4.5769(2), c=8.461(2) Aa; wR2=0.073 for 180 unique F2-values and 25 free variables]. All atoms are located along [00z], [1/3 2/3 z] and [2/3 1/3 z]; individual sites are arranged in layers parallel to (00.1). One site is fully, one partially occupied by Sn atoms. Fully but mixed occupation with Cu and Li atoms was found for one site. The remaining electron-density distribution resulting from the strong anisotropic displacement parallel to the c axis is considered in four further sites, which are mixed occupied with (Li, Cu, □), but modelled solely by Li atoms. The crystal structure exhibits analogies with that of Li2CuSn (F anti 43m); comparable layers occur parallel to {111} but the stacking sequence and packing density differs adopting cubic symmetry. In Li6Cu2Sn3 [space group R anti 32/m, a=4.5900(2), c=30.910(6) Aa; wR2=0.039 for 253 unique F2-values for 25 free variables] all atoms are arranged again at (00z), (1/3 2/3 z) and (2/3 1/3 z). Three sites are fully occupied (two by Sn atoms, a further one by Li atoms). Three additional positions are mixed occupied by Cu and Li atoms. The crystal structure is closely related to that of the binary phases Li13Sn5 and Li5Sn2; the substitution of Li by Cu atoms and vice versa is evident. The structural relationship to Li13Ag5Si6, which is permeable for Li ions, makes the title compound interesting as anode material in Li-ion batteries.

  20. Thermodynamic properties of Li, Pb and Li17Pb83 with molecular dynamics simulations

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: In this work, new EAM potentials for Li, Pb and Li–Pb alloy have been constructed. Based on these potentials, the structural, thermodynamic and diffusion properties of Li, Pb and Li17Pb83 have been studied with molecular dynamics simulations. The calculated radial distribution functions and static structure factors agree well with previous reported data. The partial radial distribution functions indicate that liquid Li17Pb83 shows a hetero-coordination tendency and the partial Bhatia–Thornton structure factor SCC(q) suggests the concentration fluctuation in Li17Pb83 is not large. As comparing to the self-diffusion coefficients, the component diffusion coefficients are much smaller for Li atoms, and almost the same for Pb atoms. Density, enthalpy, capacity, melting point, latent heat of fusion and surface tension are also in reasonable agreement with the literature data within the experimental error

  1. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); Routkevitch, Dmitri; Varaksa, Natalia [InRedox, Longmont, Colorado 80544 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S

  2. New alkali-metal bidentate borate–malate NaB(DL-C4H4O5)2 and CsB(DL-C4H4O5)2⋅H2O: Effect of cations on the framework structures and macroscopic centricities

    International Nuclear Information System (INIS)

    Graphical abstract: Two novel semiorganic borates NaB(DL-C4H4O5)2 and CsB(DL-C4H4O5)2·H2O display different framework geometries attributable to the size of the alkali-metal cations. NaB(DL-C4H4O5)2 exhibits SHG intensity as high as two times that of KDP. Highlights: • New borate–malate crystals NaB(DL-C4H4O5)2 and CsB(DL-C4H4O5)2⋅H2O have been grown. • They display diverse framework geometries attributable to the size of the cations. • NaB(DL-C4H4O5)2 crystallizes in the noncentrosymmetric monoclinic space group P2. • Both crystals have absorption edges about 220 nm in the UV region. • NaB(DL-C4H4O5)2 exhibits a NLO efficiency of 2 times that of KDP (KH2PO4) standard. -- Abstract: Two new alkali-metal bidenate borate–malate NaB(DL-C4H4O5)2 and CsB(DL-C4H4O5)2⋅H2O have been grown by the facile slow evaporation method through the introduction of acetone as solvent. The crystal structures were determined by single crystal X-ray diffraction. The stoichiometrically equivalent materials crystallize in three-dimensional framework structures and have the same structural unit [B(C4H4O5)2]−. However, both crystals exhibit very diverse framework geometries attributable to the size of the alkali-metal cations, which also leads to the different space groups and macroscopic centricities as proven by SHG test. The noncentrosymmetric NaB(DL-C4H4O5)2 was found to exhibit phase-matchable NLO intensity as high as two times that of KDP standard and a short-wavelength absorption onset at 220 nm. Moreover, both crystals have also been characterized by Infrared spectroscopy and thermogravimetric analysis

  3. First-Principles Study of LiPON Solid Electrolyte

    Science.gov (United States)

    Santosh, K. C.; Xiong, Ka; Cho, Kyeongjae

    2011-03-01

    There has been much interest in the thin-film solid electrolyte for solid state battery and ionics applications. LiPON is a representative material developed by Oak Ridge National Laboratory. In this work, we use first principles calculations based on the density functional theory to investigate the Li- ion migration mechanisms of LiPON family materials. We investigate atomic structures, electronic structures and defect formation energies of these materials. To determine the migration path of Li diffusion, the activation energies are calculated. This study helps us to understand fundamental mechanisms of Li-ion migration and to improve Li ion conductivity in the solid electrolytes.

  4. Effect of the (n, α) Nuclear Reaction of B10 and Li6 on the Retention of Nuclear Recoil Atoms in Solids

    International Nuclear Information System (INIS)

    The increase of initial retention in reactor-irradiated solid cobaltic complexes, chromates and dichromates can be achieved by mixing the compounds with highly powdered boron compounds (α - annealing). The thermal neutron ''fission'' products of B10 and particularly the a-particles can penetrate the crystal lattice of the material under examination and by introducing defects into it help to recombine the recoil interstitials with their parent vacancies. Potassium chromate seems to increase the Cr51 retention up to 12% when it is bombarded by neutrons in mixtures with powdered boric acid. Ammonium chromate and potassium dichromate did not show any increase. Trisethylenediamine cobalt (III) nitrate in mixtures with ammonium hydrogen tetraborate showed an increase of retention about 15% for a dose given from the n,a reaction of 20 Mrad. Lithium carbonate was also used in mixtures with potassium chromate, dichromate and ammonium chromate. An increase of about 9% in retention was achieved in potassium chromate. Ammonium chromate in mixtures with lithium carbonate showed an increase of 3.5% due to the n,a reaction while potassium dichromate showed an increase of 2%. The introduction of defects by the products of the n, α reaction of B10 and Li6 affects the isothermal annealing, increasing the irregularities as the dose due to the ''fission'' products increases. The dose was calculated from the Q of the nuclear reaction, and it was assumed that all of it was absorbed by the lattice. By microscopic examinations the size of microcrystals of boron and lithium compounds was found to be about a few microns, which allowed the ''fission'' products to cross the parent lattice and come into the examined material. (author)

  5. Effects of AC magnetic field on spin-exchange relaxation of atomic magnetometer

    Science.gov (United States)

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng; Quan, Wei

    2016-03-01

    By operating at high alkali-metal densities and in low magnetic fields, the spin-exchange relaxation of atomic magnetometers can be eliminated, allowing construction of ultra-high sensitive spin-exchange relaxation-free magnetometers. Significant AC magnetic fields are usually introduced in the magnetometer by the magnetic field modulation technique or the cell heater, whose effects on the spin-exchange relaxation have not been evaluated. In this paper, we study experimentally the spin-exchange relaxation rate as a function of the magnetic field frequency, the magnetic field amplitude and the spin-exchange rate in low magnetic fields. The experimental results indicate that for low atomic polarization the spin-exchange relaxation rate decays exponentially with the magnetic field frequency, and the reciprocal of the decay constant is proportional to the spin-exchange rate.

  6. (6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Alam, T.M.; Boyle, T.J.; Brow, R.K.; Conzone, S.

    1999-02-08

    {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

  7. Ab initio simulations of H2 in Li-doped carbon nanotube systems

    International Nuclear Information System (INIS)

    Because of their unique structure, it has been proposed that carbon nanotube ropes may well provide an ideal container for the storage of molecular hydrogen. Indeed, there has been some experimental evidence of enhanced hydrogen uptake in doped Li and other alkali metal systems (Chen et al 1999 Science 285 91). We have therefore addressed this issue of hydrogen storage in Li-doped graphite and carbon nanotube systems theoretically with ab initio simulations. Our results find no evidence for such enhanced storage, based on the induced structural changes. In addition, we have also investigated the diffusion barriers for hydrogen to enter into nanotube interiors, both in the presence and absence of topological defects. Even if nanotube interiors are made accessible, the hydrogen uptake remains modest, i.e., less than 3.5 wt%. Mechanically or chemically processing nanotubes is therefore not likely to lead to greatly increased hydrogen storage. Even with its limitation, because of the use of the LDA and GGA approaches, the current investigation must be regarded as a means in the search for proper media that can successfully enhance hydrogen storage

  8. Simultaneous melting of shell and core atoms, a molecular dynamics study of lithium–copper nanoalloys

    International Nuclear Information System (INIS)

    Melting of nanoalloys originates from the alloy surface and gradually propagates into the interior region. The thermal stability of Li cores and Cu shells nanoalloy with size of 3.5 nm is studied through molecular dynamics and embedded atom method with the use of potential energy, Lindemann index, and radial distribution function. Results show that the shell and core Li atoms are melted in two steps: first, some Li atoms in the core migrate to the nanoalloy surface and maintain a typical solid state despite that the system temperature is higher than the bulk melting point of Li because of Li solidification in the solid–liquid interface; second, the shell and core Li atoms are simultaneously melted at high temperatures. A comparative study of Li@Cu nanoalloys with different Li atomic numbers shows that thermal stability is enhanced with the decreasing number of Li atoms within the nanoalloys because of weak binding for Cu thin shells

  9. The Competitive Influence of Li+, Na+, K+, Ag+, and H+ on the Fragmentation of a PEGylated Polymeric Excipient

    Science.gov (United States)

    Wei, Juan; Bristow, Anthony W. T.; O'Connor, Peter B.

    2015-01-01

    The collisionally activated dissociation (CAD) and electron capture dissociation (ECD) of doubly charged tocopheryl polyethylene glycol succinate (TPGS) have been examined. Li+, Na+, K+, Ag+, and H+ were selected in the study, and the competitive influence of each ion was investigated by fragmenting TPGS attached with two different cations, [M + X1 + X2]2+ (X1 and X2 refer to Li+, Na+, K+, Ag+, H+). For metallic adducts, CAD results show that the dissociation of ionic adducts from the precursor is most likely depending on the binding strength, where the affinity of each ion to the TPGS is in the order of Ag+ ≈ Li+ ˃ Na+ ˃ K+. Introducing more strongly bound adducts increases fragmentation. During ECD, however, the silver cation is lost most easily compared with the other alkali metal ions, but silver also shows a dominant role in producing fragmentations. Moreover, the charge carriers are lost in an order (Ag+ ˃ Na+ ˃ K+ ≥ Li+ where the loss of Ag is most easily) that appears to correlate with the standard reduction potential of the metallic ions (Ag+ ˃ Na+ ˃ K+ ˃ Li+). The ECD results suggest that the reduction potential of the charge carrier could be an important factor influencing the fragmentation, where the ion with a high reduction potential is more effective in capturing electrons, but may also be lost easily before leading to any fragmentation. Finally, a proton has the weakest binding with the TPGS according to the CAD results, and its dissociation in ECD follows the order of the reduction potential (Ag+ ˃ H+ ˃ Na+ ˃ K+ > Li+).

  10. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance. PMID:27035035

  11. Hydrogen storage in LiH: A first principle study

    Science.gov (United States)

    Banger, Suman; Nayak, Vikas; Verma, U. P.

    2014-04-01

    First principles calculations have been performed on the Lithium hydride (LiH) using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory. We have extended our calculations for LiH+2H and LiH+6H in NaCl structure. The structural stability of three compounds have been studied. It is found that LiH with 6 added Hydrogen atoms is most stable. The obtained results for LiH are in good agreement with reported experimental data. Electronic structures of three compounds are also studied. Out of three the energy band gap in LiH is ˜3.0 eV and LiH+2H and LiH+6H are metallic.

  12. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    Directory of Open Access Journals (Sweden)

    Tae Ho Yeom

    2016-04-01

    Full Text Available In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  13. LiHo(PO34

    Directory of Open Access Journals (Sweden)

    Mokhtar Férid

    2009-02-01

    Full Text Available Lithium holmium(III polyphosphate(V, LiHo(PO34, belongs to the type I of polyphosphates with general formula ALn(PO34, where A is a monovalent cation and Ln is a trivalent rare earth cation. In the crystal structure, the polyphosphate chains spread along the b-axis direction, with a repeat period of four tetrahedra and 21 internal symmetry. The Li and Ho atoms are both located on twofold rotation axes and are surrounded by four and eight O atoms, leading to a distorted tetrahedral and dodecahedral coordination, respectively. The HoO8 polyhedra are isolated from each other, the closest Ho...Ho distance being 5.570 (1 Å.

  14. Investigation of hydrogen absorption in Li7VN4 and Li7MnN4.

    Science.gov (United States)

    He, Guang; Herbst, J F; Ramesh, T N; Pinkerton, F E; Meyer, M S; Nazar, Linda

    2011-05-21

    The hydrogen storage properties of Li(7)VN(4) and Li(7)MnN(4) were investigated both by experiment and by density functional theory calculations. Li(7)VN(4) did not sorb hydrogen under our experimental conditions. Li(7)MnN(4) was observed to sorb 7 hydrogen atoms through the formation of LiH, Mn(4)N, and ammonia gas. An applied pressurized mixture of H(2)/Ar and H(2)/N(2) gases was helpful to mitigate the release of NH(3) but could not prevent its formation. The introduction of N(2) also caused weight gain of the sample by re-nitriding the absorbed products LiH and Mn(4)N, which correlated with the presence of Li(2)NH, LiNH(2), and Mn(2)N detected by X-ray diffraction. While our observed results for Li(7)VN(4) and Li(7)MnN(4) differ in detail, they are in overall qualitative agreement with our theoretical work, which strongly suggests that both compounds are unlikely to form quaternary hydrides. PMID:21455525

  15. Li2Se as a Neutron Scintillator

    International Nuclear Information System (INIS)

    We show that Li2Se:Te is a potential neutron scintillator material based on density functional calculations. Li2Se exhibits a number of properties favorable for efficient neutron detection, such as a high Li concentration for neutron absorption, a small effective atomic mass and a low density for reduced sensitivity to background gamma rays, and a small band gap for a high light yield. Our calculations show that Te doping should lead to the formation of deep acceptor complex VLi-TeSe, which can facilitate efficient light emission, similar to the emission activation in Te doped ZnSe

  16. Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres

    CERN Document Server

    Sharp, C M; Sharp, Christopher M.; Burrows, Adam

    2006-01-01

    We present a comprehensive description of the theory and practice of opacity calculations from the infrared to the ultraviolet needed to generate models of the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using existing line lists and spectroscopic databases in disparate formats are presented and plots of the resulting absorptive opacities versus wavelength for the most important molecules and atoms at representative temperature/pressure points are provided. Electronic, ro-vibrational, bound-free, bound-bound, free-free, and collision-induced transitions and monochromatic opacities are derived, discussed, and analyzed. The species addressed include the alkali metals, iron, heavy metal oxides, metal hydrides, $H_2$, $H_2O$, $CH_4$, $CO$, $NH_3$, $H_2S$, $PH_3$, and representative grains. [Abridged

  17. Charge transfer and ionization in proton-alkali atoms collisions with and without electric field

    International Nuclear Information System (INIS)

    The classical trajectory Monte Carlo simulation has been used to investigate the collisions of protons with alkali metal atoms in their ground state. Model interaction potential has been used to describe the electron-ionic core interaction. The cross sections for the capture and ionization in the energy range 1-100 keV/amu have been calculated and compared with the available experimental and theoretical results. The effects of the presence of a strong static electric field in different geometrical features on the capture and ionization cross sections have also been investigated. It has been found that the electric field causes the cross section for the capture to decrease while for the ionization enhance dramatically. Many of the null field features are retained. The analyses of the final state n, l-distribution in the electron capture process reveals H(2p) to be the most populated level in both the cases, with and without electric field. (author)

  18. Atomic and electronic structure of clusters from car-Parrinello method

    International Nuclear Information System (INIS)

    With the development of ab-initio molecular dynamics method, it has now become possible to study the static and dynamical properties of clusters containing up to a few tens of atoms. Here I present a review of the method within the framework of the density functional theory and pseudopotential approach to represent the electron-ion interaction and discuss some of its applications to clusters. Particular attention is focussed on the structure and bonding properties of clusters as a function of their size. Applications to clusters of alkali metals and Al, non-metal - metal transition in divalent metal clusters, molecular clusters of carbon and Sb are discussed in detail. Some results are also presented on mixed clusters. (author). 121 refs, 24 ifigs

  19. Isotopic effects on stereodynamics for the two reactions: H + LiH+(v = 0, j = 0) --> H2 + Li+ and H+ + LiH(v = 0, j = 0) --> H2(+) + Li.

    Science.gov (United States)

    Li, Xiaohu; Wang, Meishan; Pino, Ilaria; Yang, Chuanlu; Wu, Jicheng

    2010-07-28

    The isotopic effects on stereodynamic properties for the title reactions occurring on the two lowest-lying electronic potential energy surfaces (PESs) of LiH(2)(+) are investigated in detail by means of the quasi-classical trajectory (QCT) method at a collision energy of 0.5 eV, using the ab initio potential energy surfaces (PESs) of Martinazzo et al. (J. Chem. Phys., 2003, 119, 11241). The corresponding reactions comprise: (i) H/D/T + LiH(+) --> HH/HD/HT + Li(+) and H + LiH(+)/LiD(+)/LiT(+) --> HH/HD/HT + Li(+); (ii) H(+)/D(+)/T(+) + LiH --> HH(+)/HD(+)/HT(+) + Li and H(+) + LiH/LiD/LiT --> HH(+)/HD(+)/HT(+) + Li. Differential cross sections (DCSs) and alignments of the product rotational angular momentum for all of these reactions are reported. The results illustrate that the reason for the abnormal behavior of the DCSs for the title reactions reported in the previous work is ascribed to the sensitive role of the projectile atomic mass, and indicate that the long-range interactions play a more important role than the mass factor in ion-molecule reactions. The current topic for this special mass combination system shows some new features of the stereodynamics differing from the previous studies for "typical" mass-combination reactions. PMID:20498910

  20. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    International Nuclear Information System (INIS)

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application